
How Do You Get 10-Gbps I/O Performance?

High-speed serial I/O can be used to solve system interconnect design challenges. 
Such I/Os, when integrated into a highly programmable digital environment 
such as an FPGA, allow you to create high-performance designs that were never 
possible before. This book discusses the many aspects of high-speed serial designs 
with real world examples of how to implement working designs, including:

■ Basic I/O Concepts – Differential signaling, System 
Synchronous, and Source Synchronous design techniques.  

■ Pros and Cons of different implemenations – How to evaluate the 
cost advantages, the reduced EMI, the maximum data flow, and so on.   

■ SERDES Design – Basic theory, how to implement highly efficient 
serial to parallel channels, coding schemes, and so on.

■ Design Considerations – Standard and custom protocols, signal 
integrity, impedance, shielding, and so on. 

■ Testing – Interpreting eye patterns, reducing jitter, interoperability 
considerations, bit error testers, and so on. 

High-Speed Serial I/0 Made Simple
A Designers‘ Guide, with FPGA Applications

Xcell Publications help you solve design challenges, bringing 
you the awareness of the latest tools, devices, and technologies;
knowledge on how to design most effectively; and the next 
steps for implementing working solutions. See all of our books,
magazines, technical  journals, solutions guides, and brochures 
at: www.xilinx.com/xcell

Edition 1.0
April, 2005

Connectivity Solutions

High-Speed Serial I/O
Made Simple
A Designers’ Guide, with FPGA Applications

R

by Abhijit Athavale
and Carl Christensen

Edition 1.0Connectivity Solutions

High-Speed Serial I/O M
ade Sim

ple – A
 Designers’ Guide, w

ith FPGA
 A

pplications
Edition 1.0

PN 0402399



CONNECTIVITY SOLUTIONS: EDITION 1.0  PRELIMINARY INFORMATION

High-Speed Serial I/O
Made Simple

A Designer’s Guide with FPGA Applications

by

Abhijit Athavale
Marketing Manager, Connectivity Solutions, Xilinx, Inc.

and

Carl Christensen
Technical Marketing



HIGH-SPEED SERIAL I/O MADE SIMPLE •

• ii

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx Logo, and other designated brands included herein
are trademarks of Xilinx, Inc. PowerPC is a trademark of IBM, Inc. All other trademarks are the property of their
respective owners.

NOTICE OF DISCLAIMER: The information stated in this book is “Preliminary Information” and is not to be
used for design purposes. Xilinx is providing this design, code, or information "as is." By providing the
design, code, or information as one possible implementation of this feature, application, or standard, Xilinx
makes no representation that this implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims
any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to
any warranties or representations that this implementation is free from claims of infringement and any
implied warranties of merchantability or fitness for a particular purpose.

All terms mentioned in this book are known to be trademarks or service marks and are the property of their
respective owners. Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without written per-
mission from the publisher.

For copies of this book, write to:

Xilinx Connectivity Solutions
Product Solutions Marketing/Xilinx Worldwide Marketing

Dept. 2450, 2100 Logic Drive, San Jose, CA 95124
Tel: 408.879.6889, Fax: 308.371.8283

serialio@xilinx.com

Preliminary Edition 1.0
April 2005
PN0402399 



PRELIMINARY INFORMATION • iii

Acknowledgements
We would like to offer our deepest thanks to Paul Galloway and Craig Abramson. Without their constant
motivation, direction, and encouragement, we could not have completed this project.

We are also indebted to Ryan Carlson for his invaluable assistance in structuring the book, and to Chuck
Berry for his great support and sales interface. 

To a host of reviewers that included Matt DiPaolo, Mike Degerstrom, and Scott Davidson, we want to offer
our gratitude. They kept us honest, accurate, and up to date.

To Babak Hedayati and Tim Erjavec for their unwavering support and encouragement

Finally, we offer special thanks to Ray Johnson. He fully supported our effort and placed his personal stamp
of approval on this book by providing the Forward.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

• iv



TABLE OF CONTENTS

PRELIMINARY INFORMATION Xilinx • v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Foreword
About the Authors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Introduction
I/O Performance Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Digital Design Solutions for I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Introducing Multi-Gigabit Serial  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

History of Digital Electronic Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

Basic I/O Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Differential Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
System-Synchronous, Source-Synchronous, and Self-Synchronous . . . . . . . . . . . . . .5
Parallel Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Constant I/O Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Why Do We Need Gigabit Serial I/O?
Design Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Gigabit Serial I/O Advantages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Maximum Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Pin Count  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Simultaneous Switching Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
EMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Predefined Protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

What are the Disadvantages?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Where Will Gigabit I/O Be Used?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Chip-to-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Board-to-Board/Backplanes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Box-to-Box  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

The Future of Multi-gigabit Designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Technology
Real-World Serial I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Gigabit-Serial Implementations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

SERDES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
History of SERDES and CDR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Basic Theory of Operations and Generic Block Diagram  . . . . . . . . . . . . . . . . . . .21
Why Are They So Fast? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Line Encoding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25



HIGH-SPEED SERIAL I/O MADE SIMPLE •

vi • Xilinx

8b/10b Encoding/Decoding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Running Disparity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Control Characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Comma Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Scrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4b/5b 64b/66b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4b/5b 64b/66b Trade-Offs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Introduction to Packets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Reference Clocking Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Clock Correction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Receive and Transmit Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Channel Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Physical Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Pre-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Differential Transmission Lines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Line Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Optical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bit Error Rate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Realities of Testing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
FEC Used in Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

SERDES Technology Facilitates I/O Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Designing with Gigabit Serial I/O
The Challenges of Multi-Gigabit Transceiver Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Design Considerations and Choices You Can Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Standard Protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Custom Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Signal Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Boards, Connectors, and Cables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Printed Circuit Board Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Connector Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Cable Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



TABLE OF CONTENTS

PRELIMINARY INFORMATION Xilinx • vii

Test and Measurement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Sampling Oscilloscopes and Digital Communication Analyzers . . . . . . . . . . . . . .86
Time Delay Reflectometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Eye Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Jitter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Generators and Bit Error Testers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Putting the Equipment to Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Multi-gigabit Debug Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Protocol Level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Electrical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Other Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Design Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Testing Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
Development Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Xilinx—Your Design Partner
Serial I/O Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

One Stop Serial I/O Web Portal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Signal Integrity Central. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Additional References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Xilinx—A Powerful Design Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

World-Class Xilinx Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

Sample SERDES Data -- 
RocketIO X Transceiver Overview
Basic Architecture and Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

RocketIO X Transceiver Instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
HDL Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Available Ports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Primitive Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

Modifiable Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

Byte Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

Digital Design Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

Top-Level Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
Transmit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
Receive Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

Block Level Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Classification of Signals and Overloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130



HIGH-SPEED SERIAL I/O MADE SIMPLE •

viii • Xilinx

Bus Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8b/10b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Vitesse Disparity Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Comma Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
64b/66b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Functions Common to All Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Channel Bonding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Status and Event Bus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8b/10b Tables
Valid Data and Control Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A Comparison of Two Different
FPGA-to-FPGA Data Links
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Requirements and System Architecture Concerns/Features . . . . . . . . . . . . . . . . . . . . . . 174
The Slow Link  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
The Fast Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
The Slow Link  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
The Fast Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Proving Our Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Testing the Slow Link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Testing the Fast Link  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Glossary



PRELIMINARY INFORMATION Xilinx • v

Foreword

“An invasion of armies can be resisted, but not an idea whose time has come.” 

- Victor Hugo (1802 –1885) 'Histoire d'un crime,' 1852

There are only a handful of occasions in life when we are fortunate enough to be part of a new dis-
covery or an idea whose time has finally come. Some of these ideas or innovations can drastically 
change the universe we live in. Think of how it must have felt to be in the National Institutes of 
Health lab when bio-scientists put the finishing touches on mapping the entire human genome—
identifying the last gene in our DNA structure. Or at Bell Labs when Bardeen, Brattain, and Shockley 
demonstrated the first working transistor that led to a communications revolution. 

In just the last 50 years, scientists and engineers have produced an astonishing number and vari-
ety of scientific and technological breakthroughs. They formulated ideas that changed the way we 
think and the way we do almost everything. For example, the desire to link research center computers 
evolved into today’s Internet—an innovation many believe to be the most important instrument of 
business, social, and political change created in our lifetime. 

Today we are again in a position to be both witness and participant in one of these rare technolog-
ical moments. A fundamental shift is occurring in the electronics industry⎯a shift from parallel I/O 
schemes to serial I/O connectivity solutions. This change is driven by companies across a wide-range 
of industries as a means to reduce system costs, simplify system design, and provide the scalability 
needed to meet new bandwidth requirements.

At Xilinx, we firmly believe that serial connectivity solutions will ultimately be deployed in 
nearly every aspect of every electronic product imaginable. This deployment will appear in chip-to-
chip interfaces, backplane connectivity and system boards, and box-to-box communications, to name 
a few. In support of this belief, we announced a ”High-Speed Serial Initiative” to help accelerate the 
industry move from parallel to high-speed serial I/O. This initiative includes delivering a new gener-
ation of connectivity solutions for system designs that meet bandwidth requirements from 622 mega-
bits per second (Mb/s) to 11.1 gigabits per second (Gb/s), and beyond.

Industry analysts agree that the High-Speed Serial Initiative is inevitable because parallel I/O 
schemes reach physical limitations when data rates begin to exceed just 1 Gb/s and can no longer pro-
vide a reliable, cost-effective means for keeping signals synchronized. Serial I/O-based designs offer 
many advantages over traditional parallel implementations including fewer device pins, reduced board 
space requirements, fewer printed circuit board (PCB) layers, easier layout of the PCB, smaller connec-
tors, lower electromagnetic interference, and better noise immunity. 

This shift from parallel to serial will not be without engineering challenges. Among these, the 
biggest is the perception that designing high-speed serial I/O solutions is so difficult and complex that 
system engineers would rather continue using existing parallel technologies in spite of significant dis-
advantages. To address these challenges, we created the Serial I/O Starter Guide. It provides assistance to 
all designers who are intrigued by the rapidly advancing serial technology but are hesitant to take that 
first step. For those readers that have already designed with serial, this book can be viewed as an in-
depth refresher course. 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

vi • Xilinx Preliminary Information

Through the High-Speed Serial Initiative, Xilinx is providing both technical expertise and com-
plete, pre-engineered solutions for a wide range of serial system architectures. These architectures 
include networking, telecommunications, and enterprise storage markets served by Xilinx Platform 
FPGAs with integrated serial I/O transceivers—the ultimate connectivity platform. 

In addition to this book, Xilinx remains an active participant in key industry organizations help-
ing to drive serial technology standards. In addition, Xilinx offers an extensive network of "ecosystem" 
partners (EDA, reference design, IP, design services, etc.) to guarantee interoperability and access to 
the latest technology, techniques, and design tools. 

The world is embracing serial technology. The inclusion of high-speed serial I/O such as Rocke-
tIO™ transceivers in an FPGA has made serial the preferred system connectivity solution. We also 
recognize that many of the challenges of high-speed serial design are still new for most designers 
knowledgeable in parallel I/O technologies. The Serial I/O Starter Guide provides the fundamental 
principals of serial I/O design so that anyone can start to correctly apply this revolutionary technology. 

Raymond R. Johnson, Vice President and General Manager, 
Xilinx, Communications Technology Division



FOREWORD

PRELIMINARY INFORMATION Xilinx • vii

About the Authors
Abhijit Athavale

Abhijit Athavale is Marketing Manager of Connectivity Solutions at Xilinx. His responsibilities include
development of strategy, product positioning, and marketing programs for the company's high-speed serial
and parallel connectivity offerings. Since joining Xilinx in 1995, he has also held positions in marketing,
applications, and software engineering. Previously, Athavale was an R&D engineer designing communica-
tions products at Meltron. He received his Bachelor’s Degree in Electrical Engineering from the University
of Pune in India and his Masters Degree in Electrical Engineering from Texas A&M University. He is an
accomplished speaker and author of several published papers. 

Carl Christensen

Carl has been designing hardware and software for over 16 years. He is currently specializing in cutting-
edge FPGA design and system architectures for Thomson (brand names include RCA, Technicolor, and
Grass Valley).

Carl’s publications include technical papers at the Synopsys User Group Meetings (SNUG), the 
National Association of Broadcasters (NAB) convention, and Xilinx Expert User Symposium (XEUS). 
He currently has 16 patents/applications in review in the areas of forward error correction and broad-
cast routing systems. With a BS EE from Utah State University and significant graduate level work in 
computer science, Carl has taught courses in HDL-based design and programming in industry and 
college settings.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

viii • Xilinx Preliminary Information



PRELIMINARY INFORMATION XILINX • 1

CHAPTER 1

Introduction 

An overview of digital I/O signal processing methods

I/O Performance Limitations
Input/output (I/O) has always played a crucial role in computer and industrial applications. But as sig-
nal processing became more sophisticated, problems arose that prevented reliable I/O communication. 
In early parallel I/O buses, interface alignment problems prevented effective communication with out-
side devices. And as higher speeds became prevalent in digital design, managing signal delays became 
problematic.

Digital Design Solutions for I/O
Digital designers turned to a host of methods to increase signal speed and eliminate I/O problems. For 
example, differential signal processing was employed to increase speed in chip-to-chip communica-
tions. And design methods such as signal-, source-, and self-synchronization refined inter-IC (inte-
grated circuit) communication to provide reliable I/O at speeds demanded by the computer industry.

Introducing Multi-Gigabit Serial
Figure 1-1 shows a typical digital signal.

FIGURE 1-1: Standard Digital Signal

TWidth

Tf
Tr



HIGH-SPEED SERIAL I/O MADE SIMPLE •

2 • Xilinx PRELIMINARY INFORMATION

Notice the values of the time measurements listed on the diagram:

TR = 20 ps

TF = 20 ps

TWIDTH = 0.10 ns

These values represent a very fast waveform. Figure 1-2 adds historical signals for reference to 
show just how fast this waveform is.

Most signals cannot even get through their rise times in five bit times of the signal. So why dis-
cuss such a signal? Because it represents the hottest trend in digital I/O—multi-gigabit serial.

This type of signal is exploding onto the market. It’s finding applications in everything from local 
area network (LAN) equipment, to cutting edge medical imaging equipment, to advanced fighter jet 
technology. Multi-gigabit signals are quickly becoming key to the expanding information age. To 
learn about this fast-moving technological advancement, let’s review the history of I/O design.

History of Digital Electronic Communication
Transistor-transistor logic (TTL) was once the premier design method. Discrete gate ICs would com-
municate with each other to form larger circuits that were then integrated into complex ICs such as 
multi-bit registers and counters. Parallel communication dominated printed circuit board (PCB) 
assemblies for many years. But alignment problems were too difficult for outside communications. As 
a result, the serial port ruled box-to-box communications as evidenced by the serial printer ports in 
early computers.

Eventually the alignment problems were solved. High-speed parallel printer ports proliferated as 
parallel technologies evolved. These included Industry-Standard Architecture (ISA), Extended Indus-
try-Standard Architecture (EISA) and Small Computer Systems Interface (SCSI), Peripheral Compo-
nent Interconnect (PCI), and the smaller Personal Computer Memory Card Industry Association 
(PCMCIA). 

Serial technology continued to coexist with parallel. Ethernet and Token Ring gained dominance 
in many applications. Eventually, Token Ring replaced Ethernet when it was made to work on cate-
gory 5 (Cat 5) wire. 

FIGURE 1-2: Adding Historical Signals

A critical part of learning about a new technology is learning the vocabulary. Throughout the book you will find def-
initions of key terms set aside like this.

0.5 nsec



INTRODUCTION

PRELIMINARY INFORMATION XILINX • 3

Parallel technologies struggled to accommodate new interface demands. Standards like PCI 33 
evolved into PCI 66 as more exotic signaling was required. For a while, low swing standards such as 
high-speed transistor logic (HSTL) attempted to support parallel technology. Meanwhile, Ethernet 
went from 10 Mb to 100 Mb to 1000 Mb per second. Such speeds made Ethernet highly desirable for 
the desktop.

About this time the fractional phase detector was introduced. This technology boosted serial 
interface speed to the multi-gigabit range. Serial was proving to be fast and strong and it found appli-
cation as a backplane technology. As serial pin count and simultaneous switching outputs (SSO) 
improved, multi-gigabit serial gained prominence in PCB assemblies and replaced parallel.

Basic I/O Concepts
Single-ended I/O has been the standard for years. In single-ended systems, one signal connection is 
made between the two ICs. This signal is compared to a specified voltage range (TTL CMOS [compli-
mentary metal oxide semiconductor]), or a reference voltage (HSTL). Sample specifications of these 
methods are shown in Figure 1-3.

FIGURE 1-3: TTL Waveform

TABLE 1-1: LVCMOS (Low-voltage CMOS) Voltage Specifications

Parameter Minimum Typical Maximum

VCCO 2.3 2.5 2.7

VREF - - -

VTT - - -

VIH 1.7 - 3.6

VIL -0.5 - 0.7

VOH 1.9 - -

VOL - - 0.4

IOH at VOH (mA) -12 - -

IOL at VOL (mA) 12 - -

2.0v

3.0v

0.7v 0.0v

Tr Tf

TWidth



HIGH-SPEED SERIAL I/O MADE SIMPLE •

4 • Xilinx PRELIMINARY INFORMATION

Differential Signal
About the time HSTL and other low voltage swings became popular, a differential signal method 
began to appear on chip-to-chip communications. Differential signals had long been available, but 
they had been used for long transmissions, not for chip-to-chip communication on PCBs (Figure 1-5).

TABLE 1-2: HSTL Voltage Specifications

Parameter Minimum Typical Maximum

VCCO 1.4 1.5 1.6

VREF 0.68 0.75 0.90

VTT - VCC0 x 0.5 -

VIH VREF + 0.1 - -

VIL - - VREF - 0.1

VOH VCCO - 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -8 - -

IOL at VOL (mA) 8 - -

FIGURE 1-4: HSTL Voltage Diagram

FIGURE 1-5: Differential Signal Method

VREF = 0.9V

VTT= 1.5V

50

VCCO = 1.5V

Z = 50

HSTL Class III

z0

z0

2R



INTRODUCTION

PRELIMINARY INFORMATION XILINX • 5

As IC communication speeds increased, system and IC designers began to look for signaling 
methods that could handle higher speed (Figure 1-6). Differential signaling was such a method. It has 
several advantages over single-ended signaling. For example, it is much less susceptible to noise. It 
helps to maintain a constant current flow into the driving IC. And rather than comparing a voltage to 
a set value or reference voltage, it compares two signals to each other. Thus, if the signal referenced as 
the positive node has a higher voltage than the one referenced negative, the signal is high, or one. If the 
negative referenced signal is more positive, the signal is low, or zero. The positive and negative pins are 
driven with exact complementary signals as shown below.

System-Synchronous, Source-Synchronous, and Self-Synchronous
There are three basic timing models used for communication between two ICs — system-synchro-
nous, source-synchronous, and self-synchronous.

System-Synchronous
This method as shown in Figure 1-7 was the most common for many years. It seems very simple until 
we look at the timing model in Figure 1-8. The shaded boxes represent delays that must be accounted 
for and balanced to ensure a reliable receiving circuit.

FIGURE 1-6: Signaling Methods

FIGURE 1-7: System-Synchronous Diagram

p

n

+

-

p

n

Source
IC

osc

Destination
IC

Data

System
Synchronous



HIGH-SPEED SERIAL I/O MADE SIMPLE •

6 • Xilinx PRELIMINARY INFORMATION

Source-Synchronous
For years most signal delays were ignored because they were so small compared to the available time. 
But as speeds increased, managing delays became more difficult, then impossible. One way to improve 
the problem was to send a copy of the clock along with the data. This method is called source-synchro-
nous (Figure 1-9) and it greatly simplified the timing parameters.

The output time of the forwarded clock is adjusted so that the clock transitions in the middle of the 
data cell. Then the trace lengths of the data and clock lines must be matched. But there are some draw-

FIGURE 1-8: System-Synchronous Timing Model

System-Synchronous: Communication between two ICs where a common clock is applied to both ICs and 
is used for data transmission and reception.

FIGURE 1-9: Source-Synchronous Diagram

osc

clk 2 out

delay

board delay

board delay

ic clk distribution delay ic clk distribution delay

Source
IC

Destination
IC

Data

Source
Synchronous

clk



INTRODUCTION

PRELIMINARY INFORMATION XILINX • 7

backs. The received data on the destination IC must be moved from the received clock domain to a 
global IC clock.

Source-synchronous design results in a marked increase in the number of clock domains. This 
introduces timing constraint and analysis complications for devices such as a Field Programmable 
Gate Array (FPGA) with limited clock buffers, and an Application-Specific Integrated Circuit (ASIC) 
where each clock tree must be custom designed. The problem is aggravated on large parallel buses 
where board design limitations often force the use of more than one forwarded clock per data bus. 
Hence, a 32-bit bus may require four, or even eight forwarded clocks.

Self-Synchronous
The self-synchronous model is shown in Figure 1-11. Here, the data stream contains both the data and 
the clock. 

FIGURE 1-10: Source-Synchronous Timing Model

Source-Synchronous: Communication between two ICs where the transmitting IC generates a clock that 
accompanies the data. The receiving IC uses this forwarded clock for data reception. 

Clock Forwarded: Another term for source-synchronous.

FIGURE 1-11: Self-Synchronous Diagram

clk 2 out board delay

output delay board delay

buf

Source
IC

Destination
IC

Clk and
Data

Self
Synchronous



HIGH-SPEED SERIAL I/O MADE SIMPLE •

8 • Xilinx PRELIMINARY INFORMATION

The three main blocks of a self-synchronous interface are parallel-to-serial conversion, serial-to-
parallel conversion, and clock data recovery. 

Parallel-to-Serial Conversion
There are two main methods of parallel-to-serial conversion—a loadable shift register and revolving 
selectors. Simple logic representations of these methods are shown in Figure 1-13.

FIGURE 1-12: Self-Synchronous Timing Model

Self-Synchronous: Communication between two ICs where the transmitting IC generates a stream that contains 
both the data and the clock.

FIGURE 1-13: Parallel-to-Serial Conversion Processes

PLL

D0 Q

Serial
2

Parallel

Parallel
2

Serial

D0 Q

D     Q

D     Q

D     Q

D     Q

D     Q
counter

Loadable Shift Register Revolving Selector



INTRODUCTION

PRELIMINARY INFORMATION XILINX • 9

Serial-to-Parallel Conversion

The serial-to-parallel process is just the opposite as shown in Figure 1-14. 

Clock/Data Recovery

The clock recovery process (Figure 1-15) does not provide a common clock or send the clock with the 
data. Instead, a phased locked loop (PLL) is used to synthesizes a clock that matches the frequency of 
the clock that generates the incoming serial data stream.

FIGURE 1-14: Serial-to-Parallel Conversion Processes

FIGURE 1-15: Clock/Data Recovery Waveform

PLL: A phased locked loop is a circuit that takes a reference clock and an incoming signal and creates a new clock 
that is locked to the incoming signal.

D   Q

D   Q

D   Q

D   Q
Walking

One

Shift Register Revolving Enables

D   Q
en

D   Q
en

D   Q
en

D   Q
en

RCLK

RX_internal

RX_pin



HIGH-SPEED SERIAL I/O MADE SIMPLE •

10 • Xilinx PRELIMINARY INFORMATION

Parallel Transfers
In parallel transfers, additional control lines are often used to give different meanings to the data. 
Examples include data enables and multiplexing both data and control data onto the same bus.

In the serial domain, flags or markers are created to set data apart from non-data that is normally 
referred to as idle. Flags can also be used to mark different types of information such as data and con-
trol. 

Constant I/O Improvement
Industrial requirements for bandwidth and speed have demanded constant improvements in I/O 
design. As parallel and serial I/O have fought for prominence in chip and device communication, both 
have benefited from design methods that yielded vastly increased speeds. The use of digital design 
methods such as differential and synchronous signal processing and parallel transfers have ensured con-
tinued improvement in I/O performance for home and industry.

FIGURE 1-16: Parallel Transfer Example

FIGURE 1-17: Serial Domain Transfers Example

clk

data

enable

clk

data

enable

ctrl_not_data

idle df data if idle ifdf data idle

idle df data if idle ifcf control idle

df

cf

if

Data Flag marks start of data

Control Flag marks start of  control

Idle Flag marks end of valid data and control



PRELIMINARY INFORMATION XILINX • 11

CHAPTER 2

Why Do We Need Gigabit Serial I/O? 

A review of gigabit serial I/O design advantages

Design Concerns
The average design engineer is in a quandary. He would like to stick with tried-and-true solutions 
because they offer predictability and dependability. But he must also strive for performance improve-
ments in parameters such as data flow, pin count, electromagnetic interference (EMI), cost, and back-
plane efficiency. Should he consider gigabit serial input/output (I/O)? 

Gigabit Serial I/O Advantages
What is the chief advantage of gigabit serial I/O? Speed. For getting data on and off of chips, boards, 
or boxes, nothing beats a high-speed serial link. With wire speeds from 1 to 12 Gb/s and payloads 
from 0.8 to 10Gb, that is a lot of data transfer. And with fewer pins, no massive simultaneous switch-
ing output (SSO) problems, lower EMI, and lower cost, high-speed serial is the clear choice. Multi-
gigabit transceivers (MGTs) are the way to go when we need to move lots of data fast. Let’s examine 
some of the advantages of gigabit serial I/O.

Maximum Data Flow
Some large programmable logic devices have 20 or more 10-Gb serial transceivers for a total band-
width of 200 Gb/s in and out. While that is an extreme, let's look at an example application that 
shows us how serial I/O speed can help system architects, board designers, and logic designers.

MGT: Multi-Gigabit Transceiver—Another name for multi-gigabit Serializer/Deserializer (SERDES). Receives par-
allel data and allows transportation of high bandwidth data over a serial link.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

12 • Xilinx PRELIMINARY INFORMATION

Figure 2-1 shows a block diagram of a high-definition video mixer. 

Each high-definition video stream needs 1.5 Gb/s when transported in a baseband or uncom-
pressed format. One scenario for building this system includes discrete deserializer and serializer chips 
for the serial video streams, and parallel interfaces for the expansion bus and clip store. The other sce-

FIGURE 2-1: High-Definition Video Mixer

Clip Store

Mix6 Video
Streams

From Expansion 3
Video Streams

3 Video Streams

3 Video Streams

Display and

Options

3 
V

id
eo

S
tr

ea
m

s



WHY DO WE NEED GIGABIT SERIAL I/O?

PRELIMINARY INFORMATION XILINX • 13

nario uses gigabit transceivers inside the logic part to decode and encode the serial streams. The faster 
serial stream acts as the interface to the expansion connector and clip store.

FIGURE 2-2: Using Deserializer/Serializer Chips (Parallel)

Clip Store

expansion
connector

Mix
FPGA

60bits/75Mhz

Small
LCD

Display
Control LEDs

20bits/75Mhz1bit/1.5Ghz Deserializer

20bits/75Mhz1bit/1.5Ghz Deserializer

20bits/75Mhz1bit/1.5Ghz Deserializer

20bits/75Mhz1bit/1.5Ghz Deserializer

20bits/75Mhz1bit/1.5Ghz Deserializer

20bits/75Mhz1bit/1.5Ghz Deserializer

20
bi

ts
/7

5M
hz

20
bi

ts
/7

5M
hz

20
bi

ts
/7

5M
hz

60bits/75Mhz

20bits/75Mhz 1bit/1.5GhzSerializer

20bits/75Mhz 1bit/1.5GhzSerializer

20bits/75Mhz 1bit/1.5GhzSerializer



HIGH-SPEED SERIAL I/O MADE SIMPLE •

14 • Xilinx PRELIMINARY INFORMATION

Pin Count
Pin count is the first problem encountered when trying to move a lot of data in and out of a chip or a 
board. The number of input and output pins is always limited. Although pin count tends to increase 
over time, it is never enough to keep up. 

FIGURE 2-3: Using Gigabit Transceivers (Serial)

Clip Store

expansion

connector

Mix

FPGA

Small

LCD

Display
Control LEDs

1Bit/4.5Ghz
1bit/1.5Ghz

1B
it/

4.
5G

hz

1bit/1.5Ghz

1bit/1.5Ghz

1bit/1.5Ghz

1bit/1.5Ghz

1bit/1.5Ghz

1bit/1.5Ghz

1bit/1.5Ghz

1bit/1.5Ghz

1Bit/4.5Ghz



WHY DO WE NEED GIGABIT SERIAL I/O?

PRELIMINARY INFORMATION XILINX • 15

The pins needed for our two possible scenarios are given in Table 2-1.

To be fair, there are some pin issues for which we are not accounting. For example, some MGTs 
need more power and ground pins than a pair of slower pins. And a parallel interface may require spe-
cial reference pins. But this example is close enough for a comparison. 

Board design time and costs can go up dramatically when a large number of pins are used. Con-
nector pin count is also extremely important for connector/cable selection and feasibility. And using 
all available ball grid array (BGA) pins might not be convenient. 

Simultaneous Switching Outputs
A designer should consider SSO when using single-ended parallel buses. However, some of those out-
puts are going to toggle at the same time. When too many switch simultaneously, ground bounce cre-
ates a lot of noise.

A designer could also employ differential signal processing on all I/O to get rid of the SSO prob-
lems, but that doubles the pin count. And if the data flow needs are more modest, the designer could 
use a parallel interface with a usable pin count. 

EMI
Experience has shown that as clocks get faster, emissions testing gets more difficult. Hence, gigabit 
design may seem nearly impossible. But a high-speed serial link will usually exhibit less radiated 
emissions than a large bus that moves at a slower rate. This is because functioning gigabit links require 
excellent signal integrity. As one expert put it, “Radiated emission problems are really just signal 
integrity problems.” 

Cost
Using MGTs will often result in lower overall system costs. With a smaller, cheaper package, the con-
nectors can have fewer pins and the board design may be simpler as well. In the video mixer applica-
tion, the parallel solution had nine more ICs (integrated circuits) than the serial solution. In this 
example, the cost of the serial solution is hundreds of dollars less than the parallel solution.

TABLE 2-1:  Pin Counts: Serial vs. Parallel

Direction Parallel Serial

Inputs 1-6 IN 120 12

Clip store IN 60 2

Expansion inputs IN 60 2

Expansion outputs OUT 60 2

Outputs 1-3 OUT 60 6

Control /status In IN 48 48

Control /status Out OUT 52 52

LEDs OUT 12 12

LCD driver OUT 48 48

Totals 520 184



HIGH-SPEED SERIAL I/O MADE SIMPLE •

16 • Xilinx PRELIMINARY INFORMATION

Predefined Protocols
Another benefit of using MGTs is the availability of predefined protocols and interface standards. 
From Aurora to XAUI, designs already exist for many different needs.

What are the Disadvantages?
Before we think that gigabit serial I/O sounds too good to be true, let's look at the downsides. In our 
designs, we must first we must pay close attention to signal integrity issues. For example, one vendor 
reported a 90% failure rate on their first attempt with high-speed, multi-gigabit serial designs for a 
particular application. To improve the odds, we might need to perform analog simulations and use 
new, more complex bypassing schemes. In fact, we may even need to simulate and model the bypassing 
scheme.

We can also expect to pay more for impedance-controlled PC (printed circuit) boards, high-speed 
connectors, and cables. We will have to deal with complications and smaller time bases in digital sim-
ulations. And when taking advantage of a predefined protocol, we must plan time for integration and 
extra gates or Central Processing Unit (CPU) cycles for protocol overhead.

Where Will Gigabit I/O Be Used?
Initially, gigabit SERDES was confined to the telecommunications industry and to a few niche mar-
kets such as broadcast video. Today, MGT applications appear in every section of the electronics indus-
try — military, medical, networking, video, communications, etc. They are also being used on printed 
circuit board (PCB) assemblies through backplanes and between chassis. MGTs are critical to the 
future of electronics. Here is a sample of the industry standards that use multi-gigabit SERDES:

• FiberChannel (FC)
• PCI Express
• RapidIO Serial
• Advanced Switching Interface
• Serial ATA
• 1-Gb Ethernet
• 10-Gb Ethernet (XAUI)
• Infiniband 1X, 4X, 12X

Chip-to-Chip
SERDES was initially used to talk box-to-box. But it exploded into the marketplace because of how 
nicely it handles chip-to-chip communication on the same circuit board. Chip-to-chip communica-
tion had previously been almost exclusively a parallel domain. The amount of logic needed to serialize 
and deserialize far outweighed any savings that come from pin count reduction. 

But with deep sub-micron geometry, an incredible amount of logic can be achieved in a very small 
amount of silicon. SERDES can be included on parts for a very low silicon cost. Add to that the ever-
increasing need for I/O bandwidth, and SERDES quickly becomes the logical choice for moving any 
significant amount of data chip-to-chip. Consider the following benefits of SERDES chip-to-chip 
communication:

• Pin Count: Smaller, cheaper packages.
• Pin Count: Fewer layers on PCB assemblies.



WHY DO WE NEED GIGABIT SERIAL I/O?

PRELIMINARY INFORMATION XILINX • 17

• Smaller Packages: Smaller, cheaper boards and more compact designs.
• SSO: Fewer pins and differential signaling eliminate the SSO problem.
• Power: Usually a high-speed serial link will use less power than a parallel link. This is 

especially true of some of the actively biased/terminated high-speed parallel standards like 
high-speed transistor logic (HSTL).

• Control Lines included: Often a parallel interface needs a few lines for control and enable in 
addition to the data lines. Serial links have enabling and control capabilities built into most 
protocols.

Board-to-Board/Backplanes
Although they were once the best available, parallel architectures are at their limits. Most parallel bus 
protocols have evolved to the point where adding data bits is physically impractical because of pin 
counts on connectors. Clock skew, data skew, rise and fall times, and jitter limit the ability to increase 
clock frequency. Doubling the data rate can help, but it often requires moving to differential signal-
ing, and that drastically increases pin count. Also, controlling the cross-talk issues on parallel buses is 
difficult.

New serial backplanes are somewhat different than parallel backplanes. They typically have ded-
icated serial links from each node to every other node. Figure 2-4 illustrates the basic architecture of 
an old parallel bus and a new serial bus.

Serial bus architectures have a lot to offer. The pin count of a serial bus is a function of the number 
of nodes. For most practical node numbers, a serial architecture has fewer pins than the old parallel 
architectures. 

FIGURE 2-4: Old Parallel Bus vs. New Serial Bus

1 2 3 4 5

60

1 2 3 4 5

4



HIGH-SPEED SERIAL I/O MADE SIMPLE •

18 • Xilinx PRELIMINARY INFORMATION

Perhaps the most important difference between the two is the bandwidth access method. In the 
parallel architectures, one node can transmit to one or many nodes. But while that node is transmit-
ting, all other nodes are blocked. All nodes share the available bandwidth. 

In serial buses, each node has a dedicated link to every other node. So one node can talk to one or 
to all nodes while another node is talking. In fact, all nodes can talk to all other nodes at the same time. 
Of course, the nodes will have to have First In First Out (FIFO) buffering and storage so they can pro-
cess all the information being received.

Serial bus structure advantages include: 
• Higher bandwidth
• Reduced pin count
• Detected bandwidth node-to-node (no need to share)
• Solutions are built into the SERDES
• Easily supports protocols

Box-to-Box
While SERDES got their start connecting boxes, many designers do not consider multi-gigabit serial 
links for box-to-box communication. A common misconception is that box-to-box communication 
cannot be fast without using fiber optics. However, there are many links that go box-to-box for short 
distances over copper cabling systems. One standard that uses these links is Infiniband. The Infini-
band spec allows for 1, 4, or 12 channels of serial data at 2.5 Gb/s per stream. The standard has been 
commercially available for a number of years and includes cables, connectors, and a protocol that are all 
well defined and tested. 

The Future of Multi-gigabit Designs
At first glance, multi-gigabit communication seems to impose unacceptable restrictions. Serial 
designers must contend with signal integrity, smaller time bases, and possibly the need for extra gates 
and additional CPU cycles. However, multi-gigabit advantages in box-to-box and chip-to-chip com-
munication far outweigh the perceived shortcomings. For example, high speed, fewer pins, lower EMI, 
and lower cost make it the ideal choice in many communication designs. These advantages will ensure 
its continued use in communication applications far into the future.

FIGURE 2-5: Box-to-Box Connection



PRELIMINARY INFORMATION XILINX • 19

CHAPTER 3

Technology 

Techniques for implementing gigabit-serial I/O

Real-World Serial I/O
In the previous chapters, we examined some of the challenges faced by input/output (I/O) designers. 
And we looked at some of the advantages serial I/O has to offer. But how does a design engineer actu-
ally make use of serial I/O technology? Before design can begin, we need to know what’s available to 
help implement serial I/O solutions. We need to examine some serial building block devices to see if 
the tools are there for real-world implementation.

Gigabit-Serial Implementations
In this chapter we will look at some of the technologies involved with multi-gigabit links. We'll look 
at the Serializer/Deserializer (SERDES), its basic building blocks, and learn how all the speed is 
achieved (Figure 3-1). We will also review the format of the serial stream from both logical and phys-
ical points of view. This information will give us a foundation for planning gigabit-serial I/O designs. 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

20 • Xilinx PRELIMINARY INFORMATION

SERDES

History of SERDES and CDR
Serial-to-parallel and parallel-to-serial conversions have been a part of I/O design from the beginning. 
So has the idea of recovering a clock, or “locking a clock to an incoming stream.” So why has the SER-
DES suddenly become so important? 

As integrated circuit (IC) geometry grew smaller and maximum toggle rate (Fmax) increased, the 
need for I/O bandwidth exploded. In fact, some developments allowed for I/O frequency even faster 
than Fmax.

FIGURE 3-1: SERDES Block Diagram

Fmax: Maximum toggle rate of a flip-flop in a given technology or part.

Serializer

Deserializer

Clock

Manager
OSC

Encoding/

Decoding

Transmit and

Receiver

buffers/FIFO

Alignment

tx
 L

in
e

in
te

rf
ac

e
R

x 
Li

ne
in

te
rf

ac
e



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 21

Basic Theory of Operations and Generic Block Diagram
Let's look at the basic building blocks of a SERDES (Figure 3-2).

• Serializer: Takes n bits of parallel data changing at rate y and transforms them into a serial 
stream at a rate of n times y.

• Deserializer: Takes serial stream at a rate of n times y and changes it into parallel data of 
width n changing at rate y.

• Rx (Receive) Align: Aligns the incoming data into the proper word boundaries. Several 
different mechanisms can be used from automatic detection and alignment of a special 
reserved bit sequence (often called a comma) to user-controlled bit slips.

• Clock Manager: Manages various clocking needs including clock multiplication, clock 
division, and clock recovery.

• Transmit FIFO (First In First Out): Allows for storing of incoming data before 
transmission.

• Receive FIFO: Allows for storing of received data before removal; is essential in a system 
where clock correction is required. 

• Receive Line Interface: Analog receive circuitry includes differential receiver and may 
include active or passive equalization.

• Transmit Line Interface: Analog transmission circuit often allows varying drive strengths. It 
may also allow for pre-emphasis of transitions.

• Line Encoder: Encodes the data into a more line-friendly format. This usually involves 
eliminating long sequences of non-changing bits. May also adjust data for an even balance of 
ones and zeros. (This is an optional block sometimes not included in a SERDES.)

• Line Decoder: Decodes from line encoded data to plain data. (This is an optional block that is 
sometimes done outside of the SERDES.)

• Clock Correction and Channel Bonding: Allows for correction of the difference between the 
transmit clock and the receive clock. Also allows for skew correction between multiple 
channels. (Channel bonding is optional and not always included in SERDES.)

FIGURE 3-2: SERDES Generic Block Diagram

Serializer
Line

Encoder
Transmit

FIFOtx
 L

in
e

in
te

rf
ac

e

Deserializer
Line

decoder
RX Elastic

BufferR
X

 L
in

e
In

te
rf

ac
e

Clock
ManagerOSC Clock Correction and

Channel Bonding



HIGH-SPEED SERIAL I/O MADE SIMPLE •

22 • Xilinx PRELIMINARY INFORMATION

Other possible functions can be included such as cyclic redundancy check (CRC) generators, CRC 
checkers, multiple encoding and decoding 4b/5b, 8b/10b, 64b/66b, settable scramblers, various 
alignment and daisy-chaining options, and clock configurable front and backends. 

The ability to loop the SERDES on itself at various stages is also very common. There are many 
commercially-available SERDES. Figure 3-3 and Figure 3-4 show example block diagrams.

