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4 RACKS, LEIBNIZ ALGEBRAS AND YETTER-DRINFEL’D

MODULES

ULRICH KRÄHMER AND FRIEDRICH WAGEMANN

ABSTRACT. A Hopf algebra object in Loday and Pirashvili’s category
of linear maps entails an ordinary Hopf algebra and a Yetter-Drinfel’d
module. We equip the latter with a structure of a braided Leibniz algebra.
This provides a unified framework for examples of racks in thecategory
of coalgebras discussed recently by Carter, Crans, Elhamdadi and Saito.
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1. INTRODUCTION

The subject of the present paper is the relation between racks, Leibniz
algebras and Yetter-Drinfel’d modules.

An augmented rack (or crossedG-module) can be defined as a Yetter-
Drinfel’d module over a groupG, viewed as a Hopf algebra object in the
symmetric monoidal categorypSet,ˆq. Explicitly, it is a right G-setX
together with aG-equivariant mapp : X Ñ G whereG carries the right
adjoint action ofG. A main application of racks is the construction of
invariants of links and tangles, see e.g. [3, 6, 7] and the references therein.

Leibniz algebras are vector spaces equipped with a bracket that satisfies a
form of the Jacobi identity, but which is not necessarily antisymmetric, see
Definition 2 below. They were discovered by A.M. Blokh [2] in 1965, and
then later rediscovered by J.-L. Loday in his search of an understanding for
the obstruction to periodicity in algebraic K-theory [15].In this context the
problem of the integration of Leibniz algebras arose, that is, the problem of
finding an object that is to a Leibniz algebra what a Lie group is to its Lie
algebra. Lie racks provide one possible solution, see [4, 5,12].

Analogously to augmented racks over groups, the Yetter-Drinfel’d mod-
ulesM over a Hopf algebraH in pVect,bq form the Drinfel’d centre of
the monoidal category of rightH-modules, see Section 4.1. Taking in an
H-tetramodule (bicovariant bimodule)M the invariant elementsinvM with
respect to the left coaction defines an equivalence of categories between
tetramodules and Yetter-Drinfel’d modules. Thus they are the coefficients
in Gerstenhaber-Schack cohomology [8]. Another application is in the clas-
sification of pointed Hopf algebras, see e.g. [1].

Our aim here is to directly relate Leibniz algebras to Yetter-Drinfel’d
modules, starting from the fact that the universal enveloping algebra of a
Leibniz algebra gives rise to a Hopf algebra object in the categoryLM
of linear maps [16], see Section 2.3. We extend some results from Wo-
ronowicz’s theory of bicovariant differential calculi [23] which are dual to
Hopf algebra objects inLM. In particular, we show that one can con-
struct braided Leibniz algebras as studied by V. Lebed [14] by generalising
Woronowicz’s quantum Lie algebras of finite-dimensional bicovariant dif-
ferential calculi:

Theorem 1. Let f : M Ñ H be a Hopf algebra object in the category of
linear mapsLM. Thenf restricts to a morphism̃f : invM Ñ ker ε of
Yetter-Drinfel’d modules over the Hopf algebraH and

x✁ y “ xf̃pyq

turns invM into a braided Leibniz algebra in the category of Yetter-Drinfel’d
modules.
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This allows us to study racks and Leibniz algebras in the samelanguage,
which provides in particular a unified approach to [3, Proposition 3.1] and
[3, Proposition 3.5], see Examples 4 and 5 at the end of the paper.

The paper is structured as follows: Section 2 recalls basic facts and def-
initions about the categoryLM of linear maps and the construction of the
universal enveloping algebra of a Leibniz algebra. In Section 3 we explore
analogues inLM of functors relating groups and Lie algebras to Hopf al-
gebras, with a view towards the integration problem of Lie algebras inLM.
In particular we point out that the linearisationp : kX Ñ kG of an aug-
mented rackp : X Ñ G is not a Hopf algebra object inLM, but instead
a map ofkG-modules and comodules, see Proposition 3. Section 4 recalls
background on Yetter-Drinfel’d modules over bialgebras. The main section
is Section 5 where we prove Theorem 1 and finish by discussing concrete
examples.

Acknowledgements:UK and FW thank UC Berkeley where this work took
its origin. FW furthermore thanks the University of Glasgowwhere this
work was finalised. UK is supported by the EPSRC Grant “Hopf algebroids
and Operads” and the Polish Government Grant 2012/06/M/ST1/00169.

2. ALGEBRAIC OBJECTS INLM

In this section we recall the neceesary background on the category of
linear maps, algebraic objects therein, and the relevance of these for the
theory of Leibniz algebras, mainly from [16, 17]. Throughout we work
with vector spaces over a fieldk, although the results can be generalised to
other base categories. An unadornedb denotes the tensor product overk.

