
- .
A Compiler Generator for Semantic Grammars

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

BY

Lawrence Paulson

December 198 1

Acknowledgements

For the past three years, John Hennessy has assisted my study of programming languages.

He suggested that I investigate semantics, and later noted that the compiler generator might

be feasible. As the research progressed, John helped me t o focus on the most important

problems. He made extensive comments on numerous drafts of this thesis and other papers.

Zohar Manna and Gio Wiederhold have taken an interest in my career ever since I came to

Stanford. Zohar introduced me to denotational semantics; recently, he got me several job

offers. Sue Owicki made several insightful comments about the dissertation; Jeff Ullman

pointed out that I had omitted some important material.

Wolf Polak informed me of people who were doing related work; Ole L. Madsen sent a wealth

of research reports.

Of Stanford's capable and underpaid staff, Carolyn Tajnai kept me posted on all the deadlines

and requirements, and was the friendliest person in the Department. Betty Scott resolved the

quarterly funding emergencies.

I would like to thank my friends for all we shared during my years at Stanford. Special thanks

to Bob and Anne.. If not for Randy Gellerman, this work would have been completed much

sooner.

This work was supported in part by Advanced Research Projects Agency Contract MDA 903-

76-C-02306 and Joint Services Electronics Program Contract DAAG 29-79-C-0047.

Table of Contents

1. Introduction

2. Related Work
' 'I

2.1. Language Description Notations
2.1 .I. A Specification Task
2.1.2. W-Grammars
2.1.3. Denotational Semantics
2.1.4. Attribute Grammars
2.1.5. Semantic Grammars

2.2. Compiler Generators

3. Semantic Grammars

3.1 . Domains and Expressions
3.1 .l. Basics
3.1.2. Functions

3.1.2.1 . Abstraction
3.1.2.2. Application
3.1.2.3. Modification
3.1.2.4. Recursion and Fixedpoints
3.1.2.5. Local Definitions

3.1.3. Tuples
3.1.4. Unions

3.2. Attributes
3.2.1. Defined Attributes
3.2.2. Applied Attributes
3.2.3. With Clauses

3.3. Putting It All Together
3.3.1. Domain Definitions
3.3.2. Expression Definitions
3.3.3. Attribute Declarations
3.3.4. Rum
3.3.5. Resolution Part

4. Static Semantics

4.1. Syntax
4.2. Static Environments

4.2.1. Modes
4.2.2. Identifiers
4.2.3. Declarations -
4.2.4. Procedures

vii

4.3. Data Types
4.3.1. Type Definitions
4.3.2. Type C-g
4.3.3. Types of Variables

5. Dynamic Semantics

5.1. Program States
5.1 .I . Fortran
5.1.2. Pascal
5.1.3. Block Structure
5.1.4. Extra Components

5.2. Commands and Expressions
5.2.1. Dynamic Environment.?
5.2.2. Direct Semantics
5.2.3. Continuation Semantics

5.3. Semantics of Variables
5.4. Axiomatic and Operational Semantics

6. The Compiler Generator

6.1. Grammar Analyzer
6.2. Universal Translator

6.2.1. Parsing
6.2.2. Simplification
6.2.3. Representation of Bound Variables
6.2.4. Error Reporting
6.2.5. Code Generation
6.2.6. Garbage Collection

6.3. Stack Machine
6.3.1 . Closures
6.3.2. Input/Output
6.3.3. Run Time Errors
6.3.4. Array Compacting
6.3.5. Tail Recursion
6.3.6. Union Tags

7. Implementation Issues

7.1. Stack Machine '

7.1 .l. The Concrete SECD Machine
7.1.2. Computing Fixedpoints

7.2. Simplification
7.2.1. Simplifying Fixedpoints
7.2.2. Beta Reduction

7.3. Cleaning Up Semantic Grammars
7.4. Parsing Attribute Grammars
7.5. Call by Name vs. Call by Value
7.6. Achieving Efficiency

7.6.1. Statistics on the Universal Translator
7.6.2. Statistics on the Stack Machine
7.6.3. Comparison With Other Compiler Generators

8. Conclusions -
8.1. Defining Languages
8.2. Errors and Debugging
8.3. Improving Efficiency -

8.3.1. Faster Compilation
8.3.2. Compiling Large Programs
8.3.3. Faster Execution
8.3.4. Generating Real Machine Code

8.4. Implications for Language Design

Appendix A. Using the Grammar Analyzer

A.1. Lexical Conventions for Semantic Grammars
A.2. Resotutfon of Parser Conflicts ' 'I

A.3. Terminal Symbols
A.4. Error

Appendix B. Using the Universal Translator

6.1. Recursive Functions
6.2. Syntax Errors
6.3. Semantic Errors

Appendix C. Using the Stack Machine

C.1. Debugging
C.2. Input and Output
C.3. A Cautionary Note

Appendix D. Pascal Grammar

Appendix E. Example of Axiomatic Semantics

Appendix F. Semantic Grammars Grammar

References

List of Figures

Figure 6- 1 : Example of a Simplified Semantic Formula
Figure 6-2: An Erroneous Pascal Program
Figure 6-3: Sample Listing of Semantic Errbrs
Figure 6-4: Sample Stack Machine Code - *-
Figure 6-5: An Array Bock
Figure 7- 1 : The Pascal Test Program (283 tokens)
Figure 7-2: The Fortran Test Program (234 tokens)

Table 7-1:
Table 7-2:
Table 7-3:
Table 7-4:
Table 8- 1 :
Table 8-2:
Table 8-3:
Table 8-4:

List of Tables

Performance Compiling the Eight Queens Program (Pascal)
Performance Compiling the Prime Number Program (Fortran)
Performance Executing the Eight Queens Program
Performance Executing the Prime Number Program
Facts About the Test Programs
Grammar Analyzer Performance
Universal Translator Performance
Stack Machine Performance

xiii

Chapter 1
Introduction

Language designers must compromise between their goals and resources, and reconcile

conflicting concepts into a harmonious whole. .They cannot try out their ideas on real

programs, because of the cost and time required to write compilers. Their only feedback

comes years later, as users evaluate the language. This thesis intends to make it easier to

design, document, and implement programming languages.

There is no widely accepted notation for describing programming languages, so the

designers generally use a mixture of Backus-Naur Form and English. The resulting document

is often confusing, ambiguous, and tedious.

A bad document compounds the burden on the compiler writers. Before they can begin to

implement the language, they must understand the document and resolve its ambiguities. No

wonder compilers are so often incompatible with one another, that programs written in high-

level languages are not transportable, and that it is so difficult to distribute new languages

throughout the computer science community. Consider the experience with Algol 60, Pascal,

and Fortran:

The Algol Report [43] is well-written, with plenty of examples. Yet Knuth [26] notes that Algol

is ambiguous about side-effects, go to statements, for statements, parameters, and several

other topics. This is not a poor showing; Hoare 1151 comments: "When you can design a

language with so few trouble spots, you can be proud."

Welsh, Sneerington, and Hoare [66] cite ambiguities in the Pascal Report [I91 concerning

types, sets, and scope rules. Arthur Sale [54] found many differences among seven Pascal

compilers.

INTRODUCTION

The Fortran* Standard [3] provides neither a formal description of the syntax nor a single

example. A follow-up report by the standards committee lists fifty-two topics in need of

clarification [2]. Peter Poole [47] exhibits several incompatibilities among Fortran compilers,

including compilers written by the same manufacturer for the same machine. -

The Department of Defense noticed these problems. In commissioning the language Ada, it

required that all implementations be compatible [8,17]. That goal may prove elusive due to

Ada's sheer complexity. The defining report is twice as long as the reports of Fortran, Algol,

and Pascal combined. Ada includes several advanced, ill-understood features: tasking,

exception handling, and generic program units. " 7

/

While a formal semantic definition cannot solve all the problems of language design, it can

answer the myriad questions that implementors and programmers ask: when are parameters

evaluated, in what order, etc. This thesis introduces a formal notation, the semantic grammar,

which is both expressive and readable. Semantic grammars describe syntax and semantics

together, without separate lists of formulas or rules that need to be put into correspondence.

They handle both static and dynamic semantics - both compile- and run-time actions. They

describe languages at a high level of abstraction, without needless detail. They are concise;

Appendix D, a grammar describing the full syntax and semantics of Pascal, is only twenty-one

pages long.

To provide language designers with quick implementations of their ideas, I have implemented

a compiler generator that converts semantic grammars into compilers. It has generated

compilers for Pascal, Fortran, and other languages. Using the Pascal grammar, it has

executed an intricate seven-page program: an LR(0) parser constructor. It can handle

unconventional languages, perform extensive static checking, and report semantic errors in

programs.

The compiler generator is the starting point for many systems that translate programs into

another formalism. For program verification, it can translate programs into verification

conditions. For efficient compilation, it can translate programs into intermediate code, which

a separate program could use to generate optimized code. The compiler generator can

provide compatible compilers on different machines. It is transportable, since it is written in

standard Pascal.
--- - -

*In this thesis, "Fortran" means Fortran 66, not the new Fortran 77.

Summary of the thesis:

Related Work. Semantic grammars evolved from W-grammars, denotational semantics, and

attribute grammars. Most compiler generators use one of these notations. Most generate

only part of a compiler; few are efficient enough for production use.

Semantic Grammars. A semantic grammar contains domain definitions, expression

definitions, and attribute grammar rules. Domains and expressions follow the conventions of

denotational semantics, restricted for machine processing but still powerful. Attributes

express semantic dependencies and constraints among the syntactic symbols in each rule.

-^" -

Static Semantics. A semantic grammar may express compiler functions such as type-

checking and symbol table management. Abstract syntax trees, definable as a domain, are a

natural representation of types. Symbol tables, or environments, are mappings from

identifiers to their meanings. Declarations modify the environment; representing procedure

and parameter declarations is straightforward but tedious.

Dynamic Semantics. A semantic grammar may express the run-time execution of programs

using denotational semantics. The first step of writing the semantics is defining the state of a

computation, taking Fortran or Pascal as a model. There are two frameworks for control flow:

a direct semantics can describe "structured" commands; a continuation semantics can

describe any flowchart. A grammar can also define axiomatic or operational semantics.

The Compiler Generator. The compiler generator consists of a grammar analyzer, universal

translator, and stack machine. The grammar analyzer converts a semantic grammar into a

language description file that includes LALR(1) parse tables and attribute semantics. The

universal translator reads the file and parses a program, producing a graph of attribute

dependencies. It simplifies the graph into a single formula, while reporting semantic errors in

the program. It compiles the formula into stack machine instructions for execution. The stack

machine uses Landin's SECD architecture to execute lambda-calculus formulas.

Implementation Issues. The compiler generator embodies many design decisions. Rather

than interpreting semantic formulas, it compiles them into more efficient SECD machine

instructions. The attribute evaluator is efficient because it neither traverses nor stores a parse

tree, unlike the evaluators used in other systems. The formula simplifier uses many

transformations and optimizations; to assess them, performance statistics are presented.

INTRODUCTION

Conclusions. Semantic grammars have concisely defined both Fortran and Pascal. The

compiler generator allows the user to debug a grammar; to avoid stubborn bugs, the user

should develop and test the grammar in stages. Several lines of research may lead to

compilers efficient enough for production use. Separate formalisms for static and dynamic

semantics may speed compilation; specifying operational rather than denotational semantics

may speed execution. Even now, the compiler generator is efficient enough to aid language

designers- it can run test programs several pages long.

Chapter 2
Related Work

Semantic grammars evolved from earlier notations for defining programming languages.

Attempts to generate compilers from semantic descriptions date back over ten years.

2.1. Language Description Notations

Researchers have developed many language description notations over the years, striving for

precision, clarity, generality, and power. There are far too many notations to discuss them all;

I concentrate on those for static semantics.

Most research, including the debate over axiomatic, operational, and denotational semantics,

has investigated such dynamic complexities as recursion, control structures, and storage

sharing. Static semantics - symbol tables and types - seems trivial in comparison. But

language designers are introducing overloading, parametrized types, abstract modules, and

scope control. Readable definitions of static semantics have become essential.

Donahue [Q] and Marcotty, Ledgard, and Bochmann [34] give extended comparisions of

several description methods, static and dynamic.

2.1 .l. A Specification Task

Consider a language that includes the following syntax rules:

type = "integer" 1
"boolean" 1
"array" "[" number ".." number "1" "of" type

assig nment-command =
variable ": = " expression

RELATED WORK

The language has integer, boolean, and array types; the assignment command (statement)

requires that the type of the variable equal the type of the expression. Type-checking is

typical of the concepts that context-free syntax cannot express. It requires describing types

and associating them with variables and expressions. Since a variable hasno intrinsic type

(this is not Fortran), the environments and scope rules also must be described.

One way to check types in the syntax is to have a separate rule for each type:

int-assignment-command =
int-variable *I: = " int-expression

bool-assignment-command =
bool-variable ": = " bool-expression

int-array-assignment-command =
int-array-variable I*: = *' int-array-expression

This requires an infinite number of rules, particularly to handle environments. A W-Grammar

[62] does this through two levels of rules: hyper-rules and metaproduction rules. The hyper-
& -

rules are templates that are expanded into an infinite set of context-free rules. The

metaproduction rules generate the data that fill the "slots" in the templates. Here is a hyper-

rule for assignment:

The upper-case names are metanotions, the slots to be filled in. The following

metaproduction rule describes the metanotion TYPE, which is the internal representation of

ty Pes.

TYPE :: int 1 ,

boot 1
array iNT upto INT of TYPE

TYPE depends on a metanotion INT representing integers. W-grammars do not provide

integers as a primitive. They must be explicitly defined, as well as essential integet operations

such as division. Integer expressions are cumbersome; I will treat just the simplest case, non-

negative integers represented in unary:

LANGUAGE DESCRIPTION NOTATIONS

INT:: .EMPTY 1
one tNT

An environment is a mapping from names to their meanings, but W-grammars do not provide

mappings as a primitive. The user must define a concrete representation of environments,

such as an association list of namehype pairs, and must write hyper-rules to search a list for a

name.

ENV:: EMPTY 1 . ".
map NAME to TYPE ENV

W-grammars are unclear because they represent everything in low-level terms, ultimately

character strings. They cannot really associate types with variables, but merely generate

grammar symbols that contain the string "variable" and strings that represent types.

However, they are powerful; the official definition of Algol 68 uses a W-grammar [62] to handle

its intricate rules for coercion, scope, and type-checking.

2.1.3. Denotational Semantics

A denotational definition of a programming language consists of an abstract syntax, domain

definitions, and function definitions. The domains describe the data structures for the

semantic concepts of the language, like data types in Pascal. Each function describes the

semantics of one nonterminal symbol. Functions are defined by cases: one case for each

syntax rule rewriting the nonterminal. If our language had if and compound commands, then

its abstract syntax would include:

command = variable ": = I' expression 1
"if" expression "then" command 1
'begin" command, ";" . . . ";" command,, "end"

The functions specify both static and dynamic semantics. Domains are introduced to

represent abstract syntax trees. Brackets 1 and 1 enclose the syntactic arguments of

functions. Below, the function valid specifies the static semantics of commands, relative to an
environment env. The example omits the definition of valid for variables and expressions, and

the definitions of the functions compatible and type.

RELATED WORK

validjvariable : = expressionjenv =
valid jvariablejenv and valid [ex pressionnenv and
compatibte<typeffvariable]env, type~expressionlenv)

validjif expression then commandjenv =
~~djexpressionjenv and valid~command~env and
compatible(typefexpressionjenv, boolean)

validubegin command,;. . .; command,, end1 =
valid~command,~ and . . . and valid[commandJ]

Some denotational definitions are unreadable. They reduce a language to a formless list of

function definitions; bad conventions are also to blame. Many autnbrs favor meaningless

names, with no similarity between the names of a variable and its domain, for example [$I]:

Variable Domain Meaning
r Corn commands
P U environments
e C command continuations
w Q parameter continuations

Denotationat definitions can treat a wide class of languages, including Algol 60, CLU,

SNOBOL4, and Pascal [39,55,59,61]. They can describe complex control structures like

label variables and expressions that cause jumps. But they cannot easily handle tasking or

concurrency.

Tennent [60] gives a brief introduction to denotational semantics. Gordon and Stoy cover

more detail [I 1,581. Milne and Strachey [37] ascend far into the stratosphere.

2.1.4. Attribute Grammars

An attribute grammar [51] is a context-free grammar augmented with attributes and attribute

equations, which propagate semantic information along the edges of the parse tree. Inherited

attributes, prefixed by 4, move information from a node down to its children. Synthesized

attributes, prefixed by t, move information from the children up to the parent. Below, the

nonterrninal variable inherits an environment and synthesizes a type. The rule includes a

constraint that the types of the variable and expression are equal; if the constraint does not

hold, then the program has a semantic error.

LANGUAGE DESCRIPTION NOTATIONS

commaM +env > =
variable +env ttype, >
u. n . =
express*on< 4env *peg >
constraint type, = type2

There are different styles of writing attribute grammars. Knuth's original paper [27] suggests

writing the attribute equations alongside rules, rather than embedded within; Wilner [67]

defines the language Simula in this style. Watt and Madsen's extended attribute grammars

[63] express the constraint type, = type, implic\tly by using the same attribute type with both

the variable and the expression. Such conventions shorten r u l p

commancK Aenv > =
variable 4env ttype >
": =s "

expression 4env ttype >

Each attribute belongs to a particular data type, or domain. Extended attribute grammars

provide domains for mappings, records, and recursive data structures. Here is one way to

define a type as either boolean, integer, or array, and an environment as a mapping from

variable names to types:

TYPE = (boo1 1 int 1 array(INT,INT,TYPE))
ENV = NAME -+ TYPE

Compare this with the W-grammar above. The attribute grammar expresses structure without

reducing everything to character strings. Watt has written an extended attribute grammar that

cleanly specifies all the context-senstive rules of Pascal [64].

2.1.5. Semantic Grammars

A semantic grammar is an extended attribute grammar where:

0 The attribute domains are those of denotational semantics.

Grammar rules specify dynamic as well as static semantics.

The user may define auxiliary functions to use in the rules.

To illustrate how to embed dynamic semantics in a semantic grammar rule, I will use a simple

RELATED WORK

denotational description of assignment. It uses a function var representing variables and a

function exp representing expressions. The assignment command evaluates the expression

in the current state s and passes the result to var, which stores it in the state s:

As. var(exp s)s

A traditional denotational definition separates the semantics from the syntax, re-establishing

the context by explicitly providing var and exp with a syntactic construct and environment to

operate on. By convention, a function definition f = Xx.y is written f x = y. Here corn is the

semantic function for commands; it takes a command, environment, and state, producing a

. new state.
>

comBvariable: = expressionl]env s = varffvariablel]env (expl[expressionl]env s) s

Embedding the function Xs.var(exp s)s in the attribute grammar rule yields the semantic rule

for the assignment command. The variable and expression synthesize their semantic

functions var and exp; the rule combines these to produce the semantics of the command.

command< 4env t As. var(exp s)s> =
variable< 4env ttype war>
1 1 . - 11 . -
expression< 4env ttype texp>

A semantic grammar need not specify denotational semantics. As Madsen [31] suggests, it

can use operational or axiomatic methods too: instructions for an abstract machine,

instructions for a real machine, execution traces, or predicate transformers.

2.2. Compiler Generators

There exist few genuine compiler generators, which automatically produce a compiler given a

formal definition of a programming language. More common are translator writing systems,

which generate only part of a compiler. Many generate only the parser; more advanced

systems combine user-coded semantic routines into a compiler. Almost all require the user to

code a major part of the compiler in some implementation language. They do not save the

user much effort, but their compilers are more systematic, easier to maintain, and more likely

to be correct than hand-written compilers.

A parser generator requires the user to program all of the semantics; it only processes the

COMPILER GENERATORS

syntax. In YACC [21], semantic code immediately follows each rule. The Stanford Pascal

Parser Generator [14] translates programs into abstract syntax trees, which semantic routines

process. The BOBS-System {lo] calls a user procedure each time a reduction occurs. Each

of these systems uses LALR(1) parsing [I], which efficiently handles complex grammars.

Affix grammars; which are similar to attribute grammars, are the input language for the CDL

compiler-compiler 128,291. Each nonterminal is an action or predicate, defined by a macro,

with parameters and local variables. CDL translates the affix grammar into a recursive-

descent compiler that parses programs top-down, "executing" the nonterminals of syntax

rules from left to right. There are two versions of CDL: the high-level version writes compilers

in languages like Algol 60; the low-level version writes assembly language compilers, based

on a standard machine model and predefined operations to control it.

NEATS is a compiler writing system that accepts extended attribute grammars [20,63]. It

provides a fixed set of domains to represent environments, parameters, types, and other

language concepts. During compilation, it translates the source program into an output

stream, calling a user procedure every time an output symbol is generated. The attribute

grammar may specify translation from the source language into intermediate code, which the

user procedure translates into machine instructions. The NEATS attribute evaluator, which I

have adopted, is fast and general.

Raiha's [49, 501 Helsinki Language Processor (HLP) has generated compilers, assemblers,

and preprocessors for a dozen languages, including Simula, Euclid, and PL360. It constructs

a parse tree and evaluates attributes in alternating passes [48]: Attributes are Burroughs

Algol variables, computed using Algol statements. HLP compiles Pascal programs at only

fifteen tokens per second, and consumes 90,000 words when compiling a one-page Euclid

program; it is more efficient when used as an assembler or preprocessor.

SIS, by Peter Mosses, is the first compiler generator that does not need user-coded semantic

routines [40,41,42]. Instead it uses formal descriptions of the syntax and denotational

semantics of the language to be compiled. It constructs the parse tree of a program, applies

semantic functions to it, and interprets the result. Its input language is a formal version of the

traditional notation for denotational semantics. An untyped lambda-calculus, extended with

tuples and lists, represents source programs, object programs, and compilers. SIS has

handled several small languages such as LQOP and M-Lisp. It faithfully processes

RELATED WORK

denotational formulas; its "call-by-need" interpreter handles a wider range of semantics than

my compiler generator. Mosses reports that executing even short programs requires several

minutes of computer time. Despite this inefficiency, S1S proves that compilers can be

generated automatically from high-level language descriptions.

Ravi Sethi [56,57] is experimenting with semantics-directed compilation. His simplifier

performs beta-reductions and looks up identifiers in environments. It can resolve references

to labels in goto-programs, eliminating the environment. It produces a circular expression

that matches the control flow of the program. His system uses YACC to parse programs. It

has processed languages similar to Mosses's, and can handle all of the control statements of

the C programming language. It does not execute programs; the" user must provide a

procedure that translates circular expressions into imperative code. Sethi uses an algebraic

formulation of denotational semantics.

Like Sethi, Jones and Christiansen [23] use algebra to handle control flow. Their compiler

generator translates a language definition into a compiling semantics, which specifies what

actions to perform during parsing to compile a program. The target machine executes

sequences of instructions that update a run-time state. The user must define the machine's

instruction set and the structure of its state, using denotational semantics.

Denmark's Aarhus University has conducted much research on semantics-directed compiler

generation: extended attribute grammars, BOBS, SIS, NEATS, and a conference [22]. Work

is continuing in several directions [23,32].

Martin Raskovsky's compiler generator [52,53] has converted Stay's example language

definition [58] into a compiler. in a series of steps, it translates a standard denotational

definition into an low-level definition, then into the programming language BCPL. The

compiler generates instructions for the PDP-10 computer. There is t i e documentation on

this project.

Where does my compiler generator fit among the others? Of those that use denotational

semantics, it is the only one that has produced compilers for complete, realistic languages,

such as Pascal and Fortran. Of those that use attribute grammars, it is the only one that

provides a full set of primitives for defining semantic data structures. It accepts a functional,

rather than procedural, semantic specification; if attribute evaluation can cause side-effects,

then the user is forced to know the order in which attributes are evaluated. Most of these

COMPILER GENERATORS

compiler generators are not efficient enough to compile a one-page program, while mine has

executed a seven-page program. It provides the essential compiler functions of static

semantics and error reporting, which most other research has neglected.

Chapter 3
Semantic Grammars

Most denotational definitions are too informal for'toomputer processing, as Mosses discovered

when he implemented SIS [42]. Semantic grammars are simple enough for the compiler

generator to process, yet rich enough to describe most programming language concepts. A

grammar contains domain definitions, expression definitions, and semantic rules.

Appendix F is a semantic grammar that formally defines the syntax and static semantics of this

notation.

3.1. Domains and Expressions

The domains and expressions are those of denotational semantics. Domains represent

semantic data types, such as mappings, tuples, and tree structures. It is possible to define

new function, product, and union domains. An expression denotes an element of some
domain. Operators only accept operands of the correct domains; there are no automatic

coercions between domains.

3.1 .l. Basics

Domain names are written in UPPER CASE. The variables of a domain have the same name in

lower case, possibly followed by digits. For example, the variables list, IistO, and list435

belong to the domain LIST. To use an arbitrary variable name, specify its domain when

declaring it; lambda-, let-, letrec-, and case-expressions declare variables. An example is

IimitlNT.

The lattice theory underlying denotational semantics [58] augments each domain with an

element 1, read "bottom." Intuitively, 1 represents the result of erroneous or looping

computations. Most operators return J- i f any operand is JL.

SEMANTIC GRAMMARS

The standard domain BOOL contains the truth values true and false. Boolean expressions

may use the operators and, or, and not. The conditional expression

if p then x else y f i

denotes x if p = true, y if p = false, and -L if p = 1. The expressions x and y must belong to

the same domain.

The standard domain INT contains the integers 0, 1, - 1,2, Expressons may contain the

following infix operators, which all have the same precedence and require INT operands:

Symbol
+ -
div
mod
It
gt
Ie
ge

Meaning
sum
difference
product
quotient
remainder
less than
greater than
less or equal
greater or equal

Result Domain
INT

?

INT
INT
INT
INT
BOOL
BOOL
BOOL
BOOL

The standard domain NAME contains all character strings enclosed in quotes, such as "i",

' * &(horatio" . It represents identifiers that appear in programs.

