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Chapter 1
Introduction

Language designers must compromise between their goals and resources, and reconcile
conflicting concepts into a harmonious whole. .They cannet try out their ideas on.raal
programs, because of the cost and time required to write compilers. Their only feedback
comes years later, as users evaluate the language. This thesis intends to make it easier to
design, document, and implement programming languages.

There is no widely accepted notation for describing programming languages, so the
designers generally use a mixture of Backus-Naur Form and English. The resulting document
is often confusing, ambiguous, and tedious.

A bad document compounds the burden on the compiler writers. Before they can begin to
implement the language, they must understand the document and resolve its ambiguities. No
wonder compilers are so often incompatible with one another, that programs written in high-
level languages are not transportable, and that it is so difficuit to distribute new languages
throughout the computer science community. Consider the experience with Algo! 60, Pascal,
and Fortran:

The Aigol Report [43] is well-written, with plenty of examples. Yet Knuth [26] notes that Algol
is ambiguous about side-effects, go to statements, for statements, parameters, and several
other topics. This is not a poor showing; Hoare [15] comments: “When you can design a
language with so few trouble spots, you can be proud.”

Welsh, Sneerington, and Hoare [66] cite ambiguities in the Pascal Report [19] concerning
types, sets, and scope rules. Arthur Sale [54] found many differences among seven Pascal
compilers.
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The Fortran* Standard [3] provides neither a formal description of the syntax nor a single
example. A follow-up report by the standards committee lists fifty-two topics in need of
clarification [2]. Peter Poole [47] exhibits several incompatibilities among Fortran compilers,

including compilers written by the same manufacturer for the same machine. -

The Department of Defense noticed these problems. In commissioning the language Ada, it
required that all implementations be compatible [8, 17]. That goal may prove elusive due to
Ada's sheer complexity. The defining report is twice as long as the reports of Fortran, Algol,
and Pascal combined. Ada includes several advanced, ill.understood features: tasking,
exception handling, and generic program units. O

While a formal semantic definition cannot solve all the problems of language design, it can
answer the myriad questions that implementors and programmers ask: when are parameters
evaluated, in what order, etc. This thesis introduces a formai notation, the semantic grammar,
whiéh is both expressive and readable. Semantic grammars describe syntax and semantics
together, without separate lists of formulas or rules that need to be put into correspondence.
They handle both static and dynamic semantics — both compile- and run-time.actions. They
describe languages at a high level of abstraction, without needless detail. They are concise;
Appendix D, a grammar describing the full syntax and semantics of Pascal, is only twenty-one
pages long.

To provide language designers with quick implementations of their ideas, | have implemented
a compiler generator that converts semantic grammars into compilers. It has generated
compilers for Pascal, Fortran, and other languages. Using the Pascal grammar, it has
executed an intricate seven-page program: an LR(0) parser constructor. It can handle
unconventional languages, perform extensive static checking, and report semantic errors in
programs.

The compiler generator is the starting point for many systems that translate programs into
another formalism. For program verification, it can translate programs into verification
conditions. For efficient compilation, it can translate programs into intermediate code, which
a separate program could use to generate optimized code. The compiler generator can
provide compatible compilers on aiﬁerent machines. It is transportable, since it is written in
standard Pascal.

“In this thesis, “Fortran” means Fortran 66, not the new Fortran 77.



Summary of the thesis:

Related Work. Semantic grammars evoived from W-grammars, denotational semantics, and
attribute grammars. Most compiler generators use one of these notations. Most generate
only part of a compiler; few are efficient enough for production use.

Semantic Grammars. A semantic grammar contains domain definitions, expression
definitions, and attribute grammar rules. Domains and expressions follow the conventions of
denotational semantics, restricted for r;\achine processing but still powerful. Attributes
express semantic dependencies and constraints among the syntactic symbols in each rule.
Static Semantics. A semantic grammar may express compiler functions such as type-
checking and symbol table management. Abstract syntax trees, definable as a domain, are a
natural representation of types. Symbol tables, or environments, are mappings from
identifiers to their meanings. Declarations modify the environment; representing procedure
and parameter declarations is straightforward but tedious.

Dynamic Semantics. A semantic grammar may express the run-time execution of programs
using denotational semantics. The first step of writing the semantics is defining the state of a
computation, taking Fortran or Pascal as a model. There are two frameworks for control flow:
a direct semantics can describe “structured” commands; a continuation semantics can

describe any flowchart. A grammar can also define axiomatic or operational semantics.

The Compiler Generator. The compiler generator consists of a grammar analyzer, universal
translator, and stack machine. The grammar analyzer converts a semantic grammar into a
language description file that includes LALR(1) parse tables and attribute semantics. The
universal translator reads the file and parses a program, producing a graph of attribute
dependencies. It simplifies the graph into a single forfnula, while reporting semantic errors in
the program. It compiles the formula into stack machine instructions for execution. The stack

machine uses Landin's SECD architecture to execute lambda-calculus formulas.

Implementation Issues. The compiler generator embodies many design decisions. Rather
than interpreting semantic formulas, it compiles them into more efficient SECD machine
instructions. The attribute evaluator is efficient because it neither traverses nor stores a parse
tree, unlike the evaluators used in other systems. The formula simplifier uses many

transformations and optimizations; to assess them, performance statistics are presented.
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Conclusions. Semantic grammars have concisely defined both Fortran and Pascal. The
compiler generator allows the user to debug a grammar; to avoid stubborn bugs, the user
should develop and test the grammar in stages. Several lines of 'r&earch may lead to
compilers efficient enough for production use. Separate formalisms for static and dynamic
semantics may speed compilation; specifying operational rather than denotational semantics
may speed execution. Even now, the compiler generator is efficient enough to aid language
designers — it can run test programs several pages long.



Chapter 2
- Related Work

Semantic grammars evolved from earlier notations for defining programming languages.
Attempts to generate compilers from semantic descriptions date back over ten years.

2.1. Language Description Notations

Researchers have developed many language description notations over the years, striving for
precision, clarity, generality, and power. There are far too many notations to discuss them all;
| concentrate on those for static semantics.

" Most research, including the debate over axiomatic, operational, and denotational semantics,

has investigated such dynamic complexities as recursion, control structures, and storage
sharing. Static semantics — symbol tables and types — seems trivial in comparison. But
language designers are introducing overloading, parametrized typés, abstract modules, and
scope control. Readable definitions of static semantics have become essential.

Donahue [9] and Marcotty, Ledgard, and Bochmann [34] give extended comparisions of
several description methods, static and dynamic.

2.1.1. A Specification Task
Consider a language that includes the following syntax rules:

type = ‘“integer"|
"boolean" |
"array" "[" number ".." number "]" "of" type

assignment-command =
variable ": =" expression
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The language has integer, boolean, and array types; the assignment commaﬁd (statement)
requires that the type of the variable equal the type of the expression. Type-checking is
typical of the concepts that context-free syntax cannot express. It requires describing types
and associating them with variables and expressions. Since a variable has-no intrinsic type
(this is not Fortran), the environments and scope rules also must be described.

2.1.2. W-Grammars

One way to check types in the syntax is to have a separate rule for each type:

int-assignment-command = : -
int-variable ":=" int-expression

bool-assignment-command =
bool-variable ":=" bool-expression

int-array-assignment-command =
int-array-variable ":=" int-array-expression

This requires an infinite number of rules, particularly to handie environments. A W-Grammar
[62] does this through two levels of rules: hyper-rules and metaproduction rules. The hyper-
rules are templates that are expanded into an infinite set of context-free rules. The °
metaproduction rules generate the data that fill the “slots” in the templates. Here is a hyper-
rule for assignment:

ENV-assignment-command =
ENV-variable-of-TYPE ":=" ENV-expression-of-TYPE

The upper-case names are metanotions, the slots to be filled in. The following
metaproduction rule describes the metanotion TYPE, which is the internal representation of
types.

TYPE: int |
bool |
array INT upto INT of TYPE

TYPE depends on a metanotion INT representing integers. W-grammars do not provide
integers as a primitive. They must be explicitly defined, as well as essential integet operations
such as division. Integer expressions ére cumbersome; | will treat just the simplest case, non-
negative integers represented in unary:
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INT:  EMPTY |
oneINT

An environment is a mapping from names to their meanings, but W-grammars do not provide
mappings as a primitive. The user must define a concrete representation of environments,

such as an association list of name/type pairs, and must write hyper-rules to search a list for a
name.

~7

ENV:: EMPTY | -
map NAME to TYPE ENV

W-grammars are unclear because they represent everything in low-level terms, ultimately
character strings. They cannot really associate types with variables, but merely generafe
grammar symbols that contain the string ‘‘variable” and strings that represent types.
However, they are powerful; the official definition of Algol 68 uses a W-grammar {62] to handle
its intricate rules for coercion, scope, and type-checking.

2.1.3. Denotational Semantics

A denotational definition of a programming language consists of an abstract syntax, domain
definitions, and function definitions. The domains describe the data structures for the
semantic concepts of the language, like data types in Pascal. Each function describes the
semantics of one nonterminal symbol. Functions are defined by cases: one case for each
syntax rule rewriting the nonterminal. If our language had if and compound commands, then
its abstract syntax would include:

command = variable ":= " expression |
"if" expression "then" command |
"begin" command1 L. """ command n "end"

The functions specify both static and dynamic semantics. Domains are introduced to
represent abstract syntax trees. Brackets [ and ] enclose the syntactic arguments of
functions. Below, the function valid specifies the static semantics of commands, relative to an
environment env. The example omits the definition of valid for variables and expressions, and
the definitions of the functions compatibl/e and type.
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valid]]variable : = expressionjenv =
validfvariablejenv and valid[expressionjenv and
compatible(typefvariable]env, typefexpressionjenv)

validfif expression then command]env =
validfexpressionjenv and validfcommand]env and
compatible(typeexpressionjenv, boolean)

validfbegin command,; . . ; command_end] =
validfcommand.] and ... and valid[command ]

Some denotational definitions are unreadable. They reduce a language to a formless list of
function definitions; bad conventions are also to blame.” Many authors favor meaningless
names, with no similarity between the names of a variable and its domain, for example [61]:

Variable Domain Meaning

r Com commands

] ) environments

8 C command continuations
v Q parameter continuations

Denotational definitions can treat a wide class of languages, including Algol 60, CLU,
SNOBOLA4, and Pascal [39, 55, 59, 61]. They can describe complex control structures like -
label variables and expressions that cause jumps. But they cannot easily handle tasking or
concurrency.

Tennent [60] gives a brief introduction to denotational semantics. Gordon and Stoy cover
more detail [11, 58]). Milne and Strachey [37] ascend far into the stratosphere.

2.1.4. Attribute Grammars

An attribute grammar [51] is a context-free grammar augmented with attributes and attribute
equations, which propagate semantic information along the edges of the parse tree. Inherited
attributes, prefixed by {, move information from a node down to its children. Synthesized
attributes, prefixed by t, move information from the children up to the parent. Below, the
nonterminal variable inherits an environment and synthesizes a type. The rule includes a
constraint that the types of the variable and expression are equal;' if the constraint does not
hold, then the program has a semantic error.
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command< denv> =
variable< {env ttype, >

expression< env ?type2>
constraint type1 = typ32

There are different styles of writing attribute grammars. Knuth's original paper [27] suggests
writing the attribute equations alongside rules, rather than embedded within; Wilner [67]
defines the language Simula in this style. Watt and Madsen’s extended attribute grammars
[63] express the constraint type, = type, implicitly by using the same attribute type with both
the variable and the expression. Such conventions shorten rules:

command< denv ) = )
variable{ {env ttype>

expression< {env tMype >

Each attribute belongs to a particular data type, or domain. Extended attribute grammars
provide domains for mappings, records, and recursive data structures. Here is one way to

define a type as either boolean, integer, or array, and an environment as a mapping from
variable names to types:

TYPE = (bool|int]array(INT,INT,TYPE))
ENV = NAME — TYPE

Compare this with the W-grammar above. The attribute grammar expresses structure without

reducing everything to character strings. Watt has written an extended attribute grammar that
cleanly specifies all the context-senstive rules of Pascal [64].

2.1.5. Semantic Grammars

A semantic grammar is an extended attribute grammar where:

e The attribute domains are those of denotational semantics.
e Grammar rules specify dynamic as well as static semantics.

e The user may define auxiliary functions to use in the rules.

To illustrate how to embed dynamic semantics in a semantic grammar rule, | will use a simple
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denotational description of assignment. It uses a function var representing variables and a
function exp representing expressions. The assignment command evaluates the expression
in the current state s and passes the result to var, which stores it in the étate s:

As. var(exp s)s

A traditional denotational definition separates the semantics from the syntax, re-establishing
the context by explicitly providing var and exp with a syntactic construct and environment to
operate on. By convention, a function definition f = Ax.y is written f x = y. Here com is the
semantic function for commands; it takes a command, environment, and state, producing a
new state. ’

-~

comfvariable: = expression]envs = var[variable]env (exp[expression]env s) s

Embedding the function As.var(exp s)s in the attribute grammar rule yields the semantic rule
for the assignment command. The variable and expression synthesize their semantic

functions var and exp; the rule combines these to produce the semantics of the command.

command< denv t As. var(exp s)s> =
variable< {env ttype tvar>

expression< {env ttype texp>

A semantic grammar need not specify denotational semantics. As Madsen [31] suggests, it
can use operational or axiomatic methods too: instructions for an abstract machine,

instructions for a real machine, execution traces, or predicate transformers.

2.2. Compiler Generators

There exist few genuine compiler generators, which automatically produce a compiler given a
formal definition of a programming language. More common are translator writing systems,
which generate only part of a compiler. Many generate only the parser; more advanced
systems combine user-coded semantic routines into a compiler. Almost all require the user to
code a major part of the compiler in some implementation language. They do not save the
user much effort, but their compilers are more systematic, easier to maintain, and more likely
to be correct than hand-written compilers.

A parser generator requires the user to program all of the semantics; it only processes the

10
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syntax. In YACC [21], semantic code immediately follows each rule. The Stanford Pascal
Parser Generator [14] translates programs into abstract syntax trees, which semantic routines
process. The BOBS-System {10] calls a user procedure each time a reduction occurs. ‘Each

of these systems uses LALR(1) parsing [1], which efficiently handles complex grammars.

-

Affix grammars, which are similar to attribute grammars, are the input language for the CDL
compiler-compiler [28, 29]. Each nonterminal is an action or predicate, defined by a macro,
with parameters and local variables. CDL translates the affix grammar into a recursive-
descent compiler that parses programs top-down, “executing” the nonterminals of syntax
rules from left to right. There are two versions e'f\’CDL: the high-level version writes compilers
in languages like Algol 60; the low-level version writes assembly language compilers, based
on a standard machine model and predefined operations to control it.

NEATS is a compiler writing system that accepts extended attribute grammars [20, 6'3]. It
provides a fixed set of domains to represent environments, parameters, types, and other
language concepts. During compilation, it translates the source program into an output
stream, calling a user procedure every time an output symbol is generated. The attribute
grammar may specify translation from the source language into intermediate code, which the
user procedure translates into machine instructions. The NEATS attribute evaluator, which |
have adopted, is fast and general.

Raiha's [49, 50] Helsinki Language Processor (HLP) has generated compilers, assemblers,
and preprocessors for a dozen languages, including Simula, Euclid, and PL360. |t constructs
a parse tree and evaluates attributes in alternating passes [48]: Attributes are Burroughs
Algo! variables, computed using Algol statements. HLP compiles Pascal programs at only
fifteen tokens per second, and consumes 90,000 words when compiling a one-page Euclid
program; it is more efficient when used as an assembler or preprocessor.

SIS, by Peter Mosses, is the first compiler generator that does not need user-coded semantic
routines {40, 41, 42]. Instead it uses formal descriptions of the syntax and denotational
semantics of the language to be compiled. It constructs the parse tree of a program, applies
semantic functions to it, and interprets the result. Its input language is a formal version of the
traditional notation for denotational semantics. An untyped lambda-calculus, extended with
tuples and lists, represents source programs, object programs, and compilers. SIS has

handled several small languages such as LOOP and M-Lisp. It faithfully processes

LR



RELATED WORK

denotational formulas; its ''call-by-need’ interpreter handles a wider range of semantics than
my compiler generator. Mosses reports that executing even short programs requires several
minutes of computer time. Despite this inefficiency, SIS proves t}\at compilers can be
generated automatically from high-level language descriptions.

Ravi Sethi[56,57] is experimenting with semantics-directed compilation. His simplifier
performs beta-reductions and looks up identifiers in environments. It can resoive references
to labels in goto-programs, eliminating the environment. It produces a circular expression
that matches the control flow of the program. His system uses YACC to parse programs. It
has processed languages similar to Mosses's, and can handle ali of the control statements of
the C programming language. It does not execute programs; thé user must provide a
procedure that translates circular expréssions into imperative code. Sethi uses an algebraic
formulation of denotational semantics. '

Like Sethi, Jones and Christiansen [23] use algebra to handle controf flow. Their compiler
generator translates a language definition into a compiling semantics, which specifies what
actions to perform during parsing to compile a program. The target machine executes
sequences of instructions that update a run-time state. The user must define the machine's

instruction set and the structure of its state, using denotational semantics.

Denmark's Aarhus University has conducted much research on semantics-directed combiler
generation: extended attribute grammars, BOBS, SIS, NEATS, and a conference [22]. Work
is continuing in several directions [23, 32].

Martin Raskovsky’é compiler generator [52, 53] has converted Stoy's example language
definition [58] into a compiler. In a series of steps, it translates a standard denotational
definition into an low-level definition, then into the programming language BCPL. The
compiler generates instructions for the PDP-10 computer. There is little documentation on
this project.

Where does my compiler generator fit among the others? Of those that use denotational
semantics, it is the only one that has produced compilers for complete, realistic languages,
such as Pascal and Fortran. Of those that use attribute grammars, it is the only one that
provides a full set of primitives for defining semantic data structures. It accepts a functional,
rather than procedural, semantic specification; if attribute evaluation can cause side-effects,
then the user is forced to know the order in which attributes are evaluated. Most of these

12
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compiler generators are not efficient enough to compile a one-page program, while mine has
executed a seven-page program. It provides the essential compiler functions of static
semantics and error reporting, which most other research has neglected.

13
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Chapter 3
Semantic Grammars

Most denotational definitions are too informal for’computer processing, as Mosseé discovered
when he implemented SIS [42]. Semantic grammars are simple enough for the compiler
generator to process, yet rich enough to describe most programming language concepits. A
grammar contains domain definitions, expression definitions, and semantic rules.

Appendix F is a semantic grammar that formally defines the syntax and static semantics of this
notation.

3.1. Domains and Expressions

The domains and expressions are those of denotational semantics. Domains represent
semantic data types, such as mappings, tuples, and tree structures. it is possible to define
new function, product, and union domains. An expression denotes an element of some
domain. Operators only accept operands of the correct domains; there are no automatic
coercions between domains.

3.1.1. Basics

Domain names are written in UPPER CASE. The variables of a domain have the same name in
lower case, possibly followed by digits. For example, the variables list, listd, and list435
belong to the domain LIST. To use an arbitrary variable name, specify its domain when
declaring it; lambda-, let-, letrec-, and case-expressions declare variables. An example is
limit:INT.

The lattice theory underlying denotational semantics [58] augments each domain with an
element L, read “bottom.” Intuitively, L represents the result of erroneous or looping
computations. Most operators return L if any operand is .L.

15
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The standard domain BOOL contains the truth values true and false. Boolean expressions
may use the operators and, or, and noet. The conditional expression
if p then x else y fi

denotes x if p=true, y if p=tfalse, and L if p= L. The expressions x and y must belong to
the same domain. '

The standard domain INT contains the integers 0, 1, -1, 2, . ... Expressons may contain the
following infix operators, which all have the same precedence and require INT operands:

Symbol Meaning : Resuit Domain

+ sum ' INT o
- difference INT

* product ’ INT

div quotient INT

mod remainder INT

it less than BOOL

gt greater than BOOL

le less or equal BOOL

ge greater or equal BOOL

The standard domain NAME contains all character strings enclosed in quotes, such as "i",
"*&( horatio". It represents identifiers that appear in programs.

If x and y belong to the same standard domain, then x eq y is the expression testing whether x
and y denote the same truth value, number, or string. Ifx oryis L then the resultis .L; it is

impossible to write a function testing whether a value equals L.* The expression x ne y
denotes not (x eq y).

Examples of expressions and their domains:

Expression Domain
"revolucionario” NAME
int+7 INT

if int gt O then "pos™ else "neg" fi NAME
(int1 le int2) and (int2 le int3) BOOL

*In the lattice theory, a function f can not be continuous i f(L,1)=true, f(1,0)=false, and f(0,0) = true.
Because L C 0 in the lattice ordering, monotonicity implies true C faise C true. Thus true=false, a
contradiction. Pragmatically, testing for L requires solving the halting problem.

16
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3.1.2. Functions .

Functions are mappings from one domain into another, representing the notions of array and
computable function. The domain X—Y contains mappings from X to.Y. Functions may not

‘be compared for equality.

-

3.1.2.1. Abstraction

If an expression y contains a variable x, then the value of y depends upon that of x. The
lambda notation Ax.y expresses this dependengg as a function; x is called the bound variable
and y is called the body. The body extends té the right as far as possibie, so Aintint+1
denotes Aint.(int + 1), not (Aint.int) + 1. Examples: 4 -

Expression Meaning Domain
Aint. intgt O test if int is positive INT=BOOL
AY:INT. y*y squarey INT—INT

3.1.2.2. Appiication

The expression f x denotes the value of the function f applied to the argument x. If f belongs

" to the domain X—Y, then x must belong to X and the result f x belongs to Y. Example:

(Aint.int*int) 5 denotes 25.

A higher-order function is one that returns a function as its result. It is like a function of
several arguments, but can accept its arguments one at a time. The following syntactic
conventions involve higher-order functions:

Construct Meaning
X—=Y—2Z X—=(Y—=2)
AXy.z Ax. (Ay. 2)
fxy (fx)y

The application of a function to its argument, f x, may also be written f.x. The colon
associates to the right, so f:g:x denotes f(g(x)). This spares some parentheses, especially in
expressions that define continuations (Chapter 5).

Applying a lambda-expression to an argument is formally equivalent to substituting the

argument for the bound variable throughout the body of the lambda-expression. This
substitution is calied beta-reduction. Example with two arguments: :

17
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(Aint1 int2. int1 + int2) 35
(Aint2. 3 + int2) 5

(3 + 5)

8

3.1.2.3. Modification

The updating-expression [x—y]f denotes

Au. if U eq x then y else f(u) fi,
a function that maps x to y but otherwise is the same as f. (The domain of x must aliow the
equality operator eq.) This models how assignment commands update the state, and how
declarations update the environment. For instance, if en§/ represent; an environment, then
["fred" — y]env represents a new environment that maps "fred" to the value y. An iterated
updating-expression describes a table; a table mapping p to x, q to y, r to z, and otherwise
undefined, is

[p—x][q—yllr—z]L

3.1.2.4. Recursion and Fixedpoints

The lattice theory models recursive functions as fixedpoints of functionals. If f is a function,
then fix(f) is defined to be the least value satisfying f(fix(f)) = fix(f).

A definition of the factorial function, using an explicit fix operator, is

fix Afactorial :INT—INT.
Aint. ifint eq O then 1 else int _' factorial(int— 1) fi

The compiler generator requires the argument of fix to be a lambda-abstraction. The
sequence fixA is treated as a single token, similar to LISP's operator LABEL for defining
recursive functions [30].

3.1.2.5. Local Definitions

The let clause

letx=yinz
denotes the expression (Ax.z)y. Intuitively, this stands for z where x takes on the value of y.
The definition x = y can not be recursive, because y is outside the scope of x.

The letrec clause

18
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letrec x=yinz

denotes the expression (Ax.z)(fix Ax.y). Letrec defines recursive functions, such as:

letrec factorial INT—INT = . :
Aint. if int eq 0 then 1 else int ® factorial(int- 1) fi
in factorial(9) .
3.1.3. Tuples

If Xand Y are domains, the product domain X X Y contains all pairs (x,y) where x belongs to X

and ybelongsto Y. N

-~

The operators left and right extract components from pairs:
left (x,y) = x and right (x.y) = y.

N-tuples are iterated pairs:

thedomain X XY X Zmeans X X (Y X 2Z),
the tuple (x, vy, z) means (x, (y, z)).

The bound variable of a function may be a tuple of variables. This is shorthand for using left
and right to extract components of the bound variable, and is useful for defining functions of
several arguments. For example, |
A(int1,int2). int1 It int2
is equivalent to
ApairINTXINT . (left pair) It (right pair)
and belongs to the domain (INT X INT)—BOOL.

Tuples may be compared for equality. The expression
pairl eq pair2
denotes

((left pair1) eq (left pair2))
and

((right pair1) eq (right pair2))

19



SEMANTIC GRAMMARS

3.1.4. Unions

If D1, A Dn are domains and tag,, ... tag n are distinct identifiers, then the union domain
[tag,[D,] + ... + tag [D ]} '

_ contains the following values:

tag,[d,] foralid,inD,

tag [d ] foralld inD_

A particular tag name may be used in only one union domain. If each of Dyovw Dn allow
testing for equality, then so does their union.

