
Journal of Biomedical Engineering and Technology, 2014, Vol. 2, No. 2, 13-20 
Available online at http://pubs.sciepub.com/jbet/2/2/2 
© Science and Education Publishing 
DOI:10.12691/jbet-2-2-2 

 

Online Frequency Domain Volterra Model of Glucose-
Insulin Process in Type-1 Diabetics 

A. Bhattacharjee*, A. Sutradhar 

Department of Electrical Engineering, Bengal Engineering and Science University, Shibpur, Howrah, India 
*Corresponding author: arpita.bhattacharjee3@gmail.com 

Received February 28, 2014; Revised May 09, 2014; Accepted May 12, 2014 

Abstract  Modern close loop control for blood glucose level in a diabetic patient necessarily uses an explicit 
model of the process. A fixed parameter full order or reduced order model does not characterize the inter-patient and 
intra-patient parameter variability. This paper deals with an online frequency domain kernel estimation method for 
modeling a nonlinear dynamic system of multivariable glucose-insulin process in a type-1 diabetic patient that 
captures the process dynamics in presence of uncertainties and parameter variations. The present work proposes a 
frequency domain kernel estimation of a Volterra model using the harmonic excitation input by taking FFT on the 
input data sequence from the glucose-insulin process of the patient. Volterra equations up to second order kernels 
with extended input vector for Volterra model are solved online by adaptive recursive least square (ARLS) algorithm. 
Twice the length of the extended input vector for the glucose-insulin process is considered for finding the frequency 
domain kernels that can be directly used as the Volterra transfer function and are useful for closed loop internal 
model control. The input-output data taken from the 19th order first principle model of the patient in intravenous 
route, have been used to identify the system with a short filter memory length of M=2 and the validation results have 
shown good fit both in frequency and time domain responses with nominal patient as well as with intrapatient 
parameter variations. 
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1. Introduction 
In fast lifestyle pattern of these days, intensive 

treatment of type-1 diabetic patients is required to avoid 
later life complications. Proper dose of insulin is applied 
to the bloodstream intermittently through subcutaneous or 
intravenous infusion to regulate the blood glucose (BG) 
level. A tight closed loop control of BG is required to 
maintain normoglycaemia (BG level in the range of 63-
144 mg/dl) in presence of normal meal and activity 
conditions of the patient [1-6,19]. Effective control of 
biological processes is a non-trivial task requiring a model 
that is able to adequately acquire the dynamic behaviour 
of the process over its complete operating range. The 
complex nonlinear process of glucose metabolism is 
linked to a number of internal factors. With occasional 
blood glucose sensing, routine food intake and other 
activity conditions, the system appears highly stochastic. 
The closed loop control involves interplay between the 
nonlinear dynamics of the physiological process, the inter- 
patient and intra-patient variability, uncertainties and 
disturbances in implantable infusion device (actuator) and 
the glucose sensor [7,8]. Researchers worked on various 
close loop control algorithms for BG regulation either 

based on first principle full order or Bergman’s minimal 
model of the glucose-insulin (GI) process [9-18]. Modern 
control methodologies though demonstrated adequate 
performance; the inherent uncertainty in the model (or 
patient) has not been explicitly addressed. This omission 
can lead to significant performance degradation if the 
effect of parameter variations is not reflected in the 
derived model. To avoid retuning of the controller every 
time for different patient conditions, the model should be 
capable of online capturing of such dynamics [18]. 

Though the theory of data driven identification 
techniques are well-established [19,20] in last three 
decades, very limited work on modeling of Glucose-
Insulin (GI) process in frequency domain has been 
reported. On-line ARX model and nonparametric time 
domain kernels of the GI process have been reported 
elsewhere by the present authors [21,22]. Nonlinear ARX 
(NARX) model is significant among different black box 
model structures used to capture nonlinear dynamics but 
determination of order and structure of such model on-line 
is a difficult task even for a single input single output 
(SISO) system and the problem is further compounded for 
multi-variable systems [23]. The parametric models also 
lack full information of nonlinearities in the coupled 
systems. Nonparametric model, on the contrary, 
decomposes arbitrary basis functions leading to most 
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concise signal representation and best conditions of 
identification algorithms [23,24]. In a previous work by 
the present authors [27] the frequency domain kernel 
identification method was established and validated using 
Volterra- Hammerstein structure for the Guyton model of 
the patient. A potential advantage of using nonparametric 
model is that it can yield nonlinear model predictive 
control directly from the identified process using the 
Volterra transfer function of the process derived from the 
frequency domain kernels [25,26,27,28]. 