If x and y belong to the same standard domain, then x eq y is the expression testing whether x

and y denote the same truth value, number, or string. If x or y is L then the result is 1; it is

impossible to write a function testing whether a value equals L.* The expression x ne y

denotes not (x eq y).

Examples of expressions and their domains:

Expression
" revolucionario"
int + 7
if int gt 0 then "pos" else "neg8' f i
(int1 Ie int2) and (int2 Ie int3)

Domain
NAME
INT
NAME
BOOL

-In the lattice theory, a function f can not be continuous if f (L . 1) = true, f(l.,O) = false, and f(0,O) = true.
Because l. C 0 in the lattice ordering, monotonicity implies true C false C true. Thus truezfalse, a
contradiction. Pragmatically, testing for 1 requires solving the halting problem.

DOMAINS AND EXPRESSIONS

3.1.2. Functions -

Functions are mappings from one domain into another, representing the notions of array and

computable function. The domain X+Y contains mappings from X t0.Y. Functions may not

be compared for equality. -
3.1.2.1. Abstraction

If an expression y contains a variable x, then the value of y depends upon that of x. The

lambda notation Ax.y expresses this dependence as a function; x is called the bound variable
I

and y is called the body. The body extends to the right as far as possible, so Xint.int + 1
A-.

denotes Xint.(int + I), not (Xint-int) + 1. Examples:

Expression Meaning Domain
Xint. int gt 0 test if int is positive INT-+BOOL
Xy:INT. y*y square y INT-INT

3.1.2.2. Application

The expression f x denotes the value of the function f applied to the argument x. If f belongs

to the domain X-Y, then x must belong to X and the result f x belongs to Y. Example:

(Xint.inteint) 5 denotes 25.

A higher-order function is one that returns a function as its result. It is like a function of

several arguments, but can accept its arguments one at a time. The following syntactic

conventions involve higher-order functions:

Construct Meaning
X+Y-z X+(Y+Z)
Axy.2 Ax. (Xy. 2)

f x Y (f x) Y

The application of a function to its argument, f x, may also be written f:x. The colon

associates to the right, so f:g:x denotes f(g(x)). This spares some parentheses, especially in

expressions that define continuations (Chapter 5).

Applying a lambda-expression to an argument is formally equivalent to substituting the

argument for the bound variable throughout the body of the lambd+expression. This

substitution is called beta-reduction. Example with two arguments:

SEMANTIC GRAMMARS

3.1.2.3. Modification

The updating-expression [x+y]f denotes

Xu. if u eq x then y else f(u) fi,

a function that maps x to y but otherwise is the same as f. (The domain of x must allow the

equality operator eq.) This models how assignment commands update the state, and how
*

declarations update the environment. For instance, if env represents an environment, then

["fred" -*Â ylenv represents a new environment that maps "fredl' to the value y. An iterated

updating-expression describes a table; a table mapping p to x, q to y, r to z, and otherwise

undefined, is

l~-*xl[q+~l[r-nl-L

3.1.2.4. Recursion and Fixedpoints

The lattice theory models recursive functions as fixedpoints of functionals. If f is a function,

then fix(f) is defined to be the least value satisfying f(fix(f)) = fix(f).

A definition of the factorial function, using an explicit fix operator, is

fix Afactorial :INT+INT.
Aint. if int eq 0 then 1 else int factorial(int- 1) f i

The compiler generator requires the argument of fix to be a lambda-abstraction. The

sequence fixA is treated as a single token, similar to LISP's operator LABEL for defining

recursive functions [W].

3.1.2.5. Local Definitions

The let clause

letx=yinz

denotes the expression (Ax.z)y. Intuitively, this stands for z where x takes on the value of y.

The definition x = y can not be recursive, because y is outside the scope of x.

The letrec clause

DOMAINS AND EXPRESSIONS

letrec x=y in z

denotes the expression (Ax.z)(fix Ax.y). Letrec defines recursive functions, such as:

letrec factorial :INT-Ã ÎN =
Aint. i f int eq 0 then 1 else int factorial(int - 1) f i

in factorial(9)

3.1.3. Tuples

If X and Y are domains, the product domain X X Y contains all pairs (x,y) where x belongs to X

and y belongs to Y.
' ' j

-IV

The operators left and right extract components from pairs:

left (x,y) = x and right (x,y) = y.

N-tuples are iterated pairs:

the domain X X Y X Z means X X (Y X Z),
the tuple (x, y, z) means (x, (y, 2)).

The bound variable of a function may be a tuple of variables. This is shorthand for using left

and right to extract components of the bound variable, and is useful for defining functions of

several arguments. For example,

A(int1 ,in@). int1 It int2

is equivalent to

Apair:lNTXINT . (left pair) It (right pair)

and belongs to the domain (INT X INT)+BOOL.

Tuples may be compared for equality. The expression

denotes

((left pair1) eq (left pair2))
and
((right pair1) eq (right pair2))

SEMANTIC GRAMMARS

3.1.4. Unions

If D,, . . ., D are domains and tag,, . . ., tag,, are distinct identifiers, then the union domain

contains the following values: -
tag,[d,] for all dl in Dl
...
tagn[dn] for all d in Dn

A particular tag name may be used in only one union domain. If each of Dl, . . ., D allow

testing for equality, then so does their union.
>

A domain need not be given for every tag. A tag without a domain adds just one value to the

union. The extreme case, where no tag has a domain, is like Pascal's enumerated types [19]. ,

For instance, the domain [red + yellow + blue + green] contains four values denoted red,

yellow, blue, and green. The domain [errorVal + intVal[INT] + boolVal[BOOL]] is an example

of the mixed case, and contains the values:

errorVal
intVal[O], intVal[- 11, intVal[1], . . .
boolVal[f alse], boolVal[t rue]

An expression such as intVal[int+2] creates a union value and is called an injection. Its

inverse is projection, denoted with a bar:

intVal[3] 1 intVal = 3
intVal[3] 1 boolVal = -L (of BOOL)

The operator is checks the tag of a union value:

intVal[3] is intVal = true
intVal[3] is boolVal = false

The case-expression selects among several expressions according to- the tag of a union

value; the following example converts colors into integers:

case color of red.1, yellow.2, blue.3, green.4 esac

The case-expression has an "arm" for each tag of the union. If a tag has a domain, then the

DOMAINS AND EXPRESSIONS

go. ---

arm may refer to the projected value of the union. Below, if x has the form intVal[int], then the

value of the case-expression depends on xlintVal, which is the value of int.

case x of . -
errorVal. "err" ,
intVa@nt]. if int gt 0 then "plus" else "minus" fi,
boolVatfbool]. if boo1 then "truen else "false" fi

esac

3.2. Attributes
' ' 1

Look again at the semantic rule for the assignment command: a.

cornman& 4env t As. var(exp s)s> =
variable< 4env ttype war>
I,. - 0, . -
expression< 4env ttype texp>

The symbol command, and its attributes, are on the left side of the equals sign; the other

symbols and attributes are on the right side. In a parse tree, the nodes for the right side

symbols are the children of the node for the left side symbol. Attributes depend upon others

in various ways:

The expression As. variexp s)s specifies the semantics of the command in terms
of the functions var and exp, supplied from below in the parse tree.

The variable env appears three times. In command, the parse tree supplies the
value of env from above. The variable and expression pass env down into the
tree.

Both variable and expression define the variable type. Since an attribute can't
have two values, the types of the variable and expression must be equal.

Compiling a program requires evaluating attributes and checking that their constraints hold.

Every attribute must yield a proper value; L indicates an error. This section explains how a

rule defines, uses, and constrains attributes.

SEMANTIC GRAMMARS

3.2.1. Defined Attributes -

Any inherited attribute on the left side of a rule "sees" a value from above in the parse tree.

Likewise, any synthesized attribute on the right side sees a value from below. These are

defined attributes. In the rule below, the defined attributes are underlined.

command< 4 m t As. var(exp s)& =
variabM 4env m>
*I. n . =
expression< 4env t m tm>

A defined attribute may both specify the values of variables in a rule p d impose constraints

on the rule. This complexity arises because a defined attribute may be an expression, not just

a variable.

Suppose a defined attribute sees a value val. The effect recursively depends upon the form of

the expression, which must be one of the following:

a variable v makes v denote val. If the same variable v is defined more than once
in a rule, adds constraints that the definitions are all equal.

a constant c adds a constraint that vale c.

a pair (x,Y) both x and y are themselves defined attributes; x sees left(va1) and y
sees right(va1). The domain of val must be a product. (Checked
during compiler generation, not compilation.)

an injection tag[x] x is a defined attribute that sees the projection val 1 tag; adds the
constraint that val is tag.

Watt and Madsen [63] first used expressions for defined attributes. The next chapter gives

other examples.

3.2.2. Applied Attributes

Any synthesized attribute on the left side of a rule sends a value up into the parse tree.

Likewise, any inherited attribute on the right side sends a value down. These are applied

attributes. An applied attribute may contain any expression, as long as all of its free variables

are defined elsewhere in the same rule. The applied attributes are underlined in the rule

below:

ATTRIBUTES

3.2.3. With Clauses

A rule may contain clauses of the form:

with x =y

This defines x to denote y in the rule. Strictly shaking, x is a defined attribute that sees the

value y, an applied attribute. Using a with clause to extract the embedded expression in the

rule for the assignment command yields an equivalent rule:

command< 4env tcorn> =
variable 4'env ttype War>
ti . n . =
expression< 4'env ttype texp>
with corn = As. var(exp s)s

3.3. Putting It All Together

A semantic grammar consists of domain definitions, expression definitions, attribute

declarations, semantic rules, and a resolution part. The symbol end terminates the grammar.

Comments may appear anywhere; they begin with a number sign (#) and continue to the end

of the line.

3.3.1. Domain Definitions

The domain definitions declare all the domains used to describe the semantics.* Definitions

may be recursive, such as LIST, VAL, and TYPE below.

*Semantic grammars do not use syntactic domains, which define abstract syntax trees in traditional ¬ational
definitions.

SEMANTIC GRAMMARS

domain
LIST = [nil + cons[INT X LIST]];
VAL = [intVflNT] + arrV[tNT -* VAL]];
ENV = NAME -+ TYPE;
TYPE = [intTy + arrayTy[TYPE] 1;
S = NAME -* VAL;
EXP = S -* VAL;
COM = S-S;
VAR = VAL -+ COM;

lists of integers
values: integers and arrays
environments: types of variables
#types
estates: values of variables
#expressions
commands: state transforms
variable assignments

The domain LIST deserves special mention, for it illustrates how to define list domains in

terms of union domains. (The compiler generator does not provide lists as a primitive.) A list
-*

is either nil, or has the form cons[int,list]; a list of n integers is

To introduce an "abstract" domain, with no definition, declare it unspec. Since the structure

of the domain is unspecified, its only values are -1 and unspec expressions. You may find

unspec definitions useful while developing a grammar, but you must remove them all before

executing programs on the compiler generator.

DATA = unspec;
ANS = unspec;
c=s-+ANS;

#abstract data elements
#final answers
command continuations

When comparing two domains for compatibility, a domain name is considered to be a

synonym for its definition. In the above example, C and S-ANS are the same domain. Each

unspec domain is unique, so DATA and ANS are different domains.

3.3.2. Expression Definitions

The expression definitions declare expressions that help describe the semantics. Most

grammars define functions to check types or combine declarations, and define structured

constants representing the initial environment. Definitions may be recursive or unspec. If a

name is referenced before its definition, it must appear in the forward declarations, along

with its domain. The function append is an example of list manipulation.

PUTTING IT ALL TOGETHER

forward
append : (LIST X LIST) -*Â LIST;

define
append = \(list1 ,list2). # append two lists

case list1 of
nil. list2,
cons[int,list]. cons[int, append(list,list2)]

esac;

aList = unspec : LIST; # aList is an unspecified LIST constant
'1

abort = AS.-L; '
.̂ r

3.3.3. Attribute Declarations

The attribute declarations list every nonterminal symbol in the grammar, along with the

domains of its attributes. A dot separates inherited from synthesized attributes. In the

following example, the symbol identifier has an inherited attribute of domain ENV, and

synthesized attributes of domains NAME and TYPE:

attribute
identifiier<ENV.NAME,TYPE>;
expression<ENV.TYPE,EXP>;
variable<ENV.TYPE,VAR>;
cornmand<ENV.COM>;

variable identifiers
#expressions
#variables
commands

Four symbols are built in, for use only on the right side of rules:

number<.INT> represents an integer number, a string of digits.

ident<.NAME> represents an identifier, an alphanumeric string beginning with a
letter.

where<BOOL.> represents the empty string; adds a constraint that the boolean
condition is true.

uniqueName<.NAME> represents the empty string; each instance in the parse tree generates
a distinct name; useful for generating arbitrary labels.

SEMANTIC GRAMMARS

3.3.4. Rules

The rules describe the syntax and semantics of a programming language. The rule part

begins by naming the start symbol of the syntax:

rule start-symbol -

Terminal symbols, either alphanumeric reserved words or combinations of special characters,

are enclosed in quotes:

"begin" " + ' ' :="

Many of the example rules in this thesis use arrows ? and 4 to indicateflhether ad attribute is

synthesized or inherited, but the compiler generator expects rules in which corn& separate

the attributes. (The attribute declarations specify the types of attributes.) The assignment

rule becomes:

command<env, As. var(exp s)s> =
variable<env, type, var> ". _ " . -
expression<env, type, exp> ;

There is no way to specify the lexical conventions of a language; the current implementation

assumes the following:

the braces { and } enclose comments in programs

spaces, newlines, and comments separate numbers and identifiers

keywords are reserved

a there are no string constants

3.3.5. Resolution Part

The resolution part assigns binding powers and associativities to terminal symbols, for

eliminating syntactic ambiguities [I]. It can resolve the dangling-else problem and specify

operator precedence. Operators can be left-, right-, or non-associative; each leift, right, or

nonassoc declaration defines a group of operators with the same binding power. Each

declaration specifies a higher binding power than the next declaration. The terminals not

mentioned in the resolution part have the lowest binding power.

PUTTING IT ALL TOGETHER

Examples: The declaration
left "*" w " /

gives * and / equal priorities and makes them associate to the left, so that x*y/z means

(x*y)/z. The following resolution part reflects Pascal's operator precedences:

resolution
nonassoc "notn; # most binding
left .v*n v y v v #*an(j#l;

left ' +" " -" worn; -
nonassoc "<" ">" = "; #least binding

Chapter 4
Static Semantics

To clearly describe a programming language using a semantic grammar, you must dissect the

language into concepts more carefully than you would when-writing a compiler. A compiler

need only work properly, but a semantic grammar should be revealing as well as correct. If

you intend to process the grammar through the compiler generator and run programs using it,

then you must also consider efficiency and other limitations of the compiler generator.

Static properties are those evident from the program text without execution of the program.

They are also called context-sensitive or compile-time properties; the domains and

expressions that describe them resemble the data structures and algorithms used in a

compiler. Types and symbol tables are typical examples. Watt and Madsen investigated

these concepts while writing an attribute grammar for the static semantics of Pascal [63,64].

A major strength of the compiler generator is its ability to process static semantics and report

errors in user programs. Modern languages, such as Pascal, CLU, and Ada, require complex

static analysis. Yet the literature on denotational semantics rarelymentions static semantics.

4.1. Syntax

The context-free syntax of a language defines its operators and delimeters, and how phrases

nest inside one another. It is the framework upon which a semantic grammar is built. For

each rule, the semantic grammar shows the semantic relationships among the syntactic

constituents.

If a grammar is to be processed through the compiler generator, its syntax must be

unambiguous - in fact LALR(1). Unfortunately, the most natural description of a language is

often ambiguous [I]. Appendix A shows how to eliminate simple ambiguities, such as
<

operator precedence and dangling else, using resolution declarations.

STATIC SEMANTICS

Watt's attribute grammar for Pascal performs type-checking using a set of rules that generate

the empty string if all of their semantic conditions are satisfied, and generate no strings

otherwise - the blind alley technique used to define Algol 68 [62]. Syntactically, these rules

are highly ambiguous, generating the empty string in many different ways'. In a semantic

grammar, you can define functions to perform semantic checks without using blind alky

rules.

Other ambiguities are harder to eliminate. In Pascal, an identifier may be parsed as an

expression through two different nonterminals, constant or variable:

expression = variable 1 constant 1 . . .
variable = identifier I . . .
constant = identifier 1 number

An actual parameter can be a variable either directly, or through an expression:

parameter = variable 1 expression
expression = variable I. . .

In Fortran, the expression A(1,J) may be either an array reference or a function call, and a

statement beginning with A(1,J) = may be either an assignment statement or the definition of

a statement function.

Resolve such ambiguities as you would for any parser generator. A solution to the first

example is letting a constant identifier be parsed as a variable, extending the semantics of

variables to handle constants:

expression = variable 1 number 1 . . .
variable = identifier 1 . . .

A solution to the second example is merging expression and variable into a single nonterminal

expVar, which carries a flag indicating whether an expression is in fact a variable, and if so

the semantics of that variable.

parameter = expVar
expVar = variable 1 . . .

While the solutions of the previous examples are messy and annoying, the Fortran example is

intractable. The right handside of an assignment statement must be treated differently from

that of a statement function definition; subscripts must be treated differently from parameters.

Rules handling every possibility would be unreadable. My Fortran grammar omits statement

functions, and uses a non-standard syntax for function calls. The best solution is

representing expressions as abstract syntax trees, and defining auxiliary functions to interpret

the trees in the various ways.

SYNTAX

Hand-written compilers resolve syntactic ambiguities using the symbol table: to see if an

identifier is a variable or constant, if a parameter is expected to be a variable or expression, if

a name is dimensioned or not. Can semantics resolve ambiguities automatically? Watt [65]

and others [24,32,63] suggest methods of letting the attributes control the parsing of an

ambiguous syntax; Milton, Kirchhoff, and Rowland [38] use attributes to resolve LL(1) parser

conflicts, producing one-pass compilers. Unfortunately, many languages cannot easily be

compiled in a single pass. The problem is a messy case-analysis; both the ambiguities and

the resolving attributes may only have certain forms.

An unambiguous syntax provides a solid foundation for a semantic grammar. One benefit is

that my generated Pascal compiler recovers from some semantic errors more robustly than

the regular Pascal compiler does. The regular compiler depends upon semantic information

for parsing; if that information is denied due to an error, an avalanche of unwarranted error

messages can result. Most ambiguities can be avoided by careful language design, making

programs more readable to humans as well as machines.

4.2. Static Environments

Environments are the formal equivalent of symbol tables in a compiler. The issues involved in

implementing a symbol table [I] are twofold: logical considerations of what to include in the

table, and practical considerations of fast search and storage management. In a semantic

grammar, the logical considerations are paramount.

An environment records the meanings of the identifiers in a program. Depending on the

language, identifiers may denote variables, procedures, types, constants, labels, COMMON

blocks, etc. After defining a domain MODE to represent these possibilities,* an environment

will be a mapping from names to modes:

- -- - --

*Watt and Madsen use "mode" tor the meaning of an identifier; the standard term is "denotable value."

STATIC SEMANTICS

TYPE = . . .;
PARAMLIST = [nÃ̂ + consPfTYPE X PARAMLIST]] ;

MODE = [variabteMode[TYPE] +
~YP-[TYPEI +
labelMode+
procedureMode[PARAMLlST]] ;

ENV = NAME -* MODE :

4.2.2. Identifiers
-*

The compiler generator provides the lexical symbol ident<tname> for scanning names; it is

useful to define a nonterminal symbol identifierc4'env ?mode> for looking up names in ,

environments. Identifier inherits an environment and synthesizes the mode of the name that it

par=.

identifieK4env ?mode> = ident<tname> with mode = env(name)

An equivalent, more concise version is:

identifieK4-env tenv(name)> = ident<?name>

Identifiers may denote types. Using the above definition of MODE, the following rule checks

that an identifier denotes a type and returns that type. There might be other rules to define

array and record types, as discussed in the next section.

dataTypeGenv tty pe> = identif ier<Â¥I.en ttypeMode[type]>

4.2.3. Declarations

Declarations create and update environments. Consider variable and type declarations in a

simple language:

declaration = "variable" ident ":" type 1
"type" ident " = " type

In a semantic grammar, declarations inherit an environment and synthesize a new one that

contains the effect of the declarations.

STATIC ENVIRONMENTS

declaration4'env t [name-*variableMode[type]] env> =
"variable" ident<tname>
: dataTyp&env ttype> ;

Once you have declarations, concatenating them into declaration lists is trivial:

In a language with block structure, there is no need to delete local declarations from the

environment after leaving a block. Instead, throw the local environment away and resume

using the previous global environment. Since there are no side-effects in semantic formulas,

the global environment will be the same as before it was used as the basis for another

environment.

The obvious representation of an empty environment is the undefined element -L. But if you

make "undefined" a separate tag of MODE, and use Anamemundefined as the initial

environment, then you will be able to check whether or not a name has been declared:

env(name) is undefined

for preventing multiple declarations. Remember that block-structured languages allow a local

declaration to override a global declaration, but not another local declaration.

4.2.4. Procedures

Consider procedures with only value parameters. The domain PARAMLIST, defined above as

a list of types, represents formal parameter lists.

STATIC SEMANTICS

procedure = "procedure" ident formalParamList "begin" statement "end"

formalParamList = empty 1 "(" formalParams ")"

formalParams = parameter 1 parameter ";" formalParams

parameter = ident ":" type

This syntax illustrates some weak spots of semantic grammars. Most syntax notations include

shorthand for indicating alternative, optional, or repetitive elements. Semantic grammars do

. not, because it is difficult to incorporate semantics. (Mosses [40] provides a shorthand for

repetition, using the parse tree as the interface between syntax and semantics.)

It is easier to handle zero-or-more repetitions of a construct than one-or-more repetitions,

because the empty list is trivial. You must define formalParams using a recursive rule that

defines lists of one-or-more parameters. The nonterminal parameter is needed to avoid

duplicating the string ident ": " type; there may be duplication of semantics as well.

Semantic rules for formal parameters must not only build the parameter list, but also enter the

parameters into the local environment of the procedure. I omit the details, which are

straightforward.

Consider the matching of actual with formal parameters in procedure calls:

statement = identifier actualParamList

actualParamList = empty 1 "(" actualparams ")"

actualparams = expression 1 expression "," actualparams

The following semantic rules pass the formal parameter list as an inherited attribute to the

actual parameter list, which checks that each actual parameter has the same type as the

corresponding formal parameter. The formal parameter list must end at the same time as the

actual parameter list, implying that the numbers of formal and actual parameters are equal.

Although the compiler generator allows left recursion, the recursive structure of PARAMLIST

dictates that actualPararns be right recursive.

STATIC ENVIRONMENTS

statement<^env> =
identified 4-env tprocedureMode[paramList]>
actualParamList<4-env 4- paramList> ;

actualParams<4-env 4consP[type,nilP]> =
expression<+env ttype> ;

"Â¥

actualParams<4-env 4-consP[type,paramList]> =
expression<env ttype> "," .
actualParams<4- env ¶mList> ;

Watt and Madsen [63] handle Pascal procedures without requiring declaration before use.

Each procedure inherits two environments. The first contains only the declarations before the

procedure, and is only used for processing the formal parameter list. The second contains

the parameter lists of all the local procedures, and is used for processing the procedure

bodies. Similarly, Watt [64] uses two environments to handle Pascal's forward references in

definitions of pointer types - at the cost of two additional attributes on every type. These are

examples of right-to-left information flow in a grammar.

The run-time semantics of labels and recursive procedures can not be stored in static

environments. They require dynamic environments, discussed in the next chapter, because

they involve fixedpoints of declarations. The compiler generator cannot handle circular

attribute grammars, which are the only way to represent the fixedpoint of a semantic

relationship expressed using inherited and synthesized attributes. However, if the language

prohibits recursion, then it is simple to process procedure declarations one by one, inserting

the run-time semantics of each into the environment. The Pascal grammar uses a dynamic

environment for procedures; the Fortran grammar handles procedures in the static

environment, using a dynamic environment for labels.

STATIC SEMANTICS

4.3. Data Types -

Many languages associate a fixed type with every variable, specifying its values, structure,

and operations. Types include scalars, such as integers and booleans; arrays; and other data

structures such as records, pointers, sets, and files. Fortran and Algol provide several basic

types that may be used as scalars or as arrays of specified dimensions. A type is then a pair

(scalar,dimensions) where scalar determines the element type and dimensions is a possibly

empty list of integers.

TYPE = SCALAR X DIMENSIONS;
SCALAR = [integer + real + logical];
DIMENSIONS = [nilD + consD[lNT X DIMENSIONS]];

Modern languages provide more data structures and allow them to be nested arbitrarily.

Instead of multi-dimensional arrays, there are arrays of arrays. There are records with named

fields, each of which has a type. The language syntax for types might be the following:

dataType = "integer" 1
boolean" 1

identifier 1
'array" "[" number ".." number "1" "of" dataType 1
" record" fieldList "end"

fieldList = ident ":" dataType ";" fieldList 1
empty

The following recursive domain holds all the necessary information about types. It is nothing

more than abstract syntax trees.

TYPE = [integerType +
booleanType +
arrayType[lNT X INT X TYPE] +
recordType[FIELDS]];

FIELDS = [nilF + CO~SF[NAME X TYPE X FIELDS]];

The examples in this section use the above definition of Pascal types. To keep things simple,

they ignore run-time semantics.

