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Definition

« A signal is a function of independent variables such as
time, distance, position, temperature and pressure.

* A signal carries information, and the objective of signal
processing is to extract useful information carried by the
signal.

« Signal processing is concerned with the mathematical
representation of the signal and the algorithmic operation
carried out on it to extract the information present.
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Definition

For most purposes of description and analysis, a signal can be defined
simply as a mathematical function,

y=f(x)

where x is the independent variable which specifies the domain of the
signal e.g.:

y=sin(ot) 1s a function of a variable in the time domain and is thus a time
signal,

X(w)=1/(-ma’+icw+k) is a frequency domain signal;

An image I(x,y) is in the spatial domain.
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Signal types

* For a simple pendulum as shown, basic definition is:

U(f‘] = U'.rn SiIl(_,L,'f') /fe

where ¢, is the peak amplitude of the motion T
and ®=V//g with / the length of the pendulum
and g the acceleration due to gravity.

* As the system has a constant amplitude (we assume no damping for
now), a constant frequency (dictated by physics) and an initial
condition (=0 when ¢=0), we know the value of /) for all time.
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Signal types

» Also, two identical pendula released from 8= g, at =0, will have the same
motions at all time. There is no place for uncertainty here.

« If we can uniquely specify the value of @ for all time, i.e., we know the
underlying functional relationship between ¢ and 6, the motion is
deterministic or predictable. In other words, a signal that can be uniquely
determined by a well defined process such as a mathematical expression or
rule is called a deterministic signal.

« The opposite situation occurs if we know all the physics there is to know,
but still cannot say what the signal will be at the next time instant-then the
signal is random or probabilistic. In other words, a signal that is generated
In a random fashion and can not be predicted ahead of time is called a
random signal.
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Signal types

o Typical examples to deterministic signals are sine chirp and digital stepped
sine.

/ Sine Wave

Stepped Sine Wave
[ Quasi wave)
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Signal types

» Typical examples to random signals are random and burst random.
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Signal types

Random signals are characterized by having many frequency components
present over a wide range of frequencies.

The amplitude versus time appears to vary rapidly and unsteadily with
time.

The “shhhh’ sound is a good example that is rather easy to observe using a
microphone and oscillloscope. If the sound intensity is constant with time,
the random signal is stationary, while if the sound intensity varies with time
the signal is nonstationary. One can easily see and hear this variation while
making the ‘shhhh’ sound.
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Signal types

Random signals are characterized by analyzing the statistical
characteristics across an ensemble of records. Then, if the process is
ergodic, the time (temporal) statistical characteristics are the same as the
ensemble statistical characteristics. The word temporal means that a time
average definition is used in place of an ensemble statistical definition.
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Signal types

Transient signals may be defined as signals that exist for a finite
range of time as shown in the figure. Typical examples are hammer
excitation of systems, explosion and shock loading etc.
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Signal types

A signal with a time varying mean is an aperiodic signal.
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Signal types

« It should be noted that periodicity does not necessarily mean a
sinusoidal signal as shown in the figure.

0 271
- S = Z_.ﬁi;sin( .f)

!

T

* For a simple pendulum as shown, if we define the period t by
r=2r/w = 2r,g/l ,then for the pendulum,

Bit)=0{t+7)

and such signals are defined as periodic.
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Signal types

A periodic signal is one that repeats itself in time and is a
reasonable model for many real processes, especially those
associated with constant speed machinery.

Stationary signals are those whose average properties do not
change with time. Stationary signals have constant parameters to
describe their behaviour.

Nonstationary signals have time dependent parameters. In an
engine excited vibration where the engines speed varies with time;
the fundamental period changes with time as well as with the
corresponding dynamic loads that cause vibration.
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Deterministic vs Random signals

* The signals can be further classified as monofrequency
(sinusoidal) signals and multifrequency signals such as
the square wave which has a functional form made up of
an infinite superposition of different sine waves with
periods t,t/2,1/3,...

« 1 D signals are a function of a single independent
variable. The speech signal is an example ofa 1 D
signal where the independent variable is time.

« 2D signals are a function of two independent variables.
An image signal such as a photograph is an example of
a 2D signal where the two independent variables are the
two spatial variables.
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Classification of signals

The value of a signal at a specific value of the independent variable
is called its amplitude.

The variation of the amplitude as a function of the independent
variable is called its waveform.

For a 1 D signal, the independent variable is usually labelled as
time. If the independent variable is continuous, the signal is called a
continuous-time signal. A continuous time S|gnal is defined at
every instant of time.

If the independent variable is discrete, the signal is called a
discrete-time signal. A discrete time signal takes certain numerical
values at specified discrete instants of time, and between these
specified instants of time, the signal is not defined. Hence, a discrete
time signal is basically a sequence of numbers.
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Classification of signals
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Classification of signals

A discrete time signal with
continuous valued amplitudes is

called a sampled-data signal. A

digital signal is thus a quantized
sampled-data signal.

A continuous-time signal with
discrete valued amplitudes has
been referred to as a quantized
boxcar signal. This type of signal
occurs in digital electronic circuits
where the signal is kept at fixed
level (usually one of two values)
between two instants of clocking.

P. Gundes Bakir,
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Typical signal processing
operations

 In the case of analog signals, most signal processing
operations are usually carried out in the time domain.

* In the case of discrete time signals, both time domain
and frequency domain applications are employed.

* |n either case, the desired operations are implemented
by a combination of some elementary operations such
as:

— Simple time domain operations
— Filtering
— Amplitude modulation

P. Gundes Bakir,  Vibration based structural health monitoring 22
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Simple Time Domain Operations

The three most basic time-domain signal operations are:
e Scaling
e Delay
o Addition

» Scaling is simply the multiplication of a signal by a positive or a negative
constant. In the case of analog signals, this operation is usually called
amplification if the magnitude of the multiplying constant, called gain, is
greater than one. If the magnitude of the multiplying constant is less than
one, the operation is called attenuation. Thus, if x(z) is an analog signal,
the scaling operation generates a signal y(z)=ax(t), where « Is the
multiplying constant.

P. Gundes Bakir,  Vibration based structural health monitoring 23
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Simple Time Domain Operations

The three most basic time-domain signal operations are:
e Scaling
e Delay
e Addition

» Delay operation generates a signal that is delayed replica of
the original signal. For an analog signal x(z), y(¢)=x(t-t,) is the
signal obtained by delaying x(z) by the amount ¢,, which is
assumed to be a positive number. If z,is negative, then it is an
advance operation.

P. Gundes Bakir,  Vibration based structural health monitoring 24
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Simple Time Domain Operations

The three most basic time-domain signal operations are:
e Scaling
* Delay
e Addition

» Addition operation generates a new signal by the addition of
signals. For instance, y(¢)=x,(t)+x,(t)-x;(¢) is the signal
generated by the addition of the three analog signals x,(?), x,(?)
and x;(2) .

P. Gundes Bakir,  Vibration based structural health monitoring 25
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Fourier transforms

This chapter focuses on Fourier-series expansion, the
discrete Fourier transform, properties of Fourier
Transforms and Fast Fourier Transform
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Fourier transforms

Fourier analysis is a family of mathematical techniques, all based on
decomposing signals into sinusoids.

The discrete Fourier transform (DFT) is the family member used with
digitized signals.

Why are sinusoids used? A sinusoidal input to a system is guaranteed to
produce a sinusoidal output. Only the amplitude and phase of the signal can
change; the frequency and wave shape must remain the same. Sinusoids are
the only waveform that have this useful property.

The general term Fourier transform can be broken into four categories,
resulting from the four basic types of signals that can be encountered.

P. Gundes Bakir,  Vibration based structural health monitoring 27
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Categories of Fourier
Transforms

Type of Transform

Example Signal

P. Gundes Bakir,

Fourier Transform
signals that are continious and aperiodic

Fourier Series
signals that are continious and periodic

Discrete Time Fourier Transform
signals that are discreie and aperiodic

Discrete Fourier Transform
signals that are discrete and periodic

Vibration based structural health monitoring
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Fourier transforms

These four classes of signals all extend to positive and negative infinity. What if
you only have a finite number of samples stored in your computer, say a signal
formed from 1024 points?

There isn’t a version of the Fourier transform that uses finite length signals. Sine
and cosine waves are defined as extending from negative infinity to positive
infinity. You cannot use a group of infinitely long signals to synthesize something
finite in length. The way around this dilemma is to make the finite data look like an
infinite length signal. This is done by imagining that the signal has an infinite
number of samples on the left and right of the actual points. If all these “imagined”
samples have a value of zero, the signal looks discrete and aperiodic, and the
discrete time Fourier transform applies.

As an alternative, the imagined samples can be a duplication of the actual 1024
points. In this case, the signal looks discrete and periodic, with a period of 1024
samples. This calls for the discrete Fourier transform to be used.

P. Gundes Bakir,  Vibration based structural health monitoring 29
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Time and frequency domains

As shown in the figure, the Discrete Fourier transform changes an N point
input signal into two N/2 + 1 point output signals. The input signal contains the
signal being decomposed, while the two output signals contain the
amplitudes of the component sine and cosine waves. The input signal is said
to be in the time domain. This is because the most common type of signal
entering the DFT is Composed of samples taken at regular intervals of time.
The term “time domain” in Fourier analysis, may actually refer to samples
taken over time. The term frequency domain is used to describe the
amplitudes of the sine and cosine waves.

Time Domain Frequency Domain

x[ ] Forward DFT » Re X[ ] Im X[ ]
EEEEENEENENEEERE| (1111171 COOI1T1I1T1]
0 N-1 0 N2 0 N/2

N samples N2+ 1 samples N/2+] samples
Inverse DFT {cosine wave amplitudes)  (sine wave amplitudes}
N Ve
~
collectively referred to as X[ |
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Time and frequency domains

The frequency domain contains exactly the same information as the time domain,
just in a different form. If you know one domain, you can calculate the other.

Given the time domain signal, the process of calculating the frequency domain is
called decomposition, analysis, the forward DFT, or simply, the DFT.

If you know the frequency domain, calculation of the time domain is called
synthesis, or the inverse DFT. Both synthesis and analysis can be represented in
equation form and computer algorithms.

The number of samples in the time domain is usually represented by the variable V.
While N can be any positive integer, a power of two is usually chosen, i.e., 128,
256, 512, 1024, etc. There are two reasons for this. First, digital data storage uses
binary addressing, making powers of two a natural signal length. Second, the most
efficient algorithm for calculating the DFT, the Fast Fourier Transform (FFT),
usually operates with N that is a power of two. Typically, N is selected between 32
and 4096. In most cases, the samples run from 0 to N-1, rather than 1 to V.

P. Gundes Bakir,  Vibration based structural health monitoring 31
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Lower case letters represent time
domain signals and upper case
letters represent frequency domain
signals.

The figure shows an example DFT
with N = 128. The time domain sign:
is contained in the array: x [0] to x
[127]. Notice that 128 points in the
time domain corresponds to 65
points in each of the frequency

Anmain cinnale with tha franiianev
NAVITIAILTD VI ||u|\J, VVILIT LIINS TN VA1 |U.y

indexes running from 0O to 64.

That is, N points in the time domain
corresponds to N/2 + 1 points in the
frequency domain (not N/2 points).
Forgetting about this extra point is a
common bug in DFT programs.

Time Domain

Time and frequency domains

Amplitude
L= ]
.,

i
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Time and frequency domains

Time Domain
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FIGURE 8-4

Example of the DFT. The DFT converts the
time domain signal, ] ], into the frequency
domain signals, ReXT ] and mX[]. The
horizontal axis of the frequency domain can be
labeled in one of three ways: (1} as an array
index that runs between 0 and N2, (2) as a
fraction of the sampling frequency, running
between 0 and 0.5, (3) as a natural frequency,
running between 0 and n. In the example
shown here, (b) uses the first method, while (c)
use the second method.
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Fourier series expansion

Fourier series are infinite series designed to represent general periodic
functions in terms of simple ones, namely cosines and sines.

A function f(x) is called a periodic function if f(x) is defined for all real x and if
there is a positive number p, called a period of f(x), such that

f(x+p)=71(x)
The graph of such a function is obtained by periodic repetition of its graph in
any interval of length p.

f(x),

7 N\~

&
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Fourier series expansion

Familiar periodic functions are the cosine and sine functions. Examples of
functions that are not periodic are:

x,x2,x3,e",coshx, Inx
If f(x) has period p, it also has the period 2p because the equation

f(x+p)=f(x)

implies that

f(x+2p)= f(x+pl+p)=f(x+p) = f(x)

thus for any integer n=1,2,3,...

J(x+np)=f(x)

P. Gundes Bakir,  Vibration based structural health monitoring
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Fourier series expansion

Furthermore if f(x) and g(x) have period p, then af(x)+bg(x) with any constants
a and b also has the period p.Our problem in the first few slides will be the
representation of various functions f(x) of period 2= in terms of the simple
functions

1, cosx, sinx, cos2x, sin2x,---, COSmx, SIiNnx

All these functions have the period 2r. They form the so called trigonometric
system. The figure shows these functions all have period 2x except for the
constant 1, which is periodic with any period.

iy (RES . r T
el

\/ 2 6\/ \VARVE:

T

cos 2x

N AN F D NN
e T Y

Fig. 256. Cosine and sine functions having the period 27
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Fourier series expansion

» The series to be obtained will be a trigonometric series, that is a series of the
form:

a,+a, CoSx+b; SiNx+a,C0S2x+b,siN2x+---=ay+»_(a, COSnx+b, sin nx)

n=

- Here a,a,b,a,,b,, - are constants called the coefficients of the series.
We see that each term has the period 2r. Hence if the coefficients are such
that the series converges, its sum will be a function of period 2 .