In the present paper, an online nonparametric 
identification method has been presented where the 
frequency domain kernels are computed for a simpler 
Volterra-only structure that captures the dynamics of the 
GI process with parameter variations in type-1 diabetic 
patients. The 19th

 order first principle Sorensen model of 
the type-1 diabetic patient embedded into a hardware 
platform is used as the virtual patient to be identified. The 
important parameter of the patient is varied to realize 
different patient conditions. The resulting model has been 
validated for a wide range of input, meal disturbance and 
patient parameter variations. 

2. System Overview 
The closed loop drug delivery system for BG regulation 

necessarily requires a patient model estimator, which 
continually estimates patient states from the physiological 
process data in presence of disturbances and parameter 
variations from the input-output Data. The block diagram 
of the closed loop system is shown in Figure 1. 

 

Figure 1. Closed loop blood glucose regulation in type-1 diabetic patient 

2.1. Model of Glucose-Insulin dynamics 
A pharmacokinetic and pharmacodynamic compartmental 

model of glucose-insulin (GI) process involving various 
organs has been constructed as given by Guyton et al. [9], 
that was modified by Sorensen [10] resulting in large 
number of system states to accommodate inter organ 
transmissions. Utilizing compartmental modeling techniques, 
the glucose-insulin model of diabetic p tient is represented 
schematically in Figure 2. 

The body has been divided into six physiologic 
compartments as represented in [3] and [10] shown in 
Figure 2 where Brain- represents the central nervous 
system; Heart/Lung - represents the rapidly mixing 
vascular volumes of the heart, lungs and arteries; 
Periphery - includes skeletal muscle and adipose tissues; 
Gut -includes the effects of stomach and intestine; Liver – 
has two way function on glucose and Kidney for excretion. 
Arrows represents the direction of flow of blood in the 
various compartments. Mass balance equations around 
tissues important to glucose and insulin dynamics have 
been used. It has been assumed that the glucose or insulin 

concentration in a compartment is in equilibrium with the 
blood leaving the given compartment. 

In the present work, a meal disturbance model is 
included in the model description as developed by 
Lehmann et al. [11] and Parker et al. [3] and includes 
uncertainty modeling [3,18] (details given in Appendix). 
To maintain relatively constant carbohydrate release from 
the stomach during intestinal adsorption gastric emptying 
(Gempt) of carbohydrate is modeled. The rate of gastric 
emptying (Gempt), increases linearly from the instant of 
taking meal, then plateaus to a maximum value for some 
time; and ultimately decreases to zero linearly. The 
duration for which the gastric emptying rate remains 
constant at a maximum value is a function of the amount 
of carbohydrate intake. The rise to and fall from this 
maximum rate is a linear function (ramp), taking place 
over a thirty minute span. Small meals (<10.2 g 
carbohydrate).only contained the rise and fall phases 
(triangle) shape, never reaching the plateau emptying rate. 
Larger meals are described by a trapezoidal wave. A 
firstorder filter is used after this Gempt function for 
smoothening the output [11]. 

 

Figure 2. Compartmental model of glucose-insulin interaction in Type-1 
Diabetic patient 

In the present work, intravenous (I/V) insulin delivery 
system is considered due to its inherent advantages of 
rapid delivery with negligible dead-time, a higher 
percentage of drug utilization, less amount of drug 
required, faster response to insulin over-delivery and 
potential for improved closed-loop controller performance. 