DATA TYPES

4.3.1. Type Definitions

Given a domainrepresenting types, you must write semantic rules that generate types from

type definitions. Since TYPES are abstract syntax trees, this is easy. (The pre-declared

lexical symbols ident<tnarne> and number<tint> scan identifiers and integer constants,

synthesizing their values.)

dataTypg4env tintegerType> = "integer" ;

dataType<Jenv tbooleanType> = " boolean " ;
' ')

dataTypd4env ?type> = identifierC4env ttypeMode[typel> ;

dataTypd4env tarrayTy'peIint1 ,int2,type]> =
"array" "[" number<tintl> ".." number<tint2> "]'I

'o f " dataType<Jenv +type> ;

dataType<&env trecordType[fields]> =
" record" fieldList<&env tfields> "end" ;

4.3.2. Type Checking

Suppose the language has a unary odd operator that requires an integer operand and

produces a boolean result. The following rule contains an explicit test that the operand's type

is integer, using a where-clause:

expression<Jenv tbooleanType> =
"odd" expression<^.env ttype>
where<type is integerType> ;

The check can be made implicit, using the properties of defined attributes and constraints

discussed in section 3.2.1. Because type is a synthesized attribute on the right side of the

rule, it is a defined attribute; replacing it with the tag integerType implicitly specifies the

constraint "type is integerTypeIw which the compiler generator will check:

*

expression<4env tbooleanType> = "odd" expression<4env tintegerType> ;

STATIC SEMANTICS

General type-checking for the assignment statement can be subtle. If the domain TYPE is

simple enough to allow equality testing with eq, then the following suffices:

statement = variableC-lenv ?type1> 'I: = " expression<lenv ttype2>
where<iypel eq type2> ;

Using implicit constraints you can write:

statement = variableC-lenv ttype> ": = " expression<4env ?type> ;

To do more complex type-checking, write a recursive function

compatible: (TYPE X TYPE) -Ã ̂ BOOL

that traverses a pair of types as a compiler would. However, some of the tricks compilers use

are not available in semantic grammars, such as omitting the traversal-ef a pair of structures if

the pointers to them are equal. When you need to compare pointers, you must simulate them

by labelling each type with distinct integers (or identifiers generated by uniqueName). Then

you can define type-checking by name compatibility, rather than structural compatibility [66].

4.3.3. Types of Variables

Pascal provides access to elements of arrays and records, using a general notion of variable

with a syntax representing simple variables, subscripted variables, and field access:

variable = identifier 1
variable "[" expression "1" 1
variable "." ident

The semantic rule for simple variables returns the type of the variable identifier;

The rule for arrays checks that the variable is an array, gets its element type, and checks that

the subscript expression has type integer. Constraints do the checks automatically;

arrayType[intl ,int2,type] is an example of a complex defined attribute. Its subexpressions

(int1 jnt2,type) and (int2,type) are also defined attributes. Ultimately, the attribute variables

int1, int2, and type are all defined.

DATA TYPES

The rule for records requires a function

lookup : (NAME X FIELDS) -*Â TYPE

that looks up a name in a field l i t and returns the corresponding type. A definition of lookup

is

lookup =
X(name0,fietdsO).

case fields0 of
nilF. L, # No such field in record
cons~name,type,fields].

If name eq name0 then type , # Found the field
else lookup(name0,fields) f i # Continue search

esac; *

Now the semantic rule for record access can be written; it includes an implicit check that the

variable's type is indeed a record.

DYNAMIC SEMANTICS

Chapter 5
Dynamic Semantics

Dynamic properties concern the execution ofbrograms; many authors have studied their

denotational semantics. Given a semantic grammar for the static semantics of a language, it

is simple to augment it with dynamic semantics. .

The denotational approach uses a single framework, the standard semantics, tor all
languages. As Gordon [I11 explains, "If we describe languages using fixed standard

techniques then comparisons between languages are made easier. The disadvantage is that

for any particular language the 'fit' of the technique may not be perfect." The disadvantage is

serious. The standard semantics is a poor fit for most languages because it is too general,

simulating the Von Neurnann computer to a level of detail that resembles assembly language.

Denotational definitions, instead of being revealing, have a widespread reputation for being

obscure.

4

The first step of writing a revealing language definition is adopting a suitable framework for

the language, not necessarily the standard semantics. A reader can understand the basic

concepts of a language by looking at just the domains representing states and commands.

5.1. Program States

A computer executes programs by repeatedly updating its store of machine words. The high-

level analog of the store is the program state, which contains the values of all the variables in

a program. The state is updated by assigning a new value" to a variable. The usual

denotational representation of the state mimics the hardware implementation, using a

mapping from locations to a class of "storable values" that can fit into machine words. This

defeats the purpose of formal definition; it obscures the organization of the state, which varies

from language to languge.

DYNAMIC SEMANTICS

5.1 .l. Fortran

Fortran [3] specifies storage layout in complete detail, including the size of each data element

and the address calculation used in array subscripting. Its EQUIVALENCE statement allows

the programmer to overlay variables of various types and dimensions. But even the Fortran

state, low-level as it is, has more structure than the machine store. Fortran partitions the state

into independent, named regions, called COMMON blocks, each of which is an addressable

array of values:

STATE = NAME ->Â BLOCK;
BLOCK = INT -Ã VALUE:

The domain VALUE, representing Fortran data values, remains to hedefined. Only scalar

values need be considered, because Fortran arrays are collections of scalar values stored in

consecutive locations. Scalars include integer, real, character, and logical values. The

compiler generator does not yet support reals or characters, leaving:

VALUE = [integerVal[INT] + logicalVaI[BOOL]];

5.1.2. Pascal

Pascal's arrays and other data structures are defined without mention of memory locations.
t

Pointer types are restricted to an invisible storage area, the heap, separate from the program

variables. Programs manipulate variables, not locations. Pascal deserves a formal definition

on the same high level as its defining report. Donahue [9] makes a similar criticism of

locations.

When two variables share the same storage, an assignment to one changes the other, a

situation called aliasing. In Pascal, aliasing can only occur in procedures that have variable

parameters. Variable parameters are intended to pass results back to the calling program,

and are usually implemented by passing a reference to the actual variable (call-by-reference).

Aliasing occurs because an assignment to the formal parameter simultaneously alters the

actual parameter, via the reference. The Report [I91 seems to require call-by-reference: "In

the case of a variable parameter, the actual parameter must be a variable, and the

corresponding formal parameter represents this actual variable during the entire execution of

the procedure."

A different implementation that avoidsaliasing is call-by-value-result, where the final value of

the formal parameter is copied into the actual parameter after the procedure terminates. Call-

PROGRAM STATES

by-reference is sometimes more efficient, but may be regarded as an optimization - that

occasionally produces incorrect results. I believe that Pascal's designer never intended to

overspecify the implementation of variable parameters;* my semantics represents call-by-

value-result.

With aliasing eliminated, the state can be defined without mentioning locations:

STATE = NAME -*Â VALUE

Unlike the Fortran state, the Pascal state can not represent arrays as scalars in consecutive

locations. Instead, the domain VALUE must retoresent arrays. The high-level notion of an

array is a function from subscripts to elements. Define VALUE recursively to be either an

integer, a boolean, or an array of values:

VALUE = [intVal[lNT] + boolVal[BOOL] + arrayVal[INT -*Â VALUE]];

Most of the examples in this chapter use these definitions of STATE and VALUE. The rules

abbreviate "state" as "s." Most omit static semantics and injections/projections involving

VALUE.

5.1.3. Block Structure

Block-structured languages pose the problem that several variables may have the same

name. In the following example, the procedure bothx can see two variables named x: its local

x, and the global x, obtained via the function getx:

var x;
function getx; getx : = x;
procedure bothx; var x; . . . x . . . getx . . . ;

You can still use STATE = NAME-LVALUE, but with semantic rules that rename every

variable in the program to eliminate duplicates. Generate the new name using uniqueNarne,

and store it in the environment with the variable's type. The example variable declaration

from section 4.2.3 becomes

*If Pascal implementors had the freedom to pass small arguments by value-result, then they could eliminate the
exasperating restriction on passing components of packed structures as variable parameters. The restriction reflects
the impossibility of obtaining a reference to apartial word.

DYNAMIC SEMANTICS

declaration<Jenv T [name1 +variableMode[type,name2]] env> =
"varia blew ident<tnamel> uniqueName<tnameZ>
: type<+env- ttype> ;

Another way of handling block structure is to partition the state into lexical levels, so that x at

level 1 is a different variable from x at level 2. This recalls the "displays" used in the

implementation of block-structured languages [I]. Partitioning the state makes it easier to

describe recursive procedures, which must save the initial values of their variables and

restore them upon returning. With a partitioned state, procedures can save and restore their

entire lexical level as a unit, without dealing with each variable individually.
-*.

STATE = LEVEL -Ã ̂ NAME ->Â VALUE;
LEVEL = INT;

5.1.4. Extra Components

The state must hold the entire state of the computation, including input and output files. The

usual representation of files attaches extra components to the state:

STATE = STORE X INPUT X OUTPUT;
STORE = . . .; # program variables
INPUT = . . .; #remaining input to be read
OUTPUT = . . .; #output that has been written

This approach is sensible unless you are writing the grammar for the compiler generator.

During execution, programs reference the state frequently; i f the state is complex, the

generator's stack machine will waste a great deal of time detaching and attaching the various

components. To achieve fast running times, you must define the state as simply as possible,

even if this entails a slight distortion of its structure.

Extra components are not needed to model Pascal input/output, where files are ordinary

variables. The Pascal idea can be used in other languages: extend the domain VALUE with a

representation of a file, and keep input and output files in special variables, such as "$input9'

and "$output." Since identifiers cannot have the character $, user programs cannot

reference these variables, but the semantic formulas for input/outpbt can.

The same principle applies to the Pascal heap, the storage area for pointer variables.

PROGRAM STATES

Programs will run faster if the heap is not a separate component of the state. My Pascal

grammar represents pointers as integers, stores the heap in a global array variable named

"$heap," and stores the heap size in the integer variable "$heaplimit." Pascal pointers are

not the "locations" of denotational semantics - they can denote neither local variables, nor

components of heap variables, but only entire heap variables.

5.2. Commands and Expressions

There are two frameworks for dynamic semantics. A direct semantics is simple and clear, but
?

is too weak to handle most programming languages. A continuation semantics is complex
-J^"-

and low-level, but is powerful enough to describe &y flowchart program.

5.2.1. Dynamic Environments

Most authors use a single environment, denoted p. Tennent [61] divides his Pascal semantics

into static and dynamic parts, each with its own environment; Scheifler [55] does the same for

CLU. In a semantic grammar, the static environment is an inherited attribute of most symbols,

and holds all of the compile-time information about a program; the dynamic environment is a

bound variable of most semantic functions, and holds the run-time semantics of labels and

recursive procedures. The definition of the dynamic environment is closely tied to that of

commands and expressions.

5.2.2. Direct Semantics

Consider a simple language without jumps or expression side-effects. Executing a command

(statement) changes the state, by assigning new values to variables. Evaluating an
expression produces a value, but leaves the state unchanged. The value may depend on the

state, because expressions may contain variables. The domains for a direct semantics are

COM = STATE -Ã STATE;
EXP = STATE -* VALUE;

semantics of commands
semantics of expressions

Expressions directly use the values of their subexpressions, as the rules for constants,

negation, and addition show:

DYNAMIC SEMANTICS

expression<~s.not exp(s)> = "not " expression<exp> ;

expression<Xs.exp1 (s) + exp2(s)> =
expression<axpl> " + " expression<exp2> ;

Control flows directly from one command to the next, as the rules for if and compound

commands show:

command<As.if exp(s) then com(s) else s fi> = *.
"if" expresÃ‡on<exp "then" command<com> ;

The semantic function of any iterative command must be recursive. The while command

satisfies the equivalence

while exp do corn = if exp then (corn; while exp do corn)

leading to a semantic rule containing a fixedpoint:

command<fix Awh:COM. Xs.if exp(s) then wh(com s) else s fi> =
"while" expression<exp> "do" command<com> ;

The next section discusses the direct semantics of variables and the assignment command.

Gordon [I 11 shows how to define a direct semantics for side-effects, using the definition EXP

= STATE-VALUE X STATE). The rules become messy.

The Pascal grammar includes a dynamic environment to hold the semantics of procedures; its

domains are:

DE = NAME + STATE STATE; #dynamic environments
EXP = DE 4 STATE 4 VALUE; # expressions
COM = DE 4 STATE 4 STATE; # commands

You should use direct semantics whenever possible. Compared to a continuation semantics,

it is simpler, more readable, and allows faster compilation: fewer beta-reductions during

simplification.

COMMANDS AND EXPRESSIONS

5.2.3. Continuation-Semantics

The idea of continuations dates back to McCarthy [36], who suggested a method of

converting a flowchart program into a set of recursive functions. Define a function for each

box of the flowchart, such that each function calls its successor in the flowchart. The

functions are called continuations; each denotes the final answer the flowchart would

produce if started at the corresponding box.* The result depends only on the initial state of

the program variables.

Leaving the domain of answers unspecified, the domain of command continuations is

- ̂

ANSWERS = . . .; # final outputs of programs
C = STATE -Ã ANSWERS; #command continuations

Thinking of continuations as functions can be confusing; think of them as program points, or

labels, that can be jumped to.

To handle expressions, generalize the notion of flowchart to include boxes that can compute

values and pass them to other boxes. Normally an expression computes a value and passes it

to a box that expects a value. However, an expression may branch to a different box without

computing a value - if an exception occurs, or if a function executes a non-local goto

command.

Now the flowchart contains boxes that expect a value before they can execute. If we start the

flowchart program at such a box, the final answer will depend on the value we provide, as well

as the state. The label of the box is called an expression continuation, because it is the

destination of an expression's value.

EC = VALUE -* STATE -Ã ANSWERS;

The semantic function of an expression requires, as an argument, the destination to jump to

after evaluating the-expression; this argument is an expression continuation. The semantic

function yields a continuation describing the expression's effect: produce a value, then pass

it to the destination label. A command does not produce a value, so its argument (destination

label) is a command continuation.

*If the flowchart program goes into an infinite loop instead of terminating, its final answer is JL.

DYNAMIC SEMANTICS

EXP = EC -*Â C;
COM = C+C;

#semantics of expressions
semantics of commands

Now I repeat the examples I gave for direct semantics.

A constant expression passes the constant's value immediately to the destination. The not

operator evaluates an expression and passes the negated value to the destination. The plus

operator evaluates two expressions, one after- the other, and passes their sum to the

destination.

expression<Aec.exp(Avalue.ec(not value))> =
"not" expression<exp> ;

expression<Aec.exp1 (Avaluel .exp2(Avalue2.ec(value1 + value2)))> =
expression<expl> " + " expression<exp2> ;

The precise interactions of the lambda-abstractions and arguments are far too complex to

unwind in your head. The key to understanding such formulas is to read them imperatively, as
t -

instructions. Read the last as "evaluate exp1; call its result value1 ; evaluate exp2; call its

result value2; jump to ec with the sum (value1 + value2)." It is instructive to work out the

semantics of a small expression [I 1,58].

Commands are easier to understand because they are imperative anyway. Read the if

command's semantics as "evaluate exp; if the value is true then execute corn and jump to c;

else jump to c."

command<Ac.exp(Avalue.if value then com(c) else c fi)> =
"if" expresÃ‡on<exp "then " command<com> ;

As in direct semantics, the while command involves a fixedpoint. Read it as "evaluate the

expression; if the value is true then execute corn and jump back to the beginning; else jump to

c.',

COMMANDS AND EXPRESSIONS

commancKAc.fix AcO.exp(Xvalue. if value then com(c0) else c ti)> =
"white" expression<exp> "do" command<com> ; -

Continuations can also describe escape commands that jump out of labelled blocks.

command = label "begin" command "end" 1 -
'escape" label

label = ident

Define a dynamic environment to hold a continuation for every label, and redefine commands
7

to depend on the environment.
*-

DE = NAME -*Â C; #dynamic environments
COM = DE-+C+C; #commands

Change the semantic rules to handle environments. Commands that do not need the

environment simply pass it along:

commancKAde c.com1 de(com2 de c)> =
command<com1> ";" command<com2> ;

A labelled block updates the environment; it maps the label to the block's final continuation.

The escape command looks up the label in the environment, retrieves the continuation, and

jumps to it.

commancKAde c.com ([name-~clde) c> =
ident<name> "begin" command<com> "end" ;

command<Ade c.de(name)> =
"escape" ident<name> ;

Gordon [I 11 explains how to describe goto commands and procedure calls.

5.3. Semantics of Variables

In the standard denotational semantics of a programming language, a memory location is

considered to be a legitimate data value, and a variable is any expression that yields a

memory location when evaluated. The assignment command has the form:

expl : = exp2

The semantics signals an error if the value of exp1 is not a location, and dereferences the

value of exp2 if it is a location. This smacks of address calculation, and postpones until run-

time the syntactic check that expl is a variable.

DYNAMIC SEMANTICS

The Pascal grammar describes a variable (section 4.3.3) using two semantic functions: exp

obtains its value, and var assigns it a new value. Given a value and a state, a var produces a

new state in which the variable has the new value. In a direct semantics:

STATE = NAME -* VALUE;
EXP = STATE -Ã VALUE;
VAR = VALUE -* STATE -Ã STATE;

The exp and var of a simple variable are straightforward:

variable<As.s(name), Avalue s.[name+value]s> = ident<name> ;

The exp and var of an array access treat the array like afunction, and the subscript like its

argument. Exp applies the function to the argument; var updates the function, at the

argument, with a new value.

variabldAs.exp1 (s) (exp2 s) , Avalue s.var1 ([exp2(s) -* value] exp1 (s))s> =
variabldexpl ,var1> "[" expression<exp2> "]" ;

An assignment command evaluates an expression and stores the value in a variable. The

direct semantics:

A continuation semantics requires a concrete repres In of variable access. This need

not be a memory location, but can be a high-level "Variable Access Descriptor," or VAD.

Then you can define variable continuations and variables:

VAD = [simpleVarfNAME] + subscriptVar[VAD X INTI] ;
VC = VAD -Ã ̂ C; # variable continuations
VAR = VC + C; #variables

To complete the continuation semantics, you must define load and store functions using

descriptors. I have not tried this on the compiler generator.

AXIOMATIC AND OPERATIONAL SEMANTICS

5.4. Axiomatic and Operational Semantics

As Madsen [31] suggests, semantic grammars can express semantics in a variety of ways. A

grammar specifying both axiomatic and denotational semantics is a "complementary

definition" [9].

An axiomatic definition [16,33] sets up a logical system for proving properties of programs.

Properties are written in an assertion language containing logical connectives, quantifiers,

arithmetic functions, and other operators. Backwards predicate transformers are most

amenable to semantic grammars; each command produces a list of verification conditions

(VCs) and transforms an output assertion into an input assertion. The VCs must be proven as

theorems. This proves the correctness of the command relative to its input-output assertions:

whenever the input assertion holds before executing the command, the output assertion will

hold afterwards.

Every loop in the program must be documented with an invariant assertion; most of the

verification conditions are needed to check that the assertions are really invariant. Given a

program and its input-output assertions, the method produces the VCs needed to prove the

correctness of the program.

To include an axiomatic semantics in a semantic grammar, define the assertion language as a

recursive union domain. A simple assertion language of integer expressions and boolean

conditions is defined

EXP = [constantE[lNT] +
variableE[NAME] +
plusE[EXP X EXP] +
timesE[EXP X EXP]];

COND = [equalsC[INT X INTI +
notC[COND] +
andC[COND X COND] +
orC[COND X COND]];

The semantics of assignment requires a recursive function that substitutes an expression for

a variable in an assertion. The rules must translate expressions into the corresponding terms

of the assertion language. The command rules must synthesize a list of verification

conditions, and synthesize the input assertion, transformed from the (inherited) output

assertion. The rule for the compound command, using an append function to combine lists of

vcs, is

DYNAMIC SEMANTICS

command<kond tcondl tappend(vcs1 ,vcs2)> =
command<4'qmd2 tcondl tvcs1> ";**
command<4cond tcond2 tvcs2> ;

You can write a function to perform local simplifications, such as changing O+a to a.

Appendix E presents the axiomatic definition of a language with if and while commands.

Given such a grammar, the universal translator converts the input program into a list of

verification conditions, which it prints as a nest of injection functions. The generated code

. reconstructs the VCs inside the stack machine.
7

Similarly, you can specify an operational semantics in a grammar. An operational definition

translates a language into instructions for an abstract interpreter, whose behavior describes

the semantics. Define the interpreter instructions as a union domain, and write rules that

translate programs into lists of instructions. Madsen suggests representing programs as

trees, executed by a recursive tree machine. Another representation is intermediate code,

such as triples or postfix instructions, for specifying the front end of a production compiler [I].

Chapter 6
The Compiler Generator

The compiler generator consists of three Pascal programs: a grammar analyzer, universal

translator, and stack machine. p

6.1. Grammar Analyzer

The grammar analyzer is organized like a recursive descent compiler, and performs the

following tasks:

Read a semantic grammar, parsing the domain definitions, expression definitions,
and rules.

Check that the information is consistent.

Compute LALR(1) parse tables for the syntax part of the grammar.

Output the language description file, which contains the semantics of each rule
and the parse tables.

The language description file contains all the information needed by the universal translator.

For each semantic rule, it gives the applied attribute expressions and attribute constraints. It

also contains the pseudo attributes, which are generated by with clauses and uniqueName.

All expressions are represented in postfix.

The description file contains information that the translator needs to print out formulas and

error messages. This includes the names of the domains and union tags, but not the

definitions of the domains. Every attribute expression is followed by its location in the rule, for

pinpointing semantic errors.

When parsing a rule, the analyzer records all the free variables of applied attributes. These -
are the attribute variables thatmust be given values by appearing as defined attributes. In a

THE COMPILER GENERATOR

recursive scan of the defining attribute expressions, the analyzer accumulates constraints

and defines the attribute variables. The attribute grammar should not be circular, but there

are no other restrictions on how attributes can depend upon each other. The grammar

analyzer does not check for potential circularities [27], because that requires exponential time

[18]. Instead, the universal translator detects circularities while evaluating attributes.

The analyzer contains an LALR(1) parser generator, based upon Stanford's[14], that

processes the syntactic part of the grammar. It checks that the grammar contains no

unreachable or useless symbols, computes its LR(0) set of states, and adds LALR(1)
' '>

lookahead. It resolves shift-reduce conflicts according to the user's resolution part. It

generates parse tables, compressed by merging rows whenever possible. Parse tables take

up half the space of the language description file; computing them accounts for half the time

needed to process a semantic grammar.

6.2. Universal Translator

The universal translator performs several tasks:

Read a language description file, reconstructing the tables and expressions.

Read a source program.

Print a listing of the program's semantic errors.

Print the semantic function describing the program [44].

Generate stack machine instructions for the program.

6.2.1. Parsing

The translator's shift-reduce parser builds a directed acyclic graph (DAG) of attribute

dependencies during parsing. (A DAG is a tree in which several parent nodes may share the

same child node.) Inherited attributes complicate the process. If there were only synthesized

attributes, it would be possible to evaluate all of them bottom-up, like constructing a parse

tree. This is because the synthesized attributes on the right-hand side of a rule are all defined

when the parser reduces by that rule. Inherited attributes, which represent the context of the

reduction, may not yet be available. So the parser substitutes dummy nodes for them, and

patches the correct value in as soon as it appears. -

UNIVERSAL TRANSLATOR

The following description is adapted from Madsen [31].

A shift-reduce parser uses a stack to record the grammar symbols parsed at a given point. To

handle semantics, the stack is augmented with the synthesized and inherited attributes of

every symbol. It represents each synthesized attribute as a pointer to a DAG. A symbol's

synthesized attributes may depend upon its inherited attributes, which the DAG represents by

dummy nodes. The stack represents an inherited attribute as a fixup-list locating its dummy

nodes.

The parser reduces by a rule

X - Y , Y * ... Y, - ̂

by popping the right-side symbols and attributes, Y, . . . Yk, and pushing the left-side, X.

The fixup-lists representing left-side inherited attributes are initially empty. They accumulate

the locations of dummy nodes during evaluation of the rule's applied attributes: left-side

synthesized and right-side inherited. After evaluating a right-side inherited attribute, its fixup-

list is scanned to replace its dummy nodes with the correct value.

Each applied attribute is a function

fd,, . . I I",, S,, . . I S")

of the rule's defined attributes: left-side Inherited and right-side Synthesized. Evaluation

creates a DAG node labelled f, with pointers to the DAGs representing the synthesized

attributes, and pointers to dummy nodes representing the inherited attributes. If the applied

attribute is simply a copy of a defined attribute, there is usually no need to create a new node.

Rules may contain pseudo attributes, which are created by with clauses and the uniqueName

symbol. Pseudo attributes are defined and applied in the same rule. Since other applied

attributes may depend on pseudo attributes, the pseudos are evaluated first. Every use of a

pseudo attribute refers to the same DAG. This assures that with clauses are only evaluated

once, and that every use of a uniqueName attribute gets the same generated name.

The DAG occupies a lot of storage, although no parse tree is constructed. The largest

program compiled is a twenty-one page LALR(1) parser generator. Its DAG contains over

15,000 nodes, and swells to over 26,000 during simplification.

THE COMPILER GENERATOR

6.2.2. Simplification

At first, each DAG node is labelled with a pointer to an attribute function, and its sons are .

arguments. The simplifier traverses the DAG depth-first, expanding function definitions and

applying them to arguments. The expanded function is linked back into the DAG so that '

shared nodes are only expanded once. Expanded parts of the DAG represent semantic

formulas: each node is labelled with an operator, and its sons are the operands.

The DAG contains both semantics and attribute constraints. During expansion, the simplifier

checks that the constraints hold and executes all of thecompile-time actions in the DAG. The

simplified DAG is ready for translation into machine instructions. Example simplifications:

Before After
3-5 - 2
left (a,b) a
tag[al I tag a
if true then a else b f i a
([a+blf) a b

An essential but difficult simplification is beta-reduction: applying a lambda-expression to its

arguments by substituting the arguments for the bound variables. If a bound variable occurs

more than once, its argument is replicated. The simplifier performs no beta-reductions that

would replicate expressions requiring evaluation at run-time and make the object program

less efficient.

Substitution is slow, because it requires copying list structures. The simplifier avoids one

copy operation by simplifying during substitution, rather than after substitution in a separate

traversal. Whenever possible, the simplifier substitutes for several variables at once to avoid

repeated copying. When simplifying if x then y else z fi, the simplifier first simplifies x, to see

whether it reduces to a constant (true or false). If so, it need simplify only one of y or z. The

case expression uses a similar technique.