A domain need not be given for every tag. A tag without a domain adds just one value to the
union. The extreme case, where no tag has a domain, is like Pascal’'s enumerated types [19]. |
For instance, the domain [red + yellow + blue + green] contains four values denoted red,
yellow, blue, and green. The domain [errorVal + intVal[INT] + boolVai[BOOL]] is an example
of the mixed case, and contains the values:

errorVal
intVal[0], intVal[ - 1], intVal[1], . ..
boolVal{talse], boolVal[true]

An expression such as intVal[int + 2] creates a union value and is called an injection. Its
inverse is projection, denoted with a bar:

intval[3] | intval =
intVal(3] | boolVal =

3
1  (of BOOL)
The operator is checks the tag of a union value:

intVal[3] is intval = true
intVal[3] is boolVal = talse

The case-expression selects among several expressions according to- the tag of a union
value; the following example converts colors into integers:

case color of red.1, yellow.2, blue.3, green.4 esac

The case-expression has an “arm” for each tag of the union. If atag has a domain, then the
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arm may refer to the projected value of the union. Below, if x has the fdrm intValfint], then the
value of the case-expression depends on x]intVal, which is the value of int.

case x of .
errorVal. "err”,
intVal{int). if int gt 0 then "plus” else "minus” fi,
boolValfbool]. if bool then "true” else "false" fi

esac

3.2. Attributes

ey

Look again at the semantic rule for the assignment command: —

command< $env t As. var(exp s)s> =
variable< {env ttype tvar>

expression< env ttype texp>

The symbol command, and its attributes, are on the left side of the equals sign; the other
symbols and attributes are on the right side. In a parse tree, the nodes for the right side
symbols are the children of the node for the left side symbol. Attributes depend upo‘n others
in various ways:

o The expression As. var(exp s)s specifies the semantics of the command in terms
of the functions var and exp, supplied from below in the parse tree.

e The variable env appears three times. In command, the parse tree supplies the
value of env from above. The variable and expression pass env down into the
tree.

e Both variable and expression define the variable type. Since an attribute can't
have two values, the types of the variable and expression must be equal.

Compiling a program requires evaluating attributes and checking that their constraints hold.
Every attribute must yield a proper value; L indicates an error. This section explains how a
rule defines, uses, and constrains attributes.
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3.2.1. Defined Attributes _

Any inherited attribute on the left-side of a rule “sees’” a value from above in the parse tree.
Likewise, any synthesized attribute on the right side sees a value from below. These are
defined attributes. In the rule below, the defined attributes are underlined.

command{ ¢env * As. var(exp s)s> =
variable< {env ttype tvap

expression< {env ttype texp>

A defined attribute may both specify the values of variables in a rule gnd impose constraints
on the rule. This complexity arises because a defined attribute may be an expression, not just
a variable.

Suppose a defined attribute sees a value val. The effect recursively depends upon the form of
the expression, which must be one of the following:

a variable v makes v denote val. If the same variable v is defined more than once
in a rule, adds constraints that the definitions are all equal.

aconstantc adds a constraint that val = ¢.

a pair (x,y) both x and y are themselves defined attributes; x sees left(val) and y
sees right{val). The domain of val must be a product. (Checked
during compiler generation, not compitation.)

an injection tag[x] x is a defined attribute that sees the projection val | tag; adds the
- constraint that val is tag.

Watt and Madsen [63] first used expressions for defined attributes. The next chapter gives
other examples.

3.2.2. Applied Attributes

Any synthesized attribute on the left side of a rule sends a value up into the parse tree.
Likewise, any inherited attribute on the right side sends a value down. These are applied
attributes. An applied attribute may contain any expression, as long as all of its free variables
are defined elsewhere in the same rule. The applied attributes are underlined in the rule
below:
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command< {env t As. var{exp gls> =
variable< {env ttype tvard

expression< {env ttype texp)

3.2.3. With Clauses

A rule may contain clauses of the form:
with x =y

This defines x to denote y in the rule. Strictly speaking, x is a defined attribute that sees the
value y, an applied attribute. Using a with clause to extract tHe embedded expression in the
rule for the assignment command yields an equivalent rule:

command{ {env tcom> =
variable< {env ttype tvar>

expression< {env ttype texp>
with com = As. var(exp s)s

3.3. Putting It All Together

A semantic grammar consists of domain definitions, expression definitions, attribute
declarations, semantic rules, and a resolution part. The symbol end terminates the grammar.

Comments may appear anywhere; they begin with a number sign (# ) and continue to the end
of the line.

'~ 3.3.1. Domain Definitions

The domain definitions declare all the domains used to describe the semantics.* Definitions
may be recursive, such as LIST, VAL, and TYPE below.

“Semantic grammars do not use syntactic domains, which define abstract syntax trees in traditional denotational



SEMANTIC GRAMMARS

domain ’
LIST = [nil + cons[INT X LIST]]; # lists of integers
VAL = [intV]INT] + arrV[INT = VAL]); #values: integers and arrays
ENV = NAME — TYPE; # environments: types of variables
TYPE = [intTy + arrayTy[TYPE] ]; #types
S = NAME — VAL, # states: values of variables
EXP = S — VAL; # expressions
COM =S—S; # commands: state transforms
VAR = VAL — COM; # variable assignments

The domain LIST deserves special mention, for it illustrates how to define list domains in
terms of union domains. (The compiler generator does not provide Iist’s_ as a primitive.) A list
is either nil, or has the form conslint,list]; a list of n integers‘is '

conglint,, .. ., consfint 11

To introduce an “‘abstract’” domain, with no definition, declare it unspec. Since the structure
of the domain is unspecified, its only values are .L and unspec expressions. You may find
unspec definitions useful while developing a grammar, but you must remove them all before
executing programs on the compiler generator.

DATA = unspec; # abstract data elements
ANS = unspec; # final answers
C = S— ANS; # command continuations

When comparing two domains for compatibility, a domain name is considered to be a
synonym for its definition. In the above example, C and S—ANS are the same domain. Each
unspec domain is unique, so DATA and ANS are different domains.

3.3.2. Expression Definitions

The expression definitions declare expressions that help describe the semantics. Most
grammars define functions to check types or combine declarations, and define structured
constants representing the 'initial environment. Definitions may be recursive or unspec. If a
name is referenced before its definition, it must appear in the torward declarations, along
with its domain. The function append is an example of list manipulation.
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forward )
append : (LIST X LIST) — LIST;

define -
append = A(list1,list2). - # append two lists
case list1 of
nil. list2, A
cons[int,list]. cons[int, append(list,list2)]
esac;

aList = unspec :LIST; #alist is an unspecified LIST constant
. Y
abort = As.L;

3.3.3. Attribute Declarations

The attribute declarations list every nonterminal symbol in the grammar, along with the
domains of its attributes. A dot separates inherited from synthesized attributes. In the
following example, thé symbol identifier has an inherited attribute of domain ENV, and
synthesized attributes of domains NAME and TYPE:

attribute
identifier(ENV.NAME, TYPED; # variable identifiers
expression<ENV.TYPE,EXP); # expressions
variableENV.TYPE,VARD; # variables
command<ENV.COM>; # commands

Four symbols are built in, for use only on the right side of rules:

number{.INT> represents an integer number, a string of digits.

ident{. NAME> represents an identifier, an alphanumeric string beginning with a
letter.

where<BOOL.> represents the empty string; adds a constraint that the boolean

condition is true.

uniqueName<.NAME> represents the empty string; each instance in the parse tree generates
a distinct name; useful for generating arbitrary labels.
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3.3.4. Rules .

The rules describe the syntax and semantics of a programming language. The rule part
begins by naming the start symbol of the syntax: 4
rule start-symbol

Terminal symbols, either alphanumeric reserved words or combinations of special characters,
are enclosed in quotes: '

“min" " + " ": = "

Many of the example rules in this thesis use arrows + and ¥ to indicate,whether an attribute is
synthesized or inherited, but the compiler generator expects rules in which comrﬁas separate

the attributes. (The attribute declarations specify the types of attributes.) The assignment
rule becomes:

command<env, As. var(exp s)s> =
variable<env, type, var>

expression{env, type, exp> ;
There is no way to specify the lexical conventions of a language; the current implementation
assumes the following:
e the braces { and } enclose comments in programs
e spaces, newlines, and comments séparate numbers and identifiers
e keywords are reserved

o there are no string constants

3.3.5. Resolution Part

The resolution part assigns binding powers and associativities to terminal symbols, for
eliminating syntactic ambiguities [1]. It can resolve the dangling-else problem and specify
operator precedence. Operators can be left-, right-, or non-associative; each left, right, or
nonassoc declaration defines a group of operators with the same binding power. Each
declaration specifies a higher binding power than the next declaration. The terminals not
mentioned in the resolution part have the lowest bindjng power.
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Examples: The declaration

left "*" /"
gives * and / equal priorities and makes them associate to the left, so that x*y/z means
(x*y)/z. The following resolution part reflects Pascal's operator precedences:

resolution
nonassoc "not"; # most binding
leﬂ "Wkt “/“A“and“;
left ” +ﬂ - _“ "orn; i
nonassoc "C" ">" "="; ¥ least binding
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Chapter 4
Static Semantics

To clearly describe a programming language usihg a semantic grammar, you must dissect the
language into concepts more carefully than you would when writing a compiler. A compiler
need only work properly, but a semantic grammar should be revealing as well as correct. If
you intend to process the grammar through the compiler generator and run programs usjng it,

then you must also consider efficiency and other limitations of the compiler generator.

Static properties are those evident from the program text without execution of the program.
They are also called context-sensitive or compile-time properties; the domains and
expressions that describe them resemble the data structures and algorithms used in a
compiler. Types and symbol tables are typical examples. Watt and Madsen investigated

these concepts while writing an attribute grammar for the static semantics of Pascal [63, 64]. '

A major strength of the compiler generator is its ability to process static semantics and report
errors in user programs. Modern languages, such as Pascal, CLU, and Ada, require complex

static analysis. Yet the literature on denotational semantics rarely mentions static semantics.

4.1. Syntax

The context-free syntax of a language defines its operators and delimeters, and how phrases
nest inside one another. It is the framework upon which a semantic grammar is built. For

each rule, the semantic grammar shows the semantic relationships among the syntactic
constituents.

It a grammar is to be processed through the compile; generator, its syntax must be
unambiguous — in fact LALR(1). Unfortunately, the most natural description of a language is
often ambiguous [1]. Appendix A shows how to eliminate simple ambiguities, such as
operator precedence and dangling else, using re:;:olution declarations.
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Watt's attribute grammar for Pascal performs type-checking using a set of ruleé that generate
the empty string if all of their semantic conditions are satisfied, and generate no strings
otherwise — the blind alley technique used to define Algol 68 [62]. Syntactically, these rules
are highly ambiguous, generating the empty string in many different ways. In a semantic

grammar, you can define functions to perform semantic checks without using blind alley
rules.

Other ambiguities are harder to eliminate. In Pascal, an identifier may be parsed as an
expression through two different nonterminals, constant or variable:

expression = variable | constant|...
variable = identifier | . . . . -
constant = identifier | number

An actual parameter can be a variable either directly, or through an expression:

parameter = variable | expression
expression = variable]...

In Fortran, the expression A(l,J) may be either an array reference or a function call, and a

statement beginning with A(l,J) = may be either an assignment statement or the definition of
a statement function.

Resolve such ambiguities as you would for any parser generator. A solution to the first
example is letting a constant identifier be parsed as a variable, extending the semantics of
variables to handle constants:

expression = variable | number|...
variable = identifier]|...

A solution to the second example is merging expression and variable into a single nonterminal

expVar, which carries a flag indicating whether an expression is in fact a variable, and if so
the semantics of that variable.

parameter = expVar
expVar = variable]...

While the solutions of the previous examples are messy and annoying, the Fortran example is
intractable. The right hand side of an assignment statement must be treated differently from
that of a statement function definition; subscripts must be treated differently from parameters.
Rules handling every possibility would be unreadable. My Fortran grammar omits statement
functions, and uses a non-standard syntax for function calls. The best solution is

representing expressions as abstract syntax trees, and defining auxiliary functions to interpret
the trees in the various ways.
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Hand-written compilers resolve syntactic ambiguities using the symbol table: to see if an
identifier is a variable or constant, if a parameter is expected to be a variable or expression, if
a name is dimensioned or not. Can semantics resolve ambigﬁities automatically? Watt [65]
and others [24, 32, 63] suggest methods of letting the attributes control the parsing of an
ambiguous syntax; Milton, Kirchhoff,'and Rowland [38] use attributes to resolve LL(1) parser
conflicts, producing one-pass compilers. Unfortunately, many languages cannot easily be
compiled in a single pass. The problem is a messy case-analysis; both the ambiguities and
the resolving attributes may only have certain forms.

An unambiguous syntax provides a solid foundation for a semantic grammar. One benefit is
that my generated Pascal compiler recovers from some semantic errors more robustly than
the regular Pascal compiler does. The regular compiler depends upon semantic information
for parsing; if that information is denied due to an error, an avalanche of unwarranted error
messages can result. Most ambiguities can be avoided by careful language design, making
programs more readable to humans as well as machines.

4.2. Static Environments

Environments are the formal equivalént of symbol tables in a compiler. The issues involved in
implementing a symbol table [1] are twofold: logical considerations of what to include in the
table, and practical considerations of fast search and storage management. In a semantic

grammar, the logical considerations are paramount.

4.2.1. Modes

An environment records the meanings of the identifiers in a program. Depending on the
language, identifiers may denote variables, procedures, types, constants, labels, COMMON
blocks, etc. After defining a domain MODE to represent these possibilities,* an environment

will be a mapping from names to modes:

*Watt and Madsen use “mode" tor the meaning of an identifier; the standard term is “denotable value."”
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TYPE = ... H
PARAMLIST = [nilP + consP[TYPE X PARAMLIST]];

MODE = [ variableMode[TYPE] +

typeMode[TYPE] +
labeliMode +
procedureMode[PARAMLIST]] ;

ENV = NAME — MODE ;

4.2.2. identifiers

-

The compiler generator provides the lexical éymbol ident{tname> for scanning names; it is
useful to define a nonterminal symbol identifier<{env tmode> for looking up names in .
environments. Identifier inherits an environment and synthesizes the mode of the name that it
parses.

identifier<ienv tmode> = ident{tname> with mode = env{name)
An equivalent, more concise version is:

identifier<{env tenv{name)> = ident{tname>

Identifiers may denote types. Using the above definition of MODE, the following rule checks A
that an identifier denotes a type and returns that type. There might be other rules to define
array and record types, as discussed in the next section.

dataType<ienv ttype> = identifier<ienv ttypeMode(type]>

4.2.3. Declarations

Declarations create and update environments. Consider variable and type declarations in a
simple language:

declaration = "variable" ident ":" type |
"typeu ident L type

In a semantic grammar, declarations inherit an environment and synthesize a new one that
contains the effect of the declarations. )



STATIC ENVIRONMENTS

declaration<{env t [name—variableMode[type]] env> =
"variable" ident{tname>
":" dataType<ienv ttyped ;

declaration<ienv t[name—typeMode]type]]jenv> =
"type” ident{tnamed
"=" dataTypeienv ttyped ;

Once you have declarations, concatenating them into declaration lists is trivial:

declarationlist{{env tenv)> = ;

declarationList{¢env tenv2) = ' -
decla_rationList(&env tenvid
declaration{{envi tenv2® ;

’

In a language with block structure, there is no need to delete local declarations from the
environment after leaving a block. Instead, throw the local environment away and resume
using the previous global environment. Since there are no side-effects in semantic formulas,

the global environment will be the same as before it was used as the basis for another
environment.

The obvious representation of an empty environment is the undefined element L. But if you

make “undefined" a separate tag of MODE, and use Aname.undefined as the initial

environment, then you will be able to check whether or not a name has been declared:
env(name) is undefined

for preventing multiple declarations. Remember that block-structﬁred languages allow a local

declaration to override a global declaration, but not another local declaration.

4.2.4. Procedures

Consider procedures with only value parameters. The domain PARAMLIST, defined above as
a list of types, represents formal parameter lists.
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procedure = "procedure” ident formalParamList "begin" statement "end"
formalParamList = empty | "(" formalParams ")"

formalParams = parameter | parameter ";" formalParams

parameter = ident ":" type

This syntax illustrates some weak spots of semantic grammars. Most syntax notations include
shorthand for indicating alternative, optional, or repetitive elements. Semantic grammars do
not, because it is difficult to incorporate semantics. (Mosses [40] provides a shorthand for
repetition, using the parse tree as the interface between syntax and serhantics.)

It is easier to handie zero-or-more repetitions of a construct than one-or-more repetitions,
because the empty list is trivial. You must define formalParams using a recursive rule that
defines lists of one-or-more parameters. The nonterminal parameter is needed to avoid

duplicating the string ident "':" type; there may be duplication of semantics as well.

Semantic rules for formal parameters must not only build the parameter list, but also enter the
parameters into the local environment of the procedure. | omit the details, which are
straightforward. '

Consider the matching of actual with formal parameters in procedure calls:

statement = identifier actualParamList
actualParamList = empty | "(" actualParams ")"

actualParams = expression | expression "," actualParams

The following semantic rules pass the formal parameter list as an inherited attribute to the
actual parameter list, which checks that each actual parameter has the same type as the
corresponding formal parameter. The formal parameter list must end at the same time as the
actual parameter list, implying that the numbers of formal and actual parameters are equal.
Although the compiler generator allows left recursion, the recursive structure of PARAMLIST
dictates that actualParams be right recursive.
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statement{ienv> =

identifier<{env tprocedureMode[paramList]>
actualParamList{{env {paramlList);

actualParamList<{env $nilP> = ;

actualParamList<$env {paramlist) =
"(" actualParams<{Jenv {paramList) ")";

actualParams<i{env {consP[type,nilP]> =
expression{ienv ttyped;
Y
actualParams<{{env {consP[type,paramList]> =
expression{ienv ttyped> """~
actualParams< Yenv dparamList) ;

Watt and Madsen [63] handle Pascal procedures without requiring declaration before use.
Each procedure inherits two environments. The first contains only the declarations before the
procedure, and is only used for processing the formal parameter list. The second contains
the parameter lists of all the local procedures, and is used for processing the procedure
bodies. Similarly, Watt [64] uses two environments to handle Pascal’s forward references in
definitions of pointer types — at the cost of two additional attributes on every type. These are
examples of right-to-left information flow in a grammar.

The run-time semantics of labels and recursive procedures can' not be stored in static
environments. They require dynamic environments, discussed in the next chapter, because
they involve fixedpoints of deciarations. The compiler generator cannot handle circular
attribute grammars, which are the only way to represent the fixedpoint of a semantic
relationship expressed using inherited and synthesized attributes. However, if the language
prohibits recursion, then it is simple to process procedure declarations one by one, inserting
the run-time semantics of each into the environment. The Pascal grammar uses a dynamic
environment for procedures; the Fortran grammar handles procedures in the static
environment, using a dynamic environment for labels.



STATIC SEMANTICS

4.3. Data Types -

Many languages associate a fixed type with every variable, specifying its values, structure,
and operations. Types include scalars, such as integers and booleans; arrays; and other data
structures such as records, pointers, sets, and files. Fortran and Algol provide several basic
types that may be used as scalars or as arrays of specified dimensions. A type is then a pair
(scalar,dimensions) where scalar determines the element type and dimensions is a possibly
empty list of integers.

TYPE = SCALAR X DIMENSIONS;
SCALAR = [integer + real + logical]; )
DIMENSIONS = [nilD + consD{INT X DIMENSIONS]J;

Modern languages provide more data .structures and allow them to be nested arbitrarily.
Instead of multi-dimensional arrays, there are arrays of arrays. There are records with named
fields, each of which has a type. The language syntax for types might be the following:

dataType = "integer" |
"boolean" |
identifier |

"array" "[" number ".." number "]" "of" dataType |
"record"” fieldList "end"

fieldList = ident ":" dataType ";" fieldList |
empty

The following recursive domain holds all the necessary information about types. It is nothing
more than abstract syntax trees.

TYPE = [integerType +
booleanType +
arrayType[INT X INT X TYPE] +
recordType[FIELDS]];

FIELDS = [nilF + consF[NAME X TYPE X FIELDS]];

The examples in this section use the above definition of Pascal types. To keep things simple,
they ignore run-time semantics.
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4.3.1. Type Definitions

Given a domain representing types, you must write semantic rules that generate types from
type definitions. Since TYPEs are abstract syntax trees, this is easy. (The pre-declared
lexical symbols ident{tname> and number{(tint> scan identifiers and integer constants,
synthesizing their values.)

dataType<ienv tintegerType> = "integer";

dataType<{env tbooleanType> = "boolean” ;

!

dataType<tenv ttype> = identifier<{env ttypeMode[type]>;

dataType<{env tarrayTypelint1,int2,type]> =
"array” "[" number<tint1> "." number{tint2> "]1"
"of" dataType<ienv ttype>;

dataType<ienv trecordType[fields]> =
"record” fieldList<{env tfields> "end";

fieldList<{env tconsF[name,type,fields]> =
ident{tname> ™" dataType<ienv ttype> ;"
tieldList<ienv tfields>;

fieldList<{env tnilF> = ;

4.3.2. Type Checking

Suppose the language has a unary odd operator that requires an integer operand and

produces a boolean result. The following rule contains an explicit test that the operand's type

is integer, using a where-clause:

expression{{env tbooleanTyped> =
"odd" expression{ienv ttype>
where<{type is integerType> ;

The check can be made implicit, using the properties of defined attributes and constraints
discussed in section 3.2.1. Because type is a synthesized attribute on the right side of the
rule, it is a defined attribute; replacing it with the tag integerType implicitly specifies the
constraint “type is integerType,” which the compiler generator will check:

expression<ienv tbooleanType> = "odd"éxpression(&env tintegerType> ;
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General type-checking for the assignment statement can be subtle. If the domain TYPE is
simple enough to allow equality testing with eq, then the following suffices:

statement = variable<ienv ttype1> ":=" expression<ienv ttype2>
where<iypel eq type2> ;

Using implicit constraints you can write:

statement = variable<lenv ttype> ":=" expression{{env ttype>;

To do more complex type-checking, write a recursive function

compatible: (TYPE X TYPE) — BOOL
that traverses a pair of types as a compiler would. However, some of the tricks compilers use
are not available in semantic grammars, such as omitting the traversal.ef a pair of structures if
the pointers to them are equal. When you need to compare pointers, you must simulate them
by labelling each type with distinct integers (or identifiers generated by uniqueName). Then
you can define type-checking by name compatibility, rather than structural compatibility [66].

4.3.3. Types of Variables

Pascal provides access to elements of arrays and records, using a general notion of variable

with a syntax representing simple variables, subscripted variables, and field access:

variable = identifier |
variable "[" expression "]" |
variable "." ident '

The semantic rule for simple variables returns the type of the variable identifier:

variable<ienv ttype> = identifier{lenv tvariableMode[type]>

The rule for arrays checks that the variable is an array, gets its element type, and checks that
the subscript expression has type integer. Constraints do the checks automatically;
arrayType[int1,int2,type] is an example of a complex defined attribute. lts subexpressions
(int1,int2,type) and (int2,type) are also defined attributes. Ultimately, the attribute variables
int1, int2, and type are all defined.

variablelenv ttype) = ,
variable<tenv tarrayType[int1,int2,type]>
"[* expression{{env tintegerType> "]";
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The rule for records requires a function
lookup : (NAME X FIELDS) — TYPE
that looks up a name in a field list and returns the corresponding type. A definition of lookup

is
lookup = -
A(name0,fields0).
case fields0 of
nilF. L, # No such field in record
consF[name,typefields].
if name eq nameO then type - . y # Found the field
else lookup(nameq,fieids) fi # Continue search
esac; - -

Now the semantic rule for record access can be written; it includes an implicit check that the
variable's type is indeed a record. '

variable{{env tlookup(name,fields)> =
variable<{env trecordType[fields]> "." ident{tname ;
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Chapter 5
Dynamic Semantics

Dynamic properties concern the execution of programs; many authors have studied their
denotational semantics. Given a semantic grammar for the static semantics of a language, it
is simple to augment it with dynamic semantics.

The denotational approach uses a single framework, the standard semantics, for all
languages. As Gordon [11] explains, “If we describe languages using fixed standard
techniques then comparisons between languages are made easier. The disadvantage is that
for any particular language the ‘fit' of the technique may not be perfect.”” The disadvantage is
serious. The standard semantics is a poor fit for most languages because it is too general,
simulating the Von Neumann computer to a level of detail that resembles assembly language.
Denotational definitions, instead of being revealing, have a widespread reputation for being

obscure.

7/
The first step of writing a revealing language definition is adopting a suitable framework for
the language, not necessarily the standard semantics. A reader can understand the basic

concepts of a language by looking at just the domains representing states and commands.

5.1. Program States

A computer executes programs by repeatedly updating its store of machine words. The high-
level analog of the store is the program state, which contains the values of all the variables in
a program. The state is updated by assigning a new value to a variable. The usual
denotational representation of the state mimics the hardware implementation, using a
mapping from locations to a class of “storable values” that can fit into machine words. This

defeats the purpose of formal definition; it obscures the organization of the state, which varies
from language to languge.
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5.1.1. Fortran R

Fortran [3] specifies storage layout in complete detail, including the size of each data element
and the address calculation used in array subscripting. Its EQUIVALENCE statement allows
the programmer to overlay variables of various types and dimensions. But even the Fortran
state, low-level as it is, has more structure than the machine store. Fortran partitions the state
into independent, named regions, called COMMON blocks, each of which is an addressable
array of values:

STATE = NAME — BLOCK;
BLOCK = INT — VALUE;

The domain VALUE, representing Fortran data values, remains to be -defined. Only scalar
values need be considered, because Fortran arrays are collections of scalar values stored in
consecutive locations. Scalars include integer, real, character, and logical values. The
compiler generator does not yet support reals or characters, leaving:

VALUE = [integerVal[INT] + logicalVal[BOOL]];

5.1.2. Pascal

Pascal's arrays and other data structures are defined without mention of memory locations.
Pointer types are restricted to an invisible storage area, the heap, separate from the program -
variables. Programs manipulate variables, not locations. Pascal deserves a formal definition
on the same high level as its defining report. Donahue [9] makes a similar criticism of
locations.

When two variables share the same storage, an assignment to one changes the other, a
situation called aliasing. In Pascal, aliasing can only occur in procedures that have variable
parameters. Variable parameters are intended to pass results back to the calling program,
and are usually implemented by passing a reference to the actual variable (call-by-reference).
Aliasing occurs because an assignment to the formal parameter simultaneously alters the
actual parameter, via the reference. The Report [19] seems to require call-by-reference: “In
the case of a variable parameter, the actual parameter must be a variable, and the
corresponding formal parameter represents this actual variable during the entire execution of
the procedure.”