2.1. The tensor categoriesLM andLM
‹. The following definition goes

back to Loday and Pirashvili [16]:

Definition 1. Thecategory of linear mapsLM has linear mapsf : V Ñ W

between vector spaces as objects, which are usually depicted by vertical
arrows withV upstairs andW downstairs. A morphismφ between two
linear mapspf : V Ñ W q andpf 1 : V 1 Ñ W 1q is a commutative square

V
φ1 //

f

��

V 1

f 1

��
W

φ0 // W 1
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The infinitesimal tensor productbetweenf andf 1 is defined to be

pV b W 1q ‘ pW b V 1q

fbid
W 1 `idW bf 1

��
W b W 1.

The infinitesimal tensor product turnsLM into a symmetric monoidal
category with unit object being the zero map0 : t0u Ñ k.

Remark 1. Alternatively,LM is the category of2-term chain complexes
with a truncated tensor product; one has just omitted the terms of degree two
in the tensor product of complexes. One can analogously define categories
LMn of chain complexes of lengthn and a tensor product which is trun-
cated in degreen, so in this senseLM “ LM1 andVect “ LM0. Taking
the inverse limit, one passes from these truncated versionsto the category
of chain complexes with the ordinary tensor productChain “ LM8. △

InterpretingLM as the category of cochain rather than chain complexes
of length 1 and depicting them consequently by arrows pointing upwards
results in a different monoidal structureb‹ onLM in which

pf : V Ñ W q b‹ pf 1 : V 1 Ñ W 1q

is given by

pV b W 1q ‘ pW b V 1q

V b V 1.

idV bf 1`fbid
V 1

OO

The resulting tensor category will be denotedLM
‹.

2.2. Algebraic objects inLM. In a symmetric monoidal tensor category,
one can define associative algebra objects, Lie algebra objects and bialgebra
objects. Loday and Pirashvili exhibit the structure of these in the tensor
categoryLM. For this, they use that the inclusion functor

Vect Ñ LM, W ÞÑ p0 : t0u Ñ W q,

and the projection functor

LM Ñ Vect, pf : V Ñ W q ÞÑ W

between the categories of vector spacesVect andLM are tensor functors
which compose to the identity functor onVect. This shows that for each
of the above mentioned algebraic structures inLM, the codomainW of
f : V Ñ W inherits the corresponding structure in the category of vec-
tor spaces. The linear map can be used to turn the vector spaceV ‘ W
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into an abelian extension ofW , in the sense discussed for example in [18,
Section 12.3.2]. The domainV becomes an abelian ideal inV ‘ W .

More explicitly, Loday and Pirashvili show that inLM:
‚ an associative algebra objectf : M Ñ A is the data of an associa-

tive algebraA, anA-bimoduleM and a bimodule mapf : M Ñ A,
‚ a Lie algebra objectf : M Ñ g is the data of a Lie algebrag, a

(right) Lie moduleM and an equivariant mapf : M Ñ g,
‚ a bialgebra objectf : M Ñ H is the data of a bialgebraH, of anH-

tetramodule(or bicovariant bimodule) M , that is, anH-bimodule
andH-bicomodule whose left and right coactions areH-bimodule
maps, and of anH-bilinear coderivationf : M Ñ H,

‚ a Hopf algebra object inLM is a bialgebra objectf : M Ñ H in
LM such thatH admits an antipode.

Remark 2. While Loday and Pirashvili formulate their statement about
Hopf algebra objects inLM rather as a definition, see [16, Seciton 5.1],
these really are the Hopf algebra objects inLM in the categorical sense: it
is straightforward to verify that ifH has an antipodeS : H Ñ H, then the
bialgebra objectf : M Ñ H has an antipode given by

M
T //

f
��

M

f
��

H
S // H

with T given in Sweedler notation byT pxq “ ´Spmp´1qqmp0qSpmp1qq.
ThusT is uniquely determined by the antipodeS on H and is not addi-
tional data.

Remark 3. Dually, a bialgebra objectf : H Ñ M in LM
‹ consists of a

bialgebraH in Vect and anH-tetramoduleM such thatf is a derivation
and bicolinear. IfM “ spanktgfphq | g, h P Hu, this structure is referred
to as afirst order bicovariant differential calculusoverH [23], see e.g. [13]
for a pedagogical account. Linear dualityF : V ÞÑ V ˚ yields a (weakly)
monoidal functorF : LM Ñ pLM‹qop, which is strongly monoidal on
the subcategory of finite-dimensional vector spaces. In Remark 7 below we
will describe the class of bialgebras inLM that is underF dual to first
order bicovariant differential calculi. △

