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Abstract
Learning general functional dependencies between arbitrary input and output spaces is one of the
key challenges in computational intelligence. While recentprogress in machine learning has mainly
focused on designing flexible and powerful input representations, this paper addresses the comple-
mentary issue of designing classification algorithms that can deal with more complex outputs, such
as trees, sequences, or sets. More generally, we consider problems involving multiple dependent
output variables, structured output spaces, and classification problems with class attributes. In order
to accomplish this, we propose to appropriately generalizethe well-known notion of a separation
margin and derive a corresponding maximum-margin formulation. While this leads to a quadratic
program with a potentially prohibitive, i.e. exponential,number of constraints, we present a cut-
ting plane algorithm that solves the optimization problem in polynomial time for a large class of
problems. The proposed method has important applications in areas such as computational biology,
natural language processing, information retrieval/extraction, and optical character recognition. Ex-
periments from various domains involving different types of output spaces emphasize the breadth
and generality of our approach.

1. Introduction

This paper deals with the general problem of learning a mapping from inputvectors or patterns
x ∈ X to discrete response variablesy ∈ Y , based on a training sample of input-output pairs
(x1,y1), . . . ,(xn,yn) ∈ X ×Y drawn from some fixed but unknown probability distribution. Un-
like multiclass classification, where the output space consists of an arbitraryfinite set of labels or
class identifiers,Y = {1, ...,K}, or regression, whereY = R and the response variable is a scalar,
we consider the case where elements ofY arestructured objectssuch as sequences, strings, trees,
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lattices, or graphs. Such problems arise in a variety of applications, ranging from multilabel clas-
sification and classification with class taxonomies, to label sequence learning, sequence alignment
learning, and supervised grammar learning, to name just a few. More generally, these problems
fall into two generic cases: first, problems where classes themselves can be characterized by certain
class-specific attributes and learning should occur across classes as much as across patterns; second,
problems wherey represents a macro-label, i.e. describes aconfigurationover components or state
variablesy = (y1, . . . ,yT), with possible dependencies between these state variables.

We approach these problems by generalizing large margin methods, more specifically multiclass
support vector machines (SVMs) (Weston and Watkins, 1998; Crammer and Singer, 2001), to the
broader problem of learning structured responses. The naive approach of treating each structure as a
separate class is often intractable, since it leads to a multiclass problem with a very large number of
classes. We overcome this problem by specifying discriminant functions that exploit the structure
and dependencies withinY . In that respect our approach follows the work of Collins (2002) on
perceptron learning with a similar class of discriminant functions. However,the maximum-margin
algorithm we propose has advantages in terms of accuracy and tunability to specific loss functions.
A maximum-margin algorithm has also been proposed by Collins and Duffy (2002a) in the context
of natural language processing. However, it depends on the size of the output space, therefore it
requires some external process to enumerate a small number of candidate outputsy for a given
input x. The same is true also for other ranking algorithms (Cohen et al., 1999; Herbrich et al.,
2000; Schapire and Singer, 2000; Crammer and Singer, 2002; Joachims, 2002). In contrast, we
have proposed an efficient algorithm (Hofmann et al., 2002; Altun et al., 2003; Joachims, 2003)
even in the case of very large output spaces, that takes advantage of the sparseness of the maximum-
margin solution.

A different maximum-margin algorithm that can deal with very large output sets, maximum
margin Markov networks, has been independently proposed by Taskaret al. (2004a). The structure
of the output is modeled by a Markov network, and by employing a probabilistic interpretation of the
dual formulation of the problem, Taskar et al. (2004a) propose a reparameterization of the problem,
that leads to an efficient algorithm, as well as generalization bounds that donot depend on the size
of the output space. The proposed reparameterization, however, assumes that the loss function can
be decomposed in the the same fashion as the feature map, thus does not support arbitrary loss
functions that may be appropriate for specific applications.

On the surface our approach is related to the kernel dependency estimation approach described
in Weston et al. (2003). There, however, separate kernel functionsare defined for the input and
output space, with the idea to encode a priori knowledge about the similarity or loss function in
output space. In particular, this assumes that the loss is input dependentand known beforehand.
More specifically, in Weston et al. (2003) a kernel PCA is used in the feature space defined overy to
reduce the problem to a (small) number of independent regression problems. The latter corresponds
to an unsupervised embedding (followed by dimension reduction) performed in the output space
and no information about the patternsx is utilized in defining this low-dimensional representation.
In contrast, the key idea in our approach is not primarily to define more complex functions, but to
deal with more complex output spaces by extracting combined features overinputs and outputs.

For a large class of structured models, we propose a novel SVM algorithmthat allows us to
learn mappings involving complex structures in polynomial time despite an exponential (or infi-
nite) number of possible output values. In addition to respective theoretical results, we empirically
evaluate our approach for a number of specific problem instantiations: classification with class tax-
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Figure 1: Illustration of natural language parsing model.

onomies, label sequence learning, sequence alignment, and natural language parsing. This paper
extends Tsochantaridis et al. (2004) with additional theoretical and empirical results.

The rest of the paper is organized as follows: Section 2 presents the general framework of
large margin learning over structured output spaces using representations of input-output pairs via
joint feature maps. Section 3 describes and analyzes a generic algorithm for solving the resulting
optimization problems. Sections 4 and 5 discuss numerous important special cases and experimental
results, respectively.

2. Large Margin Learning with Joint Feature Maps

We are interested in the general problem of learning functionsf : X → Y between input spaces
X and arbitrary discrete output spacesY based on a training sample of input-output pairs. As
an illustrating example, which we will continue to use as a prototypical applicationin the sequel,
consider the case of natural language parsing, where the functionf maps a given sentencex to a
parse treey. This is depicted graphically in Figure 1.

The approach we pursue is to learn adiscriminant function F: X ×Y → R over input-output
pairs from which we can derive a prediction by maximizingF over the response variable for a
specific given inputx. Hence, the general form of our hypothesesf is

f (x;w) = argmax
y∈Y

F(x,y;w) , (1)

wherew denotes a parameter vector. It might be useful to think ofF as a compatibility function
that measures how compatible pairs(x,y) are, or, alternatively,−F can be thought of as aw-
parameterized family of cost functions, which we try to design in such a way that the minimum of
F(x, ·;w) is at the desired outputy for inputsx of interest.

Throughout this paper, we assumeF to be linear in somecombined feature representationof
inputs and outputsΨ(x,y), i.e.

F(x,y;w) = 〈w,Ψ(x,y)〉 . (2)

The specific form ofΨ depends on the nature of the problem and special cases will be discussed
subsequently. However, whenever possible we will develop learning algorithms and theoretical
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results for the general case. Since we want to exploit the advantages ofkernel-based method, we will
pay special attention to cases where the inner product in the joint representation can be efficiently
computed via a joint kernel functionJ((x,y),(x′,y′)) = 〈Ψ(x,y),Ψ(x′,y′)〉.

Using again natural language parsing as an illustrative example, we can choseF such that we
get a model that is isomorphic to a probabilistic context free grammar (PCFG) (cf. Manning and
Schuetze, 1999). Each node in a parse treey for a sentencex corresponds to grammar ruleg j , which
in turn has a scorew j . All valid parse treesy (i.e. trees with a designated start symbolSas the root
and the words in the sentencex as the leaves) for a sentencex are scored by the sum of thew j of
their nodes. This score can thus be written in the form of Equation (2), withΨ(x,y) denoting a
histogram vector of counts (how often each grammar ruleg j occurs in the treey). f (x;w) can be
efficiently computed by finding the structurey∈Y that maximizesF(x,y;w) via the CKY algorithm
(Younger, 1967; Manning and Schuetze, 1999).

2.1 Loss Functions and Risk Minimization

The standard zero-one loss function typically used in classification is not appropriate for most kinds
of structured responses. For example, in natural language parsing, aparse tree that is almost correct
and differs from the correct parse in only one or a few nodes should be treated differently from
a parse tree that is completely different. Typically, the correctness of a predicted parse tree is
measured by itsF1 score (see e.g. Johnson, 1998), the harmonic mean of precision and recall as
calculated based on the overlap of nodes between the trees.

In order to quantify the accuracy of a prediction, we will consider learning with arbitrary loss
functions4 : Y ×Y → R. Here4(y, ŷ) quantifies the loss associated with a predictionŷ, if the
true output value isy. It is usually sufficient to restrict attention to zero diagonal loss functionswith
4(y,y) = 0 and for which furthermore4(y,y′) > 0 for y 6= y′.1 Moreover, we assume the loss is
bounded for every given target valuey∗, i.e. maxy{4(y∗,y)} exists.

We investigate a supervised learning scenario, where input-output pairs(x,y) are generated
according to some fixed distributionP(x,y) and the goal is to find a functionf in a given hypothesis
class such that the risk,

R
4

P ( f ) =
Z

X×Y
4(y, f (x))dP(x,y) ,

is minimized. Of course,P is unknown and following the supervised learning paradigm, we assume
that a finite training set of pairsS= {(xi ,yi) ∈ X ×Y : i = 1, . . . ,n} generated i.i.d. according toP
is given. The performance of a functionf on the training sampleS is described by the empirical
risk,

R
4

S ( f ) =
1
n

n

∑
i=1

4(yi , f (xi)) ,

which is simply the expected loss under the empirical distribution induced byS. Forw-parameterized
hypothesis classes, we will also writeR

4
P (w)≡ R

4
P ( f (·;w)) and similarly for the empirical risk.

1. Cases where4(y,y′) = 0 for y 6= y′ can be dealt with, but lead to additional technical overhead, which we chose to
avoid for the sake of clarity.
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2.2 Margin Maximization

We consider various scenarios for the generalization of support vector machine learning over struc-
tured outputs. We start with the simple case of hard-margin SVMs, followed bysoft-margin SVMs,
and finally we propose two approaches for the case of loss-sensitive SVMs, which is the most gen-
eral case and subsumes the former ones.

