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ABSTRACT

Many problems in sensor networks can be formulated as
optimization problems. When distributed optimization
algorithms are used, sensor nodes communicate with
each other in order to collaboratively solve the overall
network optimization problem. Existing distributed op-
timization algorithms typically rely on choosing a step
size to ensure the convergence of the algorithm. In this
case, the communication between sensor nodes occurs
each time the computations are carried out. This is
highly undesirable since the choice of step size is usu-
ally small, which means the number of messages ex-
changed between nodes will be large. Since in sensor
networks, the energy required for communication can be
significantly greater than the energy required to perform
computation, it would be beneficial if we can somehow
separate communication and computation. This paper
presents such an distributed algorithm called the event-
triggered algorithm. Under event triggering, each agent
broadcasts to its neighbors when a local “error” signal
exceeds a state dependent threshold. We give a general
class of optimization problems in sensor networks where
the event-triggered algorithm can be used. In particu-
lar, this paper uses the data gathering problem as an
example. We propose an event-triggered distributed al-
gorithm for the data gathering problem and prove its
convergence. In the simulation, we assume tree commu-
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nication structure, and all leaf nodes and intermediate
nodes send data to the root node (sink node). Simula-
tion results show that the proposed algorithm reduces
the number of message exchanges by two orders of mag-
nitude compared to commonly used dual decomposition
algorithms. It also enjoys better scalability with respect
to the depth of the tree and the maximum branch num-
ber of the tree.

1. INTRODUCTION

Wireless sensor networks consist of microprocessor con-
trolled sensors that communicate with each other over
multi-hop communication networks. Many problems in
wireless sensor networks, including estimation [ [2] [3]
Hl, source localization [I], data gathering [5] [6], maxi-
mum lifetime routing [7], control [8], resource allocation
[9 [M0], and congestion control [II][T2], can be formu-
lated as optimization problems. When distributed op-
timization algorithms are used to solve the above prob-
lems, sensor nodes communicate with each other in or-
der to collaboratively solve the overall network opti-
mization problem.

Existing distributed optimization algorithms, like dual
decomposition [I3], typically rely on choosing a step
size to ensure the convergence of the algorithm. In this
case, the communication between sensor nodes occurs
each time the computations are carried out at the sen-
sor nodes. This is highly undesirable since the choice of
step size is usually small, which means the number of
messages exchanged between sensor nodes will be large.
Since in sensor networks, the energy required for com-
munication can be significantly greater than the energy
required to perform computation [I4]. As a result, it
would be beneficial if we can somehow separate com-
munication and computation in distributed algorithms.
This should reduce the message passing complexity of
distributed optimization algorithms such as dual decom-
position significantly.

This paper presents one way of reducing the message
passing complexity by using a new class of distributed
algorithms called the event-triggered algorithm. Un-



der event triggering, each agent broadcasts to its neigh-
bors when a local “error” signal exceeds a state de-
pendent threshold. We first give a general framework
of optimization problems in sensor networks where the
event-triggered algorithm can be used. Three specific
applications in sensor networks, data gathering, esti-
mation/localization, and maximum lifetime routing are
then shown to fall into this general framework. The
rest of the paper uses the data gathering problem as an
illustrating example to show the idea and effectiveness
of the event-triggered algorithm. We propose an event-
triggered distributed algorithm for the data gathering
problem and prove its convergence. In the simulation,
we assume tree communication structure, and all leaf
nodes and intermediate nodes send data to the root node
(sink node). Simulation results show that the proposed
algorithm reduces the number of message exchanges by
two orders of magnitude compared to commonly used
dual decomposition algorithms. It also enjoys better
scalability with respect to the depth of the tree and the
maximum branch number of the tree.

The rest of the paper is organized as follows. Section
gives the general framework of optimization problems
and three specific applications in sensor networks. Sec-
tion B reviews the commonly used dual decomposition
algorithm. The event-triggered optimization algorithm
is based on an augmented Lagrangian methods, which
is described in section Fl Section B presents our event-
triggered distributed algorithm based on the augmented
Lagrangian methods, and proves its convergence. Sim-
ulation results are shown in section B, and section [0
concludes the paper.

2. PROBLEM FORMULATION AND APPLI-
CATIONS IN SENSOR NETWORKS

Many problems in wireless sensor networks can be
formulated as an optimization problem of the following
general form:

minimize:  f(x) = >, fi(Ti,yi)
w.r.t: T (1)
subject to: Az <g

Here V = {1,---,N} is the set of sensor nodes, z;
is some variable/state local to node i, and y; is some
data/measurement local to node i. = = [z1,---,zn]T.
fi(x;, yi) is a local cost function associated with node 4,
which depends on both z; and y;. A is some sparse ma-
trix characterizing the local interconnection structure of
the sensor network, and Ax < g represents some local
coupling constraints or balance the sensor network must
respect. The objective of the problem is to find such
local states of the nodes such that the total cost of the
network is minimized, subject to local linear constraints.

We will next present three classes of problems in sensor
networks that fit into this framework, the data gather-
ing problem, the estimation/localization problem, and
the maximum lifetime routing problem. We will use the
data gathering problem later to show the idea of event-
triggered optimization.