A different implementation that avoids.aliasing is call-by-value-result, where the final value of

the formal parameter is copied into the actual parameter after the procedure terminates. Call-
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by-reference is sometimes more efficient, but may be regarded as an optimization — that
occasionally produces incorrect results. | believe that Pascal's designer never intended to

overspecify the implementation of variable parameters;* my semantics represents call-by-
value-result. -

With aliasing eliminated, the state can be defined without mentioning locations:
STATE = NAME — VALUE

Unlike the Fortran state, the Pascal state can not represent arrays as scalars in consecutive
locations. Instead, the domain VALUE must represent arrays. The high-level notion of an
array is a function from subscripts to elements. Define VALUE recursively to be eithér an
integer, a boolean, or an array of values:

VALUE = [intVal[INT] + boolVal[BOOL] + arrayVal[INT — VALUE]};

Most of the examples in this chapter use these definitions of STATE and VALUE. The rules

abbreviate “state” as “s.” Most omit static semantics and injections/projections involving
VALUE.

5.1.3. Block Structure

Block-structured languages pose the problem that several variables may have the same
name. In the following example, the procedure bothx can see two variables named x: its local
X, and the global x, obtained via the function getx:

varx;
function getx; getx:= Xx;
procedure bothx; varx;...x...getx...

You can still use STATE = NAME—VALUE, but with semantic rules that rename every
variable in the program to eliminate duplicates. Generate the new name using uniqueName,
and store it in the environment with the variable's type. The example variable declaration
from section 4.2.3 becomes

*If Pascal implementors had the freedom to pass small arguments by value-result, then they could eliminate the
exasperating restriction on passing components of packed structures as variable parameters. The restriction reflects
the impossibility of obtaining a reference to a partial word.
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declaration<{env t [name1—variableMode[type,name2]] env> =
"variable" ident{tname1> uniqueName<{tname2>
" type<ienv-typed ;

Another way of handling block structure is to partition the state into lexical levels, so that x at
level 1 is a different variable from x at level 2. This recalls the “displays” used in the
implementation of block-structured languages [1]. Partitioning the state makes it easier to
describe recursive procedures, which must save the initial values of their variables and
restore them upon returning. With a partitioned state, procedures can save and restore their

entire lexical level as a unit, without dealing with each variable individually.

g

STATE
LEVEL

LEVEL — NAME — VALUE;
INT;

5.1.4. Extra Components

The state must hold the entire state of the computation, including input and output files. The

usual representation of files attaches extra components to the state:

STATE = STORE X INPUT X OUTPUT;

STORE = .., # program variables
INPUT =..; # remaining input to be read
OUTPUT = ... , # output that has been written

This approach is sensible unless you are writing the grammar for the compiler generator.
During execution, programs reference the state frequently; if the stéte is complex, the
generator's stack machine will waste a great deal of time detaching and attaching the various
components. To achieve fast running times, you must define the state as simply as possible,
even if this entails a slight distortion of its structure.

Extra components are not needed to model Pascal input/output, where files are ordinary
variables. The Pascal idea can be used in other languages: extend the d‘omain VALUE with a
representation of a file, and keep input and output files in special variablés, such as “$input”
and “$output.” Since identifiers cannot have the character $, user programs cannot
reference these variables, but the semantic formulas for input/output can.

The same principle applies to the Pascal heap, the storage area for pointer variables.
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Programs will run faster if the heap is not a separate component of'the state. My Pascal
grammar represents pointers as integers, stores the heap in a global array variable named
‘“‘$heap,” and stores the heap size in the integer variable “$heaplimit.” Pascal pointers are
not the “locations’ of denotational semantics — they can denote neither local variables, nor
components of heap variables, but only entire heap variables.

5.2. Commands and Expressions

There are two frameworks for dynamic semantic§. A direct semantics is simple and clear, but
is too weak to handle most programming languages. A continuation semantics is complex
and low-level, but is powerful enough to describe éhy flowchart program.

5.2.1. Dynamic Environments

Most authors use a single environment, denoted p. Tennent [61] divides his Pascal semantics
into static and dynamic parts, each with its own environment; Scheifler [55] does the same for
CLU. In a semantic grammar, the static environment is an inherited attribute of most symbols,
and holds all of the compile-time infofmation about a program; the dynamic environment is a
bound variable of most semantic functions, and holds the run-time semantics of labels and

recursive procedures. The definition of the dynamic environment is closely tied to that of
commands and expressions.

5.2.2. Direct Semantics

Consider a simple language without jumps or expression side-effects. Executing a command
(statement) changes the state, by assigning new values to variables. Evaluating an
expression produces a value, but leaves the state unchanged. The value may depend on the
state, because expressions may contain variables. The domains for a direct semantics are

COM = STATE — STATE; # semantics of commands
EXP = STATE — VALUE; # semantics of expressions

Expressions directly use the values of their subexpressions, as the rules for constants,
negation, and addition show:



DYNAMIC SEMANTICS

expression{As.int> = number<int> ;
expre&ion(ks.noi exp(s)> = "not" expression<expd;

expression<{As.exp1(s) + exp2(s)? =
expression{exp1> "+ " expression{exp2 ;

Control flows directly from one command to the next, as the rules for if and compound
commands show:

command<{As.if exp(s) then corh(s) elsesti> = )
"i" expression{exp> "thqn"' command<{com> ;

command<{As.com2(comi s} =
command<com1> ";" command<{com2>;

The semantic function of any iterative command must be recursive. The while command
satisfies the equivalence |

whileexpdocom = if expthen (com; while exp do com)
leading to a semantic rule containing a ﬁxedpoint:

command<{fix Awh:COM. As.if exp(s) then wh(com s) else s fi> =
"while" expression<{exp> "do" command{com> ;

The next section discusses the direct semantics of variables and the assignment command.
Gordon [11] shows how to define a direct semantics for side-effects, using the definition EXP
= STATE—(VALUE X STATE). The rules become messy.

The Pascal grammar includes a dynamic environment to hold the semantics of procedures; its
domains are:

DE = NAME — STATE — STATE; # dynamic environments
EXP = DE — STATE — VALUE; # expressions
COM = DE — STATE — STATE; # commands

You should use direct semantics whenever possible. Compared to a continuation semantics,

it is simpler, more readable, and allows faster compilation: fewer beta-reductions during
simplification.
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5.2.3. Continuation.Semantics

The idea of continuations dates back to McCarthy [36], who suggested a method of
converting a flowchart program into a set of recursive functions. Define a function for each
box of the flowchart, such that each function calls its successor in the flowchart. The
functions are called continuations; each denotes the final answer the flowchart would

produce if started at the corresponding box.* The result depends only on the initial state of
the program variables.

Leaving the domain of answers unspecified, the domain of command continuations is

ANSWERS = .. ; # final outputs of programs
C = STATE — ANSWERS; # command continuations

Thinking of continuations as functions can be confusing; think of them as program points, or
labels, that can be jumped to.

To handle expressions, generalize the notion of flowchart to include boxes that can compute
values and pass them to other boxes. Normally an expression computes a value and passes it
to a box that expects a value. However, an expression may branch to a different box without

computing a value — if an exception occurs, or if a function executes a non-local goto
command.

Now the flowchart contains boxes that expect a value before they can execute. if we start the
flowchart program at such a box, the final answer will depend on the value we provide, as well
as the state. The label of the box is called an expression continuation, because it is the
destination of an expression’s value.

EC = VALUE — STATE — ANSWERS;

The semantic function of an expression requires, as an argument, the destination to jump to
after evaluating the-expression; this argument is an expression continuation. The semantic
function yields a continuation describing the expression’s effect. produce a value, then pass
it to the destination label. A command does not produce a value, so its argument (destination
label) is a command continuation.

*if the flowchart program goes into an infinite loop instead of terminating, its final answer is 1.
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EXP = EC = C; # semantics of expressions
COM = C—C; # semantics of commands

Now | repeat the exambles | gave for direct semantics.

A constant expression passes the constant's value immediately to the destination. The not
operator evaluates an expression and passes the negated value to the destination. The plus
operator evaluates two expressions, one after. the other, and passes their sum to the
destination.

expression<{Aec.ec(int)> = numberint>; - -

expression<{Aec.exp(Avalue.ec(not value))> =
"not" expression<exp>;

expression{Aec.expi(Avaluel.exp2(Avalue2.ec(valuel + value2)))> =
expression<expi> "+ " expression<exp2> ;

The precise interactions of the lambda-abstractions and arguments are far too complex to
unwind in your head. The key to understanding such formulas is to read them imperatively, as
instructions. Read the last as "“evaluate exp1; call its result valuel; evaluate exp2; call its
result value2; jump to ec with the sum (valuel + value2).” It is instructive to work out the
semantics of a small expression [11, 58].

Commands are easier to understand.because they are imperative anyway. Read the if

command's semantics as ‘‘evaluate exp; if the value is true then execute com and jump to c;
else jumptoc.”

command<{Ac.exp(Avalue.if value then com(c) else c fi)> =
"if" expression<{exp> "then" command<{com) ;

command<Ac.comi(com2c)> =
command<comi> ;" command<{com2>;

As in direct semantics, the while command involves a fixedpoint. Read it as “evaluate the

expression; if the value is true then execute com and jump back to the beginning; else jump to

e



COMMANDS AND EXPRESSIONS

command{Ac.fix AcO.exp(Avalue. if value then com(c0) else ¢ fi)> =
"while" expression(exp) "do" command<com> ;

Continuations can also describe escape commands that jump out of labelled blocks.

command = label "begin" command "end" | ’
"escape” label

label = ident

Define a dynamic environment to hold a contin,_u,gtion for every label, and redefine commands
to depend on the environment.

DE = NAME — C; } A ~ #dynamic environments
COM=DE—-C—C; # commands

Change the semantic rules to handle environments. Commands that do not need the
environment simply pass _it along:

command<Ade c.comt de(com2dec)> =
command<{com1> ";" command<{com2> ;

A labelled block updates the environment; it maps the label to the block’s final continuation.

The escape command looks up the label in the environment, retrieves the continuation, and
jumps to it.
command<{Ade c.com ([name-»c]de) c> =
ident{name> "begin" command<{com> "end" ;

command<Ade c.de(name)> =
"escape" ident{name> ;

Gordon [11] explains how to describe goto commands and procedure calls.

5.3. Semantics of Variables

In the standard denotational semantics of a programming language, a memory location is
considered to be a legitimate data value, and a variable is any expression that yields a
memory location when evaluated. The assignment command has the form:

expl : = exp2 . '
The semantics signals an error if the value of exp1 is not a location, and dereferences the
value of exp2 if it is a location. This_Asn'_\_ack-s of address calculation, and postpones until run-
time the syntactic check that exp1v is a variable. |
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The Pascal grammar describes a variable (section 4.3.3) using two semantic functions: exp
obtains its value, and var assigns it a new value. Given a value and a state, a var produces a
new state in which the variable has the new value. In a direct semantics:

STATE = NAME — VALUE;
EXP = STATE — VALUE;
VAR = VALUE — STATE — STATE;

The exp and var of a simple variable are straightforward:

variable<As.s(name), Avalue s.[name—value]s> = ident{name) ;

The exp and var of an array access treat the array like a-function, afid the subscript like its
argument. Exp applies the function to the argument; var updates the function, at the
argument, with a new value.

variable<As.exp1(s)(exp2s), Avalue s.var1([exp2(s)—value] exp1(s))s> =
variable<exp1,var1> "[" expression<exp2> "]" ;

An assignment command evaluates an expression and stores the value in a variable. The
direct semantics:

command<{As.var{exp s)s> =
variable<expl,var> ":=" expression<exp>

A continuation semantics requires a concrete representation of variable access. This need
not be a memory location, but can be a high-level 'Variable Access Descriptor,” or VAD.
Then you can define variable continuations and variables:

VAD = [simpleVar[NAME] + subscriptVar[VAD X INT]};
VC = VAD — C; # variable continuations
VAR = VC = C; # variables

To complete the continuation semantics, you must define load and store functions using
descriptors. | have not tried this on the compiler generator.
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5.4. Axiomatic and Operational Semantics

As Madsen [31] suggests, semantic grammars can express semantics in a variety of ways. A

grammar specifying both axiomatic and denotational semantics is a ‘“‘complementary
definition” [9].

An axiomatic definition [16, 33] sets up a logical system for proving properties of programs.
Properties are written in an assertion language containing logical connectives, quantifiers,
arithmetic functions, and other operators. Backwards predicate transformers are most
amenable to semantic grammars; each commﬁ?rd produces a list of verification conditions
(VCs) and transforms an output assertion into an input assertion. The VCs must be proven as
theorems. This proves the correctness of the command relative to its input-output assertions:

whenever the input assertion holds before executing the command, the output assertion will
hold afterwards.

Every loop in the program must be documented with an invariant assertion; most of the
verification conditions are needed to check that the assertions are really invariant. Given a

program and its input-output assertions, the method produces the VCs needed to prove the
correctness of the program.

To include an axiomatic semantics in a semantic grammar, define the assertion language as a
recursive union domain. A simple assertion language of integer expressions and boolean
conditions is defined

EXP = [ constantE[INT] +
variableE[NAME] +
plusE[EXP X EXP] +
timesE[EXP X EXP]};

COND = [ equalsC[INT X INT] +
notC[COND] +
andC[COND X COND] +
orC[COND X COND]J; .

The semantics of assignment requires a recursive function that substitutes an expression for
a variable in an assertion. The rules must translate expressions into the corresponding terms
of the assertion language. The command rules must synthesize a list of verification
conditions, and synthesize the input assertion, transformed from the (inherited) output
assertion. The rule for the compounq command, ﬁsing an append function to combine lists of
VCs, is |

51



DYNAMIC SEMANTICS

command<{cond tcondl tappend(vcsi,vcs2) =
command<Jcond2 fcond1 tves1> )"
command<{cond tcond2 tvcs2>;

You can write a function to perform local simplifications, such as changing O+a to a.

Appendix E presents the axiomatic definition of a language with if and while commands.

Given such a grammar, the universal translator converts the input program into a list of
verification conditions, which it prints as a nest of injection functions. The generated code
reconstructs the VCs inside the stack machine.

Similarly, you can specify an operational semantics in a grammar. An operational definition
translates a language into instructions for an abstract interpreter, whose behavior describes
the semantics. Define the interpreter instructions as a union domain, and write rules that
translate programs into lists of instructions. Madsen suggests representing programs as
trees, executed by a recursive tree machine. Another representation is intermediate code,

such as triples or postfix instructions, for specifying the front end of a productioh compiler [1].
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Chapter 6
The Compiler Generator

The compiler generator consists of three Pascal programs: a grammar analyzer, universal
translator, and stack machine. ' ) -

6.1. Grammar Analyzer

The grammar analyzer is organized like a recursive descent compiler, and performs the
following tasks:

o Read a semantic grammar, parsing the domain definitions, expression definitions,
and rules.

o Check that the information is consistent.
o Compute LALR(1) parse tables for the syntax part of the grammar.

o QOutput the language description file, which contains the semantics of each rule
and the parse tables.

The language description file contains all the information needed by the universal translator.
For each semantic rule, it gives the applied attribute expressions and attribute constraints. it
also contains the pseudo attributes, which are generated by with clauses and uniqueName.
All expressions are represented in postfix.

The description file contains information that the translator needs to print out formulas and
error messages. This includes the names of the domains and union tags, but not the
definitions of the domains. Every attribute expression is followed by its location in the rule, for
pinpointing semantic errors.

When parsing a rule, the analyzer records all the free variables of applied attributes. These
are the attribute variables that. must be.given values by appearing as defined attributes. In a
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recursive scan of the defining attribute expressions, the analyzer accumulafes constraints
and defines the attribute variables. The attribute grammar should not be circular, but there
are no other restrictions on how attributes can depend upon each other. The grammar
analyzer does not check for potential circularities [27], because that requires exponential time

[18]. Instead, the universal translator detects circularities while evaluating attributes.

The analyzer contains an LALR(1) parser generator, based upon Stanford's[14], that
processes the syntactic part of the grammar. It checks that the grammar contains no
unreachable or useless symbols, computes its LR(0) set of states, and adds LALR(1)
lookahead. 1t resolves shift-reduce conflicts accordi?ig to the user's resolution part. |t
generates parse tables, compressed by merging rows whénever possible. Parse tables take
up half the space of the language description file; computing them accounts for half the time
needed to process a semantic grammar. '

6.2. Universal Translator

The universal translator performs several tasks:
e Read a language description file, reconstructing the tables and expressions.

e Read a source program.
e Print a listing of the program’s semantic errors.
e Print the semantic function describing the program [44].

e Generate stack machine instructibns for the program.

6.2.1. Parsing

The translator's shift-reduce parser builds a directed acyclic graph (DAG) of attribute
dependencies during parsing. (A DAG is a tree in which several parent nodes may share the |
same child node.) lnherite& attributes complicate the process. If there were only synthesized
attributes, it would be possible to evaluate all of them bottom-up, like constructing a parse
tree. This is because the synthesized attributes on the right-hand side of a rule are all defined
when the parser reduces by that rule. Inherited attributes, which represént the context of the
reduction, may not yet be available. So the parser substitutes dummy nodes for them, and
patches the correct value in as soon as it appears. - )
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The following description is adapted from Madsen [31].

A shift-reduce parser uses a stack to record the grammar symbols parsed at a given point. To
handle semantics, the stack is augmented with the synthesized and inherited attributes df
every symbol. It represents each synthesized attribute as a pointer to a DAG. A symbol's
synthesized attributes may depend upon its inherited attributes, which the DAG represents by

dummy nodes. The stack represents an inherited attribute as a fixup-list locating its dummy
nodes.

The parser reduces by a rule”
X—»Y1Y2...Yk : e
by popping the right-side symbols and attributes, Y, ... Y,, and pushing the left-side, X.

The fixup-lists representing left-side inherited attributes are initially empty. They accumulate
the locations of dummy nodes during evaluation of the rule’s applied attributes: left-side
synthesized and right-side inherited. After evaluating a right-side inherited attribute, its fixup-
list is scanned to replace its dummy nodes with the correct value. '

Each applied attribute is a function

fy, .. 18- S)
of the rule's defined attributes: left-side Inherited and right-side Synthesized. Evaluation
creates a DAG node labelled f, with pointers to the DAGs representing the synthesized
attributes, and pointers to dummy nodes representing the inherited attributes. If the applied

attribute is simply a copy of a defined attribute, there is usually no need to create a new node.

Rules may contain pseudo attributes, which are created by with clauses and the uniqueName
symbol. Pseudo éttributes are defined and applied in the same rule. Since other applied
attributes may depend on pseudo attributes, the pseudos are evaluated first. Every use of a
pseudo attribute refers to the same DAG. This assures that with clauses are only evaluated

once, and that every use of a unigueName attribute gets the same generated name.

The DAG occupies a lot of storage, although no parse tree is constructed. The largest
program compiled is a twenty-one page LALR(1) parser generator. Its DAG contains over
15,000 nodes, and swells to over 26,000 during simplification. '
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6.2.2. Simplification

At first, each DAG node is labelled with a pointer to an attribute function, and its sons are
arguments. The simplifier traverses the DAG depth-first, expanding function definitions and
applying them to arguments. The expanded function is linked back into the DAG so that -
shared nodes are only expanded once. Expanded parts of the DAG represent semantic
formulas: each node is labelled with’ar) operator, and its sons are the operands.

The DAG contains both semantics and attribute constraints. During expansion, the simplifier
checks that the constraints hold and executes all of the compile-time actions in the DAG. The
simplified DAG is ready for translation into machine instructions. Example simplifications:

Before " After
3-5 -2
left (a,b) a
tag[a] | tag a

if true then a else b fi a
(la—b]f) a b

An essential but difficult simplification is beta-reduction: applying a lambda-expression to its
arguments by substituting the arguments for the bound variables. If a bound variable occurs
more than once, its argument is replicated. The simplifier performs no beta-reductions that
would replicate expressions requiring evaluation at run-time and make the object program

less efficient.

Substitution is slow, because it requires copying list structures. The simplifier avoids one
copy operation by simplitying during substitution, rather than after substitution in a separate
traversal. Whenever possible, the simplifier substitutes for several variables at once to avoid
repeated copying. When simplifying if x then y else z fi, the simplifier first simplifies x, to see
whether it reduces to a constant (true or false). If so, it need simplify only one of y or z. The

case expression uses a similar technique.

Taken together, these improvements cause simplification to resemble symbolic execution of
the expression, rather than a sequence of costly macro-expansions. Figure 6-1 is part of the
simplified DAG for the Eight Queens program (page 76).
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Figure 6-1: Example of a Simplified Semantic Forn;ula

\input.
LET a=
(LET s=
LET s0= .
(FIX for. fork:= -7 to7doclk]:= true
\int s.
IF 7 LT int
THEN s
ELSE for
(int + 1)
LET s=
[1-> ["K"-> INTVAL[int]] s 1] s
IN LET int=
s 1 "K" JINTVAL
IN IF (int GE -7) AND (7 GE int)
THEN [1->
["C"-> ARRAYVAL[[int~> INTVAL[}J] s 1 "C" ! ARRAYVAL]]
s 1] :
s
ELSE BOT
FI
FI)
-7
((FIX for. fork:= 2 to 16 do blk] : = true
\int s.
IF 16 LT int
THEN s
ELSE for
(int + 1)
LET s=
[1-> ["K"-> INTVAL[int]] s 1] s
IN LET ints .
s 1 "K" !'INTVAL
IN IF (int GE 2) AND (16 GE int)
THEN [1-> .
["B"-> ARRAYVAL[[int-> INTVAL[1]] s 1 "B" !ARRAYVAL]]
s 1]
s
ELSE BOT
FI
FI)
2
((FIX for. fork:= 1to8do alk] : = true
\int s. IF 8 LT int THEN s
ELSE for(int + 1)(...)
FI)
1
(fo->
["INPUT"-> FILEVAL[LEFT input, RIGHT input, 1, (LEFT imput) 1]]
["OUTPUT"~> FILEVAL(BOT, 0, 1, BOT]]
[“SHEAP"-> ARRAYVAL]
["SHEAPLIMIT"-> INTVAL[0]]
80OT]
BOT)))
IN LET s=
cee T : Body of procedure Try
"TRY" Try(1,found)
([2-> [“I"-> INTVAL[1]] ["Q"-> s0 1 "FOUND"] BOT] s0)
IN LET s= [2-> s0 2] s IN ([1-> ["FOUND"-> s 2 "Q"] s 1] s)
IN if found then. ..
If s 1 "FOUND™ !INTVAL EQ 1 THEN (FIX for. \int's. ...) 1 s ELSE s FI)
0
“ouTPUT"
TFILEVAL

IN (LEFT a, LEFT RIGHT a)
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6.2.3. Representation of Bound Variables

if bound variables are represented by identifiers, then substituting an argument for a variable

may compute an incorrect result — a free variable of the argument may become bound

because of a name conflict. The translator does not use variable names; it numbers bound

variables by their depth in the nest of lambda-expressions [6]. Consider the tree structure of

an expression; the depth of a variable x is the number of lambdas lying on the path from x up

to Ax. For instance, the expression
Ax.fx (Ay.g xy)

has depth numbers :
Ax.f Xq (Ay.g X, ¥p) : -~

When inserting or removing lambdas in front of an expression, the translator must adjust the

numbers of the expression’s free variables. ‘

Every expression node contains a free variable index indicating its deepest variable
reference. Indexes are put in-incrementally as an expression is built — the index of a node
depends only on the indexes of its children. In most cases it is the maximum of the indexes of
the children; however, the index of a lambda node is one less than that of its body, because
lambda binds the top level free variable.

A closed expression is one with no free variables. The translator can easily identify closed
expressions, for they have a free variable index of zero. Many procedures that traverse
expressions, such as substitution, perform operations only on the free variables. When they

encounter a closed expression, they return immediately, saving a tremendous amount of work
(Section 7.6.1).

6.2.4. Error Reporting

The translator only recovers from semantic errors. 1f it encounters a syntax error, it prints a
list of expected symbols and halts. Automatic syntax error recovery is a separate research
problem; Graham et al. [13] have made considerable progress.

The simplifier evaluates the DAG depth-first and records all the semantic errors: circularly
defined attributes, attributes that equal L, and constraints that are not true. The error
handler sorts the errors by line number in the source program, reads the program again, and

prints the erroneous lines. It names the relevant nonterminal and attribute domain, and
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composes a message appropriate for the failed constraint. To prevent one error from
triggering many others, it patches the DAG with a dummy value.

Figure 6-2 shows a Pascal program full of errors, and Figure 6-3 shows the error listing from
the translator.

-

Figure 6-2: An Erroneous Pascal Program
PROGRAM error; '

TYPE
¢ = SET OF integer; {range too big}
VAR
v,v: integer; ' {duplicate declaration)
b: ARRAY [2..16] OF unlIdent; {undeclared identifier)
¢c: ARRAY [-7..true] OF boolean; {type mismatch, duplicate declaration})
. -
i: integer; q: boolean;

rec: RECORD f1,f2: boolean END;
si: SET OF 0..30;
s1: SET OF (pascal,lisp,fortran);

BEGIN

s1 := ([] + si); {set type mismatch}

if8] := 0; {should be array}

i.red := false; {should be record}

it = q; {should be pointer}

rec.unldent := 0; {no such field)}

unldent(10) {undeclared procedure identifier}
END. v

6.2.5. Code Generation

Since the stack machine is oriented towards execution of lambda-calculus formulas, code
generation is straightforward, traversin§ the simplified DAG depth-first. First the DAG is split
into a forest of trees, to prevent a shared tree from being compiled more than once. A shared
tree is compiled into a parameter-less subroutine that each of its parents calls.

The code generator treats fixedpoints like recursive function definitions. The fixedpoint's
body must be a function or tuple of functions. The code generator creatas an entry point for
each function, and compiles each use of the fixedpoint's bound variable into a call of the
corresponding function.

Although the code generator performs few optimizations, it includes those that Burge [6]
recommends. It also emits code to delete a bound variable after its last use, located during
the DAG traversal. Some effects of the optimization can be illustrated by an expression
transformation. Given the expression

(Ax.A B)y
where A does not use X, it generates code for



THE COMPILER GENERATOR

Figure 6-3: Sample Listing of Semantic Errors

TYPE :
¢ = SET OF integer:; {range too big}
. . )
Semantic error: SCALARTYPE
VAR
v,v: integer; {duplicate declaration}
1+

Semantic error:
Should be UNDEFINED

b: ARRAY [2..16] OF unldent; “{undeclared identifier)
* .

