
Differentiating Code from Data in x86 Binaries?

Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and
Bhavani Thuraisingham

Computer Science Department
University of Texas at Dallas

Richardson, TX 75080
{rhw072000,yan.zhou2,hamlen,muratk,bhavani.thuraisingham}@utdallas.edu

Abstract. Robust, static disassembly is an important part of achieving
high coverage for many binary code analyses, such as reverse engineering,
malware analysis, reference monitor in-lining, and software fault isola-
tion. However, one of the major difficulties current disassemblers face
is differentiating code from data when they are interleaved. This paper
presents a machine learning-based disassembly algorithm that segments
an x86 binary into subsequences of bytes and then classifies each subse-
quence as code or data. The algorithm builds a language model from a
set of pre-tagged binaries using a statistical data compression technique.
It sequentially scans a new binary executable and sets a breaking point
at each potential code-to-code and code-to-data/data-to-code transition.
The classification of each segment as code or data is based on the min-
imum cross-entropy. Experimental results are presented to demonstrate
the effectiveness of the algorithm.

Keywords: statistical data compression, segmentation, classification,
x86 binary disassembly

1 Introduction

Disassemblers transform machine code into human-readable assembly code. For
some x86 executables, this can be a daunting task in practice. Unlike Java byte-
code and RISC binary formats, which separate code and data into separate
sections or use fixed-length instruction encodings, x86 permits interleaving of
code and static data within a section and uses variable-length, unaligned in-
struction encodings. This trades simplicity for brevity and speed, since more
common instructions can be assigned shorter encodings by architecture design-
ers. An unfortunate consequence, however, is that hidden instructions can be
concealed within x86 binaries by including jump instructions that target the
interior of another instruction’s encoding, or that target bytes that resemble

? This material is based upon work supported by the AFOSR under contracts FA9550-
08-1-0044, FA9550-10-1-0088, and FA9550-08-1-0265; by the NIH through grant
number 1R01LM009989; and by the NSF through grant numbers Career-0845803,
CNS-0964350, and CNS-1016343.

II

data. This causes these bytes to be interpreted as code at runtime, executing
code that does not appear in the disassembly. Malicious code is therefore much
easier to conceal in x86 binaries than in other formats. To detect and identify
potential attacks or vulnerabilities in software programs, it is important to have
a comprehensive disassembly for analyzing and debugging the executable code.

In software development contexts, robust disassembly is generally achieved
by appealing to binary debugging information (e.g., symbol/relocation tables)
that is generated by most compilers during the compilation process. However,
such information is typically withheld from consumers of proprietary software
in order to discourage reverse engineering and to protect intellectual property.
Thus, debugging information is not available for the vast majority of COTS
binaries and other untrusted mobile code to which reverse engineering is typically
applied.

Modern disassemblers for x86 binaries therefore employ a variety of heuristic
techniques to accurately differentiate bytes that comprise instructions from those
that comprise static data. The techniques are heuristic because fully correct
x86 disassembly is provably undecidable: Bytes are code if and only if they are
reachable at runtime—a decision that reduces to the halting problem.

IDA Pro [9] is widely acknowledged as the best x86 static disassembly tool
currently available for distinguishing code from data in arbitrary binaries (cf., [1,
6, 12]). It combines straight-line, heuristic, and execution emulation-based dis-
assembly while also providing an extensive GUI interface and multiple powerful
APIs for interacting with the disassembly data. Recent work has applied model-
checking and abstract interpretation to improve upon IDA Pro’s analysis [12, 13],
but application of these technologies is currently limited to relatively small bina-
ries, such as device drivers, for which these aggressive analyses remain tractable.
All other widely available disassemblers to our knowledge take a comparatively
simplistic approach that relies mainly upon straight-line disassembly, and that
therefore requires the user to manually separate code from data during binary
analysis. Our tests therefore focus on comparing the accuracy of our algorithm
to that of IDA Pro.

Disassembly heuristics employed by IDA Pro include the following:

– Code entry point. The starting point for analyzing an executable is the ad-
dress listed in the header as the code entry point. That address must hold an
instruction, and will hopefully lead to successfully analyzing a large portion
of the executable.

– Function prologues and epilogues. Many function bodies compiled by main-
stream compilers begin with a recognizable sequence of instructions that im-
plement one of the standard x86 calling conventions. These byte sequences
are assumed by IDA Pro to be the beginnings of reachable code blocks.

