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Abstract

Conditional compilation with preprocessors such as cpp is a simple but effective
means to implement variability. By annotating code fragments with #ifdef and
#endif directives, different program variants with or without these annotated frag-
ments can be created, which can be used (among others) to implement software
product lines. Although, such annotation-based approaches are frequently used
in practice, researchers often criticize them for their negative effect on code quality
and maintainability. In contrast to modularized implementations such as compo-
nents or aspects, annotation-based implementations typically neglect separation
of concerns, can entirely obfuscate the source code, and are prone to introduce
subtle errors.

Our goal is to rehabilitate annotation-based approaches by showing how tool
support can address these problems. With views, we emulate modularity; with a
visual representation of annotations, we reduce source code obfuscation and in-
crease program comprehension; and with disciplined annotations and a product-
line–aware type system, we prevent or detect syntax and type errors in the entire
software product line. At the same time we emphasize unique benefits of annota-
tions, including simplicity, expressiveness, and being language independent. All
in all, we provide tool-based separation of concerns without necessarily dividing
source code into physically separated modules; we name this approach virtual
separation of concerns.

We argue that with these improvements over contemporary preprocessors, vir-
tual separation of concerns can compete with modularized implementation mech-
anisms. Despite our focus on annotation-based approaches, we do intend not
give a definite answer on how to implement software product lines. Modular
implementations and annotation-based implementations both have their advan-
tages; we even present an integration and migration path between them. Our goal
is to rehabilitate preprocessors and show that they are not a lost cause as many
researchers think. On the contrary, we argue that – with the presented improve-
ments – annotation-based approaches are a serious alternative for product-line
implementation.
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1. Introduction

Tailor-made software can provide a significant competitive advantage compared
to general-purpose standard software. While standard software – such as broadly
used operating systems, database management systems, word processors, and
many more – aims at a mass market and provides little diversification, tailor-made
individual software is able to focus on a specific use case or scenario. This focus
can enable more efficient implementations in terms of smaller binary size and less
memory consumption, better performance due to task-specific implementations
and optimizations, and fewer security risks caused by unused code. Especially in
the growing market of embedded systems, heterogeneity and resource limitations
demand tailor-made solutions.

At the same time, tailor-made software poses significant costs and risks. Soft-
ware development is a complex process that consumes significant time and effort.
One way to reduce development costs is to systematically reuse development ar-
tifacts. Experience has shown that reuse is most efficient between products in a
single domain [e.g., Biggerstaff, 1998].

Software product line engineering (and the related program-family develop-
ment) is a paradigm of systematic reuse to develop a set of related software
systems (which we call variants) in a well-defined domain from a common code
base [Parnas, 1976; Bass et al., 1998]. Differences between variants are described
in terms of features; for example, there are variants of embedded database systems
with either feature Persistent Storage or feature In-Memory Storage, with or
without a feature Transactions, and so on. Variants in a software product line
are specified in terms of a feature selection, for example, “the embedded database
system with Persistent Storage but without Transactions”.

A software product line is implemented such that different variants can be de-
rived for different feature selections from a common implementation. Since arti-
facts of features are developed in a coordinated fashion and systematically reused
in multiple variants, software product lines promise faster production of tailor-
made variants, with lower costs and higher quality. Software product lines offer
a new perspective compared to general-purpose standard software, they can ef-
ficiently tailor each variant to a specific use case or scenario. Similarly, software
product lines allow companies to adapt to changed markets and to move into new
markets quickly. For example, in a product line of embedded database systems,
we can implement a new feature for a new hardware device and reuse existing fea-
tures, and we can then offer tailor-made variants for both old and new hardware

1



1. Introduction

devices instead of a single system to fit all.
There are many approaches to implement software product lines, ranging from

simple ad-hoc mechanisms to sophisticated architectures and to specialized lan-
guages. In practice, developers often use simple tools such as the C preprocessor
cpp to implement variability. In a common implementation, developers annotate
code fragments with #ifdef X and #endif directives or similar constructs – in which
X represents a feature. Based on a feature selection provided as configuration file
or command line parameters, developers can later include or exclude the anno-
tated code fragments to generate a variant. We refer to such mechanisms more
generally as annotative approaches, because they annotate and conditionally remove
code fragments from a common implementation.

In literature, annotative approaches are heavily criticized as summarized in the
claim “#ifdef considered harmful” [Spencer and Collyer, 1992] and in the collo-
quial term “#ifdef hell” [Lohmann et al., 2006]. Numerous studies discuss the
negative effect of preprocessor usage on code quality and maintainability [e.g.,
Spencer and Collyer, 1992; Krone and Snelting, 1994; Favre, 1995, 1997; Ernst et al.,
2002; Pohl et al., 2005; Adams et al., 2008]: The use of #ifdef and similar directives
breaks with the fundamentally accepted concepts of separation of concerns and
modularity, obfuscates the source code, and is prone to introduce errors.

Despite this criticism, practitioners implement many software product lines
with preprocessors.1 For example, HP’s product line Owen for printer firmware
with over 2000 features implements variability with the C preprocessor [Pearse
and Oman, 1997; Refstrup, 2009]; so do many open source programs such as the
Linux kernel with over 5000 features [Tartler et al., 2009; She et al., 2010]. Three
more examples of industrial product lines presented at the last Software Product
Line Conference 2009 that implement variability at least partially with preproces-
sors are Danfoss’ product line of frequency converters [Jepsen and Beuche, 2009],
Wikon’s product line of remote control systems [Pech et al., 2009], and the product
line of flight control systems by the National Aeronautics and Space Administra-
tion (NASA) [Ganesan et al., 2009]. Furthermore, both commercial product-line
tools pure::systems [Beuche et al., 2004] and Gears [Krueger, 2002] provide their
own preprocessor.

In academia however, annotative approaches have received little attention. Ex-
cept for some simple analysis and visualization tools [e.g., Krone and Snelting,
1994; Pearse and Oman, 1997; Hu et al., 2000; Vidács and Beszédes, 2003], anno-
tative approaches have hardly advanced in the last 30 years. Instead, academics

1We are unaware of any statistics or surveys on industrial product-line implementation – actu-
ally, most industrial experience reports focus on economic and management issues but exclude
descriptions of implementation mechanisms. Nevertheless, our personal communication with
tool providers and developers indicates that actually a majority of software product lines were
implemented with annotative approaches. Also in open-source software, variability is often im-
plemented with preprocessors.
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typically recommend to limit or entirely abandon the use of preprocessors and
implement software product lines with “modern” implementation techniques that
encapsulate features in some form of modules (such as components [Szyperski,
1997], frameworks [Johnson and Foote, 1988], feature modules [Prehofer, 1997;
Batory et al., 2004], aspects [Kiczales et al., 1997], and others) or that use gener-
ators or model-driven approaches [e.g., Czarnecki and Eisenecker, 2000; Voelter
and Groher, 2007; Trujillo et al., 2007].

Interestingly, this gap between research and practice mirrors a well-known de-
bate in the product-line community published as a discussion between Clements
and Krueger [2002]: Clements, representing the academic side, emphasizes the
need to plan a software product line ahead as a key to maximize benefits. In con-
trast, Krueger, a tool provider representing industry, recommends “lightweight
technologies” (which include annotative approaches) that are easy to adopt in ex-
isting projects and that impose less risk, even at the costs of lower overall benefits
in the long run.

In this thesis, we survey different implementation approaches, but we take sides
with annotative approaches. Although annotative approaches are mostly consid-
ered as ad-hoc or quick-and-dirty solution in literature, we explore how to im-
prove them. We contribute extensions of concepts and tools to avoid many pitfalls
of preprocessor usage and we highlight some unique advantages over contempo-
rary modularization techniques in the context of product-line development. With
views, we emulate modularity despite scattered implementations, so developers
can directly trace a feature to its implementation in a cohesive view. Visual rep-
resentations of annotations reduce source code obfuscation and improve program
comprehension by up to 43 %. With disciplined annotations and a product-line–
aware type system, we prevent or detect syntax and type errors for the entire
software product lines. Thus, as we demonstrate, our improved annotations are
no longer prone to errors; instead, we enforce consistency for all variants during
all development activities. At the same time, we keep the benefits of annotative
approaches as simplicity, fine granularity, and uniformity. All in all, we provide a
tool-based separation of concerns without dividing feature-related code into phys-
ically separated modules; we name this approach virtual separation of concerns.

Despite our focus on annotative approaches, we do not intend to give a definite
answer on how to implement software product lines. Modular implementations
and improved annotative approaches both have their advantages; we even present
an integration and discuss its benefits. We have excellent experiences with our im-
proved annotative approaches, but others may argue that, in the long term, mod-
ular implementation approaches may provide the superior form of product-line
implementation. Nevertheless, even with a preference for modular implementa-
tions, in the short term and medium term, it is difficult to convince practitioners
to adopt “modern” implementation approaches because the adoption barrier is
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still high and mainstream programming languages embrace variability mecha-
nisms only hesitantly. Thus, for some developers, virtual separation of concerns
will provide an adequate solution for practical product-line development; for oth-
ers, we provide at least an interim solution and a migration path to lower the
adoption barrier of “modern” implementation approaches. Still, much empirical
evaluation is necessary to make objective recommendations for one or the other
approach. Our goal is to show that annotative approaches are not a lost cause. On
the contrary, we argue that virtual separation of concerns is a serious alternative
for product-line implementation.

1.1. Contribution

First, we analyze problems and benefits of annotative approaches. While prob-
lems are discussed at length in literature, benefits become apparent by comparing
annotative approaches to alternative implementation mechanisms. Specifically,
we group product-line implementation approaches into compositional approaches
and annotative approaches and compare them regarding several criteria including
modularity, error detection, granularity, uniformity, and adoption.

Second, we propose, implement, discuss, and evaluate five improvements of an-
notative approaches, which we name – in their combination – as virtual separation
of concerns. Specifically, we contribute the following five improvements:

1. Integrating a feature model enforces consistent annotations. A feature model
encapsulates configuration knowledge and documents all features and their
relationships. This is a straightforward improvement over contemporary
preprocessors, but necessary for the remaining mechanisms as views and
type checking. Among others, we prevent that annotations refer to unde-
fined features.

2. Views on features and variants emulate modularity. We outline different
kinds of views and discuss design decisions and their implications, and im-
plement a solution. Despite scattered feature implementations, our views
allow developers to directly trace a feature to its implementation in a cohe-
sive view, similar to modular implementations.

3. A visual representation of annotations reduces source code obfuscation. We
use background colors instead of textual annotations to represent annotated
code fragments. In a controlled experiment, we confirm that a visual repre-
sentation of annotations can significantly increase program comprehension
for some tasks.

4. Disciplined annotations prevent syntax errors during generation. We provide
a language-independent mechanism to determine disciplined annotations
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and demonstrate that disciplined annotations do not restrict expressiveness
in practice. By construction, all variants generated from a product-line im-
plementation with disciplined annotations are syntactically correct, thus, we
prevent subtle, hard to find syntax errors in the first place.

5. A product-line–aware type system on top of disciplined annotations detects
type errors in the entire product line. We develop a type system and describe
it with the formal CFJ calculus. We formally prove that variants generated
from a well-typed product line are always well-typed. This way, we enforce
consistency and can guarantee that all variants of a product line will compile
without generating each variant in isolation.

