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RACKS, LEIBNIZ ALGEBRAS AND YETTER-DRINFELD

MODULES
ULRICH KRAHMER AND FRIEDRICH WAGEMANN

ABSTRACT. A Hopf algebra object in Loday and Pirashvili's category
of linear maps entails an ordinary Hopf algebra and a Y&tanfel'd
module. We equip the latter with a structure of a braided higiblgebra.
This provides a unified framework for examples of racks indategory

of coalgebras discussed recently by Carter, Crans, Elhdiradd Saito.
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1. INTRODUCTION

The subject of the present paper is the relation betweers raakbniz
algebras and Yetter-Drinfel’d modules.

An augmented rack (or crosség#tmodule) can be defined as a Yetter-
Drinfel'd module over a groug-, viewed as a Hopf algebra object in the
symmetric monoidal categoriSet, x). Explicitly, it is a right G-set X
together with aG-equivariant map : X — G whereG carries the right
adjoint action of(G. A main application of racks is the construction of
invariants of links and tangles, see elg!/[3,/6, 7] and thereefices therein.

Leibniz algebras are vector spaces equipped with a braukesatisfies a
form of the Jacobi identity, but which is not necessarilyigmhmetric, see
Definition[2 below. They were discovered by A.M. Blokh [2] i8G5, and
then later rediscovered by J.-L. Loday in his search of aretstdnding for
the obstruction to periodicity in algebraic K-theory [15]j.this context the
problem of the integration of Leibniz algebras arose, thahie problem of
finding an object that is to a Leibniz algebra what a Lie grautoiits Lie
algebra. Lie racks provide one possible solution, see 425,

Analogously to augmented racks over groups, the YettemfBlid mod-
ules M over a Hopf algebrdf in (Vect,®) form the Drinfel'd centre of
the monoidal category of right’-modules, see Sectign #4.1. Taking in an
H-tetramodule (bicovariant bimodul@) the invariant elements’ M/ with
respect to the left coaction defines an equivalence of caeggbetween
tetramodules and Yetter-Drinfel’d modules. Thus they aeedoefficients
in Gerstenhaber-Schack cohomology [8]. Another applcas in the clas-
sification of pointed Hopf algebras, see e.g. [1].

Our aim here is to directly relate Leibniz algebras to YeRenfel'd
modules, starting from the fact that the universal envelglgebra of a
Leibniz algebra gives rise to a Hopf algebra object in thegaty LM
of linear maps|[[16], see Section 2.3. We extend some reguoits YWo-
ronowicz’s theory of bicovariant differential calculi [R&hich are dual to
Hopf algebra objects il M. In particular, we show that one can con-
struct braided Leibniz algebras as studied by V. Lebed [{4)dneralising
Woronowicz’s quantum Lie algebras of finite-dimensionaldvariant dif-
ferential calculi:

Theorem 1. Let f : M — H be a Hopf algebra object in the category of
linear mapsLM. Thenf restricts to a morphisny : ™M — kere of
Yetter-Drinfel’d modules over the Hopf algebtaand

vy =zf(y)

turns ™V M/ into a braided Leibniz algebra in the category of Yetter+ibeil'd
modules.



RACKS, LEIBNIZ ALGEBRAS AND YETTER-DRINFEL'D MODULES 3

This allows us to study racks and Leibniz algebras in the dangage,
which provides in particular a unified approach(to [3, Pragpas 3.1] and
[3, Proposition 3.5], see Examplées 4 and 5 at the end of therpap

The paper is structured as follows: Section 2 recalls basitsfand def-
initions about the categorg M of linear maps and the construction of the
universal enveloping algebra of a Leibniz algebra. In $&c8 we explore
analogues i M of functors relating groups and Lie algebras to Hopf al-
gebras, with a view towards the integration problem of Lgeakras inC M.
In particular we point out that the linearisatipn kX — kG of an aug-
mented raclp : X — G is not a Hopf algebra object i6 M, but instead
a map ofkG-modules and comodules, see Proposition 3. Section 4 secall
background on Yetter-Drinfel’d modules over bialgebralse Thain section
is Section 5 where we prove Theoréin 1 and finish by discussingrete
examples.

Acknowledgements:UK and FW thank UC Berkeley where this work took
its origin. FW furthermore thanks the University of Glasgeosuere this
work was finalised. UK is supported by the EPSRC Grant “Hopéhtoids
and Operads” and the Polish Government Grant 2012/06/MOSL69.