2.2.1 SEPARABLE CASE

First, we consider the case where there exists a functionf parameterized byw such that the empirical
risk is zero. The condition of zero training error can then be compactly written as a set of nonlinear
constraints

∀i ∈ {1, . . . ,n} : max
y∈Y \yi

{〈w,Ψ(xi ,y)〉} ≤ 〈w,Ψ(xi ,yi)〉 . (3)

Notice that this holds independently of the loss functions, since we have assumed that4(y,y) = 0
and4(y,y′) > 0 for y 6= y′.

Every one of the nonlinear inequalities in Equation (3) can be equivalently replaced by|Y |−1
linear inequalities, resulting in a total ofn|Y |−n linear constraints,

∀i ∈ {1, . . . ,n}, ∀y ∈ Y \yi : 〈w,Ψ(xi ,yi)−Ψ(xi ,y)〉 ≥ 0. (4)

As we will often encounter terms involving feature vector differences of the type appearing in
Equation (4), we defineδΨi(y)≡Ψ(xi ,yi)−Ψ(xi ,y) so that the constraints can be more compactly
written as〈w,δΨi(y)〉 ≥ 0.

If the set of inequalities in Equation (4) is feasible, there will typically be more than one solu-
tion w∗. To specify a unique solution, we propose to select thew for which the separation margin
γ, i.e. the minimal differences between the score of the correct labelyi and the closest runner-up
ŷ(w) = argmaxy 6=yi

〈w,Ψ(xi ,y)〉, is maximal. This generalizes the maximum-margin principle em-
ployed in support vector machines (Vapnik, 1998) to the more general case considered in this paper.
Restricting theL2 norm ofw to make the problem well-posed leads to the following optimization
problem:

max
γ,w:‖w‖=1

γ

s.t.∀i ∈ {1, . . . ,n}, ∀y ∈ Y \yi : 〈w,δΨi(y)〉 ≥ γ .

This problem can be equivalently expressed as a convex quadratic program in standard form

SVM0 : min
w

1
2
‖w‖2 (5)

s.t.∀i, ∀y ∈ Y \yi : 〈w,δΨi(y)〉 ≥ 1. (6)

2.2.2 SOFT-MARGIN MAXIMIZATION

To allow errors in the training set, we introduce slack variables and propose to optimize a soft-
margin criterion. As in the case of multiclass SVMs, there are at least two waysof introducing slack
variables. One may introduce a single slack variableξi for violations of thenonlinearconstraints
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(i.e. every instancexi) (Crammer and Singer, 2001) or one may penalize margin violations for
every linear constraint (i.e. every instancexi and outputy 6= yi) (Weston and Watkins, 1998; Har-
Peled et al., 2002). Since the former will result in a (tighter) upper bound on the empirical risk
(cf. Proposition 1) and offers some advantages in the proposed optimization scheme (cf. Section 3),
we have focused on this formulation. Adding a penalty term that is linear in the slack variables to
the objective, results in the quadratic program

SVM1 : min
w,ξξξ

1
2
‖w‖2 +

C
n

n

∑
i=1

ξi (7)

s.t.∀i, ∀y ∈ Y \yi : 〈w,δΨi(y)〉 ≥ 1−ξi , ξi ≥ 0.

Alternatively, we can also penalize margin violations by a quadratic term leading to the following
optimization problem:

SVM2 : min
w,ξξξ

1
2
‖w‖2 +

C
2n

n

∑
i=1

ξ2
i

s.t.∀i, ∀y ∈ Y \yi : 〈w,δΨi(y)〉 ≥ 1−ξi .

In both cases,C > 0 is a constant that controls the trade-off between training error minimization and
margin maximization.

2.2.3 GENERAL LOSSFUNCTIONS: SLACK RE-SCALING

The first approach we propose for the case of arbitrary loss functions, is to re-scale the slack vari-
ables according to the loss incurred in each of the linear constraints. Intuitively, violating a margin
constraint involving ay 6= yi with high loss4(yi ,y) should be penalized more severely than a vi-
olation involving an output value with smaller loss. This can be accomplished by multiplying the
margin violation by the loss, or equivalently, by scaling the slack variable with the inverse loss,
which yields

SVM4s
1 : min

w,ξξξ

1
2
‖w‖2 +

C
n

n

∑
i=1

ξi

s.t.∀i, ∀y ∈ Y \yi : 〈w,δΨi(y)〉 ≥ 1− ξi

4(yi ,y)
.

A justification for this formulation is given by the subsequent proposition.

Proposition 1 Denote byξ∗(w) the optimal solution of the slack variables in SVM4s
1 for a given

weight vectorw. Then1
n ∑n

i=1 ξ∗i is an upper bound on the empirical riskR
4

S (w).

Proof Notice first thatξ∗i = max{0,maxy 6=yi{4(yi ,y)(1−〈w,δΨi(y)〉)}}.
Case 1: If f(xi ;w) = yi , thenξ∗i ≥ 0 =4(yi , f (xi ;w)) and the loss is trivially upper bounded.

Case 2: If ŷ ≡ f (xi ;w) 6= yi , then 〈w,δΨi(ŷ)〉 ≤ 0 and thus ξ∗i
4(yi ,y) ≥ 1 which is equivalent to

ξ∗i ≥4(yi ,y).
Since the bound holds for every training instance, it also holds for the average.

The optimization problem SVM4s
2 can be derived analogously, where4(yi ,y) is replaced by

√

4(yi ,y)
in order to obtain an upper bound on the empirical risk.
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2.2.4 GENERAL LOSSFUNCTIONS: MARGIN RE-SCALING

In addition to thisslack re-scalingapproach, a second way to include loss functions is to re-scale
the margin as proposed by Taskar et al. (2004a) for the special case of the Hamming loss. It is
straightforward to generalize this method to general loss functions. The margin constraints in this
setting take the following form:

∀i, ∀y ∈ Y : 〈w,δΨi(y)〉 ≥ 4(yi ,y)−ξi . (8)

The set of constraints in Equation (8) combined with the objective in Equation (7) yield an opti-
mization problem SVM4m

1 which also results in an upper bound onR
4

S (w∗).

Proposition 2 Denote byξ∗(w) the optimal solution of the slack variables in SVM4m
1 for a given

weight vectorw. Then1
n ∑n

i=1 ξ∗i is an upper bound on the empirical riskR
4

S (w).

Proof The essential observation is thatξ∗i = max{0,maxy{4(yi ,y)−〈w,δΨi(y)〉}}which is guar-
anteed to upper bound4(yi ,y) for y such that〈w,δΨi(y)〉 ≤ 0.

The optimization problem SVM4m
2 can be derived analogously, where4(yi ,y) is replaced by

√

4(yi ,y).

2.2.5 GENERAL LOSSFUNCTIONS: DISCUSSION

Let us discuss some of the advantages and disadvantages of the two formulations presented. An
appealing property of the slack re-scaling approach is its scaling invariance.

Proposition 3 Suppose4′ ≡ η4 with η > 0, i.e.4′ is a scaled version of the original loss4.
Then by re-scaling C′ =C/η, the optimization problems SVM4s

1 (C) and SVM4
′s

1 (C′) are equivalent
as far asw is concerned. In particular the optimal weight vectorw∗ is the same in both cases.

Proof First note that eachw is feasible for SVM4s
1 and SVM4

′s
1 in the sense that we can find slack

variables such that all the constraints are satisfied. In fact we can chosethem optimally and define
H(w) ≡ 1

2‖w‖2 + C
n ∑i ξ∗i (w) and H′(w) ≡ 1

2‖w‖2 + C′
n ∑i ξ∗i

′(w), whereξ∗ and ξ∗′ refer to the

optimal slacks in SVM4s
1 and SVM4

′s
1 , respectively, for givenw. It is easy to see that they are given

by
ξ∗i = max{0,max

y 6=yi

{4(yi ,y)(1−〈w,δΨi(y)〉)}}

and
ξ∗i
′ = max{0,max

y 6=yi

{η4(yi ,y)(1−〈w,δΨi(y)〉)}},

respectively. Pullingη out of the max, one gets thatξ∗i
′ = ηξ∗i and thus∑i ξ∗i =Cη∑i ξ∗i

′ =C′∑i ξ∗i
′.

From that it follows immediately that H= H ′.

In contrast, the margin re-scaling formulation is not invariant under scalingof the loss function.
One needs, for example, to re-scale the feature mapΨ by a corresponding scale factor as well. This
seems to indicate that one has to calibrate the scaling of the loss and the scaling of the feature map
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more carefully in the SVM4m
1 formulation. The SVM4s

1 formulation on the other hand, represents
the loss scale explicitly in terms of the constantC.

A second disadvantage of the margin scaling approach is that it potentially gives significant
weight to output valuesy ∈ Y that are not even close to being confusable with the target values
yi , because every increase in the loss increases the required margin. If one interpretsF(xi ,yi ;w)−
F(xi ,y;w) as a log odds ratio of an exponential family model (Smola and Hofmann, 2003), then
the margin constraints may be dominated by incorrect valuesy that are exponentially less likely
than the target value. To be more precise, notice that in the SVM4s

1 formulation, the penalty
part only depends ony for which 〈w,δΨi(y)〉 ≤ 1. These are output valuesy that all receive
a relatively “high” (i.e. 1-close to the optimum) value ofF(x,y;w). However, in SVM4m

1 , ξ∗i
has to majorize4(yi ,y)− 〈w,δΨi(y)〉 for all y. This meansξ∗i can be dominated by a value
ŷ = argmaxy {4(yi ,y)−〈w,δΨi(y)〉} which has a large loss, but whose value ofF(x,y;w) comes
nowhere near the optimal value ofF .