Semantic error: IDENTIFIER
Undefined attribute MODE

PN
i

c: ARRAY [-7..true] OF boolean; {type mismatch, dupTicate declaration)
*+

Semantic error:
Should be UNDEFIRED

1
Semantic error: CONSTANT
Failed check: COMPATIBLE

begin
s1 := ([] + si): {set type mismatch}
+

Semantic error: EXPRESSION
Failed check: COMPATIBLE

i[8] := 0; {should be array}
. .

Semantic error: COMPONENT
Should be ARRAYTY

i.red := false; {should be record}
*

Semantic error: COMPONENT
Should be RECORDTY

it := q; {should be pointer}
1 .

Semantic error:
Undefined attribute

rec.unldent := 0; {no such field}
*

Semantic error: COMPONENT
Undefined attribute TYPE

unldent(10) {undeclared procedure identifier)
?

Semantic error: IDENTIFIER
Undefined attribute MODE

11 semantic errors in program
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A((Ax.B)Y), .
removing A from the scope of x. Deleting dead variables eliminates obsolete references to
arrays and permits more efficient array compacting, as described below.

The DAG may contain names from several sources: identifiers in the source program, name
constants in the semantic grammmar, and the name-generating nonterminal uniqueName.
The code generator replaces every distinct name with a distinct integer, so that no names
appear in the object code. If the grammar defines the state to be indexed by names,
STATE =NAME—VALUE, it will be as efficient as if the state were indexed by integer
locations. '

6.2.6. Garbage Collection

The simplifier creates a lot of garbage. The translator collects all of it using reference
counting: it keeps track of how many pointers reference each node and periodically scans
the list of allocated nodes, deleting those no longer referenced. While compiling the LALR(1)
parser generator mentioned above, the garbage collector reclaims 133,000 nodes.

References from local, temporary variables are not counted. This frees most of the o;:ode of
the translator from any garbage collection instructions, and reduces the overhead needed to
maintain reference counts. A drawback is that the garbage collector can only be called

between simplifier calls. Garbage collection consumes about twenty percent of simplification
time.

6.3. Stack Machine

The stack machine has the SECD architecture, due to Landin [30): a Stack of pending
operands, an Environment of bound variables, a Control of instructions, and a Dump of return
addresses and environments.

Instructions that alter control flow:

haht terminate computation; print value on top of Stack
return return from function; restore machine state from Dump
jump pc jump to location pc

falseJump pc jump to pc if Stack top is false
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Instructions that push some value onto the Stack:

loadConst value the given value :
loadPos int the value of the variable at depth int -
loadClosure pc  afunction closure (explained below)

Instructions that pop several values f, x, y, . . . from the Stack and push some result computed
from them:

plus thesumx+y

it the comparison x<y N

not the negation not x

alter the updated function [x—y])f - -
apply the result of the call f(x)

pair the pair (x,y)

left the component left x

inject tag the injection tag[x]

project tag the projection xjtag

is tag the inspection x is tag

The Environment is a stack; when a function call f(x) is executed, x is pushed onto the
Environment. There are two instructions, related to Burge's enter and exit[6], for
manipulating the Environment:

pushEnv push the Stack top onto the Environment
popEnv remove the top element of the Environment

Figure 6-4 shows part of the object code for the Eight Queens program: the command
bli+j] : = false. Itillustrates the substitution of integers for names; i is 32, j is 34, bis 29, |
have edited it slightly to make it more readable. The instructions applyint and alterint are
immediate forms of apply and alter.

6.3.1. Closures

The loadClosure instruction binds an entry point to the current Environment, creating a
functional value that may be stored like any other value. The function may be invoked later
using the apply instruction. These values, called function closures, are an important
difference between the SECD machine and ordinary computers. Closures free environments
from the stack discipline (where they would be like static links) and allow them to persist
indefinitely. Reference counting deletes eny?ro_nments that are no longer used.
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. Figure 6-4: Sample Stack Machine Code

Compute subscript of b
loadPos
applylnt

~applyint
loadPos
applyint
applylnt
plus

0 s
z .
32 1
0 s
2

k1) J

Check against array bounds

pushEnv
loadPos
loadConst
1t
not
falseJump
loadConst
loadPos
1t
not
Jump
71:
loadConst
72:
falseJump
Update the array b
loadPos
loadConst
loadPos
applyint
applyint
alter
loadPos
appiyint
alterlint
loadPos
alterint
popEnv
Jump

loadConst
popEav

69:

70:

0 int
2

71
16 :
0 int

72

o o
(-]

int

bt N peb b N eOO
[ ©
[--] -]

-~
o

bottom

load value of i: state s, level 2
load value of j: state s, level 2

compute i+j
store sum for repeated use

foad sum
check lower bound of b

jump if out of bounds
check upper bound of b . . .
... against sum

~

load the value talse

jump if subscript out of bounds
ioad subscript

load false

load b: state s, level 1

update value of b

load lexical level 1
update level 1 to have new b

update s to have new level 1
discard subscript

signal error

Any lambda-abstraction in thé final DAG can be represented by a closure at runtime.
Optimization eliminates many closures that would be invoked immediately after creation.

6.3.2. Input/Output

input and output are lists of integers. The machine reads a list ki, . . ., kn from the user's

input, and pushes

(i1 —rk1] - [n—rkn] L, n)
onto the Stack. It then begins execution of the object program. The machine expects to find
a similar data structure on the Stack after execution, and prints the list it denotes.
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6.3.3. Run Time Errors .

The value 1L (“bottom’) may represent a run-time error. For instance, a subscript out of
bounds may set the state to L, which will propagate to the end of the program, producing a
final state L. Not every L indicates an error; _L is also used to initialize mappings.

If L is the operand of certain instructions, the machine aborts execution. Other instructions
return L as the result, or treat L as an ordinary value. The machine prints its current state
upon halting. To aid debugging of user programs, every value of L is flagged with the
program location where it was generatgd. Y

A separate notation for errors is needed, to allow a consistent policy for aborting programs.
Debugging is still difficult; more diagnostic tools are needed.

6.3.4. A rray Compacting

A denotational definition considers arrays to be functions mapping subscripts to elements.
The subscripted assignment A[i]: = v is represented by the function update [i—»V]A, a mapping
that takes i to v but otherwise is the same as A. After the loop

fori:= 1to5do A[0]:= i*i
the value of A is represented:

[0—25] [0—16] [0—9] [0—4] [0—1] L

These association lists, or history sequences, waste storage and runtime. States, which are
also mappings, suffer the same problem. Efficient execution would be impossible if the
machine did not compact association lists into arrays. It compacts arrays indexed by either
integers or identifiers, beéause the translator converts all identifiers into distinct integers.
Array compacting is unique to this compiler generator; the literature does not even mention
the problem.

All data in the machine are referenced by pointers and may be shared. An association list
may be referenced by many pointers, some of them no longer needed but still persisting in the
Environment or Dump. The machine must compact lists into arrays without disturbing the
value seen by any of the pointers. In effect, the pointers divide a list into'se_gments that must
be compacted separately. The machine converts a list of segments into a list of indexable

array blocks.
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An array block is a structure <vec,freelL freeU,usedL ,usedU>, where vec is a vector with
bounds freel. and freeU (Figuré 6-5). Each vector element vec[i] points to a function value ).
The vector may contain gaps where vec[i] = nil; the bounds usedL and usedU enclose all of
the non-nil data: An array block represents part of a function's association list, not the entire
function. A vector gap does not indicate that the function is undefined; its value may appear
later in the association list.

Figure 6-5: An Array Block

freel
free area
useduy '
// / .
»
array
used area >
including gaps
( 9gaps) elements -
// / :
usedL >
free area
vec |
A segment of an association list has the form Upp oo U, where each u is either a simple

update [i—x], or an array block representing several simple updates. Each element u, is
referenced only by its predecessor u, _ 4+ except that u, may be referenced by many pointers.
The machine replaces u, through u, with a single, equivalent array block, and links it into the
sequence after u,. if the segment contains two or more values for the same index, the most
recent value is used.

#If the segment contains a block big enough to hold all the data in the segment,
then that block is updated to include the other data.
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o If no block is big enough to hold all the data, the machine allocates a new one
and copies the data into it. So that this expensive step occurs infrequently, the
machine includes room for expansion above and below in the new block.

Arrays are the main obStacIe to executing denotational formulas. Although thestack machine

can execute programs that use arrays extensively, the array compactor is its largest user of
time. The algorithm is ad-hoc, and the storage aliocator is primitive.*

6.3.5. Tail Recursion

N

The machine tries to eliminate unnecessary references iﬁto association lists, in order to allow
the most compacting. The main source of obsolete references isféil-recursion, where a
function calls another function and then returns. When a function’s last action is another
function call, the machine does not save the current Environment on the Dump; it will never
be needed. The function call is treated like a jump. This optimization is essential because
denotational semantics treats every loop and goto command using tail-recursion. Examples
in Section 5.2 include both while and escape commands, both direct and continuation
semantics.

The most common type of tail recursion is the code sequence apply;return, which is easily
recognized. Other forms of tail recursion are

apply; jump x; .. .; x:return

apply; useless-instruction; return
Either peephole optimization or better code generation can convert these to apply;return.
The compiler generator, redundantly, uses both techniques.

6.3.6. Union Tags

The machine has instructions inject, project, and is for manipulating objects of union
domains — inserting, removing, and inspecting tags of union domains. In languages like
Pascal, where types are known at compile time, tags provide no useful information at run time.
The universal translator has an option to suppress inject and project instructions, resulting
in smaller, faster code. This is allowed only if the code contains no is instructions, which
require tags at run time.

*There is a fixed set of twenty block sizes, and a common storage area. The machine maintains a free list for each
block size. Discarded blocks are not merged into larger ones.
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Suppression of tags allows projection errors to go undetected; the expression xtag[x] | ytag
denotes L but evaluates to x. - This slackness has not caused problems in my experience with
the compiler generator.






Chapter 7
Implementation Issues

A translator is a program, written in some implementation language, that translates a source
language into an object language. A compiler generator-is a translator whose object
language describes another translator. The implementor must chose the source, object, and
implementation languages of bobth translators. For instance: What is the exact form of
semantic grammars? In what form are compilers produced? What sort of object code do the
compilers generate? This seems like a lot of possibilities, but the algorithms that exist today
can only handle a few of them. '

The compiler generator evolved over a period of several months. Circumstances favored the
choice of certain algorithms, which dictated the rest of the decisions. My goal was that the
system be as general as possible, able to process any meaningful input. | also wanted it to be
efficient enough to run substantial test programs, so that it could help someone design and
evaluate languages.

7.1. Stack Machine

What sort of object code should the compilers generate? A semantic grammar describes how
to translate a program into a lambda-calculus formula. Mosses [42] interprets the formula
directly, but | translate it into SECD machine instructions. This offers faster execution, is easy

to implement, and is a first step towards generating code for an ordinary computer,

Other ideas have since come forth. Neil Jones and David Schmidt [25] suggest translating the
formula into a state-transition machine, a finite automaton in which every state has local
variables that are updated during transitions from one state to the next. The automaton may
be translated into instructions for an ordinary computer. Martin Raskovsky [53] describes

how to rewrite a denotational definition into a compiler that generates PDP-10 instructions.
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7.1.1. The Concrete SECD Machine

Extending my notation for domains to include finite lists, the abstract definition of the SECD
machine may be written [6]:

STATE = SXEXCXD; . # complete machine state

VALUE = ...; # values used in computation

INSTR = ...; # ingtruction set

S = list of VALUE; # Stack of pending operands

E = list of VALUE; # Environment of bound variables (by depth)
C = list of INSTR; - # Control: the program being executed
D=SXEXCXD; #Dump: saved state for functioglretum

This seems to have little in common with a computer, but it can be made more concrete. The
Stack can be implemented as an array with a stack pointer. The Control can be implemented
by placing instructions in sequential locations, terminating function bodies with the return
instruction. A program counter points to the current instruction.

The Dump has the equivalent, non-recursive definition

D = list of (S X E X C).
Since executing a function’s body never disturbs the elements initally on the Stack S, there is'
no need to save S on the dump. This leaves

D = list of (E X C),
where E corresponds to a dynamic link, and C to a return address. The Dump can be
implemented with an array and stack pointer.

Functional values, both closures and arrays, cause the major differences between the
concrete SECD machine’ and ordinary computers. Because function closures contain
environments, the Environment must be implemented as a linked list. The machine has no
notion of updating an array, only of creating a new array based on an existing one. The

machine’s array compactor attempts to implement this efficiently, updating an array if it is not
shared.
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7.1.2. Computing Fixedpoints

Burge presents two methods for computing fixedpoints, in a classic trade-off between
generality and efficiency. The general method performs a tortuous simulation of the
fixedpoint combinator:

fix = Af.(Ag.f(g 9)}Ag.f(g @)
The efficient method only wprks for functions, compiling them like ordinary recursive
functions.

Fixedpoints are mainly used to represent the semantics of while and goto statements; these
only define functions. Therefore | use the efficient method, and-have not felt limited by its lack

of generality. The machine treats tail-recursive calls like jumps to gain even more efficiency.

7.2. Simplification

Mechanically translating a program according to a denotational definition produces a formula
that can be greatly simplified, especially if the semantics use continuations. Gordon and Stoy

[11, 58] both give sample translations of tiny program fragments, involving dozens of steps.

7.2.1. Simplifying Fixedpoints

1t is not obvious how best to represent fii(edpoints. Sethi [56] uses circular expressions: a list
structure containing cycles. This allows the standard beta-reduction mechanism to simplify
fixedpoints automatically, which my simplifier does not. For instance, Sethi's simplifier can
resolve label definitions at compile time. QOur terminology reflects the difference: | call label
environments ‘‘dynamic,” but Sethi calls them “‘static.”

| represent fixedpoints with an explicit fix operator, and avoid circular expressions. This
allows me to traverse expressions depth-first without looping, and convert them into postfix
for storage on the language description file. The drawback is that the stack machine must
look up labels in the dynamic environment at run-time. It may be possible to use Sethi's
techniques in the last stage of code generation, eliminating the environment but introducing
cycles only in the generated code.

Because goto statements can describe loops, the semantics of the goto uses a fixedpoint.
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Stoy takes a goto-program that simulates an if statement, and transforms its semantics into
that of the if statement, eliminating the fixedpoint in the process. | developed a way to do the
transformation automatically, by repeated use of the identities:

(x1, ey xn) _ = (x1, (x2, - xn))

fix Ax.y y ifxisnotfreeiny

left ( fix A(x,y). (u[x,y], vx,y])) fix Ax. u[x, fix Ay.v[x,yl]
right ( fix A(x,y). (u[x.y], v[x,y])) fix Ay. v[fix Ax.u[x,yl, v

If a goto-program could be unravelied into if and while statements, then the transformation
produced a much simpler output. But it sometimes copied statements that were the target of

more than one goto statement. So | removed the transformation from the simplifier.

7.2.2. Beta Reduction

Achieving efficient, powerful beta-reduction was the hardest problem | faced when writing the
simplifier. Beta-reduction involves substituting an argument for a bound variable, resulting in
replication of the argument if the variable occurs more than once. To prevent formulas from
exploding exponentially, the simplifier only performs beta-reductions that replicate only

‘“simple’ arguments. The key question: what is simple?

| originally decided that only atomic expressions were simple: variables, numbers, etc. But
this did not handle structured bound variables:

(A(int1,int2). int1 + int2) (3,8)
The bound variable, (int1,int2), was referenced twice; the argument, (3,8), was not atomic.
Beta-reduction was prohibited even though no component of the bound variable was used
more than once. | added a propagate command to override the simplicity test, but it proved
error-prone. | made the simplifier transform the above expression into

((Aint1 int2. int1 + int2) 3) 8 '
This allowed beta-reductions, but the complete process copied the function several times.
Instead of relying on an expensive transformation, | generalized ‘“simple’ to include any
closed expression, detected using the free variable index. This version of simple allows
efficient simplification without exponential blow-up; it facilitates the evaluation of static
semantics, which mainly involves closed expressions.
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7.3. Cleaning Up Semantic Grammars

My original Pascal grammar [45], intended for human readers only, was unsuitable for
machine processing. Of its many informal conventions, the worst was that it represented
syntactic repetition using ellipses (. . .) in rules and formulas. | spent weeks developing
practical recursive rules for the repeatable constructs, and putting the grammar into concrete
form. An easy example is rewriting the rule

commandSequence<ic.com (...(com_¢)...)> =
command<c0m1> " ... """ command{com n);

as the two rules

commandSequence{com> = command<com>,; -

commandSequence<Ac.com1{com2 c)> = '
commandSequence{com1> ";" command<com2) ; -

The grammar was circular, to allow a procedure to be referenced before its declaration. it
processed declarations in the very environment that the declarations produced. Since
Madsen [31] had an algorithm for evaluating circular attribute grammérs, and had written a
circular grammar for continuations, I attempted to extend his grammar to Pascal. | developed
rules for gotos and labels, but could not incorporate procedures into Madsen's framework.
Procedures required all semantic functions to be abstracted over continuations, as above;
Madsen passed continuations as attributes:

commandSequencelic t¢c1>

command<ic t¢c1>;

commandSequencelic tc1>
commandSequence<ic2 +¢1> ";" command<ic tc2>;

Faced with this failure, | abandoned circular grammars,* and set out to write a completely
non-circular one. | had to develop a new treatment of declarations, introducing dynamic
environments.

*Circular grammars still merit study. Combining Madsen's parser with Sethi's simplifier would yield a compiler
generator for circular grammars. All we need are interesting grammars to try it on. | and others have pointed out that
a circuiar semantic grammar has a well-defined meaning, expressed as a least fixedpoint [31, 35, 45].
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7.4. Parsing Attribute Grammars

My last major decision was what algorithm to use for parsing and attribute evaluation. The
one-pass case is easy — if every attribute depends only on attributes to its left-in a rule, then
all the attributes can be evaluated in a top-down parse of the program. Several compiler '
generators work this way [29, 38].

One-pass compilation is adequate for Pascal, but not for many other languages. Bochmann
[5] gives an algorithm that makes several left-to-right passes over a parse tree, decorating it
with evaluated attributes. He shows how to pre-procesé’a grammar and determine how many
passes to use and what attributes to evaluate in each pass. The order of evaluation is the
same for all programs. Pozefsky [48] elaborates this “multi-pass” approach to include right-
to-left passes, special purpose passes, analysis to reduce attribute storage requirements, and
methods that require no parse tree.

A multi-pass evaluator performs a complex analysis of attribute dependencies. Yet it can only
treat a subset of attribute grammars; Bochmann gives an example in which the number of
passes depends on the nesting depth of the source program. | use Madsen's evaluator [31],
which works on all attribute grammars. It determines the order of evaluation only after
parsing the program. The.algorithm is fast and easy to implement. It uses a lot of storage, but
so does a multi-pass evaluator, unless complex optimizations are included. The compiler

generator owes much of its efficiency, simplicity; and generality to Madsen’s evaluator.

The basic structure of the compiler generator was already determined- before | chose the
attribute evaluator. Both evaluators use a table-driven LL(1) or LR(1) parser. Both imply that
there be a grammar analyzer, which writes a language description file, read by a universal

transtator. They differ only in what processing each component should perform.

7.5. Call by Name vs. Call by Value

For efficiency’s sake the stack machine occasionally deviates from the tt{eory of denotational
semantics; the main flaw concerns functions. The are two kinds of lambda-abstraction,
depending on the value produced when the argument is L. A call-by-value function must
return L, but a call-by-name function need not. Denotational definitions usually adopt call-
by-name.
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James Donahue has pointed out to me that the stack machine treats fuﬁctions inconsistently:
sometimes call-by-name, sometimes call-by-value. It has two representations of the vaiue 4:
the token bottom, or any looping computation. If it applies a function to the token bottom,
the function may ignore its argument and return anything (call-by:name). If the machine
loops while computing the function’s argument, then the argument, the function, and the
entire computation all have the value L (call-by-value). The machine aborts whenever it
attempts to perform arithmetic on bottom, which is aiso call-by-value.

Donahue tells me that call-by-name is essential for handiing infinite objects. Unfortunately, a
call-by-name interpreter is difficult to implement and expensive to run. The languages | have

studied do not require call-by-name. Plotkin [46] discusses the differences between call-by-
name and call-by-value with regard to the SECD machine.

The specialized implementation of fixedpoints can cause the machine to loop. If a functional
expression f contains a recursive call, you may have to write it Ax.f(x), where x is a fresh
variable that does not occur in f. This delays the evaluation of f until it is applied to an

argument. Theoretically, there should be no difference between Ax.f(x) and f, by the rule of -
conversion [58].

It is risky to abuse the theoretical foundations. This project may not be efficient enough to
interest engineers; if it is not true to the theory, then it may not interest theorists éither. Since
the machine may loop in certain cases, its shortcuts make it less general. It can still execute
programs for a wide class of languages. The machine never computes the wrong answer
unless the user has suppressed union tags.

7.6. Achieving Efficiency

One way to assess an optimization is to see what happens if it is removed. This section
presents the compiler generator’s time and space requirements with various optimizations
disabled. ’

To explore the differences between the Pascal and Fortran grammars, | consider a program
for each. The Pascal program (Figure 7-1) finds a solution to the Eight Queens problem [68].
The Fortran program (Figure 7-2) produces prime numbers without performing any divisions.*

*This program is due to Dijkstra [7), who presented it in a different form.
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PROGRAM Eq: {Computes first solution of Eight Queens, 15863724}
VAR k: integer; found: boolsan;
ARRAY [1..8] OF boolesgn;
ARRAY [2..16] OF boolsan;
ARRAY [-7..7] OF boolean;
ARRAY [1..8] OF integer:

xXOoOTe

PROCEDURE Try(i: integer; VAR q: boolean);
VAR j: integer;
BEGIN
J:=0
REPEAT _
= J+1; q := false;
IF a[j] AND b[1+j] AND c[4-j] THEN BEGIN
x[1] := §: .
a[i] := false; b[1+j] := false;  c[1-J] := false;
IF i<8 THEN BEGIN Y
Try(i+1,q9);
IF NOT g THEN BEGIM . -
afj] := true; b[i+j] := true; c[i-j] := true

END
END
ELSE q := true
END
UNTIL q OR (j=8)
END;
BEGIN
FOR k := 1 TO 8 DO a[k] := true:
FOR k := 2 TO 16 DO b[k] := true;
FOR k := =7 TO 7 DO c[k] := true;

Try(1,found);
IF found THEN

FOR k := 1 TO 8 DO BEGIN outputt := x[k]; put(output) END
END. .

Figure 7-1: The Pascal Test Program (283 tokens)

The program looks strange because | have changed Fortran's lexical conventions to suit the
compiler generator.

The statistics in this dissertatipn are meant to be illustrative, not authoritative. They may be
impossible to reproduce, because | am always modifying the compiler generator and
grammars.

7.6.1. Statistics on the Universal Translator

The most important optimizati‘ons of the universal translator involve its simplifier.

Closed Expressions  The simplifier detects closed expressions — it does not attempt to
substitute into an expression that references no free variables.

Delay Arms The simplifier does not simplify the arms of a conditional or case
expression until it has simplified the controlling expression. The final
resuit may only incorporate a single arm.

76



ACHIEVING EFFICIENCY

{Print a 1ist of prime numbers}

INTEGER P, N, J., K, R, ORD, SQUARE
COMMON SQUARE ,ORD,MULT(30),P(1000)
P(1) = 2
Je=1

ORD = 1
SQUARE = 4
READ (2) INPUT

: DO 30 K = 2, INPUT
: 400 J = J+2
: CALL UPSQR(J)
IF (ORD LE 2) GO TO 30
: DO 27 N = 2, ORD-1
: 20  IF (MULT(N) GE J) GO TO 25
: MULT(N) = MULT(N) + P(N)
: 60 TO 20 .
126 R e=J - MULT(N)
: IF (R) 27,400,27
: 27 CONTINUE

: 30 P(K) = J . —
: WRITE (3) (P(I), I = 1, INPUT)

STOP '

END

SUBROUTINE UPSQR(J)

COMMON SQUARE ,ORD,MULT(30),P(1000)
: 3 IF (SQUARE GT J) RETURN
: MULT(ORD) = SQUARE

ORD = ORD+1

SQUARE = P(ORD) ** 2

G0 T0 3

END

Fig'u re 7-2: The Fortran Test Program (234 tokens)

Multiple Substitution The simplifier performs multiple beta-reductions, such as for
(Ax y.f) v v, using a single copy operation.

Trivial Substitution The simplifier can reduce (Ax.fly to f without copying f, if y is the
variable at depth 0. This is valid because bound variables are
distinguished by depth number, rather than by name.

| disabled each of these optimizations, one at a time, and compiled the Pascal and Fortran
programs. Tables 7-1 and 7-2 show the time and the number of nodes needed to simplify the
semantic DAG. (Each DAG node occupies three 36-bit words on the DecSystem-20.) Since
both time and space requirements are approximately linear in the size of the source program,
| divided the statistics by the number of lexical tokens in the program.

Closed Expressions is the most important optimization, necessary to compile the Fortran
program. Many large structures of static semantics, such as symbol tables, are closed
expressions.
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Table 7-1: Performance Compiling the Eight Queens Program (Pasbal)

Optimization Disabled

none

Closed Expressions
Delay Arms

Muiltiple Substitution
Trivial Substitution

Time per token Storage per token

RR&BR

{milliseconds) (DAG nodes)

48
84
27

44
49

Table 7-2: Performance Compiling the PrimevNumber Program (Fortran)

Optimization Disabled
none

Closed Expressions
Delay Arms

Multiple Substitution
Trivial Substitution

Time per token Srofage per token

35 6.4
(aborted due to memory overflow)
44 18
56 7.2
33 6.5

Table 7-3: Performance Executing the Eight Queens Program

Optimization Disabled

none

Array Compactor
Obsolete References
Tag Suppression

Instructions

972
972
962
1,084

Time

{seconds)

B R 3Y

Storage
{nodes)
169
7,116
3n

411

Table 7-4: Performance Executing the Prime Number Program

Optimization Disabled
none

Array Compactor
Obsolete References
Tag Suppression

Instructions
639
639
609

78

Time

Y8R Q%

Storage
105
3,440
5,364
190
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Delay Arms saves a -substantial amount of space. It is most helpful for evaluating static
semantics, where the controlling expression of a conditional or case expression is always &

constant, selecting a single arm. Without it, the simplifier creates large structures that are
later thrown away.