Taken together, these improvements cause simplification to resemble symbolic execution of

the expression, rather than a sequence of costly macro-expansions. Figure 6-1 is part of the

simplified DAG for the Eight Queens program (page 76).

UNIVERSAL TRANSLATOR

Figure 6- 1 : Example of a Simplified Semantic Formula

\ i n p u t .
LET a=

(LET S=
LET $0-

(F IX f o r . fork:= -7to7doc(kj:= true
\ i n t s.
I F 7 LT i n t
THEN S
ELSE f o r

(i n t + 1)
LET sa

[I-> ["KW-> INTVAL[i!t]] s 11 S
I N LET i n t =

s 1 "K" 1INTVAL
I N I F (i n t GE -7) AND (7 GE i n t)

THEN [1->
[T-> ARRAYVAL[[int-> INTVAL[g] s I "C" ! ARRAYVAL]]
s 11

s
ELSE BOT
F I

for k : = 2 to 16 do b[k] : = true
F I)

-7
((F IX f o r .

M n t s.
I F 1 6 LT i n t
THEN s
ELSE f o r

(i n t + 1)
LET S=
[I-> ["KU-> INTVAL[int]] s 11 s

I N LET i n t =
s 1 "K" !INTVAL

I N I F (i n t GE 2) AND (16 GE i n t)
THEN [I->

["BW-> ARRAYVAL[[int-> INTVAL[l]] s 1 "B" !ARRAWAL 11.

s
s 11

ELSE BOT
F I

2
F I)

((F I X f o r . fork::: 1 to8doa[k]:= true
\ i n t s. I F 8 LT i n t THEN s

ELSE f o r (1 n t + I)(,..)

1
F I

([0->
["INPUTw-> FILEVALCLEFT i n p u t , RIGHT i n p u t , I, (LEFT i n p u t) I]]
["OUTPUTw-> FILEVALCBOT. 0, 1. BOT]]
["$HEAPw-> ARRAWAL]
["$HEAPLIMITw-> INTVAL[O]]
BOT]

BQT)))
I N LET S=

. . . Body of procedure Try
"TRY" Try(1 ,found)
(12-> ["Im-> INTVAL[l]] ["Q"-> SO 1 "FOUND"] BOT] SO)

I N LET s= [2-> SO 2 1 s I N ([I-> ["FOUND"-> S 2 "Q"] s 11 S)
I N if found then.. .

I F s 1 "FOUND" !INTVAL EQ 1 THEN (F IX Tor . \ i n t s. ...) 1 s ELSE s F I)
0
"OUTPUT"
! FILEVAL

I N (LEFT a, LEFT RIGHT a)

THE COMPILER GENERATOR

6.2.3. Representation of Bound Variables

If bound variables are represented by identifiers, then substituting an argument for a variable

may compute an incorrect result - a free variable of the argument may become bound

because of a name conflict. The translator does not use variable names; it numbers bound

variables by their depth in the nest of lambda-expressions [6]. Consider the tree structure of

an expression; the depth of a variable x is the number of lambdas lying on the path from x up

to Ax. For instance, the expression

\x.f x (Ay.g x y)

. has depth numbers
s

Xx.f x', (AY.~ XI YJ a

When inserting or removing lambdas in front of an expression, the translator must adjust the

numbers of the expression's free variables.

Every expression node contains a free variable index indicating its deepest variable

reference. Indexes are put inincrementally as an expression is built - the index of a node

depends only on the indexes of its children. In most cases it is the maximum ofthe indexes of

the children; however, the index of a lambda node is one less than that of its body, because

lambda binds the top level free variable.

A closed expression is one with no free variables. The translator can easily identify closed

expressions, for they have a free variable index of zero. Many procedures that traverse

expressions, such as substitution, perform operations only on the free variables. When they

encounter a closed expression, they return immediately, saving a tremendous amount of work

(Section 7.6.1).

6.2.4. Error Reporting

The translator only recovers from semantic errors. If it encounters a syntax error, it prints a

list of expected symbols and halts. Automatic syntax error recovery is a separate research

problem; Graham et al. [13] have made considerable progress.

The simplifier evaluates the DAG depth-first and records all the semantic errors: circularly

defined attributes, attributes that equal 1, and constraints that are not true. The error

handler sorts the errors by line number in the source program, reads the program again, and

prints the erroneous lines. It names the relevant nonterminal and attribute domain, and

UNIVERSAL TRANSLATOR

composes a message appropriate for the failed constraint. To prevent one error from

triggering many others, it patches the DAG with a dummy value.

-
Figure 6-2 shows a Pascal program full of errors, and Figure 6-3 shows the error listing from

the translator. -
Figure 6-2: An Erroneous Pascal Program

PROGRAM er ror ;
TYPE

c 5 SET OF integer;
VAR

v ,v : integer:
b: ARRAY [2..16] OF unldent;
c: ARRAY [-7 . . t rue] OF boolean;

1: integer; q: boolean;
rec: RECORD f l . f Z : boolean END;
s i : SET OF 0..30;
s1: SET OF (pascal ,l isp , fo r t ran) ;

BEGIN
s l := ([I + s f) ;
i [8] : % 0;
i . r e d : = false;
i t := q;
rec. unldent : = 0 ;
unIdent (l0)
END.

{range too big}

{duplicate declarat ion}
{undeclared i d e n t i f i e r }
{type mismatch, duplicate declarat ion}

*

{set type mismatch}
{should be array}
{should be record}
{should be pointer}
{no such f i e l d }
{undeclared procedure i d e n t i f i e r }

6.2.5. Code Generation

Since the stack machine is oriented towards execution of lambda-calculus formulas, code

generation is straightforward, traversing the simplified DAG depth-first. First the DAG is split

into a forest of trees, to prevent a shared tree from being compiled more than once. A shared

tree is compiled into a parameter-less subroutine that each of its parents calls.

The code generator treats fixedpoints like recursive function definitions. The fixedpoint's

body must be a function or tuple of functions. The code generator creates an entry point for

each function, and compiles each use of the fixedpoint's bound variable into a call of the

corresponding function.

Although the code generator performs few optimizations, it includes those that Burge [6]

recommends. It also emits code to delete a bound variable after its last use, located during

the DAG traversal. Some effects of the optimization can be illustrated by an expression

transformation. Given the expression

(\x.A B)y

where A does not use x, it generates code for

THE COMPILER GENERATOR

Figure 6-3: Sample Listing of Semantic Errors

TYPE
c = SET OF integer;

t

Semantic e r ro r : SCALARTYPE

VAR
v ,v : i n t e ~ w ;

t

Senrnt ic e r ro r :
Should be UNDEFINED

{range too big}

{dupl icate declarat ion}

b: ARRAY [2..16] OF unldent; {undeclared i d e n t i f i e r }
t

Semantic e r ro r : IDENTIFIER Â .)
Undefined a t t r i b u t e NODE

c: ARRAY [-7. . t rue] OF boolean; { type mismatch, duf l icate dec larat ion}
t

Semantic e r ro r :
Should be UNDEFINED

t

Soman t i c e r r o r : CONSTANT
Fa i led check: COMPATIBLE

begin
$1 := ([I + $1);

t

Semantic e r r o r : EXPRESSION
Fai led check: COMPATIBLE

i [8] := 0;
t

Semantic e r r o r : COMPONENT
Should be ARRAYTY

+.red := fa l se ;
t

Semantic e r ro r : COMPONENT
Should be RECOROTY

i t := q;
t

Semantic e r ro r :
Undefined a t t r i b u t e

rec.unIdent := 0;
t

Semantic e r r o r : COMPONENT
Undefined a t t r i b u t e TYPE

unIdent (l0)
t

Semantic e r r o r : IDENTIFIER
Undefined a t t r i bu te ' MODE

{set type mismatch}

{should be array}

{should be record}

{should be po in ter }

{no such f i e l d }

{undeclared procedure i d e n t i f i e r }

11 semantic e r ro rs i n program

UNIVERSAL TRANSLATOR

A((Ax.B)y), -
removing A from the scope of x. Deleting dead variables eliminates obsolete references to

arrays and perm& more efficient array compacting, as described below.

The DAG may contain names from several sources: identifiers in the source program, name

constants in the semantic grammmar, and the name-generating nonterminal uniqueName.

The code generator replaces every distinct name with a distinct integer, so that no names

appear in the object code. If the grammar defines the state to be indexed by names,

STATE=NAME+VALUE, it will be as efficient as if the state were indexed by integer

locations.
x

6.2.6. Garbage Collection

The simplifier creates a lot of garbage. The translator collects all of it using reference

counting: it keeps track of how many pointers reference each node and periodically scans

the list of allocated nodes, deleting those no longer referenced. While compiling the LALR(1)

parser generator mentioned above, the garbage collector reclaims 133,000 nodes.

References from local, temporary variables are not counted. This frees most of the code of

the translator from any garbage collection instructions, and reduces the overhead needed to

maintain reference counts. A drawback is that the garbage collector can only be called

between simplifier calls. Garbage collection consumes about twenty percent of simplification

time.

6.3. Stack Machine

The stack machine has the SECD architecture, due to Landin [30]: a Stack of pending

operands, an Environment of bound variables, a Control of instructions, and a Dump of return

addresses and environments.

Instructions that alter control flow:

halt terminate computation; print value on top of Stack
return return from function; restore machine state from Dump
jump PC jump to location pc
falseJump pc jump to pc if Stack top is false

THE COMPILER GENERATOR

Instructions that push some value onto the Stack:

loadconst value the given value
loadPos int the value of the variable at depth int
loadclosure pc a function closure (explained below)

Instructions that pop several values f, x, y, . . . from the Stack and push some result computed

from them:

plus
It
not
alter
apply
pair
left
inject tag
project tag
is tag

thesum x+y
the comparison x<y '";

the negation not x
the updated function [x-~yl f -

the result of the call f(x)
the pair (x,y)
the component left x
the injection tag[x]
the projection xjtag
the inspection x is tag

The Environment is a stack; when a function call f(x) is executed, x is pushed onto the

Environment. There are two instructions, related to Surge's enter and exit [6], for

manipulating the Environment:

pushEnv push the Stack top onto the Environment
~0p-v remove the top element of the Environment

Figure 6-4 shows part of the object code for the Eight Queens program: the command

b[i + j] : = false. It illustrates the substitution of integers for names; i is 32, j is 34, b is 29. I

have edited it slightly to make it more readable. The instructions applyint and alterlnt are

immediate forms of apply and alter.

6.3.1. Closures

The loadclosure instruction binds an entry point to the current Environment, creating a

functional value that may be stored like any other value. The function may be invoked later

using the apply instruction. These values, called function closures, are an important

difference between the SECD machine and ordinary computers. Closures free environments

from the stack discipline (where they would be like static links) and allow them to persist

indefinitely. Reference counting deletes environments that are no longer used.

STACK MACHINE

- Figure 6-4: Sample Stack Machine Code

Compute subscript d b
loadpos 0
app ly in t 2
apply Snt 32
loadpos 0
app ly in t 2
8ppl y I n t 34
p lus

Check a m array bounds
pushEnv
loadpos 0
loadconst 2
I t
not
falseJump 7 1
1 oadconst 16
loadpos 0
I t
not

1 oadconst
72 :

f a1 seJump
Update the array b

1 oadpos
1 oadconst
I oadpos
app ly in t
appl y i n t
a1 t e r
loadpos
appl y i n t
a1 t e r i n t
1 oadpos
a1 t e r i n t
popEnv

bottom

s load value of i: states, level 2

I
s toad value of j: states, level 2

J
compute i + j

store sum for repeated use
i n t load sum

check lower bound of b

jump if out of bounds
check upper bound of b . . .

i n t . . . against sum

load the value f also

jump if subscript out of bounds

i n t load subscript
load f also

s load ti: state s, level 1

B
update value of b

s
load lexical level 1

B update level 1 to have new b
s

update s to have new level 1
discard subscript

signal error

Any lambda-abstraction in the final DAG can be represented by a closure at runtime.

Optimization eliminates many closures that would be invoked immediately after creation.

Input and output are lists of integers. The machine reads a list k,, . . ., k from the user's

input, and pushes

([l+kl]. . . [n+kJ 1, n)

onto the Stack. It then begins execution of the object program. The machine expects to find

a similar data structure on the Stack after execution, and prints the list it denotes.

THE COMPILER GENERATOR

6.3.3. Run Time Errors -

The value JL ("bottom") may represent a run-time error. For instance, a subscript out of

bounds may set the state to JL, which will propagate to the end of the program, producing a

final state A. Not every JL indicates an error; 1 is also used to initialize mappings.

If JL is the operand of certain instructions, the machine aborts execution. Other instructions

return -L as the result, or treat 1 as an ordinary value. The machine prints its current state

upon halting. To aid debugging of user programs, every value of -1 is flagged with the

program location where it was generated. ')

r

A separate notation for errors is needed, to allow a consistent policy for aborting programs.

Debugging is still difficult; more diagnostic tools are needed.

6.3.4. Array Compacting

A denotational definition considers arrays to be functions mapping subscripts to elements.

The subscripted assignment A[i]: = v is represented by the function update [i+v]A, a mapping

that takes i to v but otherwise is the same as A. After the loop

for i : = 1 to 5 do A[0] : = i* i

the value of A is represented:

[0+25] [0+16] [O-Ãˆ~ [O-*-4][0+1] 1

These association lists, or history sequences, waste storage and runtime. States, which are

also mappings, suffer the same problem. Efficient execution would be impossible if the

machine did not compact association lists into arrays. It compacts arrays indexed by either

integers or identifiers, because the translator converts all identifiers into distinct integers.

Array compacting is unique to this compiler generator; the literature does not even mention

the problem.

All data in the machine are referenced by pointers and may be shared. An association list

may be referenced by many pointers, some of them no longer needed but still persisting in the

Environment or Dump. The machine must compact lists into arrays without disturbing the

value seen by any of the pointers. In effect, the pointers divide a list into segments that must

be compacted separately. The machine converts a list of segments into a list of indexable

array blocks.

STACK MACHINE

An array block is a -structure <vec.freeL.freeU,usedL,usedU>, where vec is a vector with

bounds freeL and freeU (Figure 6-5). Each vector element vec[i] points to a function value HI).
The vector may contain gaps where vea l = nil; the bounds used1 and usedU encloseall of

the non-nil data. An array block represents part of a function's association list, not the entire

function. A vector gap does not indicate that the function is undefined; its value may &pear

later in the a&iation list.

Figure 6-5: An Array Block

elements

vec

A segment of an association list has the form ul, . . ., un, where each u is either a simple

update [i-*x], or an array block representing several simple updates. Each element u, is

referenced only by its predecessor u, , except that ul may be referenced by many pointers.

The machine replaces u2 through u,, with a single, equivalent array block, and links it into the

sequence after ul. If the segment contains two or more values for the same index, the most

recent value Is used.

If the segment contains a block big enough to hold all the data in the segment,
then that block is updated to include the other data.

THE COMPILER GENERATOR

If no block is big enough to hold all the data, the machine allocates a new one
and copies the data into it. So that this expensive step occurs infrequently, the
machine includes room for expansion above and below in the new block.

Arrays are the main obstacle to executing denotational formulas. Although thestack machine

can execute programs that use arrays extensively, the array compactor is its largest user of

time. The algorithm is ad-hoc, and the storage allocator is primitive.'

6.3.5. Tail Recursion

The machine tries to eliminate unnecessary references into association lists, in order to allow
>-

the most compacting. The main source of obsolete references is tail-recursion, where a

function calls another function and then returns. When a function's last action is another

function call, the machine does not save the current Environment on the Dump; it will never

be needed. The function call is treated like a jump. This optimization is essential because

denotational semantics treats every loop and goto command using tail-recursion. Examples

in Section 5.2 include both while and escape commands, both direct and continuation

semantics.

b - - . The most common type of tail recursion is the code sequence apply;return, which is easily

recognized. Other forms of tail recursion are

apply; jump x; . . .; x:return

apply; useless-instruction; return

Either peephole optimization or better code generation can convert these to apply;return.

The compiler generator, redundantly, uses both techniques.

6.3.6. Union Tags

The machine has instructions inject, project, and is for manipulating objects of union

domains - inserting, removing, and inspecting tags of union domains. In languages like

Pascal, where types are known at compile time, tags provide no useful information at run time.

The universal translator has an option to suppress inject and project instructions, resulting

in smaller, faster code. This is allowed only if the code contains no is instructions, which

require tags at run time.

*

*There is a fixed set of twenty block sizes, and a common storage area. The machine maintains a free list for each
block size. Discarded blocks are not merged into largerones.

STACK MACHINE

Suppression of tags allows projection errors to go undetected; the expression xtag[x] 1 ytag

denotes -L but evaluates to x. -This slackness has not caused problems in my experience with

the compiler generator.

Chapter 7
Implementation Issues

A translator is a program, written in some implementation language, that translates a source

language into an object language. A compiler generator~s a translator whose object

language describes another translator. The implementor must chose the source, object, and

implementation languages of both translators. For instance: What is the exact form of

semantic grammars? In what form are compilers produced? What sort of object code do the

compilers generate? This seems like a lot of possibilities, but the algorithms that exist today

can only handle a few of them.

The compiler generator evolved over a period of several months. Circumstances favored the

choice of certain algorithms, which dictated the rest of the decisions. My goal was that the

system be as general as possible, able to process any meaningful input. I also wanted it to be

efficient enough to run substantial test programs, so that it could help someone design and

evaluate languages.

7.1. Stack Machine

What sort of object code should the compilers generate? A semantic grammar describes how

to translate a program into a lambda-calculus formula. Mosses [42] interprets the formula

directly, but I translate it into SECD machine instructions. This offers faster execution, is easy

to implement, and is a first step towards generating code for an ordinary computer.

Other ideas have since come forth. Neil Jones and David Schmidt [25] suggest translating the

formula into a state-transition machine, a finite automaton in which every state has local

variables that are updated during transitions from one state to the next. The automaton may

be translated into instructions for an ordinary computer. Martin Raskovsky [53] describes

how to rewrite a denotational definition into a compiler that generates PDP-10 instructions.

IMPLEMENTATION ISSUES

7.1.1. The Concrete SECD-Machine

Extending my notation for domains to include finite lists, the abstractdefinition of the SECD

machine may be written [6]:

STATE = S X E X C X D; #complete machine state
VALUE = . . . ; #values used in computation
INSTR = . . . ; # instruction set

S = list of VALUE; #Stack of pending operands
E = list of VALUE: #Environment of bound variables (by depth)
C = list of INSTR; #Control: the program being executed
D = S X E X C X D ; # Dump: saved state for function~retum

This seems to have l i i in common with a computer, but it can be made more concrete. The

Stack can be implemented as an array with a stack pointer. The Control can be implemented

by placing instructions in sequential locations, terminating function bodies with the return

instruction. A program counter points to the current instruction.

The Dump has the equivalent, non-recursive definition

D = list of (S X E X C).

Since executing a function's body never disturbs the elements initally on the Stack S, there is

no need to save S on the dump. This leaves

D = list of (E X C),

where E corresponds to a dynamic link, and C to a return address. The Dump can be

implemented with an array and stack pointer.

Functional values, both closures and arrays, cause the major differences between the

concrete SECD machine and ordinary computers. Because function closures contain

environments, the Environment must be implemented as a linked list. The machine has no

notion of updating an array, only of creating a new array based on an existing one. The

machine's array compactor attempts to implement this efficiently, updating an array if it is not

shared.

STACK MACHINE

7.1.2. Computing Fixedpoints

Burge presents two methods for computing fixedpoints, in a classic trade-off between

generality and efficiency. The general method performs a tortuous simulation of the

fixedpoint combinator: -
fix = Af.(hg.f(g g))oQ.f(g g))

The efficient method only works for functions, compiling them like ordinary recursive

functions.

Fixedpoints are mainly used to represent the semantics of while and goto statements; these

only define functions. Therefore I use the efficient method, and-have not felt limited by its lack

of generality. The machine treats tail-recursive calls like jumps to gain even more efficiency.

7.2 . Simplification

Mechanically translating a program according to a denotational definition produces a formula

that can be greatly simplified, especially if the semantics use continuations. Gordon and Stoy

[I 1,581 both give sample translations of tiny program fragments, involving dozens of steps.

7.2.1. Simplifying Fixedpoints

It is not obvious how best to represent fixedpoints. Sethi [56] uses circular expressions: a list

structure containing cycles. This allows the standard beta-reduction mechanism to simplify

fixedpoints automatically, which my simplifier does not. For instance, Sethi's simplifier can

resolve label definitions at compile time. Our terminology reflects the difference: I call label

environments "dynamic," but Sethi calls them "static."

I represent fixedpoints with an explicit f ix operator, and avoid circular expressions. This

allows me to traverse expressions depth-first without looping, and convert them into postfix

for storage on the language description file. The drawback is that the stack machine must

look up labels in the dynamic environment at run-time. It may be possible to use Sethi's

techniques in the last stage of code generation, eliminating the environment but introducing

cycles only in the generated code.

Because goto statements can describe loops, the semantics of the goto uses a fixedpoint.

IMPLEMENTATION ISSUES

Stoy takes a goto-program that simulates an if statement, and transforms its semantics into

that of the if statement, eliminating the fixedpoint in the process. I developed a way to do the

transformation automatically, by repeated use of the identities:

If a goto-program could be unravelled into if and while statements, then the transformation

produced a much simpler output. But it sometimes copied statements that were the target of

more than one goto statement. So I removed the transformation from the simplifier.

7.2.2. Beta Reduction

Achieving efficient, powerful beta-reduction was the hardest problem I faced when writing the

simplifier. Beta-reduction involves substituting an argument for a bound variable, resulting in

replication of the argument if the variable occurs more than once. To prevent formulas from

exploding exponentially, the simplifier only performs beta-reductions that replicate only

"simple" arguments. The key question: what is simple?

I originally decided that only atomic expressions were simple: variables, numbers, etc. But

this did not handle structured bound variables:

(A(int1 ,int2). int1 + int2) (3,8)

The bound variable, (intl,int2), was referenced twice; the argument, (3,8), was not atomic.

Beta-reduction was prohibited even though no component of the bound variable was used

more than once. 1 added a propagate command to override the simplicity test, but it proved

error-prone. I made the simplifier transform the above expression into

((Aintl int2. int1 + int2) 3) 8

This allowed beta-reductions, but the complete process copied the function several times.

Instead of relying on an expensive transformation, I generalized "simple" to include any

closed expression, detected using the free variable index. This version of simple allows

efficient simplification without exponential blow-up; it facilitates the evaluation of static

semantics, which mainly involves closed expressions.

CLEANING UP SEMANTIC GRAMMARS

7.3. Cleaning Up Semantic Grammars

My original Pakal grammar [45], intended for human readers only, was unsuitable for

machine processing. Of its many informal conventions, the worst was that it represented

syntactic repetition using ellipses (. . .) in rules and formulas. I spent weeks developing

practical recursive rules for the repeatable constructs, and putting the grammar into concrete

form. An easy example is rewriting the rule

as the two rules

The grammar was circular, to allow a procedure to be referenced before its declaration. It

processed declarations in the very environment that the declarations produced. Since

Madsen [31] had an algorithm for evaluating circular attribute grammars, and had written a

circular grammar for continuations, I attempted to extend his grammar to Pascal. I developed

rules for gotos and labels, but could not incorporate procedures into Madsen's framework.

Procedures required all semantic functions to be abstracted over continuations, as above;

Madsen passed continuations as attributes:

commandSequence<4'c rc1> = command<+c tc1> ;

Faced with this failure, I abandoned circular grammars,* and set out to write a completely

non-circular one. I had to develop a new treatment of declarations, introducing dynamic

environments.

*Circular grammars still merit study. Combining Madsen's parser with Sethi's simplifier would yield a compiler
generator for circular grammars. All we need are interesting grammars to try it on. I and others have pointed out that
a circular semantic grammar has a well-defined meaning, expressed as a least fixedpoint [31,35,45].

IMPLEMENTATION ISSUES

7.4. Parsing Attribute Grammars

My last major decision was what algorithm to use for parsing and attribute evaluation. The -
one-pass case is easy - if every attribute depends only on attributes to its left- in a rule, then

all the attributes can be evaluated in a top-down parse of the program. Several compiler -
generators work this way [29,38].

One-pass compilation is adequate for Pascal, but not for many other languages. Bochmann

[5] gives an algorithm that makes several left-to-right passes over a parse tree, decorating it

with evaluated attributes. He shows how to pre-processa grammar and determine how many

passes to use and what attributes to evaluate in each pass. The or8er of evaluation is the

same for all programs. Pozefsky [48] elaborates this "multi-pass" approach to include right-

to-left passes, special purpose passes, analysis to reduce attribute storage requirements, and ,

methods that require no parse tree.

A multi-pass evaluator performs a complex analysis of attribute dependencies. Yet it can only

treat a subset of attribute grammars; Bochmann gives an example in which the number of

passes depends on the nesting depth of the source program. I use Madsen's evaluator [31],

which works on all attribute grammars. It determines the order of evaluation only after

parsing the program. The algorithm is fast and easy to implement. It uses a lot of storage, but

so does a multi-pass evaluator, unless complex optimizations are included. The compiler

generator owes much of its efficiency, simplicity, and generality to Madsen's evaluator.

The basic structure of the compiler generator was already determinedbefore I chose the

attribute evaluator. Both evaluators use a table-driven LL(1) or LR(1) parser. Both imply that

there be a grammar analyzer, which writes a language description file, read by a universal

translator. They differ only in what processing each component should perform.

7.5. Call by Name vs. Call by Value

For efficiency's sake the stack machine occasionally deviates from the theory of denotational

semantics; the main flaw concerns functions. The are two kinds of lambda-abstraction,

depending on the value produced when the argument is -L. A call-by-value function must

return .L, but a call-by-name function need not. Denotational definitions usually adopt call-

by-name. -

CALL BY NAME VS. CALL BY VALUE

James Donahue has pointed out to me that the stack machine treats functions inconsistently:

sometimes call-by-name, sometimes call-by-value. It has two representations of the value J-:

the token bottom, or any looping computation. If it applies a function to the token bottom,

the function may ignore its argument and return anything (call-byname). If the machine

loops while computing the function's argument, then the argument, the function, and the

entire computation all have the value Jl (call-by-value). The machine aborts whenever it

attempts to perform arithmetic on bottom, which is also call-by-value.