2.3. Universal enveloping algebras inLM. Loday and Pirashvili further-
more construct in [16] a pair of adjoint functorsP (primitives) andU (uni-
versal enveloping algebra) associating a Lie algebra object in LM to a Hopf
algebra object inLM, and vice versa, and prove an analogue of the clas-
sical Milnor-Moore theorem in this context. For a given Lie algebra object
f : M Ñ g, the enveloping algebra isφ : UgbM Ñ Ug, ubm ÞÑ ufpmq.
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The underlyingUg-tetramodule structure onUg b M is as follows: the
rightUg-action onUg b M is induced by

pu b mq ¨ x “ ux b m ` u b m ¨ x

for all x P g, all u P Ug and allm P M . The left action is by multiplication
on the left-hand factor. The left and rightUg-coactions are given by the
coproduct on the left-hand factor, that is, forx P g, m P M they are

pxbmq ÞÑ 1bpxbmq`xbp1bmq, pxbmq ÞÑ p1bmqbx`pxbmqb1.

2.4. Leibniz algebras. We finally recall from [16] that a particular class of
Lie algebra objects inLM arises in a canonical way from Leibniz algebras:

Definition 2. A k-vector spaceg together with a bilinear map

r, s : g ˆ g Ñ g

is called a (right)Leibniz algebra, in case for allx, y, z P g

rrx, ys, zs “ rx, ry, zss ` rrx, zs, ys

holds.

In particular, any Lie algebra is a Leibniz algebra. Conversely, for any
Leibniz algebrag the quotient by the Leibniz ideal generated by the squares
rx, xs for x P g is a Lie algebragLie, and the right adjoint action ofgLie
on itself lifts to a well-defined right action ong. So by construction, the
canonical quotient mapπ : g Ñ gLie is a Lie algebra object inLM. The
universal enveloping algebra ofg as defined in [17] is exactly the abelian
extension of the associative algebraUgLie in Vect that is defined by the
universal enveloping algebraUpg Ñ gLieq, see [16, Theorem 4.7].

3. THE PROBLEM OF INTEGRATINGL IE ALGEBRAS IN LM

In this section we discuss the direct analogues inLM of some functo-
rial constructions that relate groups to Lie algebras, witha view towards
the problem of integrating Leibniz algebras to some global structure. Aug-
mented racks and their linearisations are one possible framework for these,
so we end by recalling some background on racks.

3.1. From Lie algebras to groups. Consider the following diagram of
functors:

Lie
U //

��

ccHopf

´˝

��
Grp cHopf

χ
oo
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HereLie is the category of Lie algebras over the fieldk, Grp is the cat-
egory of groups,Hopf is the category ofk-Hopf algebras, andccHopf and
cHopf are its subcategories of cocommutative respectively commutative
Hopf algebras. The functorU is that of the enveloping algebra, andχ is
the functor of characters, whileH˝ is the Hopf dual of a Hopf algebraH,
that is, the Hopf algebra of matrix coefficients of finite-dimensional repre-
sentations, see e.g. [13, 20].

An affine algebraic groupG over an algebraically closed fieldk of char-
acteristic 0 can be recovered in this way from its Lie algebrag :“ LiepGq
asχpUg

˝q providedG is perfect, i.e.G “ rG,Gs. More generally, ifG has
unipotent radical, thenG is isomorphic to the characters on the subalgebra
of basic representative functions onUg, see [10] for details.

3.2. Characters of Hopf algebra objects inLM. The functorχp´q (char-
acters) can be extended to Hopf algebra objects inLM, hence one might
attempt to use it to integrate Lie algebras inLM and in particular Leibniz
algebras. By definition, a characterχ of a Hopf algebra objectf : M Ñ H

is an algebra morphism inLM from f : M Ñ H to the unit of the tensor
categoryLM which is simply0 : t0u Ñ k. This amounts to a commutative
diagram

M
χ1 //

f

��

t0u

0

��
H

χ0 // k.

One therefore obtains just charactersχ0 of H, becauseχ1 is supposed to
be the zero map. The same applies to Hopf algebra objects inLM

‹, that
is, the component of the character associated to the tetramodule vanishes.
Thus we have:

Proposition 1. The functorχp´q (characters), applied to a Hopf object in
LM or LM‹, results just in characters of the underlying Hopf algebraH.

Hence the integration of Lie algebra objects inLM (and thus in partic-
ular Leibniz algebras) along the lines outlined in the previous section must
fail. One can associate to a Lie algebra object inLM its universal envelop-
ing algebra, and then by duality some commutative Hopf algebra object in
LM

‹, but characters of this object will always be only characters of the
underlying Hopf algebra.

3.3. Formal group laws in LM. Another approach to the integration of
Lie algebras is that of formal group laws, see [22]. Here one studies a
continuous dual ofUg.
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Recall that aformal group lawon a vector spaceV is a linear mapF :

SpV ‘ V q Ñ V which is unital and associative, i.e. its extension to a
coalgebra morphismF 1 : SpV q b SpV q Ñ SpV q is an associative product
on the symmetric algebraSpV q.