FIGURE 3-3: Virtex™-II Pro X RocketIO™ Block Diagram

Serializer

RXP

TXP

Clock
Manager

Deserializer
Comma
Detect
Realign

8B/10B 
Decoder 

TX
FIFO

Channel Bonding
and

Clock Correction CHBONDI[4:0]
CHBONDO[4:0]

8B/10B
Encoder

RX
Elastic
Buffer

Output
Polarity

RXN

GNDA

TXN

RXRESET

RXCLKCORCNT[2:0]
RXLOSSOFSYNC[1:0]

RXDATA[63:0]

RXNOTINTABLE[7:0]
RXDISPERR[7:0]
RXCHARISK[7:0]
RXCHARISCOMMA[7:0]
RXRUNDISP[7:0]
RXBUFSTATUS[1:0]

ENCHANSYNC

RXUSRCLK
RXUSRCLK2

CHBONDDONE

TXBUFERR

TXDATA[63:0]

TXBYPASS8B10B[7:0]
TXCHARISK[7:0]
TXCHARDISPMODE[7:0]
TXCHARDISPVAL[7:0]

TXKERR[7:0]
TXRUNDISP[7:0]

TXPOLARITY
TXINHIBIT
LOOPBACK[1:0]
TXRESET

REFCLK
REFCLK2
REFCLKSEL

TXUSRCLK
TXUSRCLK2

VTTX

AVCCAUXRX

TX/RX GND

1.5V

Termination Supply TX

P
os

t D
riv

er
 S

er
ia

l L
oo

pb
ac

k 
P

at
h

P
ar

al
le

l L
oo

pb
ac

k 
P

at
h

BREFCLKP
BREFCLKN

64B/66B
Block Sync

64
B

/6
6B

D
ec

od
er

Gear 
Box

Scrambler

64B/66B
Encoder

PMA
Attribute

Load

PMAREGDATAIN[7:0]

RXCOMMADETUSE
RXDATAWIDTH[1:0]
RXDECC64B66BUSE

PMAINIT
PMAREGADDR[5:0]

PMAREGRW
PMAREGSTROBE
PMARXLOCKSEL[1:0]
PMARXLOCK

RXDEC8B10BUSE
RXDESCRAM64B66BUSE

REFCLKBSEL
RXBLCOKSYNC64B66BUSE

RXSLIDE

TXINTDATAWIDTH[1:0]
TXSCRAM64B66BUSE
TXOUTCLK

RXIGNOREBTF
RXINTDATAWIDTH[1:0]

TXDATAWIDTH[1:0]
TXENC64B66BUSE
TXENC8B10BUSE

TXGEARBOX64B66BUSE

P
re

-D
riv

er
 L

oo
pb

ac
k 

P
at

h

      

64B/66B
Descrambler

Clock / 
Reset



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 23

Why Are They So Fast?
An unsettling aspect of the Gigabit SERDES is that they appear to be almost magical. They work with 
3, 5, and even 10+ gigabits. How is that kind of speed possible? There are several techniques that pro-
vide this speed.

A common element of most of these techniques is multiple phases (Figure 3-5 and Figure 3-6). 
We can get an idea of how multiple phases can help us by looking at a multiphase data extraction cir-
cuit. If we have an incoming serial stream with a bit rate of x, we can recover the stream with a clock 
of x/4 by using multiple phases of the slow clock. The incoming stream is directed into four flip-flops, 
each running off a different phase of the clock (0, 90, 180, and 270).

FIGURE 3-4: Virtex-II Pro RocketIO Block Diagram

FPGA FABRICMULTI-GIGABIT TRANSCEIVER CORE

Serializer

RXP

TXP

Clock
Manager

Power Down

PACKAGE
PINS

Deserializer
Comma
Detect
Realign

8B/10B 
Decoder 

TX
FIFO

CRC
Check

CRC

Channel Bonding
and

Clock Correction CHBONDI[3:0]
CHBONDO[3:0]

8B/10B
Encoder

RX
Elastic
Buffer

Output
Polarity

RXN

GNDA

TXN

POWERDOWN

RXRECCLK
RXPOLARITY
RXREALIGN
RXCOMMADET

RXRESET

RXCLKCORCNT
RXLOSSOFSYNC

RXDATA[15:0]
RXDATA[31:16]

RXCHECKINGCRC
RXCRCERR

RXNOTINTABLE[3:0]
RXDISPERR[3:0]
RXCHARISK[3:0]
RXCHARISCOMMA[3:0]
RXRUNDISP[3:0]
RXBUFSTATUS[1:0]

ENCHANSYNC

RXUSRCLK
RXUSRCLK2

CHBONDDONE

TXBUFERR

TXDATA[15:0]
TXDATA[31:16]

TXBYPASS8B10B[3:0]
TXCHARISK[3:0]
TXCHARDISPMODE[3:0]
TXCHARDISPVAL[3:0]

TXKERR[3:0]
TXRUNDISP[3:0]

TXPOLARITY

TXFORCECRCERR

TXINHIBIT

LOOPBACK[1:0]
TXRESET

REFCLK
REFCLK2
REFCLKSEL

ENPCOMMAALIGN
ENMCOMMAALIGN

TXUSRCLK
TXUSRCLK2

VTRX

AVCCAUXRX

VTTX

AVCCAUXTX

2.5V RX

TX/RX GND

Termination Supply RX

2.5V TX

Termination Supply TX

S
er

ia
l L

oo
pb

ac
k 

P
at

h

P
ar

al
le

l L
oo

pb
ac

k 
P

at
h

BREFCLK
BREFCLK2



HIGH-SPEED SERIAL I/O MADE SIMPLE •

24 • Xilinx PRELIMINARY INFORMATION

FIGURE 3-5: Multiphase Data Extraction Circuit

D      Q

D      Q

D      Q

D      Q D      Q D      Q D      Q

D      Q D      Q

D      Q

D      Q

d

c

b

a

0
90

270

180

IN

d3

d2

d1

d0



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 25

Each flip-flop then feeds into a flip-flop clocked by the next lowest phase until it is clocked off the 
zero-phase clock. This deserializes the incoming stream into a 4-bit word running at 1/4 the clock rate 
of the incoming stream.

In the previous example the phase was lined up and the clock was exactly 1/4 the rate of the 
incoming stream. How does that happen? We must lock to the incoming stream. We could do it with 
a classic phase-locked loop (PLL), but that would require a full-rate clock and defeat the purpose. One 
of the biggest advances in high-speed SERDES involves the PLLs used in clock and data recovery. A 
normal PLL requires a clock running at the data speed, but there are several techniques that can be 
used to avoid this requirement, including fractional rate phase detectors, multi-phase PLLs, parallel 
sampling, and over-sampling data recovery.

Line Encoding Schemes
Line encoding schemes modify raw data into a form that the receiver can accept. Specifically, the line 
encode scheme ensures that there are enough transitions for the clock recovery circuit to operate. They 
provide a means of aligning the data into words with a good direct current (DC) balance on the line. 

FIGURE 3-6: Example Waveform Multiphase Data Extraction Circuit

1010 1101

10 01 1 0 1 1

 out

in

clk 0

d

clk 90

clk 180

clk 270

a

b

c



HIGH-SPEED SERIAL I/O MADE SIMPLE •

26 • Xilinx PRELIMINARY INFORMATION

Optionally, the line encoding scheme may also provide for implementation of clock correction, block 
synchronization and channel bonding, and division of the bandwidth into sub-channels.

There are two main line encoding schemes—value lookup schemes and self-modifying streams, or 
scramblers.

8b/10b Encoding/Decoding
The 8b/10b encoding scheme was developed by IBM and has been widely adapted. It is the encoding 
scheme used in Infiniband, Gigabit Ethernet, FiberChannel, and the XAUI interface to 10 Gigabit 
Ethernet. It is a value lookup-type encoding scheme where 8-bit words are translated into 10-bit sym-
bols. These symbols ensure a good number of transitions for the clock recovery. Table 3-1 gives a few 
examples of 8-bit values that would result in long runs without transitions. 8b/10b allows for 12 spe-
cial characters that decode into 12 control characters commonly called K-characters. We will look at 
K-characters in more detail, but first let’s examine how 8b/10b ensures a good DC balance. 

Running Disparity
DC balance is achieved in the 8b/10b through a method called running disparity. The easiest way to 
achieve DC balance would be to only allow symbols that have the same number of ones and zeros, but 
that would limit the number of symbols. 

Instead, 8b/10b uses two different symbols assigned to each data value. In most cases, one of the 
symbols has six zeros and four ones, and the other has four zeros and six ones. The total number of ones 
and zeros is monitored and the next symbol is chosen based on what is needed to bring the DC balance 
back in line. The two symbols are normally referred to as + and - symbols. Symbol examples are given 
in Table 3-2. 

One additional benefit of the running disparity is that the receiver can monitor the running dis-
parity and detect that an error has occurred in the incoming stream because the running disparity rules 
have been violated.

TABLE 3-1: Example of 8-bit Values

8-bit Value  10-bit Symbol

00000000 1001110100

00000001 0111010100

TABLE 3-2: Examples of 8b/10b Symbols

Name Hex 8 Bits RD - RD +

D10.7 EA 11101010 0101011110 0101010001

D31.7 FF 11111111 1010110001 0101001110

D4.5 A4 10100100 1101011010 0010101010

D0.0 00 00000000 1001110100 0110001011

D23.0 17 00010111 1110100100 0001011011



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 27

Control Characters
Table 3-3 lists the encoding of 12 special symbols known as control characters or K-characters.

These control characters are used for alignment, control, and dividing the bandwidth into sub-
channels.

Comma Detection
Alignment of data is an important function of the deserializer. Figure 3-7 represents valid 8b/10b data 
in a serial stream.

TABLE 3-3: Valid Control K-Characters

Name Hex 8 Bits RD - RD +

K28.0 1C 00011100 0011110100 1100001011

K28.1 3C 00111100 0011111001 1100000110

K28.2 5C 01011100 0011110101 1100001010

K28.3 7C 01111100 0011110011 1100001100

K28.4 9C 10011100 0011110010 1100001101

K28.5 BC 10111100 0011111010 1100000101

K28.6 DC 11011100 0011110110 1100001001

K28.7 FC 11111100 0011111000 1100000111

K23.7 F7 11110111 1110101000 0001010111

K27.7 FB 11111011 1101101000 0010010111

K29.7 FD 11111101 1011101000 0100010111

K30.7 FE 11111110 0111101000 1000010111

FIGURE 3-7: Serial Stream Valid 8b/10b Data

0 0 1 1 1 1 1 0 0 01

Transmit

Order

Pre-defined

Alignment

Pattern

D
1.

7

K
28

.7

D
31

.7

D
30

.2 0 1 0 1 0

K
28

.7

D
31

.7

D
30

.2



HIGH-SPEED SERIAL I/O MADE SIMPLE •

28 • Xilinx PRELIMINARY INFORMATION

How do we know where the symbol boundaries are? Symbols are delineated by a comma. Here, a 
comma is one or two symbols specified to be the comma or alignment sequence. This sequence is usu-
ally settable in the transceiver, but in some cases it may be predefined. 

The receiver scans the incoming data stream for the specified bit sequence. If it finds the 
sequence, the deserializer resets the word boundaries to match the detected comma sequence. This is 
a continuous scan. Once the alignment has been made, all subsequent commas detected should find 
the alignment already set. Of course, the comma sequence must be unique within any combination of 
sequences. 

For example, if we are using a signal symbol c for the comma, then we must be certain that no 
ordered set of symbols xy contains the bit sequence c. Using a predefined protocol is not a problem 
since the comma characters have already been defined. 

One or more of a special subset of K-characters is often used. The subset consists of K28.1, K28.5, 
and K28.7, all of which have 1100000 as the first seven bits. This pattern is only found in these char-
acters; no ordered set of data and no other K-characters will ever contain this sequence. Hence, it is 
ideal for alignment use. In cases where a custom protocol is built, the safest and most common solu-
tion is to “borrow” a sequence from a well-known protocol. Gigabit Ethernet uses K28.5 as its comma. 
Because of this it is often referred to as the comma symbol even though there are technically other 
choices.

The names used—such as D0.3 andK28.5— are derived from the way the encoders and decoders 
can be built. Figure 3-8 represents this method.

The 8-input bits are broken into 5- and 3-bit buses; that is how the names were developed. For 
example, the name Dx.y describes the data symbol for the input byte where the five least significant 
bits have a decimal value of x and the three most significant bits have a decimal value of y. 

Comma: One or two symbols specified to be the alignment sequence.

FIGURE 3-8: Encoders/Decoders Block Diagram

5B/6B
Encoder2

5-bit sub-block (LSB)

H G F E D C B A Z 

1

3

0

6

5

7

4

a b c d e i f g h j 

5

6

4

7

1

2

0

3

9

8

3B/4B
Encoder3-bit sub-block (MSB)

8-bit ASCII
Data Input

Control

Running
Disparity

6-bit encoded sub-block

4-bit encoded sub-block



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 29

A K indicates the control character. The three bits turn into four bits and the five bits turn into 
six. Another naming convention refers to the 8-bit bits as HGF EDCBA and 10-bit bits as abcdei fghj.

Overhead is one of the drawbacks to the 8b/10b scheme. To get 2.5 gigabits of bandwidth 
requires a wire speed of 3.125 Gb/s. Scrambling techniques can easily handle the clock transition and 
DC bias problems without a need for increased bandwidth.

Scrambling
Scrambling is a way of reordering or encoding the data so that it appears to be random, but it can still 
be unscrambled. We want randomizers that break up long runs of zeros and ones. Obviously, we want 
the descrambler to unscramble the bits without requiring any special alignment information. This 
characteristic is called a self-synchronizing code. 

A simple scrambler consists of a series of flip-flops arranged to shift the data stream. Most of the 
flip-flops simply feed the next bit, but occasionally a flip-flop will be exclusively ORed or ANDed 
with an older bit in the stream. Figure 3-9 shows this concept.

The scrambling method is usually referred to as a polynomial because of the mathematics 
involved. Polynomials are chosen based on scrambling properties such as how random a stream they 
create, and how well they break up long runs of zeros and ones. They must also avoid generating long 
run lengths. 

Scrambling: A way of reordering or encoding the data so that it appears random, but can be unscrambled.

FIGURE 3-9: Basic Scrambling Circuit

Data

Input

Data

OutputScrambled Data

Scrambler Descrambler

D0   Q D0   Q D0   QQ   0DQ   0DQ   0D



HIGH-SPEED SERIAL I/O MADE SIMPLE •

30 • Xilinx PRELIMINARY INFORMATION

Increasing the clock rate of the flip-flops is desirable. But obtaining a high rate such as 10 Gb/s 
is simply not attainable. However, there is a way to parallel any serial coefficient into a y-size parallel 
word to speed up the process as shown in Figure 3-10.

Scrambling eliminates long runs and works to eliminate other patterns that may have a negative 
impact on the receiver’s ability to decode the signal. There are, however, other tasks provided by line 
encoding schemes such as 8b/10b that are not supplied by scrambling:

• Word alignment
• Clock correction mechanism
• Channel bonding mechanism
• Sub-channel creation
While the last three may not be needed in some circumstances, word alignment is always needed. 

If scrambling is used as the line encoding method, then another method must be used for word align-
ment. For example, we can exclude some values from the allowed values of the data or the payload. 
Then we can use these disallowed values to create a stream of bits that could not occur in the data por-
tion of the sequence (Figure 3-11). 

FIGURE 3-10: Parallel Scrambling Circuit

FIGURE 3-11: Data Frame Designed for Scrambling

D0   QD
8

D
10

D
11

D
9

D0   Q

D0   Q

D0   Q

D0   Q

D0   Q

D0   Q

D0   Q

U
nc

od
ed

 in
pu

t d
at

a

C
od

ed
 O

ut
pu

t d
at

a

Start D0 D1 D2 EndDn

Sart = 36 bits = 3F 00 00
End = 36 bits = 3F 3F 00

Data  = 12 bits range is 04 - 3B

00,01,02,03,3c,3d,3e,3f,
are forbiden in Data fields.

X



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 31

Normally, this would involve designing long run lengths that cannot occur in the data stream 
because of the disallowed values. The long runs will be broken by the scrambling and then restored 
when the stream is unscrambled. Downstream unscrambler logic looks for these patterns and aligns 
the data. Similar techniques can be used to install any of the other characteristics.

4b/5b 64b/66b
4b/5b is similar to 8b/10b, but simpler. As the name implies, four bits are encoded into five bits with 
this scheme. 4b/5b offers simpler encoders and decoders than 8b/10b. But there are few control char-
acters and it does not handle the DC balance or disparity problem. With the same coding overhead and 
less functionality, 4b/5b is not often used anymore. Its main advantage was implementation size, but 
gates are so cheap now that it is not much of an advantage. 4b/5b is still used in various standards 
including low bit rate versions of FiberChannel and Audio Engineering Society-10 (AES-10) or Mul-
tichannel Audio Digital Interface (MADI), a digital audio multiplexing standard.

One of the new encoding methods is known as 64b/66b. We might think hat it is simply a ver-
sion of 8b/10b that has less coding overhead, but the details are vastly different.

64b/66b came about as a result of user needs not being met by current technology. The 10 Giga-
bit Ethernet community had a need for Ethernet-based communication at 10 Gb/s. And while they 
could use four links at a 2.5 Gb payload and 3.125-Gb/s wire speed, XERDES was approaching the 
ultimate 10 Gb solution in a single link. There were new SERDES that could run at just over 10 Gb/s, 
but could not be pushed to the 12.5 Gb needed to support 8b/10b overhead. 

The laser driving diode was another issue. The telecommunications standard Synchronous Opti-
cal Network (SONET) used lasers capable of just over 10 Gb. Faster lasers were much more expensive. 
The Gigabit Ethernet community could either give up or create something with a significantly lower 
overhead to replace 8b/10b. They chose 64b/66b. 

Rather than using a 8b/10b-type lookup table, 64b/66b uses a scrambling method combined 
with a non-scrambled sync pattern and control type. Figure 3-12 illustrates the 64b/66b scheme.

64b/66b: A line encoding scheme developed for 10 Gigabit Ethernet that uses a scrambling method combined 
with a non-scrambled sync pattern and control type. 

FIGURE 3-12: 64b/66b Diagram

01 Data

2 bits 64 bits

Scrambled Potion of Frame

10 Type  slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 slot 7

Scrambled Potion of Frame

2 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits



HIGH-SPEED SERIAL I/O MADE SIMPLE •

32 • Xilinx PRELIMINARY INFORMATION

There are two main frame types. The simple main frame consists of a 2-bit sync pattern of 01 fol-
lowed by 64 bits of data. The data is scrambled but the sync bits are not. The other frame type allows 
for control information as well as data. Control frames start with the 2-bit pattern 10. The eight bits 
in the type field define the format of the 56-bit payload. For example, if the type is hex 0xcc, then the 
pattern contains four bytes of data and three bytes of control (Figure 3-13).

There is also a zero-bit wide symbol associated with this frame (Figure 3-14).

How is a zero-bit wide symbol created? It is not actually 0 bits; it is part of the type byte that is 
projected into the payload. There are eight bits for the type field that would allow for 256 different 
types of payloads. Most 64b/66b systems define about 15 different types. And those 15 types simply 
define x data bytes followed by y control bit. They may also include a reversal x control then y data 
bytes. It is common to define the placement of these inferred symbols with some types. Common zero-

FIGURE 3-13: 0xcc Type Example

FIGURE 3-14: 0xcc Type with Symbol Shown

10 0xCC data data data data control control control

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

10 0xCC data data data data control control control

8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits 8 bits

end

0 bits



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 33

bit wide symbols are t (end) and s (start). A complete list of control block formats for one 64b/66b 
implementation is given in Figure 3-15.

Careful observation of the table reveals the O symbol. This symbol is used to define ordered sets. 
This allows a protocol that was supposed to be used with 8b/10b to be converted to use 64b/66b. 

Now let’s examine a line encoding scheme. We will examine each of the main functions of a line 
encoding scheme and see how they are accomplished.

Sufficient Transitions
Scrambling of the payload section will provide adequate transition for clock recovery. Careful selection 
of the scramblers will also handle DC bias problems. The scrambler used in 64b/66b is X58 + X19 + 1.

FIGURE 3-15: Control Block Formats for an Example 64b/66b Implementation

D0 D1 D2 D3 D4 D5 D6 T7 10

10D0 D1 D2 D3 D4 D5 T6 C7

10D0 D1 D2 D3 D4 T5 C6 C7

10D0 D1 D2 D3 T4 C5 C6 C7

10D0 D1 D2 T3 C4 C5 C6 C7

10D0 D1 T2 C3 C4 C5 C6 C7

10D0 T1 C2 C3 C4 C5 C6 C7

10T0 C1 C2 C3 C4 C5 C6 C7

10O0 D1 D2 D3 C4 C5 C6 C7

10O0 D1 D2 D3 O4 D5 D6 D7

10O0 D1 D2 D3 S4 D5 D6 D7

10C0 C1 C2 C3 S4 D5 D6 D7

10C0 C1 C2 C3 O4 D5 D6 D7

10C0 C1 C2 C3 C4 C5 C6 C7

01D0 D1 D2 D3 D4 D5 D6 D7

10S0 D1 D2 D3 D4 D5 D6 D7

Control Block Formats
Block Type
Field

Data Block Format

Bit Position

0x1e

0x2d

0x33

0x66

0x55

0x78

0x4b

0x87

0x99

0xaa

0xb4

0xcc

0xd2

D0

D0

Input Data S
y
n
c

Block Payload

01 2 65

D0 D1 D2 D3 D4 D5 D6 D7

D1

D1

D1

D1 D2

D2

C1 C2

C2

C4 C5

C5

C5

C5 C6

C6

C6

C6 C7

C7

C7

C7

C3

C2 C3 C4 C5 C6 C7C1C0

C1C0

C3 C4

C4

C4

O0

O0 O4

O4

C3

D0 C5 C6 C7C4C3C2

0xff D0 D1 D2 D3 D4 D5 D6

0xe1 D0 D1 C7D3 D4 D5D2

D0 D1 C6 C7D3 D4D2

D5 D6

D6 D7

D7

C3C1C0 C2 D6 D7D5

D5

D0 D1 C5 C6 C7D3D2

D2

D3

D1 D2 D6 D7D5D4D3

D3

D1 D2 O0 D6 D7D5D3



HIGH-SPEED SERIAL I/O MADE SIMPLE •

34 • Xilinx PRELIMINARY INFORMATION

Alignment
64b/66b differs from other methods in the alignment procedure. Figure 3-16 shows how it works.

There will be a sync value of 01 or 10 every 66 bits. Those same bit combinations will appear in 
many other places as well. The alignment procedure selects a random starting point. It first looks for 
a valid sync (01 or 10 combination). If there isn’t one, it slips a bit and rechecks. Once a 01 or 10 com-
bination is found, the position 66 bits later is checked. If that is a valid sync also, the process incre-
ments the counter and checks the location 66 bits later. If enough sync markers are found in a row 
without any misses, the alignment is considered found. Any misses during the sequence forces the 
counter back to zero. 

Once the alignment has been locked, missed syncs are considered errors. If enough errors occur in 
a period of time, the alignment is re-evaluated. At first glance, it appears that this algorithm would 
obtain lock within the maximum number of valid sync tries (+66 or less). But the high likelihood of 
the 01 and 10 sequences showing up in the data window can mean many false paths are taken for a 
long time before they are abandoned. 

To speed lock time, some optional or alternative protocols have been suggested. They involve the 
replacement of data with special training or locking sequences that can ease alignment.

Clock Correction
Clock correction can be handled on byte or multi-byte boundaries, or on a 66-bit code word. A special 
type could be defined to be the clock correction symbol. The entire payload of the code word would 
not contain useful information and could be deleted or repeated as necessary. Alternatively, a byte-
wide clock correction symbol could be defined as any unused value. Of course, if the SERDES we are 
using only supports one of these methods, we will need to use that particular method. The byte-wide 
method is the most common since it allows for smaller receive FIFO buffers and matches up better 
with legacy protocols.

Channel alignment
Channel alignment can be handled much like clock alignment, either as a special type or a sequence 
found within the control data.

Sub-Channels
Sub-channels can be handled like clock alignment, either as a special type or a sequence found within 
the control data.

4b/5b 64b/66b Trade-Offs
These functions comprise the overhead coding method that allowed 10 Gigabit Ethernet to use exist-
ing SONET class laser diodes. Laser diodes are not the only similarity that this method has in common 
with SONET; SONET uses many of the same principles for alignment but is even more complicated 
than 64b/66b.

FIGURE 3-16: 64b/66b Alignment Procedure

66 bits 66 bits 66 bits 66 bits 66 bits 66 bits



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 35

The price for the lower overhead is longer alignment times, the possibility of a slight DC bias, 
and more complicated encoders and decoders. Complications such as turning the scramblers on and off 
for payload vs. sync and type fields make 64b/66b circuits more complicated than their 8b/10b cous-
ins. There is also a complexity cost for using and setting up the encoder. 

Introduction to Packets
Some designers feel that sending data over packets for anything but a local area network (LAN) is a 
complete waste. Let’s address that issue by first defining a packet.

Notice that there is nothing in the definition about source and destination addresses, CRCs, min-
imum lengths, or Open Systems Interconnection (OSI) protocol layers. A packet is simply a data struc-
ture with defined starting and ending points. While LAN packets often have many of these 
characteristics, there are many other uses of packets that are much simpler. 

Packets are used everywhere to transfer information—automobile wiring harnesses, cell phones, 
and home entertainment centers, to name a few. But what do packets have to do with gigabit serial 
links?

Most data transferred across a gigabit serial link is embedded in some sort of packet. It's only nat-
ural that a SERDES requires a method for aligning the incoming stream into words. This special bit 
sequence or comma must be sent if the system requires clock correction. The comma could be a natural 
marker for the beginning or end of a frame. If clock correction is required, the clock correction 
sequence is usually the ideal character. After adding a couple of ordered sets to indicate the end or start 
of the packet, and an ordered set to indicate a special type of packet, we have a simple, powerful trans-
mission path. 

The idle symbol, or sequence, is another important packet concept. This symbol is sent whenever 
there is no information to send. Continuous transmission of data ensures that the link stays aligned 

Packet: A well-defined collection of bytes consisting of a header, data, and trailer.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

36 • Xilinx PRELIMINARY INFORMATION

and that the PLL keeps the recovered clock locked. Figure 3-17 illustrates some sample packet formats 
from various standards.

Reference Clocking Requirements
The input, or reference clock, of a Multi-Gigabit Transceiver (MGT) has very tight specifications. It 
includes a tight frequency requirement usually specified in allowable parts per million (PPM) of fre-
quency error. It will also have strict jitter requirements defined in terms of time units (picoseconds) or 
unit intervals (UI). 

Such tight requirements enable the PLL and clock extraction circuits to work. This often requires 
an accurate crystal oscillator on each printed circuit board (PCB) in the system that uses MGTs. These 
crystal oscillators are a step above most used for digital systems and will cost more. In many cases, 

FIGURE 3-17: Packet Format Diagrams

PPM: Parts per million; a way of describing a very small ratio.

UI: Unit intervals; same as length of time as a symbol, i.e., 0.2 UI = 20% of the symbol time.

Jitter: Variation of the ideal transition placement.

10101010 ...

10101010

10101011

Preamble SFD

8 6 6 2 446-1500
Preamble/

SDF
DA SA Type Data FCS

8 6 6 2 446-1500
Preamble/

SDF
DA SA Length Data FCS

Preamble:  7 identical bytes; used fro synchronization
SFD (Start Frame Deliminator):  Indicated the froam is about to begin
DA (Destination Address):  Contains the address of the frame's destination
SA (Source Address):  Contains the address of the frame's sender
Length:  Indicates the number of data bytes (IEEE 802.3-based variants)
Type:  Indicates the upper-level protocol that is using the packet (Ethernet 1.0/2.0 Variants)
Data:  Contains the information being transmitted, which may consist of a higher-layer packet
(may be padded)
FCS: A frame check sequence

L
S
B

Preamble
L
S
B

M
S
B

V U C B

0 3 4 7 8 27 28 31

Validity flag

Parity bit

User Data

Channel status

SF Data EF



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 37

clock generation chips and PLLs have too much jitter to be used. Figure 3-18 shows some recently-
announced clock generation units that are good enough to work with multi-gigabit SERDES.

Clock Correction
The tight jitter requirements on a transmit clock normally prevent a Gigabit SERDES from using a 
recovered clock as a transmit clock. Each PCB assembly has a unique oscillator and a unique frequency. 
If the two oscillators are just 1 PPM off frequency from each other at 1 GHz, and we supply a 1/20th 
rate reference clock, clock one of the streams will be faster or slower 20,000 times per second. Hence, 
in an 8b/10b encoded system there would be twenty thousand extra or missing symbols every second.

Most SERDES have clock correction options built in. Clock correction involves a unique symbol 
or sequence of symbols not found elsewhere in the data stream. Since clock correction is downstream 
from alignment, this can easily be accomplished by reserving one K-character or ordered pairs of  

FIGURE 3-18: Low Jitter Crystal Oscillator Specification



HIGH-SPEED SERIAL I/O MADE SIMPLE •

38 • Xilinx PRELIMINARY INFORMATION

K-characters and/or data characters as the clock correction sequence. In some cases a four-symbol clock 
correction sequence may be desired. Clock correction works by monitoring the receive FIFO. If the 
FIFO is getting close to full, it simply looks for the next clock correction sequence and does not write 
that data sequence into the FIFO. This is called dropped. Conversely, if the FIFO is getting close to 
empty, the next time a clock correction sequence is found it will be written into the FIFO twice. This 
is commonly referred to as repeating.

The clock correction must happen often enough to allow dropping or repeating to compensate for 
the differences in the clocks. Often the clock correction sequence will also be the same as the idle 
sequence. 

Some systems do not require clock correction. In many chip-to-chip applications, for example, the 
same oscillator will provide the reference clock to all transmitters. Using the same reference clock and 
same rate means there is no need for clock correction. Also, a clock correction is not needed when all 
of the receive circuitry is clocked from the recovered clock. If the FIFO is emptied at the same rate it 
is filled, there is no need for clock correction. 

Also, clock correction is not required when all transmit reference clocks are locked using an exter-
nal PLL to a common reference. This is a common architecture for high definition serial digital video 
links. All transmit clocks are derived from a common video reference. Failure to lock to this signal will 
usually result in a free running video stream that tends to roll in respect to the rest of the locked sig-
nals. While achieving this at one or two gigabits is easily possible, designing PLLs with enough accu-
racy to provide the input reference clocks for 10-Gb links is quite challenging. 

Table 3-4 shows the maximum number of clocks between clock correction sequences and their 
accuracy for various oscillator frequencies. 

Receive and Transmit Buffers
The receive and transmit buffers, or FIFOs, are the main digital interface of the Multi-Gigabit Trans-
ceiver. This is normally where data is written and read. On the transmit side it is common to have a 
small FIFO that requires the read and the write clock to be isochronous (matched in frequency but not 
necessarily matched in phase). 

TABLE 3-4: Clock Correction Table

Max Cycles before Correction
Oscillator 
Frequency 

(MHz)

OSC 
Accuracy 
(PPM)

Line 
Speed 
(GB/s)

Fmax 
(MHz) Fmin (MHz) Diff/Cycle 

(ps)
Remove 1 
Sequence

Remove 2 
Sequences

Remove 3 
Sequences

Remove 4 
Sequences

156.25 100 3.125 156.2656 156.2344 1.2800 4,999 9,999 14,998 19,998

156.25 50 3.125 156.2578 156.2422 0.6400 9,999 19,998 29,998 ‘39,997

156.25 20 3.125 156.2531 156.2469 0.2560 24,999 49,999 74,998 99,998

125 100 2.500 125.0125 124.9875 1.6000 4,999 9,998 14,998 19,997
125 50 2.500 125.0063 124.9938 0.8000 9,999 19,998 29,998 ‘39,997

125 20 2.500 125.0025 124.9975 0.3200 24,999 49,998 74,998 99,997

62.5 100 1.250 62.5063 62.4938 3.2000 4,999 9,998 14,998 19,997

62.5 50 1.250 62.5031 62.4969 1.6000 9,999 19,998 29,998 ‘39,997

62.5 20 1.250 62.5013 62.4988 0.6400 24,999 49,998 74,998 99,997



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 39

A different scheme is used in cases where the tx_write and tx_read strobes are not of the exact 
same frequency. Here, a larger FIFO is used and its current status is constantly monitored. If the FIFO 
is filling it will eventually overrun. In this case the incoming stream is monitored for idle symbols. 
When encountered they are not written into the FIFO. 

Conversely, if the FIFO is running low when an idle is found on the output, the data is brought 
to the user. The write pointer is not moved causing the idle to be repeated. It is important for idle sym-
bols to be used instead of byte alignment, comma symbols, clock correction sequences, or channel 
bonding sequences. All these are needed downstream at some guaranteed delivery rate.

The receive FIFO built into an MGT is usually considerably deeper than the transmit (Tx) buffer. 
Its main purpose is to allow for clock correction and channel bonding. 

Channel Bonding
Sometimes there is a need to move more data than can fit on one serial link. In these cases multiple 
links are used in parallel to transmit the data. When this is done, incoming streams must be aligned. 
This process is commonly referred to as channel bonding. Channel bonding absorbs the skew between 
two or more MGTs and presents the data to the user as if it were transmitted over a single link 
(Figure 3-19).

Isochronous: Matched in frequency but not necessarily matched in phase.

FIGURE 3-19: Channel Bonding Block Diagram

P Q R S T

P Q R S T

P Q R S T

P Q R S T

Full word SSSS sent over four channels, one byte per channel

In Transmitters:

Channel (lane) 0

Channel (lane) 1

Channel (lane) 2

Channel (lane) 3

P Q R S T

P Q R S T

P Q R S T

P Q R S T

P Q R S T

P Q R S T

P Q R S T P Q R S T

In Receivers:
Read

RXUSRCLK

Read

RXUSRCLK

Before channel bonding After channel bonding



HIGH-SPEED SERIAL I/O MADE SIMPLE •

40 • Xilinx PRELIMINARY INFORMATION

There are several causes of data skew between multiple MGTs:
• Differences in transmission path length
• Active repeaters in transmission path
• Differences because of clock correction
• Differences in time to lock/byte alignment
Since channel bonding requires communication between transceivers, the exact details will vary 

from vendor to vendor and part to part. Some common traits are designation of one channel as the mas-
ter channel, designation of slaves, and possibly the designation of forwarding slaves. Three-level chan-
nel bonding that includes a master and forwarding slaves is sometimes referred to as two-hop channel 
bonding. 

The channel bonding sequence must be unique and expandable and it must be ignored down-
stream because it may be added or dropped. There are normally a minimum number of symbols 
between a clock correction sequence and a channel bonding sequence. Many 8b/10b-based standard 
protocols specify a minimum of four symbols between clock correction and channel bonding 
sequences. Hence, four symbols or bytes is a common separation distance.

Physical Signaling
The physical implementation of multi-gigabit SERDES universally takes the form of differential-
based electrical interfaces. There are three common differential signal methods—Low-Voltage Differ-
ential Signaling (LVDS), Low Voltage Pseudo Emitter-Coupled Logic (LVPECL), and Current Mode 
Logic (CML). CML is preferred for the gigabit link. It has the most common interface type and often 
provides for either AC or DC termination and selectable output drive. Some inputs provide built-in 
line equalization and/or internal termination. Often the termination impedance is selectable as well.

Channel Bonding: Absorbs the skew between two or more MGTs and presents the data to the user as if it were 
transmitted over a single link.

Front-end and back-end together make up the physical interface.

CML: Current Mode Logic; a differential-based electrical interface well suited to the gigabit link.



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 41

Figure 3-20 shows a CML-type driver. The concept behind this high-speed driver is quite simple. 
One of the two resistors always has a current running through it that is different than the current run-
ning through the other. Figure 3-21 illustrates an MGT receiver.

FIGURE 3-20: CML Driver

FIGURE 3-21: MGT Receiver

PMA
TXP

PMA
TXN

AVCCAUXTX

50  or 75

50  or 75

TXP pin

TXN pin

VTTX

Pullup
Network

GNDA

RXP
Pin

RXN
Pin

AVCCAUXRX

50 or 75

50 or 75

VTRX

Pullup
Network

GNDA

PMA
RXP
PMA
RXN



HIGH-SPEED SERIAL I/O MADE SIMPLE •

42 • Xilinx PRELIMINARY INFORMATION

Figures 3-22 and Figure 3-23 list data sheets for the analog front-end and back-end. 

Pre-Emphasis
Perhaps the most important characteristic of a multi-gigabit driver is its ability to perform pre-
emphasis. Pre-emphasis is the intentional overdriving at the beginning of a transition. To the inexpe-
rienced eye it looks like a fault; it looks like overshoot and undershoot that can indicate a bad design. To 
understand why this is done, we need to understand inter-symbol interference (ISI).

FIGURE 3-22: Differential Receiver Parameters

FIGURE 3-23: Differential Transmitter Parameters

Pre-emphasis: Intentional overdriving at the first of a transition.



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 43

ISI occurs when the serial stream contains a number of bit times of the same value followed by 
short (1 or 2) bit times of the opposite value. The medium (transmission path capacitance) has less 
time to charge during the shorter value time, so it produces lower amplitude. 

With ISI, the larger runs allow for maximum charge but the single bit time cannot compensate. 
It is at risk of not being detected. Figure 3-24, Figure 3-25, and Figure 3-26 show this phenomena. 
The solution to this problem is to overdrive the first of each transition, or underdrive any consecutive 
bit times of the same value. This is sometimes called de-emphasis. 

ISI: Inter-symbol interference—Occurs when the serial stream contains a number of bit times of the same value 
followed by short bit times of the opposite value.

FIGURE 3-24: Inter-Symbol Interference

LD V -

V +

time

effect of
ISI



HIGH-SPEED SERIAL I/O MADE SIMPLE •

44 • Xilinx PRELIMINARY INFORMATION

The two eye diagrams in Figure 3-27 show the improved eye opening that occurs when pre-
emphasis is used to reduce ISI.

FIGURE 3-25: DCA Screen Capture

FIGURE 3-26: Pre-Emphasis 

FIGURE 3-27: Eye Diagrams with and without Pre-Emphasis

No Pre-Equalization

Pre-Equalization

STRONG HIGH LOGIC HIGH

STRONG LOW

LOGIC LOW

Pre-Emphasis No Pre-Emphasis



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 45

Pre-emphasis can be implemented by using two CML drivers in parallel where one is delayed one 
bit time after the other. Figures 3-28 and 3-29 show a sample circuit and the waveforms that drive the 
transistors to obtain the output.

Differential Transmission Lines
Digital design engineers and PCB designers once thought of traces as simple interconnects or wires. In 
fact, prototypes were built using a technique called wire warping. Transmission lines and transmission 
line theory were not necessarily applied. When the propagation delay of the trace was a tiny fraction 

Eye pattern: Common waveform viewed on digital sampling scopes. It is an indication of the quality of the signal. 
Jitter, impedance matching, and amplitude can all be characterized through eye patterns.

FIGURE 3-28: Pre-Emphasis CML Schematic

FIGURE 3-29: Timing Diagrams for CML Circuit in Figure 3-28



HIGH-SPEED SERIAL I/O MADE SIMPLE •

46 • Xilinx PRELIMINARY INFORMATION

of the rise time of the signal, this was satisfactory. But as signals increased in frequency, transmission 
line theory had to move into the PCB design process.

For multi-gigabit operation this includes not only transmission lines and controlled impedance, 
but differential pair controlled impedance as well.

Differential pair impedance matched traces are two traces that run adjacent to each other. The 
spacing between the pair allows for a coupling to occur between the traces. The coupling is called weak 
(Figure 3-30) if the traces are relatively far apart. If the traces are closer it is called strong (Figure 3-31). 

FIGURE 3-30: Weakly Coupled

FIGURE 3-31: Strongly Coupled



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 47

The coupling also affects the impedance of the trace if a given trace length and layer stack will 
make a given impedance. The same geometry for a differential pair will have a different impedance. 
The exact dimensions for any given impedance varies on material, but the board manufacturer can 
often provide the exact dimensions. 

A tool/mathematical model called a field solver can calculate the numbers as well. Figure 3-32 
shows the main types of controlled impedance differential traces—microstrip, stripline, offset strip-
line, and broadside coupled. Table 3-5 includes controlled impedance differential trace types.

Line Equalization
Equalization is an attempt to compensate for differences in impedance/losses relative to frequency. 
Equalizers come in many forms but can generally be divided into passive and active types.

A passive equalizer is a passive circuit that has a frequency response that is complementary to the 
transmission losses. A passive equalizer can be thought of as a filter. If we filter out the frequencies that 

FIGURE 3-32: Controlled Impedance Differential Traces

TABLE 3-5: Types of Controlled Impedance Differential Traces

Type Pros Cons

Microstrip Less loss than internal traces Only two layers (top and bottom)

More susceptible to interference

Stripline Better shielding

More possible layers

More amplitude loss per inch in high 
frequency signals than microstrip

Offset Stripline Useful if non-symmetrical Stack-up 
is needed. 

Can be used to limit the number of 
power/gnd planes.

If used to save layers, the offset area 
above the traces should be kept free of 
other traces and must be free of 
parallel traces.

Broadside-coupled Very tight coupling The broadside coupled is difficult to 
manufacture because of tight 
tolerances and it is not recommended 
for multi-gigabit operation.

Active equalizer: Frequency dependant amplifiers/attenuators.

Passive equalizer: A passive circuit with a frequency response that is complementary to the transmission losses; 
similar to a filter.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

48 • Xilinx PRELIMINARY INFORMATION

the transmission line passes, and not filter those that it does not pass, we can flatten the overall 
response as shown in Figure 3-33.

The active equalizers can be thought of as frequency-dependant amplifiers/attenuators. There are 
two types of active equalizers—fixed pattern and self-adjusting. No matter what the incoming data 
stream looks like, the fixed pattern active equalizer has the same frequency response (Figure 3-34 and 
Figure 3-35).

FIGURE 3-33: Unequalized System Frequency Response Example

FIGURE 3-34: Equalizer Frequency Response Example

Path

Path

EQ

EQ



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 49

This set gain attenuation pattern may be user-selectable or programmable. Some have a simple 
control—n settings with high or low gain. They are similar to the bass control on a simple audio sys-
tem. Or they could allow for individual settings at various frequency bands much like the equalizer 
settings on a more complex audio system. A chart showing the possible frequency response for one 
such equalizer is shown in Figure 3-36. 

