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Abstract— This paper presents a new approach for terrain
mapping and classification using mobile robots with 2D laser
range finders. Our algorithm generates 3D terrain maps and
classifies navigable and non-navigable regions on those maps
using Hidden Markov models. The maps generated by our
approach can be used for path planning, navigation, local
obstacle avoidance, detection of changes in the terrain, and object
recognition. We propose a map segmentation algorithm based
on Markov Random Fields, which removes small errors in the
classification. In order to validate our algorithms, we present
experimental results using two robotic platforms.

I. INTRODUCTION

Autonomous navigation is a fundamental capability for a
mobile robot. When traversing rough terrain, the robot must
have the ability to avoid not only obstacles but also parts of
the terrain that are considered not safe for navigation [1].
In this paper, we present an online algorithm that builds a
3D map of the terrain and classifies the mapped regions as
navigable or non-navigable areas. The maps created by our
approach have numerous applications such as: local avoidance
of non-navigable areas, path planning, and object matching
and recognition. We are particularly interested in the first two
applications.

Outdoor 3D maps have been addressed by the computer
vision community for many years [2] [3] and also more
recently by the robotics community [4] [5]. There are diverse
applications for 3D site modeling. Those applications range
from path planning to urban modeling. Mostly ground robots
are used for the mapping task [6] [7], but flying robot
platforms have also been successfully used [8] [9].

Different methods have been used to create the 3D represen-
tations of the environment such as: point clouds [7], triangular
meshes, and planar structures [10]. Our approach uses point
clouds to represent the terrain. This method can represent fine
details of the environment and it is also easy and fast to
compute. On the other hand, it requires considerable memory
space to represent large areas.

Part of the 3D outdoor mapping effort by the robotics
community is focused on the 3D terrain mapping problem.
This is an important problem when one is exploring unknown
terrain. Applications for terrain mapping range from path
planning and local obstacle avoidance to detection of changes
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in the terrain and object recognition [11]. Planetary exploration
is an interesting example of practical application for this
research topic [12].

Different platforms and methodologies have been used for
the terrain mapping task. In [13] an incremental mapping
algorithm using a 3D laser range finder is proposed focusing
on the representation of the uncertainties in the pose of
landmarks. The approach presented by [14] builds terrain
maps from sequences of unregistered low altitude stereo vision
image pairs. An autonomous blimp has been used [15] to
build maps of the terrain, also using stereo images. In [16],
results of terrain mapping using a walking planetary rover are
presented. The approach presented by [17] performs terrain
mapping based on multiple sensors. A multi robot approach
for terrain mapping is proposed in [18].

Our approach for terrain mapping uses ground robots
equipped with 2D laser range finders. The range sensors are
mounted pitched down on the robots. As the robot moves,
the range information generates a 3D point cloud, which
models the terrain. Our algorithm classifies the terrain into two
categories: navigable and non-navigable areas. We consider
flat parts of the terrain such as walkways navigable areas.
These areas are considered safe for navigation. Grass and
gravel are considered non-navigable (or less desirable) areas.
Although in many cases grass is very flat our algorithm
efficiently differentiates those areas from concrete walkways.
Depending on the application, different types of terrain may
be considered navigable and non-navigable. For example, in a
planetary exploration context, areas with large rocks that may
damage the robot may be considered non-navigable. Classified
maps can be very useful for path planning and safe navigation.
Since our algorithm can be executed in real time, a robot can
online identify and avoid the unsafe areas performing safe
autonomous exploration and mapping.

After the mapping and classification steps, we propose a
map segmentation algorithm based on Markov Random Fields
[24]. This algorithm has been extensively used in image
processing and it eliminates small errors cased by sensor noise
or error in the classification making the map more uniform.
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(a) Pioneer AT

(b) Segway RMP

Fig. 1
ROBOTIC PLATFORMS USED DURING THE EXPERIMENTS WITH FRONT MOUNTED LASER PITCHED DOWN.