Donahue tells me that call-by-name is essential for handling infinite objects. Unfortunately, a

call-by-name interpreter is difficult to implement and expensive to run. The languages I have

studied do not require call-by-name. Plotkin [46] discusses t6e differences between call-by-

name and call-by-value with regard to the SECD machine.

The specialized implementation of fixedpoints can cause the machine to loop. If a functional

expression f contains a recursive call, you may have to write it Xx.f(x), where x is a fresh

variable that does not occur in f. This delays the evaluation of f until it is applied to an

argument. Theoretically, there should be no difference between Xx.f(x) and f, by the rule of q-

conversion [58].

It is risky to abuse the theoretical foundations. This project may not be efficient enough to

interest engineers; if it is not true to the theory, then it may not interest theorists either. Since

the machine may loop in certain cases, its shortcuts make it less general. It can still execute

programs for a wide class of languages. The machine never computes the wrong answer

unless the user has suppressed union tags.

7.6. Achieving Efficiency

One way to assess an optimization is to see what happens i f it is removed. This section

presents the compiler generator's time and space requirements with various optimizations

disabled.

To explore the differences between the Pascal and Fortran grammars, I consider a program

for each. The Pascal program (Figure 7-1) finds a solution to the Eight Queens problem [68].

The Fortran program (Figure 7-2) produces prime numbers without performing any divisions.*
- -

*This program is due to Dijkstra (71, who presented it in a different form.

IMPLEMENTATION ISSUES

PROGRAM Eq; {Computes f i r s t so lu t ion o f Eight Queens. 15863724}
VAR k: Integer; found: boolean;

a: ARRAY [1..8] OF boolean;
b: ARRAY [2..16] OF boolean;
c: ARRAY [-7..7] OF boolean;
x: ARRAY [1..8] OF in teger ;

PROCEDURE T r y (i : Integer; VAR q: boolean);
VAR j: Intefler:
BEGIN
j := 0;
REPEAT

j := j+1; q := fa lse;
I F a [j] AND b [i+ j] AND c[1- j] THEN BE6IN

x [i] := j;
a[j] :* fa lse; b[i+j] := fa l se ; c [1- j] := fa lse;
I F 1<8 THEN BEGIN 'I

Try(I+l .q);
I F NOT q THEN BEGIN >

a m := t rue; b [i * j] := t rue; c [t - j] :* t r ue
END

END
ELSE q := t r ue
END

UNTIL q OR (j -8)
END;

BEGIN
FOR k := 1 TO 8 DO a[k] :* t rue;
FOR k := 2 TO 16 DO brk1 := t rue;
FOR k := -7 TO 7 DO c[k] := t rue;
Try(1,found);
I F found THEN

FOR k := 1 TO 8 DO BEGIN output t := x[k]; put (output) END - -

END.

Figu re 7- 1 : The Pascal Test Program (283 tokens)

The program looks strange because I have changed Fortran's lexical conventions to suit the

compiler generator.

. The statistics in this dissertation are meant to be illustrative, not authoritative. They may be

impossible to reproduce, because I am always modifying the compiler generator and
grammars.

7.6.1. Statistics on the Universal Translator

The most important optimizations of the universal translator involve its simplifier.

Closed Expressions The simplifier detects closed expressions - it does not attempt to
substitute into an expression that references no free variables.

Delay Arms The simplifier does not simplify the arms of a conditional or case
expression until it has simplified the controlling expression. The final
result may only incorporate a single arm.

ACHIEVING EFFICIENCY

{ P r i n t a l i s t o f p r i m e numbers}
INTEGER P. N, J . K. R , ORD, SQUARE
COMMON SQUARE,ORD,MULT(30),P(1000)
P(1) = 2
J = 1
0 R D Ã ‡ -
SQUARE = 4
READ (2) INPUT

DO 30 K = 2, INPUT
J = J+2
CALL UPSQR(J)
I F (ORD LE 2) GO TO 3 0
00 27 N = 2, ORD-1
I F (MULT(N) GE J) GO TO 26
WLT(N) = MULT(N) + P(N)
GO TO 2 0
R = J - MULT(H)
I F (R) 27.400.27
CONTINUE
PfK) = J
WRITE (3) (P(1) . I = 1, INPUT)
STOP

SUBROUTINE UPSQR(J)
COMMON SQUARE.ORD,MULT(30).P(1000)

: 3 I F (SQUARE GT J) RETURN
MULT(0RD) = SQUARE
ORD = O R W l
SQUARE = P(0RD) ** 2
GO TO 3
END

Figure 7-2: The Fortran Test Program (234 tokens)

MultipleSubstitution The simplifier performs multiple beta-reductions, such as for
(Ax y.f) u v, using a single copy operation.

Trivial Substitution The simplifier can reduce (Ax.f)y to f without copying f, if y is the
variable at depth 0. This is valid because bound variables are
distinguished by depth number, rather than by name.

I disabled each of these optimizations, one at a time, and compiled the Pascal and Fortran

programs. Tables 7-1 and 7-2 show the time and the number of nodes needed to simplify the

semantic DAG. (Each DAG node occupies three 36-bit words on the DecSystem-20.) Since

both time and space requirements are approximately linear in the size of the source program,

I divided the statistics by the number of lexical tokens in the program.

Closed Expressions is the most important optimization, necessary to compile the Fortran

program. Many large structures of static semantics, such as symbol tables, are closed

expressions.

IMPLEMENTATION ISSUES

Table 7- 1 : Performance Compiling the Eight Queens Program (pascal)

Optimization Disabled Time per token Storage per token

~milliseconds) (DAG nodes)

none 22 4.8 . .
ClosedExpressions 89 8.4

Delay Arms 35 27

Multiple Substitution 22 4.4

Trivial Substitution 22 - 4.9

. \
Table 7-2: Performance Compiling the Prime Number Program (Fortran)

m

Optimization Disabled Time per token storage per token

none 35 6.4

Closed Expressions (aborted due to memory overflow)

Delay Arms 44 18

Multiple Substitution 56 7.2

Trivial Substitution 33 6.5

Table 7-3: Performance Executing the Eight Queens Program

Optimization Disabled Instructions Time Storage

(seconds) (nodes)

none 972 27 1 69

Array Compactor 972 20 7,116

Obsolete References 962 32 371

Tag Suppression 1,064 29 41 1

Table 7-4: Performance Executing the Prime Number Program

Optimization Disabled Instructions Time Storage

none 639 37 105

Array Compactor 639 22 3,440

Obsolete References 609 86 5,364

Tag Suppression 660 37 190

ACHIEVING EFFICIENCY

Delay Arms saves a -substantial amount of space. It is most helpful for evaluating static

semantics, where the controlling expression of a conditional or case expression is always a

constant, selecting a single arm. Without it, the simplifier creates large structures that are

later thrown away.

Multiple Substitution is helpful for Fortran, but not Pascal. Trivial Substitution is useless.

Apparently Multiple makes Trivial obsolete - if both are disabled, performance drops

considerably. There are probably many other interactions among the optimizations.

Compiling Fortran uses more time and space than compiling Pascal, because of the extra

beta-reductions needed to unwind Fortran's continuation semantics.

I

7.6.2. Statistics on the Stack Machine

The stack machine contains optimizations, and the universal translator performs code

optimizations that affect the stack machine. Tables 7-3 and 7-4 present the code size,

execution time, and storage required to execute the test programs. (Each storage node

occupies five words. Not included are the contents of array blocks, which occupy

considerably less than half of the total storage.)

Array Compactor The array compactor converts association lists into addressable
structures.

Obsolete References To prevent obsolete references from impairing the array compactor,
the code generator emits popEnv instructions to delete dead
variables from the environment. Also, the stack machine does not
save the environment for a tail-recursive call.

Tag Suppression . At the user's option, the code generator emits no inject or project
instructions, which create and destroy tags of union domains.

If the Array Compactor is disabled, every array forms an association list that grows

monotonically until the entire array is garbage-collected. The Array Compactor is essential

for running programs in a realistic amount of storage. It slows down execution significantly,

even though it allows faster lookup of array elements. Apparently the most important data are

usually near the front of the association lists.

If there are many Obsolete References into an association list, the compactor uses extra time

but accomplishes little, especially for the prime number program. The list structures are

IMPLEMENTATION ISSUES

heavily interlinked - failing l o compact one list leaves obsolete references that impair the

compacting of many others. The object code is slightly smaller when the popEnv instructions

are deleted, but this hardly compensates for the extra data storage required.

Tag Suppression makes the object code slightly smaller, saves a small amount of run-time, . .
and saves a considerable amount of data storage.

7.6.3. Comparison With Other Compiler Generators

Of the many compiler generators that have been implemented and tested, two are most similar

to mine: Mosses's SIS [42], which converts denotational definitions into compilers, and

Raiha's HLP 1491, which processes complex attribute grammars. In some respects, my system

is more efficient than these others.

My compiler generator does not produce a parse tree; it makes a single pass over the

program and produces a graph of all its semantic dependencies. SIS traverses a parse tree to

compute its semantics. Since complex languages require several semantic functions on

nonterminals, it may traverse parts of the tree more than once. HLP evaluates attributes in

passes [48], traversing the parse tree as many as five times for some languages. A parse tree

occupies a great deal of storage, and repeated traversals waste run time. Some traversals

only evaluate a few attributes.

HLP copies large structures instead of referring to them by pointers. To avoid copying, it

provides global attributes, which may be referenced and updated by any descendants of a

node. Since global attributes violate the spirit of attribute grammars, the HLP team did not

use them in writing a grammar for the language Euclid. That grammar creates a separate

copy of the symbol table for every node of the parse tree. The waste of storage precludes

compiling large Euclid programs [50].

Interpretation does not execute object programs efficiently. Interpreting a formula requires

traversing it, matching operators with operands [6]; this effort is needlessly repeated for each

iteration of a loop. SIS's interpreter is especially slow because it implements call-by-name.

My system compiles its output formula into stack machine instructions. Compiling the formula

determines, once and for all, the proper order of computation and the matching of operators

with operands.
*

ACHIEVING EFFICIENCY

SIS is bootstrapped in terms of itself. When generating a compiler, it uses a definition of its

own semantics to process the user's semantics. The resulting compiler is represented as a

lambda-calculus formula. It compiles a program by applying the compiler, as a function, to

the program's parse tree, and interpreting the result. The resulting object code is also a

lambda-calculus formula. SIS executes the code by applying it to its input data. We cannot

expect efficiency from this elegant embodiment of the algebraic structure of a compiler

generator.

Chapter 8
Conclusions

This work, particularly the generation of a Pascal compiler, has been more successful than I

could have imagined. The compiler generator's .most serious problem is inefficiency, but

there are several ways to improve it.

8.1. Defining Languages

I treat well-known languages, as faithfully as possible, to prove that my work applies to real

problems. Pascal embodies the major language concepts and has several formal definitions.

My Pascal grammar (Appendix D) covers all static and dynamic semantics except goto

statements, real numbers, strings, function side effects, procedures passed as parameters,

etc.* Most of the deficiencies stem from my attempt to make the semantics as high-level as

possible; it avoids both continuations and machine locations.

The grammar includes all types and statements, recursive procedures, and block structure. I

have checked most of it, by running test programs on the compiler generator. It is only

twenty-one pages long, including comments: two pages of domains, five of functions, and

fourteen of rules. The Pascal Report [19] is thirty-two pages.

Fortran, with its low-level state and control structure, and non-recursive subroutines,

contrasts well with Pascal. Its grammar uses continuations and locations, dispelling any

doubts that my work can only handle "nice" (well-designed) languages. Fortran's grammar is

less complete than Pascal's; it lacks real numbers, FORMAT, EXTERNAL, and DATA

statements, Hollerith constants, and statement functions. I have altered the lexical syntax as

the compiler generator requires. Still, the grammar covers labelled COMMON blocks,

*The initial comments of Appendix D list all of the deficiencies.

CONCLUSIONS

EQUIVALENCE statements, DO statements with extended range, assigned and computed GO

TO, arithmetic and logical IF, unformatted input/output with implied DO, subroutines, and

functions.

Are semantic grammars more readable than other notations? The examples presented so far

are idealized; real grammars can get messy. See if you can understand the Pascal grammar,

and compare it with the axiomatic and denotational definitions [16,61].

Appendix F is a semantic grammar that defines semantic grammars, but it describes only their

syntax and domain checking, not the language generated by a particular grammar. A

language description should not mimic the compiler generator.-" A suitably abstract

description might be a predicate that checks whether a decorated parse-tree belongs to the

language.

Writing a grammar for semantic grammars requires a separate, formal definition of semantic

grammars. My proposed definition [45] is unsuitable for this purpose. It uses Watt and

Madsen's idea that an attribute grammar generates a context-free grammar in which the

nonterminals are symbols decorated with attribute values [63]. Checking a parse-tree for

conformity with a grammar requires a means of comparing attribute values for equality. But

equality is not defined on every domain of denotational semantics: there is no way to

compare functions. Mayoh's technique [35] for converting attribute grammars into

denotational definitions may lead to a better formal definition of semantic grammars.

8.2. Errors and Debugging

Writing a grammar, like writing a program, requires revising and debugging. The compiler

generator recovers well from errors, even those defined by a grammar for a source language.

It prints the erroneous line, points to the error, prints a descriptive message, and usually

continues processing. On the rare occasions that it aborts, the usual cause is subscript error:

overflow of some internal table. Each program's limits appear in the constant definitions at

the beginning; they are high enough for the Pascal grammar.

The universal translator only detects two kinds of errors in programs: undefined attributes

and violated constraints. It would be useful i f auxiliary functions could also report errors. For

instance, a function that merges declaration lists could report conflicting declarations. I

ERRORS AND DEBUGGING

propose an error-expression that reports an error and returns a value for continued

processing. A similar construct could produce readable messages for run-time errors.

Debugging user programs on the stack machine is difficult. A user program aborts by

producing the value -1; the only information reported is the current program counter and

machine state, which is often incomprehensible. To locate the error in the source program,

you must study the machine code and the semantic formula. A research problem is analyzing

the grammar to automatically produce a debugger tailored to the source language.

A grammar may not work as expected, even if it describes correct semantics. It may cause

the universal translator to yield inadequately simplified or duplicate formulas. The stack

machine may loop, abort, consume large amounts of storage, or run extremely slowly

(Sections 7.5, C.3). The best way to avoid bugs is to thoroughly test the grammar on small

examples throughout its development.

I encountered few stubborn bugs while developing the Pascal and Fortran grammars. Most

led to an obvious correction in the grammar; the grammar analyzer then created a new

compiler in less than a minute. This immediate feedback let me work with confidence.

8.3. Improving Efficiency

The compiler generator is efficient enough to run experimental programs, but it is impractical

for production runs. This section discusses its performance on several Pascal and Fortran

programs (Table 8-1).

The grammar analyzer (Table 8-2) is fast; the language description file is a compact

representation of a compiler.

The universal translator (Table 8-3) compiles programs at about eight seconds per page,

twenty-five times slower than the regular Pascal compiler. For small programs, startup costs

are a major fraction of the total costs. Ignoring startup, space-and time requirements are

approximately linear in the size of the program. Storage limitations prevent compiling

programs longer than twenty pages.

The stack machine (Table 8-4) runs Pascal programs a thousand times slower than the

regular Pascal system. This ,is still fast enough to compute the LR(0) kernels of a small

,
CONCLUSIONS

Ta bJe 8- 1 : Facts About the Test Programs

Language Lines Tokens Function computed

EQ Pascal 39 283 Eight Queens solution

LRO Pascal 438 2,023 LR(0) states

P R E Fortran 35 234 Prime numbers

SORT Fortran 102 569 Square roots (contrived program)

Table 8-2: Grammar Analyzer Performance

Grammar Lines Rules LR states LDF words Seconds
' '7

Pascal 1,465 141 296 14.284 25
-^Â¥

Fortran 1,080 114 224 9,115 14

Table 8-3: Universal Translator Performance

Total Costs

Time Storage Code generated

(seconds) (DAG nodes) (instructions)

EQ 8.9 3,592 972

LRO 50 13,165 5,305

PRIME 9.8 2,772 639

SORT 19 4,975 1,492

Pascal

Fortran

EQ

LRO

PRIME

SORT

Startup Costs

Reading LD F Storing semantics

(seconds) (DAG nodes)

3.1 2,200

2.3 1,328

Table 8-4: Stack Machine Performance

Time Storage Speed

(seconds) (nodes) (instructions/second)

22 169 5,030

30 41 8 3,220

30.6 105 2,590

7.8 93 860
*

IMPROVING EFFICIENCY

grammar. Its speed varies considerably, probably due to the effect of different programs on

the array compactor.

The compiler generator is written in Pascal and runs on Stanford's DecSystem-20. It is simple

and compact, considering its capabilities. Together with the Pascal grammar, it is an

implementation of Pascal that is smaller than the standard Pascal compiler at Stanford:

Component Lines
grammar analyzer 4,506
universal translator 4,097
stack machine '1,403
Pascal grammar 1,465
total 11,471

regular compiler 12,619

8.3.1. Faster Compilation

The universal translator spends most of its time simplifying the semantic DAG. Compiling a

seven-page program, it initializes itself in three seconds, parses the program and builds the

DAG in seven seconds, and simplifies the DAG in forty-seven seconds. The simplifier

uniformly processes both static and dynamic semantics, although the requirements of each

differ greatly. Distinguishing static from dynamic semantics would make a more modular,

efficient, and predictable translator.

The compiler generator already places a strong emphasis on static semantics, yet more

emphasis is needed. Static semantics requires its own notation, separate from that for

dynamic semantics. The static notation would be just powerful enough to describe types and

environments, and. could manipulate quoted (uninterpreted) dynamic formulas. The dynamic

notation could be based on any semantic framework: denotational, axiomatic, or operational.

Attribute expressions would be written in the static notation, because they must all be

evaluated at compile-time.

The difference between static and dynamic semantics is of great practical importance. For

instance, a language implementation that checks types at compile-time is simpler and more

efficient than one that generates run-time type descriptors. A separate notation for static

semantics allows grammars to indicate which actions should be performed at compile-time. It

also corrects the formal definition of semantic grammars - the static notation can be simple

enough to have equality defined on all domains, since dynamic formulas are treated as text.

CONCLUSIONS

The separation replaces the simplifier with two specialized, efficient procedures: an

interpreter and an optimizer. The interpreter executes the static semantics. The optimizer

transforms its input formula into one that is semantically equivalent, but more useful. The

semantic framework determines what optimizations to perform. Denotational semantics

requires beta-reduction. Axiomatic semantics requires theorem-proving; such a system could

verify programs written in any language.

The simplifier is complex because of its dual role. As an interpreter, it must reduce every

static formula to a constant. As an optimizer, it must use whatever heuristics are necessary to

produce efficient formulas. The simplifier already distinguishes between compile- and run-

time recursion (Section B.l); its most important optimizations concern static semantics

(Sections 7.2.2,7.6.1).

Edinburgh LCF[12], a program verifier for

metalanguage for processing lambda-calculus

denotational semantics, uses a separate

formulas. Formulas are written as quoted

constants, and can be combined or built up using constructor functions. The metalanguage

is flexible enough to express theorem-proving strategies.

8.3.2. Compiling Large Programs

The universal translator cannot compile programs longer than twenty pages, because it holds

the semantics of the entire program in memory. Madsen [31] sketches a way to let the

semantics overflow to secondary storage. A simpler, more efficient way to compile large

programs may be to translate them one subprogram at a time, as most compilers do.

Every grammar designates a start symbol, so that the translator can recognize when it has

parsed a program. If the grammar could designate other symbols, then the translator could

recognize subprograms during parsing. (John Hennessy suggested this to me.) It could

evaluate the subprogram's semantics, generate code for its synthesized attributes, and

release its storage. The problem is designing the semantic interface - making sure the

inherited attributes are available and that the rest of the program properly refers to the

generated code.

IMPROVING EFFICIENCY

8.3.3. Faster Execution

The stack machine refers to all data through pointers, even though only functions require the

indirect representation. Tuples and integers can instead be represented as blocks of words.

(The size of each block depends on its domain, but is constant.) The machine's overhead of

reference counting and heap allocation would be greatly reduced.

Running Pascal and Fortran, the stack machine never accumulates function closures. Each

closure is immediately applied to an argument. I f closures were banned,' and the grammar

analyzer could certify that a grammar did not require closures, then the stack machine could

manage environments without reference counting. This gains efficiency at the price of

accepting fewer languages.

If the grammar uses a dynamic environment for labels and procedures, then the machine

must look them up every time it executes a goto statement or procedure call. Better code

generation would eliminate the dynamic environment during compilation, as Sethi does[56],

by unwinding its fixedpoint definition.

The array compactor uses the most time and is the most difficult to improve. It needs a

breakthrough - some way of defining an array domain, where each array has fixed bounds

and a uniform element type, but where different arrays can have different bounds. It must

prevent sharing of arrays, to allow direct updating without the formation of association lists.

8.3.4. Generating Real Machine Code

After implementing the above refinements, the stack machine would be simple enough to

eliminate, boosting efficiency tremendously. Ordinary machine code could provide most of its

capabilities, with a run-time support package for the remainder, such as the array compactor.

Another way to eliminate the stack machine is to represent semantics operationally instead of

denotationally - as a compiler's intermediate code. A semantic grammar can easily specify

syntax-directed translation into intermediate code [I]. A final stage would translate the code

into optimized hardware instructions.

- - --

"Constant functions such as Aint.false do not need a closure representation, because they do not refer to the
environment

CONCLUSIONS

Such a compiler generator would require a separate notation for static semantics, because

intermediate code only describes dynamic semantics. Even if the generator were not efficient .

enough for production use, it would help a compiler writer by simulating the production

compiler, providing sample object code and error detection.

Recent research [23,57] uses a notation for denotational semantics that resembles machine

instructions. Abandoning denotational semantics solves the problems of reference counting,

closures, environments, and arrays at once - if your only goal is fast compilers for traditional

languages. But remember that denotational semantics is concise and powerful, can
' I

accomodate applicative languages and novel control structures, and is useful for reasoning
*

about programs.

8.4. Implications for Language Design

A programming language should be formally defined even while it is being developed, to

reveal its inconsistencies. Unfortunately, most language designers find definitions too

difficult to write. The compiler generator allows anyone to debug a formal definition, written

as a semantic grammar. As an extra incentive, it offers a free compiler for every definition.

Compiling and executing test programs onthe compiler generator provides further insights

into a language.

Pascal's grammar reveals some trouble spots. Set expressions require special handling

because they do not completely determine the set type; likewise, the constant nil can have

any pointer type. Enumerated types declare constant identifiers as a side-effect, complicating

every rule that refers to types. Using a function's name to designate its return variable

requires extra bookkeeping.

A Fortran program can specify a variable's type, dimensions, COMMON block, and storage

equivalence in any order, or not at all. These options cause messiness throughout the

Fortran grammar, even though it imposes an order on declarations. Other Fortran constructs

are so troublesome that the grammar does not handle them at all. A DATA statement affects

the initial state, but may appear anywhere in a program. A statement function creates a local

environment, but may implicitly declare global variables. A subscripted array variable is

syntactically identical to a function call.

IMPLICATIONS FOR LANGUAGE DESIGN

I would not condemna language construct simply because it was difficult to formalize. The

fault might lie in the formalism: for instance, denotational semantics can not easily represent

tasking. Still, the compiler generator can contribute to the design of consistent, clean, and

simple programming languages.

USING THE GRAMMAR ANALYZER

Appendix A
Using the Grammar Analyzer

When started, the grammar analyzer prints:

Semantic Grammar Analyzer

Language:

If you reply "In," then the analyzer will look for a semantic grammar with file name In.SG, write

the language description file on In.LDF, and produce a listing file on In.LST. The analyzer will

optionally list the LALR(1) states or attribute dependencies of the grammar.

A.1. Lexical Conventions for Semantic Grammars

The grammar analyzer uses the following ASCII representations of special symbols in

semantic grammars:

symbol represen tation note
- ? . ->
A \
I I
X X x is a reserved word!
-L BOT[domain] the domain must be given

Names are strings of up to fifteen letters, digits, and underscores, beginning with a letter.

Only variable names may cbntain digits. The case of letters is not significant.

Reserved words:

USING THE GRAMMAR ANALYZER

and
div
Wac
98
Ie
mod
or
then

attribute
domain
false
gt
lei t
ne
propagate
true

hot
else - f i
if
let
nonassoc
resolution
unspec

case
end
fix
in
let rec
not
right
with

define
eq
forward
is .
It
of
rule
x

Comments begin with # and continue until the end of the line. A separator is a space, end of

line, or comment. Separators are required between reserved words, names, and numbers.
7

-J"-

A.2. Resolution of Parser Conflicts

To resolve the dangling else conflict, include right "else" in the resolution part, and use the '

syntax

statement = "if" expression "then " statement "else" statement 1
"if" expression "then " statement 1 . . .

not

statement = "if" expression "then " statement elsepart
elsepart = "else" statement (empty

To resolve operator precedence, use appropriate resolution declarations and the syntax

expression = expression " + " expression 1 expression "*" expression 1 . . .
not

expression = expression operator expression 1 . . .
operator = l l + n ~ w * * l ~ . . .

To use the resolution part properly, you must know exactly how the grammar analyzer

resolves conflicts in the parse table. Suppose there is a conflict between shift on symbol s

and reduce by a rule whose rightmost terminal is t. The conflict is unresolvable if the rule has

no terminals, or i f neither s nor t is mentioned in the resolution part. Otherwise, the grammar

analyzer resolves the conflict according to which operator has the higher binding power [I]:

RESOLUTION OF PARSER CONFLICTS

priority grouping parse table entry
s<t any reduce
s>t any shift
se t left reduce
s=t right shift
sa t nonassoc error

The analyzer does not resolve reduce-reduce conflicts.

