
Calculation of Gauss Quadrature Rules*

By Gene H. Golub** and John H. Welsch

Abstract. Several algorithms are given and compared for computing Gauss

quadrature rules. It is shown that given the three term recurrence relation for the

orthogonal polynomials generated by the weight function, the quadrature rule may

be generated by computing the eigenvalues and first component of the orthornor-

malized eigenvectors of a symmetric tridiagonal matrix. An algorithm is also pre-

sented for computing the three term recurrence relation from the moments of the

weight function. |

Introduction. Most numerical integration techniques consist of approximating

the integrand by a polynomial in a region or regions and then integrating the

polynomial exactly. Often a complicated integrand can be factored into a non-

negative "weight" function and another function better approximated by a polyno-

mial, thus

/b rb N
g(t)dt = I   o>(t)f(t)dt « 2>y/(iy) .

u •'a j=l

Hopefully, the quadrature rule {w¡, íyjyLi corresponding to the weight function

co(i) is available in tabulated form, but more likely it is not. We present here two

algorithms for generating the Gaussian quadrature rule defined by the weight func-

tion when :

(a) the three term recurrence relation is known for the orthogonal polynomials

generated by w(£), and

(b) the moments of the weight function are known or can be calculated.

In [6], Gautschi presents an algorithm for calculating Gauss quadrature rules

when neither the recurrence relationship nor the moments are known.

1. Definitions and Preliminaries. Let w(x) ^ 0 be a fixed weight function defined

on [a, b]. For o>(x), it is possible to define a sequence of polynomials po(x), pi(.x), ■ ■ ■

which are orthonormal with respect to w(x) and in which pn(x) is of exact degree n so

that

P
I   w{x)pm{x)pn{x)dx = 1    when m = n ,

(1.1)
= 0   when m ?¿ n .

The polynomial pn(x) = kn TFi=i (x — ti) ,kn> 0, has n real roots a < h < í2 <
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■ • • < í„ < b. The roots of the orthogonal polynomials play an important role in

Gaussian quadrature.

Theorem. Letf(x) £ C2N[a, b], then

fb N j-(2A0 /■.-.

(2N)\h

where

Wi =
fciV+l

k
r+i ! (n ,(t s      dpN(t)\      \

n  ptf+i(tj)pN'(tj)      \ dt    I «=,«./
j = l,2,---,N,

Thus the Gauss quadrature rule is exact for all polynomials of degree ;£ 2N — 1.

Proofs of the above statements and Theorem can be found in Davis and Rabino-

witz [4, Chapter 2].

Several algorithms have been proposed for calculating {wj, tj)Nj-i ;cf. [10], [11] .

In this note, we shall give effective numerical algorithms which are based on de-

termining the eigenvalues and the first component of the eigenvectors of a sym-

metric tridiagonal matrix.

2. Generating the Gauss Rule. Any set of orthogonal polynomials, {pj(.x)}¥-i,

satisfies a three term recurrence relationship :

(-1)
PÂ%) = (fl& + bj)pj-i(x) - Cjpj-ïix),

j= 1,2, ••-,#;   p-i(x) = 0,   p0(x) = l,

with a, > 0, Cj > 0. The coefficients {a¡, b¡, c¡\ have been tabulated for a number of

weight functions u>(x), cf. [8]. In Section 4 we shall give a simple method for generat-

ing {ay, bj, Cj] for any weight function.

Following Wilf [12], we may identify (2.1) with the matrix equation

Po(x)

Pifr)

.pN-i(x).

■bi/ai,     1/di, 0

Ci/ai, —b2/a2, l/a2

0

O

O 1/atf-i

Civ/öjv, —bif/a,if -

Po(x)

VA*)

