
1048 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Support Vector Machines for Spam Categorization
Harris Drucker,Senior Member, IEEE, Donghui Wu,Student Member, IEEE, and Vladimir N. Vapnik

Abstract— We study the use of support vector machines
(SVM’s) in classifying e-mail as spam or nonspam by comparing
it to three other classification algorithms: Ripper, Rocchio, and
boosting decision trees. These four algorithms were tested on two
different data sets: one data set where the number of features
were constrained to the 1000 best features and another data set
where the dimensionality was over 7000. SVM’s performed best
when using binary features. For both data sets, boosting trees
and SVM’s had acceptable test performance in terms of accuracy
and speed. However, SVM’s had significantly less training time.

Index Terms—Boosting algorithms, classification, e-mail, fea-
ture representation, Ripper, Rocchio, support vector machines.

I. INTRODUCTION

W E DEFINE spam as an e-mail message that is un-
wanted—basically it is the electronic version of junk

mail that is delivered by the postal service. One of the reasons
for the proliferation of spam is that bulk e-mail is very cheap to
send and although it is possible to build filters that reject e-mail
if it is from a known spammer, it is easy to obtain alternative
sending addresses. Good online sources and information about
spam include http://spam.abuse.net, http://www.cauce.org, and
http://www.junke-mail.org. There have been various attempts
to use learning machines that classify e-mail [1], [2].

Solutions to the proliferation of spam are either technical or
regulatory [3]. Technical solutions include filtering based on
sender address or header content. The problem with filtering
is that sometimes a valid message may be blocked. Thus, it is
not our intent to automatically reject e-mail that is classified
as spam. Rather, we envision the following scenario: in the
training mode, users will mark their e-mail as either spam
or nonspam. After a finite number of examples are collected,
the learning machine will be trained and the performance on
new examples predicted. The user can then invoke the e-mail
classifier immediately or wait until the number of examples
is enough such that performance is acceptable. After the
training mode is complete, new e-mail will be classified as
spam or nonspam. In one presentation mode, a set of new e-
mail messages is presented in a manner consistent with the
time of delivery and the spam messages color-coded. It is
then up to the user to either read the e-mail or trash the e-
mail. An alternative presentation mode is to deliver e-mail to
the user in decreasing order of probability that the e-mail is
nonspam. That is, e-mail with high probability (according to

Manuscript received January 15, 1999; revised April 29, 1999.
H. Drucker is with AT&T Labs-Research, Red Bank, NJ 07701 USA, and

is also with the Department of Electronic Engineering, Monmouth University,
West Long Branch, NJ 07764-1898 USA.

D. Wu is with Rensselaer Polytechnic Institute, Troy, NY12181 USA.
V. N. Vapnik is with AT&T Labs-Research, Red Bank, NJ, 07701 USA.
Publisher Item Identifier S 1045-9227(99)07272-0.

the classifier) of being nonspam is at the top of the list. In
either of these modes, the filter does not reject any messages,
only indicates whether the message has a high priority of being
spam.

It is highly desirable that if the user decides that e-mail
messages be rank-ordered by degree of confidence that the
rank ordering be reliable. By reliable, we mean that the user
can either start at the top of the list of e-mail messages
and be fairly confident that they represent nonspam messages
or start at the bottom of the list and be confident that the
messages are spam. It is only near the middle of the list
(low confidence) that it is reasonable to the user that a few
nonspam or spam messages may be misclassified. Therefore,
it is important that our learning algorithm not only classify
the messages correctly but that a measure of confidence is
associated with that classification so that the message can be
rank ordered.

In the next section a number of design choices are outlined.
In Section III we describe the data sets and experiments. In
Section IV, we show how variation of the one parameter in
SVM’s changes performance. The conclusions are presented
in Section V.

II. DESIGN CHOICES

A. Feature Representation

A feature is a word. In the development below,refers
to a word, is a feature vector that is composed of the
various words from a dictionary formed by analyzing the
documents. There is one feature vector per message.refers
to a weight vector usually obtained from some combination
of the ’s. There are various alternatives and enhancements in
constructing the vectors. We consider some of them:

• TF—Term Frequency: Theth component of the feature
vector is the number of times that word appears in that
document. In our case, a word is a feature only if it occurs
in three or more documents. (This prevents misspelled
words and words used rarely from appearing in the
dictionary). Sometimes the feature vector is normalized
to unit length.