– Direct jumps and calls. The destination address operand of any static jump
instruction that has already been classified as reachable code is also classified
as reachable code.

– Unconditional jumps and returns. Bytes immediately following a reachable,
unconditional jump or return instruction are considered as potential data

III

bytes. These often contain static data such as jump tables, padding bytes,
or strings.

However, despite a decade of development and tuning, IDA Pro nevertheless
fails to reliably distinguish code from data even in many non-malicious, non-
obfuscated x86 binaries. Some common mistakes include the following:

– Misclassifying data as returns. IDA Pro frequently misclassifies isolated data
bytes within data blocks as return instructions. Return instructions have a
one-byte x86 encoding and are potential targets of computed jumps whose
destinations are not statically decidable. This makes them extremely difficult
to distinguish from data. IDA Pro therefore often misidentifies data bytes
that happen to match the encoding of a return instruction.

– 16-bit legacy instructions. The x86 instruction set supports legacy 16-bit
addressing modes, mainly for reasons of backward compatibility. The vast
majority of genuinely reachable instructions in modern binaries are 32- or
64-bit. However, many data bytes or misaligned code bytes can be misinter-
preted as 16-bit instructions, leading to flawed disassemblies.

– Mislabeled padding bytes. Many compilers generate padding bytes between
consecutive blocks of code for alignment purposes. These bytes are not
reached by typical runs, nor accessed as data, so their proper classification
is ambiguous. IDA Pro typically classifies them as data, but this can compli-
cate some code analyses by introducing many spurious code-data boundaries
in the disassembly. In addition, these bytes can later become reachable if the
binary undergoes hotpatching [10]. We therefore argue that these bytes are
more properly classified as code.

– Flows from code to data. IDA Pro disassemblies frequently contain data
bytes immediately preceded by non-branching or conditionally branching
instructions. This is almost always an error; either the code is not actually
reachable (and is therefore data misidentified as code) or the data is reachable
(and is therefore code misidentified as data). The only exception to this
that we have observed in practice is when a call instruction targets a non-
returning procedure, such as an exception handler or the system’s process-
abort function. Such call instructions can be immediately followed by data.

To provide a rough estimate of the classification accuracy of IDA Pro, we
wrote scripts in IDAPython [7] that detect obvious errors made by IDA Pro in
its disassemblies. Table 1 gives a list of the executables we tested and counts of
the errors we identified for IDA Pro 5.5. The main heuristic we used to identify
errors is the existence of a control-flow from code to data. Certain other errors
were identified via manual inspection. It is interesting to note that most programs
compiled using the Gnu family of compilers have little to no errors in their IDA
Pro disassemblies. This is probably because Gnu compilers tend to yield binaries
in which code and data are less interleaved, and they perform fewer aggressive
binary-level optimizations that can result in code that is difficult to disassemble.

In this paper, we present a disassembly algorithm that combines the heuristics
manually applied by experts during reverse engineering and a language model

IV

Table 1. Statistics of IDA Pro 5.5 disassembly errors

File Name Instructions Mistakes

Mfc42.dll 355906 1216
Mplayerc.exe 830407 474
RevelationClient.exe 66447 36
Vmware.exe 364421 183

that can capture both short-range and long-range correlations between byte
sequences. Experimental results demonstrate that our algorithm can identify
and successfully label a large number of code sequences that are missed by IDA
Pro.

2 A Language Model for Disassembling x86 Executables

Without any debugging information at our disposal, we treat any given x86
executable as a string of arbitrary unsigned bytes. Our first task is to segment
the single string into consecutive subsequences that are either code or data.
A code-to-code, code-to-data, or data-to-code transition event occurs at each
boundary between different instructions or between code and data.

The Intel architecture manual [11] specifies the decoding of each x86 instruc-
tion if the starting point for the instruction is known. Unfortunately, when code
and data are interleaved it is not obvious whether a byte is the start of an
instruction, the interior of an instruction, or a non-instruction (i.e., data). To
tackle this problem we first decide whether a sequence of bytes is more likely to
be code or data. The executable is then segmented using the opcodes defined in
the Intel instruction encoding specification. Since we are unable to ensure a per-
fect segmentation, our next task is to classify each subsequence as code or data.
Both tasks involve a context-based language model. We next formally describe
each task and discuss the language model used in our disassembly algorithm.

2.1 Code Segmentation

In this section we first briefly review the x86 machine instruction set. We then
define the code segmentation problem and present our algorithm to solve the
problem.