3. Support Vector Algorithm for Structured Output Spaces

So far we have not discussed how to solve the optimization problems associated with the various
formulations SVM0 , SVM1 , SVM2 , SVM4s

1 , SVM4m
1 , SVM4s

2 , and SVM4m
2 . The key challenge

is that the size of each of these problems can be immense, since we have to deal with n|Y | − n
margin inequalities. In many cases,|Y | may be extremely large, in particular, ifY is a product
space of some sort (e.g. in grammar learning, label sequence learning, etc.), its cardinality may
grow exponentially in the description length ofy. This makes standard quadratic programming
solvers unsuitable for this type of problem.

In the following, we will propose an algorithm that exploits the special structure of the maximum-
margin problem, so that only a much smaller subset of constraints needs to be explicitly examined.
We will show that the algorithm can compute arbitrary close approximations to allSVM optimiza-
tion problems posed in this paper in polynomial time for a large range of structures and loss func-
tions. Since the algorithm operates on the dual program, we will first derive the Wolfe dual for the
various soft margin formulations.

3.1 Dual Programs

We will denote byα(iy) the Lagrange multiplier enforcing the margin constraint for labely 6= yi

and example(xi ,yi). Using standard Lagragian duality techniques, one arrives at the following dual
quadratic program (QP).

Proposition 4 The objective of the dual problem of SVM0 from Equation(6) is given by

Θ(α)≡−1
2 ∑

i,y 6=yi

∑
j,ȳ 6=y j

α(iy)α( j ȳ)J(iy)( j ȳ) + ∑
i,y 6=yi

α(iy),

where J(iy)( j ȳ) =
〈

δΨi(y),δΨ j(ȳ)
〉

. The dual QP can be formulated as

α∗ = argmax
ααα

Θ(α), s.t. α≥ 0.
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Proof (sketch) Forming the Lagrangian function and eliminating the primal variables w by using
the optimality condition

w∗(α) = ∑
i

∑
y 6=yi

α(iy)δΨi(y)

directly leads to the above dual program.

Notice that theJ function that generates the quadratic from in the dual objective can be computed
from inner products involving values ofΨ, which is a simple consequence of the linearity of the
inner product.J can hence be alternatively computed from a joint kernel function overX ×Y .

In the non-separable case, linear penalties introduce additional constraints, whereas the squared
penalties modify the kernel function.

Proposition 5 The dual problem to SVM1 is given by the program in Proposition 4 with additional
constraints

∑
y 6=yi

α(iy) ≤
C
n

, ∀i = 1, . . . ,n.

In the following, we denote withδ(a,b) the function that returns 1 ifa = b, and 0 otherwise.

Proposition 6 The dual problem to SVM2 is given by the program in Proposition 4 with modified
kernel function

J(iy)( j ȳ) ≡
〈

δΨi(y),δΨ j(ȳ)
〉

+δ(i, j)
n
C

.

In the non-separable case with slack re-scaling, the loss function is introduced in the constraints for
linear penalties and in the kernel function for quadratic penalties.

Proposition 7 The dual problem to SVM4s
1 is given by the program in Proposition 4 with additional

constraints

∑
y 6=yi

α(iy)

4(yi ,y)
≤ C

n
, ∀i = 1, . . . ,n.

Proposition 8 The dual problem to SVM4s
2 is given by the program in Proposition 4 with modified

kernel function

J(iy)( j ȳ) =
〈

δΨi(y),δΨ j(ȳ)
〉

+δ(i, j)
n

C
√

4(yi ,y)
√

4(y j , ȳ)
.

In the non-separable case with margin re-scaling, the loss function is introduced in the linear part of
the objective function

Proposition 9 The dual problems to SVM4m
1 and SVM4m

2 are given by the dual problems to SVM1 and
SVM2 with the linear part of the objective replaced by

∑
i,y 6=yi

α(iy)4(yi ,y) and ∑
i,y 6=yi

α(iy)

√

4(yi ,y)

respectively.
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3.2 Algorithm

The algorithm we propose aims at finding a small set of constraints from the full-sized optimization
problem that ensures a sufficiently accurate solution. More precisely, we will construct a nested
sequence of successively tighter relaxations of the original problem using a cutting plane method
(Kelley, 1960), implemented as a variable selection approach in the dual formulation. Similar to
its use with the Ellipsoid method (Grötschel et al., 1981; Karmarkar, 1984), we merely require a
separation oracle that delivers a constraint that is violated by the current solution. We will later
show that this is a valid strategy, since there always exists a polynomially sizedsubset of constraints
so that the solution of the relaxed problem defined by this subset fulfills all constraints from the full
optimization problem up to a precision ofε. This means, the remaining—potentially exponentially
many—constraints are guaranteed to be violated by no more thanε, without the need for explicitly
adding these constraints to the optimization problem.

We will base the optimization on the dual program formulation which has two important advan-
tages over the primal QP. First, it only depends on inner products in the jointfeature space defined
by Ψ, hence allowing the use of kernel functions. Second, the constraint matrix of the dual program
supports a natural problem decomposition. More specifically, notice that the constraint matrix de-
rived for the SVM0 and the SVM∗2 variants is diagonal, since the non-negativity constraints involve
only a singleα-variable at a time, whereas in the SVM∗1 case, dual variables are coupled, but the
couplings only occur within a block of variables associated with the same training instance. Hence,
the constraint matrix is (at least) block diagonal in all cases, where each block corresponds to a
specific training instance.

Pseudo-code of the algorithm is depicted in Algorithm 1. The algorithm maintainsworking
setsSi for each training instance to keep track of the selected constraints which define the current
relaxation. Iterating through the training examples(xi ,yi), the algorithm proceeds by finding the
(potentially) “most violated” constraint forxi , involving some output valuêy. If the (appropriately
scaled) margin violation of this constraint exceeds the current value ofξi by more thanε, the dual
variable corresponding tôy is added to the working set. This variable selection process in the dual
program corresponds to a successive strengthening of the primal problem by a cutting plane that
cuts off the current primal solution from the feasible set. The chosen cutting plane corresponds to
the constraint that determines the lowest feasible value forξi . Once a constraint has been added,
the solution is re-computed with respect toS. Alternatively, we have also devised a scheme where
the optimization is restricted toSi only, and where optimization over the fullS is performed much
less frequently. This can be beneficial due to the block diagonal structure of the constraint matrix,
which implies that variablesα( jy) with j 6= i, y ∈ Sj can simply be “frozen” at their current values.
Notice that all variables not included in their respective working set are implicitly treated as 0. The
algorithm stops, if no constraint is violated by more thanε. With respect to the optimization in step
10, we would like to point out that in some applications the constraint selection instep 6 may be
more expensive than solving the relaxed QP. Hence it may be advantageous to solve the full relaxed
QP in every iteration, instead of just optimizing over a subspace of the dual variables.

The presented algorithm is implemented in the software packageSVMstruct, available on the web
athttp://svmlight.joachims.org. Note that the SVM optimization problems from iteration to
iteration differ only by a single constraint. We therefore restart the SVM optimizer from the current
solution, which greatly reduces the runtime.
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Algorithm 1 Algorithm for solving SVM0 and the loss re-scaling formulations SVM∗1 and SVM∗2 .

1: Input: (x1,y1), . . . ,(xn,yn), C, ε
2: Si ← /0 for all i = 1, . . . ,n
3: repeat
4: for i = 1, . . . ,n do

5: /* prepare cost function for optimization */
set up cost function

H(y)≡































1−〈δΨi(y),w〉 (SVM0 )

(1−〈δΨi(y),w〉)4(yi ,y) (SVM4s
1 )

4(yi ,y)−〈δΨi(y),w〉 (SVM4m
1 )

(1−〈δΨi(y),w〉)
√

4(yi ,y) (SVM4s
2 )

√

4(yi ,y)−〈δΨi(y),w〉 (SVM4m
2 )

wherew≡ ∑ j ∑y′∈Sj
α( jy′)δΨ j(y′).

6: /* find cutting plane */
computeŷ = argmaxy∈Y H(y)

7: /* determine value of current slack variable */
computeξi = max{0,maxy∈Si H(y)}

8: if H(ŷ) > ξi + ε then

9: /* add constraint to the working set */
Si ← Si ∪{ŷ}

10a: /* Variant (a): perform full optimization */
αS← optimize the dual of SVM0 , SVM∗1 or SVM∗2 overS, S= ∪iSi .

10b: /* Variant (b): perform subspace ascent */
αSi ← optimize the dual of SVM0 , SVM∗1 or SVM∗2 overSi

12: end if
13: end for
14: until noSi has changed during iteration

A convenient property of both variants of the cutting plane algorithm is that they have a very
general and well-defined interface independent of the choice ofΨ and4. To apply the algorithm,
it is sufficient to implement the feature mappingΨ(x,y) (either explicitly or via a joint kernel
function), the loss function4(yi ,y), as well as the maximization in step 6. All of those, in particular
the constraint/cut selection method, are treated as black boxes. While the modeling of Ψ(x,y)
and4(yi ,y) is typically straightforward, solving the maximization problem for constraint selection
typically requires exploiting the structure ofΨ for output spaces that can not be dealt with by
exhaustive search.
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In the slack re-scaling setting, it turns out that for a given example(xi ,yi) we need to identify
the maximum over

ŷ≡ argmax
y∈Y

{(1−〈w,δΨi(y)〉)4(yi ,y)} .