II. MAPPING

Point cloud maps can be generated fairly easily when pose
estimation and range information are available [7]. Accurate
pose estimation for mobile robots has been an issue for many
years [19]. The pose information provided by the robot’s
internal odometer usually drifts. Over long runs, the error
grows without bound making the information provided by
the odometer completely wrong. In indoor structured envi-
ronments, scan-matching techniques have been successfully
used to reduce the error in the robot’s pose estimation [26]. In
outdoor environments, scan matching is not efficient due to the
lack of structure. In this case, GPS information can be used as
a global reference, but usually the horizontal error present in
the information provided by GPS sensor makes it undesirable
to precisely estimate the pose for the robot.

In order to have a reasonable pose estimate, we combined
the information provided by the odometer and IMU. This does
not allow us to correctly close arbitrarly large loops (which is
beyond the scope of this paper), but it corrects a considerable
part of the drift in the odometric information, providing a
consistent local estimate for the pose of the robot.

Two mobile platforms have been used as experimental
test beds: an ActiveMedia Pioneer AT and a Segway RMP
(Figures la and 1b). The information provided by the laser is
projected into 3D Cartesian space using standard geometry.
As the robots move forward, the 3D range information about
the environment is obtained. It is also interesting to notice
that due to the dynamics of the RMP, this robot pitches
dramatically when accelerating and decelerating. In those
cases, the pitch is taken into account when the map is being
built.

III. TERRAIN CLASSIFICATION

Our terrain classification algorithm is based on Hidden
Markov Models and is divided into two parts. The learning
step and the classification step. We classify each point in the
3D map as navigable or non-navigable. Flat surfaces such as
concrete walkways are considered navigable areas while grass,
gravel, and obstacles are considered non-navigable. At the end
of the classification step, the maps generated by our algorithm
clearly show the areas where the robot is allowed to navigate
(safe areas) and the areas considered unsafe for navigation.
Even though some times the difference in the roughness of
concrete walkways and grass is very small, our approach is
capable of detecting them successfully.

Hidden Markov Modeling is a powerful statistical tool, with
many applications (see [20] for a tutorial). An HMM can be
defined as follows:

1) N, the number of possible states in the model. Individual
states are denoted as S = s1, So, ..., SN, and a specific state at
time t as q.

2) M, the number of observation symbols per state. The ob-
servation corresponds to the output of the system being mod-
eled. Individual symbols are denoted as V' = vy, vs, ..., vps.

3)The state transition probability distribution A = a;
where:

aij = P(qr41 = sjlqe = 5:),1 <i,j <N

4) The observation symbol probability distribution in state
j, B =b;(k), where:
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bj(k)=Pvf|gt =8j),1<j<N,1<k<M

where vi means the simbol vy, at time ¢.
5) The initial state distribution = = ;, where:

Wi:P<Q1:Si),1<i<N

For convenience, the compact notation A = (A4, B, 7) will
be used to characterize a HMM.

One of the general problems that can be solved using HMM
is: given the observation sequence O = O1, O, ...,Op, and
the model A, how to compute the optimal correspondent state
sequence QQ = q1,qs, ..., qr (i.e., the state sequence that best
explains the observations)? In a nutshell we are trying to
maximize the expression P(Q|O, \). This general problem fits
in our context as follows.

The points in our 3D map will be the state sequence. Each
scan provided by the range sensor will generate a single state
sequence (). Each point can assume one of two possible states:
navigable (A) and non-navigable (U). The real state of each
point is not directly given by the range sensor. The sensor’s
output is range measurement, which has to be converted into
observations O.

Navigable areas in our context will be characterized by
flat terrains. On those terrains the points generated by the
range sensor are expected to be well aligned, with a minimal
variance in altitude. Conversely, the non-navigable areas are
characterized by rougher terrains. The 3D points that represent
those areas are expected to be not well aligned, with some
variance in altitude.

The information provided by the range sensor cannot be
used directly as observations in our algorithm, since it is only
a measurement of the distance between the sensor and the
nearest object in some specific direction. Therefore the data
provided by the range sensor are represented as a sequence of
points in 3D Cartesian space. Given that sequence of points,
the observation O,, for a specific point s,, will be the difference
in the altitude of s,, compared to the altitude of its neighbor
points. In this manner, flat terrains that are not at the elevation
as the robot are also classified as navigable. It is important to
notice that instead of having a discrete set of observations for
individual states, our approach uses continuous values.