* Now suppose that f(x) is a given function of period 2 = and is such that it can
be represented by a series as above which converges and moreover has the
sum f(x). Then using the equality sign, we write:

f(x)=a, +i(an coSnx + b, sin nx)

n=

P. Gundes Bakir,  Vibration based structural health monitoring 37
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Fourier series expansion

 The equation

f(x)=a,+ i(an coSnx +b, sin nx)
n=1

is called the Fourier series of f(x). We shall prove that in this case, the
coefficicents of the above equation are the so called Fourier coefficients of f(x)
given by the Euler formulas.

a, = %]if(x)dx

anzij.f(X)COSI’lex n:1,2,"°
7[—7[

anEJf(X)SInnxdx n:1,2,°°-
72-—7:
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ERASMUS Teaching (2008), Technische Universitat Berlin

Fourier series expansion

» Let f(x) be periodic with period 2n and piecewise continuous in the interval

—n<x=7 Furthermore, let f(x) have a left hand derivative and a right hand
derivative at each point of that interval. Then the Fourier series of

f(x)=a,+ Z(an cosnx + b, sin nx)
n=1

with coefficients , _ 1 j £ ()dx

" 2r

a, = 1 ij(r) cosSnxdx n=12,--
ﬂ.—/r
1% .

bn:_jf(X)Slnnxdx n=12,--
7[—71

converges. Its sum is f(x) except at points xo where f(x) is discontinuous.
There the sum of the series is the average of the left and right limits of f(x) at

XO.

P. Gundes Bakir,  Vibration based structural health monitoring 39
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Fourier series expansion

The left hand limit of f(x) at xo is defined as the limit of f(x) as x approaches xo
from the left and is commonly denoted by f(xo-h). Thus,

f(x,—h)=lim,_, f(x, —h)ash— 0 through positive values.

The right hand limit of f(x) at xo is defined as the limit of f(x) as x approaches
xo from the right and is commonly denoted by f(xo+h). Thus,

f(x,+h)=lim,_, f(x +h)ash— 0 through positive values.

P. Gundes Bakir,  Vibration based structural health monitoring 40
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Example

Find the Fourier coefficients of the periodic function f(x) in the figure.
The formula is:

=k if —m<x<0
f(x)_{k if O<x<nrm

and f(x+2x)= f(x)

flx)

k prmr——

P. Gundes Bakir,

Vibration based structural health monitoring

41



ERASMUS Teaching (2008), Technische Universitat Berlin

Example

« Find the Fourier coefficients of the periodic function f(x) in the figure.

The formula is:

=k if —m<x<0
f(x)_{k if O<x<nrm

and f(x+2x)= f(x)

aozi.f(x)dx
27
1 % 1 & 1 7%
— dx =— [ (k) dx +— | (k)d
a zﬂ_ﬁf(x)x zﬂ_[f )dx 2ﬂ£()x
1 | . 1 1
= = (—k0)’ +—(x)[ =——kr+—kr =0
27z( )“” 27r( )‘0 27 d 27 d

 The above can also be seen without integration, since the area
under the curve of f(x) between -n and =« is zero.

P. Gundes Bakir,  Vibration based structural health monitoring 42
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Example

From 4 == j £ (x) cos nxdx
Ty

Vs 0 s
a, = 1 I f(x)cosnxdx = i{ I (—k) cos nxdx + j (k) cos nxdx}
4 -7 - 0

T
:i{(_ksmnx) :IZO
T n 0

becausesinnx =0at - 7,0,and 7 foralln =1,2,....Similarly:

0 .
Sin nx

+(k

-7

)

n

b, =£ .f(x)sin nxdx
72-—77
Vg 0 T
1% . 1 : .
b, =— | f(x)sin nxdx :—“(—k)sm nxdx+J(k)Sln nxdx}
72-:7[ 4 - 0
1| cosnx|  cosmx|”
=—|k —k
T no|, no|,

Since cos(-a) = cosa and cos0 =1, this yields:

P. Gundes Bakir,  Vibration based structural health monitoring
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Example

b, = LS [cos0—cos(-nz) —cosnz +cosO]
niw

:i[Z—ZCOSmr]
nri

:E(l—cos;m)
ni

Now cos(z) =—1, cos2z =1, cos(37) =—1etcin general

-1for odd n
cosnz =
1forevenn

2 forodd n

and thusl—cosnrz =
O forevenn

P. Gundes Bakir,  Vibration based structural health monitoring
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Example

Hence the Fourier coefficients b, of our function are:

blzﬁ, b, =0, b3=ﬁ, b, =0, b5=ﬂ,---
T 3 57

Since the a,, are zero, the Fourier series of f(x)is:
4k (. 1. 1.

—| SInx+—sIN3x+—=SIN5x +---

T 3 5

The partial sums are :

S, = ﬁsin X
1

S, = ﬁ(sin x+lsin 3xj etc.
T 3

Their graph seems to indicate that the series is convergent and has
the sum f(x), the given function.

P. Gundes Bakir,
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Example

We notice that at x=0
and x=m=, the points of
discontinuity of f(x), all
partial sums have the
value zero, the
arithmetic mean of the
limits k and —k of our
function at these

ninte
1 | 9

T TWJ.

P. Gundes Bakir,
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(b) The first three partial sums of the corresponding Fourier series
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Derivation of the Euler formulas

The key to the Euler formulas is the orthogonality of
1, cosx, sinx, cos2x, Sin2x,---, COSmx, SINnx

a concept of basic importance as follows:

THEOREM 1: The trigonometric system above is orthogonal on the
interval —z <x <7z (hence also on o<x<2z or any other interval of
length 27 because of periodicity); that is the integral of the product of
any two functions in1, cosx, sinx, cos2x, sin2x,---, C€O0Snx, Sinnx

over that interval is zero, so that for any integers n and m,

(a) [ cos nx cos mxdx =0 (n = m)
(b) [sin nxsin mxdx =0 (n#m)
(c) [ sin nx cos mxdx = 0 (nzm or n=m)

-
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Fourier series expansion of any
period p=T

The functions considered so far had period 2=, for the simplicity of the formulas. However, we will
mostly use the variable time t and work with functions x(t) with period T. We now show that the
transition from 2r to period T is quite simple. The idea is simply to find and use a change of scale
that gives from a function f(x) of period 2= to a function of period T.

In the equations below we can write the change of scale as: x=kt with n such that the old period x=2
© gives for the new variable t the new period t=T. Thus

2 1=KT hence k=2 n/T and x=kt= 2xt/T. This implies dx= 2xdt/T which upon substitution into

z 1 T2
x)dx a, =— | x(¢)dt
a = jﬁ() =7 0

1 77 2 T/2 2

a,=—| f(x)cosnxdx n=12,- |:> a, =— x(t)cos—dt n=12,-
T =, I 7, r
1 42 2 T/2 2

b, = f(x)sinnxdx n=12,- b =— x(t)SIn—dt n=12,---
a .” T—T/2 T

P. Gundes Bakir,  Vibration based structural health monitoring 48



ERASMUS Teaching (2008), Technische Universitat Berlin

Fourier series expansion

« Since we will mostly use the variable time t and in the frequency domain
27nn/T, the equation %
f(x)=a,+ Z(an cosnx +b, sin nx)

can be written as follows:

2 27t . 27t

x(t)=ay+ ) | a,c0s=——+b, sin——
n=1 T T

The coefficients in this case can be written as shown on the rhs rather than the

lhs.

1 T T/.2
a, :E If(x)dx a, = 1 x(t)dx
el I 5,
1 T T/.2
- ff(X)COSnxdx n=12,- a _2 x(t)COS@dl‘ n=12,--
bt T 7, r
1 T - T/.Z
b, :;.[f(x)smnxdx n=1,2,-- b, _2 x(r)sin@dt n=12,---
el T 5, r
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Fourier series expansion of the
periodic loading

For a function x(t) defined on the interval [-1/2, ©/2], we have the
representation on that interval
(ZMII) ]
t

x(t) = ag+ Eunms [(2“”) ] - Zb sin
n=1 ! n=1
The coefficients are obtained as follows: Consider the integral
Ly = fﬁ x(t) cos [(2-,7-;::1) f] dt
S T

2

When x(?) is substituted from the first equation, this integral breaks down into
1), 1 @ andl ). The first is:
(2rrm) ”5
— t

(QIHH) f_] .
T

agT

sin

I = f_E (g COS

L
2

27Tm

[
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Fourier series expansion of the
periodic loading

Nyl
2m

[sin(mm) — sin(—7m)]

anT
= ——sin(wm
T ( ' )

but this is zero as sin(#zm)=0 for all m. The second integral is:

I( f . [Eltznms {(2“ ”) f” COS [(QTH) 1‘] ct

Assuming we can change the order of integration and summation we obtain
27N 27m
E a j cos | | — - (

Using the identity 2cos AcosB = cos(A + B) + cos(A — B)

CcoOs
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Fourier series expansion of the

periodic loading
19 = 8 (oo () ] (222 )

T

Z::{? [ e sin [7(n + m)| + 0 T_ - sin [7(n — m}]]

* Now if n and m are different integers then »n-m and n+m are both nonzero integers
and the sine terms in the last expression vanish. If » and m are equal, we have a
problem with the second term above. We could use a limit argument but it is
simpler to go back to the first eauation with n=m.

o [T d7
It = {i—n (L‘UE K m) ."I + 1) dt
2 /-Z T
{ T Kfimu) f] 4 f]%
hm ST S T 2 L
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Fourier series expansion of the
periodic loading

This breaks down to:

-
Jir:-l’.-lJ = U7

Sl I

An orthogonality relation has been proved.

T;OSHZTMHCOSKZT ”dr =0 for m = n

for m=n#0

N N |

for m=n=0

« A similar analysis for the third integral 1% = [ [Zhnam{(g ”)r”ms
gives

n=1

Q-
(“ _”") f] di

j-lff-!fl —0

e
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Fourier series expansion of the
periodic loading

Derives along the way the orthogonality relation

-z 2T 2T
/ 5111 [(—”) t cos [( m) f] dt =0
J—3 T . T

'-.

As
L = I3+ 1D + 1)
.
We have Im:amz for m=n=+0
I =a,r for m=n=0

Or in terms of the original expression:

2 L 2T
:/jﬂﬂm4( m%
T Y7 T

dt = a,, for m=n+0
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Fourier series expansion

If m=n=0 in the below equation:

2 x
a,t= J.X(t)coS(Zﬂtjdt form =n=0 iy = i 'h. x(t)dt

T T

Performing the same operations using a muluplier or sin(2zm/z)

gives. 2L , 2rim
b, = — / x(t) sin ( ) t ddt
T J-L T,

2

via the orthogonality relation:

. [/2mn : 2mm T
/_; sin (T)f sin ( - ).l' dt = 5 0mn

where §,,,is called the Kronecker delta and has the properties:

1 ifn=m
0 ifnem

mn
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Fourier series expansion of the
periodic loading

Fourier Series Expansion in Exponential Form
« Recall the standard Fourier series in terms of

() = ag + Z_uncos(u.uf) + Z by sin(nwt)

it— 1 —_1

 Now suppose we apply de Moivres Theorem

cos(nwt) = ;(rém‘ﬁ + e
: 1 1nwi inwt
sin(nwt) = — (™" —e )
i
o s - f‘t"H_. . ,.i . ,.E h"”_, . v ,.E g ,.E
Y apcos(nat) + > bysin(nwt) = (¢l o inwty | it inety

: 2 20

n—1 n—1
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Fourier series expansion of the
periodic loading

1 ' L . TP
— E(‘”“ . ”}“)(,wmi + (”n ‘|—”’3-n,]f’ inwt

- &

LD | =

This allows us to write the equation

(t) = ag + Zuncos(;mf) + Z by, sin(nwt)

h—1 h— 1

in the following form:

2(t) = Y cpe™
where n=—00
cp = (a, —ib,) /2 n >0
cp = (an+1by) /2 =¢ n<0

T
co=ay n=0
P. Gundes Bakir,
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Fourier series expansion

« Using the equations T2
aznzE j x(t)COS@dt n=12,---
-T2 r
T/2

bn=E I x(t)sin@dt n=12,..
r T

-T2

in ¢, = (a, —ib,)/2 >0 "
cn:l(an—ibn):lg[ j x(t)cos@dt—i j x(t)sin@dzj
2 2T -T/2 r -T/2 r
147 ( 2mt . . 27t
== I x(t)] cos———isin—— dt
Gives: ~T12 r r
1 +T/2 y
Cn _ = Ix(t)e zZnnt/Tdt
T—T/2
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Fourier series expansion

« Alternatively, using the orthogonality equation
T/2

jei”wteimwtdt =0 for n+m=0
T2

=T for n+m=0

and multiplying the equation

x(t) = Y cpe™

Th—— 2

by exp(imat), and integrating directly gives:

( .'H.-

l % e
:/:.r({)r e

P. Gundes Bakir,  Vibration based structural health monitoring



ERASMUS Teaching (2008), Technische Universitat Berlin

Fourier transform

« |f we want to look at the spectral content of nonperiodic signals we
have to let t—> as all the interval t €[-0, ] contains important
information. Recall the exponential form of the Fourier series

:K - N
Y — ~ L inwt
alt) = }_‘ Cr

O

where

1 . .
o= 2 [F e

Combining the above two equations give:

0 1 P . . - o
oty = X -{—/ La(th)e fn-}- it

o T

and we now have to let T—0
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Fourier Transform

» If we suppose that the position of the t axis is adjusted so that the
mean value of x(t) is zero. Then according to the first of the below
equation the coefficient ao will be zero.