Instruction Encodings Figure 1 shows the x86 machine instruction binary
format [11]. Instructions begin with 1–3 opcode bytes that identify the instruc-
tion. Instructions with operands are then followed by an addressing form specifier

(ModR/M) byte that identifies register or memory operands for the instruction.
Some addressing forms require a second scale-index-base (SIB) byte that speci-
fies a memory addressing mode. The addressing mode essentially encodes a short

V

formula that dynamically computes the memory operand at runtime. For exam-
ple, addressing mode [eax*4]+disp32 references a memory address obtained
by multiplying the contents of the eax register by 4 and then adding a 32-bit
displacement constant. The displacement, if present, comes after the SIB byte.
Finally, immediate operands (constants) are encoded last and have a width of
up to 4 bytes (on 32-bit architectures).

7–6 5–3 2–0 7–6 5–3 2–0

Opcode Mod Reg∗ R/M Scale Index Base Displacement Immediate

1–3 bytes ModR/M byte SIB byte address data

| {z }
operand operand

register/address mode specifier (0–4 bytes) (0–4 bytes)

∗The Reg field is sometimes used as an opcode extension field.

Fig. 1. The x86 machine instruction format.

In addition to this complicated instruction format, there are a number of
prefix bytes that may precede the opcode bytes, all eleven of which may be used
in combination. Some of these prefix bytes, if present, affect the length of the
succeeding instruction’s encoding by temporarily changing the default operand
widths.

A few x86 machine instructions have multiple different correct representa-
tions at the assembly level. Most notable is the floating point WAIT instruction,
which can either be interpreted as an opcode prefix for the instruction it precedes,
or as a separate instruction in its own right. We adopt the former interpretation
in our treatment, since it makes for a more compact assembly representation.

Problem Definition We define the tagging problem as follows: Given a non-
empty input string X over an alphabet Σ, find a set of transition events T ∗ =
{$1, . . . , $M} such that T ∗ = argmaxT f(X, T), where $i at position i < |X |
marks a transition event e in X , T denotes any possible set of transition events,
and f is a function that measures the likelihood that X is tagged correctly.

The tagging problem resembles the word segmentation problem in some nat-
ural languages where no clear separations exist between different words [15]. In
the word segmentation problem, the task is to find correct separations between
sequences of characters to form words. In the tagging problem, our objective is
to find separations between different instructions, and often between instructions
and data as well. In both problems, resolving ambiguities is the major challenge.
For example, a byte sequence E8 F9 33 6A 00 can be a 5-byte call instruction
(opcode E8), or three bytes of data followed by a push instruction (opcode 6A).
Ambiguities can only be resolved through investigating their surrounding con-
text.

VI

Solutions to the tagging problem must also successfully identify and ignore
“noise” in the form of padding bytes. Padding bytes are neither executed as
code nor accessed as data on any run of the executable, so their classification is
ambiguous. However, reliably distinguishing these padding sequences from true
code and data is highly non-trivial because the same sequence of bytes often
appears as both code and padding within the same executable. For example, the
instruction

8D A4 24 00 00 00 00 lea esp, [esp+0x0]

is semantically a no-operation (NOP), and is therefore used as padding within
some instruction streams to align subsequent bytes to a cache line boundary,
but is used in other instruction streams as a genuinely reachable instruction.
Another common use of semantic NOPs is to introduce obfuscation to hide what
the program is doing.

In general, code and data bytes may differ only in their locations in the
sequence, not in their values. Any byte sequence that is code could appear as
data in an executable, even though it should statistically appear much more
often as code than data. Not every data sequence can be code, however, since
not all byte sequences are legitimate instruction encodings.

The Tagging Algorithm There are two components in our tagging algorithm:
an instruction reference array and a utility function. The reference array stores
the length of an instruction given the bytes of an opcode (and the existence
of length-relevant prefix bytes). The utility function estimates the probability
that a byte sequence is code. We estimate the probability using a context-based
language model built from pre-tagged x86 executables.

Instruction Reference Array. From the x86 instruction decoding specification we
derive a mapping from the bytes of an opcode to the length of the instruction.
This is helpful in two respects: First, it marks a definite ending of an instruction
that allows us to move directly to the next instruction or data. Second, it tells us
when a series of bytes is undefined in the x86 instruction set, which means that
the current byte cannot be the beginning of an instruction. We tested our code
against more than ten million instructions in the IDA Pro disassembler and had
100% accurate instruction lengths.