[_Pn-\(x)A

+

0

\_PN(x)/aN-l
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or, equivalently in matrix notation

xp(x) = Tp(x) + (l/aN)pN(x)eN

where T is the tridiagonal matrix and e^ = (0, 0, • • •, 0, l)r. Thus pn(Íj) = 0 if and

only if íj-p(íj) = T$(tj) where t¡ is an eigenvalue of the tridiagonal matrix T. In [12],

it is shown that T is symmetric if the polynomials are orthonormal. If T is not sym-

metric, then we may perform a diagonal similarity transformation which will yield

a symmetric tridiagonal matrix J. Thus

«i   ßi    0

01      «2     ß2 O

DTD'1 = J =

0

O ßn-i

3¡f—l      OÍN     ■

where

(2.2)
bi        a ( c'+'  ^

ai \a,ai+i/

It is shown by Wilf [12] that as a consequence of the Christo ffel-Darboux

identity

(2.3) wMtj)ñv(ti)] = 1 ,       j = 1, 2, • • -,N

where p(fy) corresponds to the eigenvector associated with the eigenvalue tj. Sup-

pose that the eigenvectors of T are calculated so that

(2.4) /q/»i<qy,       j=l,2,---,N

with q/q^j = 1. If

(2-5) q3r = (qi,i,q2,i, •■•,g.v,y) ,

then qlj = Wj(po(tj))2 by (2.3). Thus from (1.1), we see

2 2 rb

(2.6) ws = -%f- = ^/ = qlj X /   «(!)<& = qlj X mo .
Po (tj)       ko J*

Consequently, if one can compute the eigenvalues of T and the first component of

the orthonormal eigenvectors, one is able to determine the Gauss quadrature rule.

3. The Q-R Algorithm. One of the most effective methods of computing the

eigenvalues and eigenvectors of a symmetric matrix is the Q-R algorithm of Francis

[5]. The Q-R algorithm proceeds as follows:

Begin with the given matrix J = Jm, compute the factorization J<0) = Q(0)Ä(0)

where Q(0)TQ(0) = I and Rm is an upper triangular matrix, and then multiply the

matrices in reverse order so that
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jm   =  Ä(0)Q(0)   =   Q(0)rj(0)(2(0) _

Now one treats the matrix J(1) in the same fashion as the matrix J(0), and a sequence

of matrices is obtained by continuing ad infmitum. Thus

(3.1)

so that

Jw = Q'"R(OpW

(t'+l)

(3.2) ./
(f+i)

J = R^'Q'" = Ql(»+D p(i+D

= Ql" Jll,Ql,; = Qw Qa)' )(í-i)' (0W1)<rv(T<r • • • qit«

Since the eigenvalues of J are distinct and real for orthogonal polynomials, a real

translation parameter X may be chosen so that the eigenvalues of </(,) — \I are

distinct in modulus. Under these conditions, it is well known [5] that J(,) — \I con-

verges to the diagonal matrix of eigenvalues of J — \I as i —»• » and that PM =

Q(0> X Q(1) X • • • X Q{i) converges to the orthogonal matrix of eigenvectors of J.

The method has the advantage that the matrix J(,) — XI remains tridiagonal

throughout the computation.

Francis has shown that it is not necessary to compute the decomposition (3.1)

explicitly but it is possible to do the calculation (3.2) directly. Let

{S(<)}*.i= {Qci)U,i       (k = l,2,---,N),

(i.e., the elements of the first column of (S(i) are equal to the elements of the first

column of Q <•'>). Then if

(i) £<*«> = SWTJ«>S«\
(ii) K<i+l) is a tridiagonal matrix,

(iii) Jw is nonsingular,

(iv) the subdiagonal elements of K(i+1) are positive, it follows that K(i+l)  =
JCi+l).

For the tridiagonal matrices, the calculation is quite simple. Dropping the

iteration counter i, let

Zp —

(P)      (P+D

O
cos 0„   sin

p OXXA Vp

sm Öp     — cos 8p

O
lJ

(p)

(P+D

Then cos öi is chosen so that

{ZiJ}*.i = 0,        fc = 2,3, •••,Ar

Let
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J =

6,    0
a2    bt O

I

o b.w.

b\-\
aN   J

The matrix

ZJZX =

a/    W    d¡
W   ai   bi   0
<l\     bi    a i     In

0

o

o

&jv-i    a.v   .

where the primes indicate altered elements of J; then

K = Zn—iZn-2 • • • Z\JZ\ • • • Zff—i

and Zi, • • •, Zn-i are constructed so that K is tridiagonal. The product of all the

orthogonal rotations yields the matrix of orthogonal eigenvectors. To determine

{wy} ¿Li, however, we need only the first component of the orthonormal eigenvector.