2. ALGEBRAIC OBJECTS INLM

In this section we recall the neceesary background on thegoat of
linear maps, algebraic objects therein, and the relevahtieese for the
theory of Leibniz algebras, mainly from [16,/17]. Throughowe work
with vector spaces over a field although the results can be generalised to
other base categories. An unadorii@denotes the tensor product over

2.1. The tensor categoriesL M and LM*. The following definition goes
back to Loday and Pirashvili [16]:

Definition 1. Thecategory of linear mapS.M has linearmapg : V' — W
between vector spaces as objects, which are usually depigtevertical
arrows withV" upstairs and? downstairs. A morphisng between two
linear mapsgf : V — W) and(f': V' — W’) is a commutative square
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Theinfinitesimal tensor produdietweenf and f’ is defined to be
VewW)eWeV)
lf@idwl-i-idvv@f/
W W’

The infinitesimal tensor product turidM into a symmetric monoidal
category with unit object being the zero map{0} — k.

Remark 1. Alternatively, LM is the category of-term chain complexes
with a truncated tensor product; one has just omitted tmederf degree two
in the tensor product of complexes. One can analogouslyaleéitegories
L M,, of chain complexes of length and a tensor product which is trun-
cated in degree, so in this sensé M = LM, andVect = LM,. Taking
the inverse limit, one passes from these truncated versiothe category
of chain complexes with the ordinary tensor prodticiin = LM,. A

InterpretingCM as the category of cochain rather than chain complexes
of length 1 and depicting them consequently by arrows pagntipwards
results in a different monoidal structugg on LM in which

(f: VW) (f V' - W)
is given by
Vew)e(WeV’)
idy®f+f@idy T
VeV
The resulting tensor category will be denoted1*.
2.2. Algebraic objects in LM. In a symmetric monoidal tensor category,
one can define associative algebra objects, Lie algebratslagad bialgebra

objects. Loday and Pirashvili exhibit the structure of thes the tensor
categoryL M. For this, they use that the inclusion functor

Vect - LM, W — (0:{0} - W),
and the projection functor
LM —Vect, (f:V->W)—->W

between the categories of vector spacest and LM are tensor functors
which compose to the identity functor aect. This shows that for each
of the above mentioned algebraic structure€im, the codomairiV’ of

f V. — W inherits the corresponding structure in the category of vec
tor spaces. The linear map can be used to turn the vector $pacél
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into an abelian extension &V, in the sense discussed for example_in [18,
Section 12.3.2]. The domair becomes an abelian idealing .
More explicitly, Loday and Pirashvili show that f\M:

e an associative algebra objett M — A is the data of an associa-
tive algebraA, an A-bimodule)M and a bimodule maj : M — A,

e a Lie algebra objecf : M — g is the data of a Lie algebrg a
(right) Lie moduleM and an equivariant map: M — g,

e abialgebraobject : M — H isthe data of a bialgebrd, of an H-
tetramodule(or bicovariant bimodulg M, that is, anH-bimodule
and H-bicomodule whose left and right coactions @febimodule
maps, and of at/-bilinear coderivatiory : M — H,

e a Hopf algebra object i M is a bialgebra object : M — H in
LM such that{ admits an antipode.

Remark 2. While Loday and Pirashvili formulate their statement about
Hopf algebra objects iL. M rather as a definition, see |16, Seciton 5.1],
these really are the Hopf algebra object£in in the categorical sense: it
is straightforward to verify that it/ has an antipod® : H — H, then the
bialgebra objecf : M — H has an antipode given by

M—Lo M

A
H—- 1
with T given in Sweedler notation by'(z) = —S(m1))m)S(mq)).

ThusT is uniquely determined by the antipodeon H and is not addi-
tional data.

Remark 3. Dually, a bialgebra object : H — M in LM”* consists of a
bialgebraH in Vect and anH-tetramodulelM such thatf is a derivation

and bicolinear. IfM = span,{gf(h) | g,h € H}, this structure is referred
to as dirst order bicovariant differential calculusver H [23], see e.g/[13]
for a pedagogical account. Linear dualfty: V' — V* yields a (weakly)

monoidal functorF’ : LM — (LM*)°, which is strongly monoidal on
the subcategory of finite-dimensional vector spaces. In&kimh below we

will describe the class of bialgebras M that is underF' dual to first

order bicovariant differential calculi. A

2.3. Universal enveloping algebras inC M. Loday and Pirashvili further-
more construct in [16] a pair of adjoint functaPs(primitives) andl/ (uni-
versal enveloping algebra) associating a Lie algebra bivjetM to a Hopf
algebra object irC M, and vice versa, and prove an analogue of the clas-
sical Milnor-Moore theorem in this context. For a given Llgebra object

f: M — g, the enveloping algebrais: Ug® M — Ug, u®m — uf(m).
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The underlyingl g-tetramodule structure obig ® M is as follows: the
right Ug-action onUg ® M is induced by

(u®m) -z =ur@m+u@m-x

forall x € g, allu € Ug and allm € M. The left action is by multiplication
on the left-hand factor. The left and rightg-coactions are given by the
coproduct on the left-hand factor, that is, foe g, m € M they are

(z®@m) — 1Q®(z@m)+z®(1®m), (z®@m) — (1m)Rzr+(z®@m)®1.