Utility Function. The utility function helps predict whether a byte sequence is
code or data in the current context. If the current byte sequence is unlikely to
be code, our tagging algorithm moves to the next byte sequence. If we predict
that the byte sequence is code, we look up the length of the instruction in the
instruction reference array and move to the next byte sequence. The following
two properties express the desired relationship between the utility function and
its input byte sequence.

VII

Property 1. A byte sequence bordered by transitions is tagged as code (resp.,
data) if its utility as code (resp., data) is greater than its utility as data (resp.,
code).

Property 2. A transition between two byte sequences SA and SB entails a seman-
tic ordering in machine code: f(SB |SA) ≥ f(SB |S∗), where S∗ is any subsequence
but SA in a given binary, and f is the utility function.

Our utility function estimates the likelihood of a transition event using
context-based analysis. We collect context statistics from a set of pre-tagged bi-
naries in the training set. In a pre-tagged binary, code-code and code-data/data-
code transitions are given. Two important forms of information are yielded by
pre-tagged binaries. First, they provide semantic groupings of byte sequences
that are either code or data; and second, they provide a semantic ordering be-
tween two subsequences, which predicts how likely a subsequence is followed by
another. To correctly tag an input hex string, both pieces of information are
important. This calls for a language model that

– can capture local coherence in a byte sequence, and
– can capture long-range correlations between two adjacent subsequences—i.e.,

subsequences separated by a code-code or code-data/data-code transition.

Several modern statistical data compression models [14] are known for their
context-based analysis. These data models can work directly on any raw input
regardless of source and type. We use the current state of the art data compres-
sion model as our language model. Before we discuss the details of the language
model, we give the tagging algorithm in Algorithm 1.

Algorithm 1: Tagging

Input: x0 . . . xi . . . xn−1 // input string of bytes

Mc // language model

Output: x0 . . . xi|xi+1 . . . xj | · · · |xk . . . xn−1 // segmented string

t← 0
while t < n do

`← 0
if xt ∈Mc then

`← codeLength (xt . . . xmin{t+4,n−1}) // lookup instruction length

if (` = 0) ∨ (t + ` > n) then `← 1 // tag as possible data

print xt . . . xt+`−1 // output the segment

t← t + `

2.2 Context-based Data Compression Model

The compression model we use to store context statistics is predication by partial

matching (PPM) [4, 5, 3]. The theoretical foundation of the PPM algorithm is

VIII

the kth order Markov model, where k constrains the maximum order context
based on which a symbol probability is predicted. PPM models both short-
range and long-range correlations among subsequences by using dynamic context
match. The context of the ith symbol xi in an input string is the previous
i − 1 symbols. Its kth order context ck

i includes only the k prior symbols. To
predict the probability of seeing xi in the current location of the input, the PPM
algorithm first searches for a match of ck

i in the context tree. If a match is found,
p(xi|c

k
i) is returned as the symbol probability. If such a match does not exist

in the context tree, an escape event is recorded and the model falls back to a
lower-order context ck−1

i . If a match is found, the following symbol probability
is returned:

p(xi|c
k
i) = p(Esc|ck

i) · p(xi|c
k−1
i)

where p(Esc|ck
i) is the escape probability conditioned on context ck

i . The escape

probability models the probability that xi will be found in the lower-order con-
text. This process is repeated whenever a match is not found until an order-0
context has been reached. If xi appears in the input string for the first time,
a uniform probability of distinct symbols that have been observed so far will
be returned. Therefore, the probability of xi in a string of input is modeled as
follows:

p(xi|c
k
i) =

{

(

∏k

j=k′+1 p(Esc|cj
i)

)

· p(xi|c
k′

i) if k ≥ 0

1
|A| if k = −1

where k′ ≤ k is the context order when the first match is found for xi, and |A|
is the number of distinct symbols seen so far in the input. If the symbol is not
predicted by the order-0 model, a probability defined for the order −1 context
is predicted.

The PPM model predicts symbol probabilities. To estimate the probability
of a sequence of symbols, we compute the product of the symbol probabilities in
the sequence. Thus, given a data sequence X = x1x2 . . . xd of length d, where xi

is a symbol in the alphabet, the probability of seeing the entire sequence given
a compression model M can be estimated as

p(X |M) =

d
∏

i=1

p(xi|x
i−1
i−k)

where x
j
i = xixi+1xi+2 . . . xj for i < j.