Multiple Substitution is helpful for Fortran, but not Pascal. Trivial Substitution is useless.
Apparently Multiple makes Trivial obsolete — if both are disabled, performance drops
considerably. There are probably many other interactions among the optimizations.

Compiling Fortran uses more time and space than compiling Pascal, because of the extra
beta-reductions needed to unwind Fortran’s continuation semaritics.

7.6.2. Statistics on the Stack Machine ' ' .

The stack machine contains optimizations, and the universal translator performs code
optimizations that affect the stack machine. Tables 7-3 and 7-4 present the code size,
execution time, and storage required to execute the test programs.. (Each storage node
occupies five words. Not included are the contents of array blocks, which occupy
considerably less than half of the total storage.)

Array Compactor The array compactor converts association lists into addressable
structures. :

Obsolete References To prevent obsolete references from impairing the array compactor,
the code generator emits popEnv instructions to delete dead
variables from the environment. Also, the stack machine does not
save the environment for a tail-recursive call.

Tag Suppression - At the user’'s option, the code generator emits no inject or project
instructions, which create and destroy tags of union domains.

If the Array Compactor is disabled, every array forms an association list that grows
monotonically until the entire array is garbage-collected. The Array Compactor is essential
for running programs in a realistic amount of storage. It stows down execution significantly,
even though it allows faster lookup of array elements. Apparently the most important data are
usually near the tront of the association lists.

If there are many Obsolete References into an association list, the compactor uses extra time

but accomplishes little, especially for the prime number program. The list structures are
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heavily interlinked — failing 30 compact one list leaves obsolete references that impair the
compacting of many others. The object code is slightly smaller when the popEnv instructions
are deleted, but this hardly compensates for the extra data storage required.

Tag Suppression makes the object code slightly smaller, saves a small amount of run-time, -
and saves a considerable amount of data storage.

7.6.3. Comparison With Other Compiler Generators

Ot the many compiler generators that have been impleménted and tested, two are most similar
to mine: Mosses's SIS [42], which converts denotational definitioms into compilers, and
Raiha's HLP [49], which processes complex attribute grammars. In some respects, my system
is more efficient than these others.

My compiler generator does not produce a parse tree; it makes a single pass over the
program and produces a graph of all its semantic dependencies. SIS traverses a parse tree to
compute its semantics. Since complex languages require several semantic functions on
nonterminals, it may traverse parts of the tree more than once. HLP evaluates attributes in
passes [48], traversing the parse tree as many as five times for some languages. A parse tree

occupies a great deal of storage, and repeated traversals waste run time. Some traversals
only evaluate a few attributes.

HLP copies large structures instead of referring to them by pointers. To avoid copying, it
provides global attributes, which may be referenced and updated by any descendants of a
node. Since giobal attributes violate the spirit of attribute grammars, the HLP team did not
use them in writing a grammar for the language Euclid. That grammar creates a separate
copy of the symbol table for every node of the parse tree. The waste of storage precludes
compiling large Euclid programs [50].

Interpretation does not execute object programs efficiently. Interpreting a formula requires
traversing it, matching operators with operands [6]; this etfort is needlessly repeated for each
iteration of a loop. SIS's interpreter is especially slow because it implements call-by-name.
My system compiles its output formula into stack machine instructions. Compiling the formula

determines, once and for all, the proper order of computation and the matching of operators
with operands.
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SIS is bootstrapped in terms of itself. When generating a compiler, it uses a definition of its
own semantics to process the user’s semantics. The resulting compiler is represented as a
lambda-calculus tormula. It compile_s a program by applying the compiler, as a function, to
the program’s parse tree, and interpreting the resuit. The resulting object code is also a
lambda-calculus formula. SIS executes the code by applying it to its input data. We cannot
expect efficiency from this elegant embodiment of the algebraic structure of a compiler
generator.
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Chapter8
Conclusions

This work, particularly the generation of a Pascal compiler, has been more successful than |
could have imagined. The compiler generator's most serious problem is inefficiency, but
there are several ways to improve it.

8.1. Defining Languages

| treat well-known languages, as faithfully as possible, to prove that my work applies td real
problems. Pascal embodies the major language concepts and has several formal definitions.
My Pascal grammar (Appendix D) covers all static and dynamic semantics except goto
statements, real numbers, strings, function side effects, procedures passed as parameters,
etc.* Most of the deficiencies stem from my attempt to make the semantics as high-le\/el as

possible; it avoids both continuations and machine locations.

The grammar includes all types and statements, recursive procedures, and block structure. 1|
have checked most of it, by running test programs on the compiler generator. It is only
twenty-one pages long, including comments: two pages of domains, five of functions, and
fourteen of rules. The Pascal Report [19] is thirty-two pages.

Fortran, with its low-level state and control structure, and non-recursive subroutines,
contrasts well with Pascal. Its grammar uses continuations and focations, dispelling any
doubts that my work can only handle *nice” (well-designed) languages. Fortran's grammar is
less complete than Pascal's; it lacks real numbers, FORMAT, EXTERNAL, and DATA
statements, Hollerith constants, and statement functions. | have altered the lexical syntax as
the compiler generator requires. Still, the grammar covers labelled COMMON blocks,

*The initial comments of Appendix D list all of the deficiencies.
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EQUIVALENCE statements, DO statements with extended range, assigned and computed GO
TO, arithmetic and logical IF, unformatted input/output with implied DO, subroutines, and
functions. ' ‘

Are semantic grammars more readable than other notations? The examples presented so far
are idealized; real grammars can get messy. See if you can understand the Pascal grammar,
and compare it with the axiomatic and denotational definitions [16, 61].

Appendix F is a semantic grammar that defines semantic grammars, but it describes only their
syntax and domain checking, not the language generated by a particular grammar. A
language description should not mimic the compiler -generator.” A suitably abstract
description might be a predicate that checks whether a decorated parse-tree belongs to the
language. ' ‘

Writing a grammar for semantic grammars requires a separate, formal definition of semantic
grammars. My proposed definition {45} is unsuitable for this purpose. It uses Watt and
Madsen’s idea that an attribute grammar generates a context-free grammar in which the
nonterminals are symbols decorated with attribute values [63]. Checking a parse-tree for
conformity with a grammar requires a means of comparing attribute values for equality. But
equality is not defined on every domain of denotational semantics: there is no way to.
compare functions. Mayoh's technique [35] for converting attribute grammars into

denotational definitions may lead to a better formal definition of semantic grammars.

8.2.Errors and Debugging

writing a grammar, like writing a program, requires revising and debugging. The compiler
generator recovers well from errors, even those defined by a grammar for a source language.
It prints the erroneous line, points to the error, prints a descriptive message, and usually
continues processing. On the rare occasions that it aborts, the usual cause is subscript error:
overflow of some internal table. Each program’s limits appear in the constant definitions at
the beginning; they are high enough for the Pascal grammar.

The universal translator only detects two kinds of errors in programs: undefined attributes
and violated constraints. It would be useful if auxiliary functions could also report errors. For

instance, a function that merges declaration lists could report conflicting declarations. |
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propose an error-expression that reports an error and returns a value for continued

processing. A similar construct could produce readable messages for run-time errors.

Debugging user programs on the stack machine is difficult. AA user program aborts by
producing the value .1; the only information reported is the current program counter and
. machine state, which is often incomprehensible. To locate the error in the source program,
you must study the machine code and the semantic formula. A research problem is analyzing
the grammar to automatically produce a debugger tailored to the source language.

A grammar may not work as expected, even if it describes correct semantics. It may cause
the universal translator to yield inadequately simplified or duplicate formulas. The stack
machine may loop, abort, consume large amounts of storage, or run extremely slowly
{Sections 7.5, C.3). The best way to avoid bugs is to thoroughly test the grammar on.small
examples throughout its development.

I encountered few stubborn bugs while developing the Pascal and Fortran grammars. Most
led to an obvious correction in the grammar; the grammar analyzer then created a new

compiler in less than a minute. This immediate feedback let me work with confidence.

8.3. Improving Efficiency

The compiler generator is efficient enough to run experimental programs, but it is impractical
for production runs. This section discusses its performance on several Pascal and Fortran
programs (Table 8-1).

The grammar analyzer (Table 8-2) is fast; the language description file is a compact
representation of a compiler.

The universal translator (Table 8-3) compiles programs at about eight seconds per page,
twenty-five times slower than the regular Pascal compiler. For small programs, startup costs
are a major fraction of the total costs. Ignoring startup, space-and time requirements are
approximately linear in the size of the program. Storage limitations prevent compiling
programs longer than twenty pages.

The stack machine (Table 8-4) runs Pascal programs a thousand times slower than the
regular Pascal system. This is still fast enough to compute the LR(0) kernels of a small



EQ
LRO
PRIME
SORT

Grammar
Pascal
Fortran

EQ
LRO
PRIME
SQRT

Pascal
Fortran

EQ
LRO
PRIME
SQRT
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TabJle 8-1: Facts About the Test Programs

Language Lines Tokens Function computed

Pascal 39 283 Eight Queens solution

Pascal 438 2,023 LR(0O) states .

Fortran 35 234 Prime numbers

Fortran 102 569 Square roots (contrived program)

Table 8-2: Grammar Analyzer Performance

Lines Rules LR states - LDF words Seconds
N

1,465 141 296 14,284 25

1,030 114 224 9,115 a4

Table 8-3: Universal Translator Performance

Total Costs

Time Storage Code generated
(seconds) (DAG nodes) (instructions)
8.9 3,592 972
50 13,165 5,305
9.8 2,772 639
19 4,975 1,492

Startup Costs

Reading LDF  Storing semantics
{seconds) {DAG nodes)

3.1 2,200

23 1,328

Table 8-4: Stack Machine Performance

Time Storage Speed

(seconds) (nodes) (instructions/second)
22 169 5,030

30 418 3,220

30.6 105 2,590

7.8 83 860
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grammar. Its speed varies considerably, probably due to the effect of different programs on
the array compactor.

The compiler generator is written in Pascal and runs on Stanford’s DecSystem-20. It is simple
and compact, considering its capabilities. Together with the Pascal grammar, it is an
implementation of Pascal that is smalier than the standard Pascal compiler at Stanford:

Component Lines
grammar analyzer 4,506
universal translator 4,097
stack machine 1,408
Pascal grammar -~ 1,465
total 11,471 L
regular compiler 12,619

8.3.1. Faster Compilation

The universal translator spends most of its time simplifying the semantic DAG. Compiling a
seven-page program, it initializes itself in three seconds, parses the pn;ogram and builds the
DAG in seven seconds, and simplifies the DAG in forty-seven seconds. The simplifier
uniformly processes both static and dynamic semantics, although the requirements of each
differ greatly. Distinguishing static from dynamic semantics would make a more modular,
efficient, and predictable translator. '

The compiler generator already places a strong emphasis on static semantics, yet more
emphasis is needed. Static semantics requires its own notation, separate from that for
dynamic semantics. The static notation would be just powerful enough to describe types and
environments, and. could manipulate quoted (uninterpreted) dynamic formulas. The dynamic
notation could be based on any semantic framework: denotational, axiomatic, or operational.
Attribute expressions would be written in the static notation, because they must all be
evaluated at compile-time.

The difference between static and dynamic semantics is of great practical importance. For
instance, a language implementation that checks types at compile-time is simpler and more
efficient than one that generates run-time type descriptors. A separate notation for static
semantics allows grammars to indicate which actions should be performed at compile-time. It
also corrects the formal definition of semantic grammars — the static notation can be simple

enough to have equality defined on all domains, since dynamic formulas are treated as text.
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The separation replaces the simplifier with two specialized, efficient procedures: an
interpreter and an optimizer. The interpreter executes the static semantics. The optimizer
transforms its input formula into one that is semantically equivalent, but more useful. The
semantic framework determines what optimizations to perform. Denotational semantics
requires beta-reduction. Axiomatic semantics requires theorem-proving; such a system could
verify programs written in any language.

The simplifier is complex because of its dual role. As an interpreter, it must reduce every
static formula to a constant. As an optimizer, it must use whatever heuristics are necessary to
produce efficient formulas. The simplifier already dis'ti'r\iguishes between compile- and run-
time recursion (Section B.1); its most important optimizations concern static semantics
(Sections 7.2.2, 7.6.1). '

Edinburgh LCF[12], a program verifier for denotational semantics, uses a separate
metalanguage for processing lambda-calculus formulas. Formulas are written as quoted
constants, and can be combined or built up using constructor functions. The metalanguage
is flexible enough to express theorem-proving strategies.

8.3.2.. Compiling Large Programs

The universal translator cannot compile programs longer than twenty pages, because it holds
the semantics of the entire program in memory. Madsen [31] sketches a way to let the
semantics overflow to secondary storage. A simpler, more efficient way to compile large

programs may be to translate them one subprogram at a time, as most compilers do.

Every grammar designates a start symbol, so that the translator can recognize when it has
parsed a program. If the grammar could designate other symbols, then the translator could
recognize subprograms during parsing. (John Hennessy suggested this to me.) It could
evaluate the subprogram’s semantics, generate code for its synthesized attributes, and
release its storage. The problem is designing the semantic interface — making sure the
inherited attributes are available and that the rest of the program properly refers to the
generated code.



IMPROVING EFFICIENCY

8.3.3. Faster Execution

The stack machine refers to all data through pointers, even though only functions require the
indirect representation. Tuples and integers can instead be represented as blocks of words.
(The size of each block depends on its domain, but is constant.) The machine's overhead of
reference counting and heap allocation would be greatly reduced.

Running Pascal and Fortran, the stack machine never accumulates function closures. Each
closure is immediately applied to an argdment. If closures were banned,* and the grammar
analyzer could certify that a grammar did not require closures, then the stack machine could

manage environments without reference counting. This gains efficiency at the price of
accepting fewer languages.

If the grammar uses a dynamic environment for labels and procedures, then the machine
must look them up every time it executes a goto statement or procedure call. Better code
generation would eliminate the dynamic environment during compilation, as Sethi does [56],
by unwinding its fixedpoint definition.

The array compactor uses the most time and is the most difficult to improve. It needs a
breakthrough — some way of defining an array domain, where each array has fixed bounds
and a uniform element type, but where different arrays can have different bounds. It must

prevent sharing of arrays, to allow direct updating without the formation of association lists.

8.3.4. Generating Real Machine Code

After implementing the above refinements, the stack machine would be simple enough to
eliminate, boosting efficiency tremendously. Ordinary machine code could provide most of its

capabilities, with a run-time support package for the remainder, such as the array compactor.

Another way to eliminate the stack machine is to represent semantics operationally instead of
denotationally — as a compiler’s intermediate code. A semantic grammar can easily specity
syntax-directed translation into intermediate code [1]. A final stage would translate the code
into optimized hardware instructions.

*Constant functions such as Aint.false do not need a closure representation, because they do not refer to the
environment.
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Such a compiler generator would require a separate notation for static semantics, because
intermediate code only describes dynamic semantics. Even if the generator were not efficient
enough for production use, it would help a compiler writer by simﬁlating the production
compiler, providing sample object code and error detection. -

Recent research [23, 57] uses a notation for denotational semantics that resembles machine
instructions. Abandoning denotational semantics solves the problems of reference counting,
closures, environments, and arrays at once — if your only goal is fast compilers for traditional
languages. But remember that denotational semantics is concise and powerful, can
accomodate applicative languages and novel control 's't’ructures, and is useful for reasoning

-~

about programs.

8.4. Implications for Language Design

A programming language should be formally defined even while it is being developed, to
reveal its inconsistencies. Unfortunately. most language designers find definitions too
difficult to write. The compiler generator allows anyone to debug a formal definition, written
as a semantic grammar. As an extra incentive, it offers a free compiler for every definition.
Compiling and executing test programs on the compiler generator provides further insights
into a language.

Pascal's grammar reveals some trouble spots. Set expressions require special handling
because they do not completely determine the set type; likewise, the constant nil can have
any pointer type. Enumerated types declare constant identifiers as a side-effect, complicating

every rule that refers to types. Using a function's name to designate its return variable
requires extra bookkeeping.

A Fortran program can specify a variable's type, dimensions, COMMON block, and storage
equivalence in any order, or not at all. These options cause messiness throughout the
Fortran grammar, even though it imposes an order on declarations. Other Fortran constructs
are so troublesome that the grammar does not handle them at all. A DATA statement affects
the initial state, but may appear anywhere in a program. A statement function creates a local
environment, but may implicitly declare global variables. A subscripted array variable is
syntactically identical to a function call.
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| would not condemn. a language construct simply because it was difficult to formalize. The
fault might lie in the formalism: for instance, denotational semantics can not easily represent
tasking. Still, the compiler generator can contribute to the design of consistent, clean, and
simple programming languages.
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Appendix A
Using the Grammar Analyzer

When started, the grammar analyzer prints:

Semantic Grammar An.aIyzer

Language:

It you reply “In,” then the analyzer will look for a semantic grammar with filte name In.SG, write
the language description file on In.LDF, and produce a listing file on In.LST. The analyzer will
optionally list the LALR(1) states or attribute dependencies of the grammar.

A.1. Lexical Conventions for Semantic Grammars

The grammar analyzer uses the following ASCIl representations of special symbols in
semantic grammars:

symbol representation note

- ->

A \

| t

b ¢ X x is a reserved word|

1 BOT[domain] the domain must be given

Names are strings of up to fifteen letters, digits, and underscores, beginning with a letter.
Only variable names may contain digits. The case of letters is not significant.

Reserved words:
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and attribute -bot case define
div domain else end eq
esac false - fi fix forward
ge gt if in is
le loft let letrec it
mod ne nonassoc not of
- or propagate resolution right rule
then true ~ unspec with x

Comments begin with # and continue until the end of the line. A separator is a space, end of
line, or comment. Separators are required between reserved words, names, and numbers.

-

A.2. Resolution of Parser Conflicts

To resolve the dangling else conflict, include right "else" in the resolution part, and use the
syntax

statement = "if" expression "then" statement "else" statement |
“if" expression "then" statement|...

not

statement = "if" expression "then" statement elsePart
elsePart = "eise" statement | empty

To resolve operator precedence, use appropriate resolution declarations and the syntax |
expression

expression " + " expression | expression "*" expression| . ..
not

expression = expression operator expression |. ..
operator = "+ "|"*"|...

To use the resolution part properly, you must know exactly how the grammar analyzer
resolves conflicts in the parse table. Suppose there is a conflict between shift on symbol s
and reduce by a rule whose rightmost terminal is t. The conflict is unresolvable if the rule has
no terminals, or if neither s nor t is mentioned in the resolution part. Otherwise, the grammar
analyzer resolves the conflict according to which operator has the higher binding power [1]}:
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priority grouping parse table entry

s<t any reduce
ot any ' shift
s=t : left reduce
s=t right shift
s=t nonassoc error

The analyzer does not resolve reduce-reduce conflicts.

A.3. Terminal Symbols

Terminals in semantic grammars may contain alphanumeric (including underscore)
characters or non-alphanumeric characters, but not both. They may not be empty, contain

spaces, or begin with a digit. A non-alphanumeric terminal may not be longer than two
characters.

A.4.Error Messages

The grammar analyzer does not produce a language description file if there are errors in the
semantic grammar. It reports only the first error encountered in a definition or rule: The
messages are:

lllegal character char
The semantic grammar contains a non-printing character.

15 characters maximum
A name is longer than fifteen characters.

No digits allowed here name
Only variable names may contain digits.

Another symbol expected symbol
Syntax error in the input grammar.

Undeclared identifier in expression name
The given name is undefined.

Command improperly terminated symbol
A semicolon is expected after every definition and rule.

Unmatched quotes
A string constant or terminal symbol runs past the end of a line.
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Line too long — truncated . ,
The input line is too long to process.

Factor expected The current symbol cannot begin a factor.’

Function required here domain
The current operand must be a function.

Sum domain required here domain
The current operand must belong to a sum domain.

Product domain required here domam
The current operand must belong to E product domain.
Equality undefined for this domain domain

The current operand must allow equality testing — it must not contaln a
function domain.

No such domain name

There is no domain of the listed name. The name of a variable must, after
digits are removed, be a domain name, unless the domain of the variable
is explicitly given. : '

Domain mismatch domain1 domain2
The two domains are required to be the same.

Illegal redefinition name
Attempt to redefine the given name.

wrong number of attributes

The current nonterminal symbol is supplied the wrong number of
-attributes.

lllegal in a defining position

The current attribute expression is in a defining position, and may contain
only constants, variables, tuples, and injections.

WITH depends on other WITHs

Pseudo-attributes may not depend upon each other. Either a with name
or a uniqueName attribute appears in another with clause.

Not a seiector of a sum domain name
The given name appears where a tag is required,

Wrong selector for case

The tags in a case expression must appear in the same order as in the
definition of the union domain. -



ERROR MESSAGES

No such symbol in grammar symbo/
The given symbol is not a terminal symbol of the grammar.

ilegal terminal symbol - .

The symbol may not be used as a terminal because it violates the
restrictions mentioned above — contains spaces, for example.

No such nonteiminal in grammar name
The given name is not a nonterminal of the grammar.

No strings generated by nonterminal name
The given nonterminal cannot produce any terminal productions.

Unreachable nonterminal name . -~
The given nonterminal cannot be produced from the start symbol.

Unresolvable conflict in kernel kernel/ number

The given parsing kernel has a shift-reduce or reduce-reduce co'nflict,
using LALR(1) lookahead.

Unresolved forward reference to name

The given name was never defined, but was used as a domain,
expression, or attribute variable.

Missing final end token
Every grammar must be terminated by the token end.
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Appendix B
Using the Universal Translator

When started, the translator prints

Universal Transl ato_r

Program:

It expects a file name of the form pn.In, where pn is the program name and In is the language
name. It uses pn.In as the program source file, looks for a language description file named
In.LDF, writes a listing on pn.LST, and writes object code on pn.COD. The listing includes

storage and run-time statistics, the simplified semantics of the program, and the generated
code.

B.1. Recursive Functions

The universal translator distinguishes two kinds of recursive functions. A function defined
using forward and define declarations is compile-time recursive; the simplifier will always
apply it to -its arguments, expanding its definition. Every instance must disappear from the
DAG before code generation, or the translator will signal an error. Use compile-time

recursion for type-checking or bookkeeping functions that require evaluation during
compilation.

A function defined using letrec or fix is run-time recursive, never expanded during
simplification. It will be translated into machine instrutions and called at run-time. Use run-
time recursion for the semantics of loops.
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B.2. Syntax Errors-

if the parser detects a syntax error, it prints a list of expected symbols and stops. (The
symbols are the current LALR(1) lookahead; some of them may not really be vaiid
continuations of the input.)

The scanner detects the following Iexic;al errors;

Line longer than 80 characters
The input line is too long to process.

Name ionger than 15 characters ) ..
The current name is longer than fifteen characters.

End of file in comment ,
A comment has no closing bracket, but continues until the end of the file.

Ilegal character The program contains a non-printing character.
No such symbol in language

The current character has no meaning in the language.

B.3. Semantic Errors

The translator prints information to pinpoint the cause of a semantic error. . The first line of a
message lists the nonterminal containing the error, blank if the error occurred in a predefined
nonterminal or with clause.

Semantic error: nonterminal

if the error is an attribute equal to 1., then the next line lists the name, if any, of the attribute
domain:

Undefined attribute domain name

If the error is a circularly defined attribute, then the next line is

Circularly defined attribute domain name

If the error is a failed constraint, then the next message line indicates the constraint’s form:
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constraint message

x is tag Shouid be tag
xeqy Attribute mismatch
name(args) Failed check: name
other no message

Using meaningful names in your semantic grammar will make the error messages more
readable.
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Appendix C
Using the Stack Machine

The stack machine prompts for its code, input, and output files. After reading the object code
and input data, it starts executing the object program. If the program terminates, the machine
prints the current state and the value on top of the stack. A value of . indicates abortion.
The machine also aborts whenever it attempts to perform arithmeticon L.

C.1. Debugging

The stack machine does not provide a debugger,; the state it prints is usually undecipherable.
The only useful information printed is the program counter. The listing from the universal
~ translator includes the simplified semantic DAG, as well as the abject code. Comparing the

code with the DAG, and the DAG with the source program, will locate where the program
aborted.

if the machine crashes because the dump has overflowed, then the object program contains a
function that loops by calling itself. (Less likely, the program may contain a tail-recursive call

that the machine does not recognize.) The return address, repeated in almost every element
of the dump, pinpoints the erroneous function call.

C.2. Input and Output

A semantic grammar must be compatible with the stack machine’s input/output conventions
for programs to run properly. Input and output are sequences of integers; a list k1. cem kn is
represented as some permutation of:

([1~k,]...In~k ] L,n)

The semantics ot a program is a mapping from the input file to the output file:
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INTMAP = INT — INT; # contents of a file
FILE = INTMAP X INT; # file including length
PROGRAM = FILE — FILE; “# input/output semantics

The Pascal grammar uses a dangerous trick: it defines INTMAP as INT—VALUE instead of
INT—INT. Since VALUE is a union domain that includes INT, this works if tagfields are
suppressed in the object code. The grammar specifies type-checking to guarantee that ihe
VALUEs in the Pascal files really are INTegers.

The grammar must build the output file entirely from function updates, not lambda-
abstractions. Although abstractions define legitimate functional valu&s, the stack machine’s
output routine cannot evaluate them. Instead of

(Aint.int + 10, 3) ' '
the machine requires

[1—11][2—12]){3—13] L, 3)
or another permutation, such as

[3=—13][1—=11][2+12] L, 3)

C.3. A Cautionary Note
A semantic formula may be correct but extremely inefficient to execute.

| represent a Pascal set by its characteristic function: true for the members of the set, false
for the non-members. ‘

SET = INT — BOOL;
The obvious definition of the empty set, Aint.false, works in practice; the obvious definitions
of the set operations, such as union, do not.