We will discuss several cases for how to solve this problem in Section 4. Typically, it can be
solved by an appropriate modification of the prediction problem in Equation (1), which recovers
f from F . For example, in the case of grammar learning with theF1 score as the loss function
via4(yi ,y) = (1−F1(yi ,y)), the maximum can be computed using a modified version of the CKY
algorithm. More generally, in cases where4(yi , ·) only takes on a finite number of values, a generic
strategy is a two stage approach, where one first computes the maximum overthosey for which the
loss is constant,4(yi ,y) = const, and then maximizes over the finite number of levels.

In the margin re-scaling setting, one needs to solve the maximization problem

ŷ≡ argmax
y∈Y

{4(yi ,y)−〈w,δΨi(y)〉} . (9)

In cases where the loss function has an additive decomposition that is compatible with the feature
map, one can fold the loss function contribution into the weight vector〈w′,δΨi(y)〉= 〈w,δΨi(y)〉−
4(yi ,y) for somew′. This means the class of cost functions defined byF(x, ·;w) andF(x, ·;w)−
4(y, ·) may actually be identical.

The algorithm for the zero-one loss is a special case of either algorithm. Weneed to identify the
highest scoringy that is incorrect,

ŷ≡ argmax
y 6=yi

{1−〈w,δΨi(y)〉} .

It is therefore sufficient to identify the best solutionŷ = argmaxy∈Y 〈w,Ψ(xi ,y)〉 as well as the
second best solutioñy = argmaxy∈Y \ŷ 〈w,Ψ(xi ,y)〉. The second best solution is necessary to detect
margin violations in cases wherêy = yi , but 〈w,δΨi(ỹ)〉 < 1. This means that for all problems
where we can solve the inference problem in Equation (1) for the top twoy, we can also apply our
learning algorithms with the zero-one loss. In the case of grammar learning, for example, we can
use any existing parser that returns the two highest scoring parse trees.

We will now proceed by analyzing the presented family of algorithms. In particular, we will
show correctness and sparse approximation properties, as well as bounds on the runtime complexity.

3.3 Correctness and Complexity of the Algorithm

What we would like to accomplish first is to obtain a lower bound on the achievable improvement of
the dual objective by selecting a single variableα(iŷ) and adding it to the dual problem (cf. step 10
in Algorithm 1). While this is relatively straightforward when using quadratic penalties, the SVM1
formulation introduces an additional complication in the form of upper boundson non-overlapping
subsets of variables, namely the set of variablesα(iy) in the current working set that correspond to
the same training instance. Hence, we may not be able to answer the above question by optimizing
overα(iy) alone, but rather have to deal with a larger optimization problem over a wholesubspace.
In order to derive useful bounds, it suffices to restrict attention to simpleone-dimensional families
of solutions that are defined by improving an existing solution along a specificdirectionη. Proving
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that one can make sufficient progress along a specific direction, clearlyimplies that one can make at
least that much progress by optimizing over a larger subspace that includes the directionη. A first
step towards executing this idea is the following lemma.

Lemma 10 Let J be a symmetric, positive semi-definite matrix, and define a concave objective inα

Θ(α) =−1
2

α′Jα+ 〈h,α〉 ,

which we assume to be bounded from above. Assume that a solutionαo and an optimization direc-
tion η is given such that〈∇Θ(αo),η〉 > 0. Then optimizingΘ starting fromαo along the chosen
directionη will increase the objective by

max
β>0
{Θ(αo +βη)}−Θ(αo) =

1
2
〈∇Θ(αo),η〉2

η′Jη
> 0.

Proof The difference obtained by a particularβ is given by

δΘ(β)≡ β
[

〈∇Θ(αo),η〉− β
2

η′Jη
]

,

as can be verified by elementary algebra. Solving forβ one arrives at

d
dβ

δΘ = 0 ⇐⇒ β∗ =
〈∇Θ(αo),η〉

η′Jη
.

Notice that this requiresη′Jη > 0. Obviously, the positive semi-definiteness ofJ guaranteesη′Jη≥
0 for anyη. Moreoverη′Jη = 0 together with〈∇Θ(αo),η〉 > 0 would imply thatlimβ→∞ Θ(αo +
βη) = ∞, which is in contradiction with the assumption thatΘ is bounded. Plugging the value for
β∗ back into the above expression forδΘ yields the claim.

Corollary 11 Under the same assumption as in Lemma 10 and for the special case of an optimiza-
tion directionη = er , the objective improves by

δΘ(β∗) =
1

2Jrr

(

∂Θ
∂αr

)2

> 0.

Proof Notice thatη = er implies〈∇Θ,η〉= ∂Θ
∂αr

andη′Jη = Jrr .

Corollary 12 Under the same assumptions as in Lemma 10 and enforcing the constraintβ≤D for
some D> 0, the objective improves by

max
0<β≤D

{Θ(αo +βη)}−Θ(αo) =







〈∇Θ(αo),η〉2
2η′Jη if 〈∇Θ(αo),η〉 ≤ Dη′Jη

D〈∇Θ(αo),η〉− D2

2 η′Jη otherwise
.
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Moreover, the improvement can be upper bounded by

max
0<β≤D

{Θ(αo +βη)}−Θ(αo)≥ 1
2

min

{

D,
〈∇Θ(αo),η〉

η′Jη

}

〈∇Θ(αo),η〉 .

Proof We distinguish two cases of eitherβ∗ ≤ D or β∗ > D. In the first case, we can simple apply
lemma 10 since the additional constraint is inactive and does not change thesolution. In the second
case, the concavity ofΘ implies thatβ = D achieves the maximum ofδΘ over the constrained range.
Plugging in this result forβ∗ into δΘ yields the second case in the claim.

Finally, the bound is obtained by exploiting that in the second case

β∗ > D ⇐⇒ D <
〈∇Θ(αo),η〉

η′Jη
.

Replacing one of the D factors in the D2 term of the second case with this bound yields an upper
bound. The first (exact) case and the bound in the second case can becompactly combined as shown
in the formula of the claim.

Corollary 13 Under the same assumption as in Corollary 12 and for the special case of asingle-
coordinate optimization directionη = er , the objective improves at least by

max
0<β≤D

Θ(αo +βer)−Θ(αo)≥ 1
2

min







D,
∂Θ
∂αr

(αo)

Jrr







∂Θ
∂αr

(αo)

Proof Notice thatη = er implies〈∇Θ,η〉= ∂Θ
∂αr

andη′Jη = Jrr .

We now apply the above lemma and corollaries to the four different SVM formulations, starting
with the somewhat simpler squared penalty case.

Proposition 14 (SVM4s
2 ) For SVM4s

2 step 10 in Algorithm 1 the improvementδΘ of the dual ob-
jective is lower bounded by

δΘ≥ 1
2

ε2

4iR2
i + n

C

, where 4i ≡max
y
{4(yi ,y)} and Ri ≡max

y
{‖δΨi(y)‖} .

Proof Using the notation in Algorithm 1 one can apply Corollary 11 with multi-index r= (iŷ),
h = 1, and J such that

J(iŷ)( jy) = 〈δΨi(ŷ),δΨ j(y)〉+ δ(i, j)n

C
√

4(yi , ŷ)
√

4(yi ,y)
.

Notice that the partial derivative ofΘ with respect toα(iŷ) is given by

∂Θ
∂α(iŷ)

(αo) = 1−∑
j,y

αo
( jy)J(iŷ)( jy) = 1−〈w∗,δΨi(ŷ)〉− ξ∗i

√

4(yi , ŷ)
,
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since the optimality equations for the primal variables yield the identities

w∗ = ∑
j,y

αo
( jy)δΨ j(y), and ξ∗i = ∑

y 6=yi

nαo
(iy)

C
√

4(yi ,y)
.

Now, applying the condition of step 10, namely
√

4(yi , ŷ)(1−〈w∗,δΨi(ŷ)〉) > ξ∗i + ε, leads to the
bound

∂Θ
∂α(iŷ)

(αo)≥ ε
√

4(yi , ŷ)
.

Finally, Jrr = ‖δΨi(ŷ)‖2 + n
C4(yi ,ŷ) and inserting this expression and the previous bound into the

expression from Corollary 11 yields

1
2Jrr

(

∂Θ
∂α(iŷ)

)2

≥ ε2

2
(

4(yi , ŷ)‖δΨi(ŷ)‖2 + n
C

) ≥ ε2

2
(

4iR2
i + n

C

) .

The claim follows by observing that jointly optimizing over a set of variables that includeαr can
only further increase the value of the dual objective.

Proposition 15 (SVM4m
2 ) For SVM4m

2 step 10 in Algorithm 1 the improvementδΘ of the dual
objective is lower bounded by

δΘ≥ 1
2

ε2

R2
i + n

C

, where Ri = max
y
‖δΨi(y)‖ .

Proof By re-definingδΨ̃i(y)≡ δΨi(y)√
4(yi ,y)

we are back to Proposition 14 with

max
y
{4(yi ,y)‖δΨ̃i(y)‖2}= max

y
{‖δΨi(y)‖2}= R2

i ,

since

〈w,δΨi(y)〉 ≥
√

4(yi ,y)−ξi ⇐⇒ 〈w,δΨ̃i(y)〉 ≥ 1− ξi
√

4(yi ,y)
.

Proposition 16 (SVM4s
1 ) For SVM4s

1 step 10 in Algorithm 1 the improvementδΘ of the dual ob-
jective is lower bounded by

δΘ≥min

{

Cε
2n

,
ε2

842
i R2

i

}

where 4i = max
y
{4(yi ,y)} and Ri = max

y
{‖δΨi(y)‖} .