We use the above probability estimate as our utility function. We build two
compression models Mc and Md from the pre-tagged binaries in the training set:
Mc is built from tagged instructions and Md is built from tagged data. Given a
new binary executable e and a subsequence ei in e,

Mc = {ei | p(ei|Mc) > p(ei|Md)}

IX

2.3 Classification

After tagging the transitions in the executable, we have segments of bytes. Even
though the tagging algorithm outputs each segment either as code or data, we
cannot assume this preliminary classification is correct because some data bytes
may match legitimate opcodes for which a valid instruction length exists in the
reference array. The tagging algorithm will output this segment as code even
though it is data. Therefore, we need to reclassify each segment as data or code.

Our classification algorithm makes use of the aforementioned language model
and several well known semantic heuristics. The language models are also used
in the tagging algorithm. The heuristics are adapted from those used by human
experts for debugging disassembly errors. We first discuss the language model-
based classification module followed by the semantic heuristics.

Classification Using Language Model Classifying byte sequences is a binary
classification problem. We reuse the two compression models built for tagging.
Recall that model Mc is built from pre-tagged code and model Md is built from
the pre-tagged data in the training set. To classify a byte sequence B, we compute
a log likelihood of B using each data model α ∈ {c, d}:

p(B|Mα) = − log

|B|
∏

i=1

p(bi|b
i−1
i−k, Mα)

where Mα is the compression model associated with class α, |B| is the length
of byte sequence B, sequence bi−k, . . . , bi is a subsequence in B, and k is the
length of the context. The class membership α of B is predicted by minimizing
the cross entropy [16, 2]:

α = arg min
α∈{c,d}

−
1

|B|
p(B|Mα)

Classification Using Heuristics In addition to our context-based language
models, certain semantic heuristics are helpful in determining an accurate class
membership of an x86 byte sequence. Reverse engineers rely heavily upon such
heuristics when manually correcting flawed disassemblies.

Word data tables. Many static data blocks in code sections store tables of 4-
byte integers. Often the majority of 4-byte integers in these tables have similar
values, such as when the table is a method dispatch or jump table consisting of
code addresses that mostly lie within a limited virtual address range. One way
to quickly identify such tables is to examine the distribution of byte values at
addresses that are 1 less than a multiple of 4. When these high-order bytes have
low variance, the section is likely to be a data table rather than code, and is
classified accordingly.

X

16-bit addressing modes. When classifying a byte sequence as code yields a disas-
sembly densely populated by instructions with 16-bit operands (and the binary
is a 32-bit executable), this indicates that the sequence may actually be data
misclassified as code. Modern x86 architectures support the full 16-bit instruc-
tion set of earlier processor generations for backward compatability reasons, but
these legacy instructions appear only occasionally in most modern 32-bit appli-
cations. The 16-bit instructions often have short binary encodings, causing them
to appear with higher frequency in randomly generated byte sequences than they
do in actual code.

Data after unconditional jumps. Control-flows from code to data are almost
always disassembly errors; either the data is reachable and is therefore code,
or the code is actually unreachable and is therefore data. Thus, data inside of
a code section can only occur at the very beginning of the section or after a
branch instruction—usually an unconditional jump or return instruction. It can
occasionally also appear after a call instruction if the call never returns (e.g.,
the call targets an exception handler or process-abort function). This observation
gives rise to the following heuristics:

– If an instruction is a non-jump, non-return surrounded by data, it is reclas-
sified as data.

– If a byte sequence classified as data encodes an instruction known to be a
semantic NOP, it is reclassified as code.

3 Experimental Results

We tested our disassembly algorithm on the 11 real-world programs listed in Ta-
ble 2. In each experiment, we used 10 of the programs to build the language mod-
els and the remaining one for testing. All the executables are pre-tagged using
IDA Pro; however, IDA Pro yields imperfect disassemblies for all 11 executables.
Some instructions it consistently labels as data, while others—particularly those
that are semantic NOPs—it labels as data or code depending on the context.
This leads to a noisy training set.

Since we lack perfect disassemblies of any of these programs, evaluation of
the classification accuracy of each algorithm is necessarily based on a manual
comparison of the disassembly results. When the number of classification dis-
agreements is large, this can quickly exceed the human processing limit. However,
disagreements in which one algorithm identifies a large, contiguous code section
missed by the other are relatively easy to verify by manual inspection. These
constituted the majority of the disagreements, keeping the evaluation tractable.