• TF-IDF uses the above TF multiplied by the IDF (inverse
document frequency). The document frequency (DF)
is the number of times that word occurs in all the
documents (excluding words that occur in less than three
documents). The inverse document frequency (IDF) is
defined as

IDF

1045–9227/99$10.00 1999 IEEE

DRUCKER et al.: SVM’S FOR SPAM CATEGORIZATION 1049

where is the number of documents. Typically, the
feature vector that consists of the TF-IDF entries is
normalized to unit length.

• Binary representation which indicates whether a particular
word occurs in a particular document. A word is a
candidate only if it occurs in three or more documents.

• Use of a stop list in addition to any of the above: Words
like “of,” “and,” “the,” etc., are used to form a stop list.
Words on the stop list are not used in forming a feature
vector. The rationale for this is that common words are
not very useful in classification. The argument against
using a stop list is that it is not obvious which words,
beyond the trivial, should be on the stop list. It may be
obvious that articles like “a,” “an,” should be on the stop
list. However, should a word like “now” be on the stop
list? The choice of words to put on a stop list is probably a
function of the classification task and it would be better if
learning algorithm itself determined whether a particular
word is important or not. Use of word stemming: words
such as “build,” “builder,” and “building” are shortened
to the word stem “build.” This lowers the size of the
feature vector but it may be the case that certain forms
of a word (such as the active tense) may be important in
classification.

B. Number of Features

The choice is between using some of the features or all
of the features. In text recognition, a feature is a word. One
possible advantage of using a finite number of features is better
generalization. By generalization we mean that good perfor-
mance on the training set generalizes to good performance on
a separate test set. Depending on the learning algorithm, it
may be the case that there is an optimum set of features, less
than the total number of available features. For example, if
the dimensionality of the classification space is greater than
the number of examples, then the examples may always be
separable by a nonunique hyperplane with zero training error
(assuming the patterns are independent). Since there are, in
general, an infinite number of separating hyperplanes, one does
not obtain the optimal separating hyperplane (the one that has
the best test performance).

A few of the mechanisms designed to find the optimum
number of features (and the best features) are [4] document
frequency thresholding, information gain, mutual information,
term strength, and . In comparing two learning algorithms,
Yang and Petersen found that, except for mutual information
gain, all these feature selection methods had similar perfor-
mance and similar characteristics. That is, as the number of
features used was decreased from all the features to some
smaller number, the test performance improved. Then, once
the number of features decreased below a critical value, the
test error rate increased.

Thorsten Joachims [5] did similar experiments and com-
pared five learning algorithms including naı̈ve Bayes, Rocchio,

-nearest neighbors, C4.5 [6] and SVM’s. He found that,
except for SVM and Bayes, the optimum number of features
was less than the total number of features. For SVM, using

all the features gave better performance than any of the other
techniques.

The main disadvantage of searching for the best features
is that it requires additional time in the training algorithm. In
the case of information gain and mutual information gain, the
features are ranked by the feature selection method from high
to low, which is linear in the number of examples and linear
in the number of features (giving quadratic complexity). Then,
to find the optimum number of features, one must apply the
learning algorithms to different set sizes to find the minimum
error rate. Thus the complexity of the algorithm to find the
optimum number of features is at least quadratic times the
complexity of the learning algorithm. It would be far better if
the learning machine itself either made the feature selection
automatically or used all the features. C4.5 has the former
characteristic while SVM’s have the latter.

C. Performance Criteria

• Recall and Precision: In information retrieval tasks, docu-
ments could be assigned multiple categories. For instance,
a story about the high wages of baseball players could be
categorized as belonging to both the term “financial” and
the term “sports.” When there are multiple categories,
performance measures such as recall and precision [4]
are used

recall
categories found and correct

total categories correct

precision
categories found and correct

total categories found

Since our problem is a two-class classification task, recall
and precision are not needed here.

• Error Rate: Error rate is the typical performance measure
for two-class classification schemes. However, two learn-
ing algorithms can have the same error rate, but the one
which groups the errors near the decision border is the
better one.