The observation symbol probability distribution B is cal-
culated based on the observations O and the covariance of
the points classified as A and U . The pdf B is calculated as
follows:

bj(k) = N(O¢,0,%k)

where b; (k) is the value of b for the jth point in the scan and
k is one of the possible states the point can assume (A or U).
The term N (Oy; 0, 3y,) corresponds to the value of O; applied
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Fig. 2
GAUSSIANS FOR A AND U POINTS.

to a gaussian function with zero mean and ¥ as covariance.
The term 7 is a normalizing factor.

One can use HMM also to learn the parameter of the model
A, but in our case, the learning can be done fairly easily
through the use of examples. Given a set of range scans, it
is possible to manually label the true state for each point on
each scan. Given these labeled data, the calculation of the state
transition probability distribution A is straightforward. As we
have only two possible states (A and U), it consists of counting
the number of times that a point labeled A is followed by a
points labeled A or U. The same rule applies for points labeled
U. The numbers must be normalized so that the probability
distribution sums to 1.

Calculating the initial state distribution 7 is also easy when
labeled data are available. The number of states labeled as A
and U must be counted and the distribution also needs to be
normalized. Based on the labeled data, it is also possible to
calculate the variance for the points classified as A and U. In
this case, it is necessary to calculate a mean for the altitude
in the points that belong to a specific state. After that it is
necessary to calculate the amount of variation in the altitude
of those points in comparison to the mean. Figure 2 shows the
gaussian pdfs for the points A and U.

Now, as all the variables are already defined and the HMM
is defined for our context, it is necessary to find the solution for
the stated problem. The solution will be the sequence Q, which
maximizes the expression P(Q|O, \). Maximizing P(Q|O, \)
is equivalent to maximizing P(Q), O|A). In our context, the
solution will be the best classification for the points of each
scan that maximizes the observations provided by the range
Sensor.

The solution for the problem above can be acquired using
the Viterbi Algorithm [21], which is based on dynamic pro-
gramming techniques.

In order to find the single best state sequence, () =
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q1,92,...,qr, for a given observation sequence O =
01, 02, ..., o7, we define the quantity

§t(Z) = mamP(qlaQQa gt = 7;30170% aOt|>‘)

where 0;(7) is the best score (highest probability along a sin-
gle path, at time ¢, which accounts for the first ¢ observations
and ends in state .S;). By induction we have

Ot+1(1) = [maxdy(i).ai;].b;(Ors1)

In order to retrieve the state sequence, we need to keep track
of the argument which maximized the previous equation, for
each ¢ and j. We do this via the array v;(¢). The complete
procedure for finding the best state sequence can now be stated
as follows:

Algorithm 1 Viterbi Algorithm
1) Initialization:
P1(1) =0

2) Recursion:
(5,5(2) = max[t?t_l(i).aij].bj(Ot)
P (1) = argmaz(—1(1).a4;]

3) Termination:
p* = maz[or(4)]
gy = argmax[or(i)]

4) Path backtracking:
¢ = Yip1(qp )t =T—-1,T-2,..,1

After applying the Viterbi algorithm to each range scan, all
the points in our map will be classified as A or U.

IV. MAP SEGMENTATION

It may happen that parts of the map are not correctly
classified due to sensor noise, presence of spurious objects
(like leaves) in the flat parts of the terrain, or just errors in the
HMM classification. When those errors are small parts of the
map (they may be considered noise), segmentation techniques
can be used to fix them.

Segmentation techniques have been used for many years
by the computer vision community [23]. Among several
segmentation methods, Markov Random Fields (MRF) have
been extensively used in image processing. For a complete
overview of MRF theory see [25].

It is unlikely that in an area with a large majority of cells
A there are few cells U. It is also unlikely that among several
scans that contain both points labeled A and U there is a scan
that only contains points labeled A. The MRF technique make
those points agree with their neighbors As a result, A and U
regions are well defined and clustered.