T/2 T/2 T/2
—l Ix(t)dx aznzg j x(z‘)COS@dt n=12,-- bnzE I x(t)sin@dt n=12,--
T—T/Z T—T/Z T T—T/Z T

« The remaining coefficients an and bn will in general all be different
and their values may be illustrated graphically as shown.

aké T bké

[FaER RN i [ IIIT,

21tk

o k-t &}g W‘g—;.&& o kot bt mk=-i.--
27 21 2m . 2m 2m 2m 2 .

l;“r T 7 1  Frequency of harmonic rF T T T Frequency of harmonic
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Fourier Transform

Recall that the spacing between the frequency lines is

3

i

o=Aw="—
so that the kth spectral line is at |
ok = kAw

From the first equation, we see that
1 Aw

27

The equation

C oy — ™ < ey et gl RIS
‘rll.. 'II! ..II — \/_.« 1 / . o I'-_'II! ..ll'r “;'II! J {

becomes

]_ i % ] [ 3
;1.'(1'.) =— Y {f L;L.‘(f)f Un t ('ff} e*nt A

2T =" 2
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Fourier Transform

As 1—0, the o, become closer and closer together and the
summation turns into an integral with Aw=dw (assuming that x(t) is
appropriately well behaved. In the limit

x(t) = —/K ‘!/ x(t)e ﬂ”frff'l et

It follows that if we define
Fle(t)] = X(w) = [7 a(tye “di

where 7 denotes the Fourier transform then the first equation

implies that
1

[0
L/ Xyt

T

FX(W)] = «(t) =

and this is the inverse Fourier transform.
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Fourier Transform

Note the formal similarity to the Laplace transform in fact we obtain
the Fourier transform by letting s= iw in the Laplace transform. The
main difference between the two is the comparative simplicity of the
inverse Fourier transform.

{x(t),X(w)} are a Fourier transform pair. As they are uniquely
constructable from each other they must both encode the same
information but in different domains. X(w) expresses the frequency
content of x(t). It is another form of spectrum. However note that it
has to be a continuous function of ® in order to represent non-
periodic functions.
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Discrete Fourier Transform

In reality not only will the signal be of finite duration but it will be
sampled. It is not possible to store a continuous function on a
computer as it would require infinite memory.

What one usually does is take measurements from the signal at
regular intervals say t seconds apart so the signal for manipulation
takes the form of a finite vector of N samples

{ao,...,xxy 1}  where  x; = x(t;) = x(to + iAt)

where t is a reference time. If we take t,=0 from now on we will have

t; = 1At

How do we compute the spectrum of such a signal? We need the
Discrete Fourier Transform DFT.
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Discrete Fourier Transform

Recall the exponential form of the Fourier series the spectral
coefficients are

i~

]. ) 2min
Cp = f/ B .r(f')r L

In keeping with our notation for the Fourier transform we will relabel
c, by X, from now on. Also the equation above is not in the most
convenient form for the analysis so we will modify it slightly.

Recall that x(t) is assumed periodic with period t. Consider the
integral

]_ () Zmin
:/ w(tye Tl
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Discrete Fourier Transform

 Lett'=t+1, the integral becomes

1 TI:I_ i 3
ng x(t — 7)e

but x(t')=x(t'-t) by periodicity. Also, 27~z _ ,=2mitlz

].fl:l ( 2w n't. f 2w n't.
— £ —

:—f (e 21‘”fdf+—f x(t)e”

TE-T) g

Lt

- _1 T _2mingy
)&n—;fo x(t)e 7 ‘dt
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Discrete Fourier Transform

Now, as we have only x(z) sampled at /. =r4 t, we have to approximate the

Integral by a rectangular sum,

]_N_l < 2MTT 1N_1 2N
Xp==Y a(t,)e " T At = = a0 T TAAL
T r=( T =0

and as t=NA ¢, this becomes,

- ]. N-1 2T

= — > xe "N’
N =

As we started off with only N independent quantities x, we can only derive
N independent spectral lines at most. This means we must have relations
between the X, . The simplest one is periodicity. Consider,

]_ N-1 _p2rn -
Y ape tF T =X,

LML antnemny ;2
N r=(0

N-1

4 . _ i E : P b ot A ¥ b

-*X-n'f'i"lf —~ A7 Z: L€ N AT Lr€ 2 T
_'\' r=0 <Y r=0

P. Gundes Bakir,  Vibration based structural health monitoring 68



ERASMUS Teaching (2008), Technische Universitat Berlin

Discrete Fourier Transform

Therefore, it has been confirmed that we have at most N independent lines.
In fact, there must be less than this as the X, are the complex quantities.
Given N real numbers, we can only specify N/2 complex numbers.
Looking at the exponent in

- L 7 _2ming
)xn—;fo x(t)e "7 “dt

If this Is to be identified with the exponent i@ ¢ of the Fourier transform, we
must have,

™
Wy = NAW = ——

or
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Discrete Fourier Transform

Alternatively, if we specify the frequency spacing in Hertz
1

A =wA

i 1 N-1
When n=0, the spectral line is given by: Xy = ~ >,
LY p=0

which is the arithmetic mean or DC component of the signal. Therefore X,
corresponds to the frequency =0 as we might expect.

This means that the highest frequency that we can represent is

where f, is the sampling frequency. This frequency is very important in
signal processing and is called the Nyquist Frequency.
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Discrete Fourier Transform

This argument says that only the first half of the spectral lines are
independent-so what are the second half? Consider:

2m(N-1)r

x.e N xe

1N—1 1N—1
_ero ' _Nr=0 '

—i2 +i2mr I N
l7Z7"e LLTTr

XNl

but r is an integer, so e'27=1, this means,

*

*

1 (18 )
XN_]_ :ﬁLxreZZﬂT/N _ LﬁLxreZZW/NJ _ Xl
r=0 r=0

A similar argument shows that generally,

Xy :X;
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Discrete Fourier Transform

Recall that it is a property of the Fourier Transform that
X(0) =X (-o)

This means that the spectral coefficient X, corresponds to the frequency
-Aw or more generally X, corresponds to the frequency -kAw. So the
array X, stores the frequency representation of the signal x, as follows:

= J Ao 2A0 3Awm 4Am 2000 Ao
| | | | P | |

n= g i ’, 3 P, N-2 N-—-1
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Discrete Fourier Transform

What happens if there is a value of k for which N-k=k? This implies that N=2k so
the number of sample points is even.

Actually this turns out to be the most usual situation, in fact it is a requirement of
the Fast Fourier Transform which we shall meet in the next lecture.

In this case, we have

*

XN/Z — XN/Z

so this spectral line is real.

This finally justifies our assertion that the maximum frequency represented is
NAw/?2.
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Discrete Fourier Transform

Proof of the inversion theorem

o Letus proove that

N-1
. i2mnl N
X, = X e
r=0
N-1
where i X e—i27zrp/N
A N g
p=0

« |If the second equation is substituted in the first equation, we obtain:

N-1 N-1

1
= — X e
p
r=0 N =0

—i2mpl N ei27Z7”I’l/N

i)
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Discrete Fourier Transform

If we change the order of the summations, we obtain:

l N-1

N-1 / /
_ —i2mpl N _i2mnl N
xn — E —N xpe e
p=0 r=0

which can be rewritten as:

N-1 1 N-1 .
_ Z X elZﬂT‘(l’l—p)/N
p
»=0 L
as

<~4

r=0 J

follows provided the term in brackets is
1%
_Zx 127r(n p)/N]
N =

=q

which can be reexpress
called q:

pP=
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Discrete Fourier Transform

» Thus, if n#p, within the equation

N-1 1 N-1 2 VN
xn — = X [ez z(n—p ]r
z N — p

p=0 Y
S
ic seri - Y ¢ =l+q+q’+
we have a geometric series as follows: q qrq T..
r=0

If we call the left hand side of the above equation s., we have:

s =1l+q+q°+..

If we multiply both sides of the above equation by g, and subtract the
resulting equation from the above equation:

qs, =q+..+q +q

s, —qs, =1—-¢"

N-1+1
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Discrete Fourier Transform

We can obtain the value of s, from here as:

1_N
o _1-q

r 1_ q
Now, gN=1, which can be proved as:

qN=ei2®n-PIr=cos2nr(n-p)+isin2zr(n-p)=1+0=1

which results in the below result for n=p :
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Discrete Fourier Transform

For n=p, the term in brackets in the equation below becomes 1.

N-1 1 N-1 2 Y
xn — = X [el T(n—p N]r
Z N pry p

p=0

The summation of all ones r times gives N. N’'s cancel each other in
the above equation and letting p=n gives:
1 N-1
ﬁ Xpngn =X,
p=0

Thus, the above equality is proved to be satisfied which consequently
proves the inversion theorem. This takes us to the final proven
Discrete Fourier Transform formulas in the next slide.
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Discrete Fourier Transform

Discrete Fourier Transform
N-1 /
. —i2mrl N
X, = Z X.e
r=0

Inverse Discrete Fourier Transform

1 N-1 /
. i2mrl N
X ——lere

n X T

N2
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Gibb’s phenomenon

« The first figure shows a time domain signal being synthesized from
sinusoids. The signal being reconstructed is shown in the graph on the left
hand side. Since this signal is 1024 points long, there will be 513 individual
frequencies needed for a complete reconstruction. The figure on the right
shows a reconstructed signal using frequencies 0 through 100. This signal
was created by taking the DFT of the signal on the left hand side, setting
frequencies 101 through 512 to a value of zero, and then using the Inverse
DFT to find the resulting time domain signal. The figure in the middle shows
a reconstructed signal using frequencies 0 through 30.

|]1. F::elqumnies: IIIIt-J 512| - |e. FIEIIIIJEI'.'I.BiEEZ IIIItu 3I:|| ' |f_ Fre-:lluen-:[u: Dlm m.:,l
1 | |
/— 2 | | /’\ E |
£ £ | /—7
5 ':'"L‘ W - ED—L
i
|
B 0 256 512 THE L B :
25§ Samﬂ;fm]}ﬂ TER 1023 Sample rihex : 0 255 Samplejfumbez ez 023

P. Gundes Bakir,  Vibration based structural health monitoring 80



ERASMUS Teaching (2008), Technische Universitat Berlin

Gibb’s phenomenon

When only some of the frequencies are used in the reconstruction, each edge shows
overshoot and ringing (decaying oscillations). This overshoot and ringing is known as
the Gibbs effect, after the mathematical physicist Josiah Gibbs, who explained the
phenomenon in 1899.

The critical factor in resolving this puzzle is that the width of the overshoot becomes
smaller as more sinusoids are included. The overshoot is still present with an infinite
number of sinusoids, but it has zero width. Exactly at the discontinuity the value of the
reconstructed signal converges to the midpoint of the step. As shown by Gibbs, the
summation converges to the signal in the sense that the error between the two has

zero energy.

™

i i
|c. Frequenries: 0 to 3 |

i i
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N
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Gibb’s phenomenon

Problems related to the Gibbs effect are frequently encountered in
DSP. For example, a low-pass filter is a truncation of the higher
frequencies, resulting in overshoot and ringing at the edges in the
time domain. Another common procedure is to truncate the ends of
a time domain signal to prevent them from extending into

neighboring periods. By duality, this distorts the edges in the
frequency domain. These issues will resurface in future chapters on

filter design.

i i
|c. Frequenries: 0 to 3 |
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Example: An important DFT pair

Figure is an example signal we wish to synthesize, an impulse at sample
zero with an amplitude of 32. Figure b shows the frequency domain
representation of this signal. The real part of the frequency domain is a
constant value of 32. The imaginary part (not shown) is composed of all

Zeros.
As discussed in the next chapter, this is an important DFT pair: an impulse

in the time domain corresponds to a constant value in the frequency
domain. For now, the important point is that (b) is the DFT of (a), and (a) is

the Inverse DFT of (b).

Time Domain Frequency Domain
0 : I 50 1 I -
| 2. The time domain signal | | b. Re X[] (the frequency domain) |
& ] [— v . — -
gt el nsséssssssninunsy
E‘m E‘m |
104 104
]

! i
4 ] 12 16

1 - I I BHHH
L H
Frequency sample aumber

0 8 14 24
Sample numbear

=
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Bandwidth

* As shown in the figure, the PR e
bandwidth can be defined by N e
drawing dividing lines between the S HERLIS L.
samples. For instance, sample s i 4" P "
number 5 occurs in the band _g.i-‘" SHEREtE
between 4.5 and 5.5; sample | R |
number 6 occurs in the band 3L
between 5.5 and 6.5, etc. = BB
Expressed as a fraction of the H | 1 L] :
total bandwidth (i.e., N/2), the BP0 B SR S B R S A
bandwidth of each sample is 2/N. Frequency sample number
An exception to this is the * DFT can be calculated by the fast
samples on each end, which have Fourier transform (FFT), which is

one-half of this bandwidth, 1IN.