2.4. Leibniz algebras. We finally recall from[[16] that a particular class of
Lie algebra objects i€ M arises in a canonical way from Leibniz algebras:

Definition 2. A k-vector spacg together with a bilinear map

[[]:g9xg—9g
is called a (right)l_eibniz algebrain case for all:, i,z € g

[z, y], 2] = [z, [y, 2]] + [z, 2], y]
holds.

In particular, any Lie algebra is a Leibniz algebra. Coneltsfor any
Leibniz algebrgy the quotient by the Leibniz ideal generated by the squares
[z, z] for x € g is a Lie algebrag;., and the right adjoint action af;.
on itself lifts to a well-defined right action on  So by construction, the
canonical quotient map : g — g IS a Lie algebra object i M. The
universal enveloping algebra gfas defined in[[17] is exactly the abelian
extension of the associative algelirg; ;. in Vect that is defined by the
universal enveloping algebfa(g — gi.), seel[16, Theorem 4.7].

3. THE PROBLEM OF INTEGRATINGLIE ALGEBRAS IN LM

In this section we discuss the direct analogueg.m of some functo-
rial constructions that relate groups to Lie algebras, wittiew towards
the problem of integrating Leibniz algebras to some globalkcture. Aug-
mented racks and their linearisations are one possiblesiranmk for these,
so we end by recalling some background on racks.

3.1. From Lie algebras to groups. Consider the following diagram of
functors:

Lie —% ccHopf

|-

Grp ~ cHopf
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HereLie is the category of Lie algebras over the figldGrp is the cat-
egory of groupsHopf is the category ok-Hopf algebras, andcHopf and
cHopf are its subcategories of cocommutative respectively cotatina
Hopf algebras. The functdy is that of the enveloping algebra, ands
the functor of characters, whilg° is the Hopf dual of a Hopf algebrd,,
that is, the Hopf algebra of matrix coefficients of finite-@insional repre-
sentations, see e.q.[13,/20].

An affine algebraic grougpr over an algebraically closed fieldof char-
acteristic O can be recovered in this way from its Lie alggbra Lie(G)
asx(Ug°) providedd is perfect, i.eG = [G, G]. More generally, ifG has
unipotent radical, thetr is isomorphic to the characters on the subalgebra
of basic representative functions dig, see([10] for details.

3.2. Characters of Hopf algebra objects inL M. The functory(—) (char-
acters) can be extended to Hopf algebra objectS.Arl, hence one might
attempt to use it to integrate Lie algebrasin and in particular Leibniz
algebras. By definition, a characteiof a Hopf algebra object : M — H

is an algebra morphism i M from f : M — H to the unit of the tensor
categoryL M which is simply0 : {0} — £. This amounts to a commutative
diagram

M X {0}

b
H - k.

One therefore obtains just charactggsof H, becausey; is supposed to
be the zero map. The same applies to Hopf algebra objeds\it1, that
is, the component of the character associated to the tethasmoanishes.
Thus we have:

Proposition 1. The functory(—) (characters), applied to a Hopf object in
LM or LM*, results just in characters of the underlying Hopf algelbfa

Hence the integration of Lie algebra objectsdi (and thus in partic-
ular Leibniz algebras) along the lines outlined in the prasgisection must
fail. One can associate to a Lie algebra objeaf M its universal envelop-
ing algebra, and then by duality some commutative Hopf akyebject in
LM*, but characters of this object will always be only charectarthe
underlying Hopf algebra.

3.3. Formal group laws in LM. Another approach to the integration of
Lie algebras is that of formal group laws, seel[22]. Here dueliss a
continuous dual ot/ g.
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Recall that gormal group lawon a vector spac¥® is a linear mapt :
S(V @ V) — V which is unital and associative, i.e. its extension to a
coalgebra morphism” : S(V)® S(V) — S(V) is an associative product
on the symmetric algebr(V).