My first attempt to define union was

setl Uset2 = Aint. set1(int) or set2(int)
As a program executed, each set operation created a closure as the set's value. Each closure
referenced two others. Over time, each set became a tree of closures. Testing set
membership caused evaluation of the entire tree. Furthermore, the closures all contained
environments referencing the state. The array compactor bogged down in the hundreds of
extra references. ‘
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| solved the problem by defining the union operation to construct a new set by inserting the
elements of sett and set2 to the empty set, as function updates.
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Appendix D
Pascal Grammar

#P2.5G, Pascal Semantic Grammar "P2" Y

#

# missing Pascal features

# INPUT and OUTPUT are files of integer, not char

# standard routines PACK,UNPACK,READ,READLN,WRITE ,WRITELN,EOLN, PAGE
# standard procedures should be part of environment, not syntax

# string constants .

# type REAL and standard functions for reals

# procedures and functions passed as parameters

# side-effects in functions

# variable parameters are passed by value-result, not reference

# GOTO command, LABEL declarations

#

# errors not detected

# subrange bounds

# disjointness of fields, formals, caselists, enumerated constants
# pointer type forward declarations

# program parameters must be declared as variables

DOMAIN

##¥#Values of variables and expressions

VAL = [intval[INT]

+ arrayVal[ARRAY]

+ setvVal[SET]

+ recVal[RECORD]

+ Tileval[FILE]

+ ptrVal[PTR]]);
ARRAY = INT -> VAL; #array element for each subscript
SET = INT -> BOOL; #characteristic functions of sets
RECORD = NAME -> VAL; #values of each field
PTR = INT; #indexes into heap
FILE = ARRAY X LEN X POS X VAL; #file data, length, position, buffer
LEN = INT; POS = INT;
#Records also represent lexical levels -- values of each local variable

#¥## Environments
ACCESS = [varAc + valAc]; #variable and value parameters
NAMES = [nilN + consN[NAME X NAMES]]: #name l1ists (for declarations)

#Lists of declarations for a block
DECLS = [ni1D + consD{NAME X MODE X DECLS]]J:

PTRS = DECLS; #pointer type fixups

CONSTS = DECLS; #enumerated type constants

PARAMS = DECLS; #formal param lists

FIELDS = DECLS; . #field 1ists

ACTIVITY = [active + inactive]; B #whether a routine is active or not
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PF = [proc + func[TYPE]]); _ , #whether a routine is a proc or a func

#Meanings of identifiers
MODE = [undefined

+ paramMode[ACCESS X TYPE] #params and variables
+ constMode[TYPE X VAL] #constants
+ typeMode[TYPE] #types
+ routMode[PARAMS X PF #procedures and functions
X ACTIVITY]]); '
LEVEL = INT; #lexical levels
ENVMAP = NAME -> (LEVEL X MODE);
ENV = LEVEL X ENVMAP; #full environments
LOCENV = NAME -> MODE; #local environments
#Data types

TYPE = [scalarTy[RANGE X SCALID]

arrayTy[TYPE X TYPE]

setTy[SCALID)

recordTy[FIELDS X NAME X LOCENV] - -
fileTy[TYPE]

ptrTy[NAME]]: '

+4+ 4+ + 4

RANGE = INT X INT; #subrange>of integers
SCALID = NAME: #unique id's for scalar types

####Runt ime state

#The heap is the array variable "Sheap"™ at level 0
#The last heap pointer used is "SheaplLimit” at level 0
S = LEVEL -> RECORD; #states (indexed by display level)

SX =8 ->S; #state transforms
DE = NAME -> SX; #dynamic environments
DT = DE -> DE -> DE; #DE transforms

##¥##Semantic functions

EXP = DE -> S -> VAL; #expressions

VAR = DE -> § -> VAL -> SX; #variables

VAROPT = [notVar + isVar[VAR]]; #"variable option”

VT = VAR -> VAR; #variable transformations
COM = DE -> SX; #commands

INTLIST= [ni1I + consI[INT X INTLIST]); #1ists of case labels '
CASES = INT -> COM; #branch of a case command

##¥#Procedure Linkage

#Set up initial state for a procedure

ACTVAL = DE -> S -> RECORD; #actuval value parameters

#Store final values of params in calling program

ACTVAR = DE -> S -> EXIT; #actual variable parameters
#Store part of a lexical level 1in a state

EXIT = RECORD -> SX; #exit functions of final lexical level
#1770 interface is actually INT-D>INT: however, this is the same as

# ARRAY when tagfields are suppressed in runtime code, since

# the variables "input" and "output™ are files of integers.

# This depends on the type-checking of Pascal, as enforced by

# the grammar.

INTMAP = ARRAY;

INPUT = INTMAP X INT; #input for creating initial state
OUTPUT = INPUT; #output from final state

PROG = INPUT -> OUTPUT; #programs
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FORWARD

assignCases: (INTLIST X COM X CASES) -> CASES;

compatible: (TYPE X TYPE) -> BOOL;

equal: TYPE -> VAL -> VAL -> BOOL; .
eqRecord: FIELDS ~> RECORD -> RECORD -> BOOL; .
fixList: (ENV X PTRS X LOCENV) -> LOCENV;

appendD: (DECLS X DECLS) -> DECLS;

deciNames: - (NAMES X MODE) -> DECLS;

-evalDecls: (DECLS X LOCENV) -> LOCENV;

DEFINE

SRR ERRNERRSERNRARERERRRIRR NN N AP ENY
# State Operations .
i d il diiadidiiddiiidiiiddiidds K

#Function to assign a new value to a variable with given name and level
store = \(level,name) val s. [level -> [name->val] s level] s;

#txecute a2 command in a new level
run = \level record sx exit sO.
LET s=sx{[level->record}s0) IN
exit(s level)([level->s0 level] s);

#Semantics of the WITH command in terms of its constituents
withCom = \(level,exp,var,com).
\de s.run(level+1)(exp de s!recVal)(com de)
(\record.var de s recVal[record]})s;

#variable transformations applied to varOpts
# used to form the semantics of variables
vx = \varOpt vt.
CASE varOpt OF
notVar. notVar,
isvar[var]. isvar[vt var]
ESAC;

#Assign a command to its case labels
assignCases = \(intList,com,cases).
CASE intList OF
nill. cases,

consI[int,intList1]. [int->com] assignCases({intListl,com,cases)
ESAC;

#Boolean operations with (1=true, 0O=false)
4 numeric representation required because BOOLEAN is an enumerated type

boolVal = \bool. intval[If bool THEN 1 ELSE 0 FI]:

#select one of two states depending on a condition
cond = \val st s2. If valtintval EQ 1 THEN sl ELSE s2 fI;

andInt = \intl int2. If intl EQ 1 THEN int2 ELSE 0 FI;
orInt = \intl int2. IF intl1 EQ 1 THEN 1 ELSE 1nt2 FI;

HRRRRERERRRNNRRRURENNRENNNA AR AR RN R BN
# TYPES
Vg ddd i i dadiididdid il i didddididiidid
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#Lookup a type name in 'env' and return the type-
#Used to look up pointer type names
typeLookup = \(level,envMap) name.

LET (level,mode)= envMap(name) IN modeitypeMode;

maxInt = 10000000; #maximum allowable integer value

#standard types

intType = scalarTy[(-maxInt maxInt), "S$int"];
boolType = scalarTy[(0,1), "Sbool"];

charType = scalarTy[(0,127), "$char"*];
textType = fileTy[charType];

#Range for sets -- necessary to model their usoal interpretation in Pascal
maxElem = 60; minElem = 0;

#type compatibility rules:
# Name compatibility for records and scalars, others structure compatibility
# There are universal types for the NIL pointer and the empty set []
compatible = \(typel,type2).CASE typel OF
scalarTy[range,scalldl]. scalldl EQ RIGHT type2!scalarTy,
arrayTy[typed, type4d]. ’
LET (type5,type6) = type2!larrayTy
IN compatible(type3,type5) AND compatible(typed,types),
setTy[scalldl].
LET scalld2 = type2!isotTy IN
(scalldl EQ scalld2) OR
(scalldl EQ "$null1™) OR (scalld2 EQ "$null"™),
recordTy[fieldsl,namel,locEnv].
LET (fields2,name2,10cEnv) = type2!recordTy IN namel EQ name2,
fileTy[type]. compatible(type, type2ifilely),
ptrTy[namel]. .
LET name2 = type2iptrTy

IN (namel EQ name2) OR (namel EQ "$nil1") OR (name2 EQ "$nil")
ESAC;

#return a ‘'common' type of two types
# currently trivial, but could handle int->real conversions, etc.
common = \(typel,type2).
IF compatible(typel,type2) THEN
IF (typel IS setTy) AND (typellsetTy EQ "$null")

THEN type2
ELSE typel FI
ELSE BOT[TYPE] FI;

isInteger = \type. compatibie(intType,type);
isBoolean = \type. compatiblie(booltype.type):

KUENRRRERENNERAN NN RGN RBRRN NI RN BN EN NN
# Equality Testing of values
FURNNBUNRARRRNARENRRRNIREANNERON RN INN N

#The boolean expression xzy is compiled into an expression that does not
# (after simplification) refer to the type of x and y.
# “No types at runtime”

#Compare arrays element by element (runtime loop)
eqArray = \(int1,int2) type arrayl array2.
LETREC eqa: INT->BOOL =
\int.(int GT int2) or

(equal type (arrayl int) (array2 int) AND eqa(int+l))
IN eqa int1; :
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#Compare sets bit by bit
eqSet = \seotl set2.
LETREC eqs: INT->BOOL =
\int.(int GT maxElem) or
({5et1 int EQ set2 int) AND eqs (int+1))
IN eqs minElem;

#Compare records Tield by field (loop unwound at compile time)
eqRecord = \Tields recordl record2.
CASE fields OF
nilD. TRUE,
consD[ nsme ,mode,fields1].
equal (RIGHT mode!paramMode)(recordl name)(record2 name) AND
eqRecord Tieldsl recordl record2
ESAC; .

equal = \type vall val2. - kK

CASE type OF
scalarTy[range,scalld]. valilintVal EQ val2!intvaly
arrayTy[typel,type2].

LET (range,scalld) = typellscalarTy

IN eqArray range type2 (valll!arrayVal) (val2!arrayVal),
setTy[scalld]. eqSet(valllsetval)(val2isetval), ’
recordTy[fields,name,10cEnv].

eqRecord fields (valilrecval) (val2!recval),
fileTy[type]. BOT[BOOL],
ptrTy[name]. valllptrVal EQ val2!lptrVal
ESAC;

########################################
# Set Operations
HEERERNERBRFRNERENERNN AR ERNDENNR NN WA NN

#These are much less efficient than bitwise operations done by the hardware;
# they perform one iteration per bit

#Insert a range of aelements into a set
insert = \intl int2 set.

If (minElem LE intl) AND (int2 LE maxElem)

THEN LETREC ins: INT -> SET =

\int. IF int GT int2 THEN set
ELSE [int->TRUE] ins(int+1) FI
IN ins(intl)
ELSE BOT[SET] FI;

#Test that setl is a subset of set2
subset = \setl setf2.
LETREC ss: INT->BOOL =
\int.(int GT maxElem) OR

((NOT set1l int) OR set2 int) AND ss (1int+1)
IN ss minElem;

#The empty set
nullSet = \int.FALSE;

#Set union
#Cannot use \int_(setl int) OR (set2 int) because history sequences of
# closures would form, each referring to old states.
union = \setl set2.
LETREC un: INT->SET->SET =
\int set. IF int GT maxElem THEN set
ELSE un{int+1) :
IF (setl int) OR (set2 int) THEN [int->TRUE]set
ELSE set FI .. ~
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FI
IN un minElem nullSet;

#Set difference
setDiff = \seotl set2.
LETREC sd: INT->SET->SET =
\int set. IF int GT maxElem THEN set
ELSE sd(int+1) :
IF (setl int) AND NOT (set2 int) THEN [int->TRUE]set
ELSE set FI
Fl
IN sd minElem nuliSet;

#Set intersection
intersect = \setl seot2.
LETREC si: INT-D>SET-)>SET =
\int set. IF int GT maxElem THEN set
ELSE si(int+1)

IF (setl int) AND (set2 int) THEN [int->TRUE]set
ELSE set FI
FI )
IN si minElem nullSet;

WHARRARRRRERRRN RN RRRERARR IR RRRARER NN
# Semantics of Array indexing
FRRRARRRURRARERERINRRARA RN RN RRRNNNRNY

[

arrayExp = \(type,oxp,oxpl).
LET (inti,int2) = LEFT type!scalarTy IN
\de s.
LET int=exp de s!intval IN

IF (int1 LE int) AND (int LE 1nt2) THEN expil de slarrayval int
ELSE BOT[VAL] FI;

arrayvar = \(type,exp,expli,varQOptl).
LET (intl,int2) = LEFT type!scalarTy IN
vx varOptl : \var.\de s0 val s.LET int=exp de sO!intval IN
IF (intl LE int) AND (int LE int2)

THEN var de s0O arrayVal[[int >val) expl de s!arrayVal] s
ELSE BOT[S]) FI; . \

HRRNRNBERRERRRRORNUB RO RN ERR RN RN ERAN N ENNN
# Declarations .
WRRERRRRRBERERREORRN RN ERERRARN RN O NN

#Declare a 1ist of names with a mode (for variables, parameters)
decINames = \(names,mode).
CASE names Of
nilN. nilD,
consN[name, names1].
consD[name, mode, declNames(namesl,mode)]} -

ESAC; |
#Append declarations
appendD = \(declsl,decls2). *
CASE declsi OF
ni1D. decls2,

consD[ name ,mode ,dec1s]. consD[name.mode, appendD({decls,decis2)]
ESAC;
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#Nest a new LOCENV onto an ENV, making a new block
nest = \(locEnv, (level,envMap)).
(level+l,
\name .LET mode = locEnv(name) IN
IF mode IS undefined THEN envMap(name) ELSE (level+t, mode) FI);

#The empty LOCENV
nullEnv = \name.undef ined;

#Morking function for TixPtrs
fixList = \(env,ptrs,locEav).
CASE ptrs OF
nilD. locEnv, :
consD[ name ,mode,ptrs].
[name->typeMode[typelookup env (modoltypeModelptrTy)]]
fixList(env,ptrs,locEnv)
ESAC;

#Mind internal names to referent types of pointers
fixPtrs = \(env,ptrs,locEnv). fixList(nest(locEnv,env), ptrs, locEnv);

#Attach new DECLS onto a LOCENV, making a new LOCENV
evalDecls = \(decls,locEnv).
CASE decls OF
nil1D. locEnv,

consD{ name,mode,dec1s1]. [name->mode] evalDecls(declsl,locEnv)
ESAC;

#Declare a routine to itself, to allow use of the function name as a variable
routDec = \(name, params, pf, (level,envMap)).
(level, [name -> (level,routMode[params,pf,active])] envMap);

F#¥#Standard declarations

#Declare a standard procedure p(VAR x: type)
stdProc = \type.

routMode[ consD["x", paramMode{varAc,.type], nilD], proc, inactive];

#Declare a standard function "f(x: typel): type2"
stdFunc = \(typel,type2).
routMode[ consD["x", paramMode[valAc,typel], niiD],
func[type2], inactive]:

#Declare a standard function in the dynamic environment
funcDef = \(name, T:INT->INT) de.
[name -> \s. store(1,name) intval[ f(s 1 "x" !intval) ] BOT[S] ] de;

#Set up initial state: heap, files INPUT and OUTPUT
beginProg = \(intMap,int).

["input” -> fileval[intMap, int, 1, 1ntMap( 31 ]
["output” -> fileval[BOT[ARRAY], 0, 1, BOT[VAL]]]
[*$Sheap" -> arrayVal[BOT[ARRAY]] ]

["SheapLimit™ -> intval[0]]

BOT{RECORD]; #get input into top level

#Extract output from top level of final state
endProg = \record.

LET (array,len,pos,val) = record "output® ! fileval IN (array,len);

113



ATTRIBUTE

identifier
namel ist

constant
literalConst
constantDecls

dataType
scalarType
arraySpec
packed
constlist
recordSection
fieldList
fixedPart
variantPart
variantlList
variant
tagfField
caselabellist
typeldentifier
typeDecls

component
arraylndex
variableDecls
variableGroup

expression
compatExp
expvar

actualParamlist

actualParam
actualParams
setElements
elementlList
element

command

compoundCommand
commandSequence

caselListElem
caselist
withTail

formalParamlList

formalSection
formalParams
formalGroup
routineDecls
routine

rout ineHead

constDecl1Part
typeDeclPart
varDeciPart
block
programParams
program

RULE program

<ENV.NAME ,LEVEL ,MODED ;-
<.NAMES);

<ENV.TYPE,VAL);
<ENV.TYPE,VAL);
<ENV,LOCENV.LOCENV>;

<ENV.PTRS,CONSTS,TYPED;
<ENV.CONSTS,TYPED;
<ENV.PTRS ,CONSTS,TYPE>;
<.BOOL)>;
<TYPE.CONSTS,INT>;
<ENV.PTRS,CONSTS,FIELDS>;
<ENV.PTRS,CONSTS,FIELDS>;
<ENV.PTRS,CONSTS,FIELDS>;
<ENV.PTRS ,CONSTS,FIELDS>;

<ENV,TYPE.PTRS,CONSTS, FIELDS>;
<ENV,TYPE.PTRS,CONSTS, FIELDS);

<ENV.NAME , TYPE)
<ENV,TYPE. IHTLIST)
<ENV.TYPE>; *
<ENV,LOCENV.LOCENV);

<ENV.TYPE,EXP,VAROPT>;
<ENV.TYPE ,EXP,VAROPT)>;
<ENV,LOCENV.LOCENV>;
<ENV,LOCENV.LOCENV,TYPED;

<ENV_TYPE,EXP>;
<ENV,TYPE.EXP>;
<ENV,TYPE,EXP ,VAROPT>;

<ENV,PARAMS . ACTVAL ,ACTVAR>;

<ENV,MODE . EXP,VARY;

<ENV, PARAMS . ACTVAL ,ACTVARD;
<ENV.SCALID,EXP>;
<ENV.SCALID,EXP>;
CENV.SCALID,EXP,EXP>;

<ENV.COM>;

<ENV.COM> ;

CENV.COM ;

<ENV,TYPE ,CASES.CASES);
CENV,TYPE .CASES)Y;
<ENV.COM>;

<ENV.PARAMS);
<ENV.PARAMS>;
CENV.PARAMS>;
<ACCESS,ENV.PARANS>;

<ENV,ENV,LOCENV.LOCENV,DT);
<ENV,ENV,LOCENV.LOCENV,DT>;

<ENV.PARAMS ,PF ,NAME) ;

<ENV,LOCENV.LOCENV)>;
<ENV,LOCENV.LOCENV>;
<ENV,LOCENV.LOCENV>;
CENV,LOCENV.COMD ;
<.NAMES>;

<.PROG)>;

#Constants

#Data types

#Variables

#Expressions

#Commands

#Procedures and

#Blocks

identifier{(level0,envMap),name,level ,mode> = ident<iname)
WITH (level,mode) = envMap(name);
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nameL ist<{consN[name,niIN]> = identiname);
namelL ist<consN[name,names]> = jdent<{name> "," nameListinames>;

i i d i d it i iaddiiitid
# Constants
i d i i iddidaagiaiiailiiidd

constant<env,type,val) =
identifier(env name,level,constMode[type,vall]>;

constant<env,type,val> = 1iteralConst<env,type,vald;

constant<env, intType, intval[-vallintval]> = N
"-" constant<env,type,val> WHERE<isInteger(type)>;

constant<env, intType,vald> =
"+" constant<env,type,val WHERE<isInteger(type)>;
literalConst<env,ptrTy["$nil"],ptrVal[0]> = "NIL";

1iteralConst<env, intType, intvalfint]> = numbercint);

constantDecls<env,locEnv, [name->constMode[type,val]] locEnvi) =
constantDeclis<env,locEnv,locEnvid>
ident<name> WHERE<1ocEnvl name IS undefined>
"=" constant<nest(locEnvl,env), type, vald> ";" ;

constantDecl1s<env,locEnv,locEnvd> = ;

HERRBURNENENTRRNRNURENNNRDURRN NN AR R AN

# Types

HURD BRI RERRIRRNNRRBNNRIBRNNRRORNRANNY

#type identifiers

dataType<env,nilD,ni1D,type> = typeldentifier<env,typed;

typeldentif ierlenv,type> = identifier<env,name,level,typeMode[type]>;

#enumerated types

dataType<env,nilD,consts,scalarTy[(0,int),scalld]> =
uniqueNamedscalld>
"(" constList<scalarTy[(0,int),scalld], consts, int> ")";

constList<type, consD[name, constMode[type,intval[1]], niiD], 1> =
ident<name>;

constList<type, consD[name, constMode[type,intVal[int+1]], consts], int+1> =
constList<type,consts,intd> "," ident<name);

.

#subrange types

dataType<env,nilD,ni1D,scalarTy[(intl,int2), scalld]> =
constantcenv,typel,intvalfiat1]> *.." constant<env,type2,intValfint2]>

115



PASCAL GRAMMAR

WHERE<compatible(typel,type2)>
WITH scalarTy[range,scalld] = typel:

scalarType<env,consts,type> = .
dataType<env,ptrs,consts, type> WHERE<Ctype IS scalarTy>;

#packing

packed<TRUE> = “PACKED";
packed<FALSE> = ;

MMulti-dimensioned arrays
dataType<env,ptrs,consts,typed = -
packed<bool1> "ARRAY" "[" arraySpec<env,ptrs,consts,type>;

arraySpec<env,ptrs,appendD(constsl,consts2),arrayTy[typel, type2]> =
scalarType<env,constsl,typel> "] "OF" dataType<env,ptrs,const$2,type2>;

arraySpec<env,ptrs,appendD(constsl,consts2),arrayTy[typel, type2]> =
scalarType<env,constsi,typel> ", arraySpec<env,ptrs,consts2,type2>;

#sets

dataType<env,nilD,consts,setTy[scalld]> =
packed<bool>
“set™ “"of" scalarType<env,consts,scalarTy[(intl,int2),scalld]>

WHERE<(int1 GE minElem) AND (int2 LE maxElem)>;

NNV RIS RRON
#records

dataType<env,ptrs,consts,recordTy[fields,name,evalDecls(fields,nullEnv)]> =
packed<bool> "RECORD"

fieldList<env,ptrs,consts, fields> uniqueMName<name> "END";

fieldList<env,ptrs,consts,fields> =
fixedPart<env,ptrs,consts, fields>;

fieldList<env,ptrs,consts,fields> =
varfantPart<env,ptrs,consts,fields>;

fieldList<env,appendD(ptrsi,ptrs2),appendD(constsi, consts2),
appendD(fieldsi, fields2)> =
fixedPart <env,ptrsi,constsi, fieldsi> ";"
variantPart<env,ptrs2,consts2, fields2>;

#fixed parts

fixedPart<env,ptrs,consts,figlds> =
recordSection<env,ptrs,consts, flelds);

fixedPart<env,appendD(ptrsl,ptrs2),appendD(constsl,consts2),
appenddD(fieldsi,fields2)) =
fixedPart {env,ptrs2,consts2,fields2> ;"
recordSection<env,ptrsl,constsl,fieldsl)>;
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recordSoction(onv,pth,consts.decluames(names. paramMode[varAc,type])> =
nameList<{names> ":" datalype<env, ptrs, consts, typed;

recordSection<env,nilDd,ni10,ni10> = ;

#variant parts

variantPart<env,ptrs,consts, consD(name, paramMode[varAc,type], fields]> =
"CASE" tagField<env,name,type> WHERE<type IS scalarTy>
"OF" variantList<env,type,ptrs,consts,fields);

variantList<env,type,ptrs,consts,fields> =
variant<env,type,ptrs,consts,fields);

variantList<env,type,appendD{ptrsi,ptrs2), appendD(constsi,tonsts2),
appendD(fieldsi,fields2)> =
variant <env,type,ptrsl, constsi, fieldsl> ;"
variantlist<env,type,ptrs2,consts2,fields2)>;

variant<env,type,ptrs,consts,fields) =
caseLabellist<env,type,intList> ":"
"(" fieldlList<env,ptrs,consts,fields> ")";

variant<env,type,niiD,ni1D,nilID> = ;
tagfield<env,name,type> = ident<name> ":" typeldentifier<env, typed;
tagField<env,"$noName",type> = typeldentifier<env,type>;

caseLabelList<env,type,consI[vallintVal,nill]> =
constantlenv, typel,vald> WHERE<compatible(type,typel)>;

caselabellist<env,type,consI[vallintVal,intlList]> =

constant<env,typei,val> WHERE<Ccompatible(type, typel)>
"," caselabellList<env,type,intlList);

#files

dataType<env,ptrs,consts, fileTy[type]> =
packed<bool1> "FILE" "OF" dataType<env,ptrs,consts,typed;

#Pointer types -- generate fixuplist of forward references to types

dataType<env,
consD[namel, typeMode[ptrTy[name2]], ni1D],
nilD, ptrTy[namel]> =
uniqueName<namel>
“+" 1{dent<name2);

#type declarations
typeDecis<env,locEnv,fixPtrs(env,ptrs,locEnvi)) =
ident<name> WHERE<1ocEnv(name) IS undefined>

"=" dataType<nest(locEnv,env), ptrs, consts, typed> ":;"
typeDecls<env, [name->typeMode[type]]evalDetis(consts,locEnv), locEnvl);
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recVal{ [name->val]) exp de s !recval ] s;

#pointer dereferencing / file buffer access

component<env, typel,expl,varOptl)> =
component<env,type,exp,varfpt> "t
WITH (typel,expl,varOptl) =
IF type IS ptrTy THEN
(typeLookup env (typelptrTy),
\de s.LET ptr = exp de s lptrval IN
IF ptr NE O THEN s 0 "Sheap"™ ! arrayVal ptr ELSE BOT[VAL] FI,
isvar[\de s val s.LET ptr = exp de s !ptrval IN
IF ptr NE O THEN
store(0,"$heap”)
arrayVal{ [ptr->val] (s 0 "Sheap” ! arrayVal)]

s
ELSE BOT[S] FI]) ..
ELSE K
IF type IS fileTy THEN
(typelfilely, - -
\de s. LET (array,len,pos,val) = exp de sifileval IN val,
vx varOpt : \var.\de s0 val s.
LET (array,len,pos,val0) = exp de s!fileval
IN var de sO fileval[array,len,pos,val] s)
ELSE BOT[TYPE X EXP X VAROPT] FI FI;