We implement all improvements in a prototype called CIDE. We show that, in their
combination, these improvements address all discussed problems of annotative
approaches, only modularity deficits remain. At the same time, we preserve the
benefits of annotative approaches such as fine granularity, uniform applicability
independent of the language, and easy adoption.

Third, we provide a perspective on how to integrate compositional and anno-
tative approaches. This integration improves annotative approaches and can be
used as a long-term migration path toward modular implementations. Specifically,
we discuss automated refactorings between different implementation mechanisms
that can be used to gradually refactor an annotation-based implementation into a
modular form.

1.2. Outline

In Chapter 2 (Background), we briefly introduce the general concepts of software
product lines, domain engineering, variability modeling, and separation of con-
cerns. This way, we establish context and terminology for readers unfamiliar with
these concepts.

In Chapter 3 (Software product line implementation), we survey two groups of ap-
proaches to implement software product lines and discuss their respective benefits
and drawbacks. This survey guides us in our search for better implementation
mechanisms for the remainder of the thesis. In the context of other implemen-
tation approaches, we explain our focus on annotative approaches – which are
common in practice, but dismissed and neglected in academia – and discuss their
problems.

In Chapter 4 (Views and visual representation) and Chapter 5 (Error detection), we
propose, discuss, and evaluate five improvements of annotative approaches. In
Chapter 4, we integrate feature models into annotative tools to enforce consis-
tency, we provide views on features and variants to emulate modularity, and we
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represent annotations visually to reduce obfuscation and support program com-
prehension. In Chapter 5, we address error detection. We prevent syntax errors
by enforcing disciplined annotations and we detect type errors with a product-
line–aware type system. Instead of checking all variants in isolation, we lift error
detection to check the entire software product line in a single step.

In Chapter 6 (Comparison and integration), we take a step back to look at the big
picture. We integrate the proposed improvements as virtual separation of concerns
and compare them with other implementation approaches. We argue that virtual
separation of concerns can address all discussed problems, except modularity, of
which we can only emulate some facets. To provide a long-term perspective, we
discuss the benefits and technical realization of integrating annotative approaches
with other modular forms of product-line implementation.

In Chapter 7 (Conclusion and future work), we summarize our contributions and
list suggestions for future work.
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2. Background

In this thesis, we discuss different implementation approaches for software prod-
uct lines and improvements thereof. In this section, for readers unfamiliar with
software product lines, we give a brief introduction into the idea of product-line
engineering and its main concepts, including domain engineering and variability
modeling. Furthermore, we review the seminal concept of separation of concerns,
which is a repeating theme in our discussions.

2.1. Software product lines

Traditionally, software engineering has focused on developing individual software
systems, one system at a time. A typical development process starts with analyz-
ing the requirements of a customer. After several development steps, typically
some process of specification, design, implementation, testing, and deployment, a
single software product is the result. In contrast, software product line engineering
focuses on the development of multiple similar software systems in one domain
from a common code base [Bass et al., 1998; Pohl et al., 2005]. Although the result-
ing software products are similar, they are each tailored to the specific needs of
different customers or to similar but distinct use cases. We call a software product
derived from a software product line a variant.

Software product lines establish the idea of mass customization known from auto-
mobile industry and many other industries (see [Pine II, 1993] for an introduction)
for software products. Instead of individually developing each product for each
customer from scratch, product line engineering develops related variants in a
coordinated fashion, developing commonalities between the products only once.
Instead of developing a single one-size-fits-all solution that intends to cover all
potential customer needs in a mass market, software product lines provide tailor-
made solutions for different customers.

Bass et al. [1998] define a software product line as “a set of software-intensive
systems sharing a common, managed set of features that satisfy the specific needs of a par-
ticular market segment or mission and that are developed from a common set of core assets
in a prescribed way.” The idea to develop a set of related software products in a
coordinated fashion (instead of each starting from scratch or copying and editing
from a previous product) can be traced back to concepts of program families [Par-
nas, 1976; Habermann et al., 1976]. The term “software product line” emerged in
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the mid 1990s with a special focus on business and organizational factors, such
as market analysis, institutionalizing a family-oriented development process, as-
signing responsibilities, managing risks, and many others [Bass et al., 1997]. In
this thesis, we take a technical view and use the term “software product line” in a
broad sense, which includes all software development efforts that can produce a
family of related software products.

Software product lines promise several benefits compared to individual devel-
opment [Bass et al., 1998; Pohl et al., 2005]: Due to co-development and systematic
reuse, software products can be produced faster, with lower costs, and higher
quality. A decreased time to market allows companies to adapt to changed mar-
kets and to move into new markets quickly. Especially in embedded systems, in
which resources are scarce and hardware is heterogeneous, efficient variants can
be tailored to a specific device or use case [Beuche et al., 2004; Tešanović et al.,
2004; Pohl et al., 2005; Rosenmüller et al., 2009]. There are many companies that
report significant benefits from software product lines. For example, Bass et al.
[1998] summarize that, with software product lines, Nokia can produce 30 instead
of previously 4 phone models per year; Cummins, Inc. reduced development time
for a software for a new diesel engine from one year to one week; Motorola ob-
served a 400 % increase in productivity; and so on.

2.2. Domain engineering and application engineering

The process to develop an entire software product line instead of a single applica-
tion is called domain engineering. A software product line must fulfill not only the
requirements of a single customer but the requirements of multiple customers in a
domain, including both current customers and potential future customers. Hence,
in domain engineering, developers analyze the entire domain and its potential
requirements. From this analysis, they determine commonalities and differences
between potential variants, which are described in terms of features. In this context,
a feature is a first-class domain abstraction, typically an end-user visible increment
in functionality (see [Apel and Kästner, 2009] for a detailed discussion of the term
“feature”). Finally, developers design and implement the software product line
such that different variants can be constructed from common and variable parts.

Czarnecki and Eisenecker [2000] additionally distinguish between problem space
and solution space. The problem space comprises domain-specific abstractions that
describe the requirements on a software system and its intended behavior. Domain
analysis takes place in the problem space, and its results are documented in terms
of features. The solution space comprises implementation-oriented abstractions,
such as code artifacts. Between features in the problem space and artifacts in
the solution space, there is a mapping that describes which artifact belongs to
which feature. Depending on the implementation approach and the degree of
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Figure 2.1.: An (idealized) overview of domain engineering and application engineering.

automation, this mapping can have different forms and complexity, from simple
implicit mappings based on naming conventions to complex machine-processable
rules encoded in generators [Czarnecki and Eisenecker, 2000].

Application engineering is the process of deriving a single variant tailored to the
requirements of a specific customer from a software product line, based on the re-
sults of domain engineering. Ideally, the customer’s requirements can be mapped
to features identified during domain engineering (problem space), so that the vari-
ant can be constructed from existing common and variable parts of the product
line’s implementation (solution space). In practice, sometimes some custom devel-
opment is required in application engineering. Depending on the form of imple-
mentation, there can be different automation levels of the application engineering
process, from manual development with some reusable parts to automated variant
configuration and generation (the latter is known as generative programming [Czar-
necki and Eisenecker, 2000]; see also Chapter 3). In our work, we strive for a
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form of product line development in which all implementation effort is part of do-
main engineering so that application engineering can be reduced to requirements
analysis and automated code generation.

A software product line always targets a specific domain, such as operating
systems for mobile phones, control software for diesel engines, and embedded
databases. The scope of a software product line describes which variability is of-
fered and which kind of variants the product line can produce. A software product
line with a narrow scope is easier to develop, but less flexible (it provides only few
very similar variants). The wider the scope is, the higher is the development effort,
but the more flexibility a software product line can offer. Selecting the right scope
of a product line is a difficult design, business, and strategy decision. In practice,
the scope is often iteratively refined; domain engineering and application engi-
neering are not performed strictly separated and in a linear fashion. For example,
it is common to implement not all features upfront, but implement features in-
crementally, when needed. Furthermore, requirements identified in domain engi-
neering may be incomplete, so new requirements arise in application engineering,
which developers must either feed back into the domain engineering process or
address with custom development during the application engineering of a specific
variant. Typically, an iterative process evolves [Czarnecki and Eisenecker, 2000].

Domain engineering and application engineering describe a general process
framework as summarized in Figure 2.1. For each step, different approaches,
formalisms, and tools can be used. For example, there are different product line
scoping approaches [see survey in John and Eisenbarth, 2009], different domain
analysis methods [e.g., Kang et al., 1990; Griss et al., 1998; Czarnecki and Eise-
necker, 2000; Pohl et al., 2005], different mechanisms to model variability (see
Sec. 2.3), different implementation mechanisms (focus of this thesis, see Chap-
ter 3ff), and different approaches to derive a variant based on customer require-
ments [e.g., Rabiser et al., 2007; Siegmund et al., 2008].

2.3. Variability modeling

During domain analysis, developers determine the scope of the software product
line and identify its common and variable features, which they then document
in a variability model. We introduce variability models, because they are central
not only for documenting variability in the problem space, but also for many
implementation approaches, for automated reasoning and error detection, and for
automated generation of variants. There are several different variability-modeling
approaches (see [Chen et al., 2009] for an overview). Without loss of generality, we
focus on FODA-style feature models [Kang et al., 1990; Czarnecki and Eisenecker,
2000] in this thesis, because they are well known and broadly used in research and
practice; other variability models can be used similarly.

10
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Figure 2.2.: Feature-diagram example of a small database product line.

A feature model describes a set of features in a domain and their relationships.
It describes which features a product line provides (i.e., its scope), which features
are optional, and in which combination features can be selected in order to derive
variants. With a selection of features (a subset F of all features), we can specify
a variant (e.g., “the database variant for Linux, with transactions, but without a
B-Tree”). Not all feature combinations may make sense, for example, two features
representing different operating systems might be mutually exclusive. A feature
model describes such dependencies. Feature selections that fulfill all constraints
are valid (“F is valid”).

In practice, feature models contain hundreds or thousands of features.1 There-
fore, feature models are often developed with tool support and structured in
smaller connected models [Beuche et al., 2004]. The number of potential variants
can grow exponentially with the number of features. In theory, a software product
line with n independent optional features can produce 2n variants; already with
33 independent optional features, we could produce a distinct variant for every
person on the planet. In practice, many dependencies between features reduce the
number of valid feature selections, but nevertheless, most software product lines
have millions or billions of valid feature selections.

A typical graphical representation of features and their dependencies is a feature
diagram [Kang et al., 1990], as shown in Figure 2.2. A feature diagram represents
features in hierarchical form and different edges between features describe their
relationship. A filled dot, describes that a feature is mandatory and must be se-
lected whenever its parent feature is selected. In contrast, a feature connected
with an empty dot is optional. Multiple child features connected with an empty
arc are alternative (mutually exclusive), exactly one child feature must be selected
when the parent feature is selected. From multiple child features connected with
a filled arc, at least one must be selected, but it is also possible to select more
than one. Dependencies that cannot (or should not) be expressed with the hier-

1According to personal communication with D. Beuche most feature models in industry have about
500 features, but also models with several thousand features exist. For example, Bosch’s product
line of engine control software has over 1000 features [Steger et al., 2004], HP’s Owen product
line has about 2000 features [Refstrup, 2009] and the Linux kernel has over 5000 features [Tartler
et al., 2009; She et al., 2010].
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archical structure may be provided as additional cross-tree constraints in form of
a propositional formula. In Figure 2.2, we show nine features from the core of
a fictional database product line. Each variant must contain features Database,
Base, OS, and Storage, but feature Transactions is optional, variants may or
may not include it; each variant must select exactly one operating system feature,
either Windows or Linux; each variant must contain at least one storage structure;
finally, a cross-tree constraint specifies that Transactions are only supported if
also feature B-Tree is selected. In this example, ten feature selections are valid.