Mostovoy [21] transposes this definition into the realmCgé1. Namely,

a formal group law inC M is a map

G:S(VeV)- WaeW)) - (V->W),
whose extension to a morphism of coalgebra objects
G:SV->WRSV ->W)—> (V>W)

is an algebra object ig M. Starting with a Lie algebra objed? — g in
LM, the product in the universal enveloping algebid/ — g) composed
with the projection onto the primitive subspace yields arfak group law
using the identification ot/ (M — g) with S(M — g) provided by the
analogue of the Poincaré-Birkhoff-Witt theorem for Lig@bra objects in
L M. Explicitly, one gets a diagram

G'+G?

S(g)@M®S(g)®S(g) ®S(g) @M — M

|

S(g) ® S(g) d g

Mostovoy [21] shows then:

Proposition 2. The functor that assigns to a Lie algebra objédét— g in
LM the primitive part of the product it/ (M — g) is an equivalence of
categories of Lie algebra objects WM and of formal group laws it M.

An interesting problem that arises is to specify what trasfework gives
for the Lie algebra objects i M coming from a Leibniz algebra, i.e. for
those of the formr : g — g1;.. Furthermore, one should clarify what the
global objects associated to these formal group laws aree résults in
the present paper are meant to motivate why augmented reeksmatural
candidate, by going the other way and studying the Hopf algebjects in
L M that are obtained by linearisation from augmented racks.

3.4. Augmented racks. The set-theoretical version gfM is the category
M of all mapsX — Y between setX andY. One defines an analogue
of the infinitesimal tensor product in which the disjoint omiof sets takes
the place of the sum of vector spaces, and the cartesiangineglaces the
tensor product. This defines a monoidal category structuc®&fonith unit
objecty — {+}. However, the latter is not terminal i, thus one cannot
define inverses, and a fortiori group objects.
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One way around this “no-go” argument is to consider augnueraeks:

Definition 3. Let X be a set together with a binary operation denoted
(x,y) — z <y such that for ally € X, the mapr — x < y is bijective and
forall z,y,z € X,

(x<y)<z = (x<2)<(y<2).

Then we callX a (right)rack In case the invertibility of the maps— z <y
is not required, it is called shelf

The guiding example of a rack is a group together with its wgajion
map(g,h) — g < h := h~'gh. Augmented racks are generalisations of
these in which the rack operation results from a group action

Definition 4. Let G be a group andX be a (right)G-set. Then a map
p: X — G is called amlmugmented rackh casep satisfies the augmentation
identity, i.e. forallg e G and allz € X

1) p(z-g) = g 'p(x)g.

In other words is equivariant with respect to tlig-action onX and the
adjoint action ofG on itself. TheGG-setX in an augmented ragk: X — G
carries a canonical structure of a rack by setting

<y = x-py).

Remark 4. Any rack X can be turned into an augmented rack as follows:
let As(X) be theassociated grougsee for example [6]) oK, which is the
quotient of the free group on the sEtby the relationgtzy = x <1y for

all x,y € X. Then there is a canonical map X — As(X) assigning to

x € X the class of: in As(X) which turnsX into an augmented rack.A

A more conceptual point of view goes back to Yetter, confgr@@group
is the same as a Hopf algebra object in the symmetric monoatabory
Set with x as monoidal structure. In this sense, rightnodules are just
right G-sets while rightG-comodules are just sefs equipped with a map
p : X — (. The augmentation identityl(1) becomes the Yetter-Dridfel
condition that we will discuss in detail in the next sectidhus augmented
racks are the same as Yetter-Drinfel'd modules aven Set, or, in other
words, the category of augmented racks at/eis the Drinfel’'d centre of
the category of righ;-sets.

3.5. Linearised augmented racks. By linearisation, one obtains the group
algebrakG of a groupG which consequently is a Hopf algebraviect, see
e.g. [11, p.51, Example 2]. Hence one might ask whether adis&tion
of an augmented rack : X — G defines a Hopf algebra object WM.
The functork— (k-linearisation of a set) sengs: X — G to a linear map
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p: kX — kG. Considerk X as akG-bimodule where:GG acts onk X on
the right via the given action and on the left via the triviefian. Consider
further the two linear maps

N kX - EGREX, A, kX - EX®KG
given forz € X by
Nz = plx)®zr and Az = zQp(z).
Then we have:
Proposition 3. The maps\;, /A, turn £X into a kG-bicomodule such that
p : kX — kG is a morphism of bicomodules and bimodules, whigre

carries the left and right coaction given by the coprodubg trivial left
action, and the adjoint right action.