Mostovoy [21] transposes this definition into the realm ofLM. Namely,
a formal group law inLM is a map

G : S
`

pV ‘ V q Ñ pW ‘ W q
˘

Ñ pV Ñ W q,

whose extension to a morphism of coalgebra objects

G1 : SpV Ñ W q b SpV Ñ W q Ñ pV Ñ W q

is an algebra object inLM. Starting with a Lie algebra objectM Ñ g in
LM, the product in the universal enveloping algebraUpM Ñ gq composed
with the projection onto the primitive subspace yields a formal group law
using the identification ofUpM Ñ gq with SpM Ñ gq provided by the
analogue of the Poincaré-Birkhoff-Witt theorem for Lie algebra objects in
LM. Explicitly, one gets a diagram

Spgq b M b Spgq ‘ Spgq b Spgq b M
G1`G2

//

��

M

��
Spgq b Spgq

F // g

Mostovoy [21] shows then:

Proposition 2. The functor that assigns to a Lie algebra objectM Ñ g in
LM the primitive part of the product inUpM Ñ gq is an equivalence of
categories of Lie algebra objects inLM and of formal group laws inLM.

An interesting problem that arises is to specify what this framework gives
for the Lie algebra objects inLM coming from a Leibniz algebra, i.e. for
those of the formπ : g Ñ gLie. Furthermore, one should clarify what the
global objects associated to these formal group laws are. The results in
the present paper are meant to motivate why augmented racks are a natural
candidate, by going the other way and studying the Hopf algebra objects in
LM that are obtained by linearisation from augmented racks.

3.4. Augmented racks. The set-theoretical version ofLM is the category
M of all mapsX Ñ Y between setsX andY . One defines an analogue
of the infinitesimal tensor product in which the disjoint union of sets takes
the place of the sum of vector spaces, and the cartesian product replaces the
tensor product. This defines a monoidal category structure on M with unit
objectH Ñ t˚u. However, the latter is not terminal inM, thus one cannot
define inverses, and a fortiori group objects.
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One way around this “no-go” argument is to consider augmented racks:

Definition 3. Let X be a set together with a binary operation denoted
px, yq ÞÑ x✁ y such that for ally P X, the mapx ÞÑ x✁ y is bijective and
for all x, y, z P X,

px✁ yq ✁ z “ px✁ zq ✁ py ✁ zq.

Then we callX a (right)rack. In case the invertibility of the mapsx ÞÑ x✁y

is not required, it is called ashelf.

The guiding example of a rack is a group together with its conjugation
mappg, hq ÞÑ g ✁ h :“ h´1gh. Augmented racks are generalisations of
these in which the rack operation results from a group action:

Definition 4. Let G be a group andX be a (right)G-set. Then a map
p : X Ñ G is called anaugmented rackin casep satisfies the augmentation
identity, i.e. for allg P G and allx P X

(1) ppx ¨ gq “ g´1 ppxq g.

In other wordsp is equivariant with respect to theG-action onX and the
adjoint action ofG on itself. TheG-setX in an augmented rackp : X Ñ G

carries a canonical structure of a rack by setting

x✁ y :“ x ¨ ppyq.

Remark 4. Any rackX can be turned into an augmented rack as follows:
letAspXq be theassociated group(see for example [6]) ofX, which is the
quotient of the free group on the setX by the relationsy´1xy “ x ✁ y for
all x, y P X. Then there is a canonical mapp : X Ñ AspXq assigning to
x P X the class ofx in AspXq which turnsX into an augmented rack.△

A more conceptual point of view goes back to Yetter, confer [7]: a group
is the same as a Hopf algebra object in the symmetric monoidalcategory
Set with ˆ as monoidal structure. In this sense, rightG-modules are just
right G-sets while rightG-comodules are just setsX equipped with a map
p : X Ñ G. The augmentation identity (1) becomes the Yetter-Drinfel’d
condition that we will discuss in detail in the next section.Thus augmented
racks are the same as Yetter-Drinfel’d modules overG in Set, or, in other
words, the category of augmented racks overG is the Drinfel’d centre of
the category of rightG-sets.

3.5. Linearised augmented racks.By linearisation, one obtains the group
algebrakG of a groupG which consequently is a Hopf algebra inVect, see
e.g. [11, p.51, Example 2]. Hence one might ask whether a linearisation
of an augmented rackp : X Ñ G defines a Hopf algebra object inLM.
The functork´ (k-linearisation of a set) sendsp : X Ñ G to a linear map
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p : kX Ñ kG. ConsiderkX as akG-bimodule wherekG acts onkX on
the right via the given action and on the left via the trivial action. Consider
further the two linear maps

△l : kX Ñ kG b kX, △r : kX Ñ kX b kG

given forx P X by

△lx “ ppxq b x and △rx “ x b ppxq.