• False Alarm and Miss Rate: We define the false alarm
and miss rates as

miss rate
nonspam samples misclassified

total nonspam examples

false alarm rate
spam samples misclassified

total spam examples

The advantage of the false alarm and miss rates is that
that they are a good indicator of whether the errors are
close to the decision border or not. Given two classifiers
with the same error rate, the one with lower false alarm
and miss rates is the better one.

We fix the miss rate and try to find the algorithm that
minimizes the false alarm rate for that fixed miss rate. These
rates will correspond to the error rates averaged using ten-fold
cross validation. In ten-fold cross validation, the entire set of
examples is divided into ten approximately equal sets. Nine
of the ten parts are using for training, one of the ten parts is
used for testing. This is repeated ten times, each time using
another test set. The total misses and false alarms are counted
and divided by ten times the number of test examples. This

1050 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

is more accurate than averaging the ten false alarms and miss
rates.

Recall that that even if an input message is mistakenly
misclassified as spam when it is not, it is still presented to
the user for the ultimate decision.

D. Training and Classification Speed

The e-mail server may be a unit on which many users have
an account. Therefore, the training time must be reasonable
and the classification speed must be fast. Generally, this leaves
out neural networks which take extensive time for training. We
therefore tried the following four algorithms: boosting (using
decision trees), Ripper, Rocchio, and linear SVM’s. The first
two are nonlinear learning algorithms but can be very fast in
execution and the last two are linear.

E. Choice of Learning Algorithms

1) Boosting Algorithms:The boosting algorithms (Fig. 1)
are techniques to combine a number of weak learners to form
an ensemble. The term weak leaner arrives from the PAC
(probably approximately correct) [7], [8] learning community
and indicates that the learning algorithm can learn with error
rate slightly better than 50%. C4.5 classification trees are
candidate weak learners even though their error rates can
be much better than 50%. This version of boosting works
as following: train the first member of the ensemble with

training samples. In order to train the next member of
the ensemble, the probability that a training sample will be
picked to train the second member of the ensemble is adjusted
upwards for “hard” examples and down for “easy” examples.
By hard examples, we mean those examples that the first weak
learner misclassifies.

Each member of the ensemble is subsequently trained on
examples picked from the original training set with their
probabilities adjusted upwards or downwards depending on
whether the previous members of the ensemble classified the
training pattern incorrectly or correctly, respectively.

For our weak learner, we use classification trees built using
a version of C4.5. Because classification trees can build dis-
connected decision regions, they are nonlinear. Classification
trees can be very fast in execution. An advantage of C4.5 is
that features are picked as part of the training algorithm and
therefore there is no need to rank order the features by some
other mechanism (like mutual information) first. C4.5 decision
trees are built by examining a measure related to information
gain and this can be time consuming because it has to be
done multiple times (equal to the number of nodes in a tree).
Boosting has been shown to drive the error rate far below that
of one weak learner. Both the boosting algorithms itself and
the building of decision trees make training long unless there
is a small number of trees in the ensemble. However, there
is no way to predict in advance how many trees should be in
the ensemble.

In Fig. 1 WeakLearn refers in our case to a C4.5 type
algorithm. When the distribution is recalculated, a typical
method of picking a training set for this member of the
ensemble is as follows.

Fig. 1. Boosting algorithm.

Construct line segments of length with total length
and pick numbers at random from that total

length. If the number is from interval , then example is
used as one of the training samples for that round of boosting.
It may be the case that multiple copies of a particular vector
are used in training and no samples of easy training examples
are used.

It is also important to note that in calculating, all the
training examples are used in that calculation even if they
were all not used in training.