3.1 Tagging Results

We first report the accuracy of our tagging algorithm. Inaccuracies can take the
form of code misclassified as data (false negatives) and data misclassified as code

XI

Table 2. Software programs for testing

File Name File Size (K) Code (K) Data (K) Transitions

7zFM.exe 379 271 3.3 1379
notepad.exe 68 23 8.6 182
DosBox.exe 3640 2947 67.2 15355
WinRAR.exe 1059 718 31.6 5171
Mulberry.exe 9276 4632 148.2 36435
scummvm.exe 11823 9798 49.2 47757
emule.exe 5624 3145 119.5 24297
Mfc42.dll 1110 751 265.5 15706
Mplayerc.exe 5858 4044 126.1 28760
RevelationClient.exe 382 252 18.4 1493
Vmware.exe 2675 1158 87.3 18259

(false positives). Both can have potentially severe consequences in the context
of reverse engineering for malware defense. False negatives withhold potentially
malicious code sequences from expert analysis, allowing attacks to succeed; false
positives increase the volume of code that experts must examine, exacerbating
the difficulty of separating potentially dangerous code from benign code. We
therefore compute the tagging accuracy as

accuracy = 1−
false negatives + false positives

total number of instructions

where false positives count the number of instructions erroneously disassembled
from data bytes.

As can be seen in Table 3 we were able to tag 6 of the 11 binaries with 100%
accuracy. For the remaining 5, the tagging errors were mainly caused by misclas-
sification of small word data tables (see §2.3) consisting of 12 or fewer bytes. Our
heuristic for detecting such tables avoids matching such small tables in order to
avoid misclassifying short semantic NOP sequences that frequently pad instruc-
tion sequences. Such padding often consists of 3 identical 4-byte instructions,
which collectively resemble a very short word data table.

3.2 Classification Results

To evaluate the classification accuracy we took the output of our tagging algo-
rithm and ran each segment through the language model to get its class member-
ship. Table 4 shows the classification results of our disassembly algorithm. False
positives (FP), false negatives (FN), and overall classification accuracy is listed
for each disassembler. False positives are subsequences that are data misclassi-
fied as code and false negatives are those that are code misclassified as data. As
can be seen in Table 4 we were able to classify five of the 11 binaries with 100%
accuracy.

XII

Table 3. Tagging accuracy

File Name Errors Total Tagging Accuracy

7zFM.exe 0 88164 100%
notepad.exe 0 6984 100%
DosBox.exe 0 768768 100%
WinRAR.exe 39 215832 99.982%
Mulberry.exe 0 1437950 100%
scummvm.exe 0 2669967 100%
emule.exe 117 993159 99.988%
Mfc42.dll 0 355906 100%
Mplayerc.exe 307 830407 99.963%
RevelationClient.exe 71 66447 99.893%
Vmware.exe 16 364421 99.998%

Table 4. A comparison of mistakes made by IDA Pro and by our disassembler

IDA Pro 5.5 Ours

File Name FP FN Accuracy FP FN Accuracy

7zFM.exe 0 1 99.999% 0 0 100%
notepad.exe 4 0 99.943% 0 0 100%
DosBox.exe 0 26 99.997% 0 0 100%
WinRAR.exe 0 23 99.989% 0 39 99.982%
Mulberry.exe 0 202 99.986% 0 0 100%
scummvm.exe 0 65 99.998% 0 0 100%
emule.exe 0 681 99.931% 0 117 99.988%
Mfc42.dll 0 1216 99.658% 0 47 99.987%
Mplayerc.exe 0 2065 99.751% 0 307 99.963%
RevelationClient.exe 0 1781 97.320% 0 71 99.893%
Vmware.exe 0 183 99.950% 0 45 99.988%

3.3 eMule Case Study

To show some of the specific differences between decisions made by IDA Pro’s
disassembler and our approach, we here present a detailed case study of eMule,
a popular peer-to-peer file sharing program. Case studies for other executables
in our test suite are similar to that presented here. Table 5 illustrates examples
in which IDA Pro classified bytes were code but our disassembler determined
that they were data, or vice versa. In the table, db is an assembly directive com-
monly used to mark data bytes in a code listing. To identify all discrepancies,
we stored all instructions from both disassemblies to text files with code/data
distinguishers before every instruction. We then used sdiff to find the differ-
ences. The cases in Table 5 summarize all of the different kinds of discrepancies
we discovered.