Thus, using (2.3)

qT - Iqi.i, gi,2, • • -, qijr] = [1, 0, 0, • • -, 0] X fl (Zi(0 X Z¿i} X • • ■ X ¡fëU)
¿=o

and it is not necessary to compute the entire matrix of eigenvectors. More explicitly,

for j = 1,2, ...,JV- 1

smô/i) = dj%/mnf + mi^'\
cos*/fl«5$V[(d£)1+0&)Ty\

,(»'+!)
= a to cos

T(t) ^ (o

- <0 + 25/¿) cos tf/° sin djli) + a% sir2 - (i)

(0    I    „(0   „„„2 a (0a}+i = a¡'" sm" 0yC,) — 25y(î> cos («>

sm

Sin Vj' " + Oy+i cos

(3.3)       fcyir  = 5ft COS öy(0 + 4-1 Sin ôy(i) =   [(5ft)2 +  (d^)*}1 >*

5y(í) =   (n/° - aft) sin Öy(° COS í/° + 5y(¿) (sin

-í>ftcOS0y(í) ,

(í)-COS20y(<))

°3+l   —

j(0        1.(0«}    = bj+i sm ^   , «,3;) „/*<■" = §/•■> cos 0y + zft sin Ôy

Sj+l
<¿>  a

with

sm

¿o(<)

(O
zft COS 0y(í)

- (O
ai     = ai

&i(0,

(O

6o(i) = (ai<° - X(i))

f (O
Ol       = Oj     ,       2!       = 2i

CO
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Initially

2l(0) = 1,    Zjm = 0   for ./= 2,---,N

so that z(i)T —>• qr as i —> «¡. In the actual computation, no additional storage is

required for {Byw, 5/°, 5y(i), 2/°} since they may overwrite {ay(<>, 6y(<), 2yCi)}- We

choose X(i) as an approximation to an eigenvalue; usually, it is related to the

eigenvalues of the matrix

[„(0 i.(0
i(0 _   (0
Oat-i «¡v    J

When t^j is sufficiently small, a;v<l) is taken as eigenvalue and N is replaced by

N - 1. "

4. Determining the Three Term Relationship from the Moments. For many

weight functions, the three term relationship of the orthogonal polynomials have

been determined. In some situations, however, the weight function is not known

explicitly, but one has a set of 2N + 1 moments, viz.

Hk =  I   u(x)xkdx       k = 0, 1, • • -, 2N .
•a

Based on an elegant paper of Mysovskih [9], Gautschi*** has given a simple deriva-

tion of the three term relationship which we give below. This result also follows from

certain determinantal relations (cf. [7]).

Let Í2 C En be a domain in w-dimensional Euclidean space and w(x) ^ 0 be a

weight function on 0 for which all "moments"

M7J.72.yn = J   o(x)x1yixiri • ' • x„7"dx
!2

exist, and /i0,o,--,o > 0. Enumerate the monomials

Ti      T2 Tn -^   A ^   A
£1X2       ■ ■ •      Xn    ,      TláO,   •••,7,^0

as {<pi(x)}f=i, whereby i < j if degree <pí < degree <pj, the enumeration within the

same degree being arbitrary. In particular, <pi(x) = 1. Let

M = [((fi, <Pj)]i,j-i = {niij}

denote the "Gram matrix" for the system {^¿(x)}^, where

(<Pi,<Pi) = /  io(x)<pi(x)<pj(x)dx .

Note M is positive definite. Let M = RTR be the Cholesky decomposition of M with

ru = Una — 2^ rki)

and

(4.1) ¿y = ( ma — ^ rkirkj\ I r a ,        i <

*** Personal communication.
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for i and j between 1 and L. Let

bt1

Su S12

«22

Sil

S2L

O
Sll-

Theorem (Mysovskih). The polynomials

Fj(x) = Sij<pi(x) + s2j<p2(x) + ■■■ + Sjj(fj(x)        (j = 1, 2, • • -, L)

form an orthonormal system.

Now in the special case n = 1, one has <p¡(x) = x'_1 with L = N + 1, and M is

just the "Hankel" matrix in the moments. Moreover, we know in this case

Fj(x) = pj-\(x), a polynomial of degree j — 1, and {py(x)}yLo satisfy

(4.2)     xpj_i(x) = /3y_ipy_2(a;) + aypy_i(x) + ß}pj(x) ,       j = 1, • • -,N,

where p~i(x) = 0. Comparing the coefficients of x> and x'-1 on either side of this

identity, one gets

sii  =   ßjSl+l,j+l

Sy—i,y = ocjSjj -p ßjSj,j+i

and so

Further, if

ßj

R =

O
a straightforward computation shows that

1

si+i,y+i

rn        r12

r22

si-u_   sj,y+i

Sy,y        si+i,y+i

rl,N+l

r2,N+i

rn+i,N+i.