This accounts for the 2/N scaling an ingenious algorithm that

factor between the sinusoidal decomposes a DFT with N points,
amplitudes and frequency domain, into N DFTs each with a single

as well as the additional factor of point.

two needed for the first and last

samples.
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Frequency response-Impulse
response

« A system’s frequency response is the Fourier transform of its impulse
response.

» Keeping with standard DSP notation, impulse responses use lower-case
variables, while the corresponding frequency responses are upper case.
Since A[ ] is the common symbol for the impulse response, H[ ] is used for
the frequency response. That is, convolution in the time domain
corresponds to multiplication in the frequency domain.

x[n] % Ain] = y[n] X[Il] —_— h[Il] — y[n]
e ] N Mg

DOMAIN @ {} {}
X[f] XH[f] = Y[fj

. OUIIUES DaKI X[ﬂ —> H[ﬂ I Y[ﬂ 85
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How much resolution can you obtain in
the frequency response?

The answer is: infinitely high, if you are willing to pad the impulse response with an
infinite number of zeros. In other words, there is nothing limiting the frequency
resolution except the length of the DFT.

Even though the impulse response is a discrete signal, the corresponding frequency
response is continuous. An N point DFT of the impulse response provides N/2 + 1
samples of this continuous curve. If you make the DFT longer, the resolution improves,
and you obtain a better idea of what the continuous curve looks like.

This can be better understood by the discrete time Fourier transform (DTFT).
Consider an N sample signal being run through an N point DFT, producing an N/2 + 1
sample frequency domain. DFT considers the time domain signal to be infinitely long
and periodic. That is, the N points are repeated over and over from negative to positive
infinity. Now consider what happens when we start to pad the time domain signal with
an ever increasing number of zeros, to obtain a finer and finer sampling in the
frequency domain.
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How much resolution can you obtain in
the frequency response?

Adding zeros makes the period of the time domain longer, while simultaneously
making the frequency domain samples closer together.

Now we will take this to the extreme, by adding an infinite number of zeros to the
time domain signal. This produces a different situation in two respects.

First, the time domain signal now has an infinitely long period. In other words, it
has turned into an aperiodic signal.

Second, the frequency domain has achieved an infinitesimally small spacing
2

hnf\vl\vleen c::umnlnc Thaf IS, |1‘ hns become a Contlnum Ic annal ThIS IS flhn D

procedure that changes a dlscrete aperiodic signal in the time domain into a
frequency domain that is a continuous curve. In mathematical terms, a system's
frequency response is found by taking the DTFT of its impulse response. Since this
cannot be done in a computer, the DFT is used to calculate a sampling of the true
frequency response. This is the difference between what you do in a computer (the
DFT) and what you do with mathematical equations (the DTFT).

FT, the

y UIT
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Close peaks

Suppose there are peaks very close together, such as shown in the figure.
There are two factors that limit the frequency resolution that can be
obtained-that is,how close the peaks can be without merging into a single
entity. The first factor is the length of the DFT. The frequency spectrum
produced by an N point DFT consists of N/2 + 1 samples equally spaced
between zero and one half of the sampling frequency. To separate two
closely spaced frequencies, the sample spacing must be smaller than the
distance between the two peaks. For example, a 512-point DFT is sufficient
to separate the peaks in the figure,while a 128-point DFT is not.

320

lﬂﬂ T = |l : 1| T II i
a. N=128 [ ! ! i ]b. N=512 | | H
. | : . : !
1 I I
I 1 ] =t
1 1 I ] I I
1 1 ] 1 I |
] 1

80+

Amplitude
& 2
1 1

20+

-4 ]
0 0.1 0.2 0.3 04 0.5
Frequency

1] 0.1 0.2 0.3 0.4 0.5
Frequency

s TR T A A
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Output of a system

What are you going to do if given an input signal and impulse response, and
need to find the resulting output signal? Transform the two signals into the
frequency domain, multiply them, and then transform the result back into the

time domain. : z .
' 11 i A ts o in |
LM | g 1 _ 1S
nintanalal | = LT
2 [ i. ! ! -
° Smpleomber ' et " Smplemaber

DFT

_ TIME @
FREQUENCY

b p— — r - 2000 I i .

4 b ReX[f] | | e. ReH[N] | 4‘ h Re Y[f]

“ [ | T q‘l | T | 1000 ] !

x x i f :

: ; 3 || |
& 0 -y = 0 P

3 X i ! | = ¢ |

< a0 < .» |

| | oo {—| |

i T | |
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« ] o | ! o —
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Dvrann " nftha CAnir
1 |J I
Homogeneity means that a change in amplitude in one domain produces an identical change

in amplitude in the other domain. When the amplitude of a time domain waveform is changed,

the amplitude of the sine and cosine waves making up that waveform must also change by an
equal amount. In mathematical form, if x[ ] and X ] are a Fourier Transform pair, then kx| ]

&
C
a
T
C

and kX[ ] are also a Fourier Transform pair, for any constant £.

Time Domain Frequency Domain
3 bl ]
[o. %]
2 R S — ] “@ | N
o I . !
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D t fthao E ; T f
Fropertes o1 tine rourier i1ransi

11Tl
Additivity of the Fourier transform means that addition
iIn one domain corresponds to addition in the other
domain. An example of this is shown in the figure. In this
illustration, (a) and (b) are signals in the time domain

called x4[n] and x,[n], respectively. Adding these signals

prczd)uces a third time domain signal called x5[n], shown
in (c).

Time Domain

~
U

N a. E:;I] 3 || b 'Lz[] 1
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=T . I _I
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In spite of being linear, the Fourier transform is not shift invariant. In other
words, a shift in the time domain does not correspond to a shift in the

frequency domain.

Let h(t) be the impulse response, i.e., the system’s response to a Dirac
impulse, it can be proved that the response g(t) of the system to an input f(t)
is the convolution of f(t) and h(t):

()= [ f()h(t—7)dT = h(t)* f(t)

The convolution theorem in Fourier analysis states that convoiution in one
domain corresponds to multiplication in the other domain.

Hence the frequency response function H(f) is the ratio between the
response and the input as a function of the frequency.

g(t) = h(z)* f (1)
G(f)=H(/)F(f)
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Differentiation in the time domain is equivalent to multiplication by a
factor io in the frequency domain.

F#(1)]= (i) X (o)

Integration in the time domain is equivalent to division by i® in the

frequency domain. %
FUt x(r)dr} = .(a))
—0 10,

If the input is the harmonic probe ei*t, the output is et multiplied by
the FRF evaluated at o.

y(t) = H(w)e™
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Fourier transform

« Measured signals are time domain functions. It is important to
investigate the signals in the frequency domain in order to study
their frequency content. The Fourier tansform is a tool to transform
signals from the time domain to the frequency domain.

- F 1 - o0 P —'-f,
Fle(t) = X(w) = | a(t)e™'at

T o — 0

* The signal can be transformed back to the time domain using the
inverse Fourier transform:

1
27 -

f—l \"f g ..’f _ o \"f oy dwd Jl'f \
X (w)] = () f—m‘ (w)e™ dw
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Fast Fourier Transform

The FFT is a clever algorithm for rapidly calculating the DFT.

The N point DFT of an N point sequence x,, Is given by:

N-1
X, =) x,W,° where W, =e/*"'"
r=0

Because x, may be either real or complex, evaluating X, requires on the
order of N complex multiplications and N complex additions for each
value of k. Therefore, because there are N values of X,, computing an N
point DFT reqires N2 complex multiplications and additions.

The basic strategy that is used in the FFT algorithm is one of divide and
conquer, which involves decomposing an N point DFT into succesively
smaller DFTs.
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Fast Fourier Transform

Suppose that the length of x, is even, (i.e., N is divisible by 2). If x is
decimated into two sequences of Iength N/2 computing the N/2 pomt
DFT of each of these sequences requires apprOX|mater (N/2)?
multiplications and the same number of additions.Thus, the two DFTs
require 2*(N/2)?=N2/2 multiplications and the same number of additions.

Therefore, if it is possible to find the N point DFT of x,, from these two N/2
point DFTs great computational time will be saved because N2/2
operations will be required instead of N2.

Let x,, be a sequence of length N=2", and suppose that x,, is split
(deC|mated) into two subsequences, each of length N/2.

The first sequence g, is formed from the even-index terms,

g =X, n=0,1,...,%—1
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Fast Fourier Transform

The second sequence £, is formed from the odd-index terms,

h =x, 1 n=0,1,...,%—1

In terms of these sequences, the N-point DFT of x, is

X, = Nz_lon]’Jk = anW]le + anW]’V?k
n=0

n even n odd

Ny Ny

2 2
_ 21k (21+1)k
= Z gy + Z Wy

/=0 1=0
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Fast Fourier Transform

Since .
— o JET

v

20k 1yrlk
Wy =Wy

Substituting the above result into the equation:

N-1
X, =D x Wi = > x Wi+ > x, Wi
n=0 n even n odd
%—1 %—1
_ Zng]\?lk n ZthA(fznl)k
/=0 /=0
i N 1 N 1

We obtain: o o

Xk:;;gz "'WJ\I/CZ]”Z NI2
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Fast Fourier Transform

* Note that in the equation

N4 N4
2
Ik k Ik
X, = ZngN/Z +Wy ZhZWN/Z
1=0 1=0

the first term is the N/2 point DFT of g,, and the second is the N/2 point
DFT of h,:

X, =G +WyH, k=01..,N-1

Although the N/2 point DFTs of g, and h,, are sequences of length N/2, the
periodicity of the complex exponentials allows us to write:

Gk — Gk+N/2
Hk — Hk+N/2
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Fast Fourier Transform

Therefore, X, may be computed from the N/2 point DFTs G, and H,.

If N/2 is even, g, and 4, may again be decimated. For example, G, may be

evaluated as follows:

Yy

> ——1 %—1
k
G Zgn N/Z Zgn + ZgnW
n even n odd
As before, this leads to

N
4

——1
G, = Zan +W]\]§/22g2n+lW /
0

where the first term is the N/4 point DFT of thé even samples of g,,, and the second

IS the N/4 point DFT of the odd samples.

P. Gundes Bakir,  Vibration based structural health monitoring

100



ERASMUS Teaching (2008), Technische Universitat Berlin

Fast Fourier Transform

» |f Nis a power of 2, the decimation may be continued until there are
only two-point DFTs. A block diagram showing the computations
that are necessary for the first stage of an eight point decimation in
time is shown in the figure. This diagram is called the FFT butterfly.

Y
X
2
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Fast Fourier Transform

Computing an N point DFT using FFT is much more effective than
calculating the DFT directly.

For example, if N=2Y, there are log,N=v stages of computation. At each of
these stages, we are required to carry out N multiplications. The total cost
of the algorithm is then Nlog,N.

The saving in moving from the DFT to FFT is:
N? N N

Nlog, N log,N v

Suppose N=1024, we get a saving of computational effort of the order
100:1, and this saving increases with N.
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Problems associated with ADC

We will now explore the issues of aliasing and apparent signal
distortion associated with choosing a sample rate for digital
conversion of analog signals. This process is known as analog to
digital conversion (A/D).

The process of sampling reduces an infinite set to a finite set of
data resulting in a loss of information which is responsible for the
iIssues detailed in this section.

Since the original analog signal contains infinite information
(knowledge of the signal at any point in time), the frequencies within
the signal are also known.

Information lost in the sampling process is also lost in the frequency
representation. We will explain how this leads to the problem of
leakage where high frequency components can not be distinguished

from low frequency components.
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« Nearly all data acquisition systems sample data with uniform time
intervals. For evenly sampled data, time can be expressed as:

T'=(N-1At

where N is the sampling index which is the number of equally
spaced samples. For most Fourier analyzers N is restricted to a
power of 2.

« The sample rate or the sampling frequency is:

1
Ve (N -1)af
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« Sampling frequency is the reciprocal of the time elapsed
At from one sample to the next.

* The unit of the sampling frequency is cycles per second
or Hertz (Hz), if the sampling period is in seconds.

« The sampling theorem asserts that the uniformly spaced
discrete samples are a complete representation of the
signal if the bandwidth f, _is less than half the sampling
rate. The sufficient condition for exact reconstructability
from samples at a uniform sampling rate f, (in samples

per unit time) (£,>2f ).
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One problem encountered in A/D conversion is that a high frequency
signal can be falsely confused as a low frequency signal when
sufficient precautions have been avoided.

This happens when the sample rate is not fast enough for the signal
and one speaks of aliasing.

Unfortunately, this problem can not always be resolved by just
sampling faster, the signal’s frequency content must also be limited.

Furthermore, the costs involved with postprocessing and data
analysis increase with the quantity of data obtained. Data acquisition
systems have finite memory, speed and data storage capabilities.
Highly oversampling a signal can necessitate shorter sample
lengths, longer time on test, more storage medium and increased
database management and archiving requirements.
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The central concept to avoid aliasing is that the sample rate must be
at least twice the highest frequency component of the signal
(f>2f ). We define the Nyquist or cut-off frequency

S 1
I 2 2At

The concept behind the cut-off frequency is often referred to as
Shannon’s sampling criterion. Signal components with frequency
content above the cut-off frequency are aliased and can not be
distinguished from the frequency components below the cut-off
frequency.