Proof. The augmentation identity

p(z-g) = g 'plx)g, VreX,geG
shows thap is a morphism of bimodules. We have

(P@1L)(Arx) = plr)@p(z) and (1Qp)(Aw) = p(r) @ p(z)
for all x € X, thusp is a morphism of bicomodules. O

In particular,p : kX — kG is not a Hopf algebra object id M in
general.

3.6. Regular functions on augmented racks.Taking the coordinate ring
k[ X] of an algebraic seX is a contravariant functor, so applying it to an
algebraic augmented ragk: X — G gives rise to an algebra map :
k[G] — k[X] which is most naturally considered i *.

The right G-action onX induces a rightt[G]-comodule structure on
k[X]. Together with the trivial left comodule structure,X| becomes a
k[G]-bicomodule. Ork[G] itself, we consider the bicomodule structure
obtained from the trivial left coaction and the right adjotoaction given
in Sweedler notation by — f2) ® S(f))f(3), and then obtain:

Proposition 4. p* : k[G] — k[X] is a morphism of bimodules and bico-
modules.

Proof. For the augmented ragk: X — &, we have the following commu-
tative diagram:

XXG—>-X

lpxidg lp

GXG—>~G
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which reads explicitly as

(2,9) —————=x-yg

lpxidg lp

(p(z),9) —=p(z-g9) = g

p(x)g
Applying the functork|[—] to this diagram yields
kK[ X] — k[X] ® k[G]

k|G| — k|G] ® k[G]

This means exactly that is a morphism of right comodules. As the left
coactions ork|G| andk[ X | are trivial, it is a map of bicomodules. [

3.7. The Yetter-Drinfel'd braiding. It is well-known (see for example
[11] p. 319) that the category of augmented racks over a fixedmG
carries a braiding:

Proposition 5. Define for augmented racks : X — G andp, : Y — G
with respect to a fixed grou their tensor producX’ ® Y by X x Y with
the action(z,y)-g := (x-g,y-g) and the equivariantmap: X xY — G
beingp(x,y) := p1(x)p2(y). Then the formula

cxy : X®Y =Y ®X, cxy(ry) = (y,7 py))
defines a braiding on the category of augmented racks Gver

This is just a special case of the Yetter-Drinfel'd braidihgit we are
going to study in detail next.

4. YETTER-DRINFEL' D MODULES

In this section we recall definitions and facts about Yeanfel'd mod-
ules over Hopf algebras ifect that we need. For more information, the
reader is referred to [11, 13,119,/20].

4.1. Yetter-Drinfel'd modules. Let H = (H,u,n,/\, <) be a bialgebra
overk. To every right module and right comodulé over H, one functo-
rially associates a bimodule and bicomodé’ over H which is H @ M
as a vector space with left and right action given by

g(h®x):=gh®x, (h®x)g:=hgu) Qxgp)
and left and right coaction given in Sweedler notation by
(h®z)—1) ® (h® )0 = ha) ® (he) @),
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(h®1))® (h®x)q) := (h() @ T(0)) ® 2y (1)
These coactions and actions are compatible in the sensétHais a
Hopf tetramodule if and only i/ is a Yetter-Drinfel'd module:

Definition 5. A Yetter-Drinfel’d modulever H is a right module and right
comodule)M for which we have

2) (zh@)©0) @ ha)(The)) ) = z)ha) ® Tayhe)
forallz e M andh e H.

Remark 5. If H is a Hopf algebra with antipodg, then the Yetter-Drinfel'd
condition [2) is easily seen to be equivalent to

3) (zh)) ® (zh)) = Z@)he) ® S(ha))za)he)-
A

More precisely,H is a Hopf algebra if and only if/ — AM*? defines an
equivalence between the categories of Yetter-Drinfel'dloles and that of
Hopf tetramodules. In this case, the inverse functor isrglwe taking the
invariants with respect to the left coaction,

N—"™N:={zeN|z_ Q) =1®z}.

This is an equivalence of monoidal categories, where th&tgoroduct of
Hopf tetramodules i®y.

Example 1. Let G be a group and// be akG-Yetter-Drinfel'd module.
Then M is in particular akG-module, i.e. aG-module. The comodule
structure ofM is aG-grading of thisG-module:
M = @ M,.
geG
The Yetter-Drinfel'd compatibility condition now readsrfa € kG and
meM

(um) 1) @ (um) o) = umym—1S(u)) ® u@)m()

which means for a group element= « € G and a homogeneous element
m e Mh

(gm)-1) ® (gm) o) = ghg™ ®g-m.
This means that the action gfe G on M mapsM;, to M.