Proof
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Case I:
If the working set does not contain an element(iy), then we can optimize overα(iŷ) under the
constraint thatα(iŷ) ≤4(yi , ŷ)C

n = D. Notice that

∂Θ
∂α(iŷ)

(αo) = 1−〈w∗,δΨi(ŷ)〉> ξ∗i + ε
4(yi , ŷ)

≥ ε
4(yi , ŷ)

,

where the first inequality follows from the pre-condition for selecting(iŷ) and the last one from
ξ∗i ≥ 0. Moreover, notice that J(iŷ)(iŷ) ≤ R2

i . Evoking Corollary 13 with the obvious identifications
yields

δΘ≥ 1
2

min

{

D,
1

Jrr

∂Θ
∂α(iŷ)

(αo)

}

∂Θ
∂α(iŷ)

(αo)

>
1
2

min

{4(yi , ŷ)C
n

,
ε

4(yi , ŷ)R2
i

}

ε
4(yi , ŷ)

= min

{

Cε
2n

,
ε2

2R2
i4(yi , ŷ)2

}

The second term can be further bounded to yield the claim.
Case II:
If there are already active constraints for instancexi in the current working set, i.e. Si 6= /0, then we
may need to reduce dual variablesα(iy) in order to get some slack for increasing the newly added

α(iŷ). We thus investigate search directionsη such thatη(iŷ) = 1, η(iy) = − α(iy)

4(yi ,ŷ)
n
C ≤ 0 for y ∈ Si ,

andη( jy′) = 0 in all other cases. For suchη, we guarantee thatαo +βη≥ 0 sinceβ≤ C
n4(yi , ŷ).

In finding a suitable direction to derive a good bound, we have two (possibly conflicting) goals.
First of all, we want the directional derivative to be positively bounded awayfrom zero. Notice that

〈∇Θ(αo),η〉= ∑
y

η(iy) (1−〈w∗,δΨi(y)〉) .

Furthermore, by the restrictions imposed onη, η(iy) < 0 implies that the respective constraint is
active and hence4(yi ,y)(1−〈w∗,δΨi(y)〉) = ξ∗i . Moreover the pre-condition of step 10 ensures
that4(yi , ŷ)(1−〈w∗,δΨi(ŷ)〉) = ξ∗i +δ whereδ≥ ε > 0. Hence

〈∇Θ(αo),η〉= ξ∗i
4(yi , ŷ)

(

1− n
C ∑

y

αo
(iy)

4(yi ,y)

)

+
δ

4(yi , ŷ)
≥ ε
4(yi , ŷ)

.

The second goal is to make sure the curvature along the chosen directionis not too large.

η′Jη = J(iŷ)(iŷ)−2 ∑
y 6=ŷ

αo
(iy)

4(yi , ŷ)

n
C

J(iŷ)(iy) + ∑
y 6=ŷ

∑
y′ 6=ŷ

αo
(iy)

4(yi , ŷ)

n
C

αo
(iy′)

4(yi , ŷ)

n
C

J(iy)(iy′)

≤ R2
i +2

nR2
i

C4(yi , ŷ) ∑
y 6=ŷ

αo
(iy) +

n2R2
i

C24(yi , ŷ)2 ∑
y 6=ŷ

∑
y′ 6=ŷ

αo
(iy)α

o
(iy′)

≤ R2
i +2

R2
i4i

4(yi , ŷ)
+

R2
i42

i

4(yi , ŷ)2 ≤
4R2

i42
i

4(yi , ŷ)2 .
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This follows from the fact that∑y 6=ŷ αo
(iy) ≤4i ∑y 6=ŷ

αo
(iy)

4(yi ,y) ≤
C4i

n . Evoking Corollary 12 yields

δΘ≥ 1
2

min

{

D,
〈∇Θ(αo),η〉

η′Jη

}

〈∇Θ(αo),η〉

≥ 1
2

min







4(yi , ŷ)C
n

,

ε
4(yi ,ŷ)

4R2
i 42

i

4(yi ,ŷ)2







ε
4(yi , ŷ)

= min

{

Cε
2n

,
ε2

8R2
i42

i

}

Proposition 17 (SVM4m
1 ) For SVM4m

1 step 10 in Algorithm 1 the improvementδΘ of the dual
objective is lower bounded by

δΘ≥ ε2

8R2
i

, where Ri = max
y
‖δΨi(y)‖ .

Proof By re-definingδΨ̃i(y)≡ δΨi(y)
4(yi ,y) we are back to Proposition 16 with

max
y
{4(yi ,y)2‖δΨ̃i(y)‖2}= max

y
{‖δΨi(y)‖2}= R2

i ,

since

〈w,δΨi(y)〉 ≥ 4(yi ,y)−ξi ⇐⇒ 〈w,δΨ̃i(y)〉 ≥ 1− ξi

4(yi ,y)
.

This leads to the following polynomial bound on the maximum size ofS.

Theorem 18 With R̄= maxi Ri , 4̄ = maxi4i and for a givenε > 0, Algorithm 1 terminates after
incrementally adding at most

max

{

2n4̄
ε

,
8C4̄3R̄2

ε2

}

, max

{

2n4̄
ε

,
8C4̄R̄2

ε2

}

,
C4̄2R̄2 +n4̄

ε2 and
C4̄R̄2 +n4̄

ε2

constraints to the working set S for the SVM4s
1 , SVM4m

1 , SVM4s
2 and SVM4m

2 respectively.
Proof With S= /0 the optimal value of the dual is0. In each iteration a constraint is added that
is violated by at leastε, provided such a constraint exists. After solving the S-relaxed QP in step
10, the objective will increase by at least the amounts suggested by Propositions 16, 17, 14 and 15
respectively. Hence after t constraints, the dual objective will be at least ttimes these increments.
The result follows from the fact that the dual objective is upper bounded by the minimum of the
primal, which in turn can be bounded by C̄4 and 1

2C4̄ for SVM∗1 and SVM∗2 respectively.
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Note that the number of constraints inS does not depend on|Y |. This is crucial, since|Y | is
exponential or infinite for many interesting problems. For problems where step 6 can be computed
in polynomial time, the overall algorithm has a runtime polynomial inn, R̄,4̄, 1/ε, since at least
one constraint will be added while cycling through alln instances and since step 10 is polynomial.
This shows that the algorithm considers only a small number of constraints, ifone allows an extraε
slack, and that the solution is correct up to an approximation that depends on the precision parameter
ε. The upper bound on the number of active constraints in such an approximate solution depends
on the chosen representation, more specifically, we need to upper boundthe difference vectors
‖Ψ(xi ,y)−Ψ(xi, ȳ)‖2 for arbitraryy, ȳ ∈ Y . In the following, we will thus make sure that suitable
upper bounds are available.

4. Specific Problems and Special Cases

In the sequel, we will discuss a number of interesting special cases of the general scenario outlined
in the previous section. To model each particular problem and to be able to run the algorithm and
bound its complexity, we need to examine the following three questions for eachcase:

• Modeling: How can we define suitable feature mapsΨ(x,y) for specific problems?

• Algorithms: How can we compute the required maximization overY for givenx?

• Sparseness: How can we bound‖Ψ(x,y)−Ψ(x,y′)‖?

4.1 Multiclass Classification

A special case of Equation (1) is winner-takes-all (WTA) multiclass classification, whereY =
{y1, . . . ,yK} andw = (v′1, . . . ,v

′
K)′ is a stack of vectors,vk being a weight vector associated with the

k-th classyk. The WTA rule is given by

f (x) = arg max
yk∈Y

F(x,y;w), F(x,yk;w) = 〈vk,Φ(x)〉 . (10)

HereΦ(x) ∈R
D denotes an arbitrary feature representation of the inputs, which in many cases may

be defined implicitly via a kernel function.

4.1.1 MODELING

The above decision rule can be equivalently represented by making use of a joint feature map as
follows. First of all, we define the canonical (binary) representation oflabelsy ∈ Y by unit vectors

Λc(y)≡ (δ(y1,y),δ(y2,y), . . . ,δ(yK ,y))′ ∈ {0,1}K , (11)

so that〈Λc(y),Λc(y′)〉 = δ(y,y′). It will turn out to be convenient to use direct tensor products⊗
to combine feature maps overX andY . In general, we thus define the⊗-operation in the following
manner

⊗ : R
D×R

K → R
D·K , (a⊗b)i+( j−1)D ≡ ai ·b j .

Now we can define a joint feature map for the multiclass problem by

Ψ(x,y)≡Φ(x)⊗Λc(y) . (12)
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It is is easy to show that this results in an equivalent formulation of the multiclassWTA as expressed
in the following proposition.

Proposition 19 F(x,y;w) = 〈w,Ψ(x,y)〉, where F is defined in Equation(10) and Ψ in Equa-
tion (12).

Proof For all yk∈Y : 〈w,Ψ(x,yk)〉= ∑D·K
r=1 wrψr(x,yk)= ∑K

j=1 ∑D
d=1v jdφd(x)δ( j,k)= ∑D

d=1vkdφd(x)=
〈vk,Φ(x)〉.

4.1.2 ALGORITHMS

It is usually assumed that the number of classesK in simple multiclass problems is small enough,
so that an exhaustive search can be performed to maximize any objective overY . Similarly, we can
find the second besty ∈ Y .

4.1.3 SPARSENESS

In order to bound the norm of the difference feature vectors, we prove the following simple result.

Proposition 20 Define Ri ≡ ‖Φ(xi)‖. Then‖Ψ(xi ,y)−Ψ(xi ,y′)‖2≤ 2R2
i .