Then we have:

Proposition 3. The maps△l,△r turn kX into akG-bicomodule such that
p : kX Ñ kG is a morphism of bicomodules and bimodules, wherekG

carries the left and right coaction given by the coproduct, the trivial left
action, and the adjoint right action.

Proof. The augmentation identity

ppx ¨ gq “ g´1ppxqg, @x P X, g P G

shows thatp is a morphism of bimodules. We have

pp b 1qp△rxq “ ppxq b ppxq and p1 b pqp△lxq “ ppxq b ppxq

for all x P X, thusp is a morphism of bicomodules. �

In particular,p : kX Ñ kG is not a Hopf algebra object inLM in
general.

3.6. Regular functions on augmented racks.Taking the coordinate ring
krXs of an algebraic setX is a contravariant functor, so applying it to an
algebraic augmented rackp : X Ñ G gives rise to an algebra mapp˚ :

krGs Ñ krXs which is most naturally considered inLM‹.
The rightG-action onX induces a rightkrGs-comodule structure on

krXs. Together with the trivial left comodule structure,krXs becomes a
krGs-bicomodule. OnkrGs itself, we consider the bicomodule structure
obtained from the trivial left coaction and the right adjoint coaction given
in Sweedler notation byf ÞÑ fp2q b Spfp1qqfp3q, and then obtain:

Proposition 4. p˚ : krGs Ñ krXs is a morphism of bimodules and bico-
modules.

Proof. For the augmented rackp : X Ñ G, we have the following commu-
tative diagram:

X ˆ G //

pˆidG
��

X

p

��
G ˆ G // G
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which reads explicitly as

px, gq //

pˆidG
��

x ¨ g

p

��

pppxq, gq // ppx ¨ gq “ g´1ppxqg

Applying the functorkr´s to this diagram yields

krXs // krXs b krGs

krGs

p˚

OO

// krGs b krGs

p˚bidkrGs

OO

This means exactly thatp˚ is a morphism of right comodules. As the left
coactions onkrGs andkrXs are trivial, it is a map of bicomodules. �

3.7. The Yetter-Drinfel’d braiding. It is well-known (see for example
[11] p. 319) that the category of augmented racks over a fixed groupG

carries a braiding:

Proposition 5. Define for augmented racksp1 : X Ñ G andp2 : Y Ñ G

with respect to a fixed groupG their tensor productX b Y byX ˆ Y with
the actionpx, yq ¨g :“ px ¨g, y ¨gq and the equivariant mapp : XˆY Ñ G

beingppx, yq :“ p1pxqp2pyq. Then the formula

cX,Y : X b Y Ñ Y b X, cX,Y px, yq :“ py, x ¨ ppyqq

defines a braiding on the category of augmented racks overG.

This is just a special case of the Yetter-Drinfel’d braidingthat we are
going to study in detail next.

4. YETTER-DRINFEL’ D MODULES

In this section we recall definitions and facts about Yetter-Drinfel’d mod-
ules over Hopf algebras inVect that we need. For more information, the
reader is referred to [11, 13, 19, 20].

4.1. Yetter-Drinfel’d modules. Let H “ pH, µ, η,△, εq be a bialgebra
overk. To every right module and right comoduleM overH, one functo-
rially associates a bimodule and bicomoduleMH overH which isH b M

as a vector space with left and right action given by

gph b xq :“ gh b x, ph b xqg :“ hgp1q b xgp2q

and left and right coaction given in Sweedler notation by

ph b xqp´1q b ph b xqp0q :“ hp1q b php2q b xq,
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ph b xqp0q b ph b xqp1q :“ php1q b xp0qq b hp2qxp1q.

These coactions and actions are compatible in the sense thatMH is a
Hopf tetramodule if and only ifM is a Yetter-Drinfel’d module:

Definition 5. A Yetter-Drinfel’d moduleoverH is a right module and right
comoduleM for which we have

(2) pxhp2qqp0q b hp1qpxhp2qqp1q “ xp0qhp1q b xp1qhp2q

for all x P M andh P H.

Remark 5. If H is a Hopf algebra with antipodeS, then the Yetter-Drinfel’d
condition (2) is easily seen to be equivalent to

(3) pxhqp0q b pxhqp1q “ xp0qhp2q b Sphp1qqxp1qhp3q.

△

More precisely,H is a Hopf algebra if and only ifM ÞÑ MH defines an
equivalence between the categories of Yetter-Drinfel’d modules and that of
Hopf tetramodules. In this case, the inverse functor is given by taking the
invariants with respect to the left coaction,

N ÞÑ invN :“ tx P N | xp´1q b xp0q “ 1 b xu.