Alternative to the graphical notation, dependencies between features can be
expressed by a propositional formula. Each feature corresponds to a Boolean vari-
able, which is assigned true when selected and false otherwise. The propositional
formula evaluates to true for all valid feature selections. Feature diagrams can
be transformed into propositional formulas by translating all edges into formulas
according to Table 2.1 and conjoining them with the root feature and all cross-
tree constraints [Batory, 2005] (even the reverse transformation is possible to some
degree [Czarnecki and Wąsowski, 2007]). The feature diagram from Figure 2.2 is
equivalent to the following propositional formula:

Database∧ (Base⇔ Database) ∧ (OS⇔ Database)

∧(Transactions⇒ Database) ∧ (Storage⇔ Database)

∧(Windows∨ Linux⇔OS) ∧ ¬(Windows∧ Linux)

∧(List∨ B-Tree⇔ Storage) ∧ (Transactions⇒ B-Tree)

Representing feature models as propositional formula has the advantage that
we can automatically reason about them, which we use in Section 5.3 to develop a
product-line–aware type system. With simple algorithms or with automated rea-
soning techniques – including Boolean-satisfiability-problem solvers (SAT solvers),
constraint-satisfaction-problem solvers, and binary decision diagrams – we can ef-
ficiently answer a series of questions, including the following:

• Is a given feature selection valid?

• Has this feature model at least one valid selection (i.e., is the formula satisfi-
able; see [Benavides, 2007])?

• How many valid feature selections are possible in this model (see [Benavides
et al., 2005])?

• Are there dead features that can never be selected (see [Benavides, 2007])?

• Does a change to a feature model change the valid feature selections (see
[Thüm et al., 2009])?

• Given a partial selection, which information about the remaining features
can be inferred (constraint propagation, see [Batory, 2005])?
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Feature diagram edge Propositional formula

f ⇔ p

f ⇒ p

( f1 ∨ . . . ∨ fn⇔ p) ∧
∧
i<j

¬( fi ∧ f j)

f1 ∨ . . . ∨ fn⇔ p

Table 2.1.: Translating feature diagrams to propositional formulas [adapted from Batory, 2005].

• Is there a valid feature selection that includes feature X but not feature Y (see
[Batory, 2005] and Sec. 5.3)?

Even though some of these algorithms are NP-complete, SAT solvers and other
techniques can answer such queries efficiently, even for very large feature mod-
els [Mendonça et al., 2008, 2009; Thüm et al., 2009]. For a survey of automated
analysis operations and tools see Benavides et al. [2010]

In addition to a list of features and their dependencies, a feature model may in-
clude information for each feature such as a description, a rational for its selection,
a list of interested stakeholders, a priority, and others [Czarnecki and Eisenecker,
2000]. Furthermore, there are many extensions and dialects of feature diagrams
in literature [e.g., Griss et al., 1998; Streitferdt et al., 2003; Beuche et al., 2004;
Czarnecki et al., 2005; Schobbens et al., 2007], most of which can be translated to
propositional formulas as well [see Thüm, 2008]. In the context of this thesis, a
feature model consisting of a list of features and their dependencies described as
above is sufficient.

2.4. Separation of concerns

Separation of concerns is a fundamental principle in software engineering, credited
to Parnas [1972] and Dijkstra [1976]. We give an overview, because we come back
to separation of concerns in several discussions of product-line implementation in
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this thesis. In a nutshell, separation of concerns is the idea to divide software into
smaller manageable pieces, such that each piece corresponds to a semantically
coherent issue of the problem domain of interest, called concern. Features in a
software product line are important concerns in a program (but there can be many
more concerns than features) [Apel, 2007].

Dividing software into localized and separated parts makes it easier to under-
stand the system, because developers can focus their attention on one part at a
time. In addition, separation of concerns provides a guideline of how to divide
software and which parts are worth focusing on. Parnas [1972, 1979] suggests
dividing programs according to concerns instead of purely technical considera-
tions, because such separation encapsulates design decisions and makes it easier
to understand and evolve the code.

A typical means to separate concerns in source code is to decompose a program.
On a small scale, we can separate different concerns into distinct functions or
classes; on a large scale, we can decompose a program into modules [Parnas,
1972]. In this thesis, we explore an alternative virtual separation of concern, more
on this later. A decomposed concern is implemented in a cohesive way (e.g., in
a function, class, file or directory). Modularity is often associated with separation
of concerns. Modularity adds information hiding and encapsulation (typically via
interfaces) to decouple concerns; it provides advanced opportunities for modular
reasoning [Parnas, 1972; Ostermann, 2008], parallel development [Griswold et al.,
2006], separate compilation [Bracha and Lindstrom, 1992; Cardelli, 1997], local
changes [Sullivan et al., 2001], and reuse [Krueger, 1992]. Most programming
languages offer sophisticated language mechanisms for modularity.

However, it has been observed that a modular decomposition is problematic
for some concerns, which Kiczales et al. [1997] named crosscutting concerns. Al-
though we can distinguish concerns conceptually, in their representations (source
code, documentation, and other artifacts) concerns may crosscut each other. For
example, the implementation of one concern (e.g., transactions in a database) is
intertwined with the implementations of other concerns (e.g., query processing
and B-tree).

Traditional programming languages provide hierarchical means of decomposi-
tion (e.g., functions, classes, modules), which is sufficient to decompose the rep-
resentation of many, but not of all concerns. Tarr et al. [1999] describe this limi-
tation as the tyranny of the dominant decomposition: With traditional programming
languages, we have to impose a hierarchical decomposition (along one dominant
dimension) on complex representations of concerns. While some representations
align well with the dominant decomposition, others become scattered (the repre-
sentation of one concern is distributed over multiple modules) and tangled (the
representations of multiple concerns are interspersed in one module) [Kiczales
et al., 1997]. A decomposition along multiple dimensions at the same time is
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not possible with traditional languages (we will discuss an example in Sec. 3.1.5).
Mezini and Ostermann [2005] and Ostermann [2008] even argue that a hierarchi-
cal decomposition and the related monotonic modular reasoning do not align with
multi-dimensional human organization of knowledge in general; hence, it is not
surprising that crosscutting concerns have been found in many different concern
representations and in many different modularization approaches [e.g., Kiczales
et al., 1997; Tarr et al., 1999; Rashid et al., 2002; Apel et al., 2009a].

Crosscutting concerns are important for our discussion, because many features
in software product lines are crosscutting concerns, and as such difficult to modu-
larize with traditional programming languages [Apel, 2007; Kästner et al., 2007a].
We come back to different forms of feature implementation and their limitations
regarding separation of concerns and modularity in the next chapter.
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This chapter shares material with the ICSE’08 paper “Granularity in Software Prod-
uct Lines” [Kästner et al., 2008a] and the SPLC’07 paper “A Case Study Implement-
ing Features Using AspectJ” [Kästner et al., 2007a].

There are many different approaches to implement variability in software prod-
uct lines, ranging from simple textual tools to sophisticated languages and gener-
ators. We give an overview of different implementation approaches and discuss
benefits and drawbacks that will guide us in the remainder of this thesis in the
search for better implementation mechanisms. In contrast to other surveys [e.g.,
Anastasopoules and Gacek, 2001; Muthig and Patzke, 2002; Mezini and Oster-
mann, 2004; Svahnberg et al., 2005; Lopez-Herrejon et al., 2005], we do not focus
on individual tools or languages, but group them by common characteristics as
compositional approaches, annotative approaches, and others. This helps to abstract
from concrete languages or tools and instead discuss more generally advantages
and limitations of the common underlying mechanisms.

In compositional approaches, features are implemented separately in distinct mod-
ules (files, classes, packages, plug-ins, etc.). To generate variants, these mod-
ules can be composed in different combinations. Compositional approaches in-
clude frameworks, mixin layers, aspects, and many other techniques. They rep-
resent a disciplined approach to product-line development and are usually fa-
vored in academia; therefore, we discuss them first in Section 3.1. Nevertheless,
we will point out some limitations, especially regarding granularity and multi-
dimensional separation of concerns.

In annotative approaches code fragments are annotated in a common code base
and removed in order to generate variants. The C preprocessor cpp is a typical
example. Annotative approaches are pragmatic, flexible, and easy to use; they
do not share many of the limitations of compositional approaches. Annotative
approaches are common in practice, nevertheless, they are often criticized for a
number of problems, such as neglecting separation of concerns, being error prone,
and obfuscating the source code. In Section 3.2, we discuss benefits and problems
of annotative approaches. Especially the discussed problems motivate our search
for better annotation mechanisms in Chapters 4 and 5.

Most, but not all, approaches fall into either group. Among others, we exclude
generators, version control systems, build systems, and approaches that do not
offer a full automation in application engineering (i.e., for each feature selection,
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some additional implementation effort is needed). In Section 3.3, we briefly give
an overview of the remaining implementation mechanisms.

3.1. Compositional approaches

Compositional approaches implement features in distinct modules.1 To gener-
ate a product line member, these approaches compose selected modules, usually
at compile-time or deploy-time. Variability implemented with compositional ap-
proaches is sometimes described as positive variability, because variable parts are
added together. There is a variety of different languages and tools that can be
used for module composition.

First, frameworks are a common implementation strategy. The framework pro-
vides a common platform for all variants and offers extension points (a.k.a. hot
spots) that can be extended [Johnson and Foote, 1988]. Often, these extension
points employ design patterns, such as Strategy or Observer [Gamma et al., 1995,
pp. 293ff. and 315ff.]. Each feature of the software product line is implemented as
extension to the framework (typically as a plug-in), and a variant is composed by
compiling the desired extensions (or assembling the selected plug-ins).

Beyond frameworks, in the last decade, researchers have invested immense ef-
forts into developing novel programming language concepts to separate exten-
sions from a common code base. Concepts like step-wise refinement [Wirth,
1971; Parnas, 1976; Batory et al., 2004], subject-oriented programming [Harrison
and Ossher, 1993], aspect-oriented programming [Kiczales et al., 1997], feature-
oriented programming [Prehofer, 1997; Batory et al., 2004; Apel et al., 2009b],
multi-dimensional separation of concerns [Tarr et al., 1999], mixin layers [Smarag-
dakis and Batory, 2002], virtual classes [Mezini and Ostermann, 2003], open
classes [Clifton et al., 2006], classboxes [Bergel et al., 2005], expanders [Warth
et al., 2006], traits [Ducasse et al., 2006; Bettini et al., 2010], invasive software com-
position [Aßmann, 2003], and many more, have been proposed to separate and
modularize concerns. Many of these approaches focus on modularizing cross-
cutting concerns (see Section 2.4), which is beneficial for product-line implemen-
tation, since features in product lines often have an inherently crosscutting be-
havior [Apel, 2007; Apel et al., 2008d; Kästner et al., 2007a]. To derive the final
behavior of a program, modules are composed, typically with a specialized com-

1The term “module” is highly overloaded in literature. In line with Batory et al. [2004], we use
the terms “module” and “feature module” in a very loose sense as a container to group code
elements. The concrete nature of such module differs significantly between compositional ap-
proaches and does not always provide encapsulation, information hiding, or separate compila-
tion as stricter definitions demand [e.g., Parnas, 1972; Wirth, 1979; Cardelli, 1997], it may just
be a file or directory [e.g., Batory et al., 2004; Apel et al., 2009b]. In contrast, we use the term
“component” in a stricter sense for self-contained, independent, black-box units of composition
and deployment, in line with Szyperski [1997]. We discuss components in Section 3.3.
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piler. With languages from these concepts, we can implement each feature as an
extension in a distinct module; we can generate variants of a software product line
by deciding which modules to compose into the program.