The self-adjusting, or learning, equalizer is more complicated. It analyzes the incoming signal 
and detects which frequencies are being attenuated by the transmission path. Adjustments and mea-
surements are made in a closed loop-type system. A self-adjusting equalizer is dependent on the 
incoming bit stream. 

FIGURE 3-35: Equalized System Frequency Response Example

FIGURE 3-36: Sample Equalizer Frequency Response

Fixed pattern and self-adjusting are the two types of active equalizers.

Equalized Path

Equalized Path



HIGH-SPEED SERIAL I/O MADE SIMPLE •

50 • Xilinx PRELIMINARY INFORMATION

Often this type of equalizer is designed to work with a specific type of line encoding scheme. 
Learning equalizers are best suited for links with variable channels such as variable cable lengths or 
backplanes systems with significant differences in slot positions. 

Fixed equalizers are better suited for systems with no variability such as chip-to-chip, balanced 
backplanes, and fixed-length cable systems. Equalizers are sometimes included in the analog front end 
of the SERDES or added to a system as a separate component (Figure 3-37).

Cables can also be equalized. The most common cable equalization technique is to add a passive 
equalizing circuit in the cable assembly, usually in the connector. 

FIGURE 3-37: Sample Fact Sheet for an External 3G Equalizer



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 51

Some higher-end cables obtain equalized-type characteristics through novel cable construction 
techniques involving silver plated solid copper cables (Figure 3-38).

Optical
The design solution will likely be optical if cables go much further than the adjacent chassis. With 
optical, there are a wide variety of optical choices to pass signals upstairs, across the building, around 
the block, or across town.

Fiber optic systems use light instead of electricity to transport information. The basic systems 
consist of a transmitter or source, the fiber, and a receiver that converts the light pulse back into an 
electrical signal. The source is usually an injection laser diode (ILD) or a light emitting diode (LED) as 
shown in Figure 3-39.

FIGURE 3-38: Equalized Cable Internal Components

A basic optical system consists of a transmitter or source, the fiber, and a receiver.

FIGURE 3-39: Basic Optic Transport System

Equalizing Components
inside connector

Electrical to
Light

Conversion

Light
Pulse

Light
Pulse

Electrical
Pulse In

Light to
Electrical

Conversion

Electrical
Pulse
Out



HIGH-SPEED SERIAL I/O MADE SIMPLE •

52 • Xilinx PRELIMINARY INFORMATION

Fiber allows transport of light pulses because of the principle of total internal reflection. This 
principle states that when the angle of incidence exceeds a critical value, light cannot get out of the 
glass. Instead, it bounces back in. In simple terms, fiber is like a long flexible paper towel-sized tube 
lined with a mirror and a flashlight. When shining a flashlight down the tube, even if the tube is bent 
around a corner, the light will continue to the end.

There are two types of fiber—single-mode and multi-mode (Figure 3-40 and Figure 3-41). Sin-
gle-mode is more expensive and allows for longer runs. Multi-mode is cheaper and can only be used for 
shorter distances. Basic optical connectors are shown in Figure 3-42.

Bit Error Rate 
The bit error rate (BER) is a concern for gigabit links designers, especially when moving from a par-
allel to serial backplane system. No link has a BER of zero because there is always some potential for 
errors. In many lower rate systems, the likelihood of errors is due to cosmic ray interference. And the 
likelihood of that is so small that it is essentially zero. So why are serial links different?

Total Internal Reflection: When the angle of incidence exceeds a critical value, light cannot get out of the glass. 
Instead, the light bounces back in.

FIGURE 3-40: SMF Single Path

FIGURE 3-41: MMF Multiple Paths

FIGURE 3-42: Basic Optical Connectors



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 53

There are three reasons: 
1. Cosmic rays can cause errors especially if they happen to hit during a transition. The faster the

signal, the more transitions and the more likely a cosmic ray will occur during a transition.
2. For any given BER, the faster the signal, the more likelihood of an error.
3. High-speed clock data recovery is not an exact science. Jitter, ISI, and a host of other real world

interferences can cause a bad data decision that results in an error. For example, PLLs, are
constantly trying to adjust to the changing incoming signal. And as oscillators drift with
temperature, errors can occur.

Realities of Testing
While the above reasons have a real effect, careful analysis of parallel backplanes, source synchronous 
links, or any communication channel could find similar faults. But for the most part, these are rou-
tinely assumed to be close to zero and ignored. 

Why shouldn't we have the same concerns in Gigabit SERDES? Because their original environ-
ment is the communication industry with long and short haul optic transports. This is an industry 
that has always worried, tested, designed, and specified BERs. And this has had the most impact on 
Gigabit SERDES BER. 

Some of the standards such as XAUI and some of the SONET variations specify a maximum BER. 
Unfortunately, testing for BER is difficult, boring, and time consuming. And it gets exponentially 
more difficult to get a unit of improvement. BERs are normally expressed in 10-x notation, so to move 
from 10-8 to a 10-9 takes 10-x the time. Testing becomes impractical at some point. Hence, most 
manufacturers test to the tightest BER in a published standard and no further.

CRC
But a designer must still design a system that is robust. To do so, he must first examine the system 
requirements to see if he can use the same commonly-used methods that contributed to the problem. 

One method is error detection data retransmission. The incoming data is examined for errors. If 
any are discovered, a message is sent to the sender to retransmit. The preferred method for error detec-
tion is CRC. This is so common that many SERDES include CRC generation and checking hardware 
directly within the SERDES. Often, the retransmission request is built into an upper level protocol. 
This is the best solution if the protocol used supports CRCs and retransmission, or if the data require-
ments are such that they can be implemented. 

If this is not possible, there are other options. The designer could simply build and test the system 
and see if it works. The published BER for the selected SERDES is a specification of how far it was 
tested, so the designer has some room to maneuver. It is possible that he can build a system far better 
than the published number. Besides being a specified testing stop point, the testing was probably done 
at the extremes (input jitter very near the maximum, etc.). If he designs the system to provide a better 
input stream, he will get better results. 

Data offers another option to consider. Most data streams have a pattern and they are much more 
predictable than the pseudo-random bit streams used for BER testing. This can be good or bad 
depending on how the transmission path and equalizers react to the stream. This must be tested and 
adjusted. 

So it is not completely far-fetched to build a system and see if it will work. However, if doing this 
presents a management concern, forward error correction (FEC) can alleviate concerns.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

54 • Xilinx PRELIMINARY INFORMATION

FEC Used in Some Applications
Since the designer knows that errors are going to occur, he can prepare to recover from those error by 
providing extra data bits. 

Let’s examine how FEC works. Consider a block of data to be transmitted NxR bytes long and 
divide it into a matrix N bytes by R rows. Now add one extra byte to each row and one extra row to 
the matrix. These are the extra slots. 

Additional information about the data block will be put in these slots. In this example, the extra 
information is parity bits. Each bit of the extra byte on each row represents the parity of that specific 
bit for each byte on the row. That is, P[1][0] is the parity of D[1.1][0] D[1.2][0] D[1.3][0] …. 
D[1.N][0]. Then for the extra row, the parity of the bits directly above are taken. That is, P[R+1.0][0] 
is the parity of D[0.0][0], D[1.0][0] D[2.0][0]. D[N.0][0]. A diagram of this matrix is shown in 
Figure 3-43.

The data and extra bits are transmitted over the link. On the other side, the matrix is examined 
for parity errors. If any one bit of data is the wrong value, it will be flagged and identified by row and 
column. This bit could then be corrected by a simple inversion. Depending on where errors occur, 
multiple errors could either be corrected or they could cause confusion and prevent the correction of 
other errors. 

This method is known as a simple parity matrix and was the first type of FEC. It is the basic 
building block for most FEC methods. While this example is straightforward, it does have limitations. 
Some FEC methods have been developed for harsh environments or dirty channels like Viterbi, Reed-
Soloman, or Turbo Product codes. All have powerful correction, but that correction comes at a cost:

• They do not go very fast. Gigabit SERDES are faster than most of these methods can handle 
in their normal construction.

• They are too big. The encoders and decoders may consist of ten times as much logic as the 
MGT and/or the rest of the design.

• The coding overhead is too great. The coding overhead is the added bits. Often the coding 
overhead can completely eliminate the feasibility of the FEC method.

FEC: Forward Error Correction—Extra bits are added to data to help recover from an error.

FIGURE 3-43: FEC Diagram

Input 1
Input 2
Input 3

Input m

byte 0 byte 1 byte 2 byte 3 byte n byte V



TECHNOLOGY

PRELIMINARY INFORMATION XILINX • 55

SERDES Technology Facilitates I/O Design
I/O design is facilitated by tapping the functions available in SERDES technology. SERDES func-

tions such as RX align, clock manager, transmit/receive FIFO, and line encoder/decoder are used 
extensively to improve speed and accuracy. As SERDES plays a more important role in future I/O 
designs, its functions will continue to provide tools for more efficient I/O devices. 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

56 • Xilinx PRELIMINARY INFORMATION



PRELIMINARY INFORMATION XILINX • 57

CHAPTER 4

Designing with Gigabit Serial I/O

Understanding the challenges and trade-offs

The Challenges of Multi-Gigabit Transceiver Design
Understanding the individual challenges is the key to beginning to solve any engineering problem. 
When designing a Multi-Gigabit Transceiver (MGT), those challenges include understanding trans-
ceiver protocols, signal integrity, impedance and power requirements, shielding requirements, printed 
circuit board (PCB) design requirements, and connector and cable selection requirements. Simulation 
and testing of the prototype are also critically important to a successful MGT design.

Design Considerations and Choices You Can Use
This chapter presents a broad view of the challenges and choices facing any MGT designer, and pre-
sents the most common methods of dealing with those challenges when a SERDES is at the heart of 
the design. It describes various available transmission protocols, and the advantages and disadvantages 
of each. Signal and power considerations are discussed, as is the critical importance of shielding when 
designing fast links. Printed circuit board design requirements are explained, with connector and 
cable selection discussed. And, finally, the importance of, and approaches to, simulation of the MGT 
design (both analog and digital) are discussed. The chapter closes with an in-depth discussion of pro-
totype test and measurement, some important debugging hints, and final suggestions.

Protocols
Serializer/Deserializers (SERDESs) by themselves are relatively flexible devices. To set them up, you 
must define an alignment sequence, a clock correction sequence, the line encoding method, and the 
physical connection, and data will flow between the two transceivers. But the meaning of that data 
requires more definition, and that is the purpose of the protocols. What data is transmitted to where, 
what the data means, what is inserted in the data, what can be discarded, are defined by protocols. 

Protocols for MGTs can vary greatly in scope, from simple data definitions to complex interfaces 
to upper level protocols. Items that can be specified in a multi-gigabit protocol include:



HIGH-SPEED SERIAL I/O MADE SIMPLE •

58 • Xilinx PRELIMINARY INFORMATION

• Data formats: Value definitions for video and audio protocols; how we use the ones and zeros to 
represent specific values or meanings.

• Sub-channels: Often there is a need for several different channels over the same link. Some of the 
common uses of sub-channels are control, status, and auxiliary data path. 

• Data striping: A common function of a protocol is to define of how and where the data is separated 
from the overhead. This is commonly referred to as striping or de-embedding.

• Embedding: A protocol often defines how and where the data is embedded into the protocol 
streams or packets. This is especially true of protocols that follow the protocol stack model.

• Errors detection and handling: A protocol defines how errors are detected and what happens if 
there is an error.

• Flow control: Protocols may also define flow control. This can vary, from defining a way of 
dynamically scaling sub-channel bandwidth allocation to varying the idle insertion rate to match 
the clock correction needs. 

• Addressing/switching/forwarding: While the direct point-to-point nature of a serial protocol 
eliminates many of the needs for an addressing scheme, some of the more complex protocols include 
addressing schemes. With addressing comes the possibility for forwarding and switching.

• Physical interface: Drive levels, pre-emphasis, and more, are specified by the protocol to ensure 
compatibility between devices.

Often the protocol choice is simple. When building a PCI Express card, simply run the PCI 
Express protocol. But when building a proprietary system, the system architect must decide whether 
to use a predefined protocol or design a custom protocol.

Standard Protocols
The next few pages provide a very brief look at some industry standard protocols (the full definitions 
of these standards may include many pages of text, and are not provided here): 

XAUI: A 4-channel interface (2.5 Gb/s payload, 3.125 Gb/s wire speed) for 10-Gigabit Ethernet.
PCI Express: Takes the old parallel PCI structure and updates it to a high-speed serial structure. 

Upper levels of the protocol remain compatible, providing an easy adaptation into legacy PCI systems.
Serial RapidIO: Another serial version of an older parallel spec, RapidIO is quite flexible and 

sometimes used as a method of interfacing to multiple protocols such as PCI and Infiniband.
FiberChannel: FiberChannel has always been a serial standard, but its speeds have increased over 

the years. As copper interconnects have advanced, it has also become available on copper as well as 
fiber optics. 

Infiniband: A box-to-box protocol run over either copper or fiber. Infiniband-style cables have 
become highly popular for multi-gigabit links of a few meters range. The specification allows for a 
variety of devices and complexity, and includes specifications for repeaters, and switches or hubs to 



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 59

expand the number of connected devices. Infiniband can also be used for complex system configura-
tions using Infiniband switches and control consoles (Figure 4-1).

Advanced Switching: A switched fabric protocol built on the same physical and data level pro-
tocol as PCI Express. An emerging standard set to be significant in the switched fabric area.

FIGURE 4-1: Infiniband Switches and Control Consoles

CPU CPU CPU

Mem HCA

RAID Subsystem

SCSI

SCSI

SCSI

SCSI

SCSI

Processor

Mem

TCA

Consoles

Switch

Switch Switch

Switch Switch Switch

Switch

T
C

A

IO
 M

od
ul

e

T
C

A

IO
 M

od
ul

e

T
C

A

IO
 M

od
ul

e

T
C

A

IO
 M

od
ul

e

T
C

A

IO
 M

od
ul

e

T
C

A

IO
 M

od
ul

e

T
C

A

IO
 M

od
ul

e

T
C

A

IO
 M

od
ul

e

T
C

A

IO
 M

od
ul

e

T
C

A

IO
 M

od
ul

e

I/O
Chassis

I/O
Chassis

SCSI

Ethernet Graphics
Video

Fibre Channel
hub & FC
devices

Storage

Router

TCA

Controller

Storage
Subsystem

Other IB Subnets
WANs
LANs
Processor Nodes

Fabric
(Subnet)

Processor Node

CPU CPU CPU

Mem HCAHCA

Processor Node

CPU CPU CPU

Mem HCAHCA

Processor Node

HCA = InfiniBand Channel Adapter in Processor node
TCA = Infiniband Channel Adapter in I/O node



HIGH-SPEED SERIAL I/O MADE SIMPLE •

60 • Xilinx PRELIMINARY INFORMATION

PICMG: PICMG is a consortium of over 600 companies who collaboratively develop open spec-
ifications for high-performance standardized backplane architectures. Many of these standards use 
other industry standards such as PCI and Infiniband.

ATCA: Also known as the Advanced Telecom Computing Architecture or AdvancedTCA, this 
PICMG standard is a specification for next generation telecommunication cabinets. Its aim is to ease 
multi-vendor inter operability while providing a very flexible, very scalable system. The standard has 
various implementations within a common theme. Included are architectures for star-based back-
planes, redundant star-based backplanes, and fully connected mesh architectures.

FIGURE 4-2: Example ATCA Card

FIGURE 4-3: PICMG 3.0 Backplane



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 61

Aurora: Aurora is a relatively simple protocol that handles only link-layer and physical issues. It 
has been designed to allow other protocols such as TCP/IP or Ethernet to ride easily on top of it. It uses 
one or more high-speed serial lanes (Figure 4-4). 

In addition to the physical interface definition, it defines a packet structure and a recommended 
procedure for embedding other protocol packets, data striping, and flow control. It defines an initial-
ization procedure to validate links, and describes a procedure for not allowing links with excess errors 
to be used. It does not have any addressing scheme, so it does not support switching. It also does not 

FIGURE 4-4: Aurora Channel Overview

Aurora
Lane 1

Aurora
Interface

Aurora
Channel

Aurora
Lane N

Aurora Channel
Partners

User
Application

User
Application

User
Interface

User
Interface

User PDUs,
User Flow

Control Messages

User PDUs,
User Flow

Control Messages

Channel PDUs, 
Flow Control PDUs

Aurora
Interface



HIGH-SPEED SERIAL I/O MADE SIMPLE •

62 • Xilinx PRELIMINARY INFORMATION

define error detection and retry or correction within the data payloads. The protocol was developed by 
Xilinx and released for unrestricted public use (Figure 4-5).

Custom Protocols
There may be times when you want to define your own protocol. This would most often make sense 
when the standard protocols do not fit your needs, and/or is too extensive for your application. Of 
course, there are also times when a new complex protocol is needed, but that is most often left to com-
mittees of people who are experts.

Some of the things to consider when defining your own protocol are best illustrated by looking at 
a simple example. In your sample application we need to transfer a constant 1.8 GHz stream from one 
board to another. The data in and out of the system will be a 12-bit bus, changing at 150 MHz. With 
this simple requirement, all you really need from a protocol is a definition of a data frame, alignment, 
and idle character. In this example, we will use 8b/10b as the line-encoding scheme and borrow from 
other 8b/10b standards for our markers and comma choices. The basic structure of our link is in 
Figure 4-6:

Once we define a character or ordered set of characters for sf (start of frame), ef (end of frame) and 
idle, we need to determine line speed and data frame size. The size of the data frame should be chosen 
so that we can guarantee enough sf symbols to align to and idle symbols to provide for clock correc-
tion. In this case, since we need a data payload of 1.8 GHz, an easy choice is to run the wire at 2.5 Gb/s. 

FIGURE 4-5: Aurora Loading Other Protocols into its Data Stream 

FIGURE 4-6: Basic Link Structure

/SCP/ User PDU /P/

User PDU

User PDU

Pad

/ECP/
1 Symbol Pair 1 Symbol Pair1 SymbolN Symbols

1 OctetN Octets

N Octets

Link Layer Encapsulation 

8B/10B Encoding

Padding

SCP User PDU Pad ECP
2 Octets 2 Octets1 OctetN Octets

SF Data EF



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 63

This gives us a “wire payload” of 2 Gb/s that we can use for our 1.8 GHz data needs, with excess capac-
ity for our overhead needs. 

Since we are going board-to-board, we would definitely have different oscillators driving the 
transmit clocks of the transceivers, so we must account for clock correction. When considering how 
big to make the data frame, we need to balance two contradicting needs. The bigger the data frame, 
the less overhead and the more bandwidth available for data. The smaller the data frame, the more 
alignment and clock correction characters. Clearly, we must balance the two needs. We could calculate 
both limits and pick something in the middle. 

Data handling capabilities are easy to calculate. We need 1.8 Gb/s out of 2 Gb/s available. So as 
long as the overhead bits fit into the available space, we will be fine. Now we must pick a convenient 
size and see if it works.

If the data frame holds 2048 bytes and the overhead is 10 bytes (2 for sf, 2 for ef, 6 for idles) then our 
over head rate would be 10/2058 or about 0.5%. Our available overhead is 0.2/2 or 10%. We could 
make the data frame 20 times smaller and still be within our overhead budget. 

We want to go smaller if necessary for clock corrections, so we need to look at that. Our particular 
MGT requires a reference clock with a 20 ppm accuracy. If we program the MGT to a
2-symbol-wide idle sequence, the maximum correction would be every 49,999 symbols. The distance 
between idle characters must be less than this. In most cases, we will want it to be smaller than 1/3 of 
the maximum distance between idles. We are about 1/24th, so we have our very simple protocol almost 
defined. The only thing we need to deal with is a flow control issue.

Remember how we were only using 0.5% of the time for overhead but had 10% available? We 
need to define what is going to fill that space and who manages the fill. So we need to fill that extra 
time with idles so the wire will look like the illustration in Figure 4-7.

Notice that the exact number of idles between frames will need to vary slightly depending on the 
reference oscillators. How this happens should be defined in the protocol, as should the stripping of 
idles. We can do this simply in the protocol by defining that it is the transmitter's responsibility to 
add enough idles to fill in the wire time, and that it is the receiver's responsibility to strip all idles, 
start of frames, and end of frames, from the incoming data stream.

sf: Start of frame; ef: end of frame

FIGURE 4-7: Distance Between Starts

SF I I SF DataEFData EF II I I I II SF DataI

Normal distance
between starts

More idles



HIGH-SPEED SERIAL I/O MADE SIMPLE •

64 • Xilinx PRELIMINARY INFORMATION

So that is all it takes to define a simple protocol in about a page. But what about implementation? 
Most of the work will be done by an 8b/10b-enabled MGT. We will need to add a bit of custom logic 
to the interface, but no processor or software will be needed; not even a complex state machine.

FIGURE 4-8: Simple Protocol for Transporting 1.8 Gbits of Data Between Two Boards

SF Data EF IdleIDLE IDLE IDLE SFSF Data EF IDLEIDLE

Number of Idles
will vary

IDLE

SF

EF

Data 2048 Bytes encoded into 2048 8b10b data symbols

 K28.5, K28.5

 K28.0, D0.0

 K29.7, K28.5

8B10B  Assignments

TX RX12 bits at 150Mhz 12 bits at 150Mhz

Transmitter

Takes incoming parallel stream and places it
in packets of 2048 bytes.

Uses an MGT to 8b10b encode, serialize data,
and drive on wire.

Wire speed is 2.5 Gbits/sec

Inserts variable number of idle characters
between packets

Receiver

Takes incoming serial stream strips start flags,
end flags and idles.

Converts 8 bit received data into 12bit data
and stores in a fifo.

Data is read from fifo at 150Mhz

SFSF Data EF

Basic Packet Structure

Representation of multiple packets on wire

MGT settingsAlignment sequence = K28.5, K28.5 (SF)

Clock Correction sequence = K29.7, K28.5 (IDLE)

Physical Details: Pre-emphasis, termination, AC or DC coupling,
and amplitude can vary according to application.



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 65

A block diagram of custom hardware and an MGT to implement this protocol is shown in 
Figure 4-9.

There are occasions when a very simple proprietary protocol may be just what you needed. 

Signal Integrity
To have integrity, the signal must be dependable (that is, be repeatable and predictable). We need to 
know what it is going to do. The signal must also be honest or pure and uncorrupted. It must keep its 
pure form and not be influenced by others (crosstalk) or subject to negative self-modification based on 
environment (reflections). So now we will look at three things that will ensure integrity in our signals: 
impedance, power, and shielding. 

Impedance
The first step towards signal integrity is to run the signals on differential transmission lines. By defi-
nition, a transmission line has a set, constant impedance. In reality, the impedance is not constant; it 
varies. This is a particular problem when the signals change layers, encounter pads for a component, or 
go through a connector or cable. Any impedance increase when operating in the multi-gigabit range 
is a potential problem. Multi-gigabit links require impedance-free paths or they will not work. 

FIGURE 4-9: Custom Hardware with an MGT

To have good signal integrity, the signal must be dependable; that is, repeatable and predictable.

16 to 1216

wr

RX
ctrl

16

12 to 1612

wr
16

SF
EF
Idle

TX
ctrl

rd

MGT

with

8b10b



HIGH-SPEED SERIAL I/O MADE SIMPLE •

66 • Xilinx PRELIMINARY INFORMATION

The transmission path should modeled, and connectors and cables finalized with CAD signal 
integrity tools before layout. Then, when we get the first prototypes, the impedance of the paths 
should be verified using time domain reflectometry (TDR). One hundred-ohm and 50-ohm transmis-
sion lines are the most commonly used values. Some transceivers can adapt to either, and some may 
support only one. Fifty-ohm is definitely the most common approach in the 10 Gb/s range. If both 
100-ohm and 50-ohm are available, connector and cable selection become a critical consideration. 

Power
Delivering power is another crucial element of using multi-Gigabit transceivers. Most MGTs have 
multiple power supply needs. 

Typical supplies are:
• RX analog power 
• TX analog power
• Analog ground
• RX termination voltage
• TX termination voltage
• Digital power
• Digital ground.

TDR: Time Domain Reflectometry

FIGURE 4-10: DCA Screen Capture



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 67

It is critical that both the analog transmit and receive power supplies, and the associated analog 
ground be extremely clean. As such, it is common for the MGT manufacturer to define that specific 
circuits to be used. This will almost always call for separate analog voltage regulators for each voltage, 
if not each MGT, and a passive power filter consisting of a capacitor and a ferrite bead.

FIGURE 4-11: Filters for MGT Power Supply

RX Analog

Voltage

TX Analog

Voltage

RX Termination

Voltage

Analog

Ground

TX Termination

Voltage

2.5 V

VTT

VTR



HIGH-SPEED SERIAL I/O MADE SIMPLE •

68 • Xilinx PRELIMINARY INFORMATION

The ferrite bead has a low impedance at low frequencies and a very high impedance at high fre-
quencies (Figure 4-12).

FIGURE 4-12: Equivalent Circuit and Frequency Characteristics

[Equivalent Circuit]

[Impedance-Frequency Characteristics (typical)]

1000

800

600

400

200

01 10 100 1000
Frequency [MHz]

R : Real Part (Resistive Portion)  X : Imaginary part (Inductive Portion)

Z

X

Im
pe

da
nc

e 
[Ω

]

R

R(f)



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 69

The characteristics of the ferrite bead and capacitor are very important. Often, the manufacturer 
recommends a specific part. Sections taken from sample data sheets are given in Figure 4-13 and 
Figure 4-14.

In some MGTs (especially those in flip chip packages) the capacitor will be included inside the 
package of the part. In this case, often only the ferrite bead is needed. If a manufacturer recommends 
a specific circuit, it is normally best to follow the exact recommendations. One reason for this is that, 
in cases where multiple MGTs are in a common part, it is normal to require only a single linear regu-
lator. And while we think of our filter circuit as filtering power supply noise from reaching our MGT, 

FIGURE 4-13: Sample Data Sheet Portion

FIGURE 4-14: Sample Impedance Plots



HIGH-SPEED SERIAL I/O MADE SIMPLE •

70 • Xilinx PRELIMINARY INFORMATION

it also has some value in keeping the noise from one MGT from filtering to another MGT. The filter 
becomes both an input filter and an output filter. Sometimes a manufacturer will make a trade-off 
between input and output filter capabilities based on internal knowledge of how much output filter-
ing is needed. 

In addition to the analog power supplies, the digital supplies must also be considered. Often the 
digital supplies for the MGT will be the common supply for all the digital logic of the devices. As 
with any switching circuit, bypassing is critical. But, at these speeds, we cannot just insert few capac-
itors and say the bypassing is complete. That approach used to work a few years ago, so why not now? 
It still can work if we can find some ideal capacitors (no inductance or resistance) and get them on the 
board using ideal routes and vias (no inductance or resistance), and the package is ideal, and so on. As 
switching frequency and current needs have increased, the ESR and ESL that at one time could be 
ignored now have to be considered.

The goal of a power distribution and bypassing network is to be able to deliver the correct voltage 
in varying amounts of current. Bypassing circuits need to be designed to meet the specific needs of 
each application. One method of analyzing this is to look at the impedance of our power system and its 

ESL: Effective Series Inductance

ESR: Effective Series Resistance

FIGURE 4-15: Switching Circuit

C ESR ESL

Real World Cap



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 71

associated frequency. Figure 4-16 shows the frequency response for three capacitors commonly recom-
mended in standard applications. 

Notice two main problems. One problem is the large impedance spikes between the values. If our 
system happens to need power supplied in that frequency range, we will have a problem. Part of 

FIGURE 4-16: Impedance vs. Frequency for Improperly Selected Capacitors



HIGH-SPEED SERIAL I/O MADE SIMPLE •

72 • Xilinx PRELIMINARY INFORMATION

designing our bypassing circuit is to make sure these spikes are in areas not critical to our particular 
design. This can be accomplished by using different capacitors (Figure 4-17). 

The other problem occurs at the upper frequency range. It first becomes difficult, and then 
impossible to find capacitors to cover the range. As the capacitor's value decreases, the associated stray 
inductance and resistance of the package cannot change proportionally to the capacitance, and there-
fore the frequency response does not change much either. To get proper power distribution at the 
upper rates, we need to build our own capacitor using the power and ground planes. To do this effec-
tively usually involves having adjacent power and ground planes. A typical stack-up would look like 
this (Figure 4-18)

FIGURE 4-17: Impedance vs. Frequency for Properly Selected Capacitors

FIGURE 4-18: Typical Stack-up

Four Values of Parallel Capacitors [ohms]

1.E-03

1.E-02

1.E-01

1.E+00

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

Frequency [MHz]

Im
pe

da
nc

e 
Z

 (
oh

m
s)



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 73

Another important aspect of bypassing is placement. As a general rule, the larger the cap value, 
the less critical the placement. The smallest values want to go as near a power and ground pin as pos-
sible. One way to do this that is often available when using MGTS inside FPGAs is to remove the trace 
and via of unused general IO to make room for the bypassing. This is shown in Figure 4-19. 

Shielding
Any multi-gigabit signal needs to be isolated from interfering, and being interfered on, by other sig-
nals, whether the signal is on a board, cable, or going through a connector. This is accomplished by 
isolation and shielding with connectors and cables. On PCBs, multi-gigabit signals should be isolated 
from other signals by using extra space, and should be isolated from parallel traces on other layers by 
ground or power planes.

Boards, Connectors, and Cables
When designing a system that uses multi-gigabit serial streams, component selection and board 
design are critical. The wrong connector, a marginal stack-up, or the wrong PCB material can com-
pletely ruin an MGT project.

Printed Circuit Board Design
Designing a PCB for multi-gigabit operation is a challenge for even the best PCB designers. Differen-
tial traces must be matched, geometry for impedance-controlled differential pairs must be adjusted as 
layers are added, and power distribution needs to be critically analyzed. And while there will be thou-
sands of individual trade-offs and decisions, an overall list of issues can help. That list of issues might 
include the following:

• Material selection 
• Stack-up/board thickness 
• Power and ground planes 
• Differential pairs 
• Differential trace width and spacing 
• Vias 
• Space between pairs
• Ground guards between pairs
• Power layout.

FIGURE 4-19: Removing Trace and Via



HIGH-SPEED SERIAL I/O MADE SIMPLE •

74 • Xilinx PRELIMINARY INFORMATION

Material Selection
While FR-4 has become the standard board material for a number of years, some lower loss alterna-
tives have become readily available. A general guideline is that for total trace length less than 20 
inches and speed at or below 3.125 Gb/s, FR-4 may be acceptable. If we need longer traces or faster 
speed, we should seriously consider using a high-speed material such as ROGERS 3450.

Stack-up/Board Thickness
Once we have selected a material, the next step will be to devise a general stack-up plan. This may 
change as the number of signal layers is determined, but we will need to keep our stack-up in mind 
throughout the processes. Do not forget to add an adjacent power and ground plane layer to improve 
bypassing.

Power and Ground Planes
We need to think about how we are going to distribute all those special analog voltages. We may need 
to consider separate planes for each analog power. Isolating and filtering ground planes that are the ref-
erence plane for the multi-gigabit signals might be a good idea. We could also consider eliminating 
the digital power supply plane from signal areas that operate at less than gigabit speed.

Differential Pairs
For best results, we should run differential pairs tightly coupled and closely matched. Trace length 
matching is essential. In FR-4, a 100-mil (1 tenth of an inch) difference in trace length results in 
approximately 18 picoseconds of difference between the positive and negative signal. This is also 
enough skew to start causing problems. And, while a tenth of an inch may sound like a lot if we just 
use normal trace routing from one BGA to another, it is easy to end up with 300 - 400 mils of differ-
ence. If our PCB tool has an auto-trace matching, we need to use it. In general, we will want 50 mils 
or less difference in differential trace lengths.

Differential Trace Width and Spacing
This will need to be worked out for each particular stack-up. The board foundry can be a valuable 
resource, but we need to make sure they know what they are doing. Some published guidelines recom-
mend against letting the PCB vendor do these calculations. We need to make sure they are using a 
field solver tool to figure the width and spacing of tightly coupled pairs. Then we need to adjust our 
boards accordingly. One technique we definitely should not use is just choosing a close geometry and 
then letting the board foundry adjust the impedance with over- or under-etching. If we have a local, 
in-house field solving program and the expertise to use it, that is even better. 

Sample geometry is shown in Figure 4-20 and Figure 4-21.

FIGURE 4-20: Sample Geometry: Microstrip Edge-Coupled Differential Pair

Trace Trace

Reference Plane

Dielectric

W2W1 S

H

W1 = 6.29 mil (0.160 mm)
W2 = 6.29 mil (0.160 mm)
S = 10 mil (0.254 mm)
H = 5.0 mil (0.127 mm)
Z01 = 55.3
Z02 = 55.3
Z0DIFF = 100Er = 4.3



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 75

Vias
Changing layers on the multi-gigabit differential traces should be avoided whenever possible. If a layer 
transition is required, we must be extra careful. First, we must provide an intact return path. To do 
this, we must couple the reference plane of layer A to the reference plane of layer B. The ideal situation 
is to have both reference planes be ground. In this case, the return path is created by placing a via con-
necting the planes in close proximity to the via used to make the transition. Figure 4-22 illustrates the 
technique.

FIGURE 4-21: Sample Geometry: Stripline Edge-Coupled Differential Pair

FIGURE 4-22: Vias with Both Reference Planes as gnd

TraceTrace

Reference Plane

Reference Plane

Dielectric

W2W1 S

H2

H1
W1 = 3.0 mil (0.076 mm)
W2 = 3.0 mil (0.076 mm)
S = 6.85 mil (0.174 mm)
H1 = 10.0 mil (0.254 mm)
H2 = 10.0 mil (0.254 mm)
Z01 = 64.8
Z02 = 64.8
Z0DIFF = 100

Er = 4.3

Layer B

Layer A

Layer Transfer Vias

Ground Path Tie Vias

Layer Transfer Vias

Layer A

Layer B

Ground Path Tie Vias



HIGH-SPEED SERIAL I/O MADE SIMPLE •

76 • Xilinx PRELIMINARY INFORMATION

If reference planes are not common (one is gnd and one is pwr), then a 0.01 μF capacitor should be 
placed across the two planes as close to the transition via as possible. This is illustrated in Figure 4-23.

Another problem with vias is that they represent a stub. Clearly, we know it is a bad idea to intro-
duce stubs in our transmission line (see Figure 4-24).

Consider a via that transfers a signal from an inner layer to the top layer. The via also goes to the 
bottom layer, and that unused portion of the via is a stub. One method to avoid this stub is a technique 
called back drilling. After plating, the unused portion of the via is removed by drilling (as shown with 
drill bit in lower portion of Figure 4-25). 

FIGURE 4-23: Vias if Reference Planes are Not Common

FIGURE 4-24: Transmission Line

FIGURE 4-25: Back Drilling Process

Power Via

0.01 uF Cap

Layer B

Layer A

Layer Transfer Vias

Ground Via

Power ViaGround Via

0.01 uF Cap

Layer Transfer Vias



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 77

Any design over 5 Gb/s should seriously consider back drilling vias (see Figure 4-26).

Space Between Pairs
It is important to maintain a good amount of distance between differential pairs carrying multi-giga-
bit signals and other traces. One general rule is that at least five times the space between the two sig-
nals of the pair should be placed between adjacent pairs (Figure 4-27). 

FIGURE 4-26: Back Drilled vs. Non-Back Drilled Channels

FIGURE 4-27: Space Between Pairs



HIGH-SPEED SERIAL I/O MADE SIMPLE •

78 • Xilinx PRELIMINARY INFORMATION

Ground guards between pairs
Another technique is to route a ground guard in parallel to the differential traces. Tying the guard 
plane back to the reference plane using a via in parallel to the trace often improves this shielding 
method (Figure 4-28).

Power layout
Many of the items discussed in the Powering MGT section have board layout implications as well. The 
placement of the ferrite beads (Figure 4-29) and capacitors that filter the analog power supplies rela-
tive to the supply pins and the signal traces (Figure 4-30) must be carefully considered.

FIGURE 4-28: Ground Guards Between Pairs

FIGURE 4-29: Placement of Ferrite Beads

G
N

D

G
N

D



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 79

Connector Selection
Only high-speed connectors should be used for multi-gigabit signals. Like everything else in the path, 
a high-speed connector has controlled impedance. While the connector impedance is never as contin-
uous as a PCB trace, high-speed connectors are much better than normal connectors (Figure 4-31). 
Early high-speed connectors were designed for both single-ended and differential signals. The latest, 
fastest connectors are designed specifically for differential pairs. Here are a few examples of high-speed 
connectors:

• Gbx
• VHDM-HSD
• VHDM
• HDM
• High Density Plus
• Z-PACK HM-Zd

FIGURE 4-30: Power Layout

Analog Power Filters

Large Bypass

Medium
Bypass

Small Bypass
Near Power Pins



HIGH-SPEED SERIAL I/O MADE SIMPLE •

80 • Xilinx PRELIMINARY INFORMATION

• Z-PACK HS3

If designing to a predefined protocol or bus, the connector selection may have already been made 
by the standard. If not, some questions to consider in addition to normal connector issues such as num-
ber of signals, density, and size include:

• bandwidth 
• shielding
• differential pairs 
• maximum edge rate.

Bandwidth
Consider the speed of the part and how fast has it been successfully used. Many early gigabit connec-
tors were originally specified at 1 or 2 Gb/s, but have been widely used at 3 Gb/s (Figure 4-32).

FIGURE 4-31: High-Density 10 Gb/s Copper Interconnect System

FIGURE 4-32: High-Speed 2G Connectors



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 81

Shielding
Consider how the signals are shielded from each other and from other outside influences. There may be 
shielding issues on the sides of the connectors.

Differential Pairs
Was the connector designed for differential pairs or is it only adaptable to differential pairs?

Maximum Edge rate
Have we considered the maximum edge rate? A common source of cross-talk is found in connectors if 
the edges of the signals entering the connector are too fast. We must know what our connector can 
handle and what we expect to send through it.

Cable Selection
If going box-to-box in a custom application, we will need to select a cable/connector scheme. The first 
thing to consider is how far the signals will travel, and if the signal can go that distance using copper 
or if we will have to convert to optical. If distance is under 20 meters and speed under 6 gigabits, then 
copper may work.

One cable used in many multi-gigabit applications is Infiniband cables (Figure 4-33). Originally 
designed for 2.5 Gb/s operation in Infiniband applications, the cable has been adapted and slightly 
modified for FiberChannel, CX4 (10-Gigabit Ethernet) and other uses. It comes in 1, 4, and 12-pair 
variations.

FIGURE 4-33: Infiniband Cables



HIGH-SPEED SERIAL I/O MADE SIMPLE •

82 • Xilinx PRELIMINARY INFORMATION

Another interesting cabling option is cable assemblies designed to plug into backplane-type con-
nectors (Figure 4-34 and Figure 4-35). These assemblies can be used inside cabinets and some include 
EMI shielding to allow box- to-box connectivity. 

Many other cables are being investigated for multi-gigabit uses, including coax and the familiar 
Cat 5 twisted pair. 

FIGURE 4-34: Backplane Cable Assemblies

FIGURE 4-35: More Backplane Cable Assemblies



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 83

Simulation
Simulation is a critical part of any successful MGT design project. Both the analog and digital por-
tions of the design should be subjected to simulation.

Analog
Most digital designers have not thought about running an analog simulation since university. Why do 
we really need to run analog simulations on our gigabit links? Analog simulations are not simple and 
are definitely not inexpensive. However, some would say, “Analog simulation is the only method to 
ensure links will operate properly with minimum redesign.” 

While it is possible to build high-speed links without running analog simulations, it is likely 
that we would have several board design failures in the process. Modern analog EDA tools allow mod-
eling of the differential transmission lines on the board, in addition to the discontinuities caused by 
the vias. If we were to then add a model of the connectors, we can simulate what a TDR will look like 
before the board is built. Add a model of the MGT transceiver and we can simulate what the eye pat-
tern will look like at the receiver. If the board is out of spec, we can change the layout and try again.

The various analog simulation tools include:
• Signal Integrity Analyzers
• SPICE Simulators
• Power Integrity Analyzers
• Design Kits

Signal Integrity (SI) Analysis Tools
These tools are often sold as an optional addition to PCB layout tools. They allow analysis of PCB lay-
outs for signal integrity issues. Often they will allow us to add connector and cable models and analyze 
a multi-PCB system. Another useful feature is the ability to work with models of ICs, specifically 
multi-gigabit transmitters. Using active circuit models in the SI analysis tool often requires a SPICE 
tool (analog circuit simulator) as well. In addition to SPICE models, SI tools will normally handle IBIS 
models and s-parameters. Allegro PCB SI and Mentor HyperLynx_GHZ are two full-feature exam-
ples. Many low-end board tools also have SI analysis options. In general, the lower end tools cannot 
handle the gigabit rates, but look for this to change in the future.

SPICE Simulators
The main need for a SPICE simulator for MGT analog simulation and analysis is a behavior model 
engine for the SI analysis tools. Behavior models are provided from the MGT vendor as a SPICE 
model, but since a SPICE model is essentially a very good description of the circuit, most use 
encrypted SPICE models. These encrypted models require high-end SPICE tools usually designed for 
IC development work. 