2.1 Data gathering

The data gathering problem we consider here is from
B [6]. Consider a network of wireless sensor nodes that
are distributed over a region. Each sensor node has lim-
ited battery and can sense certain data in the region
that needs to be communicated to a sink node (base
station). We assume that each node also has the ca-
pability to relay packets. Chen et al [5] [6] associated
a utility function to each sensor node, which represents
the amount of useful information in the data. Instead
of maximizing the total amount of raw data collected at
the sink node, we are interested in maximizing the total
amount of useful information communicated to the sink
node subject to node capacity and energy constraints.

The data gathering problem above can be formulated
as a network utility maximization (NUM) problem [T5].
Here we assume that the sensor network is continuously
gathering data, and the energy required to do local com-
putation is negligible compared to the energy required
for communication [I4]. Each node generates a flow
with a specified data rate that goes to the sink. Each
flow may traverse several hops (which together consti-
tute a route) before reaching the sink node. Here each
sensor node both generates traffic and relays traflic for
other nodes, which means it works as both a user and a
link. The set of nodes that relays traffic for node i € V
is denoted as £; and the set of nodes that use node i € V
as a relay node is denoted as S;. It is shown in [6] that
the data gathering problem can be formulated as

Ulx) = > ey Ui(s)

w.r.t: T (2>
subject to: Axr <¢ x>0
(etx + €rz)Ax — erpx < b(t)

maximize:

Here x = [11,...,onx]T and x; € R is node i’s data rate.
¢ € RM is a vector of node capacities (the maximum
data rate each node can transmit, in bps). A € RVXV
is the routing matrix defining the relaying relationship
between sensor nodes. The ji'th component, A;;, is 1
if node j relays traffic for node 7 and is zero otherwise.
The jth row of Ax represents the total data rates node j
needs to transmit, which cannot exceed its capacity ¢;.
In the second inequality constraint, e;, and e,, repre-
sent the energy consumed in transmitting and receiving
one unit of data, respectively. b;(t) is the intended en-
ergy consumption rate for node i at time ¢, which is



defined as
bi(t) = Ei(t) /(T — 1) (3)

Here E;(t) is the remaining energy of node i at time
t, and T; is the pre-specified desired system lifetime of
the sensor network. b(t) = [b1(t),--- ,bn(t)]T. So the
second inequality constraint in problem B basically says
that each node needs to control the data rates so that its
energy consumption rate is below the rate that sustains
the specified system lifetime. The cost function U is the
sum of the node utility functions U;(z;). In the Internet
context, these utility functions represent the reward (i.e.
quality-of-service) [I5][I3] user i gets by transmitting at
rate x;. Here in the data gathering problem, it repre-
sents the amount of useful information in node i’s data
flow. Problem [ tries to maximize the total amount of
useful information gathered at the sink node subject to
capacity and energy constraints. Notice that b(t) is a
function of time, which makes problem B time-varying
in nature.

The capacity and energy constraints in problem P can
be combined to one single linear inequality constraint of
the following form

JREN I O

€tz terz etx+erz

This transforms problemBlinto the general form of prob-
lem M We can thus develop an event-triggered algo-
rithm for problem

We use the first order radio model in [I4] to model
the energy consumption in our data gathering problem.
In this case

Ctex = Eelec+6amp Xd2 (5)
Crp — Eelec (6)

where d is the transmission distance between two nodes.
The tranmitter /receiver electronics Eeje. = 50n.J/bit,
and transmitter amplifier €4, = 100pJ/bit/m?. If we
consider a transmission distance of d = 200m, then
etz = 8ley, > e,,. This means in this case we can ig-
nore the energy consumption associated with receiving
packets. The sensor networks that have such transmis-
sion distances are present in [T6] [I7]. We should empha-
size that, the above assumption is not needed for devel-
oping the event-triggered algorithm for problemd. How-
ever, it simplifies the notations and descriptions of the
algorithm in section [ significantly.

When e, > e,,, the constraint in equation Hl is the
same as

Az < ¢(t) = min {z, &} (7)

Ctx + Erg

The data gathering problem B then reduces to

maximize: U(x) = >y, Ui(xi)
w.r.t: T (8)
subject to: Az < ¢(t) = min {E, %} , >0

Problem [ is a standard Network Utility Maximization
(NUM) problem [T5][T3] if ¢(t) is constant for all t. NUM
problems are usually solved using dual decomposition
algorithm [I3]. We will review the dual decomposition
algorithm in section Bl and present our event-triggered
distributed algorithm for problem Rl in section B

2.2 Estimation/Localization

Many estimation and localization problems in sensor
networks fit into the general framework of problem [l
Take the estimation problem for example, the objective
is to estimate some parameter 6 over a sensor field. y; is
node i’s local measurement of the parameter. The esti-
mation problem can usually be cast as an optimization
problem in the following form:

minimize: Ziev fi(0,yi) (9)

w.r.t: 0

For the basic least square estimation problem, we have
fi(0,y;) = $(6 —y;)*. In the robust estimation problem
[1], the Huber loss function in equation [ is used.

(O ) — 300 —yi)? if [0—yl<B
1000 = g0y Yt o s (O
Here 3 is some preset constant.