Sii si.i+l
-rj,j+i

ri,iri+l,j+l

Thus

(4.3)
rj+i.j+i

i= 1,2, ••-,#,

1,2, ...,N- 1,

with r0,o = 1, r0,i = 0.
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5. Description of Computational Procedures. In the microfiche section of this

issue there are three ALGOL 60 procedures for performing the algorithms presented

above. We have tried to keep the identifiers as close to the notation of the equations

as possible without sacrificing storage or efficiency. The weights and abscissas

of the quadrature rule are the result of the procedure GAUSSQUADRULE which

must be supplied with the recurrence relation by either procedure GENORTHOP-

OLY or CLASSICORTHOPOLY. The former requires the moments of the weight

function and the latter the name of the particular orthogonal polynomial. A short

description of each procedure follows.

CLASSICORTHOPOLY produces mo and the normalized three term recurrence

relationship (ay, 6y) for six well-known kinds of orthogonal polynomials :

KIND = 1, Legendre polynomials Pn(x) on [—1.0, +1.0], o>(x) = 1.0.

KIND = 2, Chebyshev polynomials of the first kind Tn(x) on [-1.0, +1.0],

co(x) = (1 - x2)-1'2.

KIND = 3, Chebyshev polynomials of the second kind Un(x) on [—1.0, +1.0],

u(x) = (1 - a;2)+1/2.

KIND = 4, Jacobi polynomials P„(a•<"(*) on [-1.0, +1.0], u(x) =

(1 - x)a(\ + xY for a > -1 and ß > -1.

KIND = 5, Laguerre polynomials Lnw(x) on [0, + <*>)> °°(x) = e~xx" for

a > -1.

KIND = 6, Hermite polynomials Hn(x) on (— °°, + °°), w(x) = e~*2.

Notice that this procedure requires a real procedure to evaluate the gamma

function T(x).

GENORTHOPOLY uses the 2N + 1 moments of the weight function which

are supplied in MU[0] through MU[2 (g> N] to compute the ay's and 0y's of formula

(4.2). First, the Cholesky decomposition (formula 4.1) of the moment matrix is

placed in the upper right triangular part of the array R, then the formulas (4.3) are

used to compute the ay's and ßj's which are placed in the arrays A and B respec-

tively.

GAUSSQUADRULE has two modes of operation controlled by the Boolean

parameter SYMM which indicates whether the tridiagonal matrix is symmetric

or not. When the recurrence relation is produced by GENORTHOPOLY or by

CLASSICORTHOPOLY, SYMM is true. If SYMM is false, the matrix is sym-
metricized using the formulas (2.2). The diagonal elements a¡ are stored in A[I] and

the off diagonal elements /3¿ are stored in B[I].

Beginning at label SETUP, several calculations and initializations are done : the

h norm of the tridiagonal matrix and the relative zero tolerance are computed; the

first component of each eigenvector W[I] and the Q-R iteration are initialized.

LAMBDA is a variable subtracted off the diagonal elements to accelerate con-

vergence of the Q-R iteration and control to some extent in what order the eigen-

values (abscissas) are found. It begins with a value (= NORM) outside and to

the right of the interval containing the abscissas and moves to the left as the

abscissas are found; thus the abscissas will be in ascending order in the array T

(just to be sure an exchange sort is used at label SORT).

The maximum (EIGMAX) of the eigenvalues (LAMBD1 and LAMBD2) of

the lower 2X2 submatrix is compared to the maximum (RHO) from the last

iteration. If they are close, LAMBDA is replaced by EIGMAX. This scheme seems

to stabilize LAMBDA and speed convergence immediately after deflation.
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An eigenvalue has been found when the last off diagonal element falls below

EPS (see Section 6). Its value is placed in T[I] and the corresponding weight W[I] is

computed from formula (2.5). This convergence test and the test for matrix splitting

are done following label INSPECT. Only the lower block (from K to M) needs to be

transformed by the Q-R equation given in formulas (3.3). These equations have

been rearranged to reduce the number of computer operations as suggested by

W. Kahan in a report by Corneil [2].

Table

A Comparison of the Abscissas and Weights of the
Gauss-Laguerre Quadrature Rule with a = —0.75 and N = 10

Analytic Recurrence

Relationship + QR

Moment Matrix
+ QR

Conçus et al [l].