SPICE Models: Text-based description of a circuit's behavior. Very accurate, and reveals details of the circuit's 
construction.

S-parameter: Text-based description of the behavior of a circuit, board traces, or connectors at very high fre-
quencies. Originally used in microwave design, s-parameters are now being used to more efficiently model high-
speed board and connector assemblies. S-parameters describe the scattering and reflection of traveling waves in a 
transmission line. 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

84 • Xilinx PRELIMINARY INFORMATION

Example tools include H-SPICE from Synopsys and ICX/Edo from Mentor. These high-end 
SPICE tools tend to be expensive. Encrypted capabilities may appear on the low-end tools in thefuture. 
Although SPICE is a powerful tool and there is a lot more we could do with it, but using a signal 
integrity analysis tool combined with SPICE is much more efficient. Note that an old copy of P-SPICE 
will not work for this analysis.

Power Integrity Tools
These tools help design the power delivery (bypassing, filtering, and so on) system. Many are added-
on to signal integrity analysis tools. These tools provide the same type of functionality for power sys-
tems as the SI tools do for signals. A much less powerful and more affordable help on a portion of the 
power problem can be found in tools like UltraCAD's ESR and Bypass Capacitor Calculator that help 
pick capacitors for specific bypassing needs.

Design Kits
Often a SERDES vendor and a signal integrity tool vendor will work together and provide reference 
materials to speed up the process of doing the analog simulations. The kits usually consist of a generic 
project that set up and ready to use. These can be opened in the SI tool so that we can start discovering 
the tools and SERDES capabilities. Once we are familiar with the general idea, we can begin replacing 
the pre-designed boards and connectors for our own. Since some of these tools have steep learning 
curves, this can be a valuable asset.

We may have to pick our analog simulation tools after we have a SERDES vendor. It is rather 
common to find simulation models or design kits available for only one particular tool set. This tends 
to improve with time, but it is something to remember.

Digital
While the analog simulation requirements of multi-gigabit links may force us into a completely new 
world of EDA tools, the digital end of it will be much less of an impact. There are, however, still a few 
things we need to consider.

First, many MGT behavior models come in a special encrypted format. These are complex cores 
and very valuable intellectual property (IP). As such, the vendors want to protect their property and 
will usually only release in an IP-safe format. The most popular format is called smart models or swift. 
Basically, the model is encrypted in a way that the simulator can read it and the user cannot. Internal 
nodes and hierarchy are not visible to the user; the user can only see the inputs and outputs of the 
model. 

Two issues can arise with smart models and swift. First, our simulator must support them (some 
low end tools commonly used for FPGA simulations do not), and, second, we have to get the tools set 
up to use them, and that normally requires at least some effort.

The other problem with digital simulations of MGTs can be simulation speed. Our digital logic 
will most likely be running in the 100-300 MHz range. We can adjust our time-scale of the simula-

IBIS Models: Text-based description of a circuit's behavior. Adequately accurate at frequencies below 1 GHz. Does 
not reveal construction details of the circuit.



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 85

tion in the single-digit nanosecond range. But if we add a wire speed model of an MGT, we suddenly 
have a signal that transitions 20+ times faster than the previous fastest signal (Figure 4-36).

The time scale of the simulation must be adjusted, and that can slow things down considerably. 
Even screen redraws when these signals are displayed can become noticeably slower. There are some 
things we can do to lessen the impact. One is just to be aware that it is going to be a problem and opti-
mize our simulations around the fact that these fast signals are a part of our design. The other thing to 
keep in mind is that many MGT models have a parallel in and out port. If we use this in most of our 
testbenches and create a small test suite that actually runs at the full data rate, the MGTs will have a 
much smaller impact on overall verification time. A diagram showing the approach is shown in 
Figure 4-37.

FIGURE 4-36: MGT Simulation

FIGURE 4-37: Block Diagram of Two Different Testbenches

Test
Bench

Logic MGT

Logic MGT

Test
Bench

Logic MGT

Logic MGT

Full function simulations including gigabit signals.
Use this for verifying functionality related to MGT
For example simulating slightly different
reference clocks to check clock correction.

A parallel interface replaces the gigabit serial
links. Makes for faster simulations but some
functionality isn't there.  Use this mode for the
bulk of the verification of the interface logic.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

86 • Xilinx PRELIMINARY INFORMATION

One Last Suggestion on Digital Simulations
We must make sure our testbench addresses the problems that can result from different clocks, such as 
check all variations of clock correction and channel bonding if they are used. Clock correction that is 
malfunctioning will stop a project the first day the project arrives at the prototype lab.

Test and Measurement
In the prototype phase of our project, MGT test and measurement considerations will require the use 
of some specialized test equipment to make specific measurements to ensure our project will operate 
as we anticipate. 

Sampling Oscilloscopes and Digital Communication Analyzers
Perhaps the single most important piece of equipment for gigabit debug is a sampling oscilloscope (or 
just “scope”). A sampling scope is a bit different than a normal, or analog, scope or a digital storage 
scope. An analog scope works by directly applying the signal under study to the vertical axis of the 
electron beam that moves across a cathode ray tube (CRT) display, creating a trace that defines the 
shape of the actual signal. A digital storage scope converts the incoming signal to digital samples that 
are stored and then used to “recreate” the signal on a display. The sampling scope also digitizes the 
incoming information and stores it. 

The sampling scope is different than an analog or digital storage scope in that it can be used to 
analyze signals that are extremely fast. In order to capture signals faster than the analog-to-digital con-
verters (ADCs) can operate, the sampling scope captures only a few samples of each period. Moving the 
sampling each time allows it to capture enough signals to represent a repetitive signal. If a signal is 
very repetitive (like alternating ones and zeros), the actual waveform will be seen. In most cases, the 
sampling scope creates an eye pattern. In addition to the data input, a sampling scope has a clock 
input. This is a reference signal from which the scope can sample. This input can usually be a clock 
running at the wire rate or a division of the rate. Often, a rate/20 clock is acceptable. Figure 4-38 

Sampling Scope: Digitizes the information and stores it. To capture signals faster than the analog-to-digital con-
verters can go, the scope captures only a few samples of each period. Moving the sampling each time allows it to 
capture enough signals to represent a repetitive signal.

Digital Storage Scope: Converts the incoming signal to digital samples that are stored and then used to recreate 
the signal on a display. 



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 87

shows a digital sampling oscilloscope (DSO) display, with the data and clock inputs for a unit under 
test (UUT). 

To display extremely fast signals, sample scopes do not have attenuators or amplifiers prior to the 
ADC. This means that the input voltage range is severely limited compared to other scopes. Protection 
diodes are also not present because they would cause too much signal distortion. The inputs to a DSO 
are also extremely sensitive to over-voltage and electrostatic discharge (ESD).

Sampling scopes are often sold as one feature of a system known as a digital communication ana-
lyzer, or DCA. A DCA takes the sampling scope and adds a other features; most are software-based 
manipulation and analysis of the captured data features. A DCA will usually integrate other features, 
often through additional modules. Common options include clock recovery modules that take an 
incoming bit stream and extract a low jitter clock that can be used as the sample clock. The Time 
Delay Reflectometer (TDR) modules that measure impedance and also a common option.

Time Delay Reflectometer
One of the first things to do when we get our prototypes back is to go to the lab and check our trans-
mission paths using a TDR. The TDR allows us to check our transmission paths for impedance 
increases. The smoother the path, the fewer problems. A TDR works by sending a pulse down the 
transmission path and measuring the reflections that come back. This determines the location and 
severity of the impedance discontinuity. A TDR and DSO module can be used together to create a 

FIGURE 4-38: Digital Sampling Oscilloscope Display of a UUT Data and Clock Inputs

DCA: Digital communication analyzer; takes the sampling scope and adds a bunch of other features.

CLK Inputs

UUT

UUT
UUT

CLK Inputs

CLK
Extraction

Sampling Scopes
Need a CLOCK!



HIGH-SPEED SERIAL I/O MADE SIMPLE •

88 • Xilinx PRELIMINARY INFORMATION

TDT which looks at the pulse as it is received at the other end rather than the reflections. TDT can be 
useful for finding trace length mismatches (Figure 4-39 and Figure 4-40).

FIGURE 4-39: Example 1: TDR/TDT Screen Capture



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 89

Eye Patterns
We have already mentioned eye patterns several times. It is almost impossible to talk about high-
speed serial streams without talking about eye patterns. An eye pattern is a natural consequence of the 
way a sampling scope works. An eye pattern occurs when we take snapshots of the exact same duration 
of a waveform of random bits, then superimpose the sequences (Figure 4-41).

FIGURE 4-40: Example 2: TDR/TDT Screen Capture

Eye Pattern: Common waveform viewed on digital sampling scopes. It is an indication of the quality of the signal. 
Jitter, impedance matching, and amplitude can all be characterized through eye patterns.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

90 • Xilinx PRELIMINARY INFORMATION

We can see the same thing with our digital storage scope if we turn up the persistence on a ran-
dom bit stream. As the signal quality decreases, the pattern begins to resemble eyes staring back at us, 
hence the name eye pattern (Figure 4-42 and Figure 4-43).

FIGURE 4-41: Eye Pattern Construction

FIGURE 4-42: Eye Pattern After an FR-4 Trace

Identical duration portions of
the signal are superimposed
on top of each other to form
the eye pattern.



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 91

By analyzing the eye pattern, we can discover much about the signal and the path it is traveling. 
The height and width of the eye shape correspond to the ability of a receiver to receive the signal. 
Often a receiver will have a published eye mask. If the eye pattern is within the mask, the receiver can 
detect the signal (Figure 4-44).

The width of the fill (cross over) in between the eyes is a representation of the jitter of the system. 
Other details, such as too little or too much pre-emphasis and impedance mismatches that are not 

FIGURE 4-43: Eye Pattern Colors

FIGURE 4-44: Eye Mask Drawing

Wide Crossing indicates
lots of jitter

Multiple distinct
amplitudes, some of
the jitter may be from
ISI

One and two bit
sequences are not
making it to full
amplitude



HIGH-SPEED SERIAL I/O MADE SIMPLE •

92 • Xilinx PRELIMINARY INFORMATION

symmetrical on both sides of the differential pair can be identified through anomalies in the shape of 
the eye (Figure 4-45). 

Another important aspect of eye patterns is color. Most modern equipment uses color as a way of 
signifying intensity. The darker or “hotter” the color, the more data samples have landed at that loca-
tion. In this eye pattern (Figure 4-46), the orange shows many data samples (“hits”) and the green is 
just a few “hits.”

FIGURE 4-45: Eye Pattern Anomalies

FIGURE 4-46: Eye Pattern Colors

Unusual dip/bump
possible impedance
problem

Right and Left sides of eye not
symmetrical indication of diff pair
impedance, length of coupling problems



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 93

Another term associated with eye patterns is eye mask. This is simply a definition of how good or 
open an eye pattern needs to be for a receiver to operate correctly. An eye mask might look something 
like this (Figure 4-47).

Jitter
We have already used the term jitter and we know it is related to the width of the line between indi-
vidual eyes of an eye pattern. When we are in the lab debugging a multi-gigabit link, we will want a 
good understanding of what jitter is, where it comes from, and what it can affect.

Mathematically, we could talk about jitter as a variation in the period of our signal. For example, 
if we had a sine wave clock, we could define a perfect zero jitter clock as:

cos(w(t))

Then a description of the jittery signal would be:

cos(w(t) + j(t))

where j(t) is a function describing the jitter. Jitter is often categorized into two types: deterministic 
and random:

• Random jitter: The component of the jitter resulting from differential and common mode stochastic 
noise processes such as power supply noise and thermal noise. Also known as rj, RJ, and called 
indeterministic jitter.

• Deterministic jitter: The component of the jitter attributable to specific patterns or events. Includes 
jitter resulting from sources such as asymmetric rise/fall times, inter-symbol interference, power-
supply feed through, oscillator wand, and cross-talk from other signals. Often abbreviated as DJ or 
dj.

FIGURE 4-47: Eye Mask Pattern

Jitter: The difference between the ideal zero crossing and the actual zero crossing.

100

87.5

100

Z2 (mV)

800

800

800

Z1 (mV)

0.5000.3750.3560.2311.25     (802.3z)

0.5000.3250.3800.2052.5       (Infiniband)

0.4250.3000.3050.1803.125   (XAUI)

Y2 (UI)Y1 (UI)X2 (UI)X1 (UI)Data rate (Gbps)

Y1 0 1 (1–Y2) Y2 

Normalized bit time (UI)  

Signal amplitude (mV)

–Z2 

–Z1 

0 

 Z2 

 Z1 

X1 X2 (1–X2) (1–X1) 

(1–Y1) 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

94 • Xilinx PRELIMINARY INFORMATION

When investigating why a multi-gigabit link is not working, the most likely problem is exces-
sive jitter. It is a good idea to get a feel for how much jitter there is on the incoming signal of the 
receivers and compare that to the specification of the receiver. It is also a good idea to check the ampli-
tude/eye height while we are looking. If everything looks acceptable, jitter is most likely not the prob-
lem. 

Generators and Bit Error Testers
Other useful items to have in the lab are pattern and clock generators and bit error testers. These low 
jitter generators are useful for developing test patterns and checking bit error rates. Here is one way 
these might be used (Figure 4-48).

FIGURE 4-48: Generators and Bit Error Testers

High-speed Clock Generator

BREFCLK Clock Generator

Stimulus System Infinium DCA Scope

Agilent 86100AHFS9003

HP8648D

HP8648D

BERT

Attenuators

Temp
Forcing
Unit

HP 71603B

Microstrip
Board

ML321
Board

Pattern Generator

Error Detector

Clock Source

"3.2 Gb/s"

"160 MHz"

"160 MHz"

Phase
Lock
Out

Clock
Out

Phase
Lock
Out

Phase
Lock

In

Clock
Out

Clock
Out

Clock
Out

Clock
In

Clock
In

Clock
In

CLK+ CLK- CLK+ CLK-

External
Trigger

Channel 1

Channel 2

Channel 1

Channel 2

InN InP

OutN OutP

TXP

RXP

RXN

TXN BREFCLK

Data
In

Mod
In



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 95

Another type of diagram that is often associated with serial links is the bathtub curve 
(Figure 4-49). 

The bathtub curve is a plot that shows the bit error rate relative to sampling position within the 
unit interval. The bottom of the curve is not zero, but however close to zero the testing stopped, nor-
mally somewhere in the 10-12 to 10-16 range. The upper limit is a 100% bit error rate or 1. A bit error 
tester is often used to generate the bathtub curves. Under some circumstances, a relationship between 

FIGURE 4-49: Bathtub Curve

1 UI

1E0

1E -16



HIGH-SPEED SERIAL I/O MADE SIMPLE •

96 • Xilinx PRELIMINARY INFORMATION

an eye pattern and the bathtub curve can be demonstrated like this one from a BER test vendor called 
Wavecrest (Figure 4-50).

This relationship is only valid under the correct conditions. Trying to deduce information about 
a bathtub curve or BER from an eye pattern from a transmission path external to an MGT that 
includes an active equalizer would not be valid.

Putting the Equipment to Use
Once we have our PC board back from the foundry and our prototype lab nicely equipped, we may find 
ourselves wondering what to do next. While each project will have different needs, here are some sug-
gestions:

1. We want to run a TDR on our transmission paths. This will tell us a number of things relative to
how closely the board meets the correct impedance, the size of impedance increases caused by vias,
connector feed-through, and so on. The first time through, we should carefully go through the
path identifying each part of the path. We cannot forget to focus around the disturbances. The

FIGURE 4-50: WaveCrest

Illustration of relationship between eye diagram, jitter PDF, and bath-
tub curve. 
a.) Eye diagram indicating data transition threshold. 
b.) Jitter PDF (think line) with TailFit™ extrapolation (thin line). 
c.) Bathtub curves found from jitter PDF (thick line) and TailFit 
extrapolation (thin line).



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 97

connectors, vias, and so on, will often look like a single disturbance until we focus in. It us a good
idea to verify where we are looking. This can be done by pressing a finger down on the vias or
pads. The capacitance of a finger changes the impedance slightly and we can normally see that on
the display. Comparing our actual TDR to simulated ones we did with the signal integrity
analysis tools may also provide some valuable insight.

2. The next thing to do is to look at the eye pattern as close to the pins of the receiver as possible.
Look at the eye compared to the receiver specifications. Is the jitter within tolerance? Is the eye
height/amplitude correct? If all looks good, it is time to try the link. If not, we need to check out
the debug hints below.

Multi-gigabit Debug Hints
Debugging your multi-gigabit design can sometimes be a challenge. Some debugging hints you can 
use cover the following areas:

• Low Signal Amplitude
• Low Eye Pattern Height
• Excessive Jitter
• Using SI Tools
• A Final Debugging Hint

Low Signal Amplitude at the Receive Pins
If our amplitude is too low, we may be able to crank up the voltage of the output driver. If we cannot 
fix the problem with output drive, we have too much loss in our boards and connectors; at this point 
we will really wish we had done those analog simulations because we are looking at a board redesign. 
Before we concede, we will want to make sure it is not a test setup problem or a manufacturing defect. 
Check all connections, part numbers, component values, and so on. We may also want to check the 
amplitude at various points along the path to get a feel for where the loss is occurring. 

Low Eye Pattern Height
If the overall amplitude is high enough but the height of the eye pattern is small, then some bits are 
getting high enough, but others are not. This is often a result of a difference in gain/attenuation of the 
path or transmitter at some frequencies. Usually the easiest thing to try is to check our pre-emphasis 
settings. It could be that we are just not getting high enough on single bit transitions. If we have an 
equalizer or equalized cable in the path, we will want to check and make sure they are the correct val-
ues. If we can adjust the equalization, we should try that.

Excessive Jitter for Receive
This is the most common problem of non-working links. Low eye pattern height will often accompany 
jitter problems, so all of the suggestions for low eye pattern height apply here as well. If it is not a pre-
emphasis problem and the associated jitter from internal signal integrity or our equalizer settings, it 
is time to start looking for other sources of jitter. Some likely candidates are:

• Power supply problems, feed through, and noise
• Cross-talk 
• Asymmetrical rise/fall times
• Common mode problems from unmatched differential traces
• Oscillator wander or jitter.
Determining jitter sources can be challenging. We will want to use our best lab techniques, good 

notes, and so on, to systematically divide and conquer. We will also want to be familiar with every fea-



HIGH-SPEED SERIAL I/O MADE SIMPLE •

98 • Xilinx PRELIMINARY INFORMATION

ture of our test equipment. Some of the new high-end DCAs have extremely powerful jitter diagnos-
tics that can help get to the root of the problem.

Dividing and conquering is a good starting point. Start collecting eye-patterns from various 
points along the path. Where does the jitter start showing up? Once we have a good idea of where the 
problem lies in the path, we can look intently at that portion of the path and its likely jitter sources. 

For example, if the jitter is acceptable at the transmitter, but unacceptable after the first connec-
tor, possible jitter sources would include: 

• Cross-talk from other signals on the board between the connector and the transmitter
• Cross-talk from power planes on the board
• Reflections from impedance bumps associated with the connector or vias
• Cross-talk from other signals in the connector.
Coming up with the possibilities is the easy part, proving that one of them is the problem (or part 

of the problem) is often difficult. For cross-talk issues, look to disable possible offenders.

Using EDA SI Tools
Another valuable resource is the EDA SI tools. Is there a small problem in simulation that is bigger in 
reality? Do we know more about the model now? If so, updating and rerunning our simulation can 
perhaps duplicate the problem there.

One thing we have not talked much about is how we get the signals from the board into the DCA. 
The DCA connectors are usually SNA-type coax, so for cables and connectors we could buy adapters if 
someone markets them. If not, we may need to build our own adapters (Figure 4-51 and Figure 4-52).

.

FIGURE 4-51: 1x Infiniband to SNA Connector

FIGURE 4-52: 4x Infiniband to SNA Connector



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 99

Looking at signals on the PC board is more difficult. If we happen to be using AC coupling, we 
can often remove the coupling capacitors and solder on small wires. We can also remove parts and sol-
der wires onto the pads. 

This can get a bit messy and stress our prototypes. It is a good idea to always plan that several of 
the prototypes will be destroyed for test and verification. We may even want to have some prototypes 
specially built with certain parts missing.

A Final Debugging Hint
There is one last thing to keep in mind when debugging gigabit links. There are two main parts to the 
link, the physical portion and the protocol. All the above suggestions have applied to the physical link 
and have assumed that everything is either acceptable with the protocol level, or it has been eliminated 
from testing by use of pattern and clock generators. Digital simulations should have most of the pro-
tocol bugs worked out before we ever get to prototype, but there is still some room for overlap. For 
example, if we are getting errors in our bit stream, but our receive input jitter looks great, the problem 
may actually be a clock correction problem.

Interoperability
When designing to a specific standard, chances are we will need to be compatible with other products. 
Or perhaps we just need to interface with a previous version of a custom application and the older ver-
sion uses a different SERDES vendor. There are a few things to look for to make inter operability a real-
ity.

Protocol Level
When interfacing to another system running the “same” protocol, expect to have problems. These pro-
tocols are so complex that there are bound to be different interpretations of the specification. Submit-
ting our device to an independent verification lab is one approach to make certain our interpretation 
of the specification is correct. Purchasing the protocol engine design or software may also be a benefit 
to inter operability. If we are interfacing to a custom protocol, we may want to try to use the same 
source code if possible.

FIGURE 4-53: Wired Prototype



HIGH-SPEED SERIAL I/O MADE SIMPLE •

100 • Xilinx PRELIMINARY INFORMATION

Electrical
On the physical end, things will be a bit simpler. If we are using a standard protocol, most things like 
connectors, levels, and so on, will have been defined. If it is a custom application, the details of the 
physical interface may not have been as well defined. We must keep three items in mind; level, cou-
pling, and termination.

We will want to be transmitting and receiving at the same level as the equipment to which we are 
interfacing. We will also need to determine how we are going to be coupled. If both SERDES are sim-
ilar or have a common termination voltage, we may be able to DC couple. This eliminates the AC cou-
pling capacitor and some problems that they can bring. If a common DC coupling is not practical, AC 
coupling can solve the problem (Figure 4-54).

Other Resources
At this point you might be excited and ready to get started with your design, and ready to start using 
this new technology. You must be a working design engineer. You could also be excited, but worried. 
You might ask, “Can we ramp up quick enough? Will our normal board foundry handle the job? Can 
we get enough money for the new equipment?” Obviously, you are an engineering manager. If you are 
somewhere in between, chances are you are a veteran design engineer who has been around long 
enough to know when to be concerned. Do not fret too much, there is help available. 

Design Services
Like most everything in the world of engineering, we can simply hire someone who already has the 
experience to do the work for us. If we are thinking about doing this, we need to be certain to consider 
tools and flows. Does the design company have signal integrity tools? Which ones? Will they work 
with our board design package? Often, the best design consultant can not only give us a fast start on 
the first project, but they can educate our team in the process so they can handle the next project on 
their own. 

Testing Centers
If the budget for test and measurement equipment is a big problem, consider using a vendor or third 
party testing center. Since the equipment is expensive, some SERDES vendors have established labs 
that their customers can use to verify and debug their hardware. These labs are usually nicely equipped 
and often offer an option to provide an experienced multi-gigabit engineer or technician for help. 
Some third parties have set up similar labs as a regular business. A third trend shows that major 
research facilities of leading edge companies have recently begun renting space on a short-term basis. 

FIGURE 4-54: AC and DC Coupling Diagrams

VTTVTT

AC Coupled MGTS

VTT1 VTT2

Termination voltage &
signal levels can be

different

VTT VTT

VTT

Termination voltage &
signal levels must be

identical

DC Coupled MGTS



DESIGNING WITH GIGABIT SERIAL I/O

PRELIMINARY INFORMATION XILINX • 101

These labs are already equipped for advanced research, and often have all the equipment for multi-
gigabit lab work as well.

Development Platforms
Another development resource is predesigned prototype boards. These are available from many of the 
SERDES vendors and third parties. From starting early work on the prototype, acting as a poor man's 
signal generator, or just letting the team get acquainted with the new DCA, these boards are usually 
reasonably priced and can be a valuable asset.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

102 • Xilinx PRELIMINARY INFORMATION



PRELIMINARY INFORMATION XILINX • 103

CHAPTER 5

Xilinx—Your Design Partner

Additional design resources from Xilinx

Serial I/O Design Considerations
We have looked at the history, the technology, and the real-world design considerations of a successful 
Multi-Gigabit Transceiver (MGT) project. This information provides the technical background neces-
sary to begin effective serial input/output (I/O) design. In addition, Xilinx provides additional infor-
mation that can help you use multi-gigabit serial in your I/O designs.

One Stop Serial I/O Web Portal
Xilinx provides a very powerful technical website with single click links to more information about 
Intellectual Property cores, reference designs, white papers, Signal Integrity (SI) and PCB design tools, 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

104 • Xilinx PRELIMINARY INFORMATION

boards, education services, and so on. The URL to bookmark is 
http://www.xilinx.com/serialsolution/.

FIGURE 5-1: High-Speed Serial Solutions Website



XILINX—YOUR DESIGN PARTNER

PRELIMINARY INFORMATION XILINX • 105

Signal Integrity Central
We have seen that for High-Speed Serial designs, signal integrity considerations play a very important 
part in the design process. Xilinx also provides another excellent online resource called the Signal 
Integrity Central (http://www.xilinx.com/signalintegrity) with easy access to articles and papers on SI 
fundamentals, PCB design tools, calculators and estimators, power supply and PDS design consider-
ations, thermal design guidelines, and other SI resources.

Another excellent source is a set of DVDs created by Xilinx in association with Dr. Howard Johnson, 
one of the world’s most pre-eminent authorities on Signal Integrity. The set consists of two DVDs 

FIGURE 5-2: Signal Integrity Website



HIGH-SPEED SERIAL I/O MADE SIMPLE •

106 • Xilinx PRELIMINARY INFORMATION

titled “Signal Integrity Techniques” and “Loss Budgeting for RocketIO Transceivers.” Each DVD runs 
approximately 45 minutes and contains introductory remarks by Dr. Johnson, detailed technical dis-
cussions on topics relevant to high-speed serial design, along with live "in the lab" product demonstra-
tions. These programs will give the viewer a clear understanding of key issues essential to high-speed 
system performance. The DVD set can be ordered from the Xilinx online store at:
http://www.xilinx.com/store/dvd for US $19.95.

Additional References
To support your design tasks, we have included appendices that provide additional design informa-
tion:

• Appendix A contains portions of a data sheet for an FPGA-based Serializer/Deserializer 
(SERDES). It will help you apply what you have learned to an actual (SERDES. It includes 
block diagrams and register definitions. Note that this technology is developing rapidly so 
check for current information on the web.

• Appendix B contains a complete 8b/10b table.
• Appendix C includes a white paper comparing an MGT-based link to a source-synchronous 

link. 
• Appendix D is a glossary of terms. 

FIGURE 5-3: Xilinx Online Store — DVD Ordering



XILINX—YOUR DESIGN PARTNER

PRELIMINARY INFORMATION XILINX • 107

Xilinx—A Powerful Design Partner
Xilinx is the leader in gigabit technology. Xilinx invented the Field Programmable Gate Array 
(FPGA) in 1984. The Virtex™ FPGA, introduced by Xilinx in 1998, was the first line of FPGAs to 
offer one million system gates fundamentally redefining programmable logic. And in 2000 the Xilinx 
flagship Virtex-II FPGA architecture was introduced, setting a new standard for high-density, high-
performance logic that defined the FPGA platform. 

Seeing a need for more I/O bandwidth, Xilinx introduced its third generation Virtex product, the 
Virtex-II Pro in 2002. Again, Xilinx redefined the FPGA by adding 3.125 Gb/s serial transceivers and 
embedded IBM PowerPC™ 405 processors as standard FPGA features. Later, the purchase of Rocket-
Chips—a major gigabit serial research and developer—pushed Xilinx to the forefront of multi-gigabit 
technology.

Xilinx is currently shipping Virtex-II Pro FPGAs with transceivers supporting speeds between 
622 Mb/s and 10.3125 Gb/s and Virtex-II Pro X FPGAs with transceivers supporting speeds between 
2.488 Gb/s and 10.3125 Gb/s. They are also preparing to release Virtex-4 FX FPGAs with transceiv-
ers supporting the broadest speed range of any available product, 622 Mb/s to 10.3125 Mb/s, with 
advanced channel equalization features such as Decision Feedback Equalization (DFE) and compliance 
to major serial I/O standards. As with Virtex-II Pro and Virtex-II Pro X FPGAs (Table 5-1), Xilinx will 
offer EasyPath™ solutions for Virtex-4 FPGAs (Table 5-2) to further extend the benefits of FPGA 
technology to volume production.

TABLE 5-1: Virtex-II Pro EasyPath Solution

Feature/Product XC
2VP2

XC
2VP4

XC
2VP7

XC
2VP20

XC
2VPX20

XC
2VP30

XC
2VP40

XC
2VP50

XC
2VP70

XC
2VPX70

XC
2VP100

EasyPath Cost 
Reduction Solution - - - - - XCE

2VP30
XCE

2VP40
XCE

2VP50
XCE

2VP70
XCE2

VPEX70
XCE

2VP100

Logic Cells 3,168 6,768 11,088 20,880 22,032 30,816 46,632 53,136 74,448 74,448 99,216

Total BRAM (Kbits) 216 504 792 1,584 1,584 2,448 3,456 4,176 5,904 5,544 7,992

18x18 Multipliers 12 28 44 88 88 136 192 232 328 308 444

Digital Clock 
Management Blocks

4 4 4 8 8 8 8 8 8 8 12

Config. (Mbits) 1.31 3.01 4.49 8.21 8.21 11.36 15.56 19.02 26.1 26.1 33.65

PowerPC Processors 0 1 1 2 1 2 2 2 2 2 2

Max. Available 3.125 
Gb/s RocketIO 
Transceivers

4 4 8 8 0 8 12 16 20 0 20

Max. Available 
10.3125 Gb/s 
RocketIO X 
Transceivers

0 0 0 0 8 0 0 0 0 20 0

Max. Available User 
I/O

204 348 396 564 552 644 804 852 996 992 1164



HIGH-SPEED SERIAL I/O MADE SIMPLE •

108 • Xilinx PRELIMINARY INFORMATION

World-Class Xilinx Support 
Xilinx backs up their state of the art silicon with quality supporting materials. This includes a wide 
range of Intellectual Property (IP) cores and reference designs, analog modules and Signal Integrity 
(SI) design kits, and quality behavior models for digital simulations. In addition, they offer a wide 
range of design services, development platforms, and best-in-class FPGA implementation tools.With 
Xilinx as your design partner, you can be assured of the best possible product and technical support for 
all your design needs.

Xilinx wants your experience with designing serial I/O to be a very enjoyable one. One of the 
major reasons we created this book is to remove the perception that Serial I/O design is always diffi-
cult. While Serial I/O technology is fairly new to most designers, it has been used commonly in high-
end telecom and datacom designs for a while and has completely proven itself to be very reliable and 
lower in cost. 

We would like to find out if you liked this book and if it helped you get a jump start on your 
serial design. Please send feedback to the authors at: serialio@xilinx.com.

TABLE 5-2: Virtex-4 EasyPath Solution

Feature/Product XC
4VFX12

XC
4VFX20

XC
4VFX40

XC
4VFX60

XC
4VFX100

XC
4VFX140

EasyPath Cost Reduction Solution - XCE
4VFX20

XCE
4VFX40

XCE
4VFX60

XCE
4VFX100

XCE
4VFX140

Logic Cells 12,312 19,224 41,904 56,880 94,896 142,128

Total BRAM (Kbits) 648 1,224 2,592 4,176 6,768 9,936

Digital Clock Managers (DCM) 4 4 8 12 12 20

Phase-matched Clock Drivers 
(PMCD)

0 0 4 8 8 8

Max. Differential I/O Pairs 160 160 224 288 384 448

XtremeDSP Slices 32 32 48 128 160 192

PowerPC Processor Blocks 1 1 2 2 2 2

10/100/1000 Ethernet MAC Blocks 2 2 4 4 4 4

RocketIO Serial Transceivers 0 8 12 16 20 24

Configuration Memory Bits 5,017,088 7,641,088 15,838,464 22,262,016 35,122,240 50,900,352

Max. SelectIO 320 320 448 576 768 896



PRELIMINARY INFORMATION XILINX • 109

CHAPTER 1

Sample SERDES Data -- 

RocketIO X Transceiver Overview

This information was extracted from the RocketIO™ X Transceiver User Guide. For up-to-date infor-
mation, please go to: 
http://www.xilinx.com/bvdocs/userguides/ug035.pdf

Basic Architecture and Capabilities

The definitions, descriptions, and recommendations in this user guide reflect Step 1
silicon. For Step 0 silicon, see the Errata for special considerations.

The RocketIO X block diagram is illustrated in Figure 1-1. Depending on the device, a 
Virtex™-II Pro X FPGA has between 8 and 20 transceiver modules, as shown in Table 1-1. 

Definitions:

• Attribute – An attribute is a control parameter to configure the RocketIO X transceiver. 
There are both primitive ports (traditional I/O ports for control and status) and transceiver 
attributes. Transceiver attributes are also controls to the transceiver that regulate data widths 
and encoding rules, but controls that are configured as a group in “soft” form through the 
invocation of a primitive.

• GT10 Primitive – A primitive is a predesigned collection of attribute values that accomplish 
a known data rate, encoding type, data width, and so on. A single primitive invocation, for 

TABLE 1-1: Number of RocketIO X Cores per Device Type

Device RocketIO X Cores

XC2VPX20 8

XC2VPX70 20



HIGH-SPEED SERIAL I/O MADE SIMPLE •

110 • Xilinx PRELIMINARY INFORMATION

example, OC-192 mode which configures all the dozens of pertinent attributes to their correct 
values in a single step.

The transceiver module is designed to operate at any serial bit rate in the range of 2.488 Gb/s to 
10.3125 Gb/s per channel, including the specific bit rates used by the communications standards 
listed in Table A-1-2, page 111. Data-rate specific attribute settings are set appropriately in the GT10 
primitives.

FIGURE 1-1: RocketIO X Transceiver Block Diagram

FPGA FABRICMULTI-GIGABIT TRANSCEIVER CORE

Serializer

RXP

TXP

Clock
Manager

Power Down

PACKAGE
PINS

Deserializer
Comma
Detect
Realign

8B/10B 
Decoder 

TX
FIFO

Channel Bonding
and

Clock Correction CHBONDI[4:0]
CHBONDO[4:0]

8B/10B
Encoder

RX
Elastic
Buffer

Output
Polarity

RXN

GNDA

TXN

UG035_01_111303

POWERDOWN

RXRECCLK
RXPOLARITY
RXREALIGN
RXCOMMADET

RXRESET

RXCLKCORCNT[2:0]
RXLOSSOFSYNC[1:0]

RXDATA[63:0]

RXNOTINTABLE[7:0]
RXDISPERR[7:0]
RXCHARISK[7:0]
RXCHARISCOMMA[7:0]
RXRUNDISP[7:0]
RXBUFSTATUS[1:0]

ENCHANSYNC

RXUSRCLK
RXUSRCLK2

CHBONDDONE

TXBUFERR

TXDATA[63:0]

TXBYPASS8B10B[7:0]
TXCHARISK[7:0]
TXCHARDISPMODE[7:0]
TXCHARDISPVAL[7:0]

TXKERR[7:0]
TXRUNDISP[7:0]

TXPOLARITY
TXINHIBIT
LOOPBACK[1:0]
TXRESET

REFCLK
REFCLK2
REFCLKSEL

ENPCOMMAALIGN
ENMCOMMAALIGN

TXUSRCLK
TXUSRCLK2

VTRX

AVCCAUXTX

VTTX

AVCCAUXRX

2.5V

TX/RX GND

Termination Supply RX

1.5V

Termination Supply TX

P
os

t D
riv

er
 S

er
ia

l L
oo

pb
ac

k 
P

at
h

P
ar

al
le

l L
oo

pb
ac

k 
P

at
h

BREFCLKP
BREFCLKN

64B/66B
Block Sync

64
B

/6
6B

D
ec

od
er

Gear 
Box

Scrambler

64B/66B
Encoder

PMA
Attribute

Load

PMAREGDATAIN[7:0]

RXCOMMADETUSE
RXDATAWIDTH[1:0]
RXDECC64B66BUSE

PMAINIT
PMAREGADDR[5:0]

PMAREGRW
PMAREGSTROBE
PMARXLOCKSEL[1:0]
PMARXLOCK

RXDEC8B10BUSE
RXDESCRAM64B66BUSE

REFCLKBSEL
RXBLCOKSYNC64B66BUSE

RXSLIDE

TXINTDATAWIDTH[1:0]
TXSCRAM64B66BUSE
TXOUTCLK

RXIGNOREBTF
RXINTDATAWIDTH[1:0]

TXDATAWIDTH[1:0]
TXENC64B66BUSE
TXENC8B10BUSE

TXGEARBOX64B66BUSE

P
re

-D
riv

er
 L

oo
pb

ac
k 

P
at

h

      

64B/66B
Descrambler

Clock / 
Reset



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 111

.

Table 1-3 lists the transceiver primitives provided. These primitives carry attributes set to default val-
ues for the communications protocols listed in Table 1-2. Data widths of one, two, and four bytes 
(lower speeds) or four and eight bytes (higher speeds) are selectable for the various protocols. 

TABLE 1-2: Communications Standards Supported by RocketIO X Transceiver

Mode Channels(1) (Lanes) I/O Bit Rate (Gb/s)

SONET OC-48 1 2.488

PCI Express 1, 2, 4, 8, 16 2.5

Infiniband 1, 4, 12 2.5

XAUI (10-Gigabit Ethernet) 4 3.125

XAUI (10-Gigabit Fibre Channel) 4 3.1875

SONET OC-192(2) 1 9.95328

Aurora (Xilinx protocol) 1, 2, 3, 4,... 2.488 – 10.3125

Custom Mode 1, 2, 3, 4,... 2.488 – 10.3125

Notes: 
1. One channel is considered to be one transceiver.
2. See Solution Record 19020 for implementation recommendations.

TABLE 1-3: Supported RocketIO X Transceiver Primitives

Primitive Description Primitive Description

GT10_CUSTOM Fully customizable 
by user

GT10_XAUI_4 10GE XAUI, 4-byte 
data path

GT10_OC48_1 SONET OC-48, 
1-byte data path

GT10_AURORA_1 Xilinx protocol, 1-byte 
data path

GT10_OC48_2 SONET OC-48, 
2-byte data path

GT10_AURORA_2 Xilinx protocol, 2-byte 
data path

GT10_OC48_4 SONET OC-48, 
4-byte data path

GT10_AURORA_4 Xilinx protocol, 4-byte 
data path 

GT10_PCI_EXPRESS_1 PCI Express, 1-byte 
data path

GT10_OC192_4 SONET OC-192, 
4-byte data path

GT10_PCI_EXPRESS_2 PCI Express, 2-byte 
data path

GT10_OC192_8 SONET OC-192, 
8-byte data path

GT10_PCI_EXPRESS_4 PCI Express, 4-byte 
data path

GT10_10GE_4 10-Gbit Ethernet, 
4-byte data path



HIGH-SPEED SERIAL I/O MADE SIMPLE •

112 • Xilinx PRELIMINARY INFORMATION

There are three ways to configure the RocketIO X transceiver: 

• Static properties can be set through attributes in the HDL code. Use of attributes are covered 
in detail in “Primitive Attributes,” page 120. 

• Dynamic changes can be made to the attributes via the attribute programming bus. 
• Dynamic changes can be made through the ports of the primitives.
The RocketIO X transceiver consists of the Physical Media Attachment (PMA) and Physical Cod-

ing Sublayer (PCS). The PMA contains the serializer/deserializer (SERDES), TX and RX buffers, clock 
generator, and clock recovery circuitry. The PCS contains the 8b/10b encoder/decoder, 64b/66b 
encoder/decoder/scrambler/descrambler, and the elastic buffer supporting channel bonding and clock 
correction. Refer again to Table 1-1, page 110, showing the RocketIO X transceiver top-level block 
diagram and FPGA interface signals. 

RocketIO X Transceiver Instantiations
For the different clocking schemes, several things must change, including the clock frequency for 
USRCLK and USRCLK2. The data and control ports for GT10_CUSTOM always use maximum bus 
widths. To implement the designs that do not take full advantage of the bus width, concatenate zeros 
onto inputs and the wires for outputs for Verilog designs, and set outputs to open and concatenate 
zeros on unused input bits for VHDL designs. 

HDL Code Examples
The Architecture Wizard can be used to create instantiation templates. This wizard creates code and 
instantiation templates that define the attributes for a specific application.

GT10_INFINIBAND_1 Infiniband, 1-byte 
data path

GT10_10GE_8 10-Gbit Ethernet, 
8-byte data path

GT10_INFINIBAND_2 Infiniband, 2-byte 
data path

GT10_10GFC_4 10-Gbit Fibre 
Channel, 4-byte data 
path

GT10_INFINIBAND_4 Infiniband, 4-byte 
data path

GT10_10GFC_8 10-Gbit Fibre 
Channel, 8-byte data 
path

GT10_XAUI_1 10GE XAUI, 1-byte 
data path

GT10_AURORAX_4 Xilinx 10G protocol, 
4-byte data path

GT10_XAUI_2 10GE XAUI, 2-byte 
data path

GT10_AURORAX_8 Xilinx 10G protocol, 
8-byte data path 

TABLE 1-3: Supported RocketIO X Transceiver Primitives (Continued)

Primitive Description Primitive Description



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 113

Available Ports
Table 1-4 contains the port descriptions of all primitives. The RocketIO X transceiver primitives con-
tain 72 ports. The differential serial data ports (RXN, RXP, TXN, and TXP) are connected directly to 
external pads; the remaining 68 ports are all accessible from the FPGA logic. 