#variable declarations

variableDec1s<env,locEnv,locEnv2) =
variableDecl1s<env,locEnv,10cEnvl>
variableGroup<nest(locEnvl,env), locEnvl, locEnvz, type>;

variableDecls<env,locEnv,locEnv> = ;

variableGroup<env,locEnv,
[name->paramMode[varAc,type]]
fixPtrs(env,ptrs,evalDeclis{consts,locEnv)),
type> =
ident<name> WHERE<1ocEnv(name) IS undefined>
*:" dataType<env,ptrs,consts,type> ";";

variableGroup<env,locEnv,locEnvl, type> =

ident<name> WHERE<1ocEnv(name) IS undefined>
".," variableGroup

<env, [name->paramMode[varAc,type]]locEnv, locEnvl, type>;

FRARRARRRRRNRRRORNERRNRRNRNR RN NRRRNIN
# Expressions
g i d it da i i i i d i i p et iidsd)

# To avoid syntactic ambiguity because actual parameters can be efther
# variables or expressions, the symbol ExpVar handles the semantics
# of both. VarOpt holds the variable semantics, if any.

expression<env,type,exp> = expVar<env,type,exp,varlpt);
#Expression that must have a particular (inherited) Type

compatExp<env,type,exp> =
expressiondenv,typel,exp> WHERE<compatible(type, typel)>;

expVar<env, type,exp,varQpt> = cqmppnent(dhv.type.exp.varOpt);
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expVar<env,type,\de s.val,notVar) = literalConst<env,type,val>;

expVar<env, type,exp,notvar) = "(* eipression(env.type.exp) ")";

il iddiddidd
#function call

expvar<env, type,
\de s.de name([level+l -> actVal de s] s) (level+i) name,
notVar) =
identifier<env,name,level,routMode[params,func[type],activity]>
"(" actualParams{env,params,actval,actvar> ")";

###¥ Parameter passing for procedureﬁ and functions
# Variable parameters are passed by value-result.

actualParamList<env,params,actVal,actVar)> = - -~
"(" actualParams<env,params,actVal,actvVar> ")"; -

actualParamList<env, nilD, \de s.BOT[RECORD], \de‘so record s.s> =

actualParams<env,consD[name,mode,ni1D],
\de s.[name->exp de s] BOT[RECORD],
\de s0 record.var de s0 (record name)> =
actvalParam<env,mode,exp,var)>;

actualParams<env,consD[name,mode,params],
\de s.[name->exp de s] (actval de s),

\de s0 record s.var de s0 (record name)(actvar de s0 record s)> =
actualParam<env,mode,exp,var> ","

actualParams<env params,actVal,actVar);

actualParam<env, paramMode[access,typel], exp, var> =
expVar<env, type2,exp,varOpt>
WHERE<compatible(typel, type2)>
WITH var = CASE access OF
varAc. varOpt!isvar, #VAR param -- store final value

valAc. \de s0 val s.s #value param -- do nothing
ESAC;

#standard functions

expVar<env,type, \de s. intVal[exp de s!intval + 1], notvar)> =
"SUCC" (" expression<env,type,aexpd ")"
WHERE<Ctype IS scalarTy>;

expvar<env,type, \de s. intval[exp de s!intval - 1], notvar) =
"PRED"™ “(" expression<env,type,exp> ")"
WHERE<type IS scalarTy>;

expVar<env,boolType,
\de s. LET (array,len,pos,val) = exp de s!filevVal
IN boolVal(pos GT len),
notvar> =
"EOF" "(" expression<env,fileTy[type].exp> ™)";

HANRNRANERRRINN
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#set expression

expvar<env,setTy[scalld],exp,notVar)> =
"{" setElements<env,scalld,exp> "]";

setElements<env, "$null”, \de s.setval[nullSet]> = ; #Empty set
setElements<env;scalld,exp> = elementlL ist<env,scalld,exp>;

elementList<env,scalld, :
\de s.setval[insert(expl de s!intval)(exp2 de s!intVal)
(exp de s!setvVal)]> =
elementlList<env,scalld,exp> "," element<env,scalld,expl,exp2>;

elementlL ist<env,scalld,

\de s.setval[insert(expl de s!intVal)(exp2 de stintVal)nuliSet]> =
eloment(env.scalId.expl.exp?);

element<env,scalld,exp,exp)> = #Single element
expression<env,scalarTy[range,scalld],exp>;

element<env,scalld,expl,exp2> = #Range of elements
expression<env,scalarTy[rangel,scalld],expl> ".."
expression<env,scalarTy[range2,scalld],exp2);

bigdda i r g i
#Unary operators \

expVar<env, boolType, \de s.intVal[1l-exp de s!intVal], notVar) =
"NOT" expression<env,type,exp> WHERE<isBoolean(type)>;

expvarc<env, intType, \de s.intval[-exp de s!intval], notvar) =
"-" expression{env,type,exp> WHERECisInteger(type)>;

expvVar<env, intType,exp,notvar> = .
"+" expression<env,type,exp> WHERE<isInteger(type)>;

HANBNERNNNERN R RN
#Infix operators

#arithmetic operators (some overloaded with set operations)

expvar<env,common(typel,type2),exp,notvard =

expressiondenv,typel,expl)> "+" expression<env,type2,exp2>
WITH exp= :

IF typel IS setTy THEN

\de s.setVal[union(expl de s!setval)(exp2 de s!setVal)]
ELSE

If islInteger(typel) THEN

\de s.intVal[expl de s !intVal + exp2 de s lintVal]
ELSE BOT[EXP] FI FI;

expvar<env,common(typel,type2),exp,notvar) = .
expressiondenv,typel,expl> "-r expression<env,type2,exp2d

WITH exp=
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IF typel IS setTy THEN
\de s.setVal[setDiff(expl de s!setVal)(expz de s!setval)]
ELSE
IF isInteger{typel) THEN
\de s.intval[expl de s !intvVal - exp2 de s !intval]
ELSE BOTL[EXP] FI FI;

expVar<env,common(typel,type2),exp,notvar> =
expression<env, typel,expl) e expressiondenv,type2,exp2)>

WITH exp=
IF typel IS setTy THEN
\de s.setval[intersect(expl de stsetval)(exp2 de s!setval)]
ELSE ’
IF isInteger(typel) THEN
\de s.intVal[expl de s !intval * exp2 de s !intVal]
ELSE BOT{EXP] FI FI;

expvar<env, intType,
\de s.intVal[expl de s!intval DIV exp2 de s!intval], notvar)> =
expression<env,typel,expl> "DIV" “expression<env,type2,exp2)
WHERECisInteger( typel)> WHERE<isInteger(type2)>;

expVar<env, intType,
\de s.intVal[expl de s!intval MOD exp2 de s!intval], notvVar> =
expression<env,typel,expl> "MOD" expression<env,type2,exp2>
WHERECisInteger(typel)> WHERE<isInteger(type2)>;

#Boolean connectives

expVar<env, boolType,
\de s. intval{andInt(expl de s!intVal)(exp2 de s!intval)], notvVar> =
expression<env,typel,expl> "AND" expression<env,type2,exp2>
WHERE<isBoolean(typel)> WHERE<isBoolean(type2)>;

expvar<env, boolType,
\de s. intval{orInt(expl de s!intVal)(exp2 de s!intval)], notVar> =
expression<env,typel,expl> "OR" expression<env,type2,exp2)
WHERE<isBoolean(typel)> - WHERECisBoolean(type2)>;

#relations (some overloaded with subset relation)
expVar<env,boo1Type,

\de s.boolVal(expl de s!intval LT exp2 de s!intval), notvar> =
expression<env,typel, expl) "<"  expression<env,type2,exp2>
WHERE<compatible(typel,type2)> WHERE<typel IS scalarTy>;

expVar<env,boo1Type,

\de s.boolVal(expl de s!intval GT exp2 de s!intval), notvar> =

expression<env,typel,expl)> " expression<env,type2,exp2)

WHERE<compatible(typel,type2)> WHERE<typel IS scalarTy>;

expVar<env,boolType,exp,notvar> =
expression<env,typel,expld> K=" expression<env,type2,exp2)
WHERE<compatible(typel,type2)>

WITH exp=
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IF typel IS setTy THEN

\de s. boolVal(subset(expl de s!setVal)(exp2 de sisetval))
ELSE
IF typel IS scalarTy THEN

\de s. boolVal(expl de s !intVal LE exp2 de s lintVal)
ELSE BOT[EXP] FI FI;

expvVar<env,boo1Type, exp,notvar)> =

expression<env,typel,expld> ">=z" . gxpressiondenv,type2,exp2>
WHERE<compatible(typel,type2)>

WITH exp=
IF typel IS setTy THEN

\de s. boo1Va1(subset(exp2 de s!setVal)(expl de s!setval))
ELSE

IF typel IS scalarTy "THEN

\de s. boolVal(expl de s !intval GE exp2 de s !intval)
ELSE BOT[EXP] FI FI;

P i

expVar<env,boolType, ’
\de s.boolval : equal typel(expl de s)(exp2 de s), notVard> =
expression<env,typel,expl> "z" expression<env,type2,exp2>
WHERE<compatible(typel,typel2)>;

expVar<env,boolType,
\de s.boolVal : NOT equal typel(expl de s)(exp2 de s), notvard> =
expression<env,typel,expl> O expression<env, type2,exp2>
WHERE<compatible(typel,type2)>;

expvVar<env, boolType,
\de s.boolvVal : exp2 de s!setVal : expl de s!intval, notvVar) =
expression<env,scalarTy[range,scalld]),expl>
"IN" expression<env,setTy[scalld],exp2>;

HERNBGARNRERBABUNNR NN RRRIRURERR Y RN
# Commands
HERRNERARNRRNRRRN NN RN NI NANN RN RN

#assignment command
command<env,\de s.var de s(exp de s)s> =
component<env,type,expl,isvar[var]> ":=" compatExp<env,type,exp>;

#procedure call

command<env,\de s0.run(level+1)(actVal de s0)(de name)(actVar de s0)s0> =
identifierc<env,name,level, routMode[ params,proc,activity]>
actuvalParaml ist<env,params,actVal,actvar);

#standard procedurses

command<env, \de s. LET (array,len,pos,val)= exp de sifileval
IN var de s fileVal[array,len,1,array 1] s> =
“"RESET" ~(" component<env,fileTy[type].,exp,isVar[var]> ")";:

command<env, \de s. var de s fileVal[BOT[ARRAY],0,1,BOT[VAL]] s> =
“"REWRITE" (" component<env,fileTy[type].exp,isVar{var]> ")";
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command<env, \de s. LET (array,len,pos,val)s exp de s!fileval
IN IF pos GT len THEN BOT[S]

ELSE var de s TileVal[array,len,pos+1,array{pos+1)] s
FI> =

"GET™ "(" component<env,fileTy[type].,exp,isvar[var]> ")";

command<env,
\de s. LET (array,len,pos,val)= exp de s!fileval

IN IF-pos GT 1len

THEN var de s
Tileval[[pos->vallarray,len+l,pos+1,BOT[VAL]] s
ELSE BOT[S]
FI> = ,
"PUT" "(" component<env,fileTy[type],exp,isvar[var]> ")";

#Empty command
command<env,\de s.$> = ; . -

#Compound command

command<env,com> = compoundCommand<env,com>;
compoundCommand<env,com> = "BEGIN" commandSequence<env,com> "END";
commandSequence<env,com> = command<env,com>;

commandSequence<env,\de s.com2 de (coml de s)> =
commandSequence<env,coml> ";" command<env,com2);

#Conditional command

command<env,\de s. cond(exp de s)(coml de s)(com2 de s)> =
“1F* compatExp<env,boolType,exp> "THEN" command<env,comil>
“ELSE" command<env,com2);

command<env,\de s. cond(exp de s)(com de s)s> =
“"IF" compatExp<env,boolType,exp> "THEN" command<env,com)>;

#Case command

command<env,\de s.cases (exp de s!intVal)de s> =

"CASE" expression<env,type,exp> WHERE<type IS scalarTy>
“OF" caselList<env,type,cases> "END";

caselList<env,type,cases> =
caselListElem<env,type,\int.BOT[COM],cases>;

caselList<env,type,cases> = *
caselListElem<env,type,casesl,cases> ";"
caselist <env,type,casesl);

caseListElem<env,type,cases,assignCases(intList,com,cases)> =
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caselLabellList<env type, intList> *:" command<env,comd;
caselistElem<env,type,cases,cases)> = ;
#Repeat and while commands

command<env,\de.FIX \sx.\s.cond(exp de s)(sx(com de s))s) =
“"WHILE" compatExp<env,boolType.exp> "DO" command<env,comd;

command<env,\de.FIX \sx ,\SO.LET sscom de sO IN cond{exp de s)s{sx s)> =
“"REPEAT™ commandSequence<env,com> “UNTIL" compatExp<env,boolType,exp>;

#For command -- TO and DOWNTO B

command<env,\de sO.LET int2 = expZ de sO !intval IN
LETREC for:INT->SX = \int s.
IF int GT int2 THEN s
ELSE for(int+1)(com de (store(level,name) intval[int] s)) FI
IN for (expl de sO !intvVal) s0> =
"FOR" identifier<env,name,level,paramMode[varAc,type]>
WHERE<type IS scalarTy>
I:‘I
compatExp<env,type.expl> “TO" compatExp<env,type,exp2>
"DO" command<env,com);

command<env ,\de sO.LET int2 = exp2 de s0 !intval IN
LETREC for:INT->SX = \int s.
IF int LT int2 THEN s
ELSE for(int-1)(com de (store(level,name) intVal{int] s)) F1
IN for (expl de sO !intval) s0> =
"FOR" identifier<env,name,level, paramMode[varAc,type]>
WHERE<Ctype IS scalarTy>

compatExp<env,type.expl> "DOWNTO" compatExp<env,type,exp2>
"DO" command<env,com>;

#with command
command<env,com> = “WITH" withTail<env,com);

withTail<env, withCom(level,exp,var,com)> =
component{env, recordTy(fields,name,locEnv], exp, isvar[var]>
"DO" command<nest(locEnv,env), com)
WITH level = LEFT env;

withTail<env, withCom(level,exp,var,com)> =
component<env, recordTy[fields,name,locEnv], exp, isVar[var]>
" withTail<nest(locEnv,env), com>
WITH level = LEFT env;

il d et g i i it d i i i ididiiid
# Procedures and Functions
NENRRURRRRDRERENNRIRBRNRRRNDINRRRNNSNNNNNY

#forward declarations are not needed because the BODIES of the routines
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are evaluated in the FINAL environment for the block. This does
not make the grammar circular because environments do not contain
the run-time semantics of rgutines, but only information from the
ROUTINE HEAD, which is evaluated using the CURRENT enviroment.
The run-time semantics are stored in the dynamic environmant 'de'.

routineDeclis<envl,env,locknv,locEnvZ, \de de0.dtl de(dt2 de de0)> =
rovtineDecis<envi, env,locEnv,locEnvl,dt1>
rouvtinec<envl,env,locEnvl, locEnv2, dt2>;

routineDecls<envi,env,locEnv,locEnv,\de del.del> = ;

routine<envl,env,locEnv, [name->routMode[params,pf, inactive]] locEnv,
\de del.[name->com de)del> = .
routineNead<nest(locEnv,env), params, pf, name>
WHERE<1ocEnv({name) IS undafined>

biock(routDoc(namo.params,pf.anvl). evalDecls(params,nullEnv) ~com>

rout ineHead{env,params,proc,named> =
"PROCEDURE"™ ident<name> formalParamlList<env,params)>;

routineHead<env ,params,func[type].name> =
"FUNCTION" tident<{name)> formalParamList<env,params’>
":" typeldantifier<{env,typed;

formalParamList<env,params> = “(" formalParams<env,params)> "}";
formalParamList<env,nilD> = ;
formalParams{env,params> = formalSection(énv.parnms):
formalParams<env,appendD{paramsi,params2)> =

formalParams<env,paramsl) ";" formalSection{env,params2);

formalSection{env,params> =
formalGroup{valAc,env, params);

formalSect ionKenv,params) =
"VAR" formalGroup<varAc,env,params):

formalGroup<access, env,dec1Names(names,paramModel access,typa])> =
namel ist<names> ~:" typeldentifier{env,type>;

WERNENARNIRRRBNERNRRAREGRRAANNRRN IR RARN
# Declarations
FANNBRNNBRANENNRETENRAPRRVARDAN N AN RY R E Y

constDeclPart<env,locEnv,TocEnvi> = "CONST" constantDecls<env,locEnv,locEnvl);

constDec1Part<env,l1ocEnv,1ocEnv) = ;

typeDeclPart<env,locEnv,10cEnvl> = "TYPE"™ typeDecls<env,locEnv,locEnvi>;

typeDeciPart<env,locEnv,TocEnv> = ;
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varDeci1Part<env,locEnv,10¢cEnvl> = "VAR" variableDecls<env,locEnv,locEnvi>;

varDeclPart<env,locEnv,locEnv> = ;

block<env,locEnvl,\de0.com :

FIX \de.dt de de0> =

constDecliPart<env,loctnvi, locEnv2)
typeDeclPart<env,locEnv2,locEnv3d>
varDeclPart<env,locEnvd,locEnv4>

rout ineDecls<envl, env,locEnvd, YocEnv dt>

compoundCommand<envl, com>
WITH eavl = nest{locEav,env);

programParams<nilN> = ;

programParams<names> = "(" namelList<names> ")";

N

program(\input endProg {(com de ([0->beginProg inmput] BOT[S]) 0)> =
"program” ident<{name> programParams<{names> ";"

block<env,nullEnv,com> ", "

WITH de = funcDef("abs”, \int.
funcDef("sqr”, \int.
funcDef("odd™, \int.
funcDef("ord", \int.
funcDef("chr", \int.

IF int GE 0 THEN int ELSE -int FI) :
int®int) :

IF (int MOD 2) EQ O THEN O ELSE 1 FI) :
int) :

int) :

["new"->

\s.LET ptr = 1 + (s O "SheapLimit™ ! intval)
IN store(1,"x") ptrvalfptr] :
store(0, "SheapLimit™) intval[ptr] s]

["dispose™-> \s.store(l,

"x") ptrval[0] s )

\name.BOT[SX]
WITH env = nest
(["integer"-> typeMode[ intType]]
[" booIoan -> typeMode[boolType]]
[“char®- typeMode[ charType]]}
["text™- typeMode[textType]]
["true® > constMode[boolType, intval[1]]]
["false"-> constMode[ boo1Type, intval[0]]]
["input™-> paramMode[varAc,fileTy[intType]]]
[“output™-> paramMode[varAc,fileTy[intType]]]
" abs'-) stdFunc(intType, intType)]
["sqr"-> stdFunc(intType, intType)]
' odd"> stdfunc(intType,boolType)]
[Tord"- stdFunc(charType, intType)]
[“chr" -> stdFunc(intType,charlype)]
[“new"-> stdProc(ptrTy["$nil"]}]
["dispose"-> stdProc(ptrTy["S$nil1"])]
nullEnv,

(-1, \name.(0,BOT[MODE])));

"Ha" nan

O OTINT; -

RESOLUTION
nonassoc "NOT";
left "*" "DIV" “MOD"™ "AND";
]eft LS w_w won'
nonassoc "< ">" "(a"
right T“ELSE";
END
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Appendix E
Example of Axiomatic Semantics

Using a semantic grammar for the axiomatic sémantics of a simple language, the compiler
generator has produced the verification conditions of a division program. The Ianguagé has
integer and array variablés, and the basic control structures, but no procedures. All
expressions are integer; assertions and conditions controlling if or while commands may
contain boolean connectives and integer comparisons. Every program must be documented

with an input and output assertion; every loop must be documented with an invariant
assertion.

# Semantic Grammar for program verification

DOMAIN
VAL = [intV[INT] + arrV[INT -> INT] 1. #values: integers and arrays
ENV = NAME -> TYPE; #environments: types of variables
TYPE = [intTy + arrayTy]; #types
#Expressions for assertions
EXP = constE[INT] #constants
varE[NAME ] #variables
plusE[EXP X EXP] #integer operators

minusE[EXP X EXP]

timesE[EXP X EXP]

divE[EXP X EXP]

indexE[EXP X EXP] : #array operators
updateE[EXP X EXP]];

+++ A

#Assertions (conditions)

COND = 1tCL[EXP X EXP] #integer comparisons
gtC[EXP X EXP

eqC[EXP X EXP

notC[COND] #boolean operators

andC[COND X COND]

orC[COND X COND]11:

+ 4+ 4+

VCS = [nfilV + consV[COND X VCS]]: #1ists of verification conditions

FORWARD

substC : (EXP X NAME X COND) -> COND;
substE : (EXP X NAME X EXP) -> EXP;
appendV : (VCS X VCS) -> VCS;

DEFINE
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#Substitute an expression for a variable within a condition
substC = \(exp,name,cond).

CASE cond OF . :
1tClexpl,exp2]. 1tC{substE(exp,name,expl), substE{exp,name,exp2)],
gtClexpl,exp2]. gtC[substE(exp,name,expl), substE(exp,name,exp2)],
eqC{expl,exp2]. eqC[substE(exp,name,expl), sudstE(exp,name,exp2)],
notC[cond]. notC[substC(exp,name,cond)],
andC[cond1l, cond2].

andC[substC(exp,name,condl), substC(exp,name,cond2)],
orC[condl,cond2].
orC[substC{exp,name,condl), substC(exp,name,cond2)]
ESAC; :

#Substitute an expression (exp) for.a variable within an expression (exp0)
substE = \(exp,name,expl).
CASE exp0 OF

constE[int]. exp0,
varE{namel]. IF name EQ namel THEN exp ELSE exp0 FI, -~
plusE[expl, exp2].

plusE[substE(exp,name,expl), substE(exp,name,exp2)],
minusE[expl,exp2]. ’

minusE[ substE(exp,name,expl), substE(exp,name,exp2)],
timesE{expl,exp2].

timesE[substE(exp,name,expl), substE(exp,name,exp2)],
divE[expl,exp2].

divE[substE(exp,name,expl), substE(exp,name,exp2)],
indexE[exp1,exp2].

indexE[substE{exp,name,expl), substE(exp,name,exp2)],
updateE[expl,exp2].

updateE[substE(exp,name,expl), substE(exp,name,exp2)]
ESAC;

#Append two lists of verification conditions
appendV = \(vecsl,vcs2).
CASE vcsl OF

nilV. vesz,
consV[cond,vcs]. consV[cond, appendV(vcs,vecs2)])
ESAC;

#Implication, defined in terms of OR and NOT
imp1C = \(condl,cond2). orC[notC[condl], cond2];

ATTRIBUTE

identif ier<{ENV.NAME ,TYPE)>;
expression<ENV_EXP>;
condition<ENV.COND>;
command<ENV,COND.COND,VCS);
declaration<.ENV);
program<(.VCS>;

RULE program
identifier<env,name,env(name)> = jdenti{name); -

###¥ Expressions

expression<env, varE[name]> *
= jdentifiercenv,name,intTy>; #integer variable
expression<env, indexE[varE[name], exp}> = #subscripted variable

identifierdcenv,name,arrayTy> "[" expression<env,exp> "]";
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expression<env,exp> = :
*“(" expression<env,exp> ")": . #parenthesized expression

expression<env, constEfint]> = numbercint); #integer constant

expression<env, p1usE[expl.exb2]> =
expression<env,expl> "+" expressionCenv,exp2>;

expression<env, minusE[expl,exp2]> =
expression<env,expl> "-" expression<env,exp2);

expression<env, timesEfexpl,exp2]> =
expression<env,expl> "*" expression<env,exp2>;

expression<env, divE[expl,exp2]> =
expression<env,expl> "/" expressionenv,exp2>;

#### Conditions (for IF and WHILE commands)
-

condition<env,cond> = *(" conditioncenv,cond> ")";

condition<env, 1tC[expl,exp2]> =
expression<env,expl) "¢" " expression<env,exp2>;

condition<env, gtClexpl,exp2]> =
expression<env,expl)> "> expression<env,exp2>;

condition<env, eqCfexpl,exp2]> =
expression<env,expl> =" expression<env,exp2>;

condition<env, notC[cond]> =
"NOT" condition<env,cond>;

condition<env, andC[condl,cond2]> -
condition<env,condl> "AND" condition<env,cond2>;

condition<env, orC[condl,cond2]> =
condition<env,condl> "OR" condition<env,cond2>;

###%# Commands (statements)

command<env, cond, substC(exp,name,cond), nilV> =
identifier<env,name,intTyd> ":=" expressioncenv,expd>;

command<env, cond, substC(updateE[varE[name],expl], name, cond), nilv)> =
identifier<env,name,arrayly>

"[" expression<env,expl> "]" *":=" expression<env,exp2>;

command<env,cond,condl,appendV(vcsl,vcs2)> =
command<env,cond2,condl,vcs1> ";" command<env,cond,cond2,vcs2)>;

command<env,cond, andC[imp1C(cond0,condl), imp1C(notC[cond0],cond)], vcs> =
"IF" condition<env,cond0> "THEN" command<env,cond,condl,vcs> "FI";

command<env, cond, cond2, .
consV[andC[ imp1C(andC[condl,cond2],cond3d),
imp1C(andC[notC[cond1],cond2], cond) ], ves]> =
"WHILE" coadition<env,condl1> "invariant” condition<env,cond2>
"DO" command<env,cond2,cond3,vcsd> "0D";

#### Declarations
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declaration<["input”->intTy] ["output®->intTy] BOT[ENV]> =

declaration{[name->intTyJenv> = :
"INT" ident<name> ";" <declaration<env>;

declaration{[name->arrayTyJeanv)> =
"ARRAY" ident<{name> ";" declaration<env);

program<consV[ imp1C(condl,cond), ves]> =
"BEGIN" declaration<env)

"BEFORE" condition<env,condl>
"AFTER" condition<env,cond2> ;"
command<env,condZ,cond,vcs)

“"END";

RESOLUTION .