IDA Pro makes heavy use of heuristic control-flow analysis to infer instruction
start points in a sea of unclassified bytes. Thus, its classification of bytes imme-

XIII

Table 5. Disassembly discrepancies between IDA Pro and our disassembler for eMule

Example Disassemblies

Case Description IDA Pro 5.5 Ours

1 padding after a
non-returning call

call ExceptionHandler call ExceptionHandler

db (1–9 bytes) code (1–9 bytes)
function start function start

2 calls misidentified as
non-returning

call GetDLGItem call GetDLGItem

db 88h 50h mov edx, [eax+1Ch]

sbb al, 8Bh

3 repetitive instruction
sequences

db (4 bytes) push 0

push 0

push 0 push 0

push 0 push 0

call 429dd0h call 429dd0h

4 missed computed
jump targets

db (12 bytes) mov eax, large fs:0

mov edx, [esp+8]

push FFFFFFFFh

push offset 41CC30h push offset 41CC30h

5 false computed jump
targets

push ecx push ecx

db FFh call 7DFAB4h

adc eax, 7DFAB4h

mov ebp, eax mov ebp, eax

db 8Bh mov eax, [ebx+0DCh]

sbb esp, 0 mov ecx, [eax+4]

db (13 bytes) cmp ecx, esi

jle loc 524D61

test esi, esi test esi, esi

6 missed opcode
prefixes

push offset 701268h push offset 701268h

db 64h mov eax, large fs:0

mov eax, large ds:0

7 code following
unconditional
branches

jmp 526396h jmp 526396h

db 8Bh mov ecx, 9CAF08h

or eax, 9CAF08h

8 code following
returns

retn retn

db C4h 83h add esp, 2Ch

sub al, CDh int 6

push es

9 code following
conditional branches

jz 52518Fh jz 52518F

db 8Bh mov ecx, 9CAF04h

or eax, 9CAF04h

XIV

diately following a call instruction depends on its estimate of whether the called
method could return. For example, Case 1 of Table 5 shows a non-returning call
to an exception handler. The call is immediately followed by padding bytes that
serve to align the body of the next function. These bytes are also legitimate (but
unreachable) instructions, so could be classified as data or code (though we argue
in §1 that a code classification is preferable). However, this control-flow analysis
strategy leads to a classification error in Case 2 of the table, wherein IDA Pro
incorrectly identifies method GetDLGItem as non-returning and therefore fails to
disassemble the bytes that follow the call. Our disassembler correctly identifies
both byte sequences as code. Such scenarios account for about 20 of IDA Pro’s
disassembly errors for eMule.

Case 3 of Table 5 illustrates a repetitive instruction sequence that is difficult
to distinguish from a table of static data. IDA Pro therefore misidentifies some
of the bytes in this sequence as data, whereas our algorithm correctly identifies
all as code based on the surrounding context.

Many instruction sequences in x86 binaries are only reachable at runtime
via dynamically computed jumps. These sequences are difficult to identify by
control-flow analysis alone since the destinations of dynamic jumps cannot be
statically predicted in general. Case 4 is an example where IDA Pro fails to
identify a computed jump target and therefore fails to classify the bytes at that
address as code; however, our disassembler finds and correctly disassembles the
instructions.

Misidentifying non-jump targets as possible targets leads to a different form
of disassembly error. Case 5 illustrates an example in which an early phase of
IDA Pro’s analysis incorrectly identifies the interior byte of an instruction as a
possible computed jump destination (probably because some bytes in a data sec-
tion happened to encode that address). The bytes at that address disassemble to
an adc instruction that turns out to be misaligned with respect to the surround-
ing sequence. This leads to an inconsistent mix of code and data that IDA Pro
cannot reconcile because it cannot determine which interpretation of the bytes is
correct. In contrast, our algorithm infers the correct instruction sequence, given
in the rightmost column of the table.

Some instructions include prefix bytes, as discussed in §2.1. The suffix with-
out the prefix bytes is itself a valid instruction encoding. IDA Pro’s analysis
sometimes misses these prefix bytes because it discovers the suffix encoding first
and treats it as a self-contained instruction. This leads to the disassembly error
depicted in Case 6 of the table. Our approach avoids this kind of error in all
cases.