TABLE 1-4: Primitive Ports

Port I/O Port Size Definition

BREFCLKNIN I 1 Differential BREFCLK negative input from the 
BREFCLK pad. 

BREFCLKPIN I 1 Differential BREFCLK positive input from the 
BREFCLK pad. 

CHBONDDONE O 1 Indicates a receiver has successfully completed 
channel bonding when asserted High.

CHBONDI[4:0] I 5 The channel bonding control that is used only by 
“slaves” which is driven by a transceiver's 
CHBONDO port. 

CHBONDO[4:0] O 5 Channel bonding control that passes channel 
bonding and clock correction control to other 
transceivers. 

ENCHANSYNC I 1 Control from the fabric to the transceiver enables 
the transceiver to perform channel bonding.

ENMCOMMAALIGN I 1 Selects realignment of incoming serial bitstream 
on minus-comma. When asserted realigns serial 
bitstream byte boundary to where minus-comma 
is detected.

ENPCOMMAALIGN I 1 Selects realignment of incoming serial bitstream 
on plus-comma. When reasserted realigns serial 
bitstream byte boundary to where plus-comma is 
detected.

LOOPBACK[1:0] I 2 Selects the three loopback test modes. These 
modes are internal parallel, pre-driver serial, and 
post-driver serial. 

PMAINIT I 1 When asserted High and then deasserted Low, 
reloads the PMA coefficients into the PMA from 
the attribute PMA_SPEED and then resets the 
PCS.

PMAREGADDR[5:0] I 6 PMA attribute bus address. This input is 
asynchronous.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

114 • Xilinx PRELIMINARY INFORMATION

PMAREGDATAIN[7:0] I 8 PMA attribute bus data input. This input is 
asynchronous.

PMAREGRW I 1 PMA attribute bus read/write control. This input 
is asynchronous.

PMAREGSTROBE I 1 PMA attribute bus strobe. Note: This input is 
asynchronous.

PMARXLOCK O 1 Indicates that the receive PLL has locked in the 
fine loop. When RX PLL is set to “Lock to Data,” 
this signal is always a logic 1.

PMARXLOCKSEL[1:0] I 2 Selects determination of lock in the receive PLL. 

POWERDOWN I 1 Shuts down both the receiver and transmitter sides 
of the transceiver when asserted High. Note: This 
input is asynchronous.

REFCLK I 1 The reference clock net that is embedded within 
the fabric.

REFCLK2 I 1 An alternative to REFCLK. Can be selected by the 
REFCLKSEL.

REFCLKBSEL I 1 Selects between BREFCLK and 
REFCLK/REFCLK2 as reference clock. Asserted 
selects BREFCLK. Deasserted selects REFCLK or 
REFCLK2, depending on REFCLKSEL.

REFCLKSEL I 1 Selects between REFCLK or REFCLK2 as 
reference clock. Deasserted selects REFCLK. 
Asserted selects REFCLK2.

RXBUFSTATUS[1:0] O 2 Receiver elastic buffer status. Indicates the status 
of the receive FIFO pointers, channel bonding 
skew, and clock correction events. 

RXBLOCKSYNC
64B66BUSE

I 1 If asserted, the block sync is used. If deasserted, the 
block sync logic is bypassed.

RXCHARISCOMMA
[7:0]

O 1, 2, 4, 8(1) Indicates the reception of K28.0, K28.5, K28.7, 
and some out of band commas (depending on the 
setting of DEC_VALID_COMMA_ONLY by the 
8b/10b decoder.

TABLE 1-4: Primitive Ports (Continued)

Port I/O Port Size Definition



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 115

RXCHARISK[7:0] O 1, 2, 4, 8(1) If 8b/10b decoding is enabled, it indicates that the 
received data is a “K” character when asserted. 
Included in Byte-mapping. If 8b/10b decoding is 
bypassed, it remains as the first bit received (Bit 
“a”) of the 10-bit encoded data

RXCLKCORCNT[2:0] O 3 Status that denotes occurrence of clock correction, 
channel bonding, and receive FIFO pointer status. 
This status is synchronized on the incoming 
RXDATA. 

RXCOMMADET O 1 Indicates that the symbol defined by 
PCOMMA_10B_VALUE (IF 
ENPCOMMAALIGN is asserted) and/or 
MCOMMA_10B_VALUE (if 
ENMCOMMAALIGN is asserted) has been 
received.

RXCOMMADETUSE I 1 If asserted High, the comma detect is used. If 
deasserted, the comma detect is bypassed.

RXDATA[63:0] O 8, 16, 32, 
64(2)

Up to eight bytes of decoded (8b/10b encoding) or 
encoded (8b/10b bypassed) received data at the 
user fabric.

RXDATAWIDTH[1:0] I 2 (00, 01, 10, 11) Indicates width of FPGA parallel 
bus. 

RXDEC64B66BUSE I 1 If asserted High, the 64b/66b decoder is used. If 
deasserted, the 64b/66b decoder is bypassed.

RXDEC8B10BUSE I 1 If asserted High, the 8b/10b decoder is used. If 
deasserted, the 8b/10b decoder is bypassed. 
CLK_COR_8B10B_DE = RXDEC8B10BUSE

RXDESCRAM
64B66BUSE

I 1 If asserted High, the scrambler is used. If 
deasserted, the scrambler is bypassed.

RXDISPERR[7:0] O 1, 2, 4, 8(1) If 8b/10b encoding is enabled it indicates whether 
a disparity error has occurred on the serial line. 
Included in Byte-mapping scheme. 

RXIGNOREBTF I 1 If asserted High, the block type field (BTF) is 
ignored in the 64b/66b decoder. Instead of 
reporting an error, the block is passed on as is. If 
deasserted, unrecognized BTFs are marked as error 
blocks.

TABLE 1-4: Primitive Ports (Continued)

Port I/O Port Size Definition



HIGH-SPEED SERIAL I/O MADE SIMPLE •

116 • Xilinx PRELIMINARY INFORMATION

RXINTDATAWIDTH
[1:0]

I 2 (00, 01, 10, 11) Sets the internal mode of the 
receive PCS, either 16-, 20-, 32-, or 40-bit.

RXLOSSOFSYNC[1:0] O 2 Bit 0 is always zero. Bit 1 indicates there is a 
64b/66b Block Lock when deasserted to logic Low.

RXN I 1 Serial differential port (FPGA external)

RXNOTINTABLE[7:0] O 1, 2, 4, 8(1) Status of encoded data when the data is not a valid 
character when asserted High. Applies to the byte-
mapping scheme.

RXP I 1 Serial differential port (FPGA external)

RXPOLARITY I 1 Similar to TXPOLARITY, but for RXN and RXP. 
When deasserted, assumes regular polarity. When 
asserted, reverses polarity.

RXREALIGN O 1 Signal from the PMA denoting that the byte 
alignment with the serial data stream changed due 
to a comma detection. Asserted High when 
alignment occurs.

RXRECCLK O 1 Clock recovered from the data stream and divided. 
Divide ratio depends on PMA_SPEED setting 
and/or PMA attributes. 

RXRESET I 1 Synchronous RX system reset that “recenters” the 
receive elastic buffer. It also resets 8b/10b decoder, 
comma detect, channel bonding, clock correction 
logic, and other internal receive registers. It does 
not reset the receiver PLL.

RXRUNDISP[7:0] O 1, 2, 4, 8(1) Signals the running disparity (0 = negative, 1 = 
positive) in the received serial data. If 8b/10b 
encoding is bypassed, it remains as the second bit 
received (Bit “b”) of the 10-bit encoded data. 

RXSLIDE I 1 Enables the “slip” of the detection block by 1-bit. 
To enable a slide of 1-bit, it increments from a 
lower bit to a higher bit. This signal must be 
asserted and then deasserted synchronous to 
RXUSRCKLK2. RXSLIDE must be held Low for 
at least two clock cycles before being asserted 
High again.

TABLE 1-4: Primitive Ports (Continued)

Port I/O Port Size Definition



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 117

RXUSRCLK I 1 Clock from a DCM or a BUFG that is used for 
reading the RX elastic buffer. It also clocks 
CHBONDI and CHBONDO in and out of the 
transceiver. Typically, the same as TXUSRCLK. 

RXUSRCLK and RXUSRCLK2 should be 180° 
out of phase from each other.

RXUSRCLK2 I 1 Clock output from a DCM that clocks the receiver 
data and status between the transceiver and the 
FPGA fabric. Typically, the same as 
TXUSRCLK2. 

RXUSRCLK and RXUSRCLK2 should be 180° 
out of phase from each other.

TXBUFERR O 1 Provides status of the transmission FIFO. If 
asserted High, an overflow/underflow has 
occurred. When this bit becomes set, it can only 
be reset by asserting TXRESET.

TXBYPASS8B10B[7:0] I 8 If TXENC8B10BUSE = 1 and 
TXENC64B66BUSE = 0 (8b/10b encoder 
enabled and 64b/66b encoder disabled), each bit of 
TXBYPASS8B10B[7:0] controls the bypass of the 
corresponding TXDATA byte; an asserted bit 
bypasses encoding for the data in the 
corresponding byte lane.

If TXENC8B10BUSE = 0 and 
TXENC64B66BUSE = 1 (8b/10b encoder 
disabled and 64b/66b encoder enabled), 
TXBYPASS8B10B[2:0] bits are used for 
additional 64B / 66B encoder block bypass 
control. TXBYPASS8B10B[7:3] bits are not 
relevant in this particular configuration. Bits [2:1] 
carry the substitute sync header (SH[1:0]) for the 
block bypass operation; bit [0] is asserted for each 
block that the user wants to bypass.

TABLE 1-4: Primitive Ports (Continued)

Port I/O Port Size Definition



HIGH-SPEED SERIAL I/O MADE SIMPLE •

118 • Xilinx PRELIMINARY INFORMATION

TXCHARDISPMODE
[7:0]

I 1, 2, 4, 8(1) If 8b/10b encoding is enabled, this bus determines 
what mode of disparity is to be sent. When 8b/10b 
is bypassed, this becomes the first bit transmitted 
(Bit “a”) of the 10-bit encoded TXDATA bus 
section for each byte specified by the byte-
mapping. The bits have no meaning if 
TXENC8B10BUSE is deasserted.

TXCHARDISPVAL
[7:0]

I 1, 2, 4, 8(1) If 8b/10b encoding is enabled, this bus determines 
what type of disparity is to be sent. When 8b/10b 
is bypassed, this becomes the second bit 
transmitted (Bit “b”) of the 10-bit encoded 
TXDATA bus section for each byte specified by 
the byte-mapping section. The bits have no 
meaning if TXENC8B10BUSE is deasserted.

TXCHARISK[7:0] I 1, 2, 4, 8(1) If TXENC8B10BUSE = 1 (8b/10b encoder 
enable), then TXCHARISK[7:0] signals the K-
definition of the TXDATA byte in the 
corresponding byte lane. (1 indicates that the byte 
is a K character; 0 indicates that the byte is a data 
character) 

If TXENC64B66BUSE = 1 (64b/66b encoder 
enable), then TXCHARISK[3:0] signals the 
block-formatting definitions of TXDATA (1 
indicates that the byte is a control character; 0 
indicates that the byte is a data character). 
TXCHARISK[7:4] bits are not relevant in this 
particular configuration.

TXDATA[63:0] I 8, 16, 32, 
64(2)

Transmit data from the FPGA user fabric that can 
be 1, 2, 4, or 8 bytes wide, depending on the 
primitive used. TXDATA[7:0] is always the first 
byte transmitted. The position of the first byte 
depends on selected TX data path width.

TXDATAWIDTH[1:0] I 2 (00, 01, 10, 11) Indicates width of FPGA parallel 
bus. 

TXENC64B66BUSE I 1 If asserted High, the 64b/66b encoder is used. If 
deasserted, the 64b/66b encoder is bypassed.

TXENC8B10BUSE I 1 If asserted High, the 8b/10b encoder is used. If 
deasserted, the 8b/10bencoder is bypassed.

TABLE 1-4: Primitive Ports (Continued)

Port I/O Port Size Definition



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 119

TXGEARBOX
64B66BUSE

I 1 If asserted High, the 64b/66b gearbox is used. If 
deasserted, the 64b/66b gearbox is bypassed. 
TXSCRAM64B66USE = 
TXGEARBOX64B66BUSE

TXINHIBIT I 1 If asserted High, the TX differential pairs are 
forced to be a constant 1/0. TXN = 1, TXP = 0

TXINTDATAWIDTH
[1:0]

I 2 (00, 01, 10, 11) Indicates internal data width

TXKERR[7:0] O 1, 2, 4, 8(1) Indicates even boundary for bypassing in 64b/66b 
mode.

TXN O 1 Transmit differential port (FPGA external)

TXOUTCLK O 1 Synthesized Clock from RocketIO X transmitter. 
This clock can be scaled (e.g., for 64b/66b) relative 
to BREFCLK, depending upon the specific 
operating mode of the transmitter.

TXP O 1 Transmit differential port (FPGA external)

TXPOLARITY I 1 Specifies whether or not to invert the final 
transmitter output. Able to reverse the polarity on 
the TXN and TXP lines. Deasserted sets regular 
polarity. Asserted reverses polarity.

TXRESET I 1 Synchronous TX system reset that “recenters” the 
transmit elastic buffer. It also resets 8b/10b 
encoder and other internal transmission registers. 
It does not reset the transmission PLL.

TXRUNDISP[7:0] O 1, 2, 4, 8(1) Signals the running disparity for its corresponding 
byte, after that byte is encoded. Zero equals 
negative disparity and positive disparity for a one. 
This is also overloaded to be the data output bus of 
the PMA attribute bus. 

TXSCRAM64B66BUSE I 1 If asserted High, the 64b/66b scrambler is used. If 
deasserted, the 64b/66b scrambler is bypassed. 
TXSCRAM64B66USE = 
TXGEARBOX64B66BUSE

TABLE 1-4: Primitive Ports (Continued)

Port I/O Port Size Definition



HIGH-SPEED SERIAL I/O MADE SIMPLE •

120 • Xilinx PRELIMINARY INFORMATION

Primitive Attributes 
The primitives also contain attributes set by default to specific values controlling each specific primi-
tive’s protocol parameters. Included are channel-bonding settings (for primitives supporting channel 
bonding), and clock correction sequences. Table 1-5 shows a brief description of each attribute. 

TXUSRCLK I 1 Clock output from a DCM that is clocked with the 
REFCLK (or other reference clock). This clock is 
used for writing the TX buffer and is frequency-
locked to the REFCLK. 

TXUSRCLK and TXUSRCLK2 should be 180° 
out of phase from each other.

TXUSRCLK2 I 1 Clock output from a DCM that clocks 
transmission data and status and reconfiguration 
data between the transceiver an the FPGA fabric. 
The ratio between the TXUSRCLK and 
TXUSRCLK2 depends on the width of the 
TXDATA.

TXUSRCLK and TXUSRCLK2 should be 180° 
out of phase from each other.

Notes: 
1. Port size depends on which primitive is used (1, 2, 4, 8 byte).
2. Port size depends on which primitive is used (8, 16, 32, 64 byte).

TABLE 1-5: RocketIO X Transceiver Attributes

Attribute Type Description

ALIGN_COMMA_WORD Integer Integer (1, 2, 4) controls the alignment of detected 
commas within the transceiver’s 4-byte wide data 
path. 

CHAN_BOND_64B66B_SV Boolean TRUE/FALSE. This signal is reserved for future use 
and must be held to FALSE.

CHAN_BOND_LIMIT Integer Integer 1-63 that defines maximum number of 
bytes a slave receiver can read following a channel 
bonding sequence and still successfully align to that 
sequence.

This attribute must be set to 16.

TABLE 1-4: Primitive Ports (Continued)

Port I/O Port Size Definition



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 121

CHAN_BOND_MODE String STRING OFF, MASTER, SLAVE_1_HOP, 
SLAVE_2_HOPS 

OFF: No channel bonding involving this 
transceiver. 

MASTER: This transceiver is master for channel 
bonding. Its CHBONDO port directly drives 
CHBONDI ports on one or more SLAVE_1_HOP 
transceivers. 

SLAVE_1_HOP: This transceiver is a slave for 
channel bonding. SLAVE_1_HOP’s CHBONDI is 
directly driven by a MASTER transceiver 
CHBONDO port. SLAVE_1_HOP’s CHBONDO 
port can directly drive CHBONDI ports on one or 
more SLAVE_2_HOPS transceivers. 

SLAVE_2_HOPS: This transceiver is a slave for 
channel bonding. SLAVE_2_HOPS CHBONDI is 
directly driven by a SLAVE_1_HOP CHBONDO 
port.

CHAN_BOND_ONE_SHOT Boolean FALSE/TRUE that controls repeated execution of 
channel bonding.

FALSE: Master transceiver initiates channel 
bonding whenever possible (whenever channel-
bonding sequence is detected in the input) as long 
as input ENCHANSYNC is High and RXRESET is 
Low. 

TRUE: Master transceiver initiates channel 
bonding only the first time it is possible (channel 
bonding sequence is detected in input) following 
negated RXRESET and asserted ENCHANSYNC. 
After channel-bonding alignment is done, it does 
not occur again until RXRESET is asserted and 
negated, or until ENCHANSYNC is negated and 
reasserted. 

Slave transceivers should always have 
CHAN_BOND_ONE_SHOT set to FALSE.

TABLE 1-5: RocketIO X Transceiver Attributes (Continued)

Attribute Type Description



HIGH-SPEED SERIAL I/O MADE SIMPLE •

122 • Xilinx PRELIMINARY INFORMATION

CHAN_BOND_SEQ_1_*
[10:0]

11-bit 
vector

These define the channel bonding sequence. The 
usage of these vectors also depends on 
CHAN_BOND_SEQ_LEN and 
CHAN_BOND_SEQ_2_USE. 

CHAN_BOND_SEQ_1_
MASK[3:0]

4-bit 
vector

Each bit of the mask determines if that particular 
sequence is detected regardless of its value. If bit 0 
is High, then CHAN_BOND_SEQ_1_1 is 
matched regardless of its value.

CHAN_BOND_SEQ_2_*
[10:0]

11-bit 
vector

These define the channel bonding sequence: The 
usage of these vectors also depends on 
CHAN_BOND_SEQ_LEN and 
CHAN_BOND_SEQ_2_USE.

CHAN_BOND_SEQ_2_
MASK[3:0]

4-bit 
vector

Each bit of the mask determines if that particular 
sequence is detected regardless of its value. If bit 0 
is High, then CHAN_BOND_SEQ_2_1 is 
matched regardless of its value.

CHAN_BOND_SEQ_2_USE Boolean FALSE/TRUE that controls use of second channel 
bonding sequence. 

FALSE: Channel bonding uses only one channel 
bonding sequence defined by 
CHAN_BOND_SEQ_1_1 ... 4, or one 8-byte 
sequence defined by CHAN_BOND_SEQ_1_X 
and CHAN_BOND_SEQ_2_X in combination.

TRUE: Channel bonding uses two channel bonding 
sequences defined by CHAN_BOND_SEQ_1_1 ... 
4 and CHAN_BOND_SEQ_2_1 ... 4, as further 
constrained by CHAN_BOND_SEQ_LEN.

CHAN_BOND_SEQ_LEN Integer Integer (1, 2, 3, 4, 8) defines length in bytes of 
channel bonding sequence. This defines the length 
of the sequence the transceiver matches to detect 
opportunities for channel bonding.

CLK_COR_8B10B_DE Boolean This signal selects if clock correction occurs relative 
to the encoded or decoded version of the 8b/10b 
stream. If set to TRUE, the decoded version is used. 
If set to FALSE, the encoded version is used. Must be 
set in conjunction with RXDEC8B10USE.
CLK_COR_8B10B_DE = RXDEC8B10BUSE

TABLE 1-5: RocketIO X Transceiver Attributes (Continued)

Attribute Type Description



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 123

CLK_COR_MAX_LAT Integer (0-63) Integer defines the upper bound of the 
receive FIFO. 

This attribute is recommended to be set to 48.

CLK_COR_MIN_LAT Integer (0-63) Integer defines the lower bound of the receive 
FIFO.

This attribute is recommended to be set to 32.

CLK_COR_SEQ_1_*[10:0] 11-bit 
vector

These define the sequence for clock correction. The 
attribute used depends on the 
CLK_COR_SEQ_LEN and 
CLK_COR_SEQ_2_USE.

CLK_COR_SEQ_1_MASK
[3:0]

4-bit 
vector

Each bit of the mask determines if that particular 
sequence is detected regardless of its value. If bit 0 
is High, then CLK_COR_SEQ_1_1 is matched 
regardless of its value.

CLK_COR_SEQ_2_*[10:0] 11-bit 
vector

These define the sequence for clock correction. The 
attribute used depends on the 
CLK_COR_SEQ_LEN and 
CLK_COR_SEQ_2_USE.

CLK_COR_SEQ_2_MASK
[3:0]

4-bit 
vector

Each bit of the mask determines if that particular 
sequence is detected regardless of its value. If bit 0 
is High, then CLK_COR_SEQ_2_1 is matched 
regardless of its value.

CLK_COR_SEQ_2_USE Boolean FALSE/TRUE Control use of second clock 
correction sequence. 

FALSE: Clock correction uses only one clock 
correction sequence defined by 
CLK_COR_SEQ_1_1 ... 4, or one 8-byte sequence 
defined by CLK_COR_SEQ_1_X and 
CLK_COR_SEQ_2_X in combination.

TRUE: Clock correction uses two clock correction 
sequences defined by CLK_COR_SEQ_1_1 ... 4 
and CLK_COR_SEQ_2_1 ... 4, 
as further constrained by CLK_COR_SEQ_LEN.

TABLE 1-5: RocketIO X Transceiver Attributes (Continued)

Attribute Type Description



HIGH-SPEED SERIAL I/O MADE SIMPLE •

124 • Xilinx PRELIMINARY INFORMATION

CLK_COR_SEQ_DROP Boolean TRUE/FALSE. When asserted TRUE, the clock 
correction mode is via idle removal. When FALSE, 
the clock correction mode is via idle removal or 
insertion.

This attribute must be set to FALSE.

CLK_COR_SEQ_LEN Integer Integer (1, 2, 3, 4, 8) that defines the length of the 
sequence the transceiver matches to detect 
opportunities for clock correction. It also defines the 
size of the correction, since the transceiver executes 
clock correction by repeating or skipping entire 
clock correction sequences.

CLK_CORRECT_USE Boolean TRUE/FALSE controls the use of clock correction 
logic. 

FALSE: Permanently disable execution of clock 
correction (rate matching). Clock RXUSRCLK 
must be frequency-locked with RXRECCLK in this 
case. 

TRUE: Enable clock correction (normal mode).

COMMA_10B_MASK[9:0] 10-bit 
vector

These define the mask that is ANDed with the 
incoming 
serial-bit stream before comparison against 
PCOMMA_10B_VALUE and 
MCOMMA_10B_VALUE.

DEC_MCOMMA_DETECT Boolean TRUE/FALSE controls the raising of per-byte flag 
RXCHARISCOMMA on minus-comma.

DEC_PCOMMA_DETECT Boolean TRUE/FALSE controls the raising of per-byte flag 
RXCHARISCOMMA on plus-comma.

TABLE 1-5: RocketIO X Transceiver Attributes (Continued)

Attribute Type Description



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 125

DEC_VALID_COMMA_
ONLY

Boolean TRUE/FALSE controls the raising of 
RXCHARISCOMMA on an invalid comma.

FALSE: Raise RXCHARISCOMMA on:

xxx1111100 (if DEC_PCOMMA_DETECT is 
TRUE)

and/or on:

xxx0000011 (if DEC_MCOMMA_DETECT is 
TRUE)

or on 8b/10b translation commas 

regardless of the settings of the xxx bits.

TRUE: Raise RXCHARISCOMMA only on valid 
characters that are in the 8b/10b translation.

MCOMMA_10B_VALUE
[9:0]

10-bit 
vector

These define minus-comma for the purpose of 
raising RXCOMMADET and realigning the serial 
bit stream byte boundary. This definition does not 
affect 8b/10b encoding or decoding. Also see 
COMMA_10B_MASK.

MCOMMA_DETECT Boolean TRUE/FALSE indicates whether to raise or not raise 
the RXCOMMADET when minus-comma is 
detected.

PCOMMA_10B_VALUE[9:0] 10-bit 
vector

These define plus-comma for the purpose of raising 
RXCOMMADET and realigning the serial bit 
stream byte boundary. This definition does not 
affect 8b/10b encoding or decoding. Also see 
COMMA_10B_MASK.

PCOMMA_DETECT Boolean TRUE/FALSE indicates whether to raise or not raise 
the RXCOMMADET when plus-comma is 
detected.

PMA_PWR _CNTRL Integer This masks the startup sequence of the PMA and 
must always be set to all ones.

PMA_SPEED String (13_40) Selects the mode of the PMA. Refer to 
PMA section for the proper mode selection.

RX_BUFFER_USE Boolean TRUE/FALSE. Recommended to always be set to 
TRUE. Enables the use of the receive side buffer. 
When set to TRUE, the buffer is enabled.

TABLE 1-5: RocketIO X Transceiver Attributes (Continued)

Attribute Type Description



HIGH-SPEED SERIAL I/O MADE SIMPLE •

126 • Xilinx PRELIMINARY INFORMATION

Modifiable Attributes 
As shown in Appendix F, “Modifiable Attributes” of the RocketIO X User Guide only certain 
attributes are modifiable for any primitive. These attributes help to define the protocol used by the 
primitive. Only the GT10_CUSTOM primitive allows the user to modify all of the attributes to a pro-
tocol not supported by another transceiver primitive. This allows for complete flexibility. The other 
primitives allow modification of the analog attributes of the serial data lines and several channel-bond-
ing values.

Byte Mapping
Most of the 8-bit wide status and control buses correlate to a specific byte of the TXDATA or 
RXDATA. This scheme is shown in Table 1-6. This creates a way to tie all the signals together regard-
less of the data path width needed for the GT10_CUSTOM. All other primitives with specific data 
width paths and all byte-mapped ports are affected by this situation. For example, a 1-byte wide data 

RX_LOS_INVALID_INCR[7:0] Integer Power of two in a range of 1 to 128 that denotes the 
number of valid characters required to "cancel out" 
appearance of one invalid character for loss of sync 
determination.

RX_LOS_THRESHOLD Integer Power of two in a range of 4 to 512. When divided 
by RX_LOS_INVALID_INCR, denotes the 
number of invalid characters required to cause FSM 
transition to “sync lost” state.

RX_LOSS_OF_SYNC_FSM Boolean Undefined.

SH_CNT_MAX[7:0] 8-bit 
vector

8-bit binary; controls when the 64b/66b 
synchronization state machine enters 
synchronization. (max sync header count)

SH_INVALID_CNT_MAX
[7:0]

8-bit 
vector

8-bit binary; controls when the 64b/66b 
synchronization state machine leaves 
synchronization. (max invalid sync header count)

TX_BUFFER_USE Boolean When set to TRUE, this enables the use of the 
transmit buffer.

TABLE 1-5: RocketIO X Transceiver Attributes (Continued)

Attribute Type Description



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 127

path has only 1-bit control and status bits (TXCHARISK[0]) correlating to the data bits 
TXDATA[7:0]. 

Digital Design Considerations
The Physical Coding Sublayer (PCS) portion of the RocketIO X transceiver has been significantly 
updated relative to the RocketIO. The RocketIO X PCS supports 8b/10b and 64b/66b encode/decode, 
SONET compatibility, and generic data modes. The RocketIO X transceiver operates in four basic 
internal modes: 16-bit, 20-bit, 32-bit, and 40-bit. When accompanied by the predefined modes of the 
Physical Media Attachment (PMA), the user has a large combination of protocols and data rates from 
which to choose. With the custom RocketIO X transceiver, the user has an almost infinite amount of 
possibilities from which to choose in constructing the most advanced and easily configurable commu-
nication paths in the history of communication ICs. 

The RocketIO X PCS also represents a shift in the configurability of transceivers. This allows the 
user to change not only speeds of the PMA in real time, but also protocols within the PCS. Internal 
data width, external data width, and data routing can all be configured on a clock-by-clock basis. 
With this advancement, users can initialize a communication channel at a low speed (for example, 2.5 
Gb/s using 8b/10b (20-bit internal) and then auto-negotiate after the channel is stable to a 10.3125 
Gb/s speed using 64b/66b (32-bit internal).

TABLE 1-6: Control/Status Bus Association to Data Bus Byte Paths

Control/Status Bit Data Bits

[0] [7:0]

[1] [15:8]

[2] [23:16]

[3] [31:24]

[4] [39:32]

[5] [47:40]

[6] [55:48]

[7] [64:56]



HIGH-SPEED SERIAL I/O MADE SIMPLE •

128 • Xilinx PRELIMINARY INFORMATION

The information in this section is provided to RocketIO X users as a reference for
understanding the individual attribute and control port settings within a primitive. Users
have the choice of using the supported primitives in Table A-1-3, page 111, and ignoring this
chapter, or using this chapter to better understand PCS configuration and/or to modify
attribute and port values to create a user transceiver configuration.

Top-Level Architecture

Transmit Architecture
The transmit architecture for the PCS is shown in Figure 1-2. For information about bypassing partic-
ular blocks, consult the block function section for that particular block.

FIGURE 1-2: Transmit Architecture

6x40 bit
TXFIFO 8B/10B

Encode

Gearbox

10G Encode

TXUSRCLK

TXUSRCLK2

TXENC8B10BUSE
TXENC6466USE

TXSCRAM64B66BUSE
TXGEARBOX64B66BUSE

TXPOLARITY

PMA

Scrambler

PMA
Convert

TX_BUFFER_USE
Reset
Control

PMA
Attribute

Load

F
abric C

onvert

P
M

A
IN

IT

UG035_CH3_01_092903

TXDATA

TXRESET

TXP

TXN



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 129

Receive Architecture
The receive architecture for the PCS is shown in Figure 1-3. For information about bypassing partic-
ular blocks, consult the block function section for that particular block.

Operation Modes
Internally, there are four modes of operation within the PCS: 16-bit, 20-bit, 32-bit, and 40-bit.

The PCS fundamentally operates in either 2-byte mode, or 4-byte mode, with 2-byte mode cor-
responding to 16- and 20-bit mode, and with 4-byte mode corresponding to 32- and 40-bit mode. 
When in 2-byte mode, the external interface can either be one, two, or four bytes wide. When in 4-
byte mode, the external interface can either be 4 or 8 bytes wide. It is not possible to have an internal 
2-byte width and an 8-byte external interface. It is also not possible to have an internal 4-byte inter-
face, along with a 1-byte external interface. See Table 1-7. 

A general guide to use is that 2-byte mode should be used in the PCS when the serial speed is 
below 5 Gb/s, and the 4-byte mode should be used when the serial speed is greater than 5 Gb/s. In
2-byte mode, the PCS processes 4-byte data every other byte. This is transparent to the user, but skews 
between transceivers result in larger bit skews at the transmit interface as compared to Virtex-II Pro 
transceivers. Any one of the three encoding schemes (8b/10b and 64b/66b encode/decode, SONET, 

FIGURE 1-3: Receive Architecture

TABLE 1-7: PCS Interface Choice

Speed 2 Byte (internal mode) 4 Byte (internal mode)

2.488 Gb/s Recommended Do not use

5 - 10.3125 Gb/s Do not use Recommended

RXCLK0

PMA/PCS Boundary

RX Elastic
Buffer
16x52

Channel Bonding & Clock
Correction

Fabric

8B/10B
Decode

Comma Detect
Align

10G
Block
Sync

10G
Decode

10G
Descr

RXRECCLK
RXUSRCLK

RXUSRCLK2

Sync State Machine

RXBLOCKSYNCUSE,
RXVALUEDETUSE

RXDEC8B10BUSE,
RXDESCRAM64B66BUSE RX_BUFFER_USE

RXDEC6466USE

SLIP

Reset Control

HOLDOFF

UG035_CH3_02_092903

E
N

P
C

O
M

M
A

A
LIG

N

E
N

M
C

O
M

M
A

A
LIG

N

R
X

P
O

LA
R

IT
Y

LO
C

K

C
H

B
O

N
D

R
X

 D
at

a 
W

or
d 

A
lig

nm
en

t M
ux

RXDATA

R
X

R
E

S
E

T



HIGH-SPEED SERIAL I/O MADE SIMPLE •

130 • Xilinx PRELIMINARY INFORMATION

and generic data modes) can be used in either 2- or 4-byte mode, with each block having a bypass abil-
ity. 

For more information on setting the PCS mode, refer to the block functional definition of the bus 
interface in this guide.

Block Level Functions

Classification of Signals and Overloading
This section describes the pertinent signals at the interface of the PCS and how to prioritize them. For 
more information about a particular signal, refer to the I/O specification, or the particular block func-
tion of interest.

Static Signals (Control Inputs)
The following static signals are inputs that control the internal and external mode of operation in the 
PCS. Typically, these signals would be the first consideration after the mode of operation has been 
selected:

• RXDATAWIDTH[1:0]
• RXINTDATAWIDTH[1:0]
• TXDATAWIDTH[1:0]
• TXINTDATAWIDTH[1:0]
The following static signals are inputs that control the PCS interblock routing and bypass for par-

ticular blocks, which adjust the architecture of the PCS for the user’s particular application:
• RXBLOCKSYNC64B66BUSE
• RXDEC64B66BUSE
• RXDEC8B10BUSE
• RXDESCRAM64B66BUSE
• RXCOMMADETUSE
• TXENC64B66BUSE
• TXENC8B10BUSE
• TXGEARBOX64B66BUSE
• TXSCRAM64B66BUSE
The following static signals are inputs that control various functions, but are usually set once at 

the beginning of a state machine, or after an auto-negotiation sequence. They are typically not altered 
on a clock-by-clock basis:

• ALIGN_COMMA_WORD
• ENMCOMMAALIGN
• ENPCOMMAALIGN
• RXPOLARITY
• TXPOLARITY
• PMAINIT
• RXIGNOREBTF
• PMARXLOCKSEL[1:0]
The following static signals are inputs that cause either major functional resets or are used in trou-

bleshooting. These signals are mostly used at initialization, not during the functional operation of the 
circuit:

• LOOPBACK[1:0] (Note: This signal can also be a dynamic signal.)



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 131

• POWERDOWN
• RXRESET
• TXRESET
• TXINHIBIT 

Dynamic Signals
The following dynamic signals indicate data received on the receive bus, along with status signals that 
indicate specific information about RXDATA. The set values of these signals define the application 
setup by the user and are the most important after the static signals are allocated:

• MCOMMA_10B_VALUE
• PCOMMA_10B_VALUE
• COMMA_10B_MASK
• RXCHARISCOMMA[7:0]
• RXCHARISK[7:0]
• RXDISPERR[7:0]
• RXNOTINTABLE[7:0]
• RXDATA[63:0]
The following dynamic signals indicate data to be transmitted on the transmit bus, along with 

status signals that indicate specific information about how TXDATA is to be handled while passing 
through the PCS. The set values of these signals define the application setup by the user and are the 
most important after the static signals are allocated:

• TXBYPASS8B10B[7:0]
• TXCHARDISPMODE[7:0]
• TXCHARDISPVAL[7:0]
• TXCHARISK[7:0]
• TXDATA[63:0]

The following dynamic signals indicate various status information about the current state or prior 
state of the PCS:

• CHBONDDONE, RXBUFSTATUS[1:0], RXCLKCORCNT[2:0]
• CHBONDO[4:0]
• PMARXLOCK
• RXLOSSOFSYNC[1:0]
• RXREALIGN
• RXCOMMADET
• TXBUFERR
• TXKERR[7:0]
• TXRUNDISP[7:0]
• RXRUNDISP[7:0]

The following dynamic signals control internal states of the PCS:

• RXSLIDE
• CHBONDI[4:0]

The following dynamic signals affect the control registers of the PMA:

• PMAREGADDR[5:0]
• PMAREGDATAIN[7:0]



HIGH-SPEED SERIAL I/O MADE SIMPLE •

132 • Xilinx PRELIMINARY INFORMATION

• PMAREGRW
• PMAREGSTROBE

Bus Interface
Selecting the External Configuration (Fabric Interface)
By using the signals TXDATAWIDTH[1:0] and RXDATAWIDTH[1:0], the fabric interface can be 
determined.

Selecting the Internal Configuration

Clock Ratio
USRCLK2 clocks the data buffers. The ability to send parallel data to the transceiver at four different 
widths requires the user to change the frequency of USRCLK2. This creates a frequency ratio between 
USRCLK and USRCLK2. The falling edges of the clocks must align. See Table 1-10.

TABLE 1-8: Selecting the External Configuration

RXDATAWIDTH/TXDATAWIDTH Data Width Internal Bus Requirements

2’b00 8/10-bit (1 byte) 16-, 20-bit mode

2’b01 16/20-bit (2 byte) 16-, 20-bit mode

2’b10 32/40-bit (4 byte) 16-, 20-, 32-, 40- bit mode

2’b11 64/80-bit (8 byte) 32-, 40-bit mode

TABLE 1-9: Selecting the Internal Configuration

RXINTDATAWIDTH/TXINTDATAWIDTH Internal Data Width

2’b00 16-bit

2’b01 20-bit

2’b10 32-bit

2’b11 40-bit

TABLE 1-10: Data Width Clock Ratios

Fabric Data Width
Frequency Ratio of USRCLK\USRCLK2

2-Byte Internal Data Width 4-Byte Internal Data Width

1 byte 1:2(1) N/A

2 byte 1:1 N/A



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 133

8b/10b

In the RocketIO transceiver, the most significant byte was sent first; in the RocketIO X
transceiver the least significant byte is sent first.

The following sections categorize the ports and attributes of the transceiver according to specific 
functionality including 8b/10b encoding/decoding, 64b/66b encoding/decoding, SERDES align-
ment, clock correction (clock recovery), channel bonding, fabric interface, and other signals.

The 8b/10b encoding translates an 8-bit parallel data byte to be transmitted into a 10-bit serial 
data stream. This conversion and data alignment are shown in Figure 1-4. The serial port transmits 
the least significant bit of the 10-bit data, “a” first and proceeds to “j”. This allows data to be read and 
matched to the form shown in Appendix B, “8b/10b Valid Characters.” .

The serial data bit sequence is dependent on the width of the parallel data. The least significant 
byte is always sent first regardless of the whether 1-byte, 2-byte, 4-byte, or 8-byte paths are used. The 
most significant byte is always last. Figure 1-5 shows a case when the serial data corresponds to each 
byte of the parallel data. TXDATA[7:0] is serialized and sent out first followed by TXDATA[15:8], 

4 byte 2:1(1) 1:1

8 byte N/A 2:1(1)

Notes: 
1. Each edge of slower clock must align with falling edge of faster clock.

FIGURE 1-4: 8b/10b Parallel-to-Serial Conversion

TABLE 1-10: Data Width Clock Ratios (Continued)

Fabric Data Width
Frequency Ratio of USRCLK\USRCLK2

2-Byte Internal Data Width 4-Byte Internal Data Width

UG024_10_021102

0123457 6

ABCDEFH G

Parallel

7 8 9654320 1

g h jfiedca b

Serial

8B/10B

First transmitted Last transmitted



HIGH-SPEED SERIAL I/O MADE SIMPLE •

134 • Xilinx PRELIMINARY INFORMATION

TXDATA[23:16], and finally TXDATA[31:24]. The 2-byte path transmits TXDATA[7:0] and then 
TXDATA[15:8].

Encoder
A bypassable 8b/10b encoder is included in the transmitter. The encoder uses the same 256 data char-
acters and 12 control characters (shown in Appendix B, “8b/10b Valid Characters”) that are used for 
Gigabit Ethernet, XAUI, Fibre Channel, and InfiniBand. 

The encoder accepts eight bits of data along with a K-character signal for a total of nine bits per 
character applied. If the K-character signal is High, the data is encoded into one of the 12 possible 
K-characters available in the 8b/10b code. If the K-character input is Low, the eight bits are encoded 
as standard data. 

There are two ports that enable the 8b/10b encoding in the transceiver. The TXBYPASS8B10B 
is a byte-mapped port that is 1, 2, 4, or 8 bits depending on the data width of the transceiver primitive 
being used. These bits correlate to each byte of the data path. To enable the 8b/10b encoding of the 
transmitter, these bits should be set to a logic 0. In this mode, the transmit data that is input to the 
TXDATA port is non-encoded data of either 8, 16, 32, or 64 bits wide. However, if other encoding 
schemes are preferred, the encoder capabilities are bypassed by setting all bits to a logic 1. The extra 
bits are fed through the TXCHARDISPMODE and TXCHARDISPVAL buses. 