Proof

‖Ψ(xi ,y)−Ψ(xi ,y′)‖2≤ ‖Ψ(xi ,y)‖2 +‖Ψ(xi ,y′)‖2 = 2‖Φ(xi)‖2,

where the first step follows from the Cauchy-Schwarz inequality and the second step exploits the
sparseness ofΛc.

4.2 Multiclass Classification with Output Features

The first generalization we propose is to make use of more interesting outputfeaturesΛ than the
canonical representation in Equation (11). Apparently, we could use thesame approach as in Equa-
tion (12) to define a joint feature function, but use a more general form for Λ.

4.2.1 MODELING

We first show that for any joint feature mapΨ constructed via the direct tensor product⊗ the
following relation holds:

Proposition 21 For Ψ = Φ⊗Λ the inner product can be written as

〈

Ψ(x,y),Ψ(x′,y′)
〉

=
〈

Φ(x),Φ(x′)
〉

·
〈

Λ(y),Λ(y′)
〉

.
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Proof By simple algebra

〈

Ψ(x,y),Ψ(x′,y′)
〉

=
D·K
∑
r=1

D·K
∑
s=1

ψr(x,y)ψs(x′,y′) =
D

∑
d=1

K

∑
k=1

D

∑
d′=1

K

∑
k′=1

φd(x)λk(y)φd′(x′)λk′(y′)

=
D

∑
d=1

D

∑
d′=1

φd(x)φd′(x′)
K

∑
k=1

K

∑
k′=1

λk(y)λk′(y′) =
〈

Φ(x),Φ(x′)
〉

·
〈

Λ(y),Λ(y′)
〉

.

This implies that for feature mapsΦ that are implicitly defined via kernel functionsK, K(x,x′)≡
〈Φ(x),Φ(x′)〉, one can define a joint kernel function as follows:

J((x,y),(x′,y′)) =
〈

Ψ(x,y),Ψ(x′,y′)
〉

=
〈

Λ(y),Λ(y′)
〉

K(x,x′) .

Of course, nothing prevents us from expressing the inner product in output space via yet another
kernel functionL(y,y′) = 〈Λ(y),Λ(y′)〉. Notice that the kernelL is simply the identity in the stan-
dard multiclass case. How can this kernel be chosen in concrete cases? It basically may encode any
type of prior knowledge one might have about the similarity between classes.It is illuminating to
note the following proposition.

Proposition 22 Define Ψ(x,y) = Φ(x)⊗Λ(y) with Λ(y) ∈ R
R; then the discriminant function

F(x,y;w) can be written as

F(x,y;w) =
R

∑
r=1

λr(y)〈vr ,Φ(x)〉,

wherew = (v′1, . . . ,v
′
R)′ is the stack of vectorsvr ∈ R

D, one vector for each basis function ofΛ.

Proof

R

∑
r=1

λr(y)
D

∑
d=1

vrdφd(x) =
R

∑
r=1

D

∑
d=1

wD·(d−1)+rλr(y)φd(x) = 〈w,Φ(x)⊗Λ(y)〉

= 〈w,Ψ(x,y)〉= F(x,y;w).

We can give this a simple interpretation: For each output featureλr a corresponding weight vectorvr

is introduced. The discriminant function can then be represented as a weighted sum of contributions
coming from the different features. In particular, in the case of binary featuresΛ : Y → {0,1}R,
this will simply be a sum over all contributions〈vr ,Φ(x)〉 of features that are active for the classy,
i.e. for whichλr(y) = 1.

It is also important to note that the orthogonal representation provides a maximally large hypoth-
esis class and that nothing can be gained in terms of representational power by includingadditional
features.
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Corollary 23 Assume a mappingΛ(y) = (Λ̃(y)′,Λc(y)′)′, Λ̃(y) ∈ R
R and defineΨ̃(x,y) = Φ(x)⊗

Λ(y) andΨ(x,y) = Φ(x)⊗Λc(y). Now, for everỹw there isw such that
〈

w̃,Ψ̃(x,y)
〉

= 〈w,Ψ(x,y)〉
and vice versa.

Proof Applying Proposition 22 twice it follows that

〈

w̃,Ψ̃(x,y)
〉

=
R+K

∑
r=1

λr(y)〈ṽr ,Φ(x)〉=
〈

R+K

∑
r=1

λr(y)ṽr ,Φ(x)

〉

= 〈vy,Φ(x)〉= 〈w,Ψ(x,y)〉 .

where we have definedvy = ∑R+K
r=1 λr(y)ṽr . The reverse direction is trivial and requires setting

ṽr = 0 for r = 1, . . . ,R.

In the light of this corollary, we would like to emphasize that the rationale behindthe use of class
features is not to increase the representational power of the hypothesisspace, but to re-parameterize
(or even constrain) the hypothesis space such that a more suitable representation forY is produced.
We would like togeneralize across classesas we want to generalize across input patterns in the stan-
dard formulation of classification problems. Obviously, orthogonal representations (corresponding
to diagonal kernels) will provide no generalization whatsoever across different classesy. The choice
of a good output feature mapΛ is thus expected to provide an inductive bias, namely that learning
can occur across a set of classes sharing a common property.

Let us discuss some special cases of interest.

Classification with Taxonomies Assume that class labelsy are arranged in a taxonomy. We will
define a taxonomy as a set of elementsZ ⊇Y equipped with a partial order≺. The partially ordered
set(Z,≺) might, for example, represent a tree or a lattice. Now we can define binary features for
classes as follows: Associate one featureλz with every element inZ according to

λz(y) =

{

1 if y≺ z or y = z

0 otherwise.

This includes multiclass classification as a special case of an unordered set Z = Y . In general,
however, the featuresλz will be “shared” by all classes belowz, e.g. all nodesy in the subtree
rooted atz in the case of a tree. One may also introduce a relative weightβz for every feature
and define aβ-weighted (instead of binary) output feature mapΛ̃ asλ̃z = βzλz. If we reflect upon
the implication of this definition in the light of Proposition 22, one observes that this effectively
introduces a weight vectorvz for every element ofZ, i.e. for every node in the hierarchy.

Learning with Textual Class Descriptions As a second motivating example, we consider prob-
lems where classes are characterized by short glosses, blurbs or other textual descriptions. We
would like to exploit the fact that classes sharing some descriptors are likelyto be similar, in order
to specify a suitable inductive bias. This can be achieved, for example, byassociating a featureλ
with every keyword used to describe classes, in addition to the class identity.Hence standard vector
space models like term-frequency of idf representations can be applied to model classes and the
inner product〈Λ(y),Λ(y′)〉 then defines a similarity measure between classes corresponding to the
standard cosine-measure used in information retrieval.
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Learning with Class Similarities The above example can obviously be generalized to any situa-
tion, where we have access to a positive definite similarity function for pairs of classes. To come up
with suitable similarity functions is part of the domain model—very much like determininga good
representation of the inputs—and we assume here that it is given.

4.2.2 ALGORITHMS

As in the multiclass case, we assume that the number of classes is small enough toperform an
exhaustive search.

4.2.3 SPARSENESS

Proposition 20 can be generalized in the following way:

Proposition 24 Define Ri ≡‖Φ(xi)‖ and S≡maxy∈Y ‖Λ(y)‖ then‖Ψ(xi ,y)−Ψ(xi ,y′)‖2≤ 2R2
i S2

for all y,y′ ∈ Y .

Proof 〈Ψ(xi ,y),Ψ(xi,y)〉 = ‖Φ(xi)‖2 · ‖Λ(y)‖2 ≤ R2
i S2. In the last step, we have used Proposi-

tion 21.

4.3 Label Sequence Learning

The next problem we would like to formulate in the joint feature map framework isthe problem of
label sequence learning, or sequence segmentation/annotation. Here, the goal is to predict a label
sequencey = (y1, . . . ,yT) for a given observation sequencex = (x1, . . . ,xT). In order to simplify
the presentation, let us assume all sequences are of the same lengthT. Let us denote byΣ the
set of possible labels for each individual variableyt , i.e.Y = ΣT . Hence each sequence of labels is
considered to be a class of its own, resulting in a multiclass classification problem with |Σ|T different
classes. To model label sequence learning in this manner would of coursenot be very useful, if one
were to apply standard multiclass classification methods. However, this can beovercome by an
appropriate definition of the discriminant function.

4.3.1 MODELING

Inspired by hidden Markov model (HMM) type of interactions, we propose to defineΨ to include
interactions between input features and labels via multiple copies of the input features as well as
features that model interactions between nearby label variables. It is perhaps most intuitive to start
from the discriminant function

F(x,y;w) =
T

∑
t=1

∑
σ∈Σ
〈w̄σ,Φ(xt)〉δ(yt ,σ)+η

T−1

∑
t=1

∑
σ∈Σ

∑̄
σ∈Σ

ŵσ,σ̄δ(yt ,σ)δ(yt+1, σ̄)

=

〈

w̄,
T

∑
t=1

Φ(xt)⊗Λc(yt)

〉

+η

〈

ŵ,
T−1

∑
t=1

Λc(yt)⊗Λc(yt+1)

〉

. (13)

Herew = (w̄′, ŵ′)′, Λc denotes the orthogonal representation of labels overΣ, andη≥ 0 is a scaling
factor which balances the two types of contributions. It is straightforwardto read off the joint feature
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map implicit in the definition of the HMM discriminant from Equation (13),

Ψ(x,y) =

(

∑T
t=1 Φ(xt)⊗Λc(yt)

η∑T−1
t=1 Λc(yt)⊗Λc(yt+1)

)

.