In Figure 3.1, we exemplify two compositional implementations of a simple
stack example that can be extended by two features Locking and Logging.

• First, in Figure 3.1a, we use class refinements of the feature-oriented lan-
guage Jak [Batory et al., 2004]. In Jak, a module can introduce new classes
and extend existing classes using the refines keyword. In an extended class,
it can introduce new methods and fields and extend existing methods with
method refinements (by overriding using the Super keyword to call the origi-
nal implementation). In Figure 3.1a, a module representing feature Locking

contains a new class Lock (Line 14) and a class refinement of the existing
class Stack (Lines 6–13), which introduces a new method lock (Line 12) and
refines method push with additional lock and unlock calls (Lines 7–11). In a
second module, another class refinement (Lines 15–21) introduces an addi-
tional method log (Line 20) and wraps method push again (Lines 16–19).

• Second, in Figure 3.1b, we implement the same features with the aspect-
oriented language AspectJ [Kiczales et al., 2001]. AspectJ provides point-
cuts to intercept the program execution at certain events (called join points),
advice to execute additional behavior at these events, and inter-type decla-
rations to statically modify the program (e.g., to introduce a method). In
this case, aspect Locking (Lines 6–17) introduces method lock (Line 15), intro-
duces a new (static inner) class Lock (Line 16), and intercepts the execution
of method push and executes additional lock and unlock calls (Lines 7–14);
aspect Logging similarly extends the behavior of method push.

In both languages, a specialized compiler composes these modules.
To provide some insight into the capabilities of compositional approaches, we

discuss benefits (indicated by “+”) and limitations (indicated by “–”). We conclude
with experience from a case study, in which we used a compositional approach
to refactor the embedded database engine Berkeley DB into composable feature
modules.

3.1.1. Modularity (+/–)

Compositional approaches separate features into distinct modules. Modularity
fosters information hiding and modular reasoning to reduce overall complexity.
Ideally, developers can understand a feature’s implementation in isolation, with-
out reading the code of other features. Ideally, developers can type check and test
features independently, and they can work independently on different features
(divide and conquer).
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Feature Base

1 class Stack {
2 void push(Object o) {
3 elementData[size++] = o;
4 }
5 }

Feature Locking

6 refines class Stack {
7 void push(Object o) {
8 Lock l=lock(o);
9 Super.push(o);

10 l.unlock();
11 }
12 Lock lock(Object o) { /*...*/ }
13 }
14 class Lock { /*...*/ }

Feature Logging

15 refines class Stack {
16 void push(Object o) {
17 Super.push(o);
18 log("added " + o);
19 }
20 void log(String msg) { /*...*/ }
21 }

(a) Implementation with Jak.

Feature Base

1 class Stack {
2 void push(Object o) {
3 elementData[size++] = o;
4 }
5 }

Feature Locking

6 aspect Locking {
7 around(Object o, Stack stack):
8 execution(void Stack.push(..))
9 && args(o) && this(stack)

10 {
11 Lock l = stack.lock(o);
12 proceed(o);
13 l.unlock();
14 }
15 Lock Stack.lock(Object o) { ... }
16 static class Lock { /*...*/ }
17 }

Feature Logging

18 aspect Logging {
19 after(Object o):
20 execution(void Stack.push(..))
21 && args(o)
22 {
23 log("added " + o);
24 }
25 void log(String msg) { /*...*/ }
26 }

(b) Implementation with AspectJ.

Figure 3.1.: Two compositional implementations of a stack example with three features.

For example, in Figure 3.1, the entire implementation of the feature Locking

is modularized. A developer can understand the entire locking mechanism (e.g.,
class Lock, methods lock and unlock and how they effect the execution of push)
inside this module, without referring to the base code or to other features. The
modules for features Locking and Logging can be developed and maintained
independently.

Although modularity is beneficial, there are restrictions in several contemporary
compositional approaches. Strict modularity as discussed in the programming-
language community (allowing modular reasoning, local testing, separate compi-
lation, black-box reuse, etc.) can be achieved with some implementations, such
as black-box frameworks [Johnson and Foote, 1988] and Jiazzi [McDirmid et al.,
2001]. However, when supporting implementation of crosscutting concerns and
extensions at a finer granularity, many of the novel language concepts are less
strict regarding modularity.

For example, already subclasses impose problems [Szyperski, 1992; Stata and
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Guttag, 1995] and languages like Jak or AspectJ can even extend virtually all ex-
isting methods and break the interfaces of existing implementations and establish
a strong implicit coupling, if misused [Bracha, 1992; Sullivan et al., 2005; Aldrich,
2005; Steimann, 2006; Apel et al., 2009c; Steimann et al., 2010]. A developer can no
longer just change internal methods of a class, since a subclass, class refinement,
or an aspect may have extended this behavior. For example, in Figure 3.1, a de-
veloper who wants to rename method push in the base code has to check whether
this method was extended in any class refinement or aspect, without additional
tool support there is no indication of this extension in the base code and the de-
veloper has only limited means to prevent such extension. Compared to strict
modularity, these approaches cause challenges for modular reasoning [Szyperski,
1992; Steimann, 2006; Ostermann, 2008], local testing [Elrad et al., 2001; Parizi and
Ghani, 2007], and reuse [Elrad et al., 2001; Mezini and Ostermann, 2003].

There are several suggestions, how to enforce a stricter modularity with addi-
tional interfaces or annotations [e.g., Sullivan et al., 2005; Aldrich, 2005; Hutchins,
2009; Steimann et al., 2010], but they pay a price of more complex implementation
patterns and their effect on program comprehension has still to be evaluated. For
example, Steimann et al. [2010] introduce new interfaces toward aspects; an as-
pect can only extend code elements, when the element is exposed in the interface,
all other elements are hidden in the module. For example, with such construct,
we could explicitly expose method push in an interface in the example from Fig-
ure 3.1b; then, method push can be extended by aspects, whereas all other methods
remain unexposed so that we can reason about them in a modular fashion.

Overall, modularity can be achieved, but only few contemporary compositional
approaches enforce it strictly.

3.1.2. Traceability (+)

By mapping features to modules, we gain traceability. A developer can trace a fea-
ture from the feature model or some requirements directly to its implementation
inside one cohesive module. Ideally, there can be a one-to-one mapping between
a feature in the feature model and its implementation in a single module. When
enhancing a feature or fixing a bug, a developer can directly look up the corre-
sponding code of a feature in a single module, instead of searching in scattered
implementations.

For example, the entire implementation of feature Locking is located in a single
module in Figure 3.1. When developers want to change the locking mechanism,
they can directly look up the implementation of feature Locking.

Traceability can also be achieved without modular implementations, often with
external mappings or additional documentation. There is an entire research com-
munity that analyzes how traceability between different development artifacts
(such as requirements, documentation, models, and code) can be detected, doc-
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umented, and updated [e.g., Gotel and Finkelstein, 1994; Ramesh and Jarke, 2001;
Cleland-Huang et al., 2003; Mäder et al., 2008]. A main difficulty is to update trace-
ability links when maintaining or evolving an artifact. However, when a feature
is implemented in a cohesive module, traceability is reduced to a trivial mapping
between feature and module.

Together, modularity and traceability promises lower development and main-
tenance costs. Therefore, compositional approaches are generally favored in
academia and research is constantly focusing on better languages or techniques
to separate concerns.

3.1.3. Language support for variability (+)

As another benefit, compositional approaches make variability explicit in the lan-
guage or architecture. Instead of ad-hoc tools that operate on plain text, the pro-
gram is extended in a disciplined way at well-defined explicit extension points or
with well-defined language constructs, such as class refinements or advice.

Many explicit language mechanisms allow to instantiate multiple objects or sub-
systems with different features in the same program [e.g., Mezini and Ostermann,
2003; Czarnecki and Eisenecker, 2000]. If needed, also the composition order can
be changed and can have an effect on the program’s semantics [e.g., Batory and
O’Malley, 1992; Apel et al., 2008b].

This disciplined approach prevents certain errors. Syntax errors can be detected
for each feature in isolation. Black-box frameworks [cf. Johnson and Foote, 1988]
and several languages [e.g., Ossher and Tarr, 2000a; McDirmid et al., 2001; Huang
and Smaragdakis, 2008; Bettini et al., 2010] allow modular type checking. Testing
becomes easier when the functionality to be tested is modularized [Beck, 2003].
Also some formal approaches to detect semantic errors, such as specification or
model checking, can take advantage of modules [e.g., Fisler and Krishnamurthi,
2001; Fisler and Roberts, 2004; Poppleton, 2007].

Furthermore, we can reason about and optimize the composition process itself.
For example, Batory et al. [2000] optimize feature compositions of container data
structures for performance; Apel et al. [2008e] show that feature composition à la
Jak is associative with a feature algebra; Andrews [2001] proves the correctness of
an aspect composition algorithm.

3.1.4. Coarse granularity (–)

Despite these benefits, there are also limitations. One is the coarse granularity
of compositional approaches. We distinguish between different granularity levels
of extensions that a product-line implementation approach can perform to imple-
ment a feature [Kästner et al., 2008a]. This ranges from coarse-grained extensions
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1 class Stack {
2 void push(Object o, Transaction txn) {
3 if (o == null || txn == null) return;
4 Lock l = txn.lock(o);
5 elementData[size++] = o;
6 l.unlock();
7 fireStackChanged();
8 }
9 }

Figure 3.2.: Example of a fine-grained extensions [Kästner et al., 2008a].

that add entire files, to fine-grained extensions that introduce statements or extend
even individual tokens.

Compositional approaches tend to be rather coarse grained. In frameworks,
plug-ins add entire bundles of classes and can extend only the program’s behav-
ior at predefined explicit extension points. This is restrictive, but enforces strict
modularity.

Many of the language-based compositional approaches, such as aspect-oriented
and feature-oriented programming, allow extensions at the granularity of meth-
ods; that is, methods can be injected into existing classes and virtually every
method in the system can be wrapped with additional behavior (e.g., using around
advice, method refinements, or method overriding). Some aspect-oriented lan-
guages can extend also certain events during a method’s execution, for example,
method invocations and field access in AspectJ [Kiczales et al., 2001].