TXCHARDISPVAL and TXCHARDISPMODE

TXCHARDISPVAL and TXCHARDISPMODE are dual-purpose ports for the transmitter depending 
whether 8b/10b encoding is done. Table 1-12 shows this dual functionality. When encoding is 

FIGURE 1-5: 4-Byte Serial Structure

ug035_ch3_22_111303

TXDATA  31:24 TXDATA  23:16 TXDATA 15:8 TXDATA 7:0

H3  A3 H2  A2 H1  A1 H0  A0

a3  j3 a2  j2 a1  j1 a0  j0

8B/10B

LSB3 LSB2 LSB1 LSB0
1st Sent
Encoded

2nd Sent
Encoded

3rd Sent
Encoded

4th Sent
Encoded



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 135

enabled, these ports function as byte-mapped control ports controlling the running disparity of the 
transmitted serial data (Table 1-11).  

In the encoding configuration, the disparity of the serial transmission can be controlled with the 
TXCHARDISPVAL and TXCHARDISPMODE ports. When TXCHARDISPMODE is set to a logic 
1, the running disparity is set before encoding the specific byte. TXCHARDISPVAL determines if the 
disparity is negative (set to a logic 0) or positive (set to a logic 1).

When TXCHARDSIPMODE is set to a logic 0, the running disparity is maintained if 
TXCHARDISPVAL is also set to a logic 0. However, the disparity is inverted before encoding the byte 
when the TXCHARDISPVAL is set to a logic 1. 

Most applications use the mode where both TXCHARDISPMODE and TXCHARDISPVAL are 
set to logic 0. Some applications can use other settings if special running disparity configurations are 
required, such as in the “Vitesse Disparity Example,” page 139. 

In the bypassed configuration, TXCHARDISPMODE[0] becomes bit 9 of the 10 bits of encoded 
data (TXCHARDISPMODE[1:7] are bits 19, 29, 39, 49, 59, 69, and 79 in the 20-bit and 40-bit and 
80-bit wide buses). TXCHARDISPVAL becomes bits 8, 18, 28, 38, 48, 58, 68, and 78 of the transmit 
data bus while the TXDATA bus completes the bus. See Table 1-12.

TABLE 1-11: Running Disparity Control

{txchardispmode, 
txchardispval} Function

00 Maintain running disparity normally

01 Invert normally generated running disparity before encoding this byte

10 Set negative running disparity before encoding this byte

11 Set positive running disparity before encoding this byte

TABLE 1-12: 8b/10b Bypassed Signal Significance

 Signal Function

TXBYPASS8B10B(1) 0 8b/10b encoding is enabled (not bypassed)

1 8b/10b encoding bypassed (disabled) 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

136 • Xilinx PRELIMINARY INFORMATION

During transmit, while 8b/10b encoding is enabled, the disparity of the serial transmission can be 
controlled with the TXCHARDISPVAL and TXCHARDISPMODE ports. When 8b/10b encoding is 
bypassed, these bits become Bits “b” and “a,” respectively, of the 10-bit encoded data that the trans-
ceiver must transmit to the receiving terminal. Figure 1-6 illustrates the TX data map during 8b/10b 
bypass.

TXCHARDISPMODE, 
TXCHARDISPVAL

Function, 8b/10b 
Enabled Function, 8b/10b Bypassed

00 Maintain running 
disparity normally

Part of 10-bit encoded byte
(see Figure 1-6):

TXCHARDISPMODE[0],
(or: [1] / [2] / [3] /[4]/[5]/[6]/[7])

TXCHARDISPVAL[0],
(or: [1] / [2] / [3] /[4]/[5]/[6]/[7])

TXDATA[7:0]
(or: [15:8] / [23:16] / [31:24]/ 

[39:32]/[47:40]/[55:48]/[63:56})

01 Invert the normally 
generated running 
disparity before 
encoding this byte.

10 Set negative running 
disparity before 
encoding this byte.

11 Set positive running 
disparity before 
encoding this byte.

TXCHARISK Received byte is a 
K-character

Unused

Notes: 
1. If 8b/10b is bypassed, this port can be defined if 64b/66b encoding is used.

FIGURE 1-6: 10-Bit TX Data Map with 8b/10b Bypassed

TABLE 1-12: 8b/10b Bypassed Signal Significance (Continued)

 Signal Function

UG024_10a_080404

7 8 9654320 1

Last transmitted First transmitted

TXCHARDISPMODE[0]

TXCHARDISPVAL[0]

TXDATA[7] . . . . . . TXDATA[0]

c b adeifgj h



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 137

TXCHARISK

TXCHARISK is a byte-mapped control port that is only used when the 8b/10b encoder is imple-
mented.   This port indicates whether the byte of TXDATA is to be encoded as a control (K) character 
when asserted and data character when de-asserted. When 8b/10b encoding is bypassed this port is 
undefined.

TXRUNDISP

TXRUNDISP is a status port that is byte-mapped to the TXDATA. This port indicates the running 
disparity after this byte of TXDATA is encoded. When asserted, the disparity is positive. When de-
asserted, the disparity is negative.

Decoder
An optional 8b/10b decoder is included in the receiver. A programmable option allows the decoder to 
be bypassed. When the 8b/10b decoder is bypassed, the 10-bit character order is shown in Figure 1-7 
for a graphical representation of the received 10-bit character.

The decoder uses the same table (see Appendix B, “8b/10b Valid Characters”) that is used for 
Gigabit Ethernet, Fibre Channel, and InfiniBand. In addition to decoding all data and K-characters, 
the decoder has several extra features. The decoder separately detects both “disparity errors” and “out-
of-band” errors. A disparity error occurs when a 10-bit character is received that exists within the 
8b/10b table, but has an incorrect disparity. An out-of-band error occurs when a 10-bit character is 
received that does not exist within the 8b/10b table. It is possible to obtain an out-of-band error with-
out having a disparity error, or more commonly, a disparity error is possible without an out-of-band 
error. The proper disparity is always computed for both legal and illegal characters. The current run-
ning disparity is available at the RXRUNDISP signal.

The 8b/10b decoder performs a unique operation if out-of-band data is detected. If out-of-band 
data is detected, the decoder signals the error and passes the illegal 10-bits through and places them 
on the outputs. This can be used for debugging purposes if desired.

The decoder also signals reception of one of the 12 valid K-characters. In addition, a programma-
ble comma detect is included. The comma detect signal registers a comma on the receipt of any 
comma+, comma–, or both. Since the comma is defined as a 7-bit character, this includes several out-
of-band characters. Another option allows the decoder to detect only the three defined commas 
(K28.1, K28.5, and K28.7) as comma+, comma–, or both. In total, there are six possible options, 
three for valid commas and three for “any comma.”

FIGURE 1-7: 10-Bit RX Data Map with 8b/10b Bypassed

UG024_10b_080404

7 8 9654320 1

Last received First received

RXCHARISK[0]

RXRUNDISP[0]

RXDATA[7] . . . . . . RXDATA[0]

c b adeifgj h



HIGH-SPEED SERIAL I/O MADE SIMPLE •

138 • Xilinx PRELIMINARY INFORMATION

Note that all bytes (1, 2, 4, or 8) at the RX FPGA interface each have their own individual 
8b/10b indicators (K-character, disparity error, out-of-band error, current running disparity, and 
comma detect).

During receive, while 8b/10b decoding is enabled, the running disparity of the serial transmis-
sion can be read by the transceiver from the RXRUNDISP port, while the RXCHARISK port indi-
cates presence of a K-character. When 8b/10b decoding is bypassed, these bits remain as Bits “b” and 
“a,” respectively, of the 10-bit encoded data that the transceiver passes on to the user logic. Table 1-13 
illustrates the RX data map during 8b/10b bypass.

RXCHARISK and RXRUNDISP
RXCHARISK and RXRUNDISP are dual-purpose ports for the receiver depending whether 8b/10b 
decoding is enabled. Figure 1-10 shows this dual functionality. When decoding is enabled, these ports 
function as byte-mapped status ports of the received data.

In the encoding configuration, when RXCHARISK is asserted that byte of the received data is a 
control (K) character. Otherwise, the received byte of data is a data character. (See Appendix B, 
“8b/10b Valid Characters”). The RXRUNDISP port indicates the disparity of the received byte is 
either negative or positive. RXRUNDISP is asserted to indicate positive disparity. This is used in cases 
like the “Vitesse Disparity Example,” page 139.

In the bypassed configuration, RXCHARISK and RXRUNDISP are additional data bits for the 
10-, 20-, 40-, or 80-bit buses. This is similar to the transmit side. RXCHARISK[0:7] relates to bits 
9, 19, 29, 39, 49, 59, 69, and 79 while RXRUNDISP pertains to bits 8, 18, 28, 38, 48, 58, 68, and 
78 of the data bus. See Figure 1-10.

RXDISPERR
RXDISPERR is a status port for the receiver that is byte-mapped to the RXDATA. When a bit is 
asserted, a disparity error occurred on the received data. This usually indicated that the data is corrupt 

TABLE 1-13: 8b/10b Bypassed Signal Significance

 Signal Function

RXCHARISK Received byte is a 
K-character

Part of 10-bit encoded byte
(see Figure 1-7):

RXCHARISK[0],
(or: [1] / [2] / [3] 

/[4]/[5]/[6]/[7])

RXRUNDISP[0],
(or: [1] / [2] / [3] 

/[4]/[5]/[6]/[7])

RXDATA[7:0]
(or: [15:8] / [23:16] / [31:24]/ 

[39:32]/[47:40]/[55:48]/[63:56})

RXRUNDISP 0 Indicates running 
disparity is NEGATIVE

1 Indicates running 
disparity is POSITIVE

RXDISPERR Disparity error occurred 
on current byte

Unused



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 139

by bit errors, transmission of an invalid control character, or for cases when normal disparity is not 
required such as in the “Vitesse Disparity Example,” page 139.

RXNOTINTABLE
RXNOTINTABLE is asserted whenever the received data is not in the 8b/10b tables. The data 
received on bytes marked by RXNOTINTABLE are invalid. This port is also byte-mapped to 
RXDATA and is only used when the 8b/10b decoder is enabled.

Vitesse Disparity Example
To support other protocols, the transceiver can affect the disparity mode of the serial data transmitted. 
For example, Vitesse channel-to-channel alignment protocol sends out: 

K28.5+ K28.5+ K28.5- K28.5- 

or

K28.5- K28.5- K28.5+ K28.5+ 

Instead of:

K28.5+ K28.5- K28.5+ K28.5- 

or

K28.5- K28.5+ K28.5- K28.5+ 

The logic must assert TXCHARDISPVAL to cause the serial data to send out two negative running 
disparity characters. 

Transmitting Vitesse Channel Bonding Sequence

TXBYPASS8B10B
| TXCHARISK
| | TXCHARDISPMODE
| | | TXCHARDISPVAL
| | | | TXDATA
| | | | |
0 1 0 0 10111100    K28.5+ (or K28.5-)
0 1 0 1 10111100    K28.5+ (or K28.5-)
0 1 0 0 10111100    K28.5- (or K28.5+)
0 1 0 1 10111100    K28.5- (or K28.5+)

The RocketIO  X core receives this data but must have the CHAN_BOND_SEQ set with the 
disp_err bit set High for the cases when TXCHARDISPVAL is set High during data transmission. 

Receiving Vitesse Channel Bonding Sequence
On the RX side, the definition of the channel bonding sequence uses the disp_err bit to specify the 
flipped disparity.

10-bit literal value
| disp_err
| | char_is_k
| | | 8-bit_byte_value
| | | |

CHAN_BOND_SEQ_1_1 = 0 0 1 10111100    matches K28.5+ (or 
K28.5-)

CHAN_BOND_SEQ_1_2 = 0 1 1 10111100    matches K28.5+ (or 
K28.5-)



HIGH-SPEED SERIAL I/O MADE SIMPLE •

140 • Xilinx PRELIMINARY INFORMATION

CHAN_BOND_SEQ_1_3 = 0 0 1 10111100    matches K28.5- (or 
K28.5+)

CHAN_BOND_SEQ_1_4 = 0 1 1 10111100    matches K28.5- (or 
K28.5+)

CHAN_BOND_SEQ_LEN = 4

CHAN_BOND_SEQ_2_USE = FALSE

Comma Detection
Summary
Comma detection has been expanded beyond 10-bit symbol detection and alignment to include 8-bit 
symbol detection and alignment for 16-, 20-, 32-, and 40-bit paths. The ability to detect symbols, and 
then either align to 1-word, 2-word, or 4-word boundaries is included. The RXSLIDE input allows 
the user to “slide” or “slip” the alignment by one bit in each 16-, 20-, 32-, and 40-bit mode at any 
time for SONET applications.

The following signals/attributes affect the function of the comma detection block:
• RXCOMMADETUSE
• ENMCOMMAALIGN
• ENPCOMMAALIGN
• ALIGN_COMMA_WORD[1:0]
• MCOMMA_10B_VALUE[9:0]
• DEC_MCOMMA_DETECT 
• PCOMMA_10B_VALUE[9:0]
• DEC_PCOMMA_DETECT
• COMMA_10B_MASK[9:0]
• RXSLIDE
• RXINTDATAWIDTH[1:0]

Bypass
By de-asserting RXCOMMADETUSE Low, symbol detection is not enabled. If RXCOMMADE-
TUSE is asserted High, symbol detection takes place.

Symbol Detection
By using the signals MCOMMA_10B_VALUE, DEC_MCOMMA_ DETECT, 
PCOMMA_10B_VALUE, DEC_PCOMMA_DETECT, and COMMA _10B_MASK any 8-bit or 10-
bit symbol detection can take place for two different symbol values.

To detect a 10-bit symbol COMMA_10B_MASK[9:0] should initially be set to 
10’b11111_11111. Any bit can be changed to further affect the masking capability.

To detect an 8-bit symbol, the COMMA_10B_MASK[9:0] should be set to 10’b00_1111_1111. 
The first two bits must be set to zero. Any of the last 8 bits can be altered to change the mask further.

The MCOMMA_10B_VALUE[9:0] and PCOMMA_10B_VALUE[9:0] fields indicate the 
comma symbol definitions to be used by the comparison logic, i.e., the templates against which 
incoming data is compared in the search for commas to establish alignment.

The DEC_MCOMMA_DETECT and DEC_PCOMMA_DETECT indicate which symbol should 
be compared to the incoming data for alignment. See Table 1-14. 



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 141

Setting MCOMMA_10B_VALUE, PCOMMA_10B_VALUE, and 
COMMA_10B_MASK (Special Note)
The attributes, MCOMMA_10B_VALUE, PCOMMA_10B_VALUE, and COMMA_10B_MASK are 
used by the MGT to indicate to the comma detection block the values to which the block should be 
aligned. Once set to a value, the comma detection block searches the data stream for these values and 
aligns the pipeline to the position where the value was detected in the data stream. Virtex-II Pro X 
users need to note that these values are reversed relative to Virtex-II Pro devices. The reason for this is 
that while Virtex-II Pro devices support mainly 8b/10b applications, Virtex-II Pro X devices can sup-
port many applications and use a more general approach. 

Figure 1-8 shows a Virtex-II Pro X 8b/10b comma detection example relative to the data stream 
received at the PCS/PMA interface on the receive side. Note that with Virtex-II Pro devices, the 
M/PCOMMA_10B_VALUE[9:0] is set to 10'b0011111010, whereas in Virtex-II Pro X devices the 
value is set to 10'b0101111100. This also follows for the COMMA_10B_MASK, which in 
Virtex-II Pro devices is set to 10'b1111111000, whereas in Virtex-II Pro X devices, it is set to 
10'b0001111111.

With this change, the block can be considered more of a value detection block, rather than a 
comma detection block. To detect values listed in the 8b/10b tables, simply reverse the values in the 
tables. To detect SONET type values, the exact value can be used without reversal.

TABLE 1-14: Symbol Detection

MCOMMA_DETECT PCOMMA_DETECT Function

0 0 No symbol detection takes 
place.

0 1 RXCOMMADET is asserted if 
the incoming data is compared 
and aligned to the symbol 
defined by 
PCOMMA_10B_VALUE.

1 0 RXCOMMADET is asserted if 
the incoming data is compared 
and aligned to the symbol 
defined by 
MCOMMA_10B_VALUE.

1 1 RXCOMMADET is asserted if 
the incoming data is compared 
and aligned to the symbol 
defined by 
PCOMMA_10B_VALUE or 
MCOMMA_10B_VALUE.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

142 • Xilinx PRELIMINARY INFORMATION

Alignment
After the positive symbol or the negative symbol is detected, the data is aligned to that symbol. By 
using the signals ENMCOMMAALIGN, ENPCOMMAALIGN, ALIGN_COMMA_WORD, and 
RXSLIDE, alignment can be completely controlled for all data pipeline configurations. See 
Table 1-15. 

FIGURE 1-8: 8b/10b Comma Detection Example

TABLE 1-15: Data Alignment

ENMCOMMAALIGN ENPCOMMAALIGN Function(1)

0 0 No alignment takes place.

0 1 If a positive symbol is detected, 
alignment takes place at that 
symbol location.

UG035_CH2_12_110703

1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1

Bit 0
(Received first)

Bit N-1
(N= Word Length)

Received Last

0 1 0 1 1 1 1 1 0 0
MCOMMA_10B_VALUE[9:0]

or
PCOMMA_10B_VALUE[9:0]

Bit 0Bit 9

0 0 0 1 1 1 1 1 1 1 COMMA_10B_MASK[9:0]

 j  h  g  f   i   e  d  c  b  a

Bit 0Bit 9

Note reversal
relative to 8b/10b

tables



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 143

ALIGN_COMMA_WORD
The attribute ALIGN_COMMA_WORD controls when realignment takes place when the difference 
between symbols is on a byte-by-byte basis. If the current position of the symbol detected is some frac-
tion of a byte different than the previous symbol position, alignment takes place regardless of the set-
ting of ALIGN_COMMA_WORD. 

• There are three options for ALIGN_COMMA_WORD: 1 byte, 2 byte, and 4 byte. When 
ALIGN_COMMA_WORD is set to a 1, the detection circuit allows detection symbols in 
contiguous bytes. When ALIGN_COMMA_WORD is set to a 2, the detection circuit allows 
detection symbols every other byte. When ALIGN_COMMA_WORD is set to a 4, the 
detection circuit allows detection symbols every fourth byte (Figure 1-9). 

1 0 If a negative symbol is detected, 
alignment takes place at that 
symbol location.

1 1 If a negative or positive symbol is 
detected, alignment takes place at 
that symbol location. 

Notes: 
1. The symbol mentioned is defined by P/MCOMMA_10B_VALUE.

16/20 32/40 

1 byte alignment byte alignment 

2 N/A 2-byte alignment 

4 2-byte alignment 4-byte alignment 

FIGURE 1-9: ALIGN_COMMA_WORD Diagram

TABLE 1-15: Data Alignment (Continued)

ENMCOMMAALIGN ENPCOMMAALIGN Function(1)

ALIGN_COMMA_WORD =  1
4       2         1        0

2

4

Four Byte Internal Two Byte Internal

Do not use

Note: Shaded blocks indicate where the comma can align to.
ug035_ch2_13_051904

1       0



HIGH-SPEED SERIAL I/O MADE SIMPLE •

144 • Xilinx PRELIMINARY INFORMATION

RXSLIDE
RXSLIDE can be used to “slide” the aligned data by one bit. The RXSLIDE function when asserted 
High, increments the alignment by one bit, until it reaches the most significant bit, equal to the max-
imum word length –1. When RXSLIDE is asserted High, it must be asserted Low for two clock peri-
ods before it can be asserted High again. This functionality can be used for applications such as 
SONET.

64b/66b
Encoder

Bypassing
There are two types of bypassing regarding the 64b/66b encoder. The encoder block can either be 
entirely bypassed, or the 64b/66b encoder can be used and can be bypassed on a clock-by-clock basis.

If TXENC64B66BUSE is deasserted Low, the entire 64b/66b encoder is not used. If encoding is 
done in the fabric, the sync header [0:1] must be placed at TXCHARDISPVAL[0] and TXCHARD-
ISPMODE[0] with the 32 TXDATA bits.

If TXENC64B66BUSE is asserted High, the TXBYPASS8B10B bit 0 signal bypasses the 
64b/66b encoder on a clock basis, which means that two clock cycles are needed to do a full bypass of 
a block. The Sync Header is taken from the TXCHARDISPMODE[0:1]. To bypass on a block basis, 
the even boundary needs to be indicated at the fabric interface, which is contained in TXKERR bit 0. 
The TXCHARISK signal performs the function of TXC.

The transmit 64b/66b encoder borrows four bits of the TXCHARISK bus (bits [3:0]) to convey 
the control signaling to the 64b/66b encoder. The four TXC bits track with the four bytes of 
TXDATA_IN (TXC[0] with TXDATA_IN[7:0], and so on) to signal data block formatting. The 
transmit fabric interface logic (which first monitors transmit data as it travels from the fabric interface 
to the PMA) drives the encoder with the four TXC bits as follows:

TABLE 1-16: 64b/66b Bypassing

Signal Function

TXENC64B66BUSE 0 entire 64b/66b encoder bypassed

1 bypass on a clock-to-clock basis

TXBYPASS8B10B[0] Function 64b/66b clock-to-clock 
bypass

Function 64b/66b entirely 
bypassed

0 indicates no bypass defined by Table 1-18

1 indicates bypass this block

TXCHARDISPMODE[0:
1]

Sync Header shown in 
Figure 1-11 (same as SH[0:1])

TXKERR[3] indicates even boundary for 
bypassing on block basis

TXCHARISK[3:0] performs function of TXC indicates character is a (K) 
control character



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 145

Each “one” in the TXC span represents a control-character-match -- recognition that the associ-
ated byte is a special control character of some type (idle, start, terminate, or ordered-set).

Normal Operation
The 64b/66b encoder implements the Encoding Block Format function shown in Figure 1-11. 

TABLE 1-17: Transmit 64b/66b Encoder Control Mapping

TXC[3:0] (TXCHARISK[3:0]) Block Formatting

1111 Idles OR terminate-with-idles

0001 Start-of-frame OR ordered-set

1110 Terminate in second position

1100 Terminate in third position

1000 Terminate in fourth position

0000 Data OR error (no k-chars)

FIGURE 1-10: Block Format Function

D0 D1 D2 D3 D4 D5 D6 T7 10

10D0 D1 D2 D3 D4 D5 T6 C7

10D0 D1 D2 D3 D4 T5 C6 C7

10D0 D1 D2 D3 T4 C5 C6 C7

10D0 D1 D2 T3 C4 C5 C6 C7

10D0 D1 T2 C3 C4 C5 C6 C7

10D0 T1 C2 C3 C4 C5 C6 C7

10T0 C1 C2 C3 C4 C5 C6 C7

10O0 D1 D2 D3 C4 C5 C6 C7

10O0 D1 D2 D3 O4 D5 D6 D7

10O0 D1 D2 D3 S4 D5 D6 D7

10C0 C1 C2 C3 S4 D5 D6 D7

10C0 C1 C2 C3 O4 D5 D6 D7

10C0 C1 C2 C3 C4 C5 C6 C7

01D0 D1 D2 D3 D4 D5 D6 D7

10S0 D1 D2 D3 D4 D5 D6 D7

Control Block Formats
Block Type
Field

Data Block Format

Bit Position

0x1e

0x2d

0x33

0x66

0x55

0x78

0x4b

0x87

0x99

0xaa

0xb4

0xcc

0xd2

D0

D0

Input Data S
y
n
c

Block Payload

01 2 65

D0 D1 D2 D3 D4 D5 D6 D7

D1

D1

D1

D1 D2

D2

C1 C2

C2

C4 C5

C5

C5

C5 C6

C6

C6

C6 C7

C7

C7

C7

C3

C2 C3 C4 C5 C6 C7C1C0

C1C0

C3 C4

C4

C4

O0

O0 O4

O4

C3

D0 C5 C6 C7C4C3C2

0xff D0 D1 D2 D3 D4 D5 D6

0xe1 D0 D1 C7D3 D4 D5D2

D0 D1 C6 C7D3 D4D2

D5 D6

D6 D7

D7

C3C1C0 C2 D6 D7D5

D5

D0 D1 C5 C6 C7D3D2

D2

D3

D1 D2 D6 D7D5D4D3

D3

D1 D2 O0 D6 D7D5D3

UG035_ch3_23_091103



HIGH-SPEED SERIAL I/O MADE SIMPLE •

146 • Xilinx PRELIMINARY INFORMATION

The control codes are specified as follows in Table 1-18: 

Scrambler

Bypassing
If the signal TXSCRAM64B66BUSE is deasserted Low, the scrambler is not used. Note that the 
scrambler operates on the read side of the transmit FIFO. 

Normal Operation
If the signal TXSCRAM64B66BUSE is asserted High, the scrambler is enabled for use. The scrambler 
uses the polynomial:

TABLE 1-18: Control Codes

Control 
Character Notation XGMII 

Control Code
10GBASE-R 
Control Code

10GBASE-R
0 Code

8b/10b 
Code

idle /I/ 0x07 0x00 K28.0 or 
K28.3 or 

K28.5

start /S/ 0xfb Encoded by 
block type 

field

K27.7

terminate /T/ 0xfd Encoded by 
block type 

field

K29.7

error /E/ 0xfe 0x1e K30.7

Sequence 
ordered_set

/Q/ 0x9c Encoded by 
block type 

field plus O 
mode

0x0 K28.4

reserved0 /R/ 0x1c 0x2d K28.0

reserved1 0x3c 0x33 K28.1

reserved2 /N/ 0x7c 0x4b K28.3

reserved3 /K/ 0xbc 0x55 K28.5

reserved4 0xdc 0x66 K28.6

reserved5 0xf7 0x78 K23.7

Signal 
ordered_set

/Fsig/ 0x5c Encoded by 
block type 

field plus O 
mode

0xF K28.2



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 147

G(x) = 1 + x39 + x58

to scramble 64b/66b payload data. The scrambler works in conjunction with the gearbox to scramble 
and format data correctly.

When using the 64b/66b scrambler, the Gearbox must also be enabled 
(Always set to TXSCRAM64BB66USE = TXGEARBOX64B66BUSE)

Gearbox

Bypassing
If the signal TXGEARBOX64B66BUSE is deasserted Low, the gearbox is not used. The gearbox 
should always be enabled when using the 64b/66b protocol.

Normal Operation
If the signal TXGEARBOX64B66BUSE is asserted High, the gear box is enabled. The gearbox 
frames 64b/66b data for the PMA.

Decoder

Bypassing
If RXDEC64B66BUSE is deasserted Low, the entire 64b/66b decoder is not used. 

Normal Operation
If RXDEC64B66BUSE is asserted High, the 64b/66b decoder decodes according to the 64b/66b 
block format table shown in Figure 1-7.

If the signal RXIGNOREBTF is asserted High, block type fields not recognized are passed on, 
whereas if the signal is asserted Low, the error block /E/ is passed on. RXCHARISK is equivalent to 
RXC when the decoder is enabled.

TXSCRAM64B66BUSE 0 scrambler not used

1 scrambler enabled

TXGEARBOX64B66BUSE 0

1 always set to ‘1’ when scrambler and 
descrambler are enabled.

RXDEC64B66BUSE 0 decoder not used

1 decoder used



HIGH-SPEED SERIAL I/O MADE SIMPLE •

148 • Xilinx PRELIMINARY INFORMATION

Descrambler

Bypassing
If the signal RXDESCRAM64B66BUSE is deasserted Low, the descrambler is not used.

Normal Operation
If the signal RXDESCRAM64B66BUSE is asserted High, the descrambler is enabled for use. The 
descrambler uses the polynomial:

G(x) = 1 + x39 + x58

Block Sync

Normal Operation
This block sync design works hand-in-hand with the commaDet block. The commaDet takes as input 
32 bits of scrambled and unaligned data from the PMA. It then sends to the block sync the 2-bit sync 
header, or what it thinks is the sync header based on the current tag value. It asserts test_sh which 
tells the block sync to test the value of the sync header. The block sync analyzes the sync header and if 
it is valid, increments the sh_cnt counter. If the sync header is not a legal value, sh_cnt is incre-
mented as well as the counter sh_invalid_cnt, and then bit_slip is asserted for one clock. The 
bit slip signal feeds back to the commaDet block and tells it to shift the barrel shifter by one bit. This 
process of slipping and testing the sync header repeats until block lock is achieved.

RXIGNOREBTF Function 64b/66b decoder 
used

Function 64b/66b decoder 
bypassed

0 unrecognized field types 
cause /E/ passed on 

Undefined

1 unrecognized field types 
passed on

RXCHARISK Equivalent to RXC Defined by 8b/10b decoder 
use



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 149

FIGURE 1-11: Block Sync State Machine

LOCK_INIT

block_lock <=false
test_sh <= false

RESET_CNT

sh_cnt <= 0
sh_invalid_cnt <= 0
slip_done <= false

TEST_SH

test_sh <=false

VALID_SH

sh_cnt ++

64_GOOD

block_lock <=true

SLIP

block_lock <=false
SLIP <=true

INVALID_SH

sh_cnt ++
sh_invalid_cnt ++

sh_cnt = 64*
sh_invalid_cnt = 0

sh_cnt = 64*
sh_invalid_cnt > 0

sh_cnt = 64*
sh_invalid_cnt < 16*
block_lock sh_invalid_cnt = 16 +

!block_lock

slip_done

!sh_valid

UCT

sh_valid
test_sh*
sh_cnt < 64

test_sh

UCT

test_sh*
sh_cnt < 64*
sh_invalid_cnt < 16*
block_lock

ug035_ch3_21_090903



HIGH-SPEED SERIAL I/O MADE SIMPLE •

150 • Xilinx PRELIMINARY INFORMATION

The state machine works by keeping track of valid and invalid sync headers. Upon reset, block 
lock is deasserted, and the state is LOCK_INIT. The next state is RESET_CNT where all counters are 
zeroed out. When test_sh is asserted, the next state is TEST_SH, which checks the validity of the 
sync header. If it is valid, the next state is VALID_SH, if not, the state changes to INVALID_SH. 

From VALID_SH, if sh_cnt is less than the attribute value sh_cnt_max and test_sh is 
High, the next state is TEST_SH. If sh_cnt is equal to sh_cnt_max and sh_invalid_cnt equals 
0, the next state is GOOD_64 and from there block_lock is asserted. Then the process repeats again 
and the counters are zeroed. 

If at TEST_SH sh_cnt equals sh_cnt_max, but sh_invalid_cnt is greater than zero, then 
the next state is RESET_CNT. From INVALID_SH, if sh_invalid_cnt equals 
sh_invalid_cnt_max, or if block_lock is not asserted, the next state is SLIP, where bit_slip 
is asserted, and then on to RESET_CNT. If sh_cnt equals sh_cnt_max and sh_invalid_cnt is 
less than sh_invalid_cnt_max and block_lock is asserted, then go back to RESET_CNT with-
out changing block_lock or bit_slip. 

Finally, if test_sh is High and sh_cnt is less than sh_cnt_max, and sh_invalid_cnt is 
less than sh_invalid_cnt_max and block_lock is asserted, go back to the TEST_SH state. The 
main thing to note with this state machine is that to achieve block lock, one must receive 
sh_cnt_max number of valid sync headers in a row without getting an invalid sync header. 
However, once block lock is achieved, sh_invalid_cnt_max -1 number of invalid sync headers 
can be received within sh_cnt_max number of valid sync headers. Thus, once locked, it is harder to 
break lock. 

Functions Common to All Protocols
Clock Correction
Clock correction is needed when the rate that data is fed into the write side of the receive FIFO is either 
slower or faster than the rate that data is retrieved from the read side of the receive FIFO. The rate of 
write data entering the FIFO is determined by the frequency of RXRECCLK. The rate of read data 
retrieved from the read side of the FIFO is determined by the frequency of  RXUSRCLK.

There is one clock correction mode: Append/Remove Idle Clock Correction.

Append/Remove Idle Clock Correction
When the attribute CLK_COR_SEQ_DROP is asserted Low and CLK_CORRECT_USE is asserted 
hIgh, the Append/remove Idle Clock Correction mode is enabled.

The Append/remove Idle Clock Correction mode corrects for differing clock rates by finding idles 
in the bitstream, and then either appending or removing idles at the point where the idles were found.

There are a few attributes that need to be set by the user so that the append/remove function can 
be used correctly. The attribute CLK_COR_MAX_LAT sets the maximum latency through the 
receive FIFO. If the latency through the receive FIFO exceeds this value, idles are removed so that 
latency through the receive FIFO is less than CLK_COR_MAX_LAT. 

The attribute CLK_COR_MIN_LAT sets the minimum latency through the receive FIFO. If the 
latency through the receive FIFO is less than this value, idles are inserted so that the latency through 
the receive FIFO are greater than CLK_COR_MIN_LAT. A correction to the latency due to a 
CLK_COR_MAX_LAT violation is never less than CLK_COR_MIN_LAT. This is also true for a cor-
rection to the latency due to a CLK_COR_MIN_LAT violation; the resulting latency after the correc-
tion is greater than CLK_COR_MAX_LAT.



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 151

Clock Correction Sequences
Searching within the bitstream for an idle is the core function of the clock correction circuit. The 
detection of idles starts the correction procedure.

Idles the clock correction circuit should detect are specified by the lower 10 bits of the attributes:
• CLK_COR_SEQ_1_1
• CLK_COR_SEQ_1_2
• CLK_COR_SEQ_1_3
• CLK_COR_SEQ_1_4
• CLK_COR_SEQ_2_1
• CLK_COR_SEQ_2_2
• CLK_COR_SEQ_2_3
• CLK_COR_SEQ_2_4
The 11th bit of each clock correction sequence attribute determines either an 8- or 10-bit com-

pare.
Detection of the clock correction sequence in the bitstream is specified by eight words consisting 

of 10 bits each. Clock correction sequences can have lengths of 1, 2, 3, 4, or 8 bytes. 
When the length specified by the user is between 1 and 4, CLK_COR_SEQ_1_* holds the first 

pattern to be searched for. CLK_COR_SEQ_1_1 is the least significant byte, which is transmitted 
first from the transmitter and detected first in the receiver. If CLK_COR_SEQ_2_USE is asserted 
High when the length is between 1 and 4, the sequence specified by CLK_COR_SEQ_2_* is specified 
as a second pattern to match. In that case, the pattern specified by sequence 1 or sequence 2 matches 
as a clock correction sequence. 

The CLK_COR_SEQ_MASK must have the bits set to a logic 1 mask off the 2 or 3 unused
bytes.

When the length specified by the user is eight, CLK_COR_SEQ_1_* holds the first four bytes, 
while CLK_COR_SEQ_2_* holds the last four bytes. CLK_COR_SEQ_1_1 is the least significant 
byte, which is transmitted first from the transmitter and detected first in the receiver. 
CLK_COR__SEQ_2_USE must be asserted High.

The clock correction sequence is a special sequence to accommodate frequency differences 
between the received data (as reflected in RXRECCLK) and RXUSRCLK. Most of the primitives have 
these defaulted to the respective protocols. Only the GT_CUSTOM allows this sequence to be set to 
any specific protocol. The sequence contains 11 bits including the 10 bits of serial data. The 11th bit 
has two different formats. The typical usage is:

• 0, disparity error required, char is K, 8-bit data value (after 8b/10b decoding, depends on 
CLK_COR_8B10B_DE)

• 0, 10-bit data value (without 8b/10b decoding, depends on CLK_COR_8B10B_DE)
• 1, xx, sync character (with 64b/66b encoding
• 1, xx, 8-bit data value



HIGH-SPEED SERIAL I/O MADE SIMPLE •

152 • Xilinx PRELIMINARY INFORMATION

Table 1-19 is an example of data 11-bit attribute setting, the character value, CHARISK value, 
and the parallel data interface, and how each corresponds with the other.

Determining Correct CLK_COR_MIN_LAT 
To determine the correct CLK_COR_MIN_LAT value, several requirements must be met.

• CLK_COR_MIN_LAT must be less than or equal to 12.
• CLK_COR_MIN_LAT and CLK_COR_MAX_LAT must be multiples of CCS/CBS lengths 

and ALIGN_COMMA_WORD.
• For symbols less than 8 bytes, (CLK_COR_MIN_LAT – CHAN_BOND_LIMIT) > 12.

For symbols of 8 bytes, (CLK_COR_MIN_LAT – CHAN_BOND_LIMIT) > 16.

Channel Bonding
Channel bonding is the technique of tying several serial channels together to create one aggregate 
channel. Several channels are fed on the transmit side by one parallel bus and reproduced on the receive 
side as the identical parallel bus. The maximum number of serial differential pairs that can be bonded 
is 20. Channel bonding is supported by several primitives including GT10_CUSTOM, 
GT10_INFINIBAND, GT10_XAUI, and GT10_AURORA. 

The channel bonding match logic finds CB characters across word boundaries and performs a 
“comma” style realignment of the data. The data path is byte scrambled until reset as shown below in 
the example (additional comma alignments will not realign the data). As a result, users should be care-
ful when picking channel bonding characters and should use, in general, special characters that cannot 
appear in the normal data stream.

Example:

The channel bond character is 0x000000FF. If this sequence of data is sent: 

000000FF 
01020304 
05060708 
09000000 
FF010203 
04050607 

The result is:

000000FF 

TABLE 1-19: Clock Correction Sequence/Data Correlation for 16-Bit Data Port

Attribute Setting Character CHARISK TXDATA (hex)

CLK_COR_SEQ_1_1 = 00110111100 K28.5 1 BC 

CLK_COR_SEQ_1_2 = 00010010101 D21.4 0 95 

CLK_COR_SEQ_1_3 = 00010110101 D21.5 0 B5 

CLK_COR_SEQ_1_4 = 00010110101 D21.5 0 B5 

Notes: 
1. CLK_COR_8B10B_DE = TRUE.



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 153

01020304 
05060708 
000000FF 
01020304 
050607xx 
The bonded channels consist of one master transceiver and 1 to 19 slave transceivers. The 

CHBONDI/CHBONDO buses of the transceivers are daisy-chained together as shown in 
Figure 1-12.

When the master transceiver detects a channel bond alignment sequence in its data stream, it sig-
nals the slave to perform channel bonding by driving its CHBONDO bus as follows in Table 1-20: 

TABLE 1-20: Channel Bond Alignment Sequence

Detected CHBONDO Bus

No Channel Bond XX0002

Channel Bond - Byte 0 XX1002

Channel Bond - Byte 1 XX1012

Channel Bond - Byte 2 XX1102

Channel Bond - Byte 3 XX1112



HIGH-SPEED SERIAL I/O MADE SIMPLE •

154 • Xilinx PRELIMINARY INFORMATION

Whether a slave is a 1-hop or 2-hop slave, internal logic causes the data driven on the 
CHBONDO bus from the master to be recognized by the slaves at the same time and must be deter-
ministic. Therefore, it is important that the interconnect of CHBONDO-to-CHBONDI not contain 
any pipeline stages. The data must transfer from CHBONDO to CHBONDI in one clock. 

The data streams input to the channel bonded transceivers can be skewed in time from each other. 
The maximum byte skew that the channel bond logic should allow is set by the attribute 
MC_CHAN_BOND_LIMIT. During the channel bond operation, the slave receives notification of 
the master's alignment code location via the CHBONDO bus. If a slave detects the position of its 
alignment code to be outside the window of CHAN_BOND_LIMIT from the master, then the slave 
does not perform the channel bond and sets a channel bond error flag. If the channel bond is successful, 
the slave outputs its skew relative to the master. The skew and channel bond error flag are available on 
the RXBUFSTATUS bus.

For place and route, the transceiver has one restriction. This is required when channel bonding is 
implemented. Because of the delay limitations on the CHBONDO to CHBONDI ports, linking of 
the Master to a Slave_1_hop must run either in the X or Y direction, but not both.

FIGURE 1-12: Daisy-Chained Transceiver CHBONDI/CHBONDO Buses

CHBONDI

CHBONDI

CHBONDI

CHBONDO

SLAVE

MASTER

CHBONDOCHBONDI CHBONDO

SLAVE

CHBONDO

SLAVE

CHBONDI CHBONDO

SLAVE

CHBONDI CHBONDO

SLAVE

CHBONDI CHBONDO

SLAVE

2-Hop Slaves

1-Hop Slaves

UG035_ch3_20_012704



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 155

In Figure 1-13, the two Slave_1_hops are linked to the master in only one direction. To navigate 
to the other slave (a Slave_2_hops), both X and Y displacement is needed. This slave needs one level 
of daisy-chaining, which is the basis of the Slave_2_hops setting. 

Figure 1-13 and Figure 1-14 show the channel bonding mode and linking for an XC2VPX20 
and XC2VPX70 devices, which (optionally) contain more transceivers (20) per chip. To ensure the 
timing is met on the link between the CHBONDO and CHBONDI ports, a constraint must be added 
to check the time delay.

Status and Event Bus
The Virtex-II Pro X design has merged several signals together to provide extra functionality over the 
Virtex-II Pro™ design. The signals CHBONDDONE, RXBUFSTATUS, and RXCLKCORCNT 
were previously used independently of each other to indicate status. In the Virtex-II Pro X design, 
these signals are concatenated together to provide a status and event bus. 

There are two modes of this concatenated bus, status mode and event mode. In status mode, the 
bus indicates either the difference between the read and write pointers of the receive side FIFO or the 
skew of the last channel bond event. 