In order to use MRF as a segmentation tool, we approximate
our 3D map to a 2D grid. Each point is projected on the grid

based on its x and y coordinates. Each cell in the grid is
labeled as A or U according to the classification of the points
projected on that cell. It is important to notice that not all the
cells in the grid have a label, because the distribution of points
in the zy plane is not uniform.

The basic idea of MRF is that the probability distribution
for each cell in the grid is specified conditionally on the prob-
ability distribution of its neighbor cells. After the application
of the filter, all points projected on each cell are labeled with
the same label of that grid cell.

Let C; be a random variable taking the values A or U, and
denote by ngk) (k=1,2,...,n) the number of k neighbors of
C; that are labeled as A. A simplified MRF model may be
specified as:

P(C; = Algrid) - (k)
P(C; = Ulgrid) exp(a + ; (B ))

where o and (3 are respectively the prior about the number
of A cells and the importance ratio based on the distance to
the cell C;. As 3 is increased the chance of each grid cell
value agree with the value of its neighbors increases.

V. EXPERIMENTAL RESULTS

In order to validate the approach presented in this paper,
extensive experimental tests have been performed. Our exper-
iments have been done using both an ActiveMedia Pioneer AT
and a Segway RMP robots. Both robots were equipped with
SICK laser range finders and a Microstrain IMU. Player [22]
has been used to perform the low level control of the robots.

On the Pioneer platform, the laser sensor was mounted at
42cm height and a pitch angle of 40. On the RMP the laser
was mounted at 93 cm height and a pitch angle of 35, which
allowed the robot to map the terrain approximately 1.3m ahead
of the robot.

Our experiments have been performed in different parts of
the USC campus. Although the grass was very flat in some
terrains, the robot could successfully differentiate grass from
concrete. Figure 3a shows the actual environment (approxi-
mately 50m long) and Figure 3b shows the 3D model where
A and U areas are correctly classified. The Walkway (A
points) are colored grey and grass and bushes (U points) are
colored white. The points P1 and P2 are used to represent
corresponding places in Figures 3a and 3b.

During the experiments, most of the maps have been built
when the robots were manually driven with a joystick. But
some autonomous navigation experiments using the RMP
have also been performed. As our mapping and classification
algorithm can be executed in real time, the robot could online
use the information about the areas it should avoid and it kept
itself in the navigable areas while autonomously mapping the
environment. A small movie of the autonomous navigation can
be found at:
http://robotics.usc.edu/~denis/research/hmm_nav.avi.

The maps created using HMM classification present some
errors. In those cases, despite the roughness of the terrain,
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(a) Walkway (b) 3D Map of the Walkway

Ak

(c) Doheny Library garden (d) 3D segmented map of the garden

Fig. 3
EXPERIMENTAL RESULTS.

2042



many points on the grass align with their neighbor points,
resulting in mistakes in the classification. This type of error
is more likely to happen with points that are distant from
the robot. This is because due to the nature of the SICK
laser sensor, the representation of those areas is more sparse.
Figure 3c shows a part of Doheny Library garden, this
environment includes walkways, grass areas, and bushes. The
3D terrain map after the segmentation step can be seen in
Figure 3d. Most of the classification errors are removed. The
points P3, P4, and P5 are used to represent corresponding
places in Figures 3c and 3d.

VI. CONCLUSION AND FUTURE WORK

We have proposed an algorithm to build 3D terrain maps
using mobile robots and range sensors and to classify areas
in the map as navigable or non-navigable. Our approach for
classification is based on Hidden Markov Models and it is
efficient enough to differentiate concrete flat terrains from
grass, gravel and other types of obstacles. The maps generated
by our algorithm can be used for path planning and local
obstacle avoidance, and as our algorithm can be executed
in real time, it allows the robot to autonomously navigate
avoiding unsafe (non-navigable) areas and obstacles. We also
proposed a map segmentation algorithm based on Markov
Random Fields, which removes small classification errors from
the maps.

As future work, we propose more complex models to
represent the terrain. Instead of only two possible states
(navigable or non-navigable), our maps could have different
models for grass, gravel, depressions, and other obstacles.
Combining different sensors such as range information and
images is also part of our future work. As these different
sensors provide different types of data, they could be
combined in order to obtain a better representation of the
environment.
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