The source localization problem in [I] can also be rep-
resented by problem @l In that particular problem, an
acoustic source is placed at an unknown location, 6, in
the sensor field. The source emits isotropically a sig-
nal, and we would like to estimate the location of the
source using received signal energy measurements taken
at each sensor. Assume each sensor node knows its own
location, 7;, relative to a fixed reference point. Then
from the energy propagation model, the received signal
energy measurement at node ¢ will be

H

Yi = m +&; (11)

where H, o are constants, and €; is some measurement
noise. In this case the cost function in problem [ will

be
M ) (12)

|9—Ti|o‘

fi(0,y:) = (yz -

To see how problem [l fits into the general framework
of problem [M we need to introduce a local copy of 6 at
each node. To be specific, we let x; be node i’s estimate
of 6. In this way, problem Bl can be transformed to the



following problem:

minimize: Y.y, fi(i, vi)
w.r.t: x (13)
subject to: Zx =0

Here 7 is the incidence matrix of the communication
graph associated with the sensor network. The equality
constraint in problem [ basically says x; = x;, Vi,j €
V. This means each node’s local estimate of 6§ should
asymptotically converge to the same value.

2.3 Maximum lifetime routing

Another example that can be fit into the general op-
timization framework is the maximum lifetime routing
problem in sensor networks. [7] considered the problem
of computing an optimal routing scheme that maximizes
the time at which the first node in the sensor network
drains out of energy. The problem was formulated as an
convex optimization problem, and dual decomposition
was then used to develop a distributed algorithm.

Let an undirected graph G(V,€) denote the sensor
network, where V is the set of nodes, and £ is the set of
links. N = |V|, M = |€|. Two nodes are connected by
a link if they can transmit a packet to each other with a
transmission power less than the maximum transmission
power at each node. All links are assumed to be bi-
directional. Let N; denote the set of nodes connected
to node i by a link. Each node i is assumed to have an
initial battery energy E;, and R; is the rate at which
information is generated at node 4. All this information
needs to be communicated to a sink node. Let 7;; denote
the flow rate from node i to node j, and assume that the
energy spent by node ¢ to transmit a unit of information
to node j is e;;. It is shown in [7] that the maximum
lifetime routing problem can be formulated as

minimize: Y, ¢7
w.r.t: q,r
subject to: Z]E/\/i (Tij — Tji) = Ri, Viey (14)
rijZO, VZEV,V‘]G./V;
EjENi €755 < q;FE;, Viey
Qi:% V’LGV,V]E./V;

Here g; is a local variable at node ¢, which represents
node ¢’s estimate of the reciprocal of the maximum life-
time. The first inequality in problem [[4 is the flow
balance equation at node ¢, and the second inequality
is simply a non-negativity constraint on the flow rate.
The third constraint is an energy constraint at node ¢,
and the fourth constraint simply requires that all local
estimate of the maximum lifetime be equal.

It is easy to see that problem [ can be reformulated

as:
minimize: Y.y, ¢7
w.r.t: q,r
subject to: Air=R
r>0 (15)
er—Eq<0
qu =0
where v = [r1,---,ry)7, R = [Ry,--,Rn]T, q =
[q1,- ,qn]T. Ai, e, E, Ay are appropriately defined

constant sparse matrices depending on the topology of

the graph. In problem [[[ if we view x = as the

state, then the problem is a convex optimization prob-
lem with linear equality and inequality constraints. It
falls into the general framework of problem [ as well.

So far we have presented a general framework of op-
timization problems, and three specific applications in
sensor networks. In the rest of the paper, we will only
focus on the data gathering problem B and use it as an
illustrating example of event-triggered optimization.

3. DUAL DECOMPOSITION ALGORITHM

In this section we will review the dual decomposition
algorithm in [I3], which is the most used algorithm for
solving the NUM problem. Later in section @ we will
compare the performance of our event-triggered algo-
rithm against the dual decomposition algorithm.

A variety of distributed algorithms have been pro-
posed to solve the NUM problem [15] [13] [18] [T9]. Kelly
[T5] first proposed two classes of algorithms by decom-
posing the NUM problem into a user problem and a net-
work problem. Among all existing algorithms, the dual
decomposition approach proposed by Low et al. [I3] is
the most widely used algorithm for the NUM problem.

Assume c(t) = c for all t. The algorithm solves the
NUM problem in the form of problem B by examining
the dual of the problem, which is

minimize:  max,>o { ;e Ui(zi) — p’ (Az —¢)} (16)
subject to: p >0

where p = [ P1 PN ]T is the Lagrange multiplier
vector (which can be viewed as the price for using each
node for relaying traffic) associated with the inequality
constraint Az < c¢. If * and p* are vectors solving the
dual problem, then it can be shown that x* also solves
the original NUM problem.

Low et al. [I3] established conditions under which
a pair of recursions would generate a sequence of data
rates, {x[k]} 72, and node prices, {p[k]}°,, that asymp-
totically converge to a solution of the dual problem.
Given the initial data rates 2[0] and node prices p[0],



then for all i € V, we let

zilk+1] = argmax J Us(zi[k]) kY pilk]) p17)
= JEL;
pilk+1] = max{0,pilk] +v< > aj[k] —ci p p(18)

JES:
fork=0,---,00

The step size v in equation [{ must be chosen to en-
sure that the sequences {x[k]}32, and {p[k]}}2, asymp-
totically converge to the optimal solution. Low et al.
I13] showed that a suitable step size is
—2 max(mi) VQUZ (1171)

LS

where L is the maximum number of relay nodes any
node uses and S is the maximum number of nodes any
node relays traffic for. Equation [d requires that the
step size be inversely proportional to both L and S. We
can conclude that the computational complexity of dual
decomposition (as measured by the number of algorithm
updates) scales superlinearly with L and S.