2) Support Vector Machines:SVM’s are discussed exten-
sively in this issue. Also see [9]–[11]. The key concepts
we want to use are the following: there are two classes,

, and there are labeled training examples:
where is the dimension-

ality of the vector.
If the two classes are linearly separable, then one can find an

optimal weight vector such that is minimum; and

if

if

DRUCKER et al.: SVM’S FOR SPAM CATEGORIZATION 1051

or equivalently

Training examples that satisfy the equality are termed support
vectors. The support vectors define two hyperplanes, one
that goes through the support vectors of one class and one
goes through the support vectors of the other class. The
distance between the two hyperplanes defines a margin [10]
and this margin is maximized when the norm of the weight
vector is minimum. Vapnik has shown we may perform
this minimization by maximizing the following function with
respect to the variables :

subject to the constraint: where it is assumed there
are training examples, is one of the training vectors, and

represents the dot product. If then is termed a
support vector. For an unknown vector classification then
corresponds to finding

where

and the sum is over thenonzero support vectors (whose’s
are nonzero).

The advantage of the linear representation is thatcan
be calculated after training and classification amounts to
computing the dot product of this optimum weight vector with
the input vector.

For the nonseparable case, training errors are allowed and
we now must minimize

subject to the constraint

is a slack variable and allows training examples to exist
in the region between the two hyperplanes that go through
the support points of the two classes. We can equivalently
minimize but the constraint is now instead
of . Maximizing is quadratic in subject to
constraints and may be solved using quadratic programming
techniques, some of which are particular to SVM’s [12], [13].

The advantage of linear SVM’s is that execution speed
is very fast and there are no parameters to tune except the
constant . We will show that the performance of the SVM
is remarkably independent of the choice ofas long as
is large (over 50). Another advantage of SVM’s is that they
are remarkably intolerant of the relative sizes of the number
of training examples of the two classes. In most learning
algorithms, if there are many more examples of one class
than another, the algorithm will tend to correctly classify the

class with the larger number of examples, thereby driving
down the error rate. Since SVM’s are not directly trying to
minimize the error rate, but trying to separate the patterns in
high dimensional space, the result is that SVM’s are relatively
insensitive to the relative numbers of each class. For instance,
new examples that are far behind the hyperplanes do not
change the support vectors. The possible disadvantages of
SVM’s are that the training time can be very large if there are
large numbers of training examples and execution can be slow
for nonlinear SVM’s, neither of these cases being present here.

3) Ripper: Ripper is a program for inducing classification
rules from a set of examples. Unlike the other algorithms, it
does not need a feature vector. It forms if–then rules which
are disjunctions of conjunctions, e.g.,

A document is considered to be spam if and only if

(word FREE appears in) OR
(word low appears in AND word cost appears in)
OR
.
.
(word !!!! appears in).

Ripper [14] works by adding rules to cover positive exam-
ples and then prunes those rules to form a best fit to a separate
pruning set. The advantages of Ripper are as follows.

• The if–then clauses are easy for humans to understand.
• Ripper is very fast in training and testing.
• Ripper allows users to supply prior knowledge con-

straints.
• Ripper allows values to be nominal, continuous, or set-

valued.
• Ripper is nonlinear.

4) Rocchio: This type of classifier [15], [16] uses normal-
ized TF-IDF representation of the training vectors. A prototype
vector is formed

where indicates the number of documents that are classified
as spam or nonspam. Elements of the prototype vector that are
negative are set to zero and thenis normalized to unit length.
Classification is performed by the dot product of the prototype
vector and the candidate test vector. Those with large positive
dot products are spam and those with large negative values are
nonspam. Unlike any of the algorithms discussed previously,
there is no natural threshold for the dot product. That is, the
algorithm does not tell us for what values above a critical
value of the dot product should we classify the document as
spam. This critical value must be obtained by rank ordering
the outputs of dot products of the prototype vector with all the
training vectors and finding that critical value that minimizes
the training error. We emphasize that the test vectors should
not be used to find that threshold. Similarly, the optimum value
of should not be obtained from the test set. It should be
obtained from the training set and it is thatthat minimizes
the training error. The advantage of Rocchio’s algorithm is
that it is fast in training and testing. The disadvantage is that

1052 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

TABLE I
FOR DATA SET I, FALSE ALARM RATES CORRESPONDING TO A5% MISS RATE. x INDICATES THAT RIPPER WAS UNABLE TO

OBTAIN THE 5% MISS RATE FOR THESE TWO DATA SETS AND THUS NO FALSE ALARM OR ERROR RATES ARE REPORTED

one has to search for the optimum threshold and the optimum
on the training set which takes extra training time and does

not necessarily generalize well to the test set.
Further text categorization methods may be found in [17]

and [18].