Notice that similar to the multiclass case, we can apply Proposition 21 in the case ofan implicit
representation ofΦ via a kernel functionK and the inner product between labeled sequences can
thus be written as

〈Ψ((x,y)),Ψ(x̄, ȳ)〉=
T

∑
s,t=1

δ(yt , ȳs)K(xt , x̄s)+η2
T−1

∑
s,t=1

δ(yt , ȳs)δ(yt+1, ȳs+1) . (14)

A larger family of discriminant functions can be obtained by using more powerful feature functions
Ψ. We would like to mention three ways of extending the previous HMM discriminant.First of
all, one can extract features not just fromxt , but from a window aroundxt , e.g. replacingΦ(xt)
with Φ(xt−r , . . . ,xt , . . . ,xt+r). Since the same input patternxt now occurs in multiple terms, this has
been called the use ofoverlappingfeatures (Lafferty et al., 2001) in the context of label sequence
learning. Secondly, it is also straightforward to include higher order label-label interactions beyond
pairwise interactions by including higher order tensor terms, for instance,label triplets∑t Λc(yt)⊗
Λc(yt+1)⊗Λc(yt+2), etc. Thirdly, one can also combine higher ordery features with input features,
for example, by including terms of the type∑t Φ(xt)⊗Λc(yt)⊗Λc(yt+1).

4.3.2 ALGORITHMS

The maximization of〈w,Ψ(xi ,y)〉 over y can be carried out by dynamic programming, since the
cost contributions are additive over sites and contain only linear and nearest neighbor quadratic
contributions. In particular, in order to find the best label sequenceŷ 6= yi , one can perform Viterbi
decoding (Forney Jr., 1973; Schwarz and Chow, 1990), which can also determine the second best
sequence for the zero-one loss (2-best Viterbi decoding). Viterbi decoding can also be used with
other loss functions by computing the maximization for all possible values of the loss function.

4.3.3 SPARSENESS

Proposition 25 Define Ri ≡maxt ‖Φ(xt
i )‖; then‖Ψ(xi ,y)−Ψ(xi ,y′)‖2≤ 2T2(R2

i +η2).

Proof Notice that‖Ψ(xi ,y)‖2 = ‖∑t Φ(xt
i)⊗Λc(yt)‖2 + η2‖∑t Λc(yt)⊗Λc(yt+1)‖2. The first

squared norm can be upper bounded by

‖∑
t

Φ(xt
i)⊗Λc(yt)‖2 = ∑

s
∑
t

〈

Φ(xs
i ),Φ(xt

i)
〉

δ(ys,yt)≤ T2R2
i

and the second one byη2T2, which yields the claim.

4.4 Sequence Alignment

Next we show how to apply the proposed algorithm to the problem of learningto align sequences
x ∈ Σ∗, whereΣ∗ is the set of all strings over some finite alphabetΣ. For a given pair of sequences
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x ∈ Σ∗ andy ∈ Σ∗, alignment methods like the Smith-Waterman algorithm select the sequence of
operations (e.g. insertion, substitution) that transformsx into y and that maximizes a linear objective
function

â(x,y) = argmax
a∈A

〈w,Ψ(x,y,a)〉

that is parameterized by the operation scoresw. Ψ(x,y,a) is the histogram of alignment operations.
The value of〈w,Ψ(x,y, â(x,y))〉 can be used as a measure of similarity betweenx andy. It is the
score of the highest scoring sequence of operations that transformsx into y. Such alignment models
are used, for example, to measure the similarity of two protein sequences.

4.4.1 MODELING

In order to learn the score vectorw we use training data of the following type. For each native
sequencexi there is a most similar homologous sequenceyi along with the optimal alignmentai .
In addition we are given a set of decoy sequencesyt

i , t = 1, . . . ,k with unknown alignments. Note
that this data is more restrictive than what Ristad and Yianilos (1997) consider in their generative
modeling approach. The goal is to learn a discriminant functionf that recognizes the homologous
sequence among the decoys. In our approach, this corresponds to finding a weight vectorw so that
homologous sequences align to their native sequence with high score, andthat the alignment scores
for the decoy sequences are lower. WithYi = {yi ,y1

i , ...,y
k
i } as the output space for the i-th example,

we seek aw so that〈w,Ψ(xi ,yi ,ai)〉 exceeds〈w,Ψ(xi ,yt
i ,a)〉 for all t anda. This implies a zero-one

loss and hypotheses of the form

f (xi) = argmax
y∈Yi

max
a
〈w,Ψ(x,y,a)〉 . (15)

The design of the feature mapΨ depends on the set of operations used in the sequence alignment
algorithm.

4.4.2 ALGORITHMS

In order to find the optimal alignment between a given native sequencex and a homologous/decoy
sequencey as the solution of

max
a
〈w,Ψ(x,y,a)〉 , (16)

we can use dynamic programming as e.g. in the Smith-Waterman algorithm. To solve the argmax
in Equation (15), we assume that the numberk of decoy sequences is small enough, so that we can
select among the scores computed in Equation (16) via exhaustive search.

4.4.3 SPARSENESS

If we select insertion, deletion, and substitution as our possible operations, each (non-redundant)
operation reads at least one character in eitherx or y. If the maximum sequence length isN, then
theL1-norm ofΨ(x,y,a) is at most 2N and theL2-norm ofΨ(x,y,a)−Ψ(x,y′,a′) is at most 2

√
2N.
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4.5 Weighted Context-Free Grammars

In natural language parsing, the task is to predict a labeled treey based on a stringx = (x1, ...,xk)
of terminal symbols. For this problem, our approach extends the approaches of Collins (2000) and
Collins and Duffy (2002b) to an efficient maximum-margin algorithm with general loss functions.
We assume that each node in the tree corresponds to the application of a context-free grammar rule.
The leaves of the tree are the symbols inx, while interior nodes correspond to non-terminal symbols
from a given alphabetN . For simplicity, we assume that the trees are in Chomsky normal form.
This means that each internal node has exactly two children. An exception are pre-terminal nodes
(non-leaf nodes that have a terminal symbol as child) which have exactly one child.

4.5.1 MODELING

We consider weighted context-free grammars to model the dependency betweenx andy. Grammar
rules are of the formnl [Ci →Cj ,Ck] or nl [Ci → xt ], whereCi ,Cj ,Ck ∈N are non-terminal symbols,
andxt ∈ T is a terminal symbol. Each such rule is parameterized by an individual weightwl . A
particular kind of weighted context-free grammar are probabilistic context-free grammars (PCFGs),
where this weightwl is the log-probability of expanding nodeHi with rule nl . In PCFGs, the indi-
vidual node probabilities are assumed to be independent, so that the probability P(x,y) of sequence
x and treey is the product of the node probabilities in the tree. The most likely parse tree toyield x
from a designated start symbol is the predicted labelh(x). This leads to the following maximization
problem, where we userules(y) to denote the multi-set of nodes iny,

h(x) = argmax
y∈Y

P(y|x) = argmax
y∈Y

{

∑
nl∈rules(y)

wl

}

.

More generally, weighted context-free grammars can be used in our framework as follows.Ψ(x,y)
contains one featurefi jk for each node of typeni jk [Ci →Cj ,Ck] and one featurefit for each node
of typenit [Ci → xt ]. As illustrated in Figure 1, the number of times a particular rule occurs in the
tree is the value of the feature. The weight vectorw contains the corresponding weights so that
〈w,Ψ(x,y)〉= ∑nl∈rules(y) wl .

Note that our framework also allows more complexΨ(x,y), making it more flexible than
PCFGs. In particular, each node weight can be a (kernelized) linear function of the full x and
the span of the subtree.

4.5.2 ALGORITHMS

The solution of argmaxy∈Y 〈w,Ψ(x,y)〉 for a givenx can be determined efficiently using a CKY-
Parser (see Manning and Schuetze, 1999), which can also return the second best parse for learn-
ing with the zero-one loss. To implement other loss functions, like4(yi ,y) = (1−F1(yi ,y)), the
CKY algorithm can be extended to compute both argmaxy∈Y (1−〈w,δΨi(y)〉)4(yi ,y) as well as
argmaxy∈Y (4(yi ,y)−〈w,δΨi(y)〉) by stratifying the maximization over all values of4(yi ,y) as
described in Joachims (2005) for the case of multivariate classification.
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flt 0/1 tax 0/1 flt 4 tax4
4 training instances per class
acc 28.32 28.32 27.47 29.74 +5.01 %
4-loss 1.36 1.32 1.30 1.21 +12.40 %
2 training instances per class
acc 20.20 20.46 20.20 21.73 +7.57 %
4-loss 1.54 1.51 1.39 1.33 +13.67 %

Table 1: Results on the WIPO-alpha corpus, section D with 160 groups using 3-fold and 5-fold
cross validation, respectively. ‘flt’ is a standard (flat) SVM multiclass model,‘tax’ the
hierarchical architecture. ‘0/1’ denotes training based on the classification loss, ‘4’ refers
to training based on the tree loss.

4.5.3 SPARSENESS

Since the trees branch for each internal node, a tree over a sequencex of lengthN hasN−1 internal
nodes. Furthermore, it hasN pre-terminal nodes. This means that theL1-norm ofΨ(x,y) is 2N−1
and that theL2-norm ofΨ(x,y)−Ψ(x,y′) is at most

√

4N2 +4(N−1)2 < 2
√

2N.

5. Experimental Results

To demonstrate the effectiveness and versatility of our approach, we applied it to the problems of
taxonomic text classification (see also Cai and Hofmann, 2004), named entityrecognition, sequence
alignment, and natural language parsing.