3. Identification Algorithm of Nonlinear 
Model Structure 

Successful identification requires a proper experimental 
design and choice of a proper model structure. 
Experimental design involves selection of experimental 
parameters like sampling time and excitation signal. Many 
researchers have used block oriented models that give 
insight to the complexity of the process, particularly for 
nonlinear processes [22-27]. Use of block structure gives 
an advantage of approximating the nonlinear processes 
with higher accuracy and enhances the chances to get a 
reduced order model, which is uncomplicated and 
computationally efficient. Nonparametric approaches 
represent the dynamic characteristics of the nonlinear 
system from expansion of the Volterra series or kernel. 
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3.1. Volterra Model 
The finite Volterra series up to second order kernel for 

a multivariable (MISO) system with xi inputs, where i=1, 
2, … m the output y(t) for a kernel memory length M is 
expressed as: 
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The self-kernels hii acting on a single input are 
symmetric and the cross-kernels hij acting on different 
inputs and are asymmetric. The second order Volterra 
structure for the present single-input single output GI 
process thus follows directly from equation 2 and the 
output of the process is given by: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 20
1 11y t h h x t h x t x t= + ∗ + ∗ ∗  (2) 

where, ( )0h is the zero order Volterra kernel and ( )1
1h , 

( )2
11h  are the first and second order Volterra kernels 

respectively associated with the input x(t) in time domain 
and ’*’ denotes the convolutions. The output y(t) can also 
be expressed in terms of the nonlinear kernel operator H(t) as: 

 ( ) ( ) ( )y t G t x t=     (3) 
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3.2. Implementation of Volterra Model 
Since the higher order model is not very useful for 

computation and simulation purpose, the second order 
Volterra model having a short memory of M = 2 has been 
considered here. For the present system, Volterra 
equations up to second order kernels with extended input 
vector are solved online by adaptive recursive least square 
(ARLS) algorithm [24]. 

Adaptive recursive least squares (ARLS) algorithm has 
been used to find the filter coefficients recursively on the 
basis of least squares of the error signal. The structural 
diagram of the RLS filter is shown in Figure 3. 

The idea behind RLS filters is to select the filter coefficients 
and update the same with new data set by minimizing the 
following cost function involving the error signal ( )e τ , 

desired output ( )y τ  and model output ( )y τ′ : 

 ( ) ( ) ( ) ( )( )
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t t
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Figure 3. Structure of ARLS filter 

Figure 3 shows the ARLS structure with instantaneous 
value of the variables. λ  is a factor that controls the 
memory span of the adaptive filter. The filter coefficients 
are adapted according to the following steps: 

I. Initialization: Define filter memory ;M  
( ) [ ]0 0 0 0 ;H =   ( )0 * ;P Iδ=  where δ  is a small 

positive constant; 
II. Operations: for t = 1 to number of iterations. 
a) Create the extended input vector: 
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b) Compute the output: 

 ( ) ( ) ( )1 *y t H t X t′= −  

c) Compute the error: 

 ( ) ( ) ( )1e t t y t y t′− = −  

d)Compute the gain matrix: 
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e) Update the filter vector: 

 ( ) ( ) ( ) ( )1 1 * gH t H t e t t H t′= − + −  

f) Update the inverse autocorrelation matrix P: 

 ( ) ( ) ( ) ( ) ( )1 11 1gP t P t H t X t P tλ λ− −= − − −  

In the above representations, the functions 
, 0,1, 2,3ih i =   represent the kernels associated to the 

nonlinear operators ( )( ).iH x t  The above representations 
have the same memory for nonlinearity orders. In this case 
the second order Volterra kernel is a ( )M M×  matrix. If 
we consider symmetric kernels of memory ,M  the second 
order Volterra kernel requires the determination of 

( )1 2M M +  coefficients for single input. Hence the 
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total number of coefficients is ( )1 2N M M M= + +  
[24]. 