III. D ATA SETS

We used two data sets. Data set I was collected by an
AT&T staff member and consists of 850 messages that he
considered spam and 2150 messages that were nonspam. All
e-mail messages consist of a subject and body and the various
algorithms were tried on either the subject alone, the body
alone, or the subject and body together. In addition, a stop list
was either used or not used and all words were converted
to lower case. The 1000 best features in each case were
used (ranked using mutual information). The original feature
entries are TF (term frequency) and could later be converted
to TF-IDF or binary features.

Thus there were six data sets constructed from the original
3000 messages:

• bodnostop—words from the body only without using a
stop list.

• bodstop—words from the body only and the stop list was
used.

• subbodnostop—words from the subject and body without
using a stop list

• subbodstop—words from the subject and body using a
stop list.

• subnostop—words form the subject without using a stop
list.

• substop—words from the subject using a stop list.

Results are shown in Table I. It can therefore be seen that
the smallest error rates are given by using the subject and
body without using a stop list (subbodnostop) and that SVM
should be used with binary features. To put the error rates in
context, it should be noted that the test sample size is 300
and thus a difference of approximately 0.003 can be attributed
to a numerical difference of one error per run of the ten-
fold cross validation error rate estimate. Thus there is not
much difference on subbodnostop between SVM using binary
features and boosting. It should be emphasized that the spam
filter will never actually reject any messages classified as spam.
The use of the false alarm and miss rates is a mechanism to
compare performance.

The second data set was collected from members of the
AT&T technical staff who forwarded their spam and nonspam

TABLE II
ERROR AND FALSE ALARM RATES FOR DATA SET II U SING A

DICTIONARY CONSISTING OF UPPER– AND LOWERCASE WORDS

TABLE III
ERROR AND FALSE ALARM RATES FOR DATA SET II U SING

A DICTIONARY CONSISTING OF LOWERCASE WORDS ONLY

to the authors. Since the spam had already passed through
the AT&T firewall, it would be expected that the spam would
be harder to classify. There were 314 spam and 303 nonspam
messages. Rather than limiting the feature vector to a finite size
we used all words in the messages as long as they occurred in
at least three messages. Furthermore, stemming was not used.
Ripper was unable to achieve either a 5% or 1% miss rate.

This data set had two versions. In Version I (Table II), words
that were all capitals were retained but words that were a
mixture of upper and lower case were translated to lower case.
The rationale for this is that we could conjecture that words
like “FREE” would more likely to occur in spam than words
like “free.” Thus, these two words would be two separate
features in this version of the database. Furthermore the word
“free” if it occurred in the subject at least three times and the
body at least three times would be two separate features. The
net result is that the feature vector of Version I was of size
7458.

Once again, use of binary features is preferred for SVM and
boosting give approximately equal performance if performance
is based on raw error rate. With approximately 60 messages
in the test set, one error corresponds to a numerical difference
of 0.016 67. As pointed out previously, the false alarm rates
give a measure of dispersion of the errors. Therefore, on this
basis although boosting and SVM using binary features are
comparable in error rate performance, SVM is much better in
terms of dispersion of errors.

DRUCKER et al.: SVM’S FOR SPAM CATEGORIZATION 1053

TABLE IV
ERROR, FALSE ALARM, AND MISS RATES FOR DATA SET II U SING

A DICTIONARY CONSISTING OF LOWERCASE WORDS ONLY

In Version II of this data set, all words were converted
to lower case which lowered the dimensionality to 6577.
The results for this data set are shown in Table III. First,
in comparing Tables II and III, we see that there is no
advantage in keeping words that are all upper case. Second,
it appears that once again, it is better to use binary features
with SVM machines. Finally, although boosting has the better
performance in terms of raw error rate, the spread of errors is
better using SVM with binary features.

Operating points other than the false alarm rate due to a
fixed miss rate may be of interest. Therefore, in Table IV,
we present the miss rate due a fixed false alarm rate and
the operating point where the false alarm rates and miss rate
are equal (last column). These results are consistent with the
conclusions reach previously, namely that boosting is superior
in terms of test error rate but that SVM is better in terms of
the spread of errors.