5.1 Classification with Taxonomies

We have performed experiments using a document collection released by theWorld Intellectual
Property Organization (WIPO), which uses the International Patent Classification (IPC) scheme. We
have restricted ourselves to one of the 8 sections, namely section D, consisting of 1,710 documents
in the WIPO-alpha collection. For our experiments, we have indexed the title and claim tags. We
have furthermore sub-sampled the training data to investigate the effect of the training set size.
Document parsing, tokenization and term normalization have been performed with the MindServer
retrieval engine.2 As a suitable loss function4, we have used a tree loss function which defines
the loss between two classesy andy′ as the height of the first common ancestor ofy andy′ in
the taxonomy. The results are summarized in Table 1 and show that the proposed hierarchical
SVM learning architecture improves performance over the standard multiclassSVM in terms of
classification accuracy as well as in terms of the tree loss.

5.2 Label Sequence Learning

We study our algorithm for label sequence learning on a named entity recognition (NER) problem.
More specifically, we consider a sub-corpus consisting of 300 sentences from the Spanish news
wire article corpus which was provided for the special session of CoNLL2002 devoted to NER.

2. This software is available athttp://www.recommind.com.
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Method HMM CRF PerceptronSVM
Error 9.36 5.17 5.94 5.08

Table 2: Results of various algorithms on the named entity recognition task.

Method Train Err Test Err Const Avg Loss
SVM2 0.2±0.1 5.1±0.6 2824±106 1.02±0.01
SVM4s

2 0.4±0.4 5.1±0.8 2626±225 1.10±0.08
SVM4m

2 0.3±0.2 5.1±0.7 2628±119 1.17±0.12

Table 3: Results for various SVM formulations on the named entity recognition task (ε = 0.01,
C = 1).

The label set in this corpus consists of non-name and the beginning and continuation of person
names, organizations, locations and miscellaneous names, resulting in a total of |Σ| = 9 different
labels. In the setup followed in Altun et al. (2003), the joint feature mapΨ(x,y) is the histogram
of state transition plus a set of features describing the emissions. An adaptedversion of the Viterbi
algorithm is used to solve theargmax in line 6. For both perceptron and SVM a second degree
polynomial kernel was used.

The results given in Table 2 for the zero-one loss, compare the generative HMM with condi-
tional random fields (CRF) (Lafferty et al., 2001), Collins’ perceptronand the SVM algorithm. All
discriminative learning methods substantially outperform the standard HMM. In addition, the SVM
performs slightly better than the perceptron and CRFs, demonstrating the benefit of a large margin
approach. Table 3 shows that all SVM formulations perform comparably,attributed to the fact the
vast majority of the support label sequences end up having Hamming distance 1 to the correct label
sequence. Notice that for 0-1 loss functions all three SVM formulations are equivalent.

5.3 Sequence Alignment

To analyze the behavior of the algorithm for sequence alignment, we constructed a synthetic dataset
according to the following sequence and local alignment model. The native sequence and the decoys
are generated by drawing randomly from a 20 letter alphabetΣ = {1, ..,20} so that letterc∈ Σ has
probabilityc/210. Each sequence has length 50, and there are 10 decoys per native sequence. To
generate the homologous sequence, we generate an alignment string of length 30 consisting of 4
characters “match”, “substitute”, “insert” , “delete”. For simplicity of illustration, substitutions
are alwaysc→ (c mod 20)+1. In the following experiments, matches occur with probability 0.2,
substitutions with 0.4, insertion with 0.2, deletion with 0.2. The homologous sequence is created
by applying the alignment string to a randomly selected substring of the native.The shortening of
the sequences through insertions and deletions is padded by additional random characters.

We model this problem using local sequence alignment with the Smith-Waterman algorithm.
Table 4 shows the test error rates (i.e. the percentage of times a decoy is selected instead of the
homologous sequence) depending on the number of training examples. Theresults are averaged
over 10 train/test samples. The model contains 400 parameters in the substitution matrix Π and a
costδ for “insert/delete”. We train this model using the SVM2 and compare against a generative
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Train Error Test Error
n GenMod SVM2 GenMod SVM2

1 20.0±13.3 0.0±0.0 74.3±2.7 47.0±4.6
2 20.0±8.2 0.0±0.0 54.5±3.3 34.3±4.3
4 10.0±5.5 2.0±2.0 28.0±2.3 14.4±1.4

10 2.0±1.3 0.0±0.0 10.2±0.7 7.1±1.6
20 2.5±0.8 1.0±0.7 3.4±0.7 5.2±0.5
40 2.0±1.0 1.0±0.4 2.3±0.5 3.0±0.3
80 2.8±0.5 2.0±0.5 1.9±0.4 2.8±0.6

Table 4: Error rates and number of constraints|S| depending on the number of training examples
(ε = 0.1,C = 0.01).
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Figure 2: Number of constraints added toSdepending on the number of training examples (middle)
and the value ofε (right). If not stated otherwise,ε = 0.1,C = 0.01, andn = 20.

sequence alignment model, where the substitution matrix is computed asΠi j = log
(

P(xi ,zj )
P(xi)P(zj )

)

(see

e.g. Durbin et al., 1998) using Laplace estimates. For the generative model,we report the results
for δ =−0.2, which performs best on the test set. Despite this unfair advantage, the SVM performs
better for low training set sizes. For larger training sets, both methods perform similarly, with a
small preference for the generative model. However, an advantage ofthe SVM approach is that it is
straightforward to train gap penalties.

Figure 2 shows the number of constraints that are added toS before convergence. The graph
on the left-hand side shows the scaling with the number of training examples. Aspredicted by
Theorem 18, the number of constraints is low. It appears to grow sub-linearly with the number of
examples. The graph on the right-hand side shows how the number of constraints in the finalS
changes with log(ε). The observed scaling appears to be better than suggested by the upperbound
in Theorem 18. A good value forε is 0.1. We observed that larger values lead to worse prediction
accuracy, while smaller values decrease efficiency while not providing further benefit.
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Train Test Training Efficiency
Method Acc Prec Rec F1 Acc Prec Rec F1 CPU-h %SVM Iter Const
PCFG 61.4 92.4 88.5 90.4 55.2 86.8 85.2 86.0 0 N/A N/A N/A
SVM2 66.3 92.8 91.2 92.0 58.9 85.3 87.2 86.2 1.2 81.6 17 7494

SVM4s
2 62.2 93.9 90.4 92.1 58.9 88.9 88.1 88.5 3.4 10.5 12 8043

SVM4m
2 63.5 93.9 90.8 92.3 58.3 88.7 88.1 88.4 3.5 18.0 16 7117

Table 5: Results for learning a weighted context-free grammar on the Penn Treebank.

5.4 Weighted Context-Free Grammars

We test the feasibility of our approach for learning a weighted context-free grammar (see Figure 1)
on a subset of the Penn Treebank Wall Street Journal corpus. We consider the 4098 sentences of
length at most 10 from sections F2-21 as the training set, and the 163 sentences of length at most 10
from F22 as the test set. Following the setup in Johnson (1998), we start based on the part-of-speech
tags and learn a weighted grammar consisting of all rules that occur in the training data. To solve the
argmaxin line 6 of the algorithm, we use a modified version of the CKY parser of Mark Johnson.3

The results are given in Table 5. They show micro-averaged precision,recall, andF1 for the
training and the test set. The first line shows the performance of the generative PCFG model using
the maximum likelihood estimate (MLE) as computed by Johnson’s implementation. Thesecond
line show the SVM2 with zero-one loss, while the following lines give the results for theF1-loss
4(yi ,y) = (1−F1(yi ,y)) using SVM4s

2 and SVM4m
2 . All results are forC= 1 andε = 0.01. All val-

ues ofC between 10−1 to 102 gave comparable prediction performance. While the zero-one loss—
which is also implicitly used in Perceptrons (Collins and Duffy, 2002a; Collins,2002)—achieves
better accuracy (i.e. predicting the complete tree correctly), theF1-score is only marginally better
compared to the PCFG model. However, optimizing the SVM for theF1-loss gives substantially
betterF1-scores, outperforming the PCFG substantially. The difference is significant according to a
McNemar test on theF1-scores. We conjecture that we can achieve further gains by incorporating
more complex features into the grammar, which would be impossible or at best awkward to use in
a generative PCFG model. Note that our approach can handle arbitrary models (e.g. with kernels
and overlapping features) for which theargmaxin line 6 can be computed. Experiments with such
complex features were independently conducted by Taskar et al. (2004b) based on the algorithm
in Taskar et al. (2004a). While their algorithm cannot optimize F1-score asthe training loss, they
report substantial gains from the use of complex features.

In terms of training time, Table 5 shows that the total number of constraints added to the working
set is small. It is roughly twice the number of training examples in all cases. Whilethe training is
faster for the zero-one loss, the time for solving the QPs remains roughly comparable. The re-
scaling formulations lose time mostly on theargmaxin line 6 of the algorithm. This might be sped
up, since we were using a rather naive algorithm in the experiments.

6. Conclusions

We presented a maximum-margin approach to learning functional dependencies for complex output
spaces. In particular, we considered cases where the prediction is a structured object or where
the prediction consists of multiple dependent variables. The key idea is to model the problem as

3. This software is available athttp://www.cog.brown.edu/∼mj/Software.htm.
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a (kernelized) linear discriminant function over a joint feature space of inputs and outputs. We
demonstrated that our approach is very general, covering problems from natural language parsing
and label sequence learning to multilabel classification and classification with output features.

While the resulting learning problem can be exponential in size, we presented an algorithm for
which we prove polynomial convergence for a large class of problems. We also evaluated the al-
gorithm empirically on a broad range of applications. The experiments show that the algorithm is
feasible in practice and that it produces promising results in comparison to conventional genera-
tive models. A key advantage of the algorithm is the flexibility to include different loss functions,
making it possible to directly optimize the desired performance criterion. Furthermore, the ability
to include kernels opens the opportunity to learn more complex dependencies compared to conven-
tional, mostly linear models.
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