When the moduleV/ is a permutation representation 6f that is, is
obtained by linearisation from a (righ€y-set X, M ~ kX, thenM is
Yetter-Drinfel'd precisely whenX carries the structure of an augmented
rack. The full subcategory of the category of all Yetter+idei'd modules
over kG of these permutation modules has been studied first by Freyd a
Yetter, seel|7, Definition 4.2.3].
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Example 2. Recall from Sectiof 213 that if : M — g is any Lie algebra
object in£M, then the universal enveloping algebra constructiog.ivi
yields theUg-tetramodulelUg ® M. In this case,M is recovered as the
Yetter-Drinfel'd module of left invariant elements, wittiMial right coaction
and right action being induced by the rigittmodule structure o/ .

More generally, every right module over a cocommutativégeiara [/
becomes a Yetter-Drinfel’d module with respect to the &livight coaction.

4.2. The Yetter-Drinfel’'d braiding revisited. Every right /-module and
right H-comoduleM carries a canonical map

(4) TMOM—->MeM, r®y— yo @zyn)
The following well-known fact characterises wheis a braiding:

Proposition 6. The mapl(#) is a braiding on/ if and only if M is a Yetter-
Drinfel’d module.

Remark 6. While (3) is maybe easier to memoridg, (2) makes sense for all
bialgebras and is directly the condition that occurs whetirtg whether

or notr satisfies the braid relation. More generaltycan be extended to
braidingsN ® M — M ® N between any right/-module/N and a Yetter-
Drinfel’d module M, and this identifies the category of Yetter-Drinfeld
modules with the Drinfel'd centre of the category of rigiitmodules. A

4.3. The Yetter-Drinfel'’d module ker e. The following example of a Yetter-
Drinfel’d module is of particular importance to us:

Proposition 7. If H is any Hopf algebra, then the kernlelr ¢ of its counit
is a Yetter-Drinfel’d module with respect to the right adjbaction

g« h:=S(hq))ghe
and the right coaction
Akere >kere®H, k—hay®hp —1®Hh.

One can viewker € as a bicomodule with respect to the trivial left coac-
tion h — 1® h, and then the inclusion map ker e — H is a coderivation.
This is universal in the sense that every coderivation fadtorough:

Lemma 1. Let H be a bialgebra)/ be anH-bicomodule,and : M — H
be a coderivation.
(1) We havem f < kere.
(2) The restriction off to f : ™A — kere is right H-colinear with
respect to the coactiof onkere.
(3) If M is a tetramodule angd is H-bilinear, theny is a morphism of
Yetter-Drinfel’d modules.
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Proof. (1) Applyinges ® ¢ to the coderivation condition

(f(m))) ® (f(m))@) = m1) ® f(m) +m@) ® f(mw)
yieldse(f(m)) = 2e(f(m)), soe(f(m)) = 0.

(2) For left invariantm € M, we havem_;) @ m@) = 1 ® m, SO sub-
tractingl ® f(m) from the coderivation condition yields

A(f(m)) = (f(m))a) @ (f(m))@) —1® f(m) = me ® f(ma)).

(3) The right action or*” M respectivelyker ¢ is obtained from the bi-
module structure o/ respectivelyd by passing to the right adjoint ac-
tions, SOf(m < h) = f(S(h(l))mh(2)) = S(h(l)f(m)h@) = f(m) «h. O

Remark 7. In Remark¥ we mentioned that first order bicovariant differ-
ential calculi in the sense of Woronowicz are formally dwatértain bial-
gebras inC M. We can explain this now in more detail: given a first order
bicovariant differential calculus over a Hopf algebtathat is, a bicolinear
derivationd : A — 2 with values in a tetramodul@ which is minimal in
the sense thd? = span,{adb | a,b € A}, one defines

R = {a € kere | S(aq))dag) = 0}.

It turns out that((2, d) — R(q 4 establishes a one-to-one correspondence
between first order bicovariant differential calculi anghti ideals inker e
that are invariant under the right adjoint coaction> a(;) ® S(aq))as) of
A, seel[13, Proposition 14.1 and Proposition 14.7]. WHena k[G] is the
coordinate ring of an affine algebraic grodpare the Kahler differentials
andda is the differential of a regular functiom thenR q q) is just (ker £)?
andker ¢/R q,q) is the cotangent space 6fin the unit element.