3.3. Frequency Domain Representation of 
Volterra Model 

Considerable amount of effort has been made in recent 
years to develop frequency domain representation of 
nonlinear systems based on Volterra series representation 
of input output behavior [25,26,27]. An online frequency 
domain kernel estimation method for Volterra model has 
been presented here for the dynamic system of the GI 
process. The main advantage of using frequency domain 
kernel is to get the Volterra Transfer Function (VTF) that 
can be directly used in model predictive control. 

The input-output relationship in frequency domain can 
be easily obtained as follows. Let ( )X f  and ( )Y f  
denote the Fourier transforms of the inputs and output 

respectively. The Fourier transform ( ) ( )1 2, ,k
kH f f f  

of the thk  order kernel (nonlinear impulse response of 
order k) can be written as 
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( ) ( )1 2, ,k
kH f f f  is called the nonlinear transfer 

function or Volterra Transfer Function (VTF) of order k, 
where Q  is the maximum order of the kernel, which can 
be determined experimentally by applying a multi-tone 
signal at the input to the system and measuring the 
response. The output ( )Y f  for the two input single 
output system is given by: 
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where ( )δ •  represents the corresponding frequency shifts. 

( )Y f  is computed by using Overlap-Save algorithm. The 
frequency domain kernels have been computed by taking 
the FFTs on respective time domain kernels for a specific 
length of extended input vector. 

The overlap-save algorithm reconstructs time domain 
output y(t) by taking inverse FFT of the output ( )Y f : 
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By the overlap-save algorithm, the convolution and 
correlation operations are very easily and efficiently 
implemented in frequency domain, which is rather 
computationally intensive when performed directly by the 
time-domain ARLS method. 

The steps of the Overlap-Save algorithm are: 
I. Let N be number of data points in time domain 
extended input vector. N zeros are added to the left of 
the input vector that contains both the insulin and meal 
inputs. 
II. The length of the input data points is twice the length 
of the time domain kernels i.e. 2N. Time domain 
Volterra kernels are computed from 2N extended input 
vector, so that the result of the FFT will be the same 
length as that of the FFTs of the input sections. 
III. 2N point FFT taken for both the input vector and the 
kernels and stored in memory. 
IV. The two FFTs are now multiplied to generate the 
output in frequency domain (each element in one of the 
arrays is multiplied by the corresponding element in the 
other). This corresponds to convolution in time domain. 
V. The first row of the result gives the output. The first 
half is added to an array as the output of the filter for 
the given input block. 
VI. Finally the input block is updated. 

3.4. Flow Chart of the Identification Algorithm 
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4. Experiments and Verification of 
Results 

As the physiological process in type-1 diabetic patient 
is completely lacking endogenous insulin secretion, the 
BG level rises to a large value exceeding 350mg/dl in 
open loop when 50gm meal is given orally. The use of 
pseudo random binary sequence (PRBS) of 10% over 
basal dose of insulin is a normal practice for offline 
identification of a process from its input-output data [2] 
but not practicable for online identification. Here for 
online identification of the data driven model of the GI 
process of a type-1 diabetic patient, a basal insulin dose of 
22.33mU/min has been used. The patient is subjected to a 
prescribed 50gm meal (equivalent carbohydrate taken 
orally (CHO)) ingestion at 300min [2,3]. The open loop 
response of blood glucose level with constant insulin 
infusion and meal disturbance for 900min span is shown 
in Figure 4. 

 

Figure 4. Open loop response of blood glucose concentration 

The actual output and the identified model output 
generated by simulation for above input-output condition 
is shown in Figure 5. The response shows a good match 
between the actual glucose output and the output from the 
identified model for nominal patient parameter values. 