This is an equivalence of monoidal categories, where the tensor product of
Hopf tetramodules isbH .

Example 1. Let G be a group andM be akG-Yetter-Drinfel’d module.
ThenM is in particular akG-module, i.e. aG-module. The comodule
structure ofM is aG-grading of thisG-module:

M “
à

gPG

Mg.

The Yetter-Drinfel’d compatibility condition now reads for u P kG and
m P M

pumqp´1q b pumqp0q “ up1qmp´1qSpup2qq b up3qmp0q

which means for a group elementg “ u P G and a homogeneous element
m P Mh

pgmqp´1q b pgmqp0q “ ghg´1 b g ¨ m.

This means that the action ofg P G onM mapsMh toMghg´1 .
When the moduleM is a permutation representation ofG, that is, is

obtained by linearisation from a (right)G-setX, M » kX, thenM is
Yetter-Drinfel’d precisely whenX carries the structure of an augmented
rack. The full subcategory of the category of all Yetter-Drinfel’d modules
overkG of these permutation modules has been studied first by Freyd and
Yetter, see [7, Definition 4.2.3].
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Example 2. Recall from Section 2.3 that iff : M Ñ g is any Lie algebra
object inLM, then the universal enveloping algebra construction inLM

yields theUg-tetramoduleUg b M . In this case,M is recovered as the
Yetter-Drinfel’d module of left invariant elements, with trivial right coaction
and right action being induced by the rightg-module structure onM .

More generally, every right module over a cocommutative bialgebraH
becomes a Yetter-Drinfel’d module with respect to the trivial right coaction.

4.2. The Yetter-Drinfel’d braiding revisited. Every rightH-module and
rightH-comoduleM carries a canonical map

(4) τ : M b M Ñ M b M, x b y ÞÑ yp0q b xyp1q

The following well-known fact characterises whenτ is a braiding:

Proposition 6. The map (4) is a braiding onM if and only ifM is a Yetter-
Drinfel’d module.

Remark 6. While (3) is maybe easier to memorise, (2) makes sense for all
bialgebras and is directly the condition that occurs when testing whether
or not τ satisfies the braid relation. More generally,τ can be extended to
braidingsN b M Ñ M b N between any rightH-moduleN and a Yetter-
Drinfel’d moduleM , and this identifies the category of Yetter-Drinfel’d
modules with the Drinfel’d centre of the category of rightH-modules. △

4.3. The Yetter-Drinfel’d module ker ε. The following example of a Yetter-
Drinfel’d module is of particular importance to us:

Proposition 7. If H is any Hopf algebra, then the kernelker ε of its counit
is a Yetter-Drinfel’d module with respect to the right adjoint action

g đ h :“ Sphp1qqghp2q

and the right coaction

△̃ : ker ε Ñ ker ε b H, k ÞÑ hp1q b hp2q ´ 1 b h.

One can viewker ε as a bicomodule with respect to the trivial left coac-
tionh ÞÑ 1bh, and then the inclusion mapι : ker ε Ñ H is a coderivation.
This is universal in the sense that every coderivation factors throughι:

Lemma 1. LetH be a bialgebra,M be anH-bicomodule, andf : M Ñ H

be a coderivation.

(1) We haveim f Ď ker ε.
(2) The restriction off to f̃ : invM Ñ ker ε is right H-colinear with

respect to the coactioñ△ onker ε.
(3) If M is a tetramodule andf is H-bilinear, thenf̃ is a morphism of

Yetter-Drinfel’d modules.
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Proof. (1) Applyingε b ε to the coderivation condition

pfpmqqp1q b pfpmqqp2q “ mp´1q b fpmp0qq ` mp0q b fpmp1qq

yieldsεpfpmqq “ 2εpfpmqq, soεpfpmqq “ 0.
(2) For left invariantm P M , we havemp´1q b mp0q “ 1 b m, so sub-

tracting1 b fpmq from the coderivation condition yields

△̃pfpmqq “ pfpmqqp1q b pfpmqqp2q ´ 1 b fpmq “ mp0q b fpmp1qq.

(3) The right action oninvM respectivelyker ε is obtained from the bi-
module structure onM respectivelyH by passing to the right adjoint ac-
tions, sof̃pm đ hq “ fpSphp1qqmhp2qq “ Sphp1qfpmqhp2q “ f̃pmq đ h. �

Remark 7. In Remark 7 we mentioned that first order bicovariant differ-
ential calculi in the sense of Woronowicz are formally dual to certain bial-
gebras inLM. We can explain this now in more detail: given a first order
bicovariant differential calculus over a Hopf algebraA, that is, a bicolinear
derivationd : A Ñ Ω with values in a tetramoduleΩ which is minimal in
the sense thatΩ “ spanktadb | a, b P Au, one defines

RpΩ,dq :“ ta P ker ε | Spap1qqdap2q “ 0u.