A.3. Terminal Symbols
*

Terminals in semantic grammars may contain alphanumeric (including underscore)

characters or non-alphanumeric characters, but not both. They may not be empty, contain

spaces, or begin with a digit. A non-alphanumeric terminal may not be longer than two

characters.

A.4 . Error Messages

The grammar analyzer does not produce a language description file if there are errors in the

semantic grammar. It reports only the first error encountered in a definition or rule; The

messages are:

Illegal character char
The semantic grammar contains a non- printing character.

15 characters maximum
A name is longer than fifteen characters.

No digits allowed here name
Only variable names may contain digits.

Another symbol expected symbol
Syntax error in the input grammar.

Undeclared identifier in expression name
The given name is undefined.

Command improperly terminated symbol
A semicolon is expected after every definition and rule.

Unmatched quotes
A string constant or terminal symbol runs past the end of a line.

USING THE GRAMMAR ANALYZER

Line too long - truncated -
The input line is too long to process.

Factor expected The current symbol cannot begin afactor.'

Function required here domain
The current operand must be a function.

Sum domain required here domain
The current operand must belong to a sum domain.

Product domain required here domain
The current operand must belong to& product domain.

..-
Equality undefined for this domain domain

The current operand must allow equality testing - it must not contain a
function domain.

No such domain name
There is no domain of the listed name. The name of a variable must, after
digits are removed, be a domain name, unless the domain of the variable
is explicitly given.

Domain mismatch domain 1 domain2
The two domains are required to be the same.

Illegal redefinition name
Attempt to redefine the given name.

Wrong number of attributes
The current nonterminal symbol is supplied the wrong number of
attributes.

Illegal in a defining position
The current attribute expression is in a defining position, and may contain
only constants, variables, tuples, and injections.

WITH depends on other WITHs
Pseudo-attributes may not depend upon each other. Either a with name
or a uniqueName attribute appears in another with clause.

Not a selector of a sum domain name
The given name appears where a tag is required.

Wrong selector for case
The tags in a case expression must appear in the same order as in the
definition of the union domain. -

-

ERROR MESSAGES

No such symbol in grammar symbol
The given symbol is not a terminal symbol of the grammar.

Illegal terminal symbol -
The symbol may not be used as a terminal because it violates the
restrictions mentioned above - contains spaces, for example. -

No such nonterminal in grammar name
The given name is not a nonterminal of the grammar.

No st rings generated by nonterminal name
The given nonterrninal cannot produce any terminal productions.

Unreachable nonterminal name -f

The given nonterminal cannot be produced from the start symbol.

Unresolvable conflict in kernel kernel number
The given parsing kernel has a shift-reduce or reduce-reduce conflict,
using LALR(1) lookahead.

Unresolved forward reference to name
The given name was never defined, but was used as a domain,
expression, or attribute variable.

Missing final end token
Every grammar must be terminated by the token end.

USING THE UNIVERSAL TRANSLATOR

Appendix B
Using the Universal Translator

When started, the translator prints

Universal Trans1 a t o r

Program:

It expects a file name of the form pn.ln, where pn is the program nameand In is the language

name. It uses pn.ln as the program source file, looks for a language description file named

In.LDF, writes a listing on pn.LST, and writes object code on pn.COD. The listing includes

storage and run-time statistics, the simplified semantics of the program, and the generated

code.

B.1. Recursive Functions

The universal translator distinguishes two kinds of recursive functions. A function defined

using forward and define declarations is compile-time recursive; the simplifier will always

apply it to its arguments, expanding its definition. Every instance must disappear from the

DAG before code generation, or the translator will signal an error. Use compile-time

recursion for type-checking or bookkeeping functions that require evaluation during

compilation.

A function defined using letrec or fix is run-time recursive, never expanded during

simplification. It will be translated into machine instrutions and called at run-time. Use run-

time recursion for the semantics of loops.

USING THE UNIVERSAL TRANSLATOR

B.2. Syntax Errors-

if the parser detects a syntax error, it prints a list of expected symbols and stops. (The .

symbols are the current LALR(1) lookahead; some of them may not really be valid

continuations of the input.)

The scanner detects the following lexical errors:

Line longer than 80 characters
The input line is too long to process.

' ' >

Name longer than 15 characters
-J -̂

The current name is longer than fifteen characters.

End of file in comment
A comment has no closing bracket, but continues until the end of the file. '

Illegal character The program contains a non-printing character.

No such symbol in language
The current character has no meaning in the language.

B.3. Semantic Errors

The translator prints information to pinpoint the cause of a semantic error. The first line of a

message lists the nonterminal containing the error, blank if the error occurred in a predefined

nonterminal or with clause.

Semantic error: nonterminal

If the error is an attribute equal to -1, then the next line lists the name, if any, of the attribute

domain:

Undefined attribute domain name

If the error is a circularly defined attribute, then the next line is

Circularly defined attribute domain name

If the error is a failed constraint, then the next message line indicates the constraint's form:

SEMANTIC ERRORS

constraint message
x is tag Should be tag
X e q Y Attribute mismatch
name(args) Failed check: name
other no message

Using meaningful names in your semantic grammar will make the error messages more

readable.

Appendix C
Using the Stack Machine

The stack machine prompts for its code, input, and output files. After reading the object code

and input data, it starts executing the object program. If the program terminates, the machine

prints the current state and the value on top of the stack. A value of J- indicates abortion.

The machine also aborts whenever it attempts to perform arithmetic on -1.

1

C.1. Debugging

The stack machine does not provide a debugger; the state it prints is usually undecipherable.

The only useful information printed is the program counter. The listing from the universal

translator includes the simplified semantic DAG, as well as the object code. Comparing the

code with the DAG, and the DAG with the source program, will locate where the program

aborted.

I f the machine crashes because the dump has overflowed, then the object program contains a

function that loops by calling itself. (Less likely, the program may contain a tail-recursive call

that the machine does not recognize.) The return address, repeated in almost every element

of the dump, pinpoints the erroneous function call.

C.2. Input and Output

A semantic grammar must be compatible with the stack machine's input/output conventions

for programs to run properly. Input and output are sequences of integers; a list kl, . . ., k,, is

represented as some permutation of:

([l+kl]. . . [n->k,,] -L, n)

The semantics of a program is a mapping from the input file to the output file:

USING THE STACK MACHINE

INTMAP = INT -Ã INT; #contents of a file
FILE = INTMAP X INT; #file including length
PROGRAM = FILE -Ã ̂ FILE; # input/output semantics

The Pascal grammar uses a dangerous trick: it defines INTMAP as INTdVALUE instead of

INT-Ã ÎNT Since VALUE is a union domain that includes INT, this works if tagfields are

suppressed in the object code. The grammar specifies type-checking to guarantee that the

VALUES in the Pascal files really are INTegers. .

The grammar must build the output file entirely from function updates, not lambda-

abstractions. Although abstractions define legitimate functional value, the stack machine's

output routine cannot evaluate them. Instead of

(Aint.int + 10,3)

the machine requires

[I--11][2+12][3-131 -L,3)

or another permutation, such as

[3413][1-~11][2-~12] -L, 3)

C.3. A Cautionary Note

A semantic formula may be correct but extremely inefficient to execute.

I represent a Pascal set by its characteristic function: true for the members of the set, false

for the non-members.

SET = INT 4 BOOL-,

The obvious definition of the empty set, Xint.false, works in practice; the obvious definitions

of the set operations, such as union, do not.

My first attempt to define union was

set1 U set2 = Aint: setl(int) or set2(int)

As a program executed, each set operation created a closure as the set's value. Each closure

referenced two others. Over time, each set became a tree of closures. Testing set

membership caused evaluation of the entire tree. Furthermore, the closures all contained

environments referencing the state. The array compactor bogged down in the hundreds of

extra references.

A CAUTIONARY NOTE

I solved the problem by defining the union operation to construct a new set by inserting the

elements of set1 and set2 to the empty set, as function updates.

Appendix D
Pascal Grammar

#PZ.SG, Pascal Semantic Grammar "P2" ' 1

missing Pascal features H

INPUT and OUTPUT are f i l e s o f integer, no t char
standard rout ines PACK.UNPACK,READ.READLN,WRITE,WRITELN.EOLN.PAGE
standard procedures should be pa r t o f environment, not syntax
s t r i n g constants
type REAL and standard funct ions f o r rea ls
procedures and funct ions passed as parameters
s ide-ef fects i n funct ions
va r iab le parameters are passed by va lue-resul t , not reference
Ã GOT0 command, LABEL dec larat ions

e r ro rs not detected
subrange bounds
d is jo in tness o f f i e l d s , formals, case l i s ts , enumerated constants
It po in te r type forward dec larat ions
program parameters must be declared as var iab les

DOMAIN

###Nalues o f var iab les and expressions

VAL = [intVal[INT]
+ arrayVal [ARRAY]
+ setVal[SET]
+ recVal[RECORD]
+ f i leVal [FILE]
+ ptrVal[PTR]];

ARRAY = INT -> VAL; #array element f o r each subscr ip t
SET = INT -> BOOL; #charac te r i s t i c funct ions o f sets
RECORD = NAME -> VAL; #values o f each f i e l d
PTR * IMT; #indexes i n t o heap
FILE = ARRAY X LEN X POS X VAL; # f i l e data, length, pos i t i on , b u f f e r
LEN * INT; POS = INT;
#Records a lso represent l e x i c a l l e ve l s -- values o f each l oca l va r iab le

Environments

ACCESS = [varAc + v a l ~ c] ; #var iab le and value parameters

NAMES = [n i lN + consN[NAME X NAMES]]; #name l i s t s (f o r dec larat ions)

#L i s t s o f dec larat ions f o r a b lock
DECLS = [n i lD + consD[NAME X MODE X DECLS]];
PTRS * DECLS; #pointer type f i xups
CONSTS = DECLS; #enumerated type constants
PARAMS = DECLS; #formal param l i s t s
FIELDS = DECLS; # f i e l d l i s t s

ACTIVITY = [ac t i ve + inact ive] ; #whether a rou t ine i s ac t i ve o r no t

PASCAL GRAMMAR

PF = [proc + func[TYPE]]; - #whether a rou t ine i s a proc o r a func

(meanings o f i d e n t i f i e r s
NODE = [undefined

+ paraiiiMode[ACCESS X TYPE] #params and var iab les
+ constMode[TYPE X VAL] #constants
+ typeNode[TYPE] #types
+ routMode[PARAMS X PF #procedures and funct ions

X ACTIVITY]] ;

LEVEL = INT; # l ex i ca l l e ve l s
ENVMAP = NAME -> (LEVEL X MODE) ;
EUV = LEVEL X ENVMAP; # f u11 environments

LOCENV = NAME -> MODE; #1 ocal environments

#Data types
TYPE = [scalarTy[RANGE X SCALID]

+ arrayTy[TYPE X TYPE]
+ setTy[SCALID]
+ recordTy[FIELDS X NAME X LOCENV]
+ fileTy[TYPE]
+ ptrTy[NAME]];

RANGE = INT X INT;
SCALID = NAME ;

#subrange of in tegers
#unique i d ' s f o r sca lar types

####Runtime s t a te

#The heap i s the ar ray va r iab le "Sheap" a t l e ve l 0
#The l a s t heap po in te r used i s "theapLimitn a t l e v e l 0
S = LEVEL -> RECORD; estates (indexed by d isp lay l eve l)
SX a S -> S; estate transforms

DE = MAKE - > SX;
DT = DE -> DE -> DE;

#dynamic environments
#DE transforms

####Semantic func t ions

EXP = DE -> S -> VAL; #expressions
VAR = DE -> S -> VAL -> SX; #var iables
VAROPT = [notvar + isVar[VAR]]; #"var iab le opt ion"
VT = VAR -> VAR; #var iab le transformations
COM = DE -> SX; #cornand$

INTLIST= [n i l 1 + consI[INT X INTLIST]]; m i s t s o f case labe ls
CASES = INT -> COM; #branch o f a case command

####Procedure Linkage

#Set up i n i t i a l s t a t e f o r a procedure
ACTVAL = DE -> S -> RECORD; fac tua l value parameters

#Store f i n a l values o f params i n c a l l i n g program
ACTVAR = DE - > S -> EXIT; f ac tua l va r iab le parameters

#Store p a r t o f a l e x i c a l l e ve l i n a s t a t e
EXIT = RECORD -> SX; #ex i t funct ions o f f i n a l l e x i c a l l e ve l

I / 0 i n t e r f ace i s ac tua l l y INT->INT; however, t h i s 1s the same as
ARRAY when t ag f i e l ds are suppressed i n runtime code, s ince
9 the var iab les " input" and "output" are f i l e s o f integers.
This depends on the type-checking o f Pascal, as enforced by
the grammar.
INTMAP = ARRAY;
INPUT = INTMAP X INT: #input f o r creat ing i n i t i a l s t a t e
OUTPUT = INPUT; #output from f i n a l s ta te
PROG = INPUT -> OUTPUT; #programs

FORWARD

assigncases:
compatible :
equal :
eqRecord:
f i x L i s t :
appendD :
d e c l N u ~ s :
evalDec1s:

(INTLIST X COM X CASES) -> CASES;
(TYPE X TYPE) -> BOOL;
TYPE -> VAL -> VAL -> BOOL;
FIELDS -> RECORD -> RECORD -> BOOL;
(ENV X PTRS X LOCENV) -> LOCENV;
(DECLS X DECLS) -> DECLS;
(NAMES X MODE) -> DECLS:
(DECLS X LOCENV) -> LOCENV;

DEFINE

..
State Operations
#W###########99######################## ' 1

#Function t o assign a new value t o a va r i ab l e w i t h given nafte and l eve l
s tore = \(level.name) va l s. [l eve l -> [name->val] s l e v e l] s;

#Execute a command i n a new l eve l
run = \ l eve l record sx e x i t $0.

LET s=sx([level ->record]sO) IN
e x i t ($ level)([level->SO l e v e l] s);

#Semantics o f the WITH conmand i n terms o f I t s const i tuents
withcorn = \(level,exp,var,com).

\de s. run(leve l+ l) (exp de s I recVal)(com de)
(\ record.var de s recVal[record])s;

invariable transformations appl ied t o varOpts
used t o form the semantics o f var iab les
vx = \varOpt v t .

CASE varOpt OF
notvar. notvar.
isVar[var]. i s ~ a r [v t var] ,

ESAC ;

#Assign a command t o i t s case labe ls
assigncases = \(intList,com,cases).

CASE i n t L i s t OF
n i l l . cases,
cons I [i n t , i n t L i s t l] . [int->corn] assignCases(intListl,com,cases)

ESAC :

#Boolean operations w i th (l = t r ue , 0- fa lse)
numeric representat ion required because BOOLEAN i s an enumerated type

boolVal = \bool. in tVal [IF boo1 THEN 1 ELSE 0 FI];

#se lect one o f two s ta tes depending on a cond i t i on
cond = \va1 s l $2. I F va l ! i n tVa l EQ 1 THEN s l ELSE $2 F I ;

andint = \ i n t i i n tZ . I F i n t l EQ 1 THEN i n t 2 ELSE 0 FI;
o r I n t = \ i n t i i n t 2 . I F i n t l EQ 1 THEN 1 ELSE i n t 2 FI;

#Lookup a type name i n 'env: and re tu rn the t ype .
#Used t o look up po in te r type names
typeLookup = \(level,envMap) name.

LET (level.mode)= envMap(name) IN mode!typeMode:

PASCAL GRAMMAR

maxInt 10000000; Himaxinturn a1 lowable in teger value

#standard types
intType = scalarTy[(-iirxInt,maxInt), "Sint"]:
booUype = scalarTy[(O.l). wSboolw]:
charType = scalarTy[(0.127), "ScharW];
tex t l ype = fileTy[charType];

#Range f o r sets -- necessary t o model t h e i r usual i n t e rp re ta t i on i n Pascal
maxElem = 60: minE1an * 0:

#type compat ib i l i t y rules:
Name compa t i b i l i t y f o r records and scalars, others s t ruc tu re compa t i b i l i t y
There are un iversa l types f o r the NIL po in te r and the empty se t [I
compatible = \(typel,type2).CASE t ype l OF

scalarTy[range,scalIdl]. s c a l l d l EQ RIGHT type2lscalarTy.
arrayTy[type3,type4].

LET (type5.type6) = typeZ!arrayTy
IN compatible(type3.type5) AND compatible(type4.type6).

setTy[scal Idl] .
LET scalId2 = typeZ!setTy I N

(s c a l l d l EQ scalId2) OR
(s c a l l d l EQ "Snul l ") OR (sca l Id2 EQ "Snul l") ,

recordTy[fie1dsl,namel,locEnv].
LET (fields2,name2,locEnv) = type2!recordTy IN namel EQ name2,

f i leTy[type]. cmpat ib le (t ype , t ype2 l f i l eTy) .
ptrTy[naroel].

LET name2 = type2lptrTy
IN (namel EQ name2) OR (namel EQ " $ n i l w) OR (name2 EQ " $n i l ")

ESAC ;

#re tu rn a 'common' type o f two types
cu r ren t l y t r i v i a l , but could handle i n t -> rea l conversions, e tc .
common = \ (type l , type2) .

I F compatible(typel.type2) THEN
I F (t y p e l I S setTy) AND (type l l se tTy EQ "Snul l")
THEN type2
ELSE type1 F I

ELSE BOT[TYPE] FI:

#####Ã‡Ã‡############MÃ‡Ã‡##########
Eaual i tv Test-inu o f values
###If ####Ã‡####)M>#~#####################

#The boolean expression xÃ‡ i s compiled i n t o an expression t ha t does not
It (a f t e r s imp l i f i ca t i on) re fer t o the type o f x and y.
*No types a t runtime"

#Compare arrays element by element (runtime loop)
eqArray = \ (i n t l , i n t 2) type ar ray1 array2.

LETREC eqa: INT->BOOL =
\ i n t . d n t GT 1ntZ l o r

(equal type (a r r ay l i n t) (array2 i n t) AND eqa(in t+ l))
IN eqa i n t i ;

#Compare sets b i t b y b i t
eqSet = \ se t1 set2.

LETREC eqs: INT->BOOL = .
\ i n t . (i n t 6T maxElem) o r

((s e t l i n t EQ set2 i n t) AND eqs (int+l.))
I N eqs minE1Ã§

^Compare records f i e l d by f i e l d (loop unwound a t co~p11e time)
eqftecord = \ f i e l d s record1 recordz.

CASE f i e l d s OF
n i lD . TRUE.
consD[naÃ§e,mode,fieldsl]

equal (RIGHT mode! p a r a o d e) (record l name) (record2 name) AND
eqRecord f i e l d s l r eco rd l record2

ESAC ;

equal = \type v a l l va12. . ' ' >

CASE type OF
scalarTy[range.scalId] . v a l l MntVa l EQ va12! intVa1-r-
arrayTy[typel.typeZ].

LET (range,scalId) = type l lsca larTy
IN eqArray range type2 (va l 1 ! arrayVal) (va12! arrayVal) ,

setTy[scal Id] . eqSet(va1 l! setVal)(va12!setVal).
recordTy[fields,name,locEnv].

eqnecord f i e l d s (v a l l ! recVa1) (va12Ã recVa1).
f i leTy[type]. BOT[BOOL],
ptrTy[name]. va l l ! p t rVa l EQ va l2 lp t rVa l
ESAC ;

..
Set Operations
..

#These are much less e f f i c i e n t than b i tw i se operations done by the hardware;
they perform one i t e r a t i o n per b i t

Inser t a range o f elements i n t o a Set
i n s e r t = \ i n t i 1nt2 Set.

I F (minElem LE i n t i) AMD (i n t 2 LE maxElem)
THEN LETREC ins: INT - > SET =

\ i n t . I F i n t GT i n t 2 THEN se t
ELSE [int->TRUE] i ns (i n t+ l) F I

IN i ns (i n t 1)
ELSE BOTfSET] FI ;

#Test t ha t s e t l i s a subset o f set2
subset = \ se t1 set2.

LETREC ss: INT->BOOL =
\ i n t . (i n t GT maxElem) OR

((NOT s e t l i n t) OR set2 i n t) AND ss (i n t + l)
I N ss m i n E l i ~ ;

#The empty set
n u l l s e t = \int.FALSE;

#Set union
#Cannot use \ i n t . (s e t l i n t) OR (set2 i n t) because h i s t o r y sequences o f
closures would form, each r e fe r r i ng t o o l d states.
union = \ se t1 sÃ§t2

LETREC un: INT->SET->SET =
\ i n t set. I F i n t GT maxElem THEN se t

ELSE un (i n t+ l) :
I F (s e t l i n t) OR (set? i n t) THEN [int->TRUE]set
ELSE se t F I .. --

PASCAL GRAMMAR

#Set d i f fe rence -
s e t D i f f = \ se t1 set2.

LETREC sd: INT->SET->SET =
l i n t set. I f i n t GT maxElem THEN se t

ELSE sd (i n t+ l) :
I F (s e t l i n t) AND NOT (set2 i n t) THEN [int->TRUE]set
ELSE se t F I

F I
IN sd minElem nu l lSe t ;

#Set i n t e r sec t i on
i n t e r sec t = \ se t1 set2.

LETREC s i : INT->SET->SET 8

\ i n t set. I F i n t GT maxElem THEN s e t
ELSE s i (i n t + l) :

IF (s e t l I n t) AND (set2 i n t) THEN [int->TWlE]set
ELSE se t F I

...
Semantics o f Array indexing
...

arrayExp = \(type,exp.expl).
LET (i n t l . i n t 2) = LEFT typeiscalarTy I N
\de s.
LET in t=exp de s ! in tVa l I N
I F (i n t l LE i n t) AND (i n t LE i n t 2) THEN expl de s ia r rayva l i n t
ELSE BOT[VAL] F I ; ,

arrayVar = \(type,exp.expl,varOptl).
LET (i n t 1 , i n tZ) = LEFT type!scalarTy I N
vx varOpt1 : \var.\de $0 Val s.LET intsexp de sOtintVa1 I N

IF (i n t i LE i n t) AND (i n t LE i n t 2) -
THEN var de $0 arrayVaT[[int->val] exp l de s ia r rayva l] s
ELSE BOT[S] FI; .

I

..
Declarat ions
...

#Declare a l i s t o f names w i th a mode (f o r var iables, parameters)
declNames = \(names,mode).

CASE names OF
n i lN. n i lD,
consN[name,namesl].

consD[name, mode, declNames(namesl.mode)]
ESAC ;

I

#Append dec larat ions
appendD = \(declsl ,decls2).

CASE d e c l s l OF
ni1D. decls2,
consO[name.mode.decls]. consD[name,mode, appendD(decls,decls2)]

ESAC ;

W e s t a new LOCEW onto an ENV, making a new block
nest = \(locEnv, (leve1,envMap)).

(l e ve l+ l .
\name.LET mode = locEnv(name) I N

I F node I S undefined THEN envMap(name) ELSE (level+l.mode) F I) ;

#The empty LOCEWV
nul lEnv = \nme.undefined;

jMorkIng func t ion f o r f i x P t r S
f i x L i s t = \(env.ptrs.locEnv).

CASE p t r s Of
ni1D. locEnv,
consD[name,mode,ptrs].

[name->typeMode[typeLookup env (mode!<ypeMode!ptrTy)]]
f i xL is t (env ,ptrs,locEnv)

ESAC ;
R

#Bind i n t e r n a l names t o re ferent types o f po in te rs
f i x P t r s = \(env.ptrs.locEnv). fixList(nest(locEnv,env). p t r s , locEnv);

#Attach new DECLS onto a LOCENV, making a new LOCENV
evalDecls = \(decls,locEnv).

CASE decls OF
ni1D. locEnv,
consD[name,mode,declsl]. [name->mode] eva1Dec1s(dec1sl,1ocEnv)

ESAC ;

#Declare a rou t ine t o i t s e l f , t o al low use o f the funct ion name as a va r iab le
routDec = \(name. params, p f . (1evel.envMap)).

(l e ve l , [name -> (level,routMode[params,pf.active])] envMap);

####Standard dec larat ions

#Declare a standard procedure p(VAR x: type)
stdProc = \ type.

routMode[consD["xm, paramMode[varAc.type], ni lD], proc. inact ive];

#Declare a standard func t ion "(x: type l) : type2"
stdFunc = \ (t ype l , type2).

routMode[consD[*x", paramMode[valAc,typel], n i lD],
f unc[type2], i nac t i ve] ;

#Declare a standard func t ion i n the dynamic environment
funcDef = \(name. f:INT->INT) de.

[name -> \s. store(1,name) in tVal [f (s 1 "a" MntVal)] BOT[S]] de;

#Set up i n i t i a l s ta te : heap. f i l e s INPUT and OUTPUT
beginProg = \('lntMap,int).

[" i npu t " - > f i leVal[intMap. i n t . 1. intMap(l)]]
["output" -> fileVal[BOT[ARRAY], 0. I, BOT[VAL]]]
['$heapa -> arrayVal[BOT[ARRAY]]]
["$heapLiÃ§it -> intVal[O]]
BOT[RECOm)]; #get inpu t i n t o top l e v e l

#Extract output from top l e v e l o f f i n a l s t a t e
endProg a \record.