Motivated by this example, one introduces theantum tangent space

T ={0e A" | ¢(1) = 0,¢(a) =0Ya € Ra},

whereA* = Homy (A, k) denotes the dual algebra df Provided that?

is finite-dimensional in the sense thkt, ™) < o, the quantum tangent

space belongs to the Hopf dudl:= A° of A and uniquely characterises the
calculus up to isomorphism, see [13, Proposition 14.4] aedstibsequent

discussion. By definition7q 4) is then a subspace &ére = H which is

by [13, (14)] invariant under the right coactidk and as a consequence of
[13, Proposition 14.7] it is also invariant under the righbjaant action of
H on itself; in other words, the quantum tangent space is a&i¥éttinfel'd
submodule oker ¢, and if we equipV/ := H®7q,q) With the corresponding
H-tetramodule structure we can extend the inclusion of tle&tium tangent
space intdker ¢ to a Hopf algebra object : M — H in LM. Thus first
order bicovariant differential calculi should be viewedsaisictures dual to
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Hopf algebra object$ : M — H in £M for which the induced mayp is
injective. JAN

5. BRAIDED LEIBNIZ ALGEBRAS

The definition of a Leibniz algebra extends straightforiiafcbm Vect
to other additive braided monoidal categories [14]. In fimal section we
discuss the construction of such generalised Leibniz aégefsom Hopf
algebra objects i M which is the main objective of our paper.

5.1. Definition. The following structure is meant to generalise both racks
and Leibniz algebras in their role of domains of object£ iit:

Definition 6. A braided Leibniz algebras a vector spac@/ together with
linear maps
A MIM—-> M, z2Qy—x<ly
and
T MM —->MROM, QY — yu ® x
satisfying
B) @<Qy)<dz=2<(y<2)+ (r<z) <ye Vr,y,2€ M.

Remark 8. We do not assume thatmaps elementary tensors to elemen-
tary tensors, the notation;, ® z(», should be understood symbolically like
Sweedler’s notatiom\ (h) = h(;) ® h(y) for the coproduct of an element

of a coalgebrdf which is also in general not an elementary tensor. A

Remark 9. It is natural to ask forr to satisfy the braid relation (Yang-
Baxter equation), so that/ is just a braided Leibniz algebra as studied
e.g. in [14]. Instead of assuming this a priori we rather abtarise this
case in the examples that we study below, and later we igastthe con-
sequences of this condition. A

Example 3. When is the tensor flipy., ® z¢, = y ® x, we recover
Definition[2 from Section 214 with: < y =: [z, y], as the Leibniz rule(5)
becomes the (right) Jacobi identity in the form

[z, 9], 2] = [, [y, 1] + [[2, 2], y].
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5.2. Leibniz algebras from modules-comodules.The following proposi-
tion allows one to construct Leibniz algebras from modulesodules:

Proposition 8. Let M be a right module and a right comodule over a bial-
gebraH, g : M — H be ak-linear map, and define

r <y = xq(y).
Then(M, 1, <) is a braided Leibniz algebra with respect to
T MM —> MM, QY+ yo ®ryn)
from (4) provided that

(6) haya(zhe) = q(z)h
and
(7) q(2)1) ®q(7)2) = 1@ q(z) + q(7(0)) @ (1)

holds for allxz € M andh € H.

Proof. Straightforward computation gives

(x<y) <z = (zq(y))a(z) = x(q(y)a(2))
= z(q¢(2)mya(ya(2)@))
2q(yq(2)) + 2q(20))a(y2))
= x<1(y<12)+(:c<12<1>)<1y<2>

as had to be shown. O

Remark 10. Observe that applyingly ® e to (@) implies

q(z) = e(q(z)) + q(z),

so this condition necessarily requiresq < kere < H. If H is a Hopf
algebra, then(6) is equivalent to the righitlinearity of ¢ with respect to
the right adjoint action off onker . Furthermore, the conditiohl(7) can be
stated also as saying that M — ker ¢ is right H-colinear with respect to
the right coactiom\ onker ¢ from Sectiod 4.3. A

Thus we can restate the above proposition also as follows:

Corollary 1. Let M be a right module and right comodule over a Hopf
algebraH andq : M — kere be anH-linear and H-colinear map. Then

T(z®Y) = yo) @zyn), «<y:=zq(y)
turns M into a braided Leibniz algebra.
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5.3. Leibniz algebras from Hopf algebra objects in LM. Altogether,
the above results provide a proof of our main theorem:

Proof of Theorerhl1From the description of Hopf algebra objects in the
category of linear mapS.M in Sectior 2.11, it follows thaf : M — H is
the data of a Hopf algebrd, a tetramodulé// and a morphism of bimod-
ules f which is also a coderivation. Hence Lemima 1 proves the firstgba
the theorem. Now Corollaryl 1 applied to:= f yields the structure of a
braided Leibniz algebra oft' M. O

Now we see that classical Leibniz algebras can be viewed as@as
case of the constructions from this subsection:

Example 4. Let (g, [+, -]) be a (right) Leibniz algebra in the category/of
vector spaces with the flip as braiding as in Exaniple 3. We hesalled
in Sectior 2.2 how to regarglas a Lie algebra object i6 M, and in Sec-
tion[2.3 how to associate to it its universal enveloping latgewhich is a
Hopf algebra objecd : Ugrie ® g — Ugrie in LM. The canonical quotient
mapm : g — gric IS given byr(z) = ¢(1 ® x).