The coarse granularity provided by compositional approaches is sometimes in-
sufficient to implement features. For certain extensions, developers need to change
the behavior inside a method, for example, introduce new statements, extend ex-
pressions or change even method signatures. Some extensions require access to
the local context of a method. With compositional approaches, such fine-grained
extensions are usually not possible without workarounds. Several researchers
have reported that such fine-grained extensions are quite frequent [e.g., Murphy
et al., 2001; Sullivan et al., 2005; Kästner et al., 2007a], especially, when extending
a legacy application that was not designed with feature modularity in mind.

We exemplify the three limitations that we observed most frequently by means
of the code snippet in Figure 3.2, in which the underlined code belongs to a feature
Synchronization and should be implemented in its own module:

• Statement Extensions. In most compositional approaches it is not possible
to introduce statements in the middle of an existing method in order to ex-
tend certain statements or sequences of statements therein.2 For example,

2A notable exception is AspectJ that enables to extend method calls or field access inside specific
methods [Kiczales et al., 2001]. This feature can be used to emulate statement extensions in some,
but not in all cases [see Kästner et al., 2007a].
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consider how to synchronize only the statement in Line 5. A simple method
refinement around the whole method is not sufficient. Instead, we have to
introduce the locking statements in Lines 4 and 6 specifically. In some cases,
statement extensions might access also local variables. Usually, workarounds
introduce artificial extensions points for extension. Typically, a developer
would introduce calls to empty hook methods [Murphy et al., 2001] or per-
form an extract-method refactoring [Fowler, 1999, pp. 110ff.], which would
move Line 5 to a dedicated method such that we can implement locking
from Lines 4 and 6 as method refinement of this dedicated method. Lo-
cal variables, if accessed in the extension, are passed as parameters. Either
workaround requires explicit or implicit annotations and severely obfuscates
the source code [Murphy et al., 2001; Kästner et al., 2007a].

• Expression Extensions. Extensions to an individual expression can occur
as well. An example is shown in Line 3, in which the condition of the if
statement is extended. A typical workaround again creates a new method
and moves the expression there, so that it can be extended with method
refinements.

• Signature Changes. To the best of our knowledge, there is no compositional
approach that allows introducing an additional parameter into an existing
method signature, as the parameter txn in Line 2. Instead, method signatures
are considered fixed. Typical workarounds store the additional parameters
in thread-safe fields, duplicate code, or use complex language mechanisms
like the Wormhole Pattern in AspectJ [Laddad, 2003, pp. 256ff.]. However,
all of these workarounds introduce different problems and reduce code qual-
ity [Rosenmüller et al., 2007; Kästner, 2007]. Note that it is necessary to adapt
also all invocations of a method when extending its signature.

In Figure 3.3, we show an implementation of our example with the composi-
tional language Jak. This implementation uses the workarounds discussed above:
statements and expression extensions are implemented with the two hook meth-
ods h1 and h2; and the parameter is passed with a thread-safe field pushTxn and
the original push method is deactivated by throwing an exception. This (admit-
tedly extreme) example makes obvious how code quality of both base code and
extension can suffer when implementing fine-grained extensions with composi-
tional approaches.

The coarse granularity of compositional approaches restricts developers in their
expressiveness, or leads to several problems when developers use them to imple-
ment fine-grained extensions anyway. Workarounds often obfuscate the source
code and are verbose and hard to understand. Many workarounds replicate code
or use heavy-weight architectures that induce performance penalties [Murphy
et al., 2001; Kästner et al., 2007a; Rosenmüller et al., 2007].
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Feature Base

1 class Stack {
2 void push(Object o) {
3 if (h1(o)) return;
4 h2(o);
5 fireStackChanged();
6 }
7 boolean h1(Object o) { return o == null; }
8 void h2(Object o) {
9 elementData[size++] = o;

10 }
11 }

Feature Synchronization

12 refines class Stack {
13 ThreadLocal<Transaction> pushTxn = new ThreadLocal<Transaction>();
14 void push(Object o, Transaction txn) {
15 pushTxn.set(txn);
16 Super.push(o);
17 }
18 void push(Object o) {
19 throw new UnsupportedOperationException(
20 "Call push(Object,Transaction) instead");
21 }
22 boolean h1(Object o) {
23 return Super.h1(o) || pushTxn.get() == null;
24 }
25 void h2(Object o) {
26 Lock l = pushTxn.get().lock(o);
27 Super.h2(o);
28 l.unlock();
29 }
30 }

Figure 3.3.: Implementation of fine-grained extensions with Jak.

Conceptual limitations of granularity. Extending compositional approaches with
new language constructs for fine-grained extensions is not trivial, because of sev-
eral conceptual problems.

First, signatures are used to identify the methods that are to be extended. If
changing method signatures for an optional feature was possible, another naming
scheme would need to be used to identify methods. Consequently, most lan-
guages consider signatures as immutable, and do not account for the possibility
of signature changes.

Second, compositional approaches introduce new code fragments only in posi-
tions in which the order does not matter. Thus, in Java, it is possible to introduce
new classes into the program or new methods into a class, but not new statements
at a fixed position inside a method. This target position is not known when im-
plementing the feature and could move if other features introduced statements
as well. Therefore, compositional approaches usually offer only wrapping mech-
anisms (e.g., method refinements, advice) that add statements at the beginning
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or the end of a method, but not at a finer granularity. Similarly, parameters in
method signatures are ordered, which makes parameter introductions difficult.

These limitations are reflected also in the feature algebra of Apel et al. [2008e]
and the corresponding composition engine in FeatureHouse [Apel et al., 2009b].
Although, we can chose arbitrary granularity for the structures in this algebra,
choices that are too fine grained run into problems regarding stable addresses and
ordering and are not usable in practice, see [Apel et al., 2008e] for details.

3.1.5. The optional feature problem (–)

Another limitation of compositional approaches becomes obvious when multiple
dimensions or interacting features are involved. Features are not always indepen-
dent from each other and there is often code that belongs not only to a single
feature, but that connects multiple features. In the context of software product
lines, this problem is known as optional-feature problem [Liu et al., 2006; Kästner
et al., 2009c], as feature interactions [Calder et al., 2003], or more generally in the
context of multi-dimensional separation of concerns as tyranny of the dominant de-
composition [Tarr et al., 1999].

To illustrate the problem, consider the seminal expression problem.3 We have an
evaluator of mathematical expressions and want to be able to add new operations
to our expressions (Evaluate, Print, Simplify, . . . ). At the same time, we want
to be able to add new kinds of expressions (Plus, Power, Ln, . . . ). In a software
product line, we want to freely mix and match features from both dimensions,
operations and kinds of expressions. The implementation of “evaluate a plus ex-
pression” (e.g., 3 + 1 = 4) concerns both feature Plus and feature Evaluate. If
feature Evaluate is not selected, code to implement “evaluate a plus expression” is
not needed; if feature Plus is not selected, this code is not needed either. But
how can we modularize code such that we can freely select features from both
operations and expressions?

In Figure 3.4a and 3.4b, we illustrate the two standard forms of modularization:
We modularize either expressions or operations (the latter typically with the Vis-
itor pattern [Gamma et al., 1995, pp. 331ff.]). Thus, in Figure 3.4a, we can easily
remove or add expressions but not operations, and in Figure 3.4b, we can remove
and add operations but not expressions. With most compositional approaches (es-
pecially those that have been designed to modularize crosscutting concerns), we
can extend the code with a new optional feature, independent of what modular-
ization has been used initially [for an overview, see Lopez-Herrejon et al., 2005].
As visualized in Figure 3.4c, we can add a new module Simplify without chang-
ing existing modules, and then add a new module Ln, without changing existing

3The expression problem was named by Phil Wadler in 1998 on the Java-Genericity mailing list
but has been known for many years [e.g., Reynolds, 1994; Cook, 1991]; see Torgersen [2004] for
a retrospective overview.
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(b) Modularized by operations.
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(d) Small modules grouped by data types and
operations in the expression problem.

Figure 3.4.: Modularization of interacting features.

modules. But still, we cannot mix and match features freely, but we create very
specific constraints between features instead.

A solution to this problem – described in different contexts as lifters [Prehofer,
1997], as origami by Batory et al. [2002], or as derivatives by Liu et al. [2006] – is to
break down these modules into smaller modules and group them back again. The
small modules may belong to multiple features. This is illustrated in Figure 3.4d,
in which the code that implements the evaluation of a plus expression is encapsu-
lated in its own module (top-left) and belongs to both features Simplify and Plus

(indicated by dashed lines). In this figure, the narrow boxes represent modules for
those code fragments that belong only to a single feature.

Generally, when we want to be able to compose two interacting features inde-
pendently, we can refactor their implementation into three modules, one module
for each feature, and one additional feature to encapsulate the “interaction code”
or “glue code”. The additional module belongs to both features and is included
if and only if both features are selected. In Figure 3.5, we visualize this concept
with two features A and B as overlapping circles, which are modularized into
three modules A, B, and A\B. When more than two features interact at the same
time, this can be solved with more additional modules (described as higher-order
derivatives by Liu et al. [2006]).

The expression problem is an academic example with two dimensions, in which
every feature from one dimension interacts with every feature from the other di-
mension, and almost the entire code of the software product line belongs to two
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Figure 3.5.: Additional modules to modularize feature interactions.

features at the same time. In practice, not every feature interacts with so many
other features, but studies have shown that feature interactions are still frequent
and hinder modularization [e.g., Hall, 2005; Liu et al., 2006; Kästner et al., 2009c].
For example, in a case study of Berkeley DB Java Edition with 39 features, we
found 53 feature interactions that would require an additional module each; in
a case study of Berkeley DB C Edition with 24 features, we found 78 feature in-
teractions; in a case study of FAME-DBMS with 14 features, we found 34 feature
interactions (for details see [Kästner et al., 2009c] and Section 3.1.7).

Whether modularization with additional modules scales in practice is still under
controversial debate. Concerns have been raised after the presentation of Liu et al.
[2006] at ICSE’06, and our experience in our case studies shows also that adding
additional modules adds significant development effort and lowers comprehen-
sibility [Kästner, 2007; Kästner et al., 2009c]. Splitting a program into too many
small modules can be problematic. Although concerns have been separated, the
developer who wants to understand a feature in its entirety (e.g., the entire evalu-
ation mechanism in the expression problem or the entire transaction subsystem in
a database management system) has to look into many modules and reconstruct
the behavior in her mind. Modular reasoning often applies not only to a single
module, but the implementation of a feature is scattered over multiple modules.
That is, with modular implementations of feature interactions, we reduce the ben-
efits of traceability and modular reasoning, for which we separated concerns into
distinct modules in the first place.

3.1.6. Difficult adoption (–)

With the exception of frameworks, developers in industry rarely adopt composi-
tional approaches for product-line implementation, so far. Although several aca-
demic case studies have shown applicability of novel composition languages and
tools [e.g., Hunleth and Cytron, 2002; Zhang and Jacobsen, 2003; Batory et al., 2004;
Tešanović et al., 2004; Apel and Batory, 2006; Kästner et al., 2007a; Figueiredo et al.,
2008; Rosenmüller et al., 2009; Bettini et al., 2010; Apel, 2010], they are rarely used
in practice. One of the reasons is that most approaches introduce new language
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concepts and raise complexity. Developers need to learn new languages and to
think in new ways. Implementing features modularly is more difficult (and thus
more expensive), while there is no immediate benefit of modularity. Modularity
is rather a long term investment for maintenance and future extensions [Clements
and Krueger, 2002]. All this makes it difficult to convince developers to adopt
compositional approaches.