P. Gundes Bakir,  Vibration based structural health monitoring 108



ERASMUS Teaching (2008), Technische Universitat Berlin

Aliasing

Conversion of analog frequency into digital frequency during sampling is
shown in the figure. Continuous signals with a frequency less than one-half
of the sampling rate are directly converted into the corresponding digital
frequency. Above one-half of the sampling rate, aliasing takes place,
resulting in the frequency being misrepresented in the digital data. Aliasing
always changes a higher frequency into a lower frequency between 0 and
0.5. In addition, aliasing may also change the phase of the signal by 180

degrees.
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Aliasing

« What happens if the original signal actually has a component above the Nyquist

frequency? .
q y X(w) X ()|
— 0)\¢2 UJS/Z - U).Jz U).Jz

Figure 3. Spectrum of continuous signal (1)

* Now if the spectrum of the continuous signal extends beyond the Nyquist

Figure 4. Spectrum of sampled signal «(t).

frequency we see overlap |
X (),
J/ K K *\
f" :I \\. r" \i \\
| I | | |
~ 02 ® 2

Figure 5. Spectrum of sampled signal x4(t) with overlap - aliasing.
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« If any energy in the original signal extends beyond the Nyquist
frequency, it is folded back into the Nyquist interval in the spectrum
of the sampled signal. This folding is called aliasing

fs>2fmax

< {
i /

Ay AY Ay
7 \ f.i \ \
m m
—Wy0 /2

Figure 5. Spectrum of sampled signal x,(t) with overlap - aliasing.
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Aliasing

Just as aliasing can change the frequency during sampling, it can
also change the phase. For example, the aliased digital signal in the
figure is inverted from the original analog signal; one is a sine wave
while the other is a negative sine wave. In other words, aliasing has
changed the frequency and introduced a 180" phase shift. Only two
phase shifts are possible: 0" (no phase shift) and 180" (inversion).

d. Analog frequency = 0.95 of sampling rate
fs>2fmax

T “WM

Amplitude
I ] =
-
—l

: Time (or sample number)
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Leakage

When converting a signal from the time domain to the frequency
domain, the Fast Fourier Transform (FFT) is used.

The Fourier Transform is defined by the equation:

_]2

X(F) = F{x(t)} = jxme ™y

which requires a signal sample from —« to .

The Fast Fourier Transform however only requires a finite number of
samples (which must be a value of 2" where n is an integer. i.e. 2, 4,
8,16 ... 512, 1024). The FFT is defined as:

n-1
—12mk/ ~ .
Xy = > xe P fork =0,1,2,...,n-1
1=0
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Leakage

The Fast Fourier Transform is commonly used because it requires
much less processing power than the Fourier Transform. Like all
shortcuts, there are some compromises involved in the FFT.

The signal must be periodic in the sample window or leakage will
OCCuUr.

The signal must start and end at the same point in its cycle.

Leakage is the smearing of energy from the true frequency of the
signal into adjacent frequencies.

Leakage also causes the amplitude representation of the signal to
be less than the true amplitude of the signal.
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Leakage

« An example of a nonperiodic signal can be seen in the Figure.
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Figure 2: FFT of periodic Signal

Figure 3: FFT of Non-Periodic Signal.
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Leakage

« By comparing the Figures, it
can be seen that the frequency
content of the signal is
smeared into adjacent
frequencies when the signal is
not periodic.

Figure 2: FFT of periodic Signal

* In addition to smearing, the
amplitude representation of the
signal is less than the true
value.

Figure 3: FFT of Non-Periodic Signal.
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Leakage

The only solution to the leakage problem, is to make sure that the
signal is periodic or completely observed within the observation
window.

Generally, this is very difficult to achieve. For systems with a perfect
linear behaviour, it can be accomplished by exciting the structure
with a periodic signal. Excitation signals as burst random also
minimize this problem.

Decreasing the frequency step Af increases the observation time
T and hence will improve the periodicity of the signal.

The use of a time window other than a rectangular one offers an
approximate solution to the leakage problem.
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Windowing

In signal processing, a window function is a function that is zero-
valued outside of some chosen interval.

Applications of window functions include spectral analysis and
filter design.

The first type of window is called the “rectangular” window; it does
not weight the signal in any way and is equivalent to saying that no
window was used.

Rectangular window is used whenever frequency resolution is of
high importance. This window can have up to 36% amplitude error if
the signal is not periodic in the sample interval. It is good for signals
that inherently satisfy the periodicity requirement of the FFT
process.
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Windowing

« Arectangular window is a function that is constant inside the
interval and zero elsewhere, which describes the shape of its
graphical representation. When another function or a signal (data) is
multiplied by a window function, the product is also zero-valued
outside the interval: all that is left is the "view" through the window. It
can be shown that there is no window with a narrower main lobe

than the rectangular window.
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Windowing

Windows work by weighting the
start and end of a sample to zero
while at the same time
increasing the amplitude of the
signal at the center as to
maintain the average amplitude
of the signal.

The effect of a Hanning window
on a non-periodic signal in the
Frequency Domain can be seen
in the Figure.

Figure shows that the window
reduces smearing and better
preserves the amplitude of the
signal.
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Windowing

* The effect of the same
Hanning Window on the
time domain signal can
be seen in the Figure.

* Figure shows how the
Hanning window
weights the beginning
and end of the sample to
zero so that it is more
periodic during the FFT
process.
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Windowing

The Flat Top window is used whenever signal amplitude is of very
high importance. The flat top window preserves the amplitude of
a signal very well; however it has poor frequency resolution so
that the exact frequency content may be hard to determine, this is
particularly an issue if several different frequency signals exist in
close proximity to each other. The flat top window will have at most
0.1% amplitude error.
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w = (1+1.93cos(27m/T) +1.29cos(47/T) + 388 cos(67/T) + 028 cos(8 /T )/ 4.636

Fig.a.2.11e: Flat-top window and transform
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Windowing

The Hanning window is a compromise between the Flat Top and
Rectangular windows. It helps to maintain the amplitude of a signal
while at the same time maintaining frequency resolution. This
window can have up to a 16% amplitude error if the signal is not

periodic.
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Fig.a.2.11b: Hanning window and transform
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Windowing

* The most common window used for random excitations exerted
by shakers is the Hanning window.
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Fig.a.2.11b: Hanning window and transform
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Windowing
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Fig.a.2.11d: Gaussian window (/=3.0) and transform
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Windowing

The exponential window is
used to make a measurement
from a vibrating structure more
accurate.

It is used when the “ringing” of
a structure does not attenuate
adequately during the sample
interval.

An example of the
exponential window can be
seen in the figure.

TIME REGC BLK # L 3
]
i i
WAWW
[ [ -] 256
TIME REC ! A Ty 1
| |
[ |
i i M3 286
TIME REC : 1Bk 2
[ ]
M
| I : [ 286
TIME REC ! : BLK # 3
1 i
!
1 ]
: l
MS 256
Figure 7: Exponential Window.
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Windowing

 The exponential window
can cause some
problems if not used

properly.

* As an example, a very
simple lightly damped
structure was subjected
to an impact test. The
signal processing
parameters were selected
for a 400 Hz bandwidth
which resulted in a 1 sec
time window.

P. Gundes Bakir,
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Figure 1 - FRF with slightly too much damping
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Exponential Window

On the right more
damping is applied and
the peaks are much
wider now!

If an excessive amount
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the risk of missing
closely spaced
modes.
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Exponential Window

Before any window is applied, it i T RAW TIME RESPONSE
is advisable to try alternative i il
approaches to minimize the THN
leakage in the measurement g -
such as: N
. | | | |
Increasing the number of spectral Y — WINDOWED RESPONSE
lines | W
Halving the bandwidth
which both result in increased
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- BB X i .
NS N/ =l [\ i
. AV NN B (I N
1 N | rI I "LJ
_ _ 50 [\ FFREQUENCY RESPONSE FUNCTION
fi===(N-Dar A Lo

! t Hz 400Hz

TWO CLOSELY SPACED MODES

Figure 3 - FRF with increased time/spectral resolution
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Windowing

Impact testing always causes some type of transient response that
is the summation of damped exponential sine waves.

If the entire transient event can be captured such that the FFT
requirements can be met, leakage will not be a problem.

But for lightly damped structures, in many impact testing situations,
the use of an exponential window is necessary.

However, the use of exponential window can cause some difficulties
when evaluating structures with light damping and closely spaced
modes.

The use of windows may also hide or distort the modes in the
measurement.
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Windowing

« The effects of leakage can only be minimized through the use of a
window. It can never be eliminated!

 All windows distort data!

« Almost all the time when performing a modal test, the input
excitation can be selected such that the use of windows can be
eliminated. e.g.,signals such as pseudo random, burst random, sine
chirp, and digital stepped sine.
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Averaging

« Suppose that now we want to estimate the spectrum of a random
signal. In the limit as Tt — o, we would get an accurate spectrum but
for finite T, we have a problem. Any finite realisation of a random
process will not represent exactly the long term frequency content
precisely because it is random.

« Assuming no problems with aliasing we will find

Fla.(t)] = X (@)+ & («)

where X is the true spectrum and d £.1is an error term associated wit
T ] 1 \ WAV | G

7\ 1D LI INv ] CS\WITI11 VAWVWWVVIUAL vy i

the finite sample ze Now for each spectral line ¢, is a random
variable and is just as Ilkely to cause an underestimate as an
overestimate.

* This means we can remove it by averaging
ElFle(1)]] = ElX(w)] + El&r (w)] = X(w)
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Averaging

The averaging can be implemented by taking N segments of time
data x;(t) and transforming to

Xi(w) = X(w)+ €4 (w)

then
] 1 X
.1 {wjl ~ E[—-“!‘-t[*’:l] = TE -"L.t{-.m}
=¥ =1
For a signal

¢(t) = sin(wt) + 0.25N(0,1)

The frequency of the sine wave is chosen such that it is periodic
over the window, so we don’t have to worry about leakage from the
sine wave.
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Averaging

The first is one average- a one-shot measurement. Although the
sine wave (at 10.24 Hz) is visible, there is a lot of background noise
from the single average.
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The next figure shows the result of taking 10 averages.
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Averaging

« Finally, we see the effect of taking 100 averages.
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Power spectral density

« Often we plot E[|X|] ¢ as this is proportional to power. It is called the
power spectral density and is denoted

See(w) = E[|X(w))*] = E[X(w)X (w)*]
« The autocorrelation of a random process is defined by:

Ope(T) = Elx(t + 7)x(t))

 |tis a measure of how much a signal looks like itself
when shifted by an amount t. It is used to find
regularities in data. Suppose that x(¢)=sin(2=#/ t'), then
there will be regular peaks in ¢,, (t) when t=nt’. So the
autocorrelation function can also be used to detect
periodicities.
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Power spectral density

- If X(t) is zero mean, then

0pe(0) = E[2(1)?] = o2

oL

and if x is not zero mean, ¢, (0) is the mean
square of the process.

* As X(t) is stationary, we can change the origin of
t to t- without changing the autocorrelation, i.e.

Ope(T) = Elz(t + 1)a(t)] = Ele(t)x(t — 7)] = Elz(t — 7)a(t)] = dpa(—T7)
* So ¢, (1) Is an even function of t
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Filters

Assume that we are trying to build a Fourier transforming device
which can give us the spectrum of a given time signal. Suppose that

we have a maximum sampling frequency of 1000 Hz i.e. a Nyquist
frequency of 500 Hz.

If the time signal has a broadband spectrum which is flat up to 750
Hz, what will the estimated spectrum look like? So energy is aliased
into the range 250-500 Hz from the range 500-750 Hz and we obtain
a completely fictitious spectrum.

How can we help this?Suppose we had a device which removed the
part of the signal at frequencies between 500 and 750 Hz. Then we
would have changed the signal admittedly but the FFT would at
least give us an accurate spectrum all the way up to 500 Hz.
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Filters

* Such a device which passes parts of a signals frequency
content and suppresses others is called a filter. The
particular filter described above is called an antialiasing
filter for obvious reasons.

Aliased Spectrum

True Spectrum

Magnitude

| :
250 500

Frequency (Hz)
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Filters

« Afilter is a function that in the frequency domain has a value close
to 1 in the range of frequencies that the analyst wishes to retain
and close to zero in the range of frequencies that the analyst
wishes to eliminate.

« The filter can be applied in the time domain, by convolution of its
transform with the time history, or in the frequency domain by
multiplying the filter frequency response function with the
Fourier amplitude spectrum (FAS) of the time history, and then
obtaining the filtered time history through the inverse Fourier
transform.

y(t) = IDFT[H (/)X (/)]
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Filters

Equally unimportant is the choice of the actual generic filter: users
are faced with a wide range of filters to choose from, including
Ormsby, elliptical, Butterworth, Chebychev and Bessel.

The correct application of the chosen filter is much more important
than the choice of a particular filter.

The terminology used to describe filters can be confusing, especially
for engineers more accustomed to thinking in terms of periods than
frequencies.