Under dual decomposition, system agents exchange
information at each iteration, so that step size also de-
termines the message passing complexity of the algo-
rithm. Therefore if we use the “stabilizing” step size,
dual decomposition will have a message complexity that
scales in a super-linear manner with L and S.

4. AUGMENTED LAGRANGIAN METHOD
NUM ALGORITHM

The event-triggered algorithm presented in this paper
is based on the augmented Lagrangian method for the
NUM problem. In the augmented Lagrangian method,
a constrained problem is converted into a sequence of
unconstrained problems by adding to the cost function
a penalty term that prescribes a high cost to infeasible
points.

The discussion in this section and next section also
assumes c(t) = ¢ for all ¢. This assumption ensures
that problem [ has a well-defined unique solution. To
apply the augmented Lagrangian method on our NUM
problem B we need to introduce the slack variable s €
RN and replace the inequalities ¢; — a;frx >0,V €V
by

O<y<~"=

(19)

T — )
a;x—cj+s; =0, s;2>0,

VjeV (20)

The augmented cost is then

L(x, s; A\, w) = ZU xl—i—Z)\ (a] v —c; + s;)
(% ]EV

5

jGV

:c —c; +54)%(21)

Here a penalty parameter w; is associated with each
constraint, and w = [wy, - - - ,wy] is the vector of penalty
parameters. Suppose A} is the Lagrange multiplier as-
sociated with node j’s constraint c; — ajTa: > 0 in the
Karush-Kuhn-Tucker conditions of the NUM problem.
Aj is an estimate of A} and A = [Ay,---, An]. The vec-
tor aJT = [Aj1, -+, A;n] is the jth row of the routing
matrix A.

L(z,s; \,w) is a continuous function of x and s for
fixed A and w. It is shown [20] that

min L(z, s; \, w)

= minmin L(z, s; A\, w) = min L(z; A\, w)
x>0,5>0 x>0 s>0 x>0

where the augmented Lagrangian function associated with
the NUM problem is given as

ZU Z; +Z1/ij)\w (22)

% JEV

L(z; A\, w)

where

1 T
2wJ/\ if cj—a T —

e B i wj/\j Z 0
Yi(x; A, w) = { A (a;fx ) + 2wj (a;fx - cj)2,otherwise

The augmented Lagrangian method solves the NUM
problem by minimizing L(z; A[k], w[k]) for sequences of
{wlk]}72, and {A[k]}2,. Let z*[k] denote the approxi-
mate minimizer for L(z; A[k],@[k]). The method in |20,
Chap 4.2] can be used to show that for appropriately
chosen sequences {w[k]}7° ; and {A[k]}22 ), the sequence
of approximate minimizers {«*[k]}3°, converges to the
optimal point of the NUM problem. The choices are as
follows. {w;[k|}72, are sequences of penalty parame-
ters that are monotone decreasing to zero. {\;[k]}?2,
are sequences of Lagrange multiplier estimates, where
Ajlk + 1] = max{0, A\;[k] + [k] (alz*[k] — ¢;)}.

In our earlier work in [2]] we gave an augmented La-
grangian method algorithm for the NUM problem that
converges to the exact minimizer of the NUM problem.
Since in sensor networks, sensor nodes have very lim-
ited battery life, and it usually suffices to obtain an
approximate minimizer to the problem. So instead of
minimizing L(xz; A[k],W[k]) for sequences of {w[k]}72
and {A[k]}32,, we are only considering the problem of
minimizing L(z; A\, w) for fixed A and w in this paper.
If \; = 0 and w; is sufficiently small, the minimizer of
L(z; A\, w) will be a good approximation to the solution
of the original NUM problem. The algorithm is given
as follows:

1. Initialization: Select any initial data rate 2% > 0,
Set A\; = 0 and sufficiently small w; >0, j € V.

2. Recursive Loop: Minimize L(z; A\, w)

= max{0,2° — YV, L(z% A\, w)} (23)

x = X



The above algorithm converges to an approximate
solultion of the original NUM problem. The smaller
w is, the more accurate the approximation is. The re-
cursion shown in step 2 is minimizing L(x; A, w) using
a simple gradient following method. ~ is a sufficiently
small step size.

The computations above can be easily distributed among

the sensor nodes. We will see how they are distributed
in our event-triggered distributed implementation of the
algorithm in section

In dual decomposition and the algorithm shown above,
the exchange of information between the sensor nodes
happens each time the gradient following update is ap-
plied. This means that the number of messages passed
between the nodes is equal to the number of updates re-
quired for the algorithm’s convergence. That number is
determined by the step size. For both algorithms, these
step sizes may be small, so that the number of messages
passed will be large.

The message passing complexity can be greatly re-
duced by using event-triggered messages. The following
section presents an event-triggered distributed imple-
mentation of the algorithm presented in this section.

5. EVENT-TRIGGERED DISTRIBUTED OP-
TIMIZATION IN SENSOR NETWORKS

Implementing the algorithm in sectionHin a distributed

manner requires communication between the sensor nodes.