Typically, each compositional approach is designed for one specific language.
An extended language must be provided for every language that is used in a soft-
ware product line (e.g., AspectJ for Java, AspectC for C, Aspect-UML for UML,
and AspectXML for XML). AHEAD [Batory et al., 2004] and FeatureHouse [Apel
et al., 2009b; Boxleitner et al., 2009] are two notable exceptions that address mul-
tiple languages in a uniform way, but they trade off this generality with other
benefits; for example, they are less expressive and cannot provide modular type
checking and separate compilation.

Many languages are usable only at a large scale with tool support, so devel-
opers really depend on tools [Kästner et al., 2007a, 2009d]. Most compositional
languages are experimental and do not provide the tool support to which devel-
opers have grown accustomed with modern development environments as Visual
Studio or Eclipse. The influence on mainstream programming languages has been
low so far, with the notable exception of partial types in C# and Visual Basic,
which roughly resemble class refinements without method refinements.

3.1.7. Case study: Berkeley DB

In a large-scale case study, we refactored the Java edition of Oracle’s Berkeley DB4

into a software product line (see also Appendix A.1). In this process, we experi-
enced first hand the described limitations of compositional approaches [Kästner
et al., 2007a; Kästner, 2007]. We summarize our experience in this section, to illus-
trate the impact of the discussed problems on practical software product lines. The
case study was performed with one specific compositional language, AspectJ, but
many of the problems we experienced can be generalized to other compositional
approaches as well.

Feature-refactoring Berkeley DB

Berkeley DB is an open-source database engine, which can be included into an
application as a library. Due to its performance and transaction safety, Berkeley
DB is broadly used in open source and commercial applications. Berkeley DB is
available in three editions, Berkeley DB, Berkeley DB Java Edition, and Berkeley
DB XML. We focus on Berkeley DB Java Edition, which itself is written entirely in
Java. In the domain of embedded database management systems, tailored variants

4http://oracle.com/technology/products/berkeley-db
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promise smaller binary size, lower memory consumption, and better performance.
In the Java edition, it is possible to dynamically deactivate some features such as
transactions at startup, but it is not possible to create a tailored variant of the
database engine during build time that excludes unnecessary code.

By analyzing domain, manual, configuration parameters, and source code, we
identified many parts of Berkeley DB that were candidates to be refactored into
features, such that we can configure their inclusion at build time. These fea-
tures were implicit in the legacy code. They varied from small caches, to entire
transaction or persistence subsystems. All identified features represent program
functionality that a user would select or deselect when customizing a database
management system. From these features, we chose 38 features for actual refac-
toring. See [Kästner et al., 2007a] and [Kästner, 2007] for a feature diagram and a
detailed description of how we identified and selected features.

We performed the actual refactoring manually within one month, following
various refactorings from object-oriented to aspect-oriented implementations sug-
gested in literature [e.g., Hanenberg et al., 2003; Monteiro and Fernandes, 2005;
Cole and Borba, 2005]. Of our 38 refactored features, 16 were small, each with
less than 140 lines of code and less than 10 extensions. Four features were large,
each with 958–1864 lines of code, with 118–345 extensions, and with 24–30 affected
classes. The remaining 18 features have a size in-between. With these 38 features,
we refactored about 10 % of the code base of Berkeley DB.

Observations

During the refactoring process, we observed several problems. For our AspectJ-
specific experience, with problems such as pointcut fragility or third-person per-
spective, see [Kästner et al., 2007a]. Here, we report those observations that can be
generalized to other compositional approaches.

Granularity. When decomposing Berkeley DB, we encountered fine-grained ex-
tensions in almost every feature [Kästner et al., 2008a]. Although most exten-
sions were coarse grained, there was still a significant number of fine-grained
extensions, such as feature code in the middle of a method, which required
workarounds.

Of overall 1144 extensions used to implement the 38 features, 640 extensions
(56 %) introduced new classes, methods, or fields. Further 214 extensions (19 %)
were simple method extensions that added method refinements of existing meth-
ods. They were well supported by AspectJ and can be implemented with most
compositional approaches. However, we needed 261 extensions (23 %) at state-
ment level and 24 (2 %) at expression level, which we implemented with hook
methods (or in 121 cases with AspectJ-specific call pointcuts).
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We faced also the problem that certain method parameters of the code base be-
longed to a feature and should be removed when the feature is not selected. This
made it very difficult to refactor some features in Berkeley DB, because composi-
tional approaches do not permit method-signature changes. We first noticed the
problem in feature Transactions, which provides a parameter with transaction
context to 59 methods. In variants without feature Transactions, these param-
eters are not needed. We invested significant effort to implement workarounds
for these 59 methods [see Kästner et al., 2008a]. Afterward, we did not attempt
to refactor any further features that involved a large amount of parameters. Espe-
cially feature Locking appeared unmanageable, because it changes the signature
of 289 methods by introducing parameters such as locker, lockMode, or lockType.
Decomposing the feature Locking would either result in utterly unreadable code
or require a complete preliminary redesign of the whole database engine.

Together, workarounds for fine-grained extensions of statements, expressions,
and parameters made the decomposition very difficult and the implementation
tedious. Though it was possible to extract most features, code quality suffered
and the resulting code base became hard to understand and maintain.

The optional feature problem. Features in Berkeley DB were not as independent
in their implementation as we expected. Conceptually, most features are optional
and independent; there are only 16 constraints between our 38 features in the
feature model. However, their implementations often interacted, making decom-
position difficult. With manual and automated source code analysis, we found
53 dependencies between the extracted aspects [Kästner et al., 2009c]. Due to
such implementation dependencies, many variants that are valid according to the
feature model cannot be generated. For example, even though Statistics and
Transactions are optional and independent in the feature model, the implemen-
tation of Statistics refers to the implementation of Transactions, so we cannot
generate variants with Statistics but without Transactions.

Ignoring all implementation dependencies is not desirable, because this would
restrict the ability to generate tailored variants drastically. In pure numbers the re-
duction from 3.6 billion to 0.3 million possible variants may appear significant but
acceptable considering that still many variants are possible. Nevertheless, when
having a closer look, we found that especially in the core of Berkeley DB, there are
many implementation dependencies. For example, selecting only feature Statis-
tics (which is optional and completely independent in the feature model) requires
the implementation of Transactions and of 14 other features due to direct and
indirect implementation dependencies. Thus, features such as Statistics, Trans-
actions, Memory Management, or several database operations must be selected
in virtually all variants. These implementation dependencies prevent many useful
variants; so many feature combinations that are valid in the feature model cannot
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be generated. Thus, we have to use larger and inefficient variants in many sce-
narios. The remaining variability of 0.3 million variants is largely due to several
small independent debugging, caching, and I/O features. Considering all imple-
mentation dependencies, this software product line has little value for generating
variants tailored to concrete use-cases without statistics, without transactions, or
as read-only database.

As described in Section 3.1.5, we could rewrite the source code to remove
implementation-specific dependencies, for example, by adding additional mod-
ules. However, we found that such rewrites require much additional effort. We
started with 9 additional modules to eliminate all direct implementation depen-
dencies of the feature Statistics. The 9 modules alone required over 200 addi-
tional extensions. Of 1867 LOC of the statistics feature, we extracted 76 % into
additional modules. The refactoring was tedious and required between 15 min-
utes and two hours for each additional module depending on the amount of code.
Due to the high effort, we refrained from adding a module for every implemen-
tation dependency and left several dependencies in the source code, which was
in contrast to our goal that variability should not be restricted by technical con-
straints [see Kästner et al., 2009c].

Modularity and tools. The resulting implementation is modular in the sense that
every feature is implemented cohesively in one (or multiple) aspects in a dedi-
cated directory. Thus, we can directly trace a feature from the feature model to its
implementation.

In literature, AspectJ is criticized for insufficient modularity [e.g., Sullivan et al.,
2005; Aldrich, 2005; Steimann, 2006; Steimann et al., 2010]; several other composi-
tional approaches have similar problems. From our experience with Berkeley DB,
we can confirm this criticism. Although each feature’s code is localized in a co-
hesive module, understanding a feature just by looking at its module is typically
possible only for small features. To understand a larger feature (more than 100
lines of code or 10 extensions in our case [Kästner et al., 2007a]), typically, we have
to look also at the base code and at other features and develop a mental model how
they behave when composed. Tool support as the Eclipse plug-in AJDT [Clement
et al., 2003] assists in this process by adding facilities to visualize the composition
and navigate between code fragments of the base code and aspects. In Berkeley
DB, we eventually depended on such tool support for understanding and mainte-
nance.

In our experience, modularizing features was beneficial regarding traceability,
but – at least in our implementation – not regarding information hiding or modu-
lar reasoning. To understand the implementation of a feature, we still had to read
significant portions of the base code. We conjecture that there are better feature im-
plementations, in which modularity plays to its strength. However, with regard to
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crosscutting features, extracted from a legacy application with many fine-grained
extensions and several workarounds, we did not experience a substantial benefit
from modularity but had to rely on tools anyway.

Discussion

All in all, our case study demonstrates that implementing software product lines
with compositional approaches is feasible, even when crosscutting, fine-grained
implementations are involved. However, at the same it shows that contemporary
compositional languages like AspectJ cannot play to their strength. Modular im-
plementation requires a high effort (especially when workarounds are required
for fine-grained extensions and when features interact) and can be difficult to un-
derstand and maintain. Of the promised benefits of separations of concerns and
modularity, only traceability is really achieved in our experience.

As discussed in [Kästner et al., 2007a, 2008a, 2009c], there are some threats to ex-
ternal validity, that is, whether our experience can be generalized to other product
line projects. First, we feature-refactored features from an existing application; the
legacy code might contribute to the high number of crosscutting and fine-grained
extensions. Second, we decomposed very small features, to provide a highly con-
figurable system, whereas in practice often larger subsystems are considered as
features. Third, our case study covers one specific domain, which is known to be
very complex. We believe that our decomposition of Berkeley DB might have been
more challenging than usually, but crosscutting features and fine-grained exten-
sions are common in software product lines in general. Our experience with other
case studies (see Appendix A.1) and reports from other software product lines
developed with compositional languages [e.g., Hunleth and Cytron, 2002; Batory
et al., 2004; Tešanović et al., 2004; Zhang and Jacobsen, 2004; Lopez-Herrejon et al.,
2005; Figueiredo et al., 2008] corroborate this view.

Finally, some limitations (granularity and multiple dimensions) are conceptual.
New compositional languages will have the same fundamental limitations. Our
experience with Berkeley DB motivated us to look into different implementation
concepts, which we discuss next.

3.2. Annotative approaches

Annotative approaches implement product lines by annotating code fragments
with features in a common code base. They generate variants mainly by removing
annotated code fragments, which is sometimes described also as negative variabil-
ity. In contrast to compositional approaches, features are not modularized. The
most common form of such annotations are #ifdef and #endif directives of the C
preprocessor cpp to conditionally remove feature code before compilation. For ex-
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ample, cpp is used to implement variability within the original C implementation
of Berkeley DB, in which a user can configure 11 different features at compile-
time. An excerpt from Berkeley DB with #ifdef directives for the features Queue

and Diagnostic is shown in Figure 3.6.