A filter that removes high frequencies (short periods) is usually
referred to as a low-pass filter because motion at lower frequencies
gets through and higher frequencies are, in effect, blocked by the
filter. For such a filter civil engineers prefer the term high-cut, which
refers directly to the frequencies being removed.
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Classification of filters

If it is judged that there is significant high-frequency noise in the record, or
If for some other reason it is desirable to reduce or remove high frequencies
Introduced by interaction effects at the recording station, this can be easily
achieved by the application of filters.

Filters can be applied in the frequency domain or the time domain but their
function is best understood in the frequency domain.

If the filter is a mechanical or electrical device which operates on the
continuous time physical signal it is called an analogue filter.

If the filter is a numerical algorithm or mechanical device which operates
on sampled data it is called a digital filter.
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High pass-low pass filters

« The purpose of a low pass filter is to remove that part of the signal
that is judged to be heavily contaminated by high-frequency noise
that is often observed in strong-motion records.

* A low-pass filter passes low-frequency components in the signal
with minimal distortion and attenuates the high-frequency
components.

« The so-called cutoff or corner frequency divides the pass band and
the stop band. A low pass causal Butterworth filter is an all pole filter
with a squared magnitude response given by:

1
+ ()"

.wlc.

Hiwl? =
H(w) = 5

P. Gundes Bakir,  Vibration based structural health monitoring 146



ERASMUS Teaching (2008), Technische Universitat Berlin

High pass-low pass filters

« Two considerations are important when applying a highcut filter.

— The first is that the application of the filter will act in a contradictory
manner to any instrument correction and at least in some frequency
ranges the two will counteract each other.

— The second consideration is that an upper frequency limit on the
usable range of high frequencies in the motion is imposed by the
sampling rate: the Nyquist frequency, which is the highest frequency
at which characteristics of the motion can be correctly determined, is
equal to (1/2At) where A t is the sampling interval.

— A high-cut filter applied at frequencies greater than the Nyquist will
have no effect on the record.
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Analogy between mechanical
and electrical systems

Electrical system Mechanical system
Input Voltage, e(t) Force, F(t)
Output Charge q(t) Displacement y(t)
Current i(t)=dg/dt Velocity v(t)=dy/dt
Constant parameters Inductance, L Mass,m
Resistance, R Damping,c
Capacitance,C Compliance, 1/k
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Analogue filters

« We will start the discussion with an electrical analogue filter. Consider the
circuit below with an alternating voltage input,

V.(¢t) =V, cos(ar)

R
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Analogue filters

Elementary circuit theory gives the output voltage V (t) as the solution of the
differential equation:

reYe iy —v )
i

where R is the resistance and C is the capacitance. Passing to the frequency

domain gives:
iRCaV, (@) +V,(0) =V, (@)

S
° V (0) = H(o)V, (o)
where
H(w)=—
1+iRCw
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Analogue filters

The gain of the system is:
1
V1+ RC’0)?
and the phase is:
ZH () =—tan " (RCw)

Ho)-

When RC®=0.1, |H(®)|=0.995
When RCo=10, [H(w)|=0.0995

As we have a filter that attenuates high frequencies and passes low
frequencies, it is called a low-pass filter.
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Digital low pass filters

How can we implement a filter of the sort described above on sampled
data?

First let us adopt a more general notation. Let x(t) or x; be the input to the
filter and y(t) or y, be the output. The differential equatlon of the electrical
analogue filter is then,

RCQ—ky x(1)

dt
Now suppose that x and y are sampled with an interval At, so— x(t)
x=x(t)=x(i At) and y(t)— y=y(t:)=y(i At). The derivative above can be

approxmated by:

dyi _ Vi~ Vi
dt At
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Digital low pass filters

This results in a difference equation

Ry )iy =x
At yi yi—l yi i

With a bit of arrangement:

| RC N T
yi _ RC yi—l yi — RC i
— 1 —+1
At At
Vi =@y, +byx,

with appropriate definitions for a, and b,. Consider the signal

x(t) =sin(27z.5¢) +sin(27.50¢)
sampled with At=0.003 as shown in the next slide.
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Digital low pass filters

Noisy sine wave
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Digital low pass filters

The resulting

1.25
1
0.75
0.5
0.25
0
~0.25
0.5
~0.75
1
~1.25

P. Gundes Bakir,

After one pass through the digital filter

y, =0.6655y, , +0.3345x,

noisy sine wave after one pass through the filter is:
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Time (seconds)
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Digital low pass filters

» The resulting noisy sine wave after five passes through the digital filter is:
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Digital low pass filters

« So the filter is able to remove the high frequency sine-wave
effectively. However, note that the amplitude of the carrier signal
has also been attenuated. Also, importantly, the phase of the signal
has been altered.

« The next question we should ask is-what is the frequency response
of the new digital filter derived from the original analogue filter?

 We use a theorem from an earlier lecture which says that if the input
to a system is x(t)=e"!, then the response is y(t)=H(w) e"t. Now
define the backward shift operator Z-! by:

Z_lyi = Via
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Digital low pass filters

This allows us to write the equation

Y. =a,y, t bO‘xi

As: -1
L-a,Z7)y, =byx,
Let it
xl. =e
Then .
v, = H(w)e™

-1 i, [t iw(t;,—At —IWAt _iat;
7 Lol — olvlia — ol _ 4 e
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Digital low pass filters

then (L-a,Z )y, =byx,

becomes: oA
(L—ae ™)y, =byx,
|t follows that the FRF is:

H(w) = b

1_ale—ia)At
In terms of the FRF derived above, we have enough now to obtain a
general result. A general digital filter would then be:

I’ly Ry
V=20 + ) bx
j=1 j=0
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A high pass filter

Recall the formula for the low pass filter:

H(w) =

The desired properties for
H(w)
H(w)

The desired properties for

H(w)
H(w)

1
1+iRCw

a low pass filter are that:

-1 as w—0

—>0 as w—>

a high pass filter would be:
—>0 as w—0

—>1 as w—o
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A high pass filter

Now we can obtain this characteristic by making a simple
transformation on the below equation:

H(w)=——
1+iRCw
Namely: . 1 1
io—>— o w—-—
L (0

The FRF of the low pass filter becomes:

o @
H(w) = 1 RC_ and the gain is H ()| = RC
RC 10 2
—+1 1+— 1+ %
10, RC R2(?
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A high pass filter

This filter is high pass as required.

When —==0.1,  |H(w) =0.0995
RC

When —==10,  |H(w)|=0.995
RC

One of the most useful families of analog filters is that of Butterworth
filters. These are controlled by two parameters for the low-pass filter.
The FRF gain is specified as:

‘H(a))‘z _ 1 _ 1

1+ (w] 1+ (fj
@, Je

where o, is the cut-off frequency and n is a steepness factor which
specifies how fast the signal should die away after the cut off frequency.
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High pass-low pass filters
1
L+ ()

H(w)|* =

where n Is the order of the filter (number of poles in the system function)
and o, is the cut off frequency of the Butterworth filter which is the
frequency where the magnitude of the causal filter |H(w, )| is 1/v2
regardless of the order of the filter.

The purpose of a low-cut filter is to remove that part of the signal that is
judged to be heavily contaminated by long-period noise. The key issue is
selecting the period beyond which the signal-to-noise ratio is unacceptably
low. Applying a filter that abruptly cuts out all motion at periods above the
desired cut-off can lead to severe distortion in the waveform, and therefore
a transition—sometimes referred to as a ramp or a rolloff— is needed
between the pass-band, where the filter function equals unity, and the
period beyond which the filter function is equal to zero.
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High pass-low pass filters

« The figure shows an illustration of a low-cut Butterworth filter as a
function of frequency and period. The filter frequency is 0.05 Hz, which
means that periods above 20 s are at least partially removed. The
different curves are for different orders of filter: the higher the order,
the more abrupt the cut-off (the more rapid the roll-off (but with
increased filter-response oscillations for the higher order filters)). For
the1I8wer order filters, information will be removed from periods as low
as 10 s.
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Filter Response
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Causal-acausal filters

« Although the choice of filter type is less important, the way in which
the filter is applied to the accelerogram has been shown to be very
important.

« The fundamental choice is between causal and acausal filters, the
distinguishing feature of the latter being that they do not produce
any phase distortion in the signal, whereas causal filters do result
in phase shifts in the record.

« The zero phase shift is achieved in the time domain by passing
the transform of the filter along the record from start to finish and

then reversing the order and passing the filter from the end of the
record to the beginning.
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Causal-acausal filters

« The imlementation of a zero phase filtering scheme is shown in the

figure.

Xn] ——| H(z)

ulnj=v-nj

—v[N]

un/———| H(z)

yinj=wf-]
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High pass-low pass filters

* |H(w, )| takes the value of 0.5 for acausal filters. The mathematical
reasoning behind this can be explained as follows: If we let H.(w) be
the frequency response of the causal Butterworth filter given by the
second equation, this filter has unity gain at frequency @ = 0. The
cutoff frequency . is the frequency at which the power of the filter
ouput is half the power of the filter input,i.e. |H (@, )|? = 1/2. The
frequency response of an acausal Butterworth filter H_(w) is given
by: o 1

H,(w) = H.(w)H.(—w w)|® = :
() = Ho(w)H(~w) H ) = 1

., I-F'-"'C i

» The previous equation shows that |[H_(w, )|=1/2 .

« The frequency response of a Butterworth filter decreases
monotonically with increasing frequency, and as the filter order
Increases, the transition band becomes narrower.
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Classification of filters
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Figure 9. Gam of generic low-pass filter.
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Classification of filters
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Figure 10. Gain ol generic high-pass filter.
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Classification of filters
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Classification of filters
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Classification

 The commonly used excitation signals can be
categorized in several ways. For practical purposes, it is
easy to consider two main groups: broad band or single
frequency signals.

* The signal frequency group contains:
— Swept sine
— Stepped sine
« The broadband group consist of three subgroups:
— Transients
— Periodic
— Nonperiodic
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Classification

« Transients
— Burst random
— Burst chirp (or burst swept sine)
— Impact excitation

 Periodic
— Pseudo random

— Periodic random

— Chirp (fast swept sine)

* Nonperiodic
— Pure random
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Classification

« Random signals can only be defined by their
statistical properties.

« For stationary random signals, these properties
do not vary with respect to translations in time.

 All random excitation signals are of the ergodic
random type, which means that a time average
on any particular subset of the signal is the
s_ameI for any arbitrary subset of the random
signal.
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Pure random

Pure random is a nonperiodic stochastic signal with a Gaussian probability
distribution. Averaging is essential when estimating the frequency spectrum.

The main problem of the pure random signal is leakage. Since the signal is
not periodic within the observation time window, this error can not be
avoided. The application of dedicated time windows (e.g. Hanning) to the
input and output signals can not completely remove the effects of leakage
without causing undesired side effects such as a decreased frequency

resolution. 5

—— ET15

Ll
i

=
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Pure random

Pure random easily averages out noncoherent noise.

It yields the best linear approximation of nonlinear systems, since in
each averaged time record, the nonlinear distortions will be different
and tend to cancel with sufficient averaging.

Test time is relatively long due to the necessary number of
averages.

However, the total time becomes shorter when using overlap
averaging. Inthe overlap averaging procedure, each averaged
time record will contain the last part of the previous one.
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Pseudo random

The pseudo random is an ergodic stationary signal with a spectrum
consisting of integer multiples of the discrete Fourier transform
frequency increment. Hence it is perfectly periodic within the sample
time window.

Due to the periodicity of the signal, no leakage problem exists.

However, since the same time block is repeated for averaging,
pseudo random excites the nonlinearities the same way in each
average. Therefore, averaging will not remove distortion caused by
nonlinearities.

For linear structures, only a few averages are necessary in general.
Hence this excitation signal may be very fast.
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Periodic random

Periodic random excitation is simply a different use of a pseudo
random signal, so that non-linearities can be removed with spectrum
averaging.

For periodic random testing, a new pseudo random sequence is
generated for each new spectrum average.

The advantage of this is that when multiple spectrum averages of
different random signals are averaged together, randomly excited
non-linearities are removed.

Although periodic random excitation overcomes the disadvantage of
pseudo random excitation, it takes at least three times longer to
make the same measurement. This extra time is required between
spectrum averages to allow the structure to reach a new steady-
state response to the new random excitation signal.

P. Gundes Bakir,  Vibration based structural health monitoring 179



ERASMUS Teaching (2008), Technische Universitat Berlin

Periodic random

« Other advantages are:

— Signals are periodic in the sampling window,
SO measurements are leakage free.

— Removes non-linear behavior when used with
spectrum averaging.

* Disadvantages are:
— Slower than other random test methods.
— Special software required for implementation
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Burst random
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Burst random
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Burst random

The most commonly used excitation for modal testing!
In order to have the entire transient be captured, the length of the excitation

burst can be reduced.

Generally, the use of windows for this type of excitation technique is not

required!