LET (array,len.pos.val) = record "outputa ! f i l e V a l IN (a r raye len) :

PASCAL GRAMMAR

ATTRIBUTE

i d e n t i f i e r <ENV.NAME.LEVEL.MODE>;
nameL is t < . NAMES> ;

c o n s t a n t <ENV.TYPE.VAL>; #Cons tan ts '
1 i t e r a l c o n s t <ENV. TYPE .VAL>;
c o n s t a n t D e c l s <ENV,LOCENV.LOCENV>;

d a t a t y p e
s c a l a r T y p e
a r r a y s p e c
packed
c o n s t L i s t
r e c o r d s e c t i o n
f t e l d L i s t
f i x e d p a r t
v a r i a n t p a r t
v a r i a n t L i s t
v a r i a n t
tagF i e l d
caseLabel L i s t
t y p e l d e n t i f i e r
typeDec1 s

<ENV.PTRS.CONSTS.TYPE>; W a t a t y p e s
<ENV.COtSTS.TYPE>;
<ENV.PTRS.CONSTS.TYPE>;
< . BOOL> ;
<TYPE.CONSTS.INT>;
<ENV.PTRS .CONSTS.FIELDS>;
<ENV.PTRS.CONSTS.FIELDS>;
<ENV.PTRS.CONSTS.FIE,LDS>:
<EMV.PTRS.CONSTS.FIELDS>;
<ENV,TYPE.PTRS,CONSTS,FIELDS>;
<ENV.TYPE.PTRS,COMSTS.FIELDS>;
<ENV.MMIE.TYPE>;
<ENV,TYPE.INTLIST>;
<ENV.TYPE>;
<ENV.LOCENV.LOCENV>;

component <ENV.TYPE,EXP.VAROPT>; W a r i a b l e s
a r r a y l n d e x <ENV.TYPE.EXP.VAROPT>;
v a r i a b l Ã § D e c 1 <ENV,LOCENV.LOCENV>;
v a r i a b l e G r o u p <ENV.LOCENV.LOCENV.TYPE>;

e x p r e s s i o n <ENV.TYPE.EXP>; #Express i o n s
compatExp <ENV.TYPE.EXP>;
expvar <ENV.TYPE.EXP.VAROPT>;
a c t u a l P a r a m L i s t <ENV,PARAMS.ACTVAL,ACTVAR>;
a c t u a l Param <ENV,KOOE.EXP.VAR>;
ac tua lParams <ENV,PARAMS.ACTVAL,ACTVAR>;
se tE lements <ENV.SCALID.EXP>;
e l e m e n t L i s t <ENV.SCALID,EXP>;
e lement <ENV.SCALID.EXP.EXP>;

command <ENV.COÃ (̂>
compoundCommand <ENV.CW>;
commandSequence <ENV.COM>;
c a s e L i s t E l e m <ENV,TYPE,CASES.CASES>;
c a s e L i s t <ENV ,TYPE .CASES> ;
w i t h T a i l <ENV.COM>;

f o r m a l P a r a m L i s t <ENV.PARAMS>;
f o r m a l S e c t i o n <ENV.PARAMS>;
f o r m a l Params <ENV. PARAMS> ;
fonna lGroup <ACCESS.ENV.PARAMS>;
r o u t i n e D e c l s <ENV,ENV.'LOCENV.LOCENV.DT>;
r o u t i n e <ENV.ENV,LOCENV.LOCENV.DT>;
r o u t i n e b a d <ENV.PARAMS.PF,NAME>;

c o n s t D e c l P a r t <ENV,LOCENV.LOCENV>;
t ypeDec l P a r t <ENV, LOCENV. LOCENV> ;
v a r O e c l P a r t <ENV,LOCENV.LOCENV>;
b l o c k <ENV . LOCENV . COM> ;
programparams < . NAMES> ;
program < . PR06>;

RULE program

#Procedures and F u n c t i o n s

#8l ocks

identifier<(1eve10.envMap).name,level,mode> * ident<name>
WITH (leve1,mode) = envMap(nam9);

PASCAL GRAMMAR

WHERE<cofiipatible(typel. type2)>
WITH seal arTy[range, seal Id] = type1 ;

packed<TRUE> = "PACKED";
packed<FALSE> = :

#Mu1 ti-dimensioned arrays
dataType<env,ptrs,consts,type> =

packed<bool> "ARRAY" "[" arraySpec<env,ptrs,consts,type>;

arraySpec<env,ptrs,append0(constsl,consts2),arrayTy[typel,type2]> =
scalarType<env,constsl,typel> "1" "OF" dataType<enviptrs.constS,type2>;

dataType<env,ni1D,consts,setTy[sca1Id]> =
packed<bool>
'set" "of" sca1arType<env,consts,sca1arTy[(intl,int2),sca1Id]>

WHERE<(intl GE minElem) AND (5nt2 LE maxElem)>;

dataType<env.ptrs,consts, recordTy[f i e l d s .name.evalDecls(f ie lds ,nul lEnv)]> =
packed<bool> "RECORD"
fieldList<env,ptrs.consts,fields> uniqueName<name> "END";

fieldList<env.ptrs,consts,fields> =
f ixedPart<env, p t r s , consts , f ields>-;

f i xed par ts

r$cVal[[name->val] exp de s ! recVa1] s;

p o i n t e r dere ferenc ing / f i l e b u f f e r access

c~onent<env , type l ,exp l ,varOpt l> =
component<env,type,exp,va~pt> *ta . .
WITH (t y p e l , e x p l , v a r O p t l ~ =

I F type I S p t r T y THEN
(typeLookup env (type1pt rTy) .

\do s. LET p t r = exp de s !p t rVa l I N
I F p t r NE 0 THEN s 0 -$heapn ! ar rayVal p t r ELSE BOT[VAL] F I ,
isVar[\de s v a l s.LET p t r = exp de s !p t rVa l I M

I F p t r NE 0 THEN
store(O.*$heap*)
arrayVal [[p t r - > v a l] (s 0 "$heapn I ar rayVal)]
s

ELSE
I F type I S f i l e T y THEN

(t y p e l f i l e T y , -
\de s. LET (array.len.pos.va1) = exp de sf f i l e V a l I N v a l ,
vx varOpt : \var. \de SO v a l s.

LET (a r ray , l en~pos ,va lO) = exp de s ! f i l e V a l
I N va r de SO fileVal[array~len,pos,val] s)

ELSE BOT[TYPE X EXP X VAROPT] F I FI;

v a r i a b l e dec la ra t i ons

..
Expressions
..

To avoid s y n t a c t k ambigui ty because ac tua l parameters can be e i t h e r
va r iab les o r expressions, t h e symbol ExpVar handles t h e semantics
o f both. VarOpt holds t h e v a r i a b l e semantics, i f any.

#Expression t h a t must have a p a r t i c u l a r (inherited) Type
cmpatExp<env,type,exp> =

expression<env,typel,exp> WHERE<compatible(type, type l)> :

"

expVar<env,type,exp,varOpt> = comp~nent<env,type,exp~varOpt>;

PASCAL GR-

##############
func t ion c a l l

expVar<env , type,
\de s.de name([level+l -> actVal de s] s) (l e ve l+ l) name,
notVar> =

i d e n t i f ier<env ,nam,level , routMode[params,func[type] ,ac t iv i ty]>
* (* actualParams<env,params~actVal,actVar> ")*;

Paruneter passing f o r procedures and funct ions
Var iab le parameters are passed* by value-resul t .

actualParamList<env, n i lD, \de s.BOT[RECORD], \de SO record s.s> = ;

actualParams<env,consD[name,mode,nilD],
\de s.[n8~te->exp de s] BOT[RECORD],
\de SO record.ver de SO (record name)> =

actualParam<env ,nmde,exp,var>;

actualParams<env,consD[name,mde~params],
\de s.[name->exp de s] (actVal de s),
\de SO record s.var de SO (record name)(actVar de SO record s)> =

actualParam<env ,mode,exp,var> *,*
actualParams<env,params,actVal,actVar>;

WITH var = CASE

ESAC

actualParam<env, paramMode[access,typel], exp, var> =
expVar<env, type2 ,exp,varOpt>
WHâ‚¬RE<comoatible(typel,type2

access OF
varAc. varOpt!isVar, W A R param -- store f i n a l value
valAc. \de SO va l s.s #value param -- do nothing

#standard funct ions

expVar<env,type, \de s. intVal[exp de s ! in tVa l + 11, notVar> =
"SUCC" * (" express~on<env,type,exp~ ")*
WHERE<type I S scalarTy>;

expVar<env,boolType,
\de s. LET (array,len,pos,val) = exp de s I f i l eVa1

I N boolVal(pos GT len),
notVar> =

"EOFw *(- expression<env,fileTy[type],exp> *) * ;

PASCAL GRAMMAR

IF typel IS setTy THEN
\de s.setVal[setDiff(expl de s!setVal)(exp2 de sIsetVal)]

ELSE
IF isInteger(type1) THEN

\de s.intV&l[expl de s !intVal - exp2 de s !intVal]
ELSE BOT[EXP] FI FI;

WITH exp=
IF typel IS setTy THEN

\de s.setVal[intersect(expl de s!setVal)(expZ de s!setVal)]
ELSE ----
IF islnteger(type1) THEN

\de s.intV&l[expl de s tintVal exp2 de s MntVal]
ELSE BOT[EXP] FI FI;

expVar<env,intType,
\de s.intVal[expl de slintVal DIV exp2 de s!intVal], notVar> =

expression<env,typel,expl> "DIV 'expression<env,type2,expZ>
WHERE<isInteger(typel)> WHERE<isInteger(type2)>;

expVar<env,intType.
\de s.intVal[expl de $lintVal MOD exp2 de s!intVal], notVar> =

expression<env,typel,expl> "MOD" expression<env,type2,exp2>
WHERE<isInteger(typel)> WHERE<isInteger(typeZ)>;

#Boolean connectives

expVar<env, boolType,
\de s. intVal[andInt(expl de s!intVal)(exp2 de s!intVal)], notVar> =

expression<env,typel,expl> "AND" expression<env,type2,expZ>
WHERE<isBoolean(typel)> WHERE<isBoolean(type2)>;

expVar<env. boolType,
\de s. intVal[orInt(expl de s!intVal)(exp2 de s!intVal)], notVar> =

expression<env,typel,expl> "OR" expression<env,type2,exp2>
WHERE<isBoolean(typel)> . WHERE<isBoolean(type2)>;

#relations (some overloaded with subset relation)

WITH exp=

I F t y p o l I S setTy THEN
\de s. b~olVal (subset (exp1 de s!setVal)(exp2 de s!setVal))

ELSE
I F t ypo l I S sca1ar~~ 'THEN

\do.s. boolVal(exp1 de s l i n t V a l LE exp2 de s l i n t v a l)
ELSE BOT[EXP] F I FI;

WITH oxp=
I F t y p o l I S setTy THEN

\de s. boolVal(subset(exp2 de s!setVal)(expl de s!setVal))
ELSE -- - -

I F type1 I S scalarTy 'THEN
\8e s. boolVal(.expl de s ! i n t va l ' d~ exp2 de s ! intVa1)

ELSE BOT[EXP] F I FI; .
9-

expVar<env,boolType,
\de s.boolVa1 : equal typel(exp1 de s)(exp2 de $1, notVar> =

expression<env,typel,expl> "=" expression<env,typeZ,exp2> .
WHERE<compatible(typel,type2)>;

expVar<env,boolType,
\de s.boolVa1 : NOT equal typel(exp1 de s)(exp2 de $1, notVar> =

expression<env,typel,expl> "<>" expression<env,type2,exp2>
WHERE<compatible(typel,typeZ)>;

expVar<env, boolType,
\de s.boolVa1 : exp2 de $!setVal : exp l de s ! in tVal , notVar> =

expression<env, scalarTy[range ,sca l Id] ,expl>
"IN" express~on<env,setTy[scalId],exp2>:

#procedure c a l l
cmand<env.\de sO.run(level+l)(actVa1 de sO)(de name)(actVar de sO)sO> =

iden t i f i e r<env ,name,level , routMode[params.proc,activity]>
a c t u a l P a r ~ L i s t < e n v , p a r ~ s , a c t V a l , a c t V a r > ;

#standard procedures

comand<env , \de s. LET (ar ray, len, pos , va l) = exp de s l f i leVa1
IN var de s fileVal[array,len,l,array 11 s> =

"RESET" * (" cmpon%nt<env~fi leTy[type],exp, isVar[var]> ")";

conmand<env, \de s. var de s fileVal[BOT[ARRAY],O,l,BOT[VAL]] s> =
"REWRITE* * (* component<env,fileTy[type],exp.isVar[var]> ")";

PASCAL GRAMMAR

cofmnand<env, \de s. LET (ar~ay, len,pos,va l)= exp de s ! f l l eVa l
IN I F pos GT l e n THEN BOT[S]

ELSE var de s fileVal[array.len,pos+l,array(pos+l)] s
F I > =

cmand<env,
\de s. LET (ar ray ,len,pos ,va1)=

I N 1F.pos GT l e n
THEN var de s

f i leVal[[pos->va
ELSE BOT[S] .
F I > =

exp de s ! f l l eVa l

l]array~len+l,pos+l,BOT[VAL]] s

"PUT* component<env ,f i leTy[tYpe] ,exp, isVar[var]> ') :

comandSequence<env,\de s.com2 de (coml de s)> =
comandSequence<env,coml> *;" comand<env,com2>;

comand<env,\de s. cond(exp de s)(coml de s)(com2 de s)> =
* IFw compatExp<env,boolType,exp> "THEN" command<env,coml>
wELSE" cmand<env,com2>;

comand<env,\de s.cases (exp de s! intVal)de s> =
*CASEm expression<env,type,exp> WHERE<type IS scalarTy>
*OFw caseList<env,type,cases> "END";

#Repeat and whi le comands . .

#For c-nd -- TO and WNTO "7

2.

comand<env,\de s0.LET i n t 2 = exp2 de SO t i n tVa l I N
LETREC for:INT->SX 6 \ i n t s.

I F i n t GT i n t 2 THEN s
ELSE fo r (in t+ l) (com 'de (store(leve1,name) tn tVa l [i n t] s)) F I

IN f o r (exp l de SO ! i n tVa l) SO> =
"FORm i d e n t i f i e r < e n v , n ~ e , l e v e l ~ p a r a ~ o d e [v a r A c , t y p e] >
WHEREctype IS scalarTy>
":="
compatExp<onv,type.expl> "TO" compatExp<env,type,exp2>
"DOm cmand<env. c m > ;

comand<env,\de s0.LET j n t 2 = exp2 de SO ! i n tVa l IN
LETREC for:INT->SX = \ i n t s.

I F l n t LT i n t 2 THEN s
ELSE f o r (i n t - l) (com de (store(leve1,name) t n t v a l c i n t] $1) F I

IN f o r (exp l de SO ! i n tVa l) SO> =
"FOR" identif ier<env,name,level ,para~ode[varAc,type]>
WHERE<type IS scalarTy>
" : = "
compatExp<env,type,expl> "DOWNTOW compatExp<env,type,exp2>
"DO" coimnand<env,com>;

comand<env,cm> = "WITH" withTail<env,com>;

withTai l<env, withCom(level,exp,var~com)> =
component<env, recordTy[f ie lds ,name ,locEnv], exp, isVar[var]>
"00" comand<nest(locEnv,env), c m >
WITH l eve l = LEFT env;

withTai l<env, withCom(level,exp,var,com)> =
component<env, recordTy[fields,name,locEnv], exp, isVar[var]>
m " withTail<nest(locEnv,env), corn>
W ~ T H l eve l = LEFT env;

#Forward declarat ions are not needed because the BODIES o f the rout lnes

are evaluated i n t h q FINAL environment f o r the block. This does
no t make the g r m a r c i r c u l a r because environments 60 not conta in
the run-time semantics o f rqut ines, bu t on ly in format ion from the
ROUTINE HEAD, which i s evaluated using the CURRENT enviroment.
The run-time semantics are s tored i n the dynamic environment 'de*.

routineHead<env,params,proc~name> =
"PROCEDURE* ident<name> formalParamList<env,parms>;

typeDeclPart<env,locEnv,locEnvl> = "TYPE* typeDecls<env

typeDeclPart<env ,locEnv,locEnv> = ;

block<env, locEnv1, \deO . c m FIX \de. d t de deO> =
const~c lPar t<env~ locEnv l , locEnv2>
typ~c lPar t<env , locEnv2~ locEnv3>
varDeclPart<env,1ocEnv3,locEnv4>
r o u t i ~ ~ c l s ~ e n v l , e n v . 1 o c E n v 4 ~ l o c E n v , d t >
~ O m p ~ ~ d C ~ n d < e n ~ l , C m >
WITH env l = nest(10cEnv.env);

program<\input.endProg (c m de ([0->beginProg input] BOT[S]) 0)> =
nprogramn ident<naae> projpunParams<naws> n;* n

block<env, nullEnv,com> *.

WITH de = f ~ n c D e f (~ a b s ~ , \ i n t . I F i n t GE 0 THEN t n t ELSE - i n t FX) :
funcDef(*sqrm, \ i n t . i n t 0 i n t) :
fun~De t (~oUd* , \ i n t . I F (i n t MOD 2) EQ 0 THEN 0 ELSE 1 F I) :
funcDef(*ord*, l i n t . i n t) :
funcDef (gchr * , \ i n t . i n t) :
[*newn->

\s.LET p t r = 1 + (s 0 *SheapLimitw ! intVa1)
IN s to re (l , " xm) p t rVa l [p t r] :

store(O,*SheapLimitg) in tVa l [p t r] s]
[ndisposem-> \ s . s t o r e (l . * x ~) ptrVal[O] s]

\name.BOT[SX]

WITH env = nest
([* in tegern-> typeMode[intType]]
[nboolean*-> typeMode[boolType]]
[*charg-> typeMode[charType]]
[" tex tm-> typeMode[textType]]
[* t ruem-> constMode[boolType,intVal[l]]]
[* fa l sen-> constMode[boolType,intVal[O]]]
[* inputg-> paramMode[varAc ,f i leTy[intType]]]
[noutput*-> paramMode[varAc,fileTy[intType]]]
[*absm-> stdFunc(intType. intType)]
["sqrW-> stdFunc(intType, intType)]
[-oddn-> stdFunc(intType,boolType)] .
[*ordW-> stdFunc(charType,intType)]
[*chrW-> stdFunc(intType,charType)]
[*newn-> stdProc(ptrTy[*Sni l*3)]
[mdisposen-> s tdProc(pt rTy[~SnI l "])]
nu1 1 Env,
(-1, \name.(O,BOT[MODE])));

RESOLUTION
nonassoc "NOTm-
l e f t WDIV; *MOD* *AND*;
l e f t -+* "-" "OR*;
nonassoc "<* ">- *<a* ->=" -=" -<>" -IN*;
r i g h t -ELSEm;

EM0

EXAMPLE OF AXIOMATIC SEMANTICS

Appendix E
Example of Axiomatic Semantics

Using a semantic grammar for the axiomatic &antics of a simple language, the compiler

generator has produced the verification conditions of a division program. The language has

integer and array variables, and the basic control structures, but no procedures. All

expressions are integer; assertions and conditions controlling i f or while commands may

contain boolean connectives and integer comparisons. Every program must be documented

with an input and output assertion; every loop must be documented with an invariant

assertion.

Semantic Grammar f o r program v e r i f i c a t i o n

DOMA IN

VAL = [intV[INT] + arrV[INT - > INTI 1; #values: in tegers and arrays
ENV = NAME -> TYPE: #environments: types o f var iab les
TYPE = [i n tTy + arrayTy]; #types

#Expressions f o r assert ions
EXP = [constE[INT] #constants

+ varE[NAME] #variables
+ plusE[EXP X EXP] #integer operators
+ minusE[EXP X EXP]
+ timesE[EXP X EXP]
+ divE[EXP X EXP]
+ indexE[EXP X EXP] ifarray operators
+ updateE[EXP X EXP]]:

#Assertions (condi t ions)
COND = [ltC[EXP X EXP] #integer comparisons

+ gtC[EXP X EXP]
+ eqC[EXP X EXP]
+ notC[COND] #boo1 ean operators
+ andC[CONO X CONO]
+ orC[COND X COND]];

VCS = [n i l V + consV[COND X VCS]]: # l i s t s o f v e r i f i c a t i o n condi t ions

FORWARD
substC : (EXP X NAME X CONO) -> COND:
substE : (EXP X NAME X EXP) -> EXP;
appendv : (VCS X VCS) -> VCS:

DEFINE

EXAMPLE OF AXIOMATIC SEMANTICS

#Subst i tu te an expression f o r a va r iab le w i t h i n a condi t ion
substC = \(exp,name,cond).

CASE cond OF
1 tC[expl.exp2]. 1 t~ [subs t~ (' exp ,name,ex~ l) , substE(exp,name.exp2)],
gtC[expl,exp2]. gtC[substE(exp,name,expl) , substE(exp ,name,exp2)],
eqC[expl,expZ]. eqC[substE(exp,name,expl), substE(exp,name,exp2)].
notC[cond] . notC[substC(exp,name,cond)],
andC[condl,cond2].

andC[substC(exp,name,condl), substC(exp,name,cond2)],
orC[condl , cond21.

orC[substC(exp ,name ,condl) , substC(exp, name ,cond2)]
ESAC :

#Subst i tu te an expression (exp) f 0 r . a var iab le w i t h i n an expression (expo)
substE = \(exp,name,expO).

CASE expO OF
constE[int]. expo,
varE[nimel]. I F name EQ name1 THEN exp ELSE expO F I , *
plusE[expl,exp2].

plusE[substE(exp,name,expl), substE(exp,name,exp2)],
minusE[expl,exp2].

minusE[substE(exp,name,expl), substE(exp,name,exp2)],
timesE[expl ,exp2].

timesE[substE(exp, name ,expl) , substE(exp ,name,exp2)],
divE[expl,exp2].

divE[substE(exp,name,expl), substE(exp,name,exp2)].
indexE[expl,exp2].

indexE[substE(exp,name,expl), substE(exp,name,exp2)],
updateE[expl,exp2].

updateE[substE(exp,name,expl), substE(exp,name,exp2)]
ESAC ;

#Append two l i s t s o f v e r i f i c a t i o n condi t ions
appendv = \(vcsl.vcsZ).

CASE vcs l OF
ni1V. vcs2.
consV[cond,vcs]. consV[cond. appendV(vcs,vcs2)]

ESAC ;

#Impl icat ion, def ined i n terms o f OR and MOT
implC = \(condl,condZ). orC[notC[condl], condZ];

ATTRIBUTE
identifier<EMV.NAME.TYPE>;
expression<ENV.EXP>;
condition<ENV.CONO>;
C~~ÃˆM~~<ENV,CONO.COND.VCS>
declaration<.ENV>;
program< .VCS> ;

RULE program

Expressions

#Integer va r iab le

expression<env, indexE[varE[name], exp]> = #subscripted var iab le
identifier<env,name,arrayTy> "[" expression<env.exp> "1";

expression<env,exp> =
"(" expression<ebv,exp> ")"; #parenthesized expression

expression<env, constE[int]> = number<int>; # in teger constant

' '1
Conditions (f o r I F and WHILE commands)

condit ion<env, notC[cond]> a

"MOT" condition<env.cond>;

condit ion<env. andC[condl,cond2]>
condit ion<env,condl> "AND" condition<env,cond2>

condit ion<env. orC[condl,cond2]> =
condit ion<env,condl> "OR" condition<env,cond2>

Commands (statements)

conmand<env. cond, substC(exp,name.cond), n i lV> =
identifier<env,name,intTy> ":=" expression<env,exp>;

comand<env, cond, substC(updateE[varE[name],expl], name. cond), n i lV> =
ldentifier<env,name,arrayTy>
"[" expression<env,expl> "I" ":=" expression<env,exp2>;

conmand<env.cond, andC[imp1C(cond0.condl), imp1C(notC[condO].cond)], vcs> =
" I F " condition<env.condO> "THEN" command<env,cond,condl,vcs> " F I " ;

command<env, cond, cond2.
consV[andC[imp1C(andC[condl,cond2],cond3),

imp1C(andC[notC[condl],cond2], cond) 1. vcs]> =
"WHILE" condition<env.condl> " invar ian t " condition<env,cond2>
"DO" comniand<env,cond2.cond3.vcs> "OD";

d

Declarat ions

EXAMPLE OF AXIOMATIC SEMANTICS

program<consV[imp1C(condl, cond) , vcs]> =
BEGIN" declaration<env>
"BEFORE" condit ion<env,condl>
AFTER" condition<env,cond2> ";"

command<env , cond2 ,cond ,vcs> . ,
"END" ;

RESOLUTION
NWASSOC "NOT" ;
LEFT "*" "/" "m";
LEFT "+" "-" "mu;
NONASSOC "<" ">" "=";
RIGHT ";";

END

Given this grammar, the universal translator converts an input program into a list of

verification conditions. Consider a program that performs integer division.

{Program t o d iv ide a by d, producing quot ient q and remainder r;
Algor i thm i s repeated subtract ion.} '

BEGIN
INT a; INTd ; INT q; INT r;
BEFORE NOT a<0
AFTER (NOT r<0) AND r < d AND a = dÃˆq+r

r : = a ; q : = 0;
WHILE NOT r<d INVARIANT (NOT r<0) AND a = d*q + r

DO r : = r - d ; q : = q + l OD
END

The universal translator prints the simplified DAG, which represents the verification

conditions. They are all true, proving partial correctness of the program. The verification

conditions must be simplified by hand; for practical program verification, the compiler

generator should provide a standard assertion language and theorem prover.

The semantic DAG:

NILV

ORC

'I1

Unsimplified verification conditions: . '1

-(-Ã§(a<O) V (-(a<O) A (a = d*0 + a))

Simplified verification conditions:

a > O - (a Z O A a = a)

[(r z d A r > O A a = (d*q + r))-
(r > d A a = (d * (q+1) + r - d))]

A .
[((r<d A r > 0 A a = (d*q + r))) *

(r > 0 A r<d A a = (d*q + r))]

SEMANTIC GRAMMARS GRAMMAR

Appendix F
Semantic Grammars Grammar

SG.SG Semantic grammar f o r semantic graimnys
Describes a la rge subset o f the notat ion accepted by the Grammary Analyzer.
Checks domain compat ib i l i t y , but does not check tha t theoranmar I s
syn tac t i ca l l y o r semantical ly va l i d .