1 static int __rep_queue_filedone(dbenv, rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 #ifndef HAVE_QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 return (__db_no_queue_am(dbenv));
9 #else

10 db_pgno_t first, last;
11 u_int32_t flags;
12 int empty, ret, t_ret;
13 #ifdef DIAGNOSTIC
14 DB_MSGBUF mb;
15 #endif
16 // over 100 lines of additional code
17 #endif
18 }

Figure 3.6.: Code excerpt of Berkeley DB.

Historically, the C preprocessor cpp has been designed for metaprogramming.
Of its three capabilities, file inclusion (#include), macros (#define), and conditional
compilation (#ifdef), we focus only on conditional compilation, which is routinely
used to implement variability. There are many preprocessors that provide simi-
lar facilities. For example, for Java ME, the preprocessor Antenna5 is often used
and supported in development environments such as NetBeans; the developers of
Java’s Swing library developed their own preprocessor Munge;6 the languages Pas-
cal, Fortran, and Erlang have their own preprocessors; and conditional compila-
tion is a language feature in C#, Visual Basic, D, PL/SQL, Adobe Flex, and others.
Additionally, there are several independent, partly configurable preprocessors (or
more general software-configuration-management tools [Conradi and Westfechtel,
1998]) such as GPP - Generic Preprocessor,7 GNU M4,8 SPLET [Saleh and Gomaa,
2005], XVCL [Zhang and Jarzabek, 2004], or those included in the Version Edi-
tor [Atkins et al., 2002] or the commercial product-line tools pure::variants [Beuche
et al., 2004] and Gears [Krueger, 2002].

Annotations do not only have to be textual preprocessor statements, but can
be also stored separately as in FEAT [Robillard and Murphy, 2002] and our tool

5http://antenna.sf.net
6http://weblogs.java.net/blog/tball/archive/munge/doc/Munge.html
7http://www.nothingisreal.com/gpp/
8http://www.gnu.org/software/m4/
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CIDE [Kästner et al., 2008a]. Annotations can not only mark source code, but also
on other artifacts. For example, the tools fmp2rsm by Czarnecki and Antkiewicz
[2005], FeatureMapper by Heidenreich et al. [2008b], and the model checking ap-
proaches by Lauenroth et al. [2009] and Gruler et al. [2008] use annotations on
model elements. In these cases, variants of the model are generated by evaluating
annotations and removing corresponding elements.

Finally, annotative approaches cannot only be used to configure variants stati-
cally before compilation, but also to enable or disable features at runtime. In the
simplest case, the according code fragments are guarded by if statements (or other
forms of annotations are transformed into if statements by a compiler). There are
also annotative approaches that provide direct language support for such run-
time changes, for example rbFeatures in Ruby [Günther and Sunkle, 2009b] and
FeatureJ [Sunkle et al., 2009].

Annotative approaches, and especially traditional preprocessors, are easy to
use, but have several problems, for which they are heavily criticized in literature
as summarized in the claim “#ifdef Considered Harmful” [Spencer and Collyer,
1992] and in the colloquial term “#ifdef hell” [Lohmann et al., 2006]. Numer-
ous studies discuss the negative effect of preprocessor usage on code quality and
maintainability [e.g., Spencer and Collyer, 1992; Krone and Snelting, 1994; Favre,
1995, 1997; Ernst et al., 2002; Pohl et al., 2005; Adams et al., 2008]. Many academics
recommend limiting or entirely abandoning the use of preprocessors in favor of
compositional approaches. There is little work on how preprocessors could be im-
proved. In the following, we provide a survey of the problems (indicated by “–”)
caused by contemporary annotative approaches (especially conditional compila-
tion with preprocessors), but we also highlight their benefits (indicated by “+”).

3.2.1. Separation of concerns (–)

Separation of concerns and related issues of modularity and traceability are usu-
ally regarded as the biggest problems of preprocessors. Instead of separating all
code that implements a feature into a separate module (or file, class, package,
etc.), a preprocessor-based implementation scatters feature code across the entire
code base where it is entangled closely with the base code and the code of other
features. For example, in a database management system, code to implement
transactions (acquire and release locks, commit and rollback changes) is scattered
throughout the entire code base and tangled with code responsible for recovery
and other features. Even when feature code is roughly separated, and only anno-
tations remain as marker where to include it, these annotations are scattered and
tangled.

In literature, the reduced degree of separation of concerns is held responsible for
a lot of problems. To understand the behavior of a feature, we need to search the
entire code base instead of just looking into a single module; to understand a local
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1 #if defined(HAVE_STACK_LIMIT) \
2 || (!defined(HAVE_SIGALTSTACK) && defined(HAVE_SIGSTACK))
3 # define HAVE_CHECK_STACK_GROWTH
4 ...
5 #endif

Figure 3.7.: Example of scattered configuration knowledge in Vim (os_unix.c, Lines 635–639).
Instead describing feature dependencies in a feature model, a feature is activate based
on some condition in the middle of a code file.

code fragment, we need to reason about the global program [Favre, 1995, 1997].
Even just removing an obsolete feature from the source code becomes a tedious
task [Favre, 1997; Baxter and Mehlich, 2001]. Tangled code of other features dis-
tracts the programmer in the search. There is no direct traceability from a feature
as domain concept to its implementation [Kästner et al., 2008b]. Tangled code also
is a challenge for distributed development, because developers working on differ-
ent concerns have to edit the same files. In general, Favre [1997] and Muthig and
Patzke [2002] claim that annotations work fine in small projects, but do not scale
to large software product lines with hundreds of features. Actually, annotations
are used and maintained in many large scale product lines such as the Linux ker-
nel in practice [Liebig et al., 2010]; but developers report many annotation-related
problems [e.g., Tartler et al., 2009].

In contemporary preprocessor implementations, scattering does not only affect
the source code, but also the configuration knowledge. Configuration parame-
ters can be provided as parameters or as #define directives in a configuration file,
but often #ifdef directives refer also to flags that are defined somewhere inside
the source code, possibly depending on some other features, as exemplified in
Figure 3.7. Such scattering of configuration knowledge can make it hard to under-
stand when or why a certain code fragment is included in a variant [Favre, 1997;
Pearse and Oman, 1997; Hu et al., 2000; Anastasopoules and Gacek, 2001; Muthig
and Patzke, 2002; Singh et al., 2007]. Also consistency checks between feature
model and features used inside annotations are often missing [Tartler et al., 2009].

3.2.2. Obfuscation (–)

Except for few languages (e.g., C#, D, Adobe Flex), annotations are not part of the
language but added on top by an external tool. The host language and annotations
are intermixed in the same file. Especially, when annotations are used at fine
granularity and are strongly scattered, it can be difficult to follow the control flow
in the host language [Pearse and Oman, 1997; Adams et al., 2008]. According to
Lohmann et al. [2006], such source code is sometimes referred to as “#ifdef hell”
among developers. Favre [1997] observed: “When human readers are not able to
take into account all the variants at a time, they tend to go over the same piece
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1 class Stack {
2 void push(Object o
3 #ifdef SYNC
4 , Transaction txn
5 #endif
6 ) {
7 if (o==null
8 #ifdef SYNC
9 || txn==null

10 #endif
11 ) return;
12 #ifdef SYNC
13 Lock l=txn.lock(o);
14 #endif
15 elementData[size++] = o;
16 #ifdef SYNC
17 l.unlock();
18 #endif
19 fireStackChanged();
20 }
21 }

Figure 3.8.: Java code obfuscated by fine-grained annotations with cpp [Kästner et al., 2008a].

of code repeatedly, trying to understand only a few cases each time by means of
partial readings. [. . . ] This repetitive task is tedious.”

Corresponding #ifdef and #endif directives may be hundreds of lines apart, and
they can be nested arbitrarily. Already understanding the structure of annotations,
without considering the annotated code, can be tedious [Favre, 1997; Pohl et al.,
2005]. Long and nested annotations can even make it difficult to determine to
which feature (or feature combination) a local code fragment belongs [Krone and
Snelting, 1994; Pearse and Oman, 1997; Anastasopoules and Gacek, 2001].

When reading source code, many #ifdef and #endif directives distract from the
actual code and can destroy the code layout [Pearse and Oman, 1997]. With cpp,
every directive must be placed in its own line. There are cases, in which prepro-
cessor directives entirely obfuscate the source code. For example, in Figure 3.8,
we illustrate a preprocessor-based implementation of our fine-grained extensions
from Figure 3.2 (p. 23). In this example, we need eight additional lines just for
preprocessor directives. Together with additional line breaks, we need 21 instead
of 9 lines for this code fragment. Although this example appears extreme at first,
similar code can be found in practice. For example, in Figure 3.9, we illustrate the
overwhelming amount of preprocessor directives in Femto OS,9 a small real-time
operating system.

9http://www.femtoos.org/
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Figure 3.9.: Preprocessor directives in the code of Femto OS: highlighted lines represent prepro-
cessor directives such as #ifdef, white lines represent the remaining C code, comment
lines are not shown.
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3.2.3. Error proneness (–)

Using annotations to implement optional features can easily introduce errors that
can be very difficult to detect. The crosscutting nature of feature implementation is
hard to understand and maintain, and thus prone to errors in general [Eaddy et al.,
2008]. In contrast to compositional approaches, there is no way to check features in
isolation. Furthermore, preprocessors cause additional challenges, even without
considering macro expansion, which according to a study by Ernst et al. [2002] is
a significant contributor to errors.

Contemporary preprocessors, such as cpp, make it difficult to detect even sim-
ple syntax errors. They operate at the level of characters or tokens, without in-
terpreting the underlying code. Thus, developers are prone to simple errors, like
annotating a closing bracket but not the opening one, as illustrated in the adapted
code excerpt from Berkeley DB in Figure 3.10 (the opening bracket in Line 4 is
closed in Line 17 only when feature Have_Queue is selected, all other variants
contain a syntax error). We introduced this error deliberately, but such errors can
easily occur in practice and are difficult to detect. The scattered nature of feature
implementations intensifies this problem. The worst part is that compilers cannot
detect such syntax errors, unless the developer (or customer) eventually builds a
variant with a problematic feature combination (without feature Have_Queue in
our case). However, since there are so many potential variants (2n variants for n
independent optional features), we might not compile variants with a problematic
feature combination during initial development. Simply compiling all variants is
also not feasible due to their high number, so even simple syntax errors might
go undetected for a long time. The bottom line is that errors are found only late
in the development cycle, when they are more expensive to fix. Beyond syntax
errors, also type errors and semantic errors can occur, as we discuss in detail in
Chapter 5.

Favre [1995] and Baxter and Mehlich [2001] argue that preprocessors, due to
their simplicity, invite developers to make ad-hoc extensions and use “quick
and dirty” solutions, instead of restructuring the code. Features are steadily
added in a patch-by-patch fashion, but never removed or reflected in the design.
Many feature combinations have never been tested, and often do not even make
sense [Spencer and Collyer, 1992]. This problem applies to compositional ap-
proaches as well, but the ad-hoc nature of preprocessors intensifies it significantly.
This leads to many annotations and deep nesting such that, according to Krone
and Snelting [1994], “even experienced programmers will have difficulties to ob-
tain some insight into the configuration structure, and when a new configuration
variant is to be covered, the introduction of errors is very likely.” Additionally,
diagnostic tools are missing [Pearse and Oman, 1997; Hu et al., 2000].
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1 static int __rep_queue_filedone( dbenv, rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 #ifndef HAVE_QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 return (__db_no_queue_am(dbenv));
9 #else

10 db_pgno_t first, last;
11 u_int32_t flags;
12 int empty, ret, t_ret;
13 #ifdef DIAGNOSTIC
14 DB_MSGBUF mb;
15 #endif
16 // over 100 lines of additional code
17 }
18 #endif

Figure 3.10.: Adapted code excerpt of Berkeley DB, which contains a syntax error in variants
without Have_Queue.