INPUT EXCITATION

END OF BURST

SHAKER OFF

QUTPUT RESPONSE

SHAKER OFF

M’hﬁmw

STRUCTURAL |
RESPONSE 4
EXPONENTIALLY
DECAYS -

Figure 3 - Typical Burst Random Measurement Sequence
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Chirp and Burst Chirp

* A swept sine excitation signal can s E—
also be synthesized in an FFT 15 - ;
analyzer to coincide with the 05 :"A\
parameters of the sampling
window, in @ manner similar to the s 1 ‘ }
way a pseudo random signal is E 1 ]‘
synthesized. R e

« Since the sine waves must sweep i : —
from the lowest to the highest ) B ————
frequency in the spectrum, over the g == T
relatively short sampling window i e e i
time period (T), this fast sine sweep g4+
often makes the test equipment e e e e o e
the name Chlrp Slgnal 0 10 20 30 40Fm§58"c:,u 70 80 a0 100

P. Gundes Bakir,  Vibration based structural health monitoring 184



ERASMUS Teaching (2008), Technische Universitat Berlin

Chirp and Burst Chirp

* A burst chirp signal is the same as a chirp,
except that it is turned off prior to the end of
the sampling window, just like burst random.

 This is done to ensure that the measured
signals are periodic in the window.
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Chirp and Burst Chirp

* The advantage of burst chirp over chirp is that
the structure has returned to rest before the
next average of data is taken.

* This insures that the measured response is
only caused by the measured excitation, an
important requirement for any multichannel
measurement such as a FRF.
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Chirp and Burst Chirp

Advantages of Burst Chirp Excitation
« High signal-to-noise and RMS-to-peak ratios.

« Signals are periodic in the sampling window,
SO measurements are leakage free.

* Fast measurement time.

Disadvantages of Burst Chirp Excitation
» Special software required for implementation.
 Doesn’t remove non-linear behavior.
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Swept sine

* The sine wave excitation signal has been used since the
early days of structural dynamic measurement. It was
the only signal that could be effectively used with
traditional analog instrumentation.

« Even broad band testing methods (like impact testing),
have been developed for use with FFT analyzers, sine
wave excitation is still useful in some applications. The
primary purpose for using a sine wave excitation signal
IS to put energy into a structure at a specific frequency.

* Slowly sweeping sine wave excitation is also useful for
characterizing non-linearities in structures.
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Swept sine

Advantages of Sine Testing

* Best signal-to-noise and RMS-to-peak ratios of
any signal.

« Controlled amplitude and bandwidth.
« Useful for characterizing non-linearities.
* Long history of use.

« Disadvantages of Sine Testing
 Distortion due to over-excitation.
« Extremely slow for broad band measurements.
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Stepped sine

Stepped sine excitation is a modern version of the swept sine
technique that makes maximum use of the developments in DSP
during the last two decades.

Instead of a continuously varying frequency, stepped sine consists
of a stepwise changing frequency.

It remains a rather slow procedure due to the frequency scan and
wait periods needed for the transients to decay. This can be
overcome by multi-channel acquisition.

The application of stepped sine excitation requires special soft and
hardware.

The digital processing allows for varying frequency spacing, yielding
data condensation and testing time reduction, and for a better
control against aliasing and leakage problems.

Useful for characterizing non-linearities.
Excellent signal-to-noise ratios.
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Processing strong-motion
records

The focus of this section is on the
effects of noise in accelerograms, and the effects of
‘correction’ procedures, on the peak ground-motion amplitudes
and on the ordinates of acceleration and displacement
response spectra.
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High-pass filters are an effective way of removing the low-frequency
noise that is present in many, if not most, analog and digital strong-
motion recordings.

This low frequency noise usually appears as drifts in the
displacements derived from double integration of acceleration,
making it difficult to determine the true peak displacement of the
ground motion.

It can never be claimed that a complete and accurate description of
the ground shaking can be obtained from accelerograms.
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« For engineering uses of strong-motion data it is important to be able
to estimate the level of noise present in each accelerogram and the
degree to which this may affect different parameters that are derived
from the records.

« The main parameters of interest for engineering application are:

— The ordinates of response spectra, both of acceleration and
displacement.

— The peak ground acceleration (PGA),although of limited significance
from both geophysical and engineering perspectives, is also a widely
used parameter in engineering.

— The peaks of velocity (PGV),and displacement (PGD), measured from
the time-histories obtained by integration of the acceleration, are also
important parameters.
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It is important for users of strong-motion data to
appreciate that digitized accelerograms are never pure
and complete reproductions of the seismic signal.

From the outset, however, it is important to be clear that
it is not possible to identify, separate and remove the
noise in order to recover the unadulterated seismic
signal.

The best that can be achieved in general is to identify
those portions of the frequency content of the record
where the signal-to-noise ratio is unacceptably low and
to thus identify that portion of the record, in the
frequency domain, that can be used with some
confidence.
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Analog accelerograms

» In light of these considerations, it is not appropriate to refer to most of the
processing procedures described herein as ‘corrections’, since the term
implies that the real motion is known and furthermore that it can be
recovered by applying the procedures.

* In order to estimate the signal-to-noise ratio, a model of the noise in the
digitized record is required. Most analog accelerographs, such as the SMA-
1, produce two fixed traces on the film together with the three traces of
motion (two horizontal, one vertical) and the time marks. If these fixed
traces are digitized together with the motion, then any ‘signal’ they contain
can be interpreted as being composed entirely of noise since the traces are

nrnrll |r\nr| h\l |n'F|n|+n|\l eh‘F‘F frgnerh 1cers +h9+ nvnnrlnnr\n no \llhrahnn A |r|nn
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the operation of the instrument.

» Unfortunately, the fixed traces are very often not digitized or else the
digitized fixed traces are not kept and distributed with the motion data,
hence it is rare that a model of the noise can be obtained from this
information.
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Standard vs nonstandard noise
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Some types of noise, particularly
step changes in the baseline, can
also be identified from the ‘jerk’,
which is the first derivative of the
acceleration trace.
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Standard vs nonstandard noise

* In this particular case, the
spurious nature of these spikes
was confirmed by comparison with
a reproduction of the original
analog record.

0.3 !
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e

Acceleration {g)

» The origin of the spikes has not
been ascertained, although a
possible cause in this instance
was the misplacement of the 0 1 20 30 a0
decimal point in transcribing the
digitized values. 10

]
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identified as erroneous, they
should be removed from the
digitized record; one way to 10
achieve this is replace the N
acceleration ordinate of the spike g 0 20 30 40
with the mean of the accelerations Time (s)

of the data points either side.
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Standard vs nonstandard noise

 The spectra in the Figure were 04

With spurious spikes

obtained with the record shown
in the figure in the last slide and e After adjustment
after the spikes were removed. A

» The spikes clearly constituted a | /\ / 3
serious noise contamination at -
short periods but it is also noted
that their elimination appears to
have led to slight modifications in
the spectrum at long periods _
(spikes are broadband and have L,L
energy content at long as well as T i
short periods). : """"\.m
 |f the misplacement of decimal A,

0.2 F

Acceleration (g)
",
T
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points is identified as the cause 0 —
of the errors, then an exact 0.01 0.02 D§1ri d” 1
correction could be made. eriod s)
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Instrument correction

« As noted earlier, the transducer frequency in analog instruments is
limited to about 25 Hz, and this results in distortions of amplitudes
and phases of the components of ground motion at frequencies
close to or greater than that of the transducer.

« The digitization process itself can also introduce high-frequency
noise as a result of the random error in the identification of the exact
mid-point of the film trace as shown in the figure.

Northridge 1994 (M=6.7), NS comp.

-— f, =26 Hz, n=0.60 osc. response
Long Beach VA, as recorded
— Long Beach VA, corrected for instr.

100 +

-
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Frequency (Hz)
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Instrument correction

» Fourier acceleration spectrum of an analog recording at a site underlain by
thick sediments is shown in the figure. Natural processes along the
propagation path have removed energy at frequencies much below those
affected by the instrument response (see dashed line; the instrument
response has been shifted vertically so as not to be obscured by the data),
leading to the decreasing spectral amplitudes with increasing frequency up
to about 26 Hz (coincidentally the same as the instrument frequency), at
which point noise produces an increase in spectral amplitudes. Instrument
correction only exacerbates the contamination of the signal by high

frequency noise. Northridge 1994 (M=6.7), NS comp.
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Fourier Spectra

The left-hand plot in the figure shows an example of the Fourier spectra of
high-frequency ground motion obtained at a very hard rock site in Canada
at a distance of 4 km from the source of a small magnitude earthquake.
Softer sites, even those classified as ‘rock’ such as class B in the 2003
NEHRP guidelines, will tend to filter out such high frequency motion.

Very high-frequency motions will also tend to attenuate rapidly with

distance and hence will not be observed at stations even a few tens of
kilometers from the fault rupture.
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Fourier Spectra

The figure shows the Fourier acceleration spectra of earthquakes recorded
in eastern and western North America (left and right graphs, respectively).
The eastern North America recording has much higher frequency content
than that from western North America, even without instrument correction.
The record from Miramichi was recorded on an analog instrument, whereas
those from the Big Bear City earthquake were recorded on digital
instruments (the response curves of the instruments are shown by the

dashed lines and have been shifted vertically so as not to be obscured by
the data).
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Fourier Spectra

The plot in the figure also shows the typical transducer response for the
instrument (SMA-1) on which the record was obtained, and the effect of
applying a correction for the instrument characteristics, which is to
increase slightly the amplitudes at frequencies greater than 30 Hz. The
nature of such motions, at periods of less than 0.03 s, will only be relevant
to particular engineering problems, such as the response of plant machinery
and nonstructural components.
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Fourier Spectra

The right-hand plot in the figure show the Fourier spectra of more
typical ground motions obtained at solil sites during a moderate
magnitude earthquake in California. These records were obtained
on digital instruments and are lacking in very high frequency motion
mainly because of the attenuating effect of the surface geology at
these sites compared to the very hard site in Canada. The plot also
shows the transducer response for these digital instruments, which
is almost flat to beyond 40 Hz.
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Corrections for transducer characteristics

For digital recordings, instrument corrections should not be
necessary. For analog recordings, if the engineering application is
concerned with motions at frequencies above 20 Hz and the site
characteristics are sufficiently stiff for appreciable amplitudes at
such frequencies to be expected, a correction should be considered.

However, it should be borne in mind that the instrument
corrections essentially amplify the high-frequency motions; if
the digitization process has introduced high-frequency noise into the
record, then the instrument correction will amplify this noise.

Unless there are compelling reasons for applying a correction for the
instrument characteristics, we recommend that no attempt should be
made to do so. The one exception to this may be the very earliest
recordings obtained in the US with accelerographs that had natural
frequencies of the order of 10 Hz.
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Baseline adjustments

A major problem encountered
with both analog and digital
accelerograms are distortions
and shifts of the reference
baseline, which result in
unphysical velocities and
displacements.

One approach to
compensating for these
problems is to use baseline
adjustments, whereby one or
more baselines, which may be
straight lines or low-order
polynomials, are subtracted
from the acceleration trace.

P. Gundes Bakir,
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Baseline adjustments

() The flgure I”UStrateS Loma Linda, 551C: Velacity (cm/sec)
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Baseline adjustments

* A similar procedure could
be applied directly to the
acceleration time-history ¢ o=
to correct for the type of T

|||[I||l| '[r" T B i M
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Acceleration (g)

baseline shifts shown in '°'°5;' R
the figure. S S AL S
g ¢ f’h\\
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* The figure shows NS g MM, g )
component of the 21 May * * -

1979 ltalian earthquake S
(12:36:41 UTC) recorded

at Nocera Umbra,

showing shifts in the

baseline at 5.6 and 8.3 s.
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Baseline adjustments

 The procedure applied in the
figure is to identify (by blowing up
the image) sections of the velocity
that appear to have a straight
baseline, and then fitting a straight
line to this interval.

« This line in effect is then
subtracted from the velocity trace,
but in practice it is necessary to
apply the adjustment to the
accelerations.

« The adjustment to the acceleration
is a simple shift equal to the
gradient (i.e. the derivative) of
the baseline on the velocity; this
shift is applied at a time t,,, which
is the time at which the line fit to
the velocity crosses the zero axis.

Loma Linda, 551C: Velocity (cm/sec)

baseline adjustments e

o ;o M £ o
1 N TR N T |
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1]
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—
2 T
-H-\"'-\.
0 %WH
5 | fitfrom 222232 1= 22,01 sec T
"'\-_,_\_‘_‘-\_
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Baseline adjustments

The adjusted velocity trace is
then inspected to identify the
next straight line segment,
which is fit in the same way.

In the particular case illustrated
in the figure, a total of four line
segments were required to
remove the most severe
distortions of the baseline
visible in uppermost plot,
although the baseline
instabilities are not entirely
removed, as evident in the
residual long-period trends.

P. Gundes Bakir,
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Baseline adjustments

* The distortion of the baseline encountered in digitized
analog accelerograms is generally interpreted as being
the result of long-period noise combined with the signal.

« Baselines can be used as a tool to remove at least part
of this noise—and probably some of the signal with it—
as a means of recovering more physically plausible
velocities and displacements. There are many
procedures that can be applied to fit the baselines,
including polynomials of different orders. A point that is
worth making clearly is that, in effect, baseline
adjustments are low-cut filters of unknown
frequency characteristics.
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Baseline adjustments

The figure on the left: Shaded line: velocity from integration of the east—west
component of acceleration recorded at TCU129, 1.9 km from the surface
trace of the fault, from the 1999 Chi-Chi earthquake, after removal of the

pre-event mean from the whole record. A least-squares line is fit to the
velocity from 65 s to the end of the record. Various baseline corrections

using the Iwan et al. (1985) scheme are obtained by connecting the

assumed time of zero velocity '[71 to the fitted velocity line at time t,. Two

values of t, are shown: 30, and 70 s.
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Baseline adjustments

The dashed line is the quadratic fit to the velocities, with the
constraint that it is 0.0 at t=20 s.