ABSCISSAS

2.766655867080153n„-2   2.766655862878^70, n-Z■1C1
2 1+. 5Í+78++2260596+2
3 I.382+25761158619"1
+ 2.83398001209273Î
5 +.85097I++876+96I
6 7.50001091+26+289T
7 1.0888+0802383++!,,+1
8 I.5199I+780++23765:Tp+l
9 2.078921l+621070l|r^+i

10 2.85730601614-92223:^+1

-10

■10 +. 51478^21956871^-1
1.382I42575925631J+
2.835980008561162
+.850971++3++2301

7.50001093556390^
1 .o888+o8óT5l6lo+   +1
1.51991478035192714::"+1
2.078921+60989977:-"+1
2.85730601529+1401:^+1

2.76665586707972-2
k. 5147814+226059149^-1
1.382+25761158599
2.833980012092697
1+.850971++876+91+

7.50001091426+2825
I.0888+0802383++0+   +1
1.5199+78014+237603^+1
2.078921+6210701077"+1
2.857306016+922106^+1

WEIGHTS

1
2

3
h
5
6
7
8
9

10

2.566765557790853
7.733+79703++3l68_10-l

2.566765556932285
7.753i4797o5l5+0O0^-I

2.3313283+9732182^-1       2.331328355678223^-1       2.33l3283+973219tn-l

2.566765557790772
7.733+79703++3+l10-l

S-C 10
+ .61+367+708956677^-2       + .6+567+72+992909^-2_Lin

5.5+9123502036256^ 3
3.656+66626776++l|"-+
l.l86879857l02525|n-5
1.58++109+20568TC-" -7
6.1932667267960^77"-10
3.037759926517691^-13

5.5+9125551829512
5.656I466655186007
1.1868798676+2159
i.q8+.+ioq ■58^501++
6.195266797518538
3.0577599636981+51

+ .6+367+70895670:-°-2
3 5.51+912350203625^-3
1+ 3.656+6662677638^-+
5 1.186879857102+5^-5
7 1.58+1+1091+205678^-7
10 6.1932667267968+r"-io
13 3.03775992651750^-13-

(Underlined figures are those- which disagree with Conçus et al [1].)

6. Test Program and Results. The procedures in the microfiche section have

been extensively tested in Burroughs B5500 Algol and IBM OS/360 Algol. There

are two machine dependent items which must be mentioned. First, the constant

used to define the "relative zero tolerance" EPS in procedure GAUSSQUADRULE

is dependent on the length of the fraction part of the floating-point number repre-

sentation ( = 8-18 for the 13 octal digit fraction on the B5500, and = 16~14 for a 14

hexadecimal digit long-precision fraction on the IBM 360). Second, the moment

matrix M defined in Section 4 usually becomes increasingly ill conditioned with

increasing N. Thus the round-off errors generated during Cholesky decomposition

in GENORTHOPOLY cause an ill conditioned M to appear no longer positive

definite and the procedure fails on taking the square root of a negative number.
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The procedure GAUSSQUADRULE proves to be quite stable and when the

recursion coefficients are known or supplied by the procedure CLASSICORTHOP-

OLY it loses only several digits off from full-word accuracy even for N = 50. Pro-

cedure GENORTHOPOLY usually failed to produce the recursion coefficients

from the moments when N was about 20 for the IBM 360.

The driver program given in the microfiche section of this issue is designed to

compare the two methods of generating the quadrature rules—from the moments or

the recursion coefficients. N can be increased until GENORTHOPOLY fails.

Numerical results may be checked against tables for Gauss-Legendre quadrature

in [11] and Gauss-Laguerre quadrature in [1]. In the Table, we compare the abscissas

and weights of the Gauss-Laguerre quadrature rule with a = —0.50 and JV = 10

computed by: (A) the analytic recurrence relationship and the Q-R algorithm;

(B) the moment matrix and the Q-R algorithm; (C) Conçus et al. [1]. The calcula-

tions for (A) and (B) were performed on the IBM 360.
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