Status Indication
In status mode, the RXBUFSTATUS and RXCLKCORCNT pins alternate between the buffer pointer 
difference and channel bonding skew. The protocol is described by three sequential clocks (STATUS 
and DATA are one clock in duration) when operating with a 32-bit or 40-bit internal data-width, or 

FIGURE 1-13: XC2VPX20 Device Implementation

FIGURE 1-14: XC2VPX70 Device Implementation

UG035_ch2_10_091603

CHBONDI CHBONDO

SLAVE_1_HOP

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDI CHBONDO

SLAVE_1_HOP

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDO CHBONDI

SLAVE_1_HOP

CHBONDI CHBONDO

MASTER

CHBONDI CHBONDO

SLAVE_1_HOP

Top of device

Bottom of device

UG035_ch2_11_051904

CHBONDI CHBONDO

SLAVE_1_HOP

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDI CHBONDO

SLAVE_1_HOP

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDI CHBONDO

SLAVE_1_HOP

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDI CHBONDO

SLAVE_1_HOP

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDI CHBONDO

SLAVE_1_HOP

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDI CHBONDO

SLAVE_1_HOP

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDO CHBONDI

SLAVE_1_HOP

CHBONDI CHBONDO

MASTER

CHBONDI CHBONDO

SLAVE_1_HOP

Top of device

Bottom of device

CHBONDI CHBONDO

SLAVE_1_HOP

CHBONDO CHBONDI

SLAVE_2_HOPS

CHBONDI CHBONDO

SLAVE_1_HOP

CHBONDO CHBONDI

SLAVE_2_HOPS



HIGH-SPEED SERIAL I/O MADE SIMPLE •

156 • Xilinx PRELIMINARY INFORMATION

six sequential clocks (STATUS and DATA are two clocks in duration) when operating with a 16-bit or 
20-bit internal data width:

<STATUS INDICATOR> <DATA0><DATA1>

where 
STATUS INDICATOR can indicate either pointer difference or channel bond skew,
DATA0 indicates status data 5:3, and DATA1 indicates status data 2:0.

Table 1-21 shows the signal values for a pointer difference status where the variable pointer-
Diff[5:0] holds the pointer difference between the receive write and read pointers. If the pointer-
Diff[5:0] is < 6’b000110, then RXFIFO is almost under flown. If the pointerDiff[5:0] is > 
6’b111001, then the RXFIFO is almost over flown.

Table 1-22 shows the signal values for a channel bonding skew where the variable cbSkew[5:0] 
holds the pointer difference between the receive write and read pointers:

TABLE 1-21: Signal Values for a Pointer Difference Status

Status CHBONDDONE RXBUFSTATUS RXCLKCORCNT

STATUS INDICATOR 1'b0 2’b01 3’b000

DATA0 1'b0 2’b00 pointerDiff[5:3]

DATA1 1'b0 2’b00 pointerDiff[2:0]

TABLE 1-22: Signal Values for a Channel Bonding Skew

Status CHBONDDONE RXBUFSTATUS RXCLKCORCNT

STATUS INDICATOR 1'b0 2’b01 3’b001

DATA0 1'b0 2’b00 cbSkew[5:3]

DATA1 1'b0 2’b00 cbSkew[2:0]



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 157

Event Indication
Two types of events can occur. See Table 1-23. When an event occurs, it can override a status indica-
tion. An event can only last for one clock and can be signaled by CHBONDDONE asserting High, or 
RXBUFSTATUS equating to 2'b10.

An event will always override status, but after an event is completed, status will continue to
alternate between the pointer difference and the channel bond skew.

Sample Verilog
The following sample code is to determine underflow or overflow of the RX buffer when 32-bit or 40-
bit internal data path is selected.:

module   status_decoder ( 
     RXUSRCLK2, 
     DCM_LOCKED_N, 
     PMARXLOCK, 
     CHBONDDONE, 
     RXBUFSTATUS, 
     RXCLKCORCNT, 

     cc_event_insert,      // Clock Correction Insertion Event 
     cc_event_remove,      // Clock Correction Removal Event 
     cb_event_load,        // Channel Bonding Load Event 
     err_event_cc,         // Clock Correction Error Event 
     err_event_cb,         // Channel Bonding Error Event 
  
     pointerDiff,          // RX Elastic Buffer Pointer Difference 
     rxbuf_almost_err,     // RX Elastic Buffer Almost Error 
  
     cbSkew); 
  
     input        RXUSRCLK2; 
     input        DCM_LOCKED_N; 
     input        PMARXLOCK; 
     input        CHBONDDONE; 
     input  [1:0] RXBUFSTATUS; 
     input  [2:0] RXCLKCORCNT; 
     output       cc_event_insert; 
     output       cc_event_remove; 
     output       cb_event_load; 
     output       err_event_cc; 

TABLE 1-23: Signal Values for Event Indication

Event CHBONDDONE RXBUFSTATUS RXCLKCORCNT

Channel Bond Load 1'b1 2’b00 3’b111

Clock Correction 1'b0 2’b10 3’bxxx



HIGH-SPEED SERIAL I/O MADE SIMPLE •

158 • Xilinx PRELIMINARY INFORMATION

     output       err_event_cb; 
     output [5:0] pointerDiff; 
     output       rxbuf_almost_err; 
     output [5:0] cbSkew; 

////////////////////////////////////////////////////////////////////
//
//Signal declaration 
////////////////////////////////////////////////////////////////////
//
reg         cc_event_insert; 
reg         cc_event_remove; 
reg         cb_event_load; 
reg         err_event_cc; 
reg         err_event_cb; 
reg [5:0]   pointerDiff; 
reg [2:0]   pointerDiff_hi; 
reg [1:0]   pointerDiff_valid; 
reg [5:0]   cbSkew; 
reg [2:0]   cbSkew_hi; 
reg [1:0]   cbSkew_valid; 
reg         rxbuf_almost_err; 

wire [5:0] status_event_bus; 
wire [2:0] status_bus; 

parameter CC_EVENT_INSERT_C = 6'b010001; 
parameter CC_EVENT_REMOVE_C = 6'b010000; 
parameter CB_EVENT_LOAD_C   = 6'b100111; 
parameter ERR_EVENT_CC_C    = 6'b011000; 
parameter ERR_EVENT_CB_C    = 6'b011001; 

parameter STATUS_INDICATOR_C= 3'b001; 
parameter STATUS_DATA_C     = 3'b000; 

assign status_event_bus = {CHBONDDONE, RXBUFSTATUS[1], 
RXBUFSTATUS[0], RXCLKCORCNT[2],
RXCLKCORCNT[1], RXCLKCORCNT[0]}; 
assign status_bus       = {CHBONDDONE, RXBUFSTATUS[1], 
RXBUFSTATUS[0]}; 
  

////////////////////////////////////////////////////////////////////
//
//Logic to decode events 
////////////////////////////////////////////////////////////////////
//
always @(posedge RXUSRCLK2 or posedge DCM_LOCKED_N) 
  begin 



SAMPLE SERDES DATA -- ROCKETIO X TRANSCEIVER OVERVIEW

PRELIMINARY INFORMATION XILINX • 159

    if (DCM_LOCKED_N) begin 
      cc_event_insert <= 1'b0; 
      cc_event_remove <= 1'b0; 
      cb_event_load   <= 1'b0; 
      err_event_cc    <= 1'b0; 
      err_event_cb    <= 1'b0; 
     end 
    else begin 
      cc_event_insert <= status_event_bus == CC_EVENT_INSERT_C; 
      cc_event_remove <= status_event_bus == CC_EVENT_REMOVE_C; 
      cb_event_load   <= status_event_bus == CB_EVENT_LOAD_C; 
      err_event_cc    <= status_event_bus == ERR_EVENT_CC_C; 
      err_event_cb    <= status_event_bus == ERR_EVENT_CB_C; 
  
    end 
 end 
  

////////////////////////////////////////////////////////////////////
//
// Logic to decode the cbSkew value and pointerDiff value 
////////////////////////////////////////////////////////////////////
//
always @(posedge RXUSRCLK2 or posedge DCM_LOCKED_N) 
  begin 
    if (DCM_LOCKED_N) begin 
       pointerDiff_valid <=  2'b00; 
       cbSkew_valid      <=  2'b00; 
      end 
    else if ((status_bus == STATUS_INDICATOR_C) & ~RXCLKCORCNT[2] & 
~RXCLKCORCNT[1] ) begin 
       pointerDiff_valid <=  {1'b0, ~RXCLKCORCNT[0]}; 
       cbSkew_valid      <=  {1'b0,  RXCLKCORCNT[0]}; 
      end 
    else if (status_bus == STATUS_DATA_C) begin 
       pointerDiff_valid[1] <=  pointerDiff_valid[0]; 
       pointerDiff_valid[0] <=  1'b0; 
       cbSkew_valid[1]      <=  cbSkew_valid[0]; 
       cbSkew_valid[0]      <=  1'b0; 
     end 
    else begin // clear the valid signal if the status is interrupted 
by an event. 
       pointerDiff_valid <=  2'b00; 
       cbSkew_valid      <=  2'b00; 
     end 
  end 
  

always @(posedge RXUSRCLK2 or posedge DCM_LOCKED_N) 
  begin 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

160 • Xilinx PRELIMINARY INFORMATION

   if (DCM_LOCKED_N || ~PMARXLOCK) begin // reset the value to neutral 
position 
       pointerDiff <=  32; 
       pointerDiff_hi <= 4; 
       cbSkew      <=  32; 
       cbSkew_hi   <=  4; 
      end 
   else if (status_bus == STATUS_DATA_C) begin 
  
       if (pointerDiff_valid[0])  // register higher 3 bits 
         pointerDiff_hi   <=  RXCLKCORCNT; 
       else if (pointerDiff_valid[1]) // update entire register when 
all 6 bits are acquired. 
         pointerDiff      <=  {pointerDiff_hi , RXCLKCORCNT}; 
  
       if (cbSkew_valid[0])      // register higher 3 bits 
         cbSkew_hi        <=  RXCLKCORCNT; 
       else if (cbSkew_valid[1]) // update entire register when all 6 
bits are acquired. 
         cbSkew           <=  {cbSkew_hi , RXCLKCORCNT}; 
   end 
 end 
  
////////////////////////////////////////////////////////////////////
//
// Generate RX Elastic Buffer almost error 
////////////////////////////////////////////////////////////////////
//
always @(posedge RXUSRCLK2 or posedge DCM_LOCKED_N) 
 begin 
    if (DCM_LOCKED_N) 
      rxbuf_almost_err <= 1'b0; 
    else 
      rxbuf_almost_err <= (pointerDiff < 6) | (pointerDiff > 57); 
end 

endmodule 



PRELIMINARY INFORMATION XILINX • 161

CHAPTER 1

8b/10b Tables

This information was extracted from the RocketIO™ X Transceiver User Guide. For up-to-date 
information, please go to: http://www.xilinx.com/bvdocs/userguides/ug035.pdf

Valid Data and Control Characters
RocketIO X Transceiver 8b/10b encoding includes a set of Data characters and K-characters. Eight-
bit values are coded into 10-bit values keeping the serial line DC balanced. K-characters are special 
Data characters designated with a CHARISK. K-characters are used for specific informative designa-
tions. Table 1-1 and Table 1-2 show the Data and K tables of valid characters.

TABLE 1-1: Valid Data Characters

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj

D0.0 000 00000 100111 0100 011000 1011

D1.0 000 00001 011101 0100 100010 1011

D2.0 000 00010 101101 0100 010010 1011

D3.0 000 00011 110001 1011 110001 0100

D4.0 000 00100 110101 0100 001010 1011

D5.0 000 00101 101001 1011 101001 0100

D6.0 000 00110 011001 1011 011001 0100

D7.0 000 00111 111000 1011 000111 0100

D8.0 000 01000 111001 0100 000110 1011

D9.0 000 01001 100101 1011 100101 0100



HIGH-SPEED SERIAL I/O MADE SIMPLE •

162 • Xilinx PRELIMINARY INFORMATION

D10.0 000 01010 010101 1011 010101 0100

D11.0 000 01011 110100 1011 110100 0100

D12.0 000 01100 001101 1011 001101 0100

D13.0 000 01101 101100 1011 101100 0100

D14.0 000 01110 011100 1011 011100 0100

D15.0 000 01111 010111 0100 101000 1011

D16.0 000 10000 011011 0100 100100 1011

D17.0 000 10001 100011 1011 100011 0100

D18.0 000 10010 010011 1011 010011 0100

D19.0 000 10011 110010 1011 110010 0100

D20.0 000 10100 001011 1011 001011 0100

D21.0 000 10101 101010 1011 101010 0100

D22.0 000 10110 011010 1011 011010 0100

D23.0 000 10111 111010 0100 000101 1011

D24.0 000 11000 110011 0100 001100 1011

D25.0 000 11001 100110 1011 100110 0100

D26.0 000 11010 010110 1011 010110 0100

D27.0 000 11011 110110 0100 001001 1011

D28.0 000 11100 001110 1011 001110 0100

D29.0 000 11101 101110 0100 010001 1011

D30.0 000 11110 011110 0100 100001 1011

D31.0 000 11111 101011 0100 010100 1011

D0.1 001 00000 100111 1001 011000 1001

D1.1 001 00001 011101 1001 100010 1001

D2.1 001 00010 101101 1001 010010 1001

TABLE 1-1: Valid Data Characters (Continued)

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj



8B/10B TABLES

PRELIMINARY INFORMATION XILINX • 163

D3.1 001 00011 110001 1001 110001 1001

D4.1 001 00100 110101 1001 001010 1001

D5.1 001 00101 101001 1001 101001 1001

D6.1 001 00110 011001 1001 011001 1001

D7.1 001 00111 111000 1001 000111 1001

D8.1 001 01000 111001 1001 000110 1001

D9.1 001 01001 100101 1001 100101 1001

D10.1 001 01010 010101 1001 010101 1001

D11.1 001 01011 110100 1001 110100 1001

D12.1 001 01100 001101 1001 001101 1001

D13.1 001 01101 101100 1001 101100 1001

D14.1 001 01110 011100 1001 011100 1001

D15.1 001 01111 010111 1001 101000 1001

D16.1 001 10000 011011 1001 100100 1001

D17.1 001 10001 100011 1001 100011 1001

D18.1 001 10010 010011 1001 010011 1001

D19.1 001 10011 110010 1001 110010 1001

D20.1 001 10100 001011 1001 001011 1001

D21.1 001 10101 101010 1001 101010 1001

D22.1 001 10110 011010 1001 011010 1001

D23.1 001 10111 111010 1001 000101 1001

D24.1 001 11000 110011 1001 001100 1001

D25.1 001 11001 100110 1001 100110 1001

D26.1 001 11010 010110 1001 010110 1001

D27.1 001 11011 110110 1001 001001 1001

D28.1 001 11100 001110 1001 001110 1001

TABLE 1-1: Valid Data Characters (Continued)

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj



HIGH-SPEED SERIAL I/O MADE SIMPLE •

164 • Xilinx PRELIMINARY INFORMATION

D29.1 001 11101 101110 1001 010001 1001

D30.1 001 11110 011110 1001 100001 1001

D31.1 001 11111 101011 1001 010100 1001

D0.2 010 00000 100111 0101 011000 0101

D1.2 010 00001 011101 0101 100010 0101

D2.2 010 00010 101101 0101 010010 0101

D3.2 010 00011 110001 0101 110001 0101

D4.2 010 00100 110101 0101 001010 0101

D5.2 010 00101 101001 0101 101001 0101

D6.2 010 00110 011001 0101 011001 0101

D7.2 010 00111 111000 0101 000111 0101

D8.2 010 01000 111001 0101 000110 0101

D9.2 010 01001 100101 0101 100101 0101

D10.2 010 01010 010101 0101 010101 0101

D11.2 010 01011 110100 0101 110100 0101

D12.2 010 01100 001101 0101 001101 0101

D13.2 010 01101 101100 0101 101100 0101

D14.2 010 01110 011100 0101 011100 0101

D15.2 010 01111 010111 0101 101000 0101

D16.2 010 10000 011011 0101 100100 0101

D17.2 010 10001 100011 0101 100011 0101

D18.2 010 10010 010011 0101 010011 0101

D19.2 010 10011 110010 0101 110010 0101

D20.2 010 10100 001011 0101 001011 0101

D21.2 010 10101 101010 0101 101010 0101

D22.2 010 10110 011010 0101 011010 0101

TABLE 1-1: Valid Data Characters (Continued)

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj



8B/10B TABLES

PRELIMINARY INFORMATION XILINX • 165

D23.2 010 10111 111010 0101 000101 0101

D24.2 010 11000 110011 0101 001100 0101

D25.2 010 11001 100110 0101 100110 0101

D26.2 010 11010 010110 0101 010110 0101

D27.2 010 11011 110110 0101 001001 0101

D28.2 010 11100 001110 0101 001110 0101

D29.2 010 11101 101110 0101 010001 0101

D30.2 010 11110 011110 0101 100001 0101

D31.2 010 11111 101011 0101 010100 0101

D0.3 011 00000 100111 0011 011000 1100

D1.3 011 00001 011101 0011 100010 1100

D2.3 011 00010 101101 0011 010010 1100

D3.3 011 00011 110001 1100 110001 0011

D4.3 011 00100 110101 0011 001010 1100

D5.3 011 00101 101001 1100 101001 0011

D6.3 011 00110 011001 1100 011001 0011

D7.3 011 00111 111000 1100 000111 0011

D8.3 011 01000 111001 0011 000110 1100

D9.3 011 01001 100101 1100 100101 0011

D10.3 011 01010 010101 1100 010101 0011

D11.3 011 01011 110100 1100 110100 0011

D12.3 011 01100 001101 1100 001101 0011

D13.3 011 01101 101100 1100 101100 0011

D14.3 011 01110 011100 1100 011100 0011

D15.3 011 01111 010111 0011 101000 1100

D16.3 011 10000 011011 0011 100100 1100

TABLE 1-1: Valid Data Characters (Continued)

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj



HIGH-SPEED SERIAL I/O MADE SIMPLE •

166 • Xilinx PRELIMINARY INFORMATION

D17.3 011 10001 100011 1100 100011 0011

D18.3 011 10010 010011 1100 010011 0011

D19.3 011 10011 110010 1100 110010 0011

D20.3 011 10100 001011 1100 001011 0011

D21.3 011 10101 101010 1100 101010 0011

D22.3 011 10110 011010 1100 011010 0011

D23.3 011 10111 111010 0011 000101 1100

D24.3 011 11000 110011 0011 001100 1100

D25.3 011 11001 100110 1100 100110 0011

D26.3 011 11010 010110 1100 010110 0011

D27.3 011 11011 110110 0011 001001 1100

D28.3 011 11100 001110 1100 001110 0011

D29.3 011 11101 101110 0011 010001 1100

D30.3 011 11110 011110 0011 100001 1100

D31.3 011 11111 101011 0011 010100 1100

D0.4 100 00000 100111 0010 011000 1101

D1.4 100 00001 011101 0010 100010 1101

D2.4 100 00010 101101 0010 010010 1101

D3.4 100 00011 110001 1101 110001 0010

D4.4 100 00100 110101 0010 001010 1101

D5.4 100 00101 101001 1101 101001 0010

D6.4 100 00110 011001 1101 011001 0010

D7.4 100 00111 111000 1101 000111 0010

D8.4 100 01000 111001 0010 000110 1101

D9.4 100 01001 100101 1101 100101 0010

TABLE 1-1: Valid Data Characters (Continued)

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj



8B/10B TABLES

PRELIMINARY INFORMATION XILINX • 167

D10.4 100 01010 010101 1101 010101 0010

D11.4 100 01011 110100 1101 110100 0010

D12.4 100 01100 001101 1101 001101 0010

D13.4 100 01101 101100 1101 101100 0010

D14.4 100 01110 011100 1101 011100 0010

D15.4 100 01111 010111 0010 101000 1101

D16.4 100 10000 011011 0010 100100 1101

D17.4 100 10001 100011 1101 100011 0010

D18.4 100 10010 010011 1101 010011 0010

D19.4 100 10011 110010 1101 110010 0010

D20.4 100 10100 001011 1101 001011 0010

D21.4 100 10101 101010 1101 101010 0010

D22.4 100 10110 011010 1101 011010 0010

D23.4 100 10111 111010 0010 000101 1101

D24.4 100 11000 110011 0010 001100 1101

D25.4 100 11001 100110 1101 100110 0010

D26.4 100 11010 010110 1101 010110 0010

D27.4 100 11011 110110 0010 001001 1101

D28.4 100 11100 001110 1101 001110 0010

D29.4 100 11101 101110 0010 010001 1101

D30.4 100 11110 011110 0010 100001 1101

D31.4 100 11111 101011 0010 010100 1101

D0.5 101 00000 100111 1010 011000 1010

D1.5 101 00001 011101 1010 100010 1010

D2.5 101 00010 101101 1010 010010 1010

D3.5 101 00011 110001 1010 110001 1010

TABLE 1-1: Valid Data Characters (Continued)

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj



HIGH-SPEED SERIAL I/O MADE SIMPLE •

168 • Xilinx PRELIMINARY INFORMATION

D4.5 101 00100 110101 1010 001010 1010

D5.5 101 00101 101001 1010 101001 1010

D6.5 101 00110 011001 1010 011001 1010

D7.5 101 00111 111000 1010 000111 1010

D8.5 101 01000 111001 1010 000110 1010

D9.5 101 01001 100101 1010 100101 1010

D10.5 101 01010 010101 1010 010101 1010

D11.5 101 01011 110100 1010 110100 1010

D12.5 101 01100 001101 1010 001101 1010

D13.5 101 01101 101100 1010 101100 1010

D14.5 101 01110 011100 1010 011100 1010

D15.5 101 01111 010111 1010 101000 1010

D16.5 101 10000 011011 1010 100100 1010

D17.5 101 10001 100011 1010 100011 1010

D18.5 101 10010 010011 1010 010011 1010

D19.5 101 10011 110010 1010 110010 1010

D20.5 101 10100 001011 1010 001011 1010

D21.5 101 10101 101010 1010 101010 1010

D22.5 101 10110 011010 1010 011010 1010

D23.5 101 10111 111010 1010 000101 1010

D24.5 101 11000 110011 1010 001100 1010

D25.5 101 11001 100110 1010 100110 1010

D26.5 101 11010 010110 1010 010110 1010

D27.5 101 11011 110110 1010 001001 1010

D28.5 101 11100 001110 1010 001110 1010

D29.5 101 11101 101110 1010 010001 1010

TABLE 1-1: Valid Data Characters (Continued)

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj



8B/10B TABLES

PRELIMINARY INFORMATION XILINX • 169

D30.5 101 11110 011110 1010 100001 1010

D31.5 101 11111 101011 1010 010100 1010

D0.6 110 00000 100111 0110 011000 0110

D1.6 110 00001 011101 0110 100010 0110

D2.6 110 00010 101101 0110 010010 0110

D3.6 110 00011 110001 0110 110001 0110

D4.6 110 00100 110101 0110 001010 0110

D5.6 110 00101 101001 0110 101001 0110

D6.6 110 00110 011001 0110 011001 0110

D7.6 110 00111 111000 0110 000111 0110

D8.6 110 01000 111001 0110 000110 0110

D9.6 110 01001 100101 0110 100101 0110

D10.6 110 01010 010101 0110 010101 0110

D11.6 110 01011 110100 0110 110100 0110

D12.6 110 01100 001101 0110 001101 0110

D13.6 110 01101 101100 0110 101100 0110

D14.6 110 01110 011100 0110 011100 0110

D15.6 110 01111 010111 0110 101000 0110

D16.6 110 10000 011011 0110 100100 0110

D17.6 110 10001 100011 0110 100011 0110

D18.6 110 10010 010011 0110 010011 0110

D19.6 110 10011 110010 0110 110010 0110

D20.6 110 10100 001011 0110 001011 0110

D21.6 110 10101 101010 0110 101010 0110

D22.6 110 10110 011010 0110 011010 0110

D23.6 110 10111 111010 0110 000101 0110

TABLE 1-1: Valid Data Characters (Continued)

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj



HIGH-SPEED SERIAL I/O MADE SIMPLE •

170 • Xilinx PRELIMINARY INFORMATION

D24.6 110 11000 110011 0110 001100 0110

D25.6 110 11001 100110 0110 100110 0110

D26.6 110 11010 010110 0110 010110 0110

D27.6 110 11011 110110 0110 001001 0110

D28.6 110 11100 001110 0110 001110 0110

D29.6 110 11101 101110 0110 010001 0110

D30.6 110 11110 011110 0110 100001 0110

D31.6 110 11111 101011 0110 010100 0110

D0.7 111 00000 100111 0001 011000 1110

D1.7 111 00001 011101 0001 100010 1110

D2.7 111 00010 101101 0001 010010 1110

D3.7 111 00011 110001 1110 110001 0001

D4.7 111 00100 110101 0001 001010 1110

D5.7 111 00101 101001 1110 101001 0001

D6.7 111 00110 011001 1110 011001 0001

D7.7 111 00111 111000 1110 000111 0001

D8.7 111 01000 111001 0001 000110 1110

D9.7 111 01001 100101 1110 100101 0001

D10.7 111 01010 010101 1110 010101 0001

D11.7 111 01011 110100 1110 110100 1000

D12.7 111 01100 001101 1110 001101 0001

D13.7 111 01101 101100 1110 101100 1000

D14.7 111 01110 011100 1110 011100 1000

D15.7 111 01111 010111 0001 101000 1110

D16.7 111 10000 011011 0001 100100 1110

D17.7 111 10001 100011 0111 100011 0001

TABLE 1-1: Valid Data Characters (Continued)

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj



8B/10B TABLES

PRELIMINARY INFORMATION XILINX • 171

D18.7 111 10010 010011 0111 010011 0001

D19.7 111 10011 110010 1110 110010 0001

D20.7 111 10100 001011 0111 001011 0001

D21.7 111 10101 101010 1110 101010 0001

D22.7 111 10110 011010 1110 011010 0001

D23.7 111 10111 111010 0001 000101 1110

D24.7 111 11000 110011 0001 001100 1110

D25.7 111 11001 100110 1110 100110 0001

D26.7 111 11010 010110 1110 010110 0001

D27.7 111 11011 110110 0001 001001 1110

D28.7 111 11100 001110 1110 001110 0001

D29.7 111 11101 101110 0001 010001 1110

D30.7 111 11110 011110 0001 100001 1110

D31.7 111 11111 101011 0001 010100 1110

TABLE 1-2: Valid Control “K” Characters

Special Code 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD +
abcdei fghj

K28.0 000 11100 001111 0100 110000 1011

K28.1 001 11100 001111 1001 110000 0110

K28.2 010 11100 001111 0101 110000 1010

K28.3 011 11100 001111 0011 110000 1100

K28.4 100 11100 001111 0010 110000 1101

K28.5 101 11100 001111 1010 110000 0101

K28.6 110 11100 001111 0110 110000 1001

K28.7(1) 111 11100 001111 1000 110000 0111

K23.7 111 10111 111010 1000 000101 0111

TABLE 1-1: Valid Data Characters (Continued)

Data Byte Name Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD + 
abcdei fghj



HIGH-SPEED SERIAL I/O MADE SIMPLE •

172 • Xilinx PRELIMINARY INFORMATION

K27.7 111 11011 110110 1000 001001 0111

K29.7 111 11101 101110 1000 010001 0111

K30.7 111 11110 011110 1000 100001 0111

Notes: 
1. Used for testing and characterization only.

TABLE 1-2: Valid Control “K” Characters (Continued)

Special Code 
Name

Bits 
HGF EDCBA

Current RD –
abcdei fghj

Current RD +
abcdei fghj



PRELIMINARY INFORMATION XILINX • 173

APPENDIX C

A Comparison of Two Different

FPGA-to-FPGA Data Links

by Carl Christensen

Thomson Multimedia, November 6, 2002

Abstract
This paper is a detailed comparison of the design of two distinctly different FPGA-to-FPGA data links 
within the same system. It describes how a fast data link was implemented by using a Xilinx 
RocketIO™ SERDES running at 3.125 Gb/s with 8b10b encoding to achieve a 2.5 Gb/s payload 
between FPGAs in different chassis over multiple meters of cable. It also describes how a much slower 
data link was implemented within the same system by using a double data rate (DDR) LVDS with 
clock forwarding and at a clock rate of 156 MHz to achieve a 400 Mb/s payload between FPGAs in the 
same chassis, but on separate PCBs. The presentation touches on some key PCB/analog concerns, but 
mainly focuses on digital implementation, synthesis, simulation, interface, PAR, and timing con-
straints.

When system development began, it seemed obvious to designers that the fast link would be dif-
ficult to incorporate and the slow link would be simple. Although both links were successfully imple-
mented in the design, the data link that was actually most difficult to incorporate was unexpected. 

Introduction
As we began to develop the architecture for a new product, we realized that we needed two distinctly 
different data links within our new product. The first data link requirement was for approximately 
400 Mb/s, and the second required approximately 2.5 Gb/s. The slower link was to communicate 
between two FPGAs, each located on different PCBs but within the same chassis. The fast link was to 
also communicate between two FPGAs, but with each FPGA located in different chassis. As develop-
ment began, it seemed obvious that the fast link would be difficult to incorporate, and the slow link 
would be simple.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

174 • Xilinx PRELIMINARY INFORMATION

Requirements and System Architecture Concerns/Features
Although the two links had different requirements, both had similar feature sets that provided advan-
tages and disadvantages for each solution considered during research and development.

The Slow Link
By all indications, the slow link should have been easier. At approximately 400 Mb/s and with no 
external cabling requirements, there were many of options that included a classic parallel bus struc-
ture, a double data rate, or a clock forwarded double data rate (CF_DDR). To simplify clock distribu-
tion and synchronization, we chose the CF_DDR, with low voltage differential signaling (LVDS) as 
the signaling standard for all the benefits of low-swing differential signals.

A Single Clock Domain
Our first plan was to run the slow link with a 110- to 120-MHz clock, but, as the design evolved, we 
decided a single clock domain would be better. However, a single clock domain would also require all 
of the logic and CF_DDR links to run at 156 MHz. Xilinx had a reference design for a CF_DDR that 
ran much faster than 156 MHz, and my Xilinx Field Applications Engineer (FAE) determined that 
the increased speed should not be much of a problem. Our FAE was concerned that we had 19 of these 
slow links in a single part, and would therefore not be able to use global clock recourses or digital clock 
managers (DCMs) because there were not enough DCMs. We then created several designs using a sin-
gle clock domain that did not involve DCMs, because we knew that a single clock domain would be 
excellent for timing constraints, place-and-route (PAR), and ease of engineering design. 

Framing Requirements
We needed a method of marking the beginning of a data frame, and also of differentiating between 
data and command frames. The CF_DDR link needed more than one bit for data, but not a full two 
bits. We could either develop or borrow a coding method to take advantage of the extra bandwidth for 
framing, but after considering the connector pins remaining for the system, there seemed to be no rea-
son to not just add a third bit. The third bit would indicate if the other two bits were either data or 
command, and the transition of the third bit would frame the data and commands (as shown in 
Figure 0-1, cmd). 

The Fast Link
We very much analyzed, worried about, and discussed the development of the fast link. We wanted to 
use the integrated SERDES in the then-upcoming Virtex-II Pro FPGAs, but felt there were many risks 
to our design at that time. The Virtex-II Pro FPGA had not even been officially announced yet. We 
had many questions: could Xilinx integrate these specialized analog portions into their process? 

FIGURE 0-1: Framing Requirements

clk

d[0]

d[1]

cmd

co c1 c2 c3 d0 d1

co c1 c2 c3 d0 d1



A COMPARISON OF TWO DIFFERENT FPGA-TO-FPGA DATA LINKS

PRELIMINARY INFORMATION XILINX • 175

Would the Virtex-II Pro be completed and released soon enough to be included in our product? In our 
research, we looked at several other options, including some networking- and fiber-based links. How-
ever, all of our research kept pointing us back to a simple clock embedded link or SERDES with a sim-
ple proprietary protocol. 

Cost Considerations
Using the Virtex-II Pro FPGA also helped with another requirement; low cost. While it was still too 
early for firm price quotes, the promise from Xilinx kept ringing in my head: “RocketIO™ and Pow-
erPC™ for free.” I could use the Virtex-II Pro devices and have the integrated SERDES, or pay the 
same price for my programmable gates plus pay for the external SERDES. From a cost standpoint, the 
answer seemed obvious, but from a risk and scheduling standpoint, this option was not nearly as 
attractive. I thought perhaps we should just use an external SERDES. And, even if we did use the 
Mindspeed™ parts, maybe we could replace them later with Virtex-II Pro FPGAs.

Integrated SERDES vs. External SERDES
As we thoroughly investigated using an external SERDES, the Virtex-II Pro devices with the internal 
SERDES started looking more attractive because of both the I/O count and the simultaneous switch-
ing outputs (SSO) involved. Our system needed to get 19 of the slower 400 Mb/s links and four of the 
fast links into and out of a single FPGA. Figure 0-2 illustrates our possible integrated SERDES 
approach, while Figure 0-3 illustrates an external SERDES approach.

FIGURE 0-2: Integrated SERDES

4
0
0
 M

b
it

4
0
0
 M

b
it

4
0
0
 M

b
it

4
0
0
 M

b
it

4
0
0
 M

b
it

3.135G

3.135G

3.135G

3.135G

3.135G

3.135G

3.135G

3.135G

4
0
0
 M

b
it

4
0
0
 M

b
it

4
0
0
 M

b
it

FPGA Significant Other IO
Clks, Strobes, and LEDs

19 Links Both

Directions

400 Mbit

152 Signals

16 Pins



HIGH-SPEED SERIAL I/O MADE SIMPLE •

176 • Xilinx PRELIMINARY INFORMATION

The Input/Output Requirements
The I/O requirements for this design were becoming very extensive. If each slow link required four 
pair, that, in itself, was 152 pins, and we needed an additional 128 data lines plus control lines for the 
SERDES. The I/O requirement was now for over three hundred pins, and we had not even counted the 
remaining I/O connections like the clocks, resets, timing strobes, and LEDs. We started to determine 
bank assignments for different I/O standards, and it first appeared to us this approach was not going 
to work. 

Simultaneous Switching Outputs
But there was an even bigger potential problem waiting just inside the proposed FPGA at the I/O 
ring. Xilinx (and all other FPGA manufacturers) make compromises when they design large FPGAs. 
One compromise was to not supply enough I/O ring power and ground connections to support using 
all of the I/O in a SSO environment. Aggravating this potential problem were some unique design-
specific circumstances that further increased the challenge. The output streams (four 16-bit buses on 
most external SERDES) usually contained the same data. Thus, if one output was switching, there was 
a very high likelihood that four outputs were switching at the same time. 

Framing Requirements
The faster link also needed to be aligned, framed, and transitioned to ensure clock recovery. The obvi-
ous choice was to use the 8b10b coding and decoding to guarantee adequate transitions for the embed-
ded clock recovery and provide "k" characters for framing. The cost for all of this convenience was the 
need for an increase in the physical speed of the link from 2.5 Gb/s to 3.125 Gb/s. This could have 
been a problem. So, with all those benefits and the 8b10b encoders and decoders built into the multi-
gigabit transcievers (MGTs), we investigated pushing 3.125 Gb/s across cable.

Cables, Boards, Backplanes, and Connectors
I needed chassis-to-chassis communication over copper for at least 3 meters. Another interesting 
requirement was that the PCB the FPGA was to be mounted on must be hot swap replaceable from the 
front of the unit, and all interconnecting cables must enter on the back of the unit. 

FIGURE 0-3: External SERDES

4
0
0
 M

b
it

4
0
0
 M

b
it

4
0
0
 M

b
it

4
0
0
 M

b
it

4
0
0
 M

b
it

3.135G

3.135G

3.135G

3.135G

3.135G

3.135G

3.135G

3.135G

4
0
0
 M

b
it

4
0
0
 M

b
it

4
0
0
 M

b
it

FPGASERDES
Significant Other IO

Clks, Strobes, and LEDs

19 Links Both

Directions

400 Mbit

152 Signals

128 Pins +

Clock and Control
(256 Pins with some SERDES)

16 Pins

2.5G 16 Bi ts  a t 156 MHz

2.5G 16 Bi ts  a t 156 MHz

2.5G 16 Bi ts  a t 156 MHz

2.5G 16 Bi ts  a t 156 MHz

2.5G 16 Bi ts  a t 156 MHz

2.5G 16 Bi ts  a t 156 MHz

2.5G 16 Bi ts  a t 156 MHz

2.5G 16 Bi ts  a t 156 MHz



A COMPARISON OF TWO DIFFERENT FPGA-TO-FPGA DATA LINKS

PRELIMINARY INFORMATION XILINX • 177

Xilinx was at first unsure of this approach because they had only tested their FPGA over inches of 
FR4 PC boards with only two connectors. However, Xilinx also indicated that if I wanted to try a new 
implementation, they would like to observe the testing. Fortunately, I had a ready solution—some of 
the best high-speed signal manipulation engineers in the industry were working with me at that time, 
and were ready to design what I needed. They had years of experience pushing high definition serial 
digital video signal through connectors, backplanes, and cables. And while the bit rate of those signals 
was only 1.5 Gb/s, it had potential for long transitionless gaps. The spectrum was fondly referred to as 
"DC to light," and it is an unpleasant looking signal. I wanted faster speed and also the guaranteed 
transitions provided by 8b10b coding and decoding. My high-speed engineering experts were confi-
dent we could get the cables and connectors to perform properly, but they were concerned about dig-
ital noise getting into the analog circuitry. Fortunately, we decide to attempt this approach anyway.

Implementation Details
The architecture was finally in place and it was time to start writing Verilog HDL to implement our 
hardware design.

The Slow Link
Coding the CF_DDR links was not extremely difficult, but it was not as easy as we thought it would 
be either. We had planned on using a reference design from the Xilinx web site as a starting point, but 
the reference design used structural primitives rather than a behavioral approach. We do not like to 
instantiate primitives, and were assuming we could write Register Transfer Language (RTL) Verilog 
and feed it through the tools. 

As we began the design, questions started to arise. How could we guarantee use of the DDR fea-
tures of the Input/Output Block (IOB)? How did the LVDS I/O standard fit into all of this? Different 
synthesis tools changed the approaches slightly. 

In the end, some instantiation of primitives was needed. The primitives that were instantiated 
rather than inferred in our design are listed in Table 1.

We soon had a design in place that was mostly RTL and had been verified through simulation. 
We also had investigated the synthesis results and verified that we were using the DDR feature of the 
IOBs. A quick operation of one receiver and one transmitter showed that the 156-MHz clock rate was 
easy to incorporate as well. We thought the design was complete, and we published it internal to the 
company so it could be used by the various designs that would need it.

The Fast Link
We were not certain what to expect when coding the MGTs in our design. When we began the design, 
the MGT product had not been officially announced and operational data was not available. The only 
information we really had to base expectations on was a Mindspeed data sheet. But once we learned 

TABLE C-1: Instantiated Primitives

RAM16X1D

FDDRRSE

IBUFDS

OBUFDS



HIGH-SPEED SERIAL I/O MADE SIMPLE •

178 • Xilinx PRELIMINARY INFORMATION

that Xilinx had incorporated a new digital interface to the Mindspeed core, all we could do was wait 
for our early access data. Finally, I received a telephone call from my Xilinx representative. Xilinx had 
some data for me, but I needed to prepare myself because it was a lot of data. I already knew that the 
PowerPC would be complicated and that it would have a lot of documentation, so I reminded him that 
I was not using the CPU core. He smiled and replied that the MGT portion of the documentation data 
set, alone, was over 1000 pages! As I hung up the telephone, I began to realized the huge task we were 
facing with the MGT portion of our design. The MGT was a complex core and we needed to under-
stand it. I knew I must find a knowledgeable design person to dedicate full-time to the MGTs.

Developing the code itself was quite easy. We just cut and pasted some sample instances, then 
modified them to fit our design needs. It was more difficult, however, to know how to set the many 
parameters and setup ports, but not as difficult as I had first imagined. This task would have been even 
easier if we were planning to use one of the pre-defined standards such as XAUI. Xilinx had all of the 
parameters for the pre-defined standards already set up, but our custom application required a little 
more effort. 

Simulation also required a few changes. The models of the MGT were SWIFT or encrypted mod-
els. But after an upgrade to Model Sim SE and a few modifications to the scripts supplied as part of the 
MGT development kit, we were simulating our 3 Gb/s link.

Proving Our Concept
With so much at risk, we decided to build a proof-of-concept board to characterize and qualify the 
approach. As almost an afterthought, we decided build a prototype of the slower link as well.

As the proof-of-concept boards neared completion, we received word that Xilinx would not be 
able to ship the Virtex-II Pro devices to us as early as we had expected. We decided to build some of 
the boards anyway to test other high-risk circuits. Once we had the boards in-house, we decided to also 
test the slower CF_DDR links. The data link we assumed would be simple to engineer suddenly 
became difficult. 

Testing the Slow Link
Our use of the tools for speed verification had been hurried, and we discovered that the results were 
flawed. We had used only a simple period constraint with no offsets and no special consideration for 
the half-cycle paths, and assumed that the period constraint would mitigate any half-cycle concerns, 
but it had not. The prototype link was not working; not at 156 MHz and not at 96 MHz. The closer 
we looked; the more difficult this problem became. 

Trying to test a few of these links in an otherwise empty part was agonizing. The placer was plac-
ing the logic everywhere and anywhere. As we got into the details of the reference design, we discov-
ered I/O tiles. Because they were so poorly documented, it was difficult to determine how they 
functioned. We also struggled to find the right way to help the placer through timing constraints. 
This was supposed to be easy, yet, it became painfully difficult. 