An event-triggered implementation of the algorithm as-
sumes that the transmission of messages is triggered
by some local error signal crossing a state-dependent
threshold. The main problem is to determine a thresh-
old condition that results in message streams ensur-
ing the asymptotic convergence of the algorithm to the
NUM problem’s approximate solution. This section de-
termines such an event threshold condition and gives an
distributed algorithm for solving problem B

For the data gathering problem we considered, each
sensor node both generates traffic and relays traffic for
other nodes, which means it works as both a user and a
link. Recall that the set of nodes that relays traffic for
node i € V is denoted as £; and the set of nodes that
use node ¢ € V as a relay node is denoted as S;.

We can search for the minimizer of the Lagrangian
L(z; A\, w) using a gradient following algorithm

I
>
g

_/0 (Ve L(a(s): A w)) -, ds

+
¢ OU;(x;(s
/0 8:101 Z (s

JEL;

d{24)

z;(s)

for each node i € V and where

1
i (t) = max {0, E(a;‘-rx(t) - cj)} (25)
j
Here given a function f : Ry — R, its positive projection

is defined as

(f(“’)>w+—{f(23 if =0 and f(z)<0

The positive projection used in equation B4 guarantees
the data rate x;(t) is always nonnegative along the tra-
jectory.

Equation 24l is the continuous-time version of the up-
date in equation Note that in equation Z4l node
i can compute its rate only based on the information
from itself, and the information of p; from those nodes
that relay traffic for node i. We can think of ;1; as the
jth node’s link state, which is local to node j. From
equation 3 node j only needs to be able to measure
the total flow that goes through itself. All of this in-
formation is locally available so the update of the data
rate can be done in a distributed manner.

In the above equation, this link state information is
available to other nodes in a continuous manner. We
now consider an event-triggered version of equation 24l
Here we assume that other nodes accesses a sampled
version of the link state. In particular, let’s associate
a sequence of sampling instants, {T}[(]}32, with the
jth node. The time T[] denotes the instant when the
jth node samples its link state p; for the fth time and
transmits that state to nodes ¢ € ;. We can see that
at any time ¢t € R, the sampled link state is a piecewise
constant function of time in which

2i(t) = ui (T[4 (27)

for all £ =0,---,00 and any t € [T}[(], T}[( + 1]). In
this regard, the “event-triggered” version of equation 24
takes the form

¢ U, (x;(s
/0 8:101 Z iy (s

JEL;

. (26)
otherwise

+

i (t) dq28)

z;(s)

for all £ and any ¢ € [T}[(], T} [¢ + 1]).

The sequence {TJ-L (]} 72, represents time instants when
the node transmits its link state to the nodes that it
relays traffic for. Under event-triggering, it will be con-
venient to have a similar flow of information from the
node to the nodes that it uses as a relay node. We as-
sume that node j can directly measure the total flow
rate, Y . c, Ti (), in a continuous manner. The event-
triggering scheme proposed below will require that node
7 have some knowledge of the time derivative of node
i € L;’s data rate. In particular, let z;(¢) denote the



time derivative of this data rate. z;(t) therefore satisfies
+

Z fi; (t (29)

JEL; (1)

VU;(x;(t

for all © € V. We will refer to z; as the ith node’s user
state. We associate a sequence {T°[¢]}2, to each node
i € V. The time T[(] is the fth time when node i
transmits its user state to all nodes j € L£;. We can
therefore see that at any time ¢ € R, the sampled user
state is a piecewise constant function of time satisfying

2i(t) = z(T[0) (30)

forall £ =0,---,00 and any t € [T°[{], TS [0 + 1]).
Next we will state the main theorem of this section.
The proof will be found in the appendix.

THEOREM b5.1. Consider the Lagrangian in equation
where the functions U; are twice differentiable, strictly
increasing, and strictly concave and where the routing
matriz A is of full rank. Assume a fixed penalty param-
eter w > 0 and vector A = 0. Consider the sequences
{1810}y and {TF[0}32, for each i € V, and each
7 €V, respectively. For each i € V, let the data rate,
x;(t), satisfy equation B with sampled link states given
by equation [Z] For each i € V let the user state z;(t)
satisfy equation and assume node j’s measurement
of the user state satisfies equation [Z0

Let p be a constant such that 0 < p < 1. Assume that

forallieV and all £ =0,--- ,00, that

(1) - p22(1) > 0 (31)
for t € [TP10), TS0 + 1]). Further assume that for all
jEchd@lle -+, 00 that

f1;(t))* > 0 (32)

p > Lz

€S,

for t e [T, TF[C + 1)).

— LS (n(t) —

Then the data rates x(t)

asymptotically converge to the unique minimizer of L(x; A, w).