The running times for training and testing have not been
optimized for either boosting machines or SVM’s. However,
since the SVM only has to execute one dot product, it would
be expected to be faster than boosting C4.5 decision trees.
Both have acceptable speeds, in the order of milliseconds for
boosting decision trees and microseconds for SVM. This does
not include the time to parse a message to build up its feature
set. However, there is a remarkable difference in training time
for trees against that of SVM’s. In our research version of these
algorithms, boosting trees take hours to train and SVM’s, in
the order of minutes. The average tree size for this database is
approximately 11 trees which take inordinately long to build.
Thus based on a combination of training time and performance,
SVM’s are superior.

There are two reasons we believe that the training time for
SVM’s with binary features can be reduced. The first is that the
vectors are binary and the second is that the feature vectors are
sparse (typically only 4% of a vector is nonzero). This allows
the dot product in the SVM optimization to be replaced with
faster nonmultiplicative routines.

IV. PERFORMANCE AS A FUNCTION OF UPPERBOUND

The upper bound on affects performance for the cases
where the training data is not separable by a linear SVM. In
general there is an optimum value of this constant. However,
this best value of cannot be obtained be examining the
training data and it is unfair to do so by examining the test data.
Only by having a third set of data, a validation set, would it be

TABLE V
ERROR AND FALSE ALARM RATES AS A FUNCTION OF THE UPPER

BOUND C FOR BINARY DATA USING LOWERCASE WORDS ONLY

TABLE VI
ERROR AND FALSE ALARM RATES AS A FUNCTION OF THE UPPER

BOUND C FOR TF DATA USING LOWERCASE WORDS ONLY

possible to optimize for . In that case, one would maximize
using the training set, and then find the performance on

the validation set. Then one would pick anotherand repeat
until the performance on the validation set is optimum. One
could then use the test set to find the final performance. Even
if we had the luxury of using a validation set, this iterative
process would take took long.

However, it is illustrative to see what happens if we tune
using the test data (Tables V and VI). We see that as

is decreased, the number of support vectors increases and the
number of the support vectors that have maximumincreases.
However, for the binary case, the performance degrades while
for the TF features case, the performance improves and then
degrades as is lowered. The results seem to indicate that
one can obtain almost equivalent performance by using the
correct on the TF formatted data. However, in that case
we must spend time searching for that optimum, while for the
binary features, that is not the case. Furthermore, there is a
wide variation in that gives equivalent performance on the
binary data.

V. CONCLUSIONS

Based on examining a number of data sets, different feature
representation, and different learning algorithms, we come to
the following conclusions.

1) For the best case (all words converted to lower case),
SVM’s (using binary features) and boosting (using TF
features) are the two best candidates. Boosting has a
lower error rate but the dispersion of errors is better
using SVM’s.

1054 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

2) In a choice of between using a stop list and not using a
stop list, it is preferable that a stop list not be used.

3) Based on a review of the literature, all the features
should be used rather than a subset. The literature seems
to indicate that there is an optimum set of features that
depends on both the data and the algorithm. However,
searching for the best features takes an unacceptable
period of time. Boosting using C4.5 decision trees
implicitly uses a choice of best features as part of the
algorithm and SVM performance does not degrade if
too many features are used.

4) Training time using boosting decision trees is inordi-
nately long.

It should be remembered that these performance figures are
based on data sets collected from different individuals. When
an individual marks his or her own e-mail, then the from field
of the message can be used. This can improve the accuracy in
at least two ways: the user can generate a list of acceptable
senders that is always noted as nonspam no matter what the
subject and body contents. Furthermore, return e-mail that is a
response to a user query will always be accepted as nonspam.

REFERENCES

[1] W. W. Cohen, “Learning rules that classify e-mail,” inProc. 1996 AAAI
Spring Symp. Inform. Access.

[2] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, “A Bayesian
approach to filtering junk e-mail,” inAAAI’98 Wkshp. Learning for Text
Categorization,Madison, WI, July 27, 1998.