It turns out thatpΩ, dq ÞÑ RpΩ,dq establishes a one-to-one correspondence
between first order bicovariant differential calculi and right ideals inker ε
that are invariant under the right adjoint coactiona ÞÑ ap2q b Spap1qqap3q of
A, see [13, Proposition 14.1 and Proposition 14.7]. WhenA “ krGs is the
coordinate ring of an affine algebraic group,Ω are the Kähler differentials
andda is the differential of a regular functiona, thenRpΩ,dq is justpker εq2

andker ε{RpΩ,dq is the cotangent space ofG in the unit element.
Motivated by this example, one introduces thequantum tangent space

TpΩ,dq :“ tφ P A˚ | φp1q “ 0, φpaq “ 0 @ a P RpΩ,dqu,

whereA˚ “ HomkpA, kq denotes the dual algebra ofA. Provided thatΩ
is finite-dimensional in the sense thatdimk

invΩ ă 8, the quantum tangent
space belongs to the Hopf dualH :“ A˝ of A and uniquely characterises the
calculus up to isomorphism, see [13, Proposition 14.4] and the subsequent
discussion. By definition,TpΩ,dq is then a subspace ofker ε Ă H which is
by [13, (14)] invariant under the right coactioñ△ and as a consequence of
[13, Proposition 14.7] it is also invariant under the right adjoint action of
H on itself; in other words, the quantum tangent space is a Yetter-Drinfel’d
submodule ofker ε, and if we equipM :“ HbTpΩ,dq with the corresponding
H-tetramodule structure we can extend the inclusion of the quantum tangent
space intoker ε to a Hopf algebra objectf : M Ñ H in LM. Thus first
order bicovariant differential calculi should be viewed asstructures dual to
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Hopf algebra objectsf : M Ñ H in LM for which the induced map̃f is
injective. △

5. BRAIDED LEIBNIZ ALGEBRAS

The definition of a Leibniz algebra extends straightforwardly from Vect

to other additive braided monoidal categories [14]. In thisfinal section we
discuss the construction of such generalised Leibniz algebras from Hopf
algebra objects inLM which is the main objective of our paper.

5.1. Definition. The following structure is meant to generalise both racks
and Leibniz algebras in their role of domains of objects inLM:

Definition 6. A braided Leibniz algebrais a vector spaceM together with
linear maps

✁ : M b M Ñ M, x b y ÞÑ x✁ y

and

τ : M b M Ñ M b M, x b y ÞÑ yx1y b xx2y

satisfying

(5) px✁ yq ✁ z “ x✁ py ✁ zq ` px✁ zx1yq ✁ yx2y @x, y, z P M.

Remark 8. We do not assume thatτ maps elementary tensors to elemen-
tary tensors, the notationyx1y bxx2y should be understood symbolically like
Sweedler’s notation△phq “ hp1q b hp2q for the coproduct of an elementh
of a coalgebraH which is also in general not an elementary tensor. △

Remark 9. It is natural to ask forτ to satisfy the braid relation (Yang-
Baxter equation), so thatM is just a braided Leibniz algebra as studied
e.g. in [14]. Instead of assuming this a priori we rather characterise this
case in the examples that we study below, and later we investigate the con-
sequences of this condition. △

Example 3. When τ is the tensor flip,yx1y b xx2y “ y b x, we recover
Definition 2 from Section 2.4 withx ✁ y “: rx, ys, as the Leibniz rule (5)
becomes the (right) Jacobi identity in the form

rrx, ys, zs “ rx, ry, zss ` rrx, zs, ys.

△
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5.2. Leibniz algebras from modules-comodules.The following proposi-
tion allows one to construct Leibniz algebras from modules-comodules:

Proposition 8. LetM be a right module and a right comodule over a bial-
gebraH, q : M Ñ H be ak-linear map, and define

x✁ y :“ xqpyq.

ThenpM, τ,✁q is a braided Leibniz algebra with respect to

τ : M b M Ñ M b M, x b y ÞÑ yp0q b xyp1q

from (4) provided that

(6) hp1qqpxhp2qq “ qpxqh

and

(7) qpxqp1q b qpxqp2q “ 1 b qpxq ` qpxp0qq b xp1q

holds for allx P M andh P H.