Theorem Bl provides the basis for constructing an
event-triggered message-passing protocol. This theorem
essentially asserts that we need to select the transmit
times {T°[¢]} and {TJ-L [€]} so that the inequalities in
equations Bl and B2 always hold. One obvious way to do
this is to use the violation of these inequalities to trigger
the sampling and transmission of link /user states across
the network. At time ¢ = T°[¢], the inequality in equa-
tion BTl is automatically satisfied. After this sampling
instant, z;(t) continues to change until the inequality
is violated. We let that time instant be T}°[¢ + 1] and
transmit the sampled user state to the nodes j € L;.
Simultaneously, node j compares the square of the er-
ror between the last transmitted link state fi; and the

current link state p;. At the sampling time TjL [4], this
difference is zero and the inequality is trivially satisfied.
After that time, p;(t) continues to change or the node
may receive an updated user state Z; that may result in
the violation of the inequality. We let that time be the
next sampling instant, T[¢ + 1] and then transmit the
sampled link state fi; to the nodes ¢ € S;. Note that
each sensor node has two threads, one to adjust data
rate and transmit user state if necessary, and the other
to measure link state and transmit it if necessary.

The threshold conditions shown in equations
provide the basis for an event-triggered implementation
of the algorithm presented earlier in section El Next
we will present such an event-triggered distributed al-
gorithm.

Future discussion needs an additional notation. For a
function f(t) defined on ¢ € [0,T'), denote f(T) as the
limit of f(¢) when ¢ approaches T from the left hand
side.

Each sensor node ¢ € V has an user algorithm and a
link algorithm. It executes the following user algorithm.
The main assumption here is that node ¢ is continuously
transmitting data at rate z;(t) at time ¢.

ALGORITHM 5.1. Node i’s User Update Algorithm

1. Parameter Initialization: Set the initial data
rate x) > 0. Let T = 0.

2. State Initialization: Wait for nodes j € L; to
send their link states p;(T) and set fi; = u;(T).
Initialize the user state to

+

)= > (33)

€L )

z(T) =

set 2; = z;(T) and transmit z;(T) to all nodes in
jeL;.

3. Update Data Rate: Integrate the data rate equa-
tion

x;(t) = /Tzi(s)ds (34)
+

Z i (35)

L)

z(T) = af (36)

Zi (t)

|
<
=
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where t € [T, T1) and T is the time instant when
one of the following conditions is true

(a) If 22(t) — p2? < 0 then broadcast z; (TY) to
all nodes j € L;, and set 2; = z; (T+)



(b) Or if node i receives a new link state ,u;r(T*)
from node j € L;, set fi; = ,u;r(T*).

4. Increment Time: Set T = T+, 29 = 2/ (T")
and go to step 3.

Each sensor node j € V also executes the following
link algorithm. The main assumption here is that node
j can continuously monitor its link state p;(t) at any
time ¢t € R.

AvLGORITHM 5.2. Node j’s Link Update Algorithm

1. Parameter Initialization: Set T'= 0, w; > 0.

2. State Initialization Measure the local link state

w;(T) = max < 0, S Z x;(T) — ¢ (37)
wJ i€S;

Transmit p;(T) to all nodes i € S; and set ji; =
w;i(T). Wait for nodes to return z;(T) for all i €
S;, and set z; = z;(T).

3. Link Update: Continuously monitor the link state
wi(t) for all t € [T, TT) where T is the time in-
stant when one of the following events occur

(a) If

then set [i; = ,u;r (T") and broadcast the up-
dated link state ,u;r(T*) to all nodes i € S;.

(b) Or if node j receives a new user state z; (T)
for any i € S;, then set 2; = z;7(T).

4. Increment Time: Set T =T and go to step 3.

By theorem Bl the data rates x(t) generated by al-
gorithms B} converge asymptotically to the unique
minimizer of L(x; A\, w), which is an approximate solu-
tion to the NUM problem.

6. SIMULATION

This section presents simulation results. We assume
tree communication structure in the data gathering prob-
lem. The sink node is the root node of the tree, and all
leaf nodes and intermediate nodes send data to the root
node. We compare the number of message exchanges
of our event-triggered algorithm against the dual de-
composition algorithm on the data gathering problem.
Simulation results show that our event-triggered algo-
rithm reduces the number of message exchanges by two
order magnitude when compared to dual decomposition.

Moreover, our algorithm enjoys better scalability with
respect to the depth of the tree D and the maximum
branch number of the tree B. The remainder of this sec-
tion is organized as follows: Subsection 61l discusses the
simulation setup. The effect of different tradeoff param-
eter p is discussed in subsection Simulation results
on broadcast periods of our event-triggered algorithm
are shown in subsection &3 The scalability results with
respect to the maximum branch number of the tree and
the depth of the tree are presented in subsection [E4 and
B3 respectively. Simulation results in subsection
6.0 talk about how fast our event-triggered algorithm
converges to a small neighborhood of the equilibrium,
and this is difficult to quantifiy if we use a time-varying
constraint Az < ¢(t). For that reason, we use c(t) = ¢
in those simulations. Finally in subsection [G8 we give
an example where ¢(¢) is time varying, which shows our
algorithm is able to track the variations in the energy
constraint.

6.1 Simulation Setup

Denote s € Ula,b] if s is a random variable uni-
formly distributed on [a,b]. Given D and B, we ran-
domly generate a tree with depth D, and the number of
branches each root/intermediate node in the tree has
is in U[0, B]. We make sure that at least one node
has B branches. After the network is generated, we
assign utility function U;(x;) = «; logx; for each node
i, where «; € U[0.8,1.2]. Each node i is assigned ca-
pacity ¢; € U[32kbps,48kbps]. Each pair of transmis-
sion nodes are assumed to be 200m apart, and from
equation Bl e;, = 4050nJ/bit. Each node is has ini-
tial energy FE;(0) = 100J, and the expected lifetime
T, = 1000s. Once the network is generated, both al-
gorithms are simulated. Remember ¢(t) is defined in
equation [l For simulations in subsection E2HEH, we
use ¢ = ¢(0). The optimal rate 2* and its correspond-
ing utility U* are calculated using a global optimization
technique.