[3] L. Faith Cranor and B. H. LaMacchia, “Spam!,”Commun.
ACM, vol 41, no. 8, pp. 74–83, Aug. 1998; also see
http:///www.research.att.com/lorrie/pubs

[4] Y. Yang and J. O. Pedersen, “A comparative study of feature selection
in text categorization,” inProc. 14th Int. Conf. Machine Learning,1997.

[5] T. Joachims, “Text categorization with support vector machine: Learning
with many relevant features,” inEuropean Conf. Machine Learning,
1998.

[6] C. Ross Quinlin,C4.5: Programs for Machine Learning.San Mateo,
CA: Morgan Kaufmann, 1988.

[7] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in Machine Learning: Proc. 13th Int. Conf.San Mateo,
CA: Morgan Kaufmann, 1996, pp. 148–156.

[8] , “Game theory, on-line prediction, and boosting,” inProc. 9th
Annu. Conf. Comput. Learning Theory,1996, pp. 325–332.

[9] V. Vapnik, Estimation of Dependencies Based on Empirical Data.New
York: Springer-Verlag, 1992.

[10] , The Nature of Statistical Learning Theory.New York:
Springer-Verlag, 1995.

[11] H. Drucker, C. J. C. Burges, L. Kauffman, A. Smola, and V. Vapnik,
“Support vector regression machines,” inNeural Inform. Processing
Syst. 9,M. C. Mozer, J. I. Joradn, and T. Petsche, Eds. Cambridge,
MA: MIT Press, 1997, pp. 155–161.

[12] J. C. Platt, “Sequential minimal optimization: A fast algorithm for train-
ing support vector machines,” inAdvances in Kernel Method: Support
Vector Learning,Scholkopf, Burges, and Smola, Eds. Cambridge, MA:
MIT Press, 1998, pp. 185–208.

[13] E. Osuna, R. Freund, and F. Girosi, “Improved training algorithm for
support vector machines,” inProc. IEEE NNSP’97,1997.

[14] W. W. Cohen, “Fast effective rule induction,” inProc. 12th Int. Conf.
Machine Learning. San Mateo, CA: Morgan Kaufmann, 1995, pp.
115–123.

[15] R. E. Schapire, Y. Singer, and A. Singhal, “Boosting and Rocchio
applied to text filtering,” inProc. 21st Annu. Int. Conf. Inform. Retrieval,
SIGIR, 1998.

[16] T. Joachims, “A probabilistic analysis of the Rocchio algorithm with
TFIDF for text categorization,” inProc. 14th Int. Conf. Machine Learn-
ing, D. Fisher, Ed. San Mateo, CA: Morgan Kaufman, 1997.

[17] W. W. Cohen and Y. Singer, “Context-sensitive learning methods for
text categorization,” inProc. 19th Annu. Int. ACM SIGIR Conf. Res.
Development Inform. Retrieval,1986, pp. 307–315.

[18] D. D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka, “Training
algorithms for linear text classifiers,” inProc. 19th Annu. Int. ACM
SIGIR Conf. Res. Development Inform. Retrieval,H.-P. Frei, D. Harman,
P. Schauble, and R. Wilkinson, Eds. New York: ACM, 1996, pp.
298–306.

Harris Drucker (S’67–M’68–SM’87) received the
Ph.D. degree in electrical engineering from the
University of Pennsylvania, Philadelphia, in 1967.

He is currently Professor of Electronic Engineer-
ing at Monmouth University, West Long Branch,
NJ. He has consulted for AT&T, Lucent Technolo-
gies, and Bell Laboratories in machine learning. He
is coauthor of the first paper that showed a practical
implementation of a boosting algorithm, published
in 1993. His implementation of boosting algorithms
using neural networks and classification trees are

present in many commercial check readers.

Donghui Wu (S’99) received the B.S. degree in
1989 from Nanjing Univeristy, China, and the M.S.
degree in 1997 from Rensselear Phlytechnic Insti-
tute, Troy, NY.

He was a Research and Development Software
Engineer at Nanjing Research Institute of Electrical
Engineering, China, from 1989 to 1994, where he
worked on decision support systems, management
information systems, and scientific computing. His
current research interests include data mining, ma-
chine learning, statistical learning, support vector

machines, and operation research.

Vladimir N. Vapnik , for a photograph and biography, see this issue, p. 999.