Uncorrectable problems due t o l i m i t a t i o n s o f the l e x i c a l scanner:
T r a i l i n g d i g i t s o f va r iab le names are not s t r ipped of f :
domain d e f i n i t i o n s l i k e DOMI=DOM are required
(note: the Grammar Analyzer does not a l low domain names t o conta in
d i g i t s)
Quoted s t r i ngs are r e s t r i c t e d t o i d e n t i f i e r s ; l ikewise, terminals are
r e s t r i c t e d t o i d e n t i f i e r s o r s t r i ngs o f spec ia l characters.
Note t ha t keywords def ined i n t h i s grammar are not considered
i d e n t i f i e r s , so "IF". "TRUE", e tc . may no t be terminal symbols.

DOMAIN

Domain represent ing a domain

DOH = [unspecD[NAME] +
nameD[NANE] +
productD[DOM X DON] +
functionD[DOM X DOM] +
unionD[NAME X SUMMANDS]]:

Sumnands o f a union domain
SUMMANDS = [n i l S + consS[TAG X DOM X SUMMANDS]]:
TAG = NAME: #Tagf ields
UNION = DOM; #Union domains

#Modes o f i d e n t i f i e r s
MODE = [u n d e f i ~ d +

domainMode[DOM] +
tagMode[OOM X UNION] +
f orwardMode[DOM] +
expMode[DOM] +
varMode[DON] +
attributÃˆMode[DOM +
symbolMode[ATTRS]]:

#tag f i e l d
#FORWARD-declared
#DEFINE expression
#bound var iab le

#nonterminal symbol

#A t t r i bu te information f o r a nonterminal symbol
FLOW = [synthesized + inher i ted] ;
ATTRS = [n l lA + consA[DOM X FLOW X ATTRS]];

#Environments
ENV = NAME -> MODE;
FINALENV = Em;
VARENV = ENV;

#Final environment a f t e r domain dots
#Environment o f bound var iab les

NAMESET = NAME -> BOOL: #Sets o f names f o r equalva l id
-

FORWARD

SEMANTIC GRAMMARS GRAMMAR

n o n i : (EW X D M) -> DOM;
addunion : (SUMMANDS X ENV X UNION) -> ENV;
compatible : (ENV X DOM X DON) -> BOOL;
equalVal i d : (EW X NAMESET X DOM) -> BOOL;
eqVa1 i d s : (ENV x NAMESET x -SUMMANDS) -> BOOL;

DEFINE

#Predefined domains
voidDwa = unspecD["V010"];
intDom = unspecD["INTa];
boolDwn = un~pec0[~BOOL"];
nameDon = unspecD["NAÃˆÃˆE"

#Void sunmands o f unions

#Skip past references t o named domains, ge t actua l d e f i n i t i o n
noname = \(env,dom).

I F dom IS naiÃ‘ THEN nonanw(env,env(dom!nameD)!domainMode)
ELSE d m F I ; y

#Add a union domain's tags t o the'environment
addunion = \(sunmands,env,union).

CASE sumnands OF
ni1S. env.
consS[tag,doin,sumnands].

addUnton(sunmands, [tag->tagMode[dom.union]]env, union)
ESAC ;

#Empty environment; contains standard d e f i n i t i o n s
nullEnv = [*VOIDw-> domainMode[voidDom]]

["INT" -> domainMode[intDom]]
["BOOL" - > domainMode[boolDom]]
["NAMEq-> domainMode[nameDom]]
["wherew-> symbolmode[consA[boolDom,inherited.nilA]]]
[" i den tw-> symbo1mode[consA[nameDorn,synthesized,nilA]]]
[wuniqueNaroe'->symbo1mode[consA[nameDom,synthesized,nilA]]]
["number"-> symbolmode[consA[intDom,synthesized,nilA]]]
\name.undefined;

#Check t ha t two domains are compatible
compatible = \(env,doml,dom2).

I F doml EQ dm2 THEN TRUE
ELSE I F dom2 IS nmeD THEN

compatible(env,doml, env(dom2!nameD)!domainMode)
ELSE

CASE doml OF
unspecD[namel]. namel EQ (domZ!unspecD),
nameD[nareel]. compatible(env, env(doml!nameD)!domainMode,
productD[Oom3,dom4].

LET (dom5,dom6) = dom2!productD IN
coaipatible(env,dom3,dom5) AND
conipatible(env,dom4,dom6).

f unctionD[dom3 ,dom4].
LET (Oom5,dom6) = dom2IfunctionD IN

compatible(env,dom3,dom5) AND
compat ib le(env ,dom4.dom6),

unionD[naÃ§el.sumandsl]
LET (name2,sunmandsZ) = dom2lunionD IN

namel EQ name2
ESAC

F I FI ;

#Test whether equa l i t y i s defined f o r t h i s domain
#Equal i ty i s def ined f o r a11 non-funct ional domains
#The nameset prevents looping over recursive domains --

i t contains the named domains already v i s i t e d
equalva l id = \ (env .nhSet .dm) .

CASE d m OF
unSpecDfname]. TRUE,
nameD[nu~].

IF aumSet(name) THEN TRUE
ELSE equalValid(env. [name->TRUE]nameSet. env(name)!dpmainHode)
FI,

product0fdoml . do-21.
equalValid(env,nafSet.doml) AND equa1Valid(env,nÃ‡MSet,d<MB2)

functlottOfdcm1. d-21. FALSE,
unionD[ni~,suomands]. eqValidS(env,namSet,summands)

ESAC ;

#Test whether equa l i t y i s def ined on a union domain
-- apply equalVal i d t o i t s sumnands
eqValidS = \(env.nameSet,sin~lands).

CASE sunmands OF ' ' 7
n i lS . TRUE.
consS[tag.dom,sunmands]. -J ̂

equalValid(env,nameSet,dom) AND eqValidS(env,nameSet.sumands)
ESAC ;

ATTRIBUTE

newName
i d e n t i f i e r

Doma i n
def
summandLlst
sumnand

expression
term

1- - fac to r
caseBoundVars
caseArm
case l i s t
lainbdaTai 1
t up l e
integerop
boo1 eanOp
re1 ationop
equal sop
p r e f i xOp
boundvars
boundv

nonterminal
a t t r
a t t r i b u t e s
r i gh t s i de
withclause
terminal
del imeter
del ImChar

domainpart
doma i nDef s
domDef 1 n
forwardpart
forwardDec1 s
def inepar t
de f i n i t i ons
a t t r i bu tepa r t
a t t r i bu teoec ls
a t t r i b u t e L i s t
ru lepar t

#Grammar ru les

SEMANTIC GRAMMARS GRAMMAR

r u l e L i s t <ENV.>;
reso lu t ionpar t <.>;
reso lu t ions <.>;
assocKind <.>;
t e m i n a l L i s t <.>; '

g rnmar < . EMV>;

RULE grammr

#Domains are evaluated i n an environment tha t includes t he doroain-definit ions.
to a1 low forward references t o domains. See dec larat ions sect ion.

#Check t h a t t he name i s defined t o be a domain
sDomain<env.nan>eD[name]> = identifier<env.name,domainMode[dom]>;

#Sumand l i s t s f o r union domains
#This grammar only allows unions a t the top l eve l o f domain d e f i n i t i o n s

sumand<env,tag,dom> = #Summand w i t h domain
ident<tag> "[" sDomain<env,dom> "I";

W o i d sumnand .

..
EXPRESSIONS
..

I n f i x operators

expression<env ,varEnv, boolDom> =
term<env,varEnv,unionl> "IS" i den t i f i e r<env , tag . tagMode[dom.~nion2]>
WHERE<compatible(env,unionl,un10n2)>;

#Integer operators
expressio~<env,varEnv, in-> =

tenÃˆ<~nv,varEnv,int0om integerOp<> expression<env.varEnv,intDom>;

#Boolean operates
expression<env,varEnv,boo1Dom> = ' '1

temKenv,varEnv,boo1Dom> booleanOp<> expression<env,varEnv,boo1Dom>;
>

booleanOp<> = *AITOn;
booleanOp<> = "OR*;

Integer re la t ions
expression<env,varEnv,boolDom> =

ternÃˆ<env,varEnv,intDom re la t ionOpO expression<env,varEnv,intDom>;

#Equali ty tes t ing
expression<env,varEnv, boolDom> =

term<env.varEnv.doml> eoualsOp<> ex~ression<env.varEnv.dom2>

equalsop<> = *EQW;
equalsop<> = "ME*;

Pref ix operators

expression<env,varEnv,noname(env,doml)> =
pref ixOp<dom,doml> expression<env .varEnv ,dm>;

prefixOp<productD[doml,dom2], d m l > = "LEFT";

prefixOp<productD[doml,dom2], domZ> = "RIGHT*;

prefixOp<b001Dwn,bo01Dom> = "HOT*;

#Function update
expression<env,varEnv.dom> =

"[" expression<env.varEnv.dml> "->* expression<
expression<env,varEnv,dom>

WHERE<dom I S functionD>

#Conditional expression
expressÂ¥ion<env,varEnv,dom2 = -

" IF" expression<env.varEav, boolDoia> --

*THENm express ion<env ,v~rEnv ,doml>
"ELSE" expression<env,varEnv,dom2> *Fin

WHERE<compatible(env,doml,dom2)>;

SEMANTIC GRAMMARS G M A R

####Bound v a r i a b l e s f o r CASE, lambda, LET, LETREC

#Tuple o f bound v a r i a b l e s
boundVars<env,varEnv,productD[doml~dom2], varEnv2> a

boundV<env,varEnv,doml,varEnvl> *,*
boundVars<env~varEnvl,dom2,varEnv2>;

I m p l i c i t domain from v a r i a b l e name
boundV<env,varEnv, dom, [name->varMode[dom]]varEnv> =

identifier<env,name,domainMode[dom]>;

E x p l i c i t domain
boundV<env,varEnv, dom, [name->varMode[dom]]varEnv> =

ident<name> w : " sDomain<env,dom>;

CASE expression

#F ixedpoint expresslon
expression<env,varEnv,dom2> =

"FIX" "\' boundVcrs<env ,varEnv . d m 1 ,varEnvl> " . *
expression<env,varEnvl,dom2>

WHERE<compatjble(env,doml,dom2)>;

####Local d e f i n i t i o n s LET and LETREC

*
Terms

#Pro jec t i on f rom a un ion domain
term<env,varEnv, noname(env,dom)> =

term<env,varEnv,unionl> " ! " i d e n t i f i e r < e n v , t a g , tagMode[dom,unionZ]>

Factors

#Constants

factor<env,varEnv,boolDom> = *TRUEw;

factor<env,varEnv,boolDom> = "FALSE*;

factor<env,varEnv,intDom> = number<int>;

factor<env,varEnv,nameDom> = """" ident<name> m"*" ;

I d e n t i f i e r s i n expressions can be:
v o i d t a g i n j e c t i o n s
named e x ~ r e s s i o n s (FORWARD o r DEFINE)
bound vab iab les '

a t t r i b u t e v a r i a b l e s
factor<env,varEnv,dom> = i d e n t

WITH dom =
CASE mode OF

SEMANTIC WAhlMAf3S GRAMMAR

undef ined . BOT DOM] ,-
d m i *de[doa\. BOT[DOM],
tagMode[dom,union]. IF d m EQ voidDm THEN union ELSE BOT[DOM] FI,
forwardMode[dom]. dm ,
expMode[dom]. dm ,
va~Wde[doin]. dm ,
attributeMode[dom]. dm ,
sy&olMode[attrs]. BOT[W]
ESAC ;

In j ec t i on t o a union domain
factor<env~varEnv,un~on> =

identifier<env,ta@,tagMode[doml,union]>
WHERE<compatible(env,doml,dom)>

-[* tuple<env .varEnv ,doin> *]* ;

#The bottom element of a domain
tactor<env~varEnv,dom> = "BOT* *[- sDmain<env,dm> n]n:

#Right s ides o f r u l es

nonterminal<env> =
i den t i t i e r<env , name, symbolMode[attrs]>
-<* a t t r ibutes<env,at t rs> *>' ;

#L is ts o f a t t r i b u t e expressions

#A t t r i bu te expression
I t s va r iab le environment contains a l l possible a t t r i b u t e names
at t rcenv ,dm> =

expression<env ,varEnv, d m >
WITH varEnv =

\name. LET mode = env(name) IN
IF mode IS domainMode THEN attributeMode[modeldomainMode]
ELSE mode FI:

te rmina l<> = . """" de l +meter<> ""w" ;

de l imeter<> = de l imChar<>;

de l imeter<> = de l +meter<> d e l imChar<>;

de l inChar<> = ;
de l imChar<> = *S" ;
delimChar<> = " O n ;
delimChar<> = "+" ;
delimChar<> = "[" ;
delimChar<> = ":" ;
delimChar<> = ">" ;
delimChar<> = " /" ;

delimChar<> = "#" ;
delimChar<> = "in ;
delimChar<> = "(" ;
de l imChar<> = "-"- ;
delimChar<> = "In ;
delimChar<> = a ' m ;
delimChar<> = a " .
delimChar<> = R:"

Domain d e f i n i t i o n s
I n the domain d e f i n i t i o n p a r t , a named domain may be referenced before
i t s d e f i n i t i o n . To check t h a t each named domain i s even tua l l y def ined,
the f i n a l environment i s passed back through the domain d e f i n i t i o n s as
f i na lEnv . Each named domain checks t h a t t h e name i s de f i ned i n t h e
f inalEnv.

domainPart<env> = "DOMAIN" domainDefs<env,env>;

#UNSPEC domain
domDefin<finalEnv, env, [name->domainMode[unspecD[name]]]env> =

newName<env,name> "=" "UNSPEC";

#Union domain
domDefin<finalEnv, env,

[name->domainMode[union]]
addUnion(sumands,env,union)> =

newName<env,name> "=" "[" summandList<finalEnv,sumands> "]"
WITH un ion = unionD[name,sumnands];

#Ordinary domain
domDefin<finalEnv, -env, [name->domainMode[dom]]env> =

newName<env,name> " = " sDomain<finalEnv,dom>;

Forward dec la ra t i ons

The FINALENV checks t h a t a l l Forward-declared names are even tua l l y def ined.
FinalEnv conta ins the environment a f t e r t h e DEFINE p a r t .

SEMANTIC GRAMMARS GfUMMAR

forwardDec1 s< f inalEnv ,env , [name->f6rward~ode[dom]] env2> =
fowardDec1 s< f i nalEnv , env, env2>
identi f ier<f inalEnv,name,expMode[d~99]>

WHERE<env2(name) IS undefined)
~HERE<compatible(env,dom~domQQ)>

: sDomain<env2,dom> ;

Expression d e f i n i t i o n s

def inePart<env,env> = ;

, def init ions<env,env> = ;

de f in i t i ons<env l , [name->expMode[dom]] env2> =
def i n i t i ons<env l ,env2>
ident<name> *sa def<env2,dom> a ;-

#May redeclare FORWARD name
WHERE<LET mode = env2(name) IN

(mode IS undefined) OR (mode I S forwardMode)>;

A t t r i b u t e dec larat ions

attr ibutePart<env,env> = ;

attributePart<envl,env2> = *ATTRIBUTE* attributeDecls<envl,env2>;

#L i s t s o f a t t r i b u t e domains
attributeList<env,f1ow,attrs,attrs> * ;

Semantic Rules

Resolution Part

resolutionPart<> =
"RESOLUTION* resolutions<> ;

grammar<env> =
domainPart<envl>
forwardPart<env3,envl.env2>
definePart<envZ,env3>
attributePart<env3,env>
ru1 ePart<env>
resolut ionpart<>
"END" ;

RESOLUTION
RIGHT " X " "->" ;

END

References

Alfred V. Aho, Jeffrey 0. Ullman.
Principles of CompilerDesign.
Addison-Wesley, 1978. " j

American National Standards Institute.
Clarification of Fortran Standards: Second Report.
Communications of the ACM , October, 1971.

American Standards Association.
Fortran vs. Basic Fortran.
Communications of the ACM , October, 1964.

F. L. Bauer, J. Eickel (editors).
Compiler Construction: An Advanced Course.
Springer-Verlag, 1976.

Gregor V. Bochmann.
Semantic Evaluation from Left to Right.
Communications of the ACM :55 - 62, February, 1976.

W. H. Burge.
Recursive Programming Techniques.
Addison-Wesley, 1976.

0.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare.
Structured Programming.
Academic Press, 1972.

Department of Defense.
STEELMAN Requirements for High Order Computer Programming Languages
1978.

James E. Donahue.
Complementary Definitions of Programming Language Semantics.
Springer-Verlag , 1976.

J. H. Eriksen, B. B. Jensen, 6.6. Kristensen, 0. L. Madsen.
The BOBS-System.
Technical Report DAIMI PB-71, Computer Science Department, Aarhus University,

Denmark, February, 1979.
*

-

Michael Gordon.
The Denotational Description of Programming Languages: An Introduction.
Springer-Verlag, 1979.

Michael Gordon, R. Milner, C. Wadsworth.
Edinburgh LCF.
Springer-Verlag, 1979.

Susan L. Graham, Charles B. Haley, William N. Joy.
Practical LR Error Recovery.
SIGPLAN Notices 14:168- 175, August, 1979.
Proceedings of the SIGPLAN Symposium on Compiler Construction.

John L. Hennessy.
The Stanford Pascal Parser Generator.
Technical Report, Stanford University, 1981.
In preparation.

C. A. R. Hoare.
Hints on Programming Language Design,
Technical Report CS-403, Computer Science Department, Stanford University,

October, 1 973.

C. A. R. Hoare, N. Wirth.
An Axiomatic Definition of the Programming Language Pascal.
Acta lnformatica :335 - 355,1973.

J. D. Ichbiah et al.
Preliminary Ada Reference Manual.
SIGPLAN Notices, June, 1979.

Mehdi Jazayeri, William F. Ogden, William C. Rounds.
The Intrinsically Exponential Complexity of the Circularity Problem for Attribute

Grammars.
Communications of the ACM :697 - 706, December, 1975.

Kathleen Jensen, Niklaus Wirth.
Pascal User Manual and Report.
Springer-Verlag, 1975.

P. Jesperson, M. Madsen, H. Riis.
NEATS, New Extended Attribute Translation System.
Technical Report, computer Science Department, Aarhus University, Denmark, 1978.
Cited in Watt and Madsen [63].

Stephen C. Johnson.
YACC: Yet Another Compiler-Compiler.
Technical Report CSTR 32, Bell Laboratories, Murray Hill, New Jersey, July, 1975.

[22] Neil D. Jones (editor).
Semantics-Directed Compiler Generation.
Springer:Verlag, 1980.

[23] Neil D. Jones, Henning Christiansen.
Control Flow Treatment in a Simple Semantics-Directed Compiler Generator.
Technical Report PB-137, Aarhus University, Denmark, 1981.

1241 Neil D. Jones, Michael Madsen.
Attribute-Influenced LR Parsing.
Pages 393 - 407 of Jones [22], 1980.

[a] Neil D. Jones, David A. Schmidt.
Compiler Generation lrom Denotational Semantics.
Pages 70 - 93 of Jones [22], 1980. a

[26] D. E. Knuth.
The Remaining Trouble Spots in ~lgol60.
Communications of the ACM 10:611- 618, October, 1967.

1271 D. E. Knuth.
Semantics of Context-Free Languages.
Mathematical Systems Theory 2:127 - 145, February, 1968.
Corrected in 1971 volume, pages 95 - 96.

[28] C. H. A. Koster.
Affix Grammars.
In J. E. L. Peck (editor), Algol 68 Implementation, pages 95 - 109. North-Holland,

1971.

[29] C. H. A. Koster.
Using the CDL Compiler-Compiler.
Pages 366 - 426 of Bauer and Eickel[4], 1976.

1301 P.JiLandin.
The Mechanical Evaluation of Expressions.
Computer Journal 6:308 - 320, April, 1964.

[31] Ole L Madsen.
On Defining Semantics by Means of Extended Attribute Grammars.
Technical Report DAIMI PB-109, Computer Science Department, Aarhus University,

Denmark, January, 1980.
Pages 259 - 299 of Jones [22].

[32] Ole L. Madsen.
Towards a Practical and General Translator Writing System.
Technical Report, Computer Science Department, Aarhus University, Denmark,

March, 1980.

Zohar Mnna.
Mathematical Theory of Computation.
McGraw-Hill, 1974.

M. Marcotty, H. F. Ledgard, G. V. Bochmann.
A Sampler of Formal Definitions,
Computing Surveys :I91 - 276, June, 1976.

Brian H. Mayoh.
Attribute Grammars and Mathematical Semantics.
Technical Report DAIMI PB-90, Computer Science Department, Aarhus University,

Denmark, August, 1978.

John McCarthy.
Towads a Mathematical Science of Computation. -?.

In C. M. Popplewell (editor), Information Processing 6z1 pages 21 - 28. North-Holland,
1963.

R. E. Milne, C. Srachey.
A Theory of Programming Language Semantics.
John Wiley, 1976.
Published in Great Britain by Chapman and Hall.

D. R. Milton, L. W. Kirchhoffl B. R. Rowland.
An ALL(1) Compiler Generator.
SIGPUN Notices 14~152- 157, August, 1979.
Proceedings of the SIGPLAN Symposium on Compiler Construction.

Peter D. Mosses.
The Mathematical Semantics of Algol 60.
Technical Report PRG-012, Programming Research Group, Oxford University, 1974.

Peter D. Mosses.
S/S: Semantics /mp/ementation System. Reference Manual and User Guide.
Technical Report DAIMI MD-33, Computer Science Department, Aarhus University,

Denmark, 1 Q79.

Peter D. Mosses.
SIS: Semantics Implementation System. Tested Examples.
Technical Report DAIMI MD-30, Computer Science Departmentl Aarhus University,

Denmark, 1979.

Peter D. Mosses.
Mathematical Semantics and Compiler Generation.
PhD thesis, Oxford University, 1975.

P. Naur, J. W. Backus, F. 1. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rut.Mauser, K. Samuelson, B. Vauquois, J. H. Wegstein, A. van Wijngaardenl
M. Woodger.
Revised Report on the Algorithmic Language Algol 60.
Communications of the ACM 6:l - 17, January, 1963.

[MI Derek C. Oppen.
Pretty Printing.
ACM Transactions on Programming Languages and Systems :465 - 483, October,

1980.
- .

Lawrence Paulson, John Hennesy.
Semantic Grammars: A Formalism for Defining the Syntax and Semantics of

Programming Languages.
Technical Report, Stanford University, 1980.
Submitted to the Journal of the ACM.

G. D. W i n .
Cal l -byme, Call-byvalue, and the A-~lculus.
Theoretical Computer Science :I 25 - 159,1975.

Peter C. Poole.
Portabk and Adaptable Compilers.
Pages 427 - 497 of Bauefand Eickel[4], 1976.

D. P. Pozefsky.
Building Efficient Pass-Oriented Attribute Grammar Evaluators.
PhD thesis, University of North Carolina at Chapel Hill, 1Q79.

Kari-Jouko Raihal Mikko Saarinen, Eljas Soisalon-Soininen, Martti Tienari.
The Compiler Writing System HLP &ielsinki Language processor^.
Technical Report A-1 978-2, Department of Computer Science, University of Helsinki,

Finland, 1978.

Kari- Jouko Riiha.
Experiences with the Compiler Writing System HLP.
Pages 350 - 362 of Jones [22], 1 Q80.

Kari-Jouko Raiha.
Bibliography on Attribute Grammars.
SIGPUN Notices 15135 - 44, March, 1980.

Martin Raskovsky.
Step by Step Generation of a Compiler for Flow Diagram Language with Jumps.
Technical Report CSM-42, Department of Computer Science, University of â‚¬se

Junel 1Q81.

Martin Raskovskyl Phil Collier.
From standard to Implementation Denotational Semantics.
Pages 94 - 139 of Jones [22], 1980.

A. H. J. Sale.
Pascal Compatibility Report.
Technical Report R77-5* Department of Information Science, University of Tasmania,

November, 1977.

R. W. Scheifler.
A Denotational Semantics of CLU.
Technical Rep06 TR-201, ~aboratory for Computer Sciencel M.I.T., 1978.

Ravi Sethi.
Circular Expressions: Elimination of Static Environments,
In S. Even, 0. Kariv (edit~rs)~ Eighth International Colloquium on Automata,

Languages and Programming, pages 378 - 392. Springer-Verlag, 1981.

Ravi Sethi.
Control Flow Aspects of Semantics Directed Compiling.
Technical Reportl Bell Laboratories, Murray Hill, New Jersy 07974,1981.

Joseph E. Stoy.
Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory.
M. I. T. Press, 1978.

R. D. Tennent.
Mathematical Semantics of SNOBOL4.
In Symposium on Principles of Programming Languages, pages 95 - 107. Association

for Computing Machineryl 1973.

R. D. Tennent.
The Denotational Semantics of Programming Languages,
Communications of the ACM :437 - 4m1 August, 1976.

R. D. Tennent.
A Denotational-Definition of the Programming Language Pascal.
Technical Report 77-4T1 Department of Computing and Information Science, Queen's

Universityl Kingston, Ontario, 1977.

A. van Wijngaarden, 6. J. Maillouxl J. E. L. Peckl C. H. A. Kosterl M. Sirttzoff, C. H.
Lindsey, L. G. L. T. Meertens, R. G. Fisker.
Revised Report on the Algorithmic Language Algol 68.
Springer-Verlag, 1976.

David A. Watt, Ole L. Madsen.
Extended Attribute Grammars.
Technical Report DAIMI PB-1051 Computer Science Department, Aarhus University,

Denmarkl Novemberl 1979.

David A. Watt.
An Extended Attribute Grammar for Pascal.
SIGPLAN Notices 14:60- 74, February, 1979.

David A. Watt.
Rule Splitting and Attribute-Directed Parsing.
Pages 363 - 382 of Jones [22],1980.

[60] J. Welsh, W. JSneeringer, C. A. I?. Hoare.
Ambiguities and Insecurities in Pascal.
Software Practice and Experience 7:685 - 696, November-December, 1977.

[67] Wayne T. Wiiner.
Declarative Semantic Definition.
PhD thesis, Stanford University, 1971.
Computer Science Report STAN-CS-233-71.

1681 Niklaus Wirth.
Algorithms i Data Structures = Programs.
Prentice-Hall, 1976. .