Cases 7–8 of the table illustrate disassembly errors in which IDA Pro fails
to identify code bytes immediately following unconditional jumps and returns.
These too are a consequence of relying too heavily on control-flow analysis to dis-
cover code bytes. Occasionally these errors even appear after conditional jumps,
as shown in Case 9. It is unclear why IDA Pro makes this final kind of mis-
take, though we speculate that it may be the result of a dataflow analysis that
incorrectly infers that certain conditional branches are always taken and there-

XV

fore never fall through. Use of conditional branches as unconditional jumps is a
common malware obfuscation technique that this analysis may be intended to
counter. However, in this case it backfires and leads to an incorrect disassembly.
Our method yields the correct disassembly on the right.

4 Conclusion

We developed and evaluated an automated disassembler using context-aware
language models to separate instructions from instructions and code from data.
Each segment in the resulting byte sequence is then separately classified as code
or data. Evaluation of the technique demonstrates that our algorithm consis-
tently yields more accurate disassemblies than the IDA Pro disassembler, which
is widely regarded as the best commercial disassembly tool currently available.

Future work includes blending more sophisticated heuristics into our learning
model, and trying block entropy approaches to better estimate the boundary
between code and data.

In addition, larger-scale evaluation of our results could be facilitated by au-
tomating more of the evaluation process. One possible approach is to generate
test binaries with perfect labels by using compiler options that artificially sepa-
rate code from data, or that yield binary debugging information that can be used
to infer correct labels. Unfortunately, most compilers and compiler modes that
yield binaries for which the disassembly task is non-trivial are specifically those
compilers that are not easy to modify (e.g., non-open source compilers) and those
modes that do not support debugging (e.g., highly optimizing release modes).
Pursuing this approach therefore requires identifying a suitable compiler.

We also plan to apply our disassembly technique to support more effective
and reliable analysis and instrumentation of x86 binaries without source code
for security purposes [8].

References

1. Balakrishnan, G., Gruian, R., Reps, T., Teitelbaum, T.: CodeSurfer/x86—a plat-
form for analyzing x86 executables. In: Proceedings of the 14th International Con-
ference on Compiler Construction (CC). pp. 250–254 (2005)

2. Bratko, A., Cormack, G.V., Filipič, B., Lynam, T.R., Zupan, B.: Spam filtering
using statistical data compression models. Journal of Machine Learning Research
7, 2673–2698 (2006)

3. Cleary, J.G., Teahan, W.J.: Unbounded length contexts for PPM. The Computer
Journal 40(2/3), 67–75 (1997)

4. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications 32(4), 396–402 (1984)

5. Cormack, G.V., Horspool, R.N.: Data compression using dynamic Markov model-
ing. The Computer Journal 30(6), 541–550 (1987)

6. Eagle, C.: The IDA Pro Book: The Unofficial Guide to the World’s Most Popular
Disassembler. No Starch Press, Inc., San Francisco, California (2008)

XVI

7. Erdélyi, G.: IDAPython: User scripting for a complex application. Bachelor’s thesis,
EVTEK University of Applied Sciences (2008)

8. Hamlen, K.W., Mohan, V., Wartell, R.: Reining in Windows API abuses with in-
lined reference monitors. Tech. Rep. UTDCS-18-10, The University of Texas at
Dallas, Richardson, Texas (June 2010)

9. Hex-Rays: The IDA Pro disassembler and debugger. www.hex-rays.com/idapro
(2011)

10. Hunt, G., Brubacher, D.: Detours: Binary interception of Win32 functions. In:
Proceedings of the 3rd USENIX Windows NT Symposium (WINSYM). pp. 14–21
(1999)

11. Intel: IntelR© 64 and IA-32 Architectures Software Developer’s Manual, vol. 2A &
2B: Instruction Set Reference. Intel Corporation (2011)

12. Kinder, J., Veith, H.: Jakstab: A static analysis platform for binaries. In: Proceed-
ings of the 20th International Conference on Computer Aided Verification (CAV).
pp. 423–427 (2008)

13. Kinder, J., Zuleger, F., Veith, H.: An abstract interpretation-based framework for
control flow reconstruction from binaries. In: Proceedings of the 10th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI). pp. 214–228 (2009)

14. Moffat, A., Turpin, A.: Compression and Coding Algorithms. Kluwer Academic
Publishers, Boston/London (2002)

15. Teahan, W.J., Wen, Y., McNab, R.J., Witten, I.H.: A compression-based algorithm
for Chinese word segmentation. Computational Linguistics 26(3), 375–393 (2000)

16. Teahan, W.J.: Text classification and segmentation using minimum cross-entropy.
In: Proceedings of the 6th International Conference on Computer-Assisted Infor-
mation Retrieval (RIAO). pp. 943–961 (2000)