Define error as (for both algorithms)

o)< L) v

where z(k) is the rate at the kth iteration. e(k) is the
‘normalized deviation’ from the optimal point at the
kth iteration. In both algorithms, we count the number
of iterations K for e(k) to decrease to and stay in the
neighborhood {e(k)le(k) < eq}. In dual decomposition,
message passings occur at each iteration synchronously.
So K is a measure of the total number of message ex-
changes. In our event-triggered algorithm, link events
and user events occur in a totally asynchronous way.
We add the total number of triggered events and di-
vide this number by the number of sensor nodes N.

(38)



This works as an equivalent iteration number K for our
event-triggered algorithm, and is a measure of the total
number of message exchanges.

The default settings for simulation are as follows: p =
0.5, eq = 2%, D = 3, B =5, N = 25. For both algo-
rithms, the initial condition z;(0) € U[0.25kbps, 0.50kbps],
Vi € V. In dual decomposition, initial price p; = 0 for
1 € V, and the step size v is calculated using equation
M@ In our event-triggered algorithm, A\; = 0, w; = 0.01
fori e V.

6.2 Effect of tradeoff coefficienty

In this subsection we discuss the effect of the tradeoff
coefficient p on the performance of our event-triggered
algorithm.

In our event-triggered algorithm, we only require the
parameter p to be in the region (0, 1). Recall p is a trade-
off between triggering the user event and link event. It
is then natural to ask what impact p will have on the
number of user events, link events and total events.

To see the effect of different p on the algorithm, we
vary p from 0.01 to 0.99, while keeping all other param-
eters unchanged. The resulting figure [l plots the event
count (in logarithm scale) as a function of p. The dot-
ted line at the bottom represents the total number of
triggered link events. The dashed line in the middle is
the total number of triggered user events, while the solid
line on top corresponds to the total number of events.

We can see from figure [l that the number of user
events increases superlinearly with respect to p, while
the number of link events is relatively insensitive to the
changes in p. When p is small, the link events contribute
to the major part in the total number of events, and
when p is large, the user events contribute to the major
part in the total number of events. The total number
of events in this simulation increases with respect to p,
and it suggests that we should choose small p in our
event-triggered algorithm. Choosing p € [0.05,0.5] will
avoid have a large number of total events.

6.3 Broadcast periods of the event-triggered
algorithm

In this subsection we present simulation results on
the broadcast periods of our event-triggered algorithm.
This simulation uses the default settings in subsection
and ran for 26.58s. For reference, with the same
settings, the average broadcast period for the dual de-
composition is 0.0352. In our event-triggered algorithm,
there are a total of 83 link events, and 310 user events.
So the sensor nodes have an average broadcast period
of 1.6908, which is 48 times longer than in dual decom-
position.

To see how the broadcast periods vary for each sen-
sor node, we pick two nodes in the network, one is a
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Figure 1: Event count as a function of p.

congested node, and the other is an uncongested node.
Their broadcast results are shown in figure @l The two
plots above correspond to the congested node, and the
two plots below correspond to the uncongested node.
The top left plot in figure @ is the time history of broad-
cast periods generated by the node’s local event (both
user events and link events). The top right plot is the
histogram of this node’s broadcast periods. This node’s
broadcast periods range between 0.0200 and 2.8800. This
node was triggered 69 times, with an average broadcast
period of 0.3814. Although the minimum broadcast pe-
riod is a little smaller than dual decomposition, but the
average period is 11 times longer than in dual decom-
position. For the uncongested node, its broadcast pe-
riods range between 0.0600 and 4.5200. This node was
triggered 16 times, with an average broadcast period
of 1.6462. The uncongested node enjoys much longer
average broadcast period.

As we can see from figureBl, for the uncongested nodes,
the number of triggered events are relatively small, and
they have long average broadcast periods. For the con-
gested nodes, the number of triggered events are large,
which results in short average broadcast periods. The
average broadcast period in our event-triggered algo-
rithm is much longer than in dual decomposition. The
communication strategy in our event-triggered algorithm
is more adaptive, and the broadcast periods are adjusted
based on the current situation of the network.

6.4 Scalability with respect toB

In this simulation, we fix the depth of the tree D = 3,
and vary B from 2 to 10. For each B, both algorithms
were run 500 times, and each time a random network
which satisfies the above specification is generated. The
mean myg and standard deviation ox of K are com-
puted for each B. my works as our criteria for com-
paring the scalability of the two algorithms. Figure
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Figure 2: Broadcast results for two nodes

plots the iteration number K (in logarithm scale) as a
function of B for both algorithms. The asterisks above
represent my for dual decomposition, while the circles
below correspond to our event-triggered algorithm. The
dotted vertical line around each asterisk and circle cor-
responds to the interval [my — ox, mi + o] for each
different B denoted by the z-axis.
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Figure 3: Iteration number K as a function of B
for both algorithms.