The acceleration time series are obtained from a force-balance
transducer with natural frequency exceeding 50 Hz, digitized using
16.7 counts/cm/s? (16,384 counts/g). Right: The derivatives of the
lines fit to the velocity are the baseline corrections applied to the
acceleration trace .
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The line fit approach is the more complex scheme proposed by lwan et al.
The method was motivated by studies of a specific instrument for which the
baseline shifted during strong shaking due to hysteresis; the accumulation

of these baseline shifts led to a velocity trace with a linear trend after
cessation of the strong shaking. The correction procedure approximates the
complex set of baseline shifts with two shifts, one between times of t, and t,,

and one after time t,. The velocity will oscillate around zero (a physical

constraint), but the scheme requires selection of the times t, and t,.
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Baseline adjustments

Figure shows the response spectra
of the east—west component of
acceleration recorded at TCU129
from the 1999 Chi-Chi, Taiwan,
earthquake, modified using a
variety of baseline corrections.

Without a physical reason for

choosing these times (for example,
based on a knowledge of a specific
instrument), the choices of t, and t,

harnma ciithiacrtiva
NUOUUOUJVIIl IV \JUUJ\IULI Vs,

Figure shows that the long-period
response spectrum ordinates are
sensitive to the choice of t, (t; was
not varied in this illustration).

5%-damped relative displacement response (cm)

TCU129, EW

10 G

no adjustments
— 4, =705
--- 1,=50s
“1,=30s

1 10' 102
period (s)

It is important to note that for this
particular accelerogram the
differences in the response
spectrum are not significant until
beyond 10 s oscillator period).
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Baseline adjustments

* A commonly used simplification
of the generalized Iwan et al.
method is to assume that t,=t,,
with the time given by the zero
intercept of a line fit to the later
part of the velocity trace.

TCU129, EW

10 G

* This corresponds to the
assumption that there was only
one baseline offset and that it
occurred at a single time (for

no adjustments
— t,=70s

5%-damped relative displacement response (cm)

---- ,=50s
many records this seems to be CREE
a reasonable assumption). We 10 )
call this simplification the v, eriod (5

correction.
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Residual displacements

One of the possible
advantages of baseline fitting
techniques just discussed is
that the displacement trace

can obtain a constant level at
the end of the motion and can
have the appearance of the
residual displacement
expected in the vicinity of faults

as shown in the figure

CAW JiiIwvyYvYilil 111 LI INv 11 vun

This character of the
displacement record cannot be
achieved using low-cut filters.
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Residual displacements

At the end of the ground
shaking caused by an
earthquake, the ground
velocity must return to zero,
and this is indeed a criterion by
which to judge the efficacy of
the record processing.

The final displacement,
however, need not be zero
since the ground can undergo
permanent deformation either
through the plastic response of
near-surface materials or
through the elastic deformation
of the earth due to co-seismic
slip on the fault.

P. Gundes Bakir,
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Residual displacements

Close to the fault rupture of Iarge
magnitude earthquakes (~M,, =

6.5 and above) this residual
displacement can be on the order
of tens or hundreds of
centimeters.

This can become an important
design consideration for
engineered structures that cross
the trace of active faults, cases |n

NnNi n+ hnlnn fhn Trnne AIQ lkan
\Jll [ A VA | | \lugl\ull

Plpellne System and the Bolu
viaduct in Turkey, the former
being traversed by the fault
rupture of the November 2002
Denali earthquake, the latter by
the rupture associated with the
November 1999 Duzce
earthquake.
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Residual displacements

The problem presented by trying
to recover the residual placement
through baseline fitting is that the
resulting offset can be highly
sensitive to the choice of
parameters as shown in the
figure.

Furthermore there are few data
with independently measured
offsets exactly at the location of
strong-motion instruments.

The lack of independently-
measured offsets is beginning to
be overcome with the installation
of continuous GPS stations
sampling at sufficiently high rates
colocated with accelerographs.
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High pass filters

The most widely used—and also the most effective and least subjective—
tool for reducing the long-period noise in accelerograms is the low-cut filter.
The figure shows the accelerograms after the application of filters to the
acceleration time-history, and the improvement in the appearance of
velocity and displacement time histories is obvious.

It should also be noted that there is little discernable difference between the

filtered and unfiltered accelerations.
1840 Impenal Valley, El Centro 8, EW 1888 Chi-Chi, TCU0BE, K&

f.=0.10 Hz (blacky, unfilterad (gray) f.=0.02 Hz (black); unfiltered (gray)
| 1 | |
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Although the benefits of applying filters are clear, it is important to be aware of the
sensitivity of the results obtained to the actual parameters selected for the filter.
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High pass filters
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High pass filters

NS component of the FAT record of the Duzce earthquake: displacement
and velocity time history obtained by using acausal high pass Butterworth
filters with different corner frequencies (from the left column to the right: fc
=0.02 Hz, fc = 0.05 Hz, fc = 0.1 Hz, and fc = 0.2 Hz).
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High pass filters

The reason that the filters are
described as acausal is that to
achieve the zero phase shift
they need to start to act prior to
the beginning of the record,
which can be accomplished by
adding lines of data points of
zero amplitude, known as
pads, before the start of the
record and after the end of the

record.

The length of the pads
depends on the filter frequency
and the filter order.
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High pass filters

» Pad length proposed by Brady:

* The required length of the filter pads will often
exceed the usual lengths of pre and post-
event memory on digital recordings, hence it is

not sufficient to rely on the memory to act as
the pads.
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Zero pads

The figure shows the total

length of the time-domain zero

pad recommended by
Converse and Brady to allow

for the filter response in 2-pass

(acausal), nth-order
Butterworth filters (these pads
are needed regardless of
whether the filtering is done in
the time- or frequency-
domain).

Pre- or post-event data count
as part of the required pad
length. Shown are the pad
lengths for three values of the
filter corner frequency, as a
function of filter order.

250

200

Topad (8)

100

50+

150 +—

Tepas (= 1.5 0/, n=12,...)
is the TOTAL zero pad
needed; in time-domain
filtering half of this

duration of zeros is added

n (filter order)
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Zero pads

1840 Imperial Valley eq; El Centro #3, EW
O ne Of th e Ca u Ses for d ata Ia'.:ausal. f: =010 [—Iz, WITﬂ PADS intpg rating ;:I-ror.:assacll pad-strigpsd data

incompatibility for the records
disseminated by the Strong-
motion processing centers is the
removal of the pads that are
faldded for the application of the
ilter. A _

~200 =

Acceleration (cmis?)

— 204 L 2p 4
This is an issue that creates some ~§ 0- L o
controversy because some argue 3 o 20
=

that the pads are artificial and 404 0

tharafnara dn nnt ~anctitiita nart nf . . . . . . . .
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the data and hence should be

removed. The consequence of :Ef*“* ) \ -]

their removal, however, is to § oty QA\{”‘*“\ | 2001

undermine the effect of the filter ¢ .. L

and this can result in offsets and ° 9]

trends in the baselines of the ™ % & & & w0 = 4 o w0 o
velocity and displacements Time (s) Time (¢)

obtained by integration.
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Zero pads

« The removal of the pads e
also has an influence on the " "
long period response
spectral ordinates as shown
in the figure (with pads
(dashed line), without pads
(solid line)).

PSV [emisec])

* For this reason, it is
recommended that when
acausal filters are used,
sufficient lengths of zero

pads should be added to the
records and these pads
should not be stripped out
from the filtered data.
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Causal-acausal Butterworth filters
* NS component & * S =
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The application of causal and acausal filters, even with very similar filter
parameters (the transfer functions will not be identical if time-domain
filtering is used, since the causal filter will have a value of 1/42 at the filter
corner frequency, £, whereas the acausal filter will have a value of 0.5,

regardless of the filter order), have been shown to produce very different
results in terms of the integrated displacements
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Causal vs Acausal Filters

Response spectra (damping ratio = 5%) of the FP component of the
Bolu record of the Duzce earthquake processed by acausal (solid

line) and causal filters (dashed line).
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Causal vs Acausal Filters

« Response spectra
(damping ratio = 5%) for
the FP component of the
Bolu record of the 1999
Duzce, Turkey
earthquake processed by
acausal filters with
different corner
frequencies: f, = 0.025 Hz
(solid line), f, = 0.06 Hz
(dashed line), f, = 0.1 Hz
(dotted line), and f_ = 0.2

Hz (dashed—dotted line).
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The influence of causal and

acausal filters on both elastic
and inelastic response spectra
has been investigated.

It is found that both elastic
response spectra and inelastic
response spectra computed
from causally-filtered
accelerations can be sensitive
to the choice of filter corner
periods even for oscillator 0’}
periods much shorter than the
filter corner periods.
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Tapers

 When adding zero pads to accelerograms prior to filtering, a
potential undesired consequence is to create abrupt jumps where
the pads abut the record, which can introduce ringing in the filtered
record.

« There are two different ways to avoid this, one being to use tapers
such as a half-cosine function for the transition from the motion to
the zero pad.

« A simpler procedure is to start the pad from the first zero crossing
within the record, provided that this does not result in the loss of a
significant portion of record, as can happen if the beginning or end
of the acceleration time series is completely above or below zero.
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Selection of the long-period cut-

offs

As noted previously, the most important issue in processing strong-
motion accelerograms is the choice of the long-period cut-off, or
rather the longest response period for which the data are judged to
be reliable in terms of signal-to-noise ratio. A number of broad
criteria can be employed by the analyst to infer the period beyond
which it is desirable to apply the filter cut-off, including:

Comparison of the FAS of the record with that of a model of the
noise, obtained from the pre-event memory for digital records, the
fixed trace from nnnlnn records or from studies of the instrument and
digitizing apparatus.A pomt of clarification is appropriate here
regarding signal-to-noise ratios: the comparison of the record FAS
with the FAS of the noise indicates the ratio of signal-plus-noise to
noise, hence if the desired target is a signal-to-noise ratio of 2, the
ratio of the record FAS to that of the noise model should be 3.
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Fourier amplitude spectrum

of the FN horizontal 10°
component of the Bolu recorc
of Duzce earthquake (thick 10’

solid line) and the noise
spectrum (thick dashed line).
Superimposed on this graph
are the functions f? (dotted
line), /' (dotted line), and /2
(dashed—dotted line).
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CAalartinn nfthalnannna mnarinAd A1+ Affe
OCITCLLIVIT UIT UI1TC 1UlTy~pLeiivu LuL-vllio
The figure shows the selection of

filter parameters for a component of 1989 Loma Prieta eq, Anderson Dam DS (333)

the Anderson Dam (analog) 1000 4
recording of the 1989 Loma Prieta 3
earthquake. The FAS of the record
is compared with the model for the
digitization noise proposed by Lee
and Trifunac.
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Also shown is the gradient of the f2
line, superimposed as a best fit (by
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Calartinn nfthalanaa narind At Affe
DQCTITULLVIT Ul UITC 1TUVUTTy=pgeclliuvu vult=uvllo
These decay more rapidly than
indicated by the f2 model, which is 1989 Loma Prieta eq, Anderson Dam DS (333°)

the expected result of effectlvely 1000 4
trying to remove all of the record— 3
both signal and noise—at periods

greater than the cut-off. oo

Designing a filter with a gradual 3
roll-off that will produce an FAS
that approximates to the f2 model
is not advisable since the
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seismological model would not
mean that the real earthquake il g 5 s
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appearance of a genuine seismic L PR AL T TR
ppt g 0.01 0.1 1 10 100
motion.

Fourier acceleration (cm/s)

Frequency (Hz)

P. Gundes Bakir,  Vibration based structural health monitoring 238



ERASMUS Teaching (2008), Technische Universitat Berlin

Strong-motion processing

Processing should be accomplished on a component by component
basis.

Analog recordings have limited usefullness at periods shorter than
about 2 or 3 s.

An issue to be considered in record processing is whether the same
filter parameters should be used for all three components or whether
optimal processing should be used to obtain the maximum
information possible from each of the three components. If the same
processing is applied to all three components, the filter cut-off will
generally be controlled by the vertical component since this will
usually have a lower signal-to-noise ratio than the horizontal
components, particularly in the long-period range. Therefore, unless
there is a compelling reason for the vertical and horizontal
components to be processed with the same filter, this practice is not
recommended.
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The amplitude of long-period response spectral ordinates are highly
sensitive to the parameters of low-cut filters, and this is most clearly
visible when looking at the spectra of relative displacement. Care
must be taken in deciding the range of periods for which the spectral
ordinates can be reliably used, which depends on both the filter
frequency and the order of the filter.

For a low-order filter applied at 20 s, the spectral ordinates should
probably not be used much beyond 10 s. The studies by
Abrahamson and Silva and Spudich et al. to derive predictive
equations for response spectral ordinates only used each record for
periods up to 0.7 times the cut-off period.

Bommer and Elnashai, in deriving predictions for displacement
spectral ordinates, used each record up to 0.1 s less than its cut-off
period, which will have inevitably resulted in underestimation of the
spectral displacements at longer periods.
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