Recall now from Examplgl2 that is recovered a8 (Ugri. ® g) (with
trivial right coaction), and in this sense, coincides with¢. The Yetter-
Drinfel'd braiding thus becomes the tensor flip, and the galised Leibniz
bracket< on g is the original one.

This generalises the corresponding example for Lie algefii@] p. 63,
[3] Proposition 3.5, to Leibniz algebras. A

The above example should be viewed as an infinitesimal vaoiatne
following one:

Example 5. Let X be afinite rack andr := As(X) be its associated group
[6]. Thenp : X — G is an augmented rack, see Renldrk 4 above. We have
seen in Propositionl 3 that the linearisatipn kX — kG is not a Hopf
algebra object il M, so we cannot apply Theorem 1 in this situation in
order to obtain a Leibniz algebra structure/os.

However, recall from Examplé 1 thatX is by the very definition of an
augmented rack a Yetter-Drinfel'd module over the groughigkiG, and
we obtain a morphism : kX — kere c kG, z — p(x) — 1 of Yetter-
Drinfel’d modules. Now we can apply Corollafy 1 to obtain aided
Leibniz algebra structure <y = z(p(y) — 1). This construction works
for all augmented racks, so augmented racks can be convettespecial
examples of braided Leibniz algebras. In this way, we recf8,eProposi-
tion 3.1]. A

Example 6. If 7 < H := A° is the quantum tangent space of a finite-
dimensional first order bicovariant differential calcubyer a Hopf algebra
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Aandf : H® T — H is the corresponding Hopf algebra objectdimt
(recall RemarK ), then the generalised Leibniz brackenfitheorent 1L
becomes .

<y =xf(y) = S(ya))zye).
That is, the generalised Leibniz algebra structure is pedgithe quantum
Lie algebra structure of , comparel[13, Section 14.2.3].

Example 7. We end by explicitly computing the R-matrix representing th
Yetter-Drinfel'd braiding from Exampliel 4 for the Heisenfévoros algebra
g. This is the3-dimensional Leibniz algebra spannedhyy, z such that
the only non-trivial brackets are

[Zlf,l’] = %, [yvy] = %, [xvy] = Z, [yax] = —<
This Leibniz algebra can also be described asdamensional central
extension of the abeliazrdimensional Lie/Leibniz algebra, but rather than
being antisymmetric, the cocycle has a symmetric and amsyanthetric

part (in contrast to the Heisenberg Lie algebra).
The shelf structure ogis given for constants, b, c,d,a’, b, ,d € k by

(a+bx+cy+dz)<(a +Vx+dy+dz)
= ad +d'bx +dcy+ z(d'd+ bV + b’ — b + ).
One computes the R-matrix to be

100000 O O0OOOOOOOOO
coo00010 0 O0OO0OO0OOOOO®O0O®O
coo0o000O0OO0O O0O1TO0OO0OO0OOO®O0O®O
coo0o0o00O0O O0O O0OO0OO0OO0OO0OT1O0O0O®O
co10000 0O O0OO0OO0OOOOO®O0OO®O
coo0o0oo001 0 00O0OO0OO0OOOO0OO
coo000O0O0OTO0OO0OO0O1O0O0O0OO0®O0O® O
co0000O0OTO0OO0OO0OO0OO0OO0OO0OT1TO0O®O
coo0100O0 0O O0OO0OOOOOO®O0O®O
coo0000O0OT1T O0OO0OO0OO0OO0OOO®O0O®O
coo0o000O0O O0O O0OO0OO0O1O0O0OO0O®O0O®O
coo0o000O0OO0O O0OCO0OO0OOOOOT1TO®O0
coo0o0101-1001100¢0¢0¢O0
coo0o000O0O 0O 10O0O0OO0OO0OO0®O0O®O
coo0o000O0OO0O O0OCO0OO0OO0O1TO0OO0®O0O®O
0000O0O0O O0O O0OCO0OO0OOO0OOO0G©O01

Observe the 13th line. This matrix does not squark to
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