 

Figure 5. The validation data of nominal patient 

Uncertainty may be related to variations in patient 
parameters. The Sorensen full order model [10] identifies 
the metabolic terms as most responsible for changes in 
glucose and insulin dynamics, and can be analyzed by the 
following threshold functions of glucose metabolism [3,18]: 

 ( ){ }tanhe iE A B C x DΓ Γ Γ Γ Γ Γ = − +   (8) 

Here the subscript i is the state vector element involved 
in the metabolic effect and e denotes specific effects 
within the model, such as the effect of glucose on hepatic 
glucose uptake (EGHGU), or the effect of insulin on 
peripheral glucose uptake (EIPGU). Inter- or intra-patient 
variability is classified physiologically as either a receptor 
( DΓ ) parameter or post-receptor ( EΓ ) parameter defect. 
This uncertainty formulation implies a structured effect of 
variability on the model, such that the tissues most 
important to parametric uncertainty are the liver and 
peripheral tissues [18]. Differences in insulin clearance 
between patients also exist, and can be modeled as 
deviations in the fraction of hepatic insulin clearance 
(FHIC) [3,18]. The parameters EGHGU- DΓ  and EIPGU-
DΓ  are varied by ±40% from their nominal values of -
5.82 and -1.48 respectively and FHIC is varied by ± 20% 
from its nominal value of 0.4 [3]. The effect of intrapatient 
variability in FHIC in between meals is shown in Figure 6. 

 

Figure 6. Validation data with intra-patient parameter variation in FHIC 
over short period of time 

 

Figure 7. Validation of the nominal model using power spectral density 

The validation was also tested using the power spectral 
densities (PSD) of the frequency domain output of the 
nominal patient model and that of the desired output of the 
system as plotted in Figure 7. This also shows very good 
matching between the frequencies where the power of the 
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two signals lies. The closeness of these two PSDs also 
confirms the model’s accuracy. 

5. Conclusion 
Model-based predictive control of insulin delivery 

system requires development of an accurate model of the 
human glucose-insulin system and design of a constrained 
controller. A data driven block-oriented modeling in time 
domain as well as in frequency domain for the nonlinear 
dynamic system of multivariable glucose-insulin process 
in a type-1 patient with relatively short memory effects 
has been developed. The advantages of block-oriented 
model have been utilized with proper selection of Volterra 
kernels by ARLS algorithm and extended input vectors for 
the nonlinear process containing both deterministic insulin 
input as well as meal disturbances. Each time domain 
Volterra term is expressed by means of a multifold 
convolution integral and each frequency domain Volterra 
term is expressed by means of a product with FFT inputs 
over the finite memory interval. Good agreement was 
found between the response from the actual process and 
the identified model. The set of kernels obtained from the 
present frequency domain Volterra model describes the 
nonlinear transfer functions or Volterra Transfer Function 
(VTF) of the process in varied conditions of the patient 
and can be directly used in internal model control. 
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Appendix 
Dynamic Model of the type-1 diabetic patient 
The differential mass balance equations governing the 

glucose-insulin process as per the compartmental model 
and meal model discussed by Parker [4], Guyton[10], 
Sorensen [11] and Lehmann [12] are given into two 
subgroups as follows. 

Model variables: 
A= auxiliary equation state (dimensionless). 
B= fractional clearance (I, dimensionless; N, L/min). 
G= glucose concentration (mg/dL). 
I= insulin concentration (mU/L). 
N= glucagon concentration (normalized, dimensionless). 
Q= vascular plasma flow rate (L/min). 
q= vascular blood flow rate (dL/min). 
T= transcapillary diffusion time constant (min). 
V = volume (L). 
v = volume (dL). 
Γ = metabolic source or sink rate (mg/min or mU/min). 
Glucose Model Sub- and Superscripts 
A= hepatic artery 
B= brain 
BU= brain uptake 
C= capillary space 
G= glucose 
H= heart and lungs 
HGP = hepatic glucose production 
HGU = hepatic glucose uptake 
I= insulin 
IHGP= insulin effect on HGP 
IHGU= insulin effect on HGU 
IVI= intravenous insulin infusion 
K = kidney 
KC= kidney clearance 
KE= kidney excretion 
L= liver 
LC= liver clearance 
N= glucagon 
NHGP = glucagon effect on HGP 
P= periphery (muscle/adipose tissue). 
PC= peripheral clearance 
PGU= peripheral glucose uptake 
PIR = pancreatic insulin release 
PNC= pancreatic glucagon clearance 
PNR= pancreatic glucagon release (normalized). 
RBCU= red blood cell uptake 
S= gut (stomach/intestine). 
SIA = insulin absorption into blood stream from 

subcutaneous depot 
SU= gut uptake 
T= tissue space 
Glucose sub-model mass balance equations: 