Input/Output Tiles and Pin Placement
As the mystery of the I/O tiles began to unfold, we could see that the advertised fast DDR rates were 
reachable, but only as an isolated, hand crafted solution. Such links would not operate as fast through 
our normal design methodologies (RTL with timing driven PAR, and I/O placement picked for ease of 
board routing). 



A COMPARISON OF TWO DIFFERENT FPGA-TO-FPGA DATA LINKS

PRELIMINARY INFORMATION XILINX • 179

Input/Output tiles were made up of certain groups of four adjacent IOBs with some special extra-
fast interconnect. The I/O tiles only exist on the two "vertical" sides of the die, and they only come in 
groups of four. In past years we would always pick the pins based on logic/data flow. But as the pin 
counts and routing resources increased, it had became common practice for us to let the PCB designer 
pick pins. Figure 1-1 is an example of the pins selected by logic/data flow. Figure 1-2 is an example of 
pin selection when the PCB designer picked the pins.  

This normally is not a very involved process, but if we wanted to be in the same IO tile, we had 
to be in adjacent IOBs. Luckily, some of our I/O was on adjacent IOBs on the vertical sides. This did 
not help much because, even though we had only four signals (three data and a clock), we were using 
LVDS. With differential signaling we could only get two signals per tile. Then we worried: what if 
two of our signals were in the same tile and two were not, was the skew worse than if they had all been 
in separate tiles? Finally, we ignored I/O tiles, but picked adjacent IOBs to improve local clock rout-
ing.   

FIGURE 1-1: Pins Selected Based on Logic/Data Flow

FIGURE 1-2: Pins Selected by PCB Designer



HIGH-SPEED SERIAL I/O MADE SIMPLE •

180 • Xilinx PRELIMINARY INFORMATION

Local Clocking
We could not use global clocking resources, global buffering (BUFG), or DCM for the forwarded clock 
that came with the data because we needed 19 slow links in a single FPGA. This local clock routing 
was actually the cause of the prototype failures.

We did not have much logic in the parts other than the CF_DDR links and associated test cir-
cuitry, but, the placer tried to spread the logic over the entire chip. Once we started to get placements 
that were reasonable, it then became obvious that merely controlling the placement would not be 
enough. We needed to change the structure of the logic, as shown the simplified block diagram in 
Figure 1-3.

The Arbuckle Method
There is a subtle trick hidden in the structure of the CF_DDR_RX. We fondly refer to it as the 
Arbuckle method after the designer who originated it in a Xilinx design that has more clock domains 
than global clock buffers. The problem with local clocks is skew. Without the global clock buffers, it 

FIGURE 1-3: New Structure Block Diagram

cf_clk

bufg

cf_data0

cf_data1

DPRAM
D_IN

IN_ADDR
OUT_ADDR

CounterCounter

D_OUT

cf_cmd



A COMPARISON OF TWO DIFFERENT FPGA-TO-FPGA DATA LINKS

PRELIMINARY INFORMATION XILINX • 181

is relatively easy for the clock edges of two related flip-flops to be skewed enough to cause a logic fault. 
We often think of this as one of the flip-flops clocked too early. This solution to the problem is to 
ensure that the data never beats the clock by inserting a blocking flip-flop that operates off the oppo-
site edge of the clock. The implementation of the Arbuckle method in the CF_DDR_RX is somewhat 
complex, but is represented in the lower simplified block diagram in Figure 1-4.

In the upper block diagram of Figure 1-4, if the skew between when the clock arrives at F1 and 
F2 or F3 is greater than the delay for the output of F1 to reach F2 or F3, then incorrect operation of the 
circuit can occur. The lower diagram of Figure 1-4 (representing the Arbuckle Method), shows that 
negative edge-triggered flip-flops have been added to ensure that the data from F1 never arrives at F2 
and F3 before the clock. This addition might seem strange to designers who normally follow strict 
synchronous design, but it actually does work. 

FIGURE 1-4: Simplified Example

F1

F3

F2

F2

F3

Pad

ibuf

Pad

F1

ibuf



HIGH-SPEED SERIAL I/O MADE SIMPLE •

182 • Xilinx PRELIMINARY INFORMATION

Double Data Rate Can be Confusing
One other difficulty we encountered with the slow link also involved both edges of the clock. Multibit 
DDR was confusing to debug because the data was always getting mixed up, interleaved, and con-
fused. 

Clock Forwarded_Double Data Rate Transmitter 
Overall, the transmitter was the easy part of the design. The structure was mostly standard DDR out-
put. The main question concerning the transmitter was related to the phasing of the clock and data. 
We originally planned to send the clock 90 degrees out of phase with the data (Figure 1-5). This 
would locate the clock edges in the center of the stable data area.

The problem was in the receiver. The amount of skew between the single fanout data pins and the 
higher fanout clock lines would result in setup and hold problems on the flip-flops. We experimented 
with using the phase shifter of the DCM, but we ultimately just sent out the clock and data in phase 
(Figure 1-6).

Testing the Fast Link
The MGT-based link was much simpler in many ways, including the timing constraints, placement, 
and verification. A period constraint on the user clock was the only timing constraint. The placer 
could not mis-align the placement when it was working with a fixed core. And, because it was a hard 
core, our only concern was the interface configuration, which was easy to follow because the data was 
deserialized and presented in an organized 16-bit bus. 

Other Thomson Mulitmedia design engineers were also thinking of using the Virtex-II Pro 
MGTs in another part of the company, and had contacted me to ask about our development process in 
using these parts. They were concerned about the amount of time it took from when we first got the 
board in the prototype lab until we had actually transferred data between two cards. “Was it days or 
weeks,” they wanted to know? My answer to them was that it took us only hours to accomplish this 
task. Actually, would have been only minutes if we had trusted our receiving LED rather than spend-
ing the time to hook up the logic analyzer to see the received data pattern. It really did come up imme-
diately! Clock correction was not working correctly at first and we changed the emphasis and a few 
other items later. But, fundamentally, it transferred data at 
3.123 Gb/s (2.5 Gb/s payload) between two boards across copper cable at our first attempt.

FIGURE 1-5: Clock and Data Out of Phase

FIGURE 1-6: Clock and Data In Phase



A COMPARISON OF TWO DIFFERENT FPGA-TO-FPGA DATA LINKS

PRELIMINARY INFORMATION XILINX • 183

Fast Link Problems and Solutions
I am not saying that the MGT design was painless. There were tool problems, documentation prob-
lems, and other surprises. But, because we had expected some problems, we were able to adapt early in 
the process.

Differential BREF Clock Pins
The first big surprise put the finished board design on hold just prior to ordering the raw boards. My 
Xilinx FAE telephoned me to tell me that if I wanted to run at 3.2 Gb/s, we needed to be on special 
clock pins. Evidently, there were special low-skew clock lines (BREFCLK) that went directly to the 
MGT. Our problem was that no one knew exactly which pins were the BREF clock these pins. Our 
board design was on hold for two days as we worked to track down the mysterious BREF clock pins. 

We finally determined the BREF pin numbers, but that was not the end of our BREF problems. 
The BREF pins were difficult to identify because Xilinx had hoped that the pins would not be needed. 
In fact, support for the BREF paths had been eliminated from the first version of the Virtex-II Pro 
FPGA support tools. Fortunately, there was a patch, but the patch turned out to be different from most 
EDA patches. Besides a script that was run once, there were a series of mouse movements and clicks in 
FPGA editor that had to be repeated each and every time we went through PAR. This all eventually 
worked out, but we did have some frustrating moments.

Confusing Documentation
Documentation that was confusing originally caused us some frustration. However, most of the con-
fusion was related to clock correction and other comma/"k" character issues. Many of these issues were 
not mistakes, but, rather, confusing wording that has since been revised.

Managing Parameters
One other unpleasant aspect of the MGT is managing the parameters in Verilog. With 46 parameters 
to set, it was certain to be a large effort. But with different synthesis tools and simulation needing dif-
ferent syntax, the potential for simulation and the lab getting out of sync was certainly there. We never 
actually had a problem, most likely because we were so worried about it. 

Maybe these large primitives will be what it takes to get rid of all these comments that are not 
comments, and have all tools support parameters as defined in the language. Below is an example of 
the syntax for two of the four tools. Note that the first syntax must be one line of text. 

/* synthesis xc_props = "ALIGN_COMMA_MSB=TRUE, CHAN_BOND_MODE=OFF, 
CHAN_BOND_OFFSET=0000, CHAN_BOND_ONE_SHOT=FALSE, 
CHAN_BOND_SEQ_1_1=10001000001, CHAN_BOND_SEQ_1_2=10001000010, 
CHAN_BOND_SEQ_1_3=10001000011, CHAN_BOND_SEQ_1_4=10001000100, 
CHAN_BOND_SEQ_2_1=10001001001, CHAN_BOND_SEQ_2_2=10001001010, 
CHAN_BOND_SEQ_2_3=10001001011, CHAN_BOND_SEQ_2_4=10001001100, 
CHAN_BOND_SEQ_2_USE=FALSE, CHAN_BOND_SEQ_LEN=2, CHAN_BOND_WAIT=5, 
CLK_CORRECT_USE=TRUE, CLK_COR_INSERT_IDLE_FLAG=FALSE, 
CLK_COR_KEEP_IDLE=FALSE, CLK_COR_REPEAT_WAIT=00000, 
CLK_COR_SEQ_1_1=00110111100, CLK_COR_SEQ_1_2=00010010101, 
CLK_COR_SEQ_1_3=00010111100, CLK_COR_SEQ_1_4=00010110101, 
CLK_COR_SEQ_2_1=10010001001, CLK_COR_SEQ_2_2=10010001010, 
CLK_COR_SEQ_2_3=10010001011, CLK_COR_SEQ_2_4=10010001100, 
CLK_COR_SEQ_2_USE=FALSE, CLK_COR_SEQ_LEN=4, COMMA_10B_MASK=1111111000, 
DEC_MCOMMA_DETECT=TRUE, DEC_PCOMMA_DETECT=TRUE, DEC_VALID_COMMA_ONLY=FALSE, 
MCOMMA_10B_VALUE=1100000000, MCOMMA_DETECT=FALSE, PCOMMA_10B_VALUE=0



HIGH-SPEED SERIAL I/O MADE SIMPLE •

184 • Xilinx PRELIMINARY INFORMATION

11111000, PCOMMA_DETECT=TRUE, RX_BUFFER_SE=TRUE, RX_DATA_WIDTH=2, 
RX_DECODE_USE=TRUE, RX_LOSS_OF_SYNC_FSM=FALSE, TERMINATION_IMP=50, 
SERDES_10B=FALSE, TX_BUFFER_USE=TRUE, TX_DATA_WIDTH=2, 
TX_DIFF_CTRL=400, TX_PREEMPHASIS=3" */;

// XST Primitive Attributes
// synthesis attribute ALIGN_COMMA_MSB           of gb_transceiver_m 
is "TRUE"
// synthesis attribute CHAN_BOND_MODE            of gb_transceiver_m 
is "OFF"
// synthesis attribute CHAN_BOND_OFFSET          of gb_transceiver_m 
is "0000"
// synthesis attribute CHAN_BOND_ONE_SHOT        of gb_transceiver_m 
is "FALSE"
// synthesis attribute CHAN_BOND_SEQ_1_1         of gb_transceiver_m 
is "10001000001"
// synthesis attribute CHAN_BOND_SEQ_1_2         of gb_transceiver_m 
is "10001000010"
// synthesis attribute CHAN_BOND_SEQ_1_3         of gb_transceiver_m 
is "10001000011"
// synthesis attribute CHAN_BOND_SEQ_1_4         of gb_transceiver_m 
is "10001000100"
// synthesis attribute CHAN_BOND_SEQ_2_1         of gb_transceiver_m 
is "10001001001"
// synthesis attribute CHAN_BOND_SEQ_2_2         of gb_transceiver_m 
is "10001001010"
// synthesis attribute CHAN_BOND_SEQ_2_3         of gb_transceiver_m 
is "10001001011"
// synthesis attribute CHAN_BOND_SEQ_2_4         of gb_transceiver_m 
is "10001001100"
// synthesis attribute CHAN_BOND_SEQ_2_USE       of gb_transceiver_m 
is "FALSE"
// synthesis attribute CHAN_BOND_SEQ_LEN         of gb_transceiver_m 
is "2"
// synthesis attribute CHAN_BOND_WAIT            of gb_transceiver_m 
is "5"
// synthesis attribute CLK_COR_INSERT_IDLE_FLAG  of gb_transceiver_m 
is "FALSE"
// synthesis attribute CLK_COR_KEEP_IDLE         of gb_transceiver_m 
is "FALSE"
// synthesis attribute CLK_COR_REPEAT_WAIT       of gb_transceiver_m 
is "00000"
// synthesis attribute CLK_COR_SEQ_1_1           of gb_transceiver_m 
is "00110111100" 
// synthesis attribute CLK_COR_SEQ_1_2           of gb_transceiver_m 
is "00010010101" 
// synthesis attribute CLK_COR_SEQ_1_3           of gb_transceiver_m 
is "00010111100" 
// synthesis attribute CLK_COR_SEQ_1_4           of gb_transceiver_m 
is "00010110101" 



A COMPARISON OF TWO DIFFERENT FPGA-TO-FPGA DATA LINKS

PRELIMINARY INFORMATION XILINX • 185

// synthesis attribute CLK_COR_SEQ_2_1           of gb_transceiver_m 
is "10010001001"

// synthesis attribute CLK_COR_SEQ_2_2           of gb_transceiver_m 
is "10010001010"

// synthesis attribute CLK_COR_SEQ_2_3           of gb_transceiver_m 
is "10010001011"

// synthesis attribute CLK_COR_SEQ_2_4           of gb_transceiver_m 
is "10010001100"

// synthesis attribute CLK_COR_SEQ_2_USE         of gb_transceiver_m 
is "FALSE"

// synthesis attribute CLK_COR_SEQ_LEN           of gb_transceiver_m 
is "4"

// synthesis attribute COMMA_10B_MASK            of gb_transceiver_m 
is "1111111000"

// synthesis attribute DEC_MCOMMA_DETECT         of gb_transceiver_m 
is "TRUE"

// synthesis attribute DEC_PCOMMA_DETECT         of gb_transceiver_m 
is "TRUE"

// synthesis attribute DEC_VALID_COMMA_ONLY      of gb_transceiver_m 
is "FALSE"

// synthesis attribute MCOMMA_10B_VALUE          of gb_transceiver_m 
is "1100000000"

// synthesis attribute MCOMMA_DETECT             of gb_transceiver_m 
is "FALSE"

// synthesis attribute PCOMMA_10B_VALUE          of gb_transceiver_m 
is "0011111000"

// synthesis attribute PCOMMA_DETECT             of gb_transceiver_m 
is "TRUE"

// synthesis attribute RX_BUFFER_USE             of gb_transceiver_m 
is "TRUE"

// synthesis attribute RX_DATA_WIDTH             of gb_transceiver_m 
is "2"

// synthesis attribute RX_DECODE_USE             of gb_transceiver_m 
is "TRUE"

// synthesis attribute RX_LOSS_OF_SYNC_FSM       of gb_transceiver_m 
is "FALSE"

// synthesis attribute SERDES_10B                of gb_transceiver_m 
is "FALSE"

// synthesis attribute TERMINATION_IMP           of gb_transceiver_m 
is "50"

// synthesis attribute TX_BUFFER_USE             of gb_transceiver_m 
is "TRUE"

// synthesis attribute TX_DATA_WIDTH             of gb_transceiver_m 
is "2"

// synthesis attribute TX_DIFF_CTRL              of gb_transceiver_m 
is "400"

// synthesis attribute TX_PREEMPHASIS            of gb_transceiver_m 
is "3"



HIGH-SPEED SERIAL I/O MADE SIMPLE •

186 • Xilinx PRELIMINARY INFORMATION

More Difficult Board Design
Another challenge for the MGT-based link included a board design that was more difficult than antic-
ipated. Board impedances needed to be carefully controlled. Stubs, including stubs created when via-
ing to a different layer, and special requirements pertaining to power supplies and bypassing were all 
new to me as an FPGA person. But my high-speed experts knew just what to do.

Conclusion
The initial estimates were that the MGT-based link would be on order of magnitude more difficult 
than the slower clock forwarded design. They turned out to be approximately the same amount of 
work. 

Multibit DDR with clock forwarding provides a reasonable way to move data between two 
FPGAs at moderate rates, and also in circumstances where global clocking resources can be used for 
the forwarded clocks. To push the speed or avoid using global clocking, some extra work might be 
required.

But, with fewer pins, more speed, and all the other benefits, an integrated SERDES is a better 
solution. We will use the MGT links again and encourage Xilinx to give us both faster and slower 
SERDES in the future. 

Acknowledgements
I would like to acknowledge Lynn Arbuckle, Dave Bytheway, and Randall Redondo of Thomson, who 
did most of the real work discussed in this paper. Barry Albright and Marc Walker are the high-speed 
experts, also of Thomson. I would also like to acknowledge the outstanding support provided by Jeff 
Hutchings, my Xilinx FAE, and Tim Hemphill, my Xilinx sales representative. And finally, thank 
you to my technical editor, Sandy Christensen, who is also my loving and supportive wife. 



GLOSSARY

PRELIMINARY INFORMATION XILINX • 187

APPENDIX D

Glossary

4b/5b: Similar to 8b/10b encoder, but simpler. As the name implies, 4 bits are encoded into 5 bits. 
The 4b/5b advantage over 8b/10b is that its encoders and decoders are much simpler. The downside is 
that there are few control characters and it does not handle the DC balance or disparity problem. With 
the same coding overhead and less functionality, 4b/5b is not often used anymore.

64b/66b: A line encoding scheme developed for 10-Gigabit Ethernet that uses a scrambling method 
combined with a non-scrambled sync pattern and control type.

8b/10b: An encoding scheme developed by IBM that has been widely adapted. It is a value lookup-
type encoding scheme where 8-bit words are translated into 10-bit symbols. These symbols ensure a 
good number of transitions for the clock recovery.

AC Coupling: Method of connecting a receiver to a transmitter through series capacitors. Allows for 
dc biases differences between the receiver and transmitter.

Active Equalizer: Can be thought of as a frequency dependant amplifier/attenuator.

Addressing/switching/forwarding: While the direct point-to-point nature of a serial protocol elim-
inates many of the needs for an addressing scheme, some of the more complex protocols include 
addressing schemes. With addressing comes the possibility for forwarding and switching.

Advanced Switching: A switched fabric protocol built on the same physical and data level protocol 
as PCI Express. An emerging standard set to be a significant player in the switched fabric arena.

Alignment Sequence: A unique bit pattern in the serial stream that can be used to determine 
word/symbol alignment. Often consist of a pair of reserved symbols that form a unique bit sequence 
that is impossible to generate elsewhere in the stream.

ASIC: Application Specific Integrated Circuit.

ASSP: Application Specific Standard Part.

ATCA: Advanced Telecom Computing Architecture or AdvancedTCA, this PICMG spec standard is 
a specification for next generation telecommunication cabinets. Its aim is to ease multi-vendor 
interoperability while providing a very flexible, very scalable system. The standard has various imple-
mentations within a common theme. Architectures for star-based backplanes, redundant star-based 
backplanes, and fully connected mesh are included.

Aurora: A relatively simple protocol that handles only link-layer and physical issues.

Back drilling: After plating, the unused portion of the via is removed by drilling.

Backplane: A common bus at the rear of the computer chassis connecting each circuit card slot to the 
other parts of the system, such as the motherboard on a PC. It also distributes low-voltage AC and DC, 
filtered and un-filtered power to each slot. As a rigid circuit board, a backplane can support higher 
connection speeds and more logic. They are used in large-scale network switches and routers. 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

188 • Xilinx PRELIMINARY INFORMATION

BERS: Bit Error Rates.

BGA: Ball Grid Array. (Sometimes abbreviated BG.) As opposed to a pin grid array (PGA), a ball grid 
array is a type of microchip connection methodology. Ball grid array chips typically use a group of sol-
der dots, or balls, arranged in concentric rectangles to connect to a circuit board. 

Bridge: A device that forwards traffic between network segments based on (OSI Reference Model) 
data link layer information. These segments would have a common network layer address. A bridge 
can connect different kinds of networks (e.g., wireless LAN to Ethernet). 

BUFG: Global buffer.

Cat 5: A grade of twisted pair wiring commonly installed in office buildings.

Channel Bonding: Channel bonding absorbs the skew between two or more MGTs, and presents the 
data to the user as if it were transmitted over a single link.

CLK: Clock. A circuit in a computer that uses a quartz crystal to generate a series of regular pulses that 
are sent to the CPU. The clock is the heartbeat of the computer. Switching operations in the computer 
take place while the clock is sending a pulse. The faster the clock speed, the more instructions per sec-
ond the computer can execute. 

Clock Correction and Channel Bonding: Allows for correction of a difference between the transmit 
clock and the receive clock. Also allows for skew correction between multiple channels. (Channel 
bonding is optional and not always included in SERDES.)

Clock Domains: Logic clocked by the same clock source are said to be in the same clock domain.

Clock Forwarded: Clock forwarded (cf) or forwarding is another common term for source synchro-
nous.

Clock Manager: Manages various clocking needs including clock multiplication, clock division, and 
clock recovery.

Clock Recovery: When a clock is derived from the transitions of the incoming bit stream.

Clock Tree: Traces and drivers in an IC that is designed to distribute a clock to the logic within given 
skew specification.

CML: Current Mode Logic; a differential based electrical interface well suited to the gigabit link.

CMOS: Complementary Metal Oxide Semiconductor.

Comma: One or two symbols specified to be the alignment sequence. This sequence can usually be set 
in the transceiver, but in some cases it may be predefined.

Cosmic Rays: A generic term often used to describe any of several types of high energy electromag-
netic radiation, including gamma rays and alpha and beta particle radiation.

CRC: Cyclic Redundancy Check; a method of determining errors in the transmission of data.

Cross-talk: Degrading of a signal as a result of the interference of another signal.

CSMA/CD: Carrier Sense Multiple Access with Collision Detection.

Data formats: Data value definitions for video and audio protocols; how we use the ones and zeros to 
represent specific values or meanings. 

Datagram: A data packet carrying its own address information so it can be independently routed from 
its source to the destination computer. 



GLOSSARY

PRELIMINARY INFORMATION XILINX • 189

Data striping: A common function of a protocol is to define of how and where data is separated from 
the overhead. This is commonly referred to as stripping or de-embedding.

DCA: Digital Communication Analyzer; takes the sampling scope and adds many of other features.

DC Balance: Average DC voltage of a bitstream. If the bitstream has more “ones” than “zeros,” it will 
have a positive DC balance. Normally, the ideal is to have a zero DC balance (the same number of 
“ones” and “zeros”).

DC Bias: A set DC voltage around which a transmitter or receiver operates.

DC Coupling: Method of connecting a receiver to a transmitter through direct connection, rather 
than through series capacitors used in AC coupling. The DC biases of the receiver and transmitter 
must be identical.

DCM: Digital Clock Manager.

DDR: Double Data Rate (in reference to RAM and registers).

De-emphasis: Overdriving the first of each transition or underdriving any consecutive bit times of 
the same value. (A different name for pre-emphasis.) 

Deserializer: Takes a serial stream at a rate of n times y and changes it into parallel data of width n 
changing at rate y.

Deterministic jitter: The component of the jitter attributable to specific patterns or events. Includes 
jitter resulting from sources such as asymmetric rise/fall times, inter-symbol interference, power-sup-
ply feed through, oscillator wand, and cross-talk from other signals. Often abbreviated as DJ or dj.

Digital Communication Analyzers: DCA — a sampling oscilloscope with additional features useful 
for analyzing data communication signals.

Digital Storage Scope: Converts the incoming signal to digital samples that are stored and then used 
to recreate the signal on an oscilloscope display. 

Differential Signals: Signals that use both a positive and a negative line pair. The value of the signal 
is determined by the difference in voltage between the two signals of the pair. Differential signals are 
more robust than non-differential or single-ended signals.

DLL: Delay-Locked Loop (also known as digital delay-locked loops)

Dropped: Data is “dropped” when a FIFO storage register is getting close to full and does not write 
the incoming data sequence into storage at the next clock correction sequence. 

DSP: (1) Digital Signal Processing. Using computers to process signals such as sound, video, and 
other analog signals that have been converted to digital form. Some uses of DSP are: to decode modu-
lated signals from modems, to process sound, video, and images in various ways, and to understand 
data from sonar, radar, and seismological readings. (2) Digital Signal Processor. A specialized CPU 
used for digital signal processing. Some uses of digital signal processors are with modems and sound 
boards. 

EDIF: Electronic Design Interchange Format 

ef: End of frame.

EISA: Bus architecture used in early PCs.

Embedding: A protocol often defines how and where the data is embedded into the protocol streams 
or packets. This is especially true of protocols that follow the protocol stack model.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

190 • Xilinx PRELIMINARY INFORMATION

EMI: ElectroMagnetic Immersions. Radiated electromagnetic energy is often subject to emissions 
standards set by government and standards agencies.

ESR: Effective Series Resistance. The undesirable, yet real, resistance quality of a capacitor.

ESL: Effective Series Inductance. The undesirable, yet real, inductive quality of a capacitor.

Ethernet: A common LAN protocol.

Eye pattern: The pattern formed when a sequence of snapshots of a waveform of random bits and of 
the same waveform duration are superimposed on one another.

FEC: Forward Error Correction <algorithm>. A class of methods for controlling errors in a one-way 
communication system. Forward Error Correction sends extra information along with the data, which 
can be used by the receiver to check and correct the data. 

Ferrite Bead: An inductor made of a bead of ferrite material commonly used to suppress or filter 
energy of a certain frequency range.

FiberChannel: FiberChannel has always been a serial standard, but its speeds have increased over the 
years. As copper interconnects have advanced, it has also become available on copper as well as fiber 
optics. 

Field solver: A tool/mathematical model that can determine the exact dimensions for any given 
impedance.

FIFO: First-in, first-out (as opposed to LIFO – last-in, first-out). A data structure or hardware buffer 
where items come out in the same order they came in. 

FireWire: The former name for High-Performance Serial Bus. A serial bus developed by Apple Com-
puter and Texas Instruments (IEEE 1394). The High Performance Serial Bus can connect up to 63 
devices in a tree-like daisy chain configuration, and transmit data at up to 400 megabits per second. 
It supports plug-and-play and peer-to-peer communication. 

Flip-chip: A surface mount chip technology where the chip is packaged in-place on the board and 
then under-filled with an epoxy. A common technique for attachment is to place solder balls on the 
chip, “flip” the chip over onto the board and melt the solder. 

Flow control: Protocols can also define flow control. This can vary from defining a way of dynami-
cally scaling sub-channel bandwidth allocation, to varying the ideal insertion rate to match the clock 
correction needs. 

Fmax: Maximum toggle rate of a flip-flop in a given technology or part.

FOLS: Fiber Optic LAN Section (Telecommunications Industry Association). 

FR-4: A common PCB assembly material.

Fractional Phase Detector: A phase detector that uses multiple phases of the same clock in the phase 
detection.

HSTL: High-Speed Transistor Logic. 

IBIS models: text-based description of a circuit's behavior. Adequately accurate at frequencies below 
1 GHz. Does not reveal construction details of the circuit.

IC Geometry: A way of grouping ICs by the size or dimension of the polygons. Examples include 0.25 
micron and 90 nanometer.

Idle symbol or sequence: Symbol sent when there is no data to send. 



GLOSSARY

PRELIMINARY INFORMATION XILINX • 191

IEEE 1394 FireWire™: A high performance serial bus for plug-and-play and peer-to-peer networks. 

Infiniband: A box-to-box protocol run over either copper or fiber. Infiniband-style cables have 
become highly popular for multi-gigabit links of a few meters range. The specification allows for a 
variety of devices and complexity and includes specifications for repeaters, and switches or hubs to 
expand the number of connected devices.

ILD: Injection Laser Diode.

Impedance: The combined effect of capacitance, inductance, and resistance on a signal. According to 
Ohm’s law, voltage is the product of current and resistance at a given frequency. 

Impedance is a measure of resistance to electrical current flow when a voltage is moved across it. 
Impedance is measured in ohms and is the ratio of voltage to the flow of current allowed. 

Instantiate/instantiation: In programming, to produce a more defined version of an object by replac-
ing variables with values (or other variables). As used in logic programming, this means to bind a logic 
variable (type variable) to some value (type). 

IP: Intellectual Property (as in IP core). 

ISA: A very early PC bus architecture.

ISI: Inter-symbol interference; happens when the serial stream contains a number of bit times of the 
same value followed by short bit times of the opposite value.

Isochronous: Matched in frequency but not necessarily matched in phase. 

Jitter: Variation of the transition from the ideal transition placement; the difference between the ideal 
zero crossing and the actual zero crossing.

LFSR: Linear Feedback Shift Register. 

Line Decoder: Decodes from line encoded data to plain data. (This is an optional block that is some-
times done outside of the SERDES.)

Line Encoder: Encodes the data into a more line friendly format. This usually involves eliminating 
long sequences of non-changing bits. May also adjust data for even balance of ones and zeros. (This is 
an optional block sometimes not included in a SERDES.)

Line Encoding Schemes: A method of encoding data for transmission over a serial stream.

LVCMOS: Low Voltage Complementary Metal Oxide Semiconductor. 

LVDS: Low Voltage Differential Signaling. 

LVTTL: Low Voltage Transistor-Transistor Logic.

Packet: A well-defined collection of bytes, consisting of a header, data, and trailer. 

Passive equalizer: A passive circuit that has a frequency response that is complementary to the trans-
mission losses, similar to a filter.

MAC (Media Access Control): The lower sublayer of the OSI data link layer. The interface between 
a node's Logical Link Control and the network's physical layer. The MAC differs for various physical 
media.

Microstrip: A thin, strip-like transmission line used for transmitting microwave frequencies; typi-
cally mounted on a flat dielectric substrate that is mounted on a ground plane. 

MII: Media Independent Interface. 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

192 • Xilinx PRELIMINARY INFORMATION

MSB: Most Significant Bit. In a binary number, this is the bit that is the farthest to the left, and has 
the greatest weight. 

OC: Optical Carrier. The transmission speeds defined in the SONET specification. Optical Carrier 
defines transmission by optical devices, and STS is the electrical equivalent. 

OC-192: Optical Carrier 192 (10 Gb/s). 

PAR: Place-and-route. 

PCB Assemblies: Assembled circuit boards.

PCI: Peripheral Component Interconnect. A personal computer local bus designed by Intel that oper-
ates at 33 MHz and supports Plug and Play. It provides a high-speed connection with peripherals and 
allows connection of seven peripheral devices. It is mostly used with Pentium computers, but is pro-
cessor independent and therefore able to work with other processors. It plugs into a PCI slot on the 
motherboard and can be used along with an ISA or EISA bus. 

PCI Express: Takes the old parallel PCI structure and updates it to a high-speed serial structure. 
Upper levels of the protocol remain compatible providing an easy adaptation into legacy PCI systems.

PCMCIA: A bus architecture commonly used in notebook computers.

Physical interface: Drive levels, pre-emphasis, etc., are specified by the protocol to ensure compati-
bility between devices.

Physical layer interface: The portion of a protocol dealing with the physical/electrical characteristics 
of the signals. Also called a PHY.

PICMG: PICMG is a consortium of over 600 companies who collaboratively develop open specifica-
tions for high performance standardized backplane architectures. Many of these standards use other 
industry standards such as PCI and Infiniband.

PLL: Phased-Locked Loop. A circuit that takes a reference clock and an incoming signal and creates a 
new clock that is locked to the incoming signal.

Power Integrity Tools: These tools help design the power delivery (bypassing, filtering, etc.) system. 
Many are add-on to signal integrity analysis tools. These tools provide the same type of functionality 
for power systems as the SI tools do for signals. 

ppm: Parts per million; a way of describing a very small ratio.

Pre-emphasis: Intentional overdriving at the first of a transition.

Principle of total internal reflection: When the angle of incidence exceeds a critical value, light 
cannot get out of the glass. Instead, the light bounces back in.

Random jitter: The component of the jitter resulting from differential and common mode stochastic 
noise processes such as power supply noise and thermal noise. Also known as rj, RJ, and called inde-
terministic jitter.

Receive FIFO: Allows for storing of received data before removal; is essential in system where clock 
correction is required. 

Receive Line Interface: Analog receive circuitry includes differential receiver and may include active 
or passive equalization.

Reed-Soloman: A popular and powerful forward error correction method.



GLOSSARY

PRELIMINARY INFORMATION XILINX • 193

Repeating: If the FIFO is getting close to empty, the next time a clock correction sequence is found 
it will be written into the FIFO twice. 

Rise time: The time it takes a signal to transition from a zero to a one. 

ROGERS 3450: A material used for assembling circuit boards or PCBs. This particular material has 
less loss at high frequencies than most materials.

RS-232: Recommended Standard 232. This is the de facto standard for communication through PC 
serial ports. It can refer to cables and ports that support the RS-232 standard. 

RTL: Register Transfer Level/Language (software). A kind of hardware description language (HDL) 
used in describing the registers of a computer or digital electronic system, and the way in which data 
is transferred between them. An intermediate code for a machine with an infinite number of registers. 

S-parameter: Text-based description of the behavior of a circuit, board traces, or connectors at very 
high frequencies. Originally used in microwave design, s-parameters are now being used to more effi-
ciently model high-speed board and connector assemblies. S-parameters describe the scattering and 
reflection of traveling waves in a transmission line. 

Sampling scope: An oscilloscope that digitizes information and stores it. To capture signals faster 
than the analog-to-digital converters can go, the scope captures only a few samples of each period. 
Moving the sampling each time allows it to capture enough signals to represent a repetitive signal.

Scrambling: A way of reordering or encoding the data so that it appears to be random, but it can be 
unscrambled.

SCSI: Small Computer System Interface; a parallel buss architecture now used mainly for fast hard 
drives. Early versions were used inside and outside small computers systems for expansion.

SDH: Synchronous Digital Hierarchy; is the international standard for transmitting digital informa-
tion over optical networks. It refers to the ITU term for the ANSI standard, SONET. 

Self-synchronous: Communication between two ICs where the transmitting IC generates a stream 
that contains both the data and clock.

Serial RAPID IO: Another serial version of an older parallel spec, RAPID IO is quite flexible and 
sometimes used as a way of interfacing to multiple protocols such as PCI and Infiniband.

Serializer: Takes n bits of parallel data changing at rate y and transforms them into a serial stream at 
a rate of n times y.

sf: Start of frame

Signal integrity: To have signal integrity, the signal must be dependable (repeatable and predictable). 
The signal must also be honest or pure, and uncorrupted.

Signal integrity analysis tools: These tools are often sold as optional additions to PCB layout tools. 
They allow for analysis of PCB layouts for signal integrity issues. Often they will allow us to add con-
nector and cable models and analyze a multi-PCB system. Another useful feature is the ability to work 
with models of ICs, specifically multi-gigabit transmitters.

Single-ended Signaling: Transmission of information using a signal wire.

SNA-type Coax: A small connector cabling system often used for higher frequencies.

SONET: Synchronous Optical Network; allows telecommunications products from different vendors 
to communicate over high-speed fiber optic networks. 



HIGH-SPEED SERIAL I/O MADE SIMPLE •

194 • Xilinx PRELIMINARY INFORMATION

Source Synchronous: Communication between two ICs where the transmitting IC generates a clock 
that accompanies the data. The receiving IC uses this forwarded clock for data reception.

SPICE models: Text-based description of a circuit's behavior. Very accurate, also reveals details of the 
construction of a circuit.

SPICE Simulators: The main need for a SPICE simulator for MGT analog simulation and analysis is 
a behavior model engine for the SI analysis tools. Behavior models are provided from the MGT vendor 
as a SPICE model, but since a SPICE model is essentially a very good description of the circuit, most 
use encrypted SPICE models. These encrypted models require high-end SPICE tools usually designed 
for IC development work. 

SSTL: Stub Series Terminated Logic. 

Stack-up: Specification of the properties, thickness and position of the layers of copper and fiberglass 
that make up a printed circuit board.

Stripline: Controlled impedance transmission line built on a PCB that consists of the trace on an outer 
layer and a reference plane on the adjacent layer.

Strongly coupled: Differential pair impedance matched traces, consisting of two traces that run adja-
cent to each other. The spacing between the two allows for a coupling to occur between the traces. If 
the traces are relatively far apart, the coupling is called weak. If the traces are closer, it is called strong.

Sub-channels: Often there is a need for several different channels over the same link. Some of the 
common uses of sub-channels are control, status, and auxiliary data path. 

System synchronous: Communication between two ICs where a common clock is applied to both 
ICs, and this clock is used for data transmission and reception.

TCP: Transmission Control Protocol. This is one of the main protocols in TCP/IP networks. The IP 
protocol deals only with packets. The TCP protocol allows two hosts to establish a connection and 
exchange streams of data. This protocol guarantees that delivery of data and packets will be delivered 
in the same order in which they were sent. 

TDR: Time domain reflectometry. 

tf: Abbreviation for fall time.

Token Ring: An early LAN protocol.

tr: Abbreviation for rise time.

Trace: A line or “wire” of conductive material (such as copper, silver, or gold) on the surface of or sand-
wiched inside a printed circuit board. These traces are often individually known as a run. Traces carry 
an electronic signal or other forms of electron flow from one point to another. Traces that are on the 
surface of a board are covered with a non-conductive coating, except at contact or solder points, to keep 
unintentional contact from being made with other conductive surfaces. 

Transmit FIFO: Allows for storing of incoming data before transmission.

Transmit line interface: Analog transmission circuit often allows varying drive strengths. It may also 
allow for pre-emphasis of transitions.

TTL: Transistor-Transistor Logic. An early logic family.

Turbo Product Codes: A very powerful forward error correction method.

twidth: Pulse width expressed in time.



GLOSSARY

PRELIMINARY INFORMATION XILINX • 195

UART: Universal Asynchronous Receiver Transmitter. This is a chip that standardized serial commu-
nications. Its function is to change a byte into a standard sequence of electrical impulses. 

UDP: User Datagram Protocol. A connectionless protocol that, like TCP, runs on top of IP networks. 
Unlike TCP/IP, UDP/IP provides very few error recovery services, offering instead a direct way to send 
and receive datagrams over an IP network. It is used primarily for broadcasting messages over a net-
work. 

UI: Unit intervals; same as length of time as a symbol, i.e., 0.2 UI = 20% of the symbol time.

USB: Universal Serial Bus. An external peripheral interface standard for Plug-and-Play communica-
tion between a computer and external peripherals over a cable using bi-directional serial transmission 
at speeds of 12 Mb/s. 

via: Feed-through. A plated through-hole in a printed circuit board used to route a trace vertically in 
the board, that is, from one layer to another. 

Viterbi: A powerful forward error correction method.

VME: Versa Module Eurocard bus. A 32-bit bus developed by Motorola, Signetics, Mostek, and 
Thompson CSF. It is widely used in industrial, commercial, and military applications with more than 
300 manufacturers of VMEbus products worldwide. It is defined by the IEEE standard 1014-1987. 
The VME64 standard is an expanded version that provides 64-bit data transfer and addressing. 

Weakly Coupled: A term applied to differential pair impedance matched traces that run adjacent to 
each other. The spacing between the two traces allows a coupling to occur between the traces. If the 
traces are relatively far apart, the coupling is called weak. If the traces are closer, it is called strong.

XAUI: A 4-channel (2.5 Gb/s payload 3.125 wire speed) interface for 10 Gigabit Ethernet.



HIGH-SPEED SERIAL I/O MADE SIMPLE •

196 • Xilinx PRELIMINARY INFORMATION



How Do You Get 10-Gbps I/O Performance?

High-speed serial I/O can be used to solve system interconnect design challenges. 
Such I/Os, when integrated into a highly programmable digital environment 
such as an FPGA, allow you to create high-performance designs that were never 
possible before. This book discusses the many aspects of high-speed serial designs 
with real world examples of how to implement working designs, including:

■ Basic I/O Concepts – Differential signaling, System 
Synchronous, and Source Synchronous design techniques.  

■ Pros and Cons of different implemenations – How to evaluate the 
cost advantages, the reduced EMI, the maximum data flow, and so on.   

■ SERDES Design – Basic theory, how to implement highly efficient 
serial to parallel channels, coding schemes, and so on.

■ Design Considerations – Standard and custom protocols, signal 
integrity, impedance, shielding, and so on. 

■ Testing – Interpreting eye patterns, reducing jitter, interoperability 
considerations, bit error testers, and so on. 

High-Speed Serial I/0 Made Simple
A Designers‘ Guide, with FPGA Applications

Xcell Publications help you solve design challenges, bringing 
you the awareness of the latest tools, devices, and technologies;
knowledge on how to design most effectively; and the next 
steps for implementing working solutions. See all of our books,
magazines, technical  journals, solutions guides, and brochures 
at: www.xilinx.com/xcell

Edition 1.0
April, 2005

Connectivity Solutions

High-Speed Serial I/O
Made Simple
A Designers’ Guide, with FPGA Applications

R

by Abhijit Athavale
and Carl Christensen

Edition 1.0Connectivity Solutions

High-Speed Serial I/O M
ade Sim

ple – A
 Designers’ Guide, w

ith FPGA
 A

pplications
Edition 1.0

PN 0402399