NONASSOC "NOT"; ’
LEFT =" “/" "AND";
LEFT LR w_w woa-:
NONASSOC "¢" "> "=";
RIGHT ";";

END

Given this grammar, the universal translator converts an input program into a list of
verification conditions. Consider a program that performs integer division.

{Program to divide a by d, producing quotient q and remainder r;
Algorithm is repeated subtraction.}

BEGIN

INT a; INT d; INT q; INT r;

BEFORE NOT a<0

AFTER (NOT r<0) AND r < d AND a = d*q+r;

r:=a; q:=0;

WHILE NOT r<d INVARIANT (NOT r<0) AND & = d*q + r
DO r :=2r -d; q:=q+ 1 0D

END

The universal translator prints the simplified DAG, which represents the verification
conditions. They are all frue, proving partial correctness of the program. The verification
conditions must be simplified by hand; for practical program verification, the compiler
generator should provide a standard assertion language and theorem prover.

The semantic DAG:

CONSV[ORC[NOTC[NOTC[LTC[VARE[*A"], CONSTE[0]]1].
ANDC[NOTC[ LTC[VARE["A"], CONSTE[0]]],
EQC[VARE["A"], PLUSE[TIMESE[VARE["D"], CONSTE[0]], VARE["A"]]]]].
CONSV[ANDC[ ORC[ NOTC[ ANDC[NOTC[LTC[VARE["R"], VARE["D"]1]].
ANDC[ NOTC[ LTC[VARE[ "R"], CONSTE[0]1].
EQC[VARE["A"],
PLUSE[TIMESE[VARE["D"], VARE[*Q"]].
VARE["R"11]1]],
ANDC[NOTC[LTC[MINUSE[VARE[ R"J, VARE["D"]]., CONSTE[0]]].
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EQC[VARE["A"], :
"~ PLUSE[TIMESE[VARE["D"],
' PLUSE[VARE["Q"], CONSTE{1]]].
MINUSE[VARE["R"], VARE["D"]]]11].
ORC[NOTC[ANDC[NOTC[NOTC[LTC[VARE["R"], VARE["D*"]]]],
ANDCINOTC[LTC[VARE["R"], CONSTE[0]]}].
EQC[VARE["A"],
PLUSE[TIMESE[VARE["D"], VARE["Q"]].
VARE["R"]11]1].
ANDC[ANDC[NOTC[LTC[VARE["R"], CONSTE[0]1].
LTC[VARE["R"], VARE["D"]1].
EQC[VARE["A"].
- ©  PLUSE[TIMESE[VARE["D"], VARE["Q"]]. VARE["R"]111111.
N . )

Unsimplified verification wndﬁom: =
T(M(@<0) V (T(a<0) A (a = d*0 + &) -

[P (<) A (P((<0) A (a = (d*q + )

v :
A (CUr-a)<0) A(a = ((d*(@+1) + (r-d))]
[P Ur<d)) A (T((<0) A (a = (d*q + )
\

((m((r<O)) A (Xd)) A (a = (d*q + N))]

" Simplified verification conditions:

a>0=(a>0Aa =a)

[r=2dAr>0Aa=(d*qg+1n)=
(r>dAa=@*(@+1) +r-d)]

A

[(KdAr>0Aa=(d*q + )=
(r>0AKdAa=(d*'qg+1)]
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Appendix F
Semantic Grammars Grammar

# S6.SG Semantic grammar for semantic grammars
# Describes & large subset of the notation accepted by the Grammary Analyzer.
# Checks domain compatibility, but does not check that the grammar is

” syntactically or semantically valid.

¥ BN

# Uncorrectable problems due to limitations of the lexical scanmner:

» Trailing digits of variable names are not stripped off;

¥ domain definitions 1ike DOM1=DOM are required

¥ (note: the Grammar Analyzer does not allow domain names to contain
¥ digits)

¥ Quoted strings are restricted to identifiers; Jlikewise, terminals are
” restricted to identifiers or strings of special characters.

” Note that keywords defined in this grammar are not considered

» identifiers, so "IF", "TRUE", etc. may not be terminal symbols.
DOMAIN

# Domain representing a domain

DOM = [ unspecD[NAME] +
nameD[ NAME] +
productO[DOM X DOM] +
functionD[DOM X DOM] +
unionD[NAME X SUMMANDS]]:

# Summands of a union domain

SUMMANDS = [ni1S + consS[TAG X DOM X SUMMANDS]];:

TAG = NAME; #Tagfields
UNION = DOM; #Union domains

#Modes of {dontifiers
MODE = [undefined +
doma inMode{ DOM] +

tagMode[DOM X UNION] + #tag field
forwardMode[DOM] + #FORWARD-declared
expMode[DOM] + #DEFINE expression
varMode[DOM] + #bound variable
attributeMode[DOM] +

symboTMode[ ATTRS]]: #nonterminal symbo)

#Attribute information for a nonterminal symbol
FLOW = [synthesized + inherited];
ATTRS = [nilA + consA[DOM X FLOW X ATTRS]];

#Environments

ENV = NAME -> MODE;

FINALENV = ENV; #Final environment after domain defs
VARENV = ENV; #Environment of bound variables
NAMESET = NAME -> BOOL; #Sets of names for equalvalid

FORWARD - -
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noname : (ENV X DON) -> DOM;

addUnion : (SUMMANDS X ENV X UNION) -> ENV;
compatible : (ENV X DOM X DOM) -> BOOL;
equalvalid : (ENV X NAMESET X DOM) -> BOOL
eqvalids : (ENV X NAMESET X "SUMMANDS) -> BOOL;
DEFINE

#Predef ined domains :

voidDom = unspecD["VOID"]; #Void summands of unions
intDom = unspecD["INT"];

boolDom = unspecO["BOOL"];

nameDom = unspecD["NANE™];

#Skip past references to named domains, get actual definition
noname = \(env,dom).
IF dom IS nameD THEN noname(env, env(dom!namoo)!domainModo)
ELSE dom FI; —

#Add a union domain's tags to the environment
addUnion = \(summands,env,unfon).
CASE summands OF
nilS. env,
consS[tag,dom, summands].

addUnion(summands, [tag->tagMode[dom,union]]env, union)
ESAC;

#Empty environment; contains standard definitions

nullEnv = ["VOID"-> doma inMode[ voidDom]]
["INT" -> doma inMode[ intDom]]
["BOOL"- doma inMode[ boo1Dom]]
[ "NAME" - doma inMode[ nameDom]]
[ whero' -> symbolmode[ consA[boo1Dom, inherited,nilA]]]
["ident"-> symbolmode[ consA[ nameDom, synthesized,nil1A]]]
["uniqueName"->symbolmode[ consA[ nameDom,synthesized,ni1A]]]
["number®-> symbolmode[ consA[ intDom,synthesized,nilA]]]
\name.undef ined;

#Check that two domains are compatible
compatible = \(env,doml,dom2).
IF doml EQ dom2 THEN TRUE
ELSE IF dom2 IS nameD THEN
compatible(env,doml, env(dom2!nameD)!domainMode)
ELSE
CASE doml OF
unspecD[namel]. namel EQ (dom2lunspecD),
nameD[namel]. compatible(env, env(domi!nameD)!domainMode, dom2),
productD[dom3,dom4].

LET (dom5,dom6) = dom2!productD IN
compatible(env,dom3,dom5) AND
compatible(env,dom4,dom6),

functionD[dom3,dom4].

LET (dom5,dom6) = dom2!functionD IN
compatible(env,dom3,dom5) AND
compatible(env,domd4,domé), -

unionD[ namel, summandsl].

LET (name2,summands2) = dom2iunionD IN
namel EQ name2

ESAC
FI FI; *

#Test whether equality is defined for this domain
#Equality is defined for all non-functional domains
#The nameSet prevents looping over rgcursive domains --
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# 1t contains the named domains already visited
equalvalid = \(env,némeSet, don)
CASE dom OF
unSpecD[name]. TRUE,
nameDf name ] .
IF nameSet(name) THEN TRUE

ELSE equalvalid(env, [name->TRUE JnameSet, env(name)!domainMode)
FI,

productD[ doml,dom2].
equalVal id(env,nameSet ,doml) AND equalValid(env,nameSet,dom2),
functionD{doml,dom2]. FALSE,
unionD[ name ,summands]. eqValidS(env,nameSet,summands)
ESAC;

#Test whether equality is defined on a union domain

# -- apply equalvalid to its summands
eqValidS = \(env,nameSet, summands). .
CASE summands OF Bl
ni1S. TRUE,
consS[ tag,dom, summands]. -
equalvalid(env,nameSet,dom) AND qua]idS(env nameSet, summands)
ESAC; ,

ATTRIBUTE
newName <ENV.NAME>;
identifier <CENV . NAME ,MODE> ;
Domain <ENV.DOM)>; #Domains
def <ENV.DOM)>;
summandl ist <ENV.SUMMANDS > ;
summand <ENV.TAG,DOM>;
expression <ENV,VARENV.DOM) ; #Expressions
term <ENV,VARENV.DOM> ;
factor CENV,VARENV .DOM) ;
caseBoundVars <ENV,VARENV.DOM,VARENV);
caseArm <ENV,VARENV,TAG.DOM) ;
caselist <ENV,VARENV, SUMMANDS .DOM> ;
lTambdaTail <ENV,VARENV.DOM)>;
tuple CENV,VARENV.DOW ;
integerOp <.>;
booleanOp <.
relationOp <.>;
equalsOp <.
prefixOp <DOM.DOM> ;
boundVars <ENV,VARENV.DOM,VARENV);
boundV <ENV,VARENV .DOM,VARENV);
nonterminal <ENV.>; #Grammar rules
attr <ENV.DOM)> ;
attributes <ENV,ATTRS.>;
rightSide <ENV.>;
withClause <ENV.);
terminal <.>;
delimeter <.>;
delimChar <>
domainPart <.ENV); #Declarations
domainDefs <FINALENV.ENV);
domDef in CFINALENV,ENV.ENV);
forwardPart CFINALENV,ENV.ENV);
forwardDecls CFINALENV,ENV.ENV);
def inePart <ENV.ENV);
definitions <ENV.ENV);

attributePart <ENV.ENV)>;

attributeDecls <ENV.ENV): :

attributelList <ENV,FLOW,ATTRS.ATTRS); -
rulePart CENV.)>; ”
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rulelist <ENV.>; .
resolutionPart <.D>;
resolutions <.>;
assocKind <.>;
terminallist <.>%

grammar <.EWNVD;

RULE grammar

newName<env, name> = ident<{name> WHERE<env(name) IS undefined>;
identifier<env,name,env(name)> = ident<name>;

BRERES ANV AERGERRARNRRERRRRIRARNER AR RNV RRNRERRRRRA N R RO AR RN RN E

#4#8F DOMAINS

!#l##l##ﬂl##l#l#l#l#l#t##llll####l#ll#####ll##ll#l#l!!##l#l#

#Domains are evaluated in an environment that includes the domain -@efinitions,

#to allow forward references to domains. See declarations section.

#Check that the name is defined to be a domain
sDomain<env,nameD[name]> = identifier<env,name,domainMode[dom]>;

sDomain<env,dom> = "(" sDomain<env,dom> ")";

sDomain<env,productD[doml,dom2]> =
sDomain<env,doml)> "X" sDomain<env,dom2)>;

sDomain<env,functionD[doml,dom2]> =
sDomain<env,dom1> "->" sDomain<env,dom2>;

#Summand 1ists for union domains
#This grammar only allows unions at the top level of domain definitions

summandL ist<env,consS[tag,.dom,nil1S]> =
summand<env,tag,dom>;

summandList<{env,consS[tag,dom, summands]> =
summand<env,tag,dom> "+" summandList<env,summands>;

summand<env, tag,dom> = #Summand with domain
ident<tag> “"[" sDomain<env,dom> "]";

summand<env, tag,voidDom> = #Void summand
ident<tag>;

HENNURNRNENARRRENNS NN IRNOARRERONNRRY AR RN BANBNNN RN NI
##4## EXPRESSIONS
PHNNANNNNARRN BRI RRNRNRNNRRRNRARRRNNNRRRN BN AR RN OGN

expression<env,varEnv,dom> = term<env,varEnv,dom);
##4# Infix operators

expression<env,varkEnv,booiDom> =
term<env,varEnv,unionl> "IS" identifier<env,tag, tagMode[dom,union2]>
WHERE<compatible(env,unionl,union2)>;
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expression<env.varEnv,noname(env,dom)> =
term<env,varEnv,functionD[doml,dom]> ":" expression<env,varEnv,dom2>
. . WHERE<compatible(env,doml,dom2)>;

#Integer operators
expression<env,vartnv, intDom> =
termdenv,varkEnv, intDom> integerOp<> expression<env,varEav, intDom>;

-

integerOp<>
integerOp<>
integerOp (>
integerOp<>
integerOp<>

L I B B ]
*
L]
]

#8oolean operatos .
expression<env,varEnv,boolDom> = Y
term<env,varEnv,boolDom> booleanOp<> expression<env,varEnv,boolDomd;
- =

boolean0Op<> = "AND";

_booleanOp<> = “OR";

#Integer relations
expression<env,varEnv,boolDom> =
term{env, varkEnv, intDom> relationOp<> expression<env,varEnv, intDom)>;

relationOp<> = "LT";
relationOp<> = “LE";
relationOp<> = “GT";
relationOp<> = "GE";

#Equality testing
expression{env,varEnv,boo1Dom> =
term<env,varfnv,doml> equalsOp<> expression{env,varEnv,dom2>
WHERE<compatible(env,domi, dom2)>
WHERE<equalValid(env, \name.FALSE, doml)>;

equalsOp<> = “EQ";
equalsOp<> = "NE";
# Prefix operators

expression{env,varEnv,noname(env,doml)> =
pref ixOp<{dom,dom1> expression{env,varEnv,dom>;

prefixOp<{productD[doml,dom2], dom1> = "LEFT";
prefixOp(productD[doml.domZ]..dom2> = "RIGHT";
pref ixOp<boo1Dom,boo1Dom> = "NOT";

pref ix0p<intDom, intDom> = "-";

#Function update .
expression<env,varkEnv,dom> =
"[" expression<{env,varEnv,doml> "->" expression<env,varEnv,dom2> "]"
expression<eav,varEnv,dom>
WHERE<dom IS functionD>
WHERE<compatible(env,dom, functionD[domi’,dom2})>;

#Conditional expression
expression{env,varEnv,dom2> = -
"1F" expression{env,varknv,boo)Dom>
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"THEN" expression<env,varkEnv,doml)>
"ELSE” expression<env,varEnv,dom2> “FI"
WHERE<compatible(env,doml,dom2)>;

###¥Bound variables for CASE, lambda, LET, LETREC
boundvars<env,varkEnv,dom,varEnvl)> = boundV<env,varEnv,dom,varEnvl);

#Tuple of bound variables

boundvars<env,varEnv,productD[doml,dom2], varEnv2> =
boundv<env,varEnv,doml,varEnvl> ", "
boundvars<env,varkEnvl,dom2,varEnv2);

boundV(env,varEnv,dom,varEnvl) = "(" boundvVars<env,varEnv,dom,varEnvl> ")";

#Implicit domain from variable name
boundvV<env,varEnv, dom, [name->varMode[dom]]varEnv> =
identifier<env,name,domainMode[dom]>;

#Explicit domain
boundv<env,varEnv, dom, [name->varMode[dom]]varEnv> =
ident<name> ":" sDomain(env,dom);

#¥## CASE expression

expression<env,varEnv,dom> =
"CASE" expression<{env,varEnv,unionD[name,summands]> "OF"
caseList<env,varEnv,summands,dom> T“ESAC"

caseList<env,varEnv, consS[tag,domS,summands], doml)> =
caseArm<env,vartnv,tag.doml> ","
caseList<env,varEnv,summands,dom2)>
WHERE<compatible(env,doml,dom2)>;

caseList<env,varEnv, consS[tag,dom9,ni1S], dom> =
caseArm<env,varEnv,tag,domd>;

caseArm<env,varknv,tag,dom> =
identifier<env,tag, tagMode[doml,union]>
caseBoundvars<env,varEnv,dom2,varEnvl> " "
expression<env,varinvl,dom)> ;

caseBoundvars<env,vartav,voidDom,varEnv) =

caseBoundvars<env,varkav,dom,varkEnvl) =
"[" boundvars<env,varEnv,dom,vartnvl> "]" ;
#Lambda-abstraction

expression<env,varEnv,dom)- =
"\" lambdaTail<env,varfEnv,dom>;

lambdaTail<env,varEnv,functionD[doml,dom2]> =
boundvars<env,varEav,doml,varEnvl)
lambdaTail<env,varEnvl,dom2);
lambdaTail<env,varEnv,functionD[doml,dom2]> =
boundVars<env,varkEnv,doml,varEnvl> "." expression{env,varEnvl,dom2>;

#Fixedpoint expression
expression<env,varEnv,dom2> =
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"FIX" "\" boundvVars<env,vartnv,domi,varEnvi> "."
expression<env,varEnvl, dom2>
WHERE<compatible(env,domi,dom2)>;

####Local definitions LET and LETREC

expression<env,varEnv,dom> = .
"LET" boundVars<env,vartnv,doml,varEnvl)

"=" gxpression<env,varEnv,dom2> WHERE<compatibie(env,doml,dom2)>
"IN" expression<env,varEnvi,domd;

expression<env,vartnv,dom> =
"LETREC" boundVars<env,varEnv,doml,varEnvl)
"=" gxpression<env,vartnvl,dom2> WHERE<compatible(env,doml,dom2)>
: WHERE<dom2 IS functionD>

ey
'

"IN" expression<env,varEnvl,dom>;

#¥### Terms

term<env,varknv,noname{env,dom)> = factor<env,varEnv,dom);

#Function application

term<env,vartEnv, noname(env,dom)> =
term<env,varEnv,functionD[doml,dom]> factor<env,varEnv,dom2>
WHERE<compatible(env,doml,dom2)>;

#Projection from a union domain

term<env,varknv, noname{env,dom)> =
term<env,varEav,unionl> "!* identifier<env,tag, tagMode[dom,union2]>

HHERE(compat1b1e(env.unionl.unionZ));
#### Factors
factor<env,varinv,dom> = "(" tup]é(env.varEnv.dom) ")
tup1e(env.yar£nv.dom> = expression<env,varkEnv,dom);

tupiecenv,varknv,productD{doml,dom2]> =
expression<env,varEnv,doml> "," tuple<env,varEnv,dom2>;

#Constants
factor<env,vartEnv,boolDom> = "TRUE";
factor<env,varEnv,boolDom> = "FALSE";

factor<{env,varknv, intDom> = number<int);

factor<env,varknv,nameDom> = """" jdent<{name> """":

#ldentifiers in expressions can be:
# void tag injections
# named expressions (FORWARD or DEFINE)
# bound variables
# attribute variables
factor<env,vartnv,dom> = identifier{varEnv,name,mode>
WITH dom = -
CASE mode OF -
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undef ined. BOTSDON]L
domainMode[dom). BOT[DOM],

tagMode[dom,union]. IF dom EQ voidDom THEN union ELSE BOT[DOM] FI,
forwardMode[dom]. dom,
expMode[dom]. dom,
varMode[dom]. dom,
attributeMode{dom]. dom,
symboiMode[attrs]. BOT[DOM]
ESAC;

#Injection to a union domain
factor<env,vartEnv,union> =
identifier<env, tag, tagﬂode[doml union]>

WHERE<compatible(env,doml,dom)>
"[* tuple<eav,vartav,dom> "1°

#The bottom element of a domain
factor<env,varfnv,dom> = "BOT" "[" sDomain<env,dom> *]%;

RRBERRRIREN RN BOVANR RO ERRB RN RN ORRR BN ER R R RS RN RR NN R EENN
#¥###¥ RULES

FEREERRRRRRERRRERNR IR RARRRIRRRRERR R RRRRRR VR RRNN R RERR SRR

#R1ight sides of rules
rightSide<env> = ;
rightSide<env)> = rightSide<env> nonterminal<env);

rightSide<env)> = rightSide<env> terminald{d;

nonterminal<env) =
identifier<env, name, symbolMode[attrs]>
"<" attributes<env,attrs> ">" ;

#Lists of attribute expressions
attributes<env,nilA> = ;

attributes<env, consA[doml,flow,nilA]> =
attrdenv,dom2)> WHERE<compatible(env,doml,dom2)>;

attributes<env, consA[doml,flow,attrs)> =
attrcenv,dom2> WHERE<Ccompatible(env,doml,dom2)>
"," attributes<env,attrs) ;

#Attribute expression
4 Its variable environment contains all possible attribute names
attr<env,dom> =
expression<env,varEnv,dom)>
WITH varEnv = '
\name. LET mode = env(name) IMN
IF mode IS domainMode THEN attributeﬂode[modeldomainlodo]
ELSE mode FI;

withClause<env) = ;
withClause<env) =

withClause<env)
"WITH® attr<env,dom1> "=" attr<env,dom2>
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WHERE<compatible(env,doml,dom2)>;

terminal<> = nwne jdant<named """";
terminal¢d = - """* delimeter(d> """";
delimeter<> = delimChar<>;

delimeter<> = delimeter<> delimChar<);

delimChar<> = "|* ; detimChar<> = "#" ; delimChar<) = "%X" ;
delimChar¢> = "§" delimChar<> = "+» delimChar<)> = "&" ;
delimChar¢> = "*" delimChar<> = "(" ; delimChar<> = *)" ;
delimChar<> = "+ ; delimChar<> = "-"- ; delimChar<> = "=* ;
delimChars> = "[* ; delimChar<> = "}" ; delimChar<> = ":* ;
delimChar<> = ":* . detimChar<> = "'" ; detimChar<> = "<*" ;
delimChar<d> = ">" ; detlimChar<> = " ," ; delimChar<> = "." ;
delimChar) = "/" ; delimChar<> = "7 ;

HRB RN ARG BHRBERRDRRNRNRRIRNE R RRBRAER BN R RRER Y RANNY NN
###¥# DECLARATIONS
RANNBARRRRBIRITUBRRBNNNURRANRBER RS IRUNRBBN Y AN BN RANR AN ON

# Domain definitions

In the domain definition part, a named domain may be referenced before
its definition. To check that each named domain is eventually defined,
the final environment is passed back through the domain definitions as

finalEnv. Each named domain checks that the name is defined in the
finalEnv.

LR R B

domainPart<{nullEnv)> = ;

domainPart<env> = "DOMAIN" domainDéfs(env,env);

domainDefs<{finalEnv,nullEnv> = ;
domainDefs<finalEnv,envl> =
domainDefs<finalEnv,env)> domDefin<{finalEnv,env,envl> *;"

#UNSPEC domain
domDef in<finalEnv, env, [name->domainMode[unspecD[name]]]env)> =
newName<env,name> "=" "UNSPEC";

#Union domain
domDefin<finalEnv, env,
[name->domainModefunion]]
addUnion(summands,env,union)> =
newName<env,name> "=" "[" summandList<finalEnv,summands> "]"
WITH union = unionD[name, summands];

#0rdinary domain
domDef in<finalEnv, -env, [name->domainMode[dom]]env> =
newName<env,name> "=" sDomain<finalEnv,dom>;

#### Forward declarations

# The FINALENV checks that all Forward-declared names are eventually defined.
# FinalEnv contains the environment after the DEFINE part.

forwardPart{finalEnv,env,env> = ;

forwardPart<{(finalEnv,envl,env2> = 'FORHARP' forwardDec1s<finalEnv,envi,env2);
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forwardDec1s<finalEnv,env,env> = ;
forwardDecis<finalEnv,env, [nnme-)fdrwarduode[dom]] env2) =
forwardDeclis<finalfnv,env,env2>
identifier<finalEnv,name,oxpMode[ dom997]>
. WHERE<env2(name) IS undefined>

WHERE<compatible(env,dom,dom99)>
sDomain<env2,domd> ":;" ; ’

#### Expression definitions
def inePart<env,env)> = ;

def inePart<envi,env2)> = "DEFINE" definitions<envl,env2):;
definitions<env,env> = ;

definitions<envl, [name->expMode[dom]] env2) =
definitions<envl, env2)> 4
ident<{name> "=" def<env2,dom> “;"
#May redeclare FORWARD name
WHERE<LET mode = env2(name) IN
(mode 1S undefined) OR (mode IS forwardMode)>:

def<env,dom> = expression<env,env,dom>;

def<env,dom)> = "UNSPEC" ":" sDomain<env,dom);

#### Attribute declarations
attributePart<env,env) = ;

attributePart<envl,env2) = "ATTRIBUTE" attributeDecis<envi,env2);

attributeDecls<env,env) = ;

attributeDecis<env, [name -> symbolMode[attrs2]] env2) =
attributeDeclis<env,env2)
newName<env2,name>
“<" attributelList<env,inherited,attrs,attrs2> *".*
attributeList<env,synthesized,nilA, attrsd> ™"

#Lists of attribute domains
attributeList<env,flow,attrs,attrs> = ;

attributelist<env,flow,attrs, consA[dom,flow,attrs]> =
sDomain<env,dom) ;

attributeList<env,flow,attrsl, consA[dom,flow,attrs2]> =
sDomain<env,dom> *," attributeList<env,flow,attrsil, attrs2);

#### Semantic Rules

rulePart<env)> =

"RULE" identifier{env,name,symboiMode[attrs]>
ruleList<env);
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ruleListlenv)> = ;

ruleList<env> =
ruleList<env> . '
nonterminal<env> "=" rightSide<env> withClause<eny> ";". ;

#### Resolution Part

resolutionPartld = ;

resoiutionPartld = :
"RESOLUTION" resolutions<d ;

resolutions<d = ; ‘S
resolutions<d> = resolutions<d> assocKkind<> terminalList<> *
. -

assocKind<> = "LEFT";
assockind¢> = "RIGHT";
assocKind<> = "NONASSOC":; -

terminallist<d> = terminalld;

terminallist<d = terminallist<> terminalCd> ;

grammar<env) =
domainPart<envl)
forwardPart<env3,envl,env?)
def inePart<{env2,envld>
attributePart<envd,env>
rulePart<env>
resolutionPart(>
"END" ;

RESOLUTION
RIGHT X" "->" ;

END
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