 ( ) ( )
T

C C C C TB B
B H B B BC C

B B B

q vG G G G G
v T v

= − − −  (A1) 

 ( ) 1T C T BU
B B B T

B B
G G G

T v
Γ

= − −  (A2) 

 1C C C
B B L L K KC

H CC C
HP P H H RBCU

G q G q G q
G

vG q G q

 + +
 =
 + − −Γ 

  (A3) 

 ( )T C C s meal SU
S H S C C C

S S S

q
G G G

v v v
Γ Γ

= − + −  (A4) 

( ) 1T C C C HGP HGU
L H A S S L L C C C

L L L
G G q G q G q

v v v
Γ Γ

= + − + − (A5) 

 ( )T C C K KE
K H K C C

K K

qG G G
v v

Γ
= − −  (A6) 

 ( ) ( )
T

C C C T CP P
P H P P PC G C

P P P

q vG G G G G
v T v

= − + −  (A7) 

 ( ) 1T C T PGU
P P P G T

P P
G G G

T v
Γ

= − −  (A8) 

The metabolic source and sink terms ( iΓ ) in mg/min and 
the uncertainty equation ( )[ ]{ }tanhe iE A B C x DΓ Γ Γ Γ ΓΓ = − +  

given in section V with A, B, C, D having usual 

significances are taken from [3]. 1
60 1meal fw

s
Γ =

+
 

represents the rate of glucose into the gut compartment of 
diabetic patient where fw  is the input pulse signal. 

Table A1. Parameter Values for the Diabetic Patient 
C
Bv  =3.5 Dl 

T
Bv  =4.5 dL 

C
Hv  =13.8 dL 

C
Sv =11.2 dL 

C
Lv =25.1 dL 

C
Kv =6.6 dL 

C
Pv =10.4 dL 

T
Pv  =67.4 dL 

C
BV =0.265 L 

C
HV  =0.985 L 

C
SV =0.945 L 

C
LV =1.14 L 

C
KV =0.505 L 

C
PV =0.735 L 

T
PV =6.3 L 

NV =9.93 L 

Bq = 5.9 dL/min 

Hq =43.7 dL/min 

Sq =10.1 dL/min 

Lq =12.6 dL/min 

Aq =2.5 dL/min 

Kq =10.1 dL/min 

Pq =15.1 dL/min 
 
 
 

BQ = 0.45 L/min 

HQ =3.12 L/min 

SQ =0.72 L/min 

LQ =0.9 L/min 

AQ =0.18 L/min 

KQ =0.72 L/min 

PQ =1.05 L/min 
 
 
 
 

PNCF =0.91 L/min 

BT =2.1 min 

G
PT =5.0 min 

I
PT =20 min 

Insulin sub-model mass balance equations: 

 ( )C C C B
B H B C

B
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V

= −  (A9) 

 1C C C
B B L L K KC

H CC C
HP P H H IVI

I Q I Q I Q
I

VI Q I Q

 + +
 =
 + − + Γ 

  (A10) 

 ( )C C C S
S H S C

S

Q
I I I

V
= −  (A11) 
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L H A S S L L C C
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I I Q I Q I Q

V V
Γ

= + − −  (A12) 

 ( )T C C K KE
K H K C C

K K

QI I I
V V

Γ
= − −  (A13) 

 ( ) ( )
T

C C C C TP P
P H P P PC I C

P P P

Q VI I I I I
V T V

= − − −  (A14) 

 ( ) 1T C T PC
P P P I T

P P
I I I

T V
Γ

= − −  (A15) 

The metabolic source and sink terms ( iΓ ) in mU/min. 
overall type-1 diabetic patient has been characterized by 
19 differential equations, with eleven describing glucose 
dynamics, seven for insulin dynamics, and a single 
compartment for glucagon [3]. Model parameters are as 
shown in Table A1. 

 