Proof. Straightforward computation gives

px✁ yq ✁ z “ pxqpyqqqpzq “ xpqpyqqpzqq

“ xpqpzqp1qqpyqpzqp2qqq

“ xqpyqpzqq ` xqpzp0qqqpyzp1qq

“ x✁ py ✁ zq ` px✁ zx1yq ✁ yx2y

as had to be shown. �

Remark 10. Observe that applyingidH b ε to (7) implies

qpxq “ εpqpxqq ` qpxq,

so this condition necessarily requiresim q Ď ker ε Ă H. If H is a Hopf
algebra, then (6) is equivalent to the rightH-linearity of q with respect to
the right adjoint action ofH onker ε. Furthermore, the condition (7) can be
stated also as saying thatq : M Ñ ker ε is rightH-colinear with respect to
the right coactioñ△ onker ε from Section 4.3. △

Thus we can restate the above proposition also as follows:

Corollary 1. Let M be a right module and right comodule over a Hopf
algebraH andq : M Ñ ker ε be anH-linear andH-colinear map. Then

τpx b yq :“ yp0q b xyp1q, x✁ y :“ xqpyq

turnsM into a braided Leibniz algebra.
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5.3. Leibniz algebras from Hopf algebra objects inLM. Altogether,
the above results provide a proof of our main theorem:

Proof of Theorem 1.From the description of Hopf algebra objects in the
category of linear mapsLM in Section 2.1, it follows thatf : M Ñ H is
the data of a Hopf algebraH, a tetramoduleM and a morphism of bimod-
ulesf which is also a coderivation. Hence Lemma 1 proves the first part of
the theorem. Now Corollary 1 applied toq :“ f̃ yields the structure of a
braided Leibniz algebra oninvM . �

Now we see that classical Leibniz algebras can be viewed as a special
case of the constructions from this subsection:

Example 4. Let pg, r¨, ¨sq be a (right) Leibniz algebra in the category ofk-
vector spaces with the flip as braiding as in Example 3. We haverecalled
in Section 2.2 how to regardg as a Lie algebra object inLM, and in Sec-
tion 2.3 how to associate to it its universal enveloping algebra, which is a
Hopf algebra objectφ : UgLie b g Ñ UgLie in LM. The canonical quotient
mapπ : g Ñ gLie is given byπpxq “ φp1 b xq.

Recall now from Example 2 thatg is recovered asinvpUgLie b gq (with
trivial right coaction), and in this sense,π coincides withφ̃. The Yetter-
Drinfel’d braiding thus becomes the tensor flip, and the generalised Leibniz
bracket✁ ong is the original one.

This generalises the corresponding example for Lie algebras [19] p. 63,
[3] Proposition 3.5, to Leibniz algebras. △

The above example should be viewed as an infinitesimal variant of the
following one:

Example 5. LetX be a finite rack andG :“ AspXq be its associated group
[6]. Thenp : X Ñ G is an augmented rack, see Remark 4 above. We have
seen in Proposition 3 that the linearisationp : kX Ñ kG is not a Hopf
algebra object inLM, so we cannot apply Theorem 1 in this situation in
order to obtain a Leibniz algebra structure onkX.

However, recall from Example 1 thatkX is by the very definition of an
augmented rack a Yetter-Drinfel’d module over the group algebrakG, and
we obtain a morphismq : kX Ñ ker ε Ă kG, x ÞÑ ppxq ´ 1 of Yetter-
Drinfel’d modules. Now we can apply Corollary 1 to obtain a braided
Leibniz algebra structurex ✁ y “ xpppyq ´ 1q. This construction works
for all augmented racks, so augmented racks can be convertedinto special
examples of braided Leibniz algebras. In this way, we recover [3, Proposi-
tion 3.1]. △

Example 6. If T Ă H :“ A˝ is the quantum tangent space of a finite-
dimensional first order bicovariant differential calculusover a Hopf algebra
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A andf : H b T Ñ H is the corresponding Hopf algebra object inLM
(recall Remark 3), then the generalised Leibniz bracket from Theorem 1
becomes

x✁ y “ xf̃pyq “ Spyp1qqxyp2q.

That is, the generalised Leibniz algebra structure is precisely the quantum
Lie algebra structure ofT , compare [13, Section 14.2.3].

Example 7. We end by explicitly computing the R-matrix representing the
Yetter-Drinfel’d braiding from Example 4 for the Heisenberg-Voros algebra
g. This is the3-dimensional Leibniz algebra spanned byx, y, z such that
the only non-trivial brackets are

rx, xs “ z, ry, ys “ z, rx, ys “ z, ry, xs “ ´z

This Leibniz algebra can also be described as a1-dimensional central
extension of the abelian2-dimensional Lie/Leibniz algebra, but rather than
being antisymmetric, the cocycle has a symmetric and an antisymmetric
part (in contrast to the Heisenberg Lie algebra).

The shelf structure ong is given for constantsa, b, c, d, a1, b1, c1, d1 P k by

pa ` bx ` cy ` dzq ✁ pa1 ` b1x ` c1y ` d1zq

“ aa1 ` a1bx ` a1cy ` zpa1d ` bb1 ` bc1 ´ cb1 ` cc1q.

One computes the R-matrix to be

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 1 ´1 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Observe the 13th line. This matrix does not square to1.
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