For our event-triggered algorithm, when B increases
from 2 to 10, mg increases from 8 to 89. ox at the
same time increases from 2 to 66. For dual decomposi-
tion, mg increases from 0.0437 x 10* to 1.1908 x 10%.

ok at the same time increases from 0.1137 x 10° to
5.2532 x 103. Our event-triggered algorithm is about
two order magnitude faster than the dual decomposi-
tion. We can also see that, our event-triggered algo-
rithm enjoys better scalability. As B increases from 2
to 10, my increases by 10 times for event-triggered al-
gorithm, while for dual decomposition, m g increases by
27 times.

6.5 Scalability with respect toD

This simulation is similar to subsection Gl except that
we fix B = 5, and vary D from 2 to 5. Figure H plots
K (in logarithm scale) as a function of D for both al-
gorithms. For our event-triggered algorithm, when D
increases from 2 to 5, mg increases from 24 to 125.
ok at the same time varies between 12 and 70. For
dual decomposition, mg increases from 0.0412 x 10% to
2 x 10%. ok at the same time increases from 0.076 x 103
to 6.495 x 10%. We should point out that, since dual
decomposition scales poorly with D, sometimes it takes
tremendously long time to converge. In the simulation,
if the ey neighborhood is not reached after 2 x 10% iter-
ations, we simply count K = 2 x 10%.

Our event-triggered algorithm is about two order mag-
nitude faster than the dual decomposition. We can also
see that, our event-triggered algorithm enjoys better
scalability. As D increases from 2 to 5, my increases
by 5 times for event-triggered algorithm, while for dual
decomposition, mg increases by 48 times.

O trigger
+ DD

Figure 4: Iteration number K as a function of D
for both algorithms.

6.6 A time-varying example

In this simulation, ¢(t) varies according to equation [l
We want to see how well our event-triggered algorithm
tracks the changes in ¢(¢). We run both algorithms un-
til one of the sensor nodes in the network has only 10.J
energy left. Figure H plots the total utility U(z(k)) ob-
tained as a function of the equivalent iteration number
k (in logarithm scale) for both algorithms. As we can



see from the figure, both algorithms track the changes
in ¢(t). Instead of converging to the original optimal
utility at 85, both trajectories converge to the current
optimal utility at around 65. It is also easy to see from
figure @ that our event-triggered algorithm is about two
order magnitude faster than dual decomposition.

. . . . .
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Figure 5: U(z(k)) as a function of equivalent it-
eration number %k for both algorithms.

7. CONCLUSION

This paper introduces the use of event-triggered dis-
tributed algorithm to solve the optimization problems
in sensor networks. The event-triggered algorithm can
greatly reduce the message passing complexity in dis-
tributed algorithms. We give a general class of opti-
mization problems in sensor networks where the event-
triggered algorithm can be used. We then use the data
gathering problem as an example, and propose an event-
triggered distributed algorithm for the data gathering
problem and prove its convergence. Simulation results
show that the proposed algorithm reduces the num-
ber of message exchanges by two orders of magnitude
compared to commonly used dual decomposition algo-
rithms. It also enjoys better scalability. Future work
will use the event-triggered algorithm to solve other
problems mentioned in the paper.

8. APPENDIX

8.1 Proof of Theorem&.1l

Proor. For convenience, we do not explicitly include
the time dependence of z;(t), &;(t), zi(t), 2:(t), p;(t),

f;(t) in most part of the proof. For all ¢ > 0 we have

. oL dx;
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The last inequality holds whether the positive projection
is active or not for each node i. Also remember there are

only |£;| nonzero terms in the sum Ejvzl (5 — 1) Ajs,s
then by using the inequality
2
N N
. . 2
— 1D =)A= =1L (e A" (41)
=1 j=1
we have —L(; A, w)
L N | N N
> 23 e Dl — ) A 42)
i=1 i=1 j=1
| N | N N
= 3 ZZZQ —3 Z {(Nj - iy)° Z |£i|A?i} (43)
i=1 j=1 i=1
1 1on
> §ZZE—§ZL5(MJ‘—/%‘)2 (44)

1 1

Ti.
<.
Il

Consider the term p Zﬁl 22, we have
1 o« 1 1
52 TLa2
- 2= Z L=2; 45
Qpi;zz 2,); =% (45)
TSRO IR YA

lel

Remember |£;| < L for i € V, this means
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which immediately suggests us if the sequences of sam-
pling instants {T,°[(]}52, and {T}F[(]}32, satisfy the in-
equalities in equation Blland B2 for all £ =0, 1,2, ..., 00



and any i € V, j € V, then L(z; A\, w) < 0 is guaranteed
for all ¢.

By using the properties of U;(z;) and ;(x; A, w), it
is easy to show that for any fixed A and w, L(z; A, w)
is strictly convex in x. It thus has a unique minimizer.
Suppose z* (A, w) is this minimizer, and the correspond-
ing Lagrangianis L(z*; A, w). Define V(z) = L(z; A\, w)—
L(z*; M\, w). Tt is trivial to see V(x) is a Lyapunov
function for the system. Moreover, V(z) = 0 means
L(z; A\, w) = 0. The only scenario this can happen is

VieV, i = ,[Lj, VjeV (49)

which corresponds to z*(\,w). As a result, the equi-
librium a*(\, w) is asymptotically stable. Proof com-
plete. O
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