3.2.4. Simple and uniform programming model (+)

Despite all criticism, there are several benefits of annotative approaches, to which
some of their success in practice can be attributed. First, annotative approaches
have a simple programming model: Code is annotated and removed. Preproces-
sor mechanisms are easy to use and understand. In contrast to compositional
approaches, no new languages, tools, patterns, or processes have to be learned.
Adoption is easy; developers are often already familiar with preprocessors. In
many languages, preprocessors are already included; otherwise they can be added
with lightweight tools.

Most annotative approaches are language independent and provide a uniform ex-
perience when annotating different code fragments and artifact types. The same
annotation mechanisms can be used uniformly for annotating code fragments of
different granularity, such as entire files, methods, statements, and parameters.
Preprocessors, such as cpp, can not only be used on C code but also on Java code
or HTML files. Instead of providing a tool or model for every language, each
with different mechanisms (like AspectJ for Java, AspectC for C, Aspect-UML for
UML), annotative approaches add the same simple model to all languages.

The simple and uniform programming model with lightweight tools is the main
advantage of preprocessors which drives professionals to still adopt them despite
all criticism [Favre, 1997; Clements and Krueger, 2002; Muthig and Patzke, 2002].
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3.2.5. Fine granularity (+)

Another advantage of annotative approaches is that, conceptually, they can mark
code fragments at arbitrary levels of granularity. They can annotate entire files,
individual tokens, and everything in between. We simply introduce markers at
the exact positions that should be extended. Although cpp-style preprocessors can
annotate only whole physical lines, they are sufficient for even the finest exten-
sions due to the ability to isolate language constructs in separate lines in most
languages. In Figure 3.8 (p. 37), we illustrate how statements in the middle of a
method and even parameters and parts of expressions can be annotated. Finally,
compared to compositional approaches, annotations do not share the conceptual
limitations regarding ordered statements and fixed signatures because they indi-
cate the final position in the base code; there is no notion of a composition order.

3.2.6. Variability despite feature interactions (+)

Finally, preprocessors can handle multiple interacting optional features natu-
rally [Kim et al., 2008]. Instead of being forced to create many additional modules,
nested annotations provide an intuitive mechanism to include code only when two
or more features are selected. In Figure 3.11, we show the annotation-based im-
plementation of the expression problem (cf. Sec. 3.1.5). From this example, we can
select every feature combination and can create all variants, without splitting the
features into many small modules.

Furthermore, a (dominant) decomposition is still possible. Annotating code
does not prohibit traditional means of separation of concerns. In fact, it is reason-
able to still decompose the system into modules and classes and use preprocessors
only where necessary. For example, in Figure 3.11, we decomposed the expression
problem into classes Add and Pow. Preprocessors add additional expressiveness,
where traditional modularization techniques come to their limits regarding cross-
cutting concerns or multi-dimensional separation of concerns.

3.3. Other approaches

There are some approaches, which do not fit into our classification of composi-
tional and annotative approaches. For completeness, we give a brief overview.

First, there are a number of hybrid approaches that share characteristics of both
compositional and annotative approaches. They are based mostly on a composi-
tion process, but use annotations to determine the location where to inject code.
For example, AspectJ can advise Java 1.5 annotations [Kiczales and Mezini, 2005b];
advice is still woven in a compositional manner, but the location is picked by an
explicit annotation. Similarly, invasive software composition can use annotations
inside a module for composition [Aßmann, 2003]. Further examples of such hybrid
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1 #ifdef ADD
2 class Add extends Expr {
3 Expr left, right;
4 Add(Expr l, Expr r)
5 { left=l; right=r; }
6 #ifdef EVAL
7 double eval() {
8 return left.eval() +
9 right.eval();

10 }
11 #endif
12 #ifdef PRINT
13 void print() {
14 left.print();
15 System.out.print("+");
16 right.print();
17 }
18 #endif
19 }
20 #endif

21 #ifdef POWER
22 class Pow extends Expr {
23 Expr base, exp;
24 Pow(Expr b, Expr e)
25 { base=b; exp=e; }
26 #ifdef EVAL
27 double eval() {
28 return Math.pow(base.eval(),
29 right.eval());
30 }
31 #endif
32 #ifdef PRINT
33 void print() {
34 left.print();
35 System.out.print("^");
36 right.print();
37 }
38 #endif
39 }
40 #endif

Figure 3.11.: Preprocessor-based implementation of the expression problem (excerpt).

approaches are explicit programming [Bryant et al., 2002] and metaprogramming with
traits [Turon and Reppy, 2007]. Additionally, some approaches can exploit existing
language facilities as implicit annotations. For example, deliberately introduced
empty methods can be used as hooks for extensions (often used as workaround in
compositional approaches, cf. Sec. 3.1.4), or naming conventions can be employed
for extensions like “synchronize all methods starting with ‘sync_’”. The hybrid
approaches provide a trade-off between the respective advantages and limitations
of both groups, they cannot achieve full modularity and traceability (annotations
are still scattered), but they can make more fine-grained extensions and can be
easier to use. We will come back to this trade-off in Chapter 6.

Second, in practice, sometimes version control systems are used to implement
variability. Developers can use development branches or similar constructs to
develop different variants [Conradi and Westfechtel, 1998]. However, such imple-
mentation approach is typically used only at a very early adoption level, because
it does not scale well [Staples and Hill, 2004]. Instead of implementing features,
developers implement variants. It is not possible to mix and match features to
create a new variant. During development and maintenance, changes must be
propagated to all variants (either manually or with merging tools of the version
control system).

Third, components (and their modern distributed incarnation as services) can be
used to build product lines [Bass et al., 1998; Pohl et al., 2005; Lee et al., 2008].
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Domain engineering is used to determine which code fragments are to be reused
in a domain and should therefore be implemented as a component (thus solving
the problem how to find the right size of a component in one domain [Biggerstaff,
1994, 1998; Meyer, 1997]). Developers can then reuse these components when they
implement a variant. In general, components can be classified as a compositional
approach; they have the same benefits and limitations. However, in contrast to
frameworks and other compositional approaches, each variant is implemented in-
dividually. There may be a high degree of reuse, lowering the development costs
of each variant, but there is still significant implementation effort in application en-
gineering. In line with generative programming [Czarnecki and Eisenecker, 2000],
we focus on approaches that enable full automation in application engineering,
therefore, we do not classify components as compositional approach.

Fourth, generators, metaprogramming, and model-driven development also can be
used, such that a developer provides a specification as input (often in a domain
specific language) and the generator produces an according variant. Depending of
the point of view, most compositional approaches can be regarded as generator or
model transformation (feature selection provides the input as model or domain-
specific language), but there are more powerful tools with capabilities beyond
just composing modules. For example, program transformation systems, such as
Stratego/XT [Visser, 2004], DMS [Baxter et al., 2004] or the Domain Workbench (a.k.a.
Intentional Programming) [Simonyi, 1995; Simonyi et al., 2006], can perform arbi-
trary modifications, typically including removal or complete restructuring. Sim-
ilarly, template and frame engines, such as XVCL [Zhang and Jarzabek, 2004],
Spoon [Pawlak, 2006], or template metaprogramming [Czarnecki and Eisenecker,
2000, Ch. 10], provide powerful (in some cases even Turing complete) mechanisms.
Furthermore, they integrate well with other compositional approaches [Trujillo
et al., 2007]. However, this expressiveness comes at a price of increased complex-
ity; therefore, they are not frequently adopted in practice, except for few domains.
Usability of generators or how to give certain safety guarantees are interesting
research topics [e.g., Huang et al., 2005; Huang and Smaragdakis, 2008; Cordy,
2009], but outside the scope of this thesis. We focus on simpler and more re-
stricted composition and annotation mechanisms.

Fifth, we can use various build tools to implement variability. For example, in
tools such as make or ant, we can include or exclude files from compilation based
on configuration options. For example, Staples and Hill [2004] use different build
scripts and some variant-specific source-code files to compile different variants of
a software product line. Furthermore, build tools can conditionally call arbitrary
additional tools during the build process. The commercial product lines tools
pure::variants and Gears also fall into this category. Depending on how they are
used, we can classify build tools either as a very coarse grained compositional
approach (assembling files), as a coarse grained annotative approach (excluding
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files), as just a tool to steer other variability mechanisms (calling preprocessors,
composers, transformation engines, or compilers), or as a variability mechanism
of its own.

Finally, although not aimed at software product lines, there are several ap-
proaches that aim at exploring crosscutting concerns in scattered implementations.
For example, Robillard and Murphy [2002] propose concern graphs to explore and
describe concerns in scattered implementations. In their implementation in FEAT,
users can manage a list of concerns and assign code fragments to these concerns.
The focus lies on assisting a developer in finding all code fragments belonging
to a concern, but once they are assigned, FEAT displays a list of all scattered im-
plementations assigned to a concern in a separate window so that developers can
navigate between them. Similarly, users can tag code fragments with concerns
as software plans in Spotlight, and subsequently navigate between tagged code
fragments with special views [Coppit and Cox, 2004; Coppit et al., 2007]. Fur-
thermore, code exploration tools, such as AspectBrowser [Griswold et al., 2001] and
JQuery [Janzen and De Volder, 2003], use pattern expressions or queries to find
code fragments belonging to a certain feature. With a suitable query, the search
result describes the entire scattered implementation of a feature; a user can then
quickly navigate between the search results. The main difference compared to
annotation-based implementations is that in all these approaches annotations are
not used to implement variability; these tools are not designed to generate vari-
ants. Instead, annotations are used only to document scattered concerns and to
navigate between them. This raises problems similar to documentation in general.
First, developers have little incentive to update annotations when the implemen-
tation changes. Second, incorrect or incomplete annotations have no immediate
effect. In contrast, annotations used for product-line implementation are used pri-
marily for variability; reusing them for views and navigation is a secondary goal.
Incorrect or missing annotations result in errors in the generated variants; error
detection mechanisms as described in Chapter 5 can be used to enforce consis-
tency.

3.4. Summary, perspective, and goals

Compositional and annotative approaches are two large groups that cover not all,
but most common product-line implementation approaches. Roughly, research
focuses on compositional approaches to devise new languages to implement and
compose modular features, whereas annotative approaches are pragmatic solu-
tions commonly used in practice, in which code fragments are annotated and
removed to generate variants.

In Table 3.1, we show a summary of the discussed benefits and limitations of
both groups. It becomes apparent that both groups are almost complementary
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Criteria Compositional approaches Annotative approaches

Modularity achieved in some
approaches (+/–)

no perceivable form of
modularity (–)

Traceability direct traceability to
module (+)

scattered and tangled
code (–)

Language integr. direct language support,
disciplined (+)

external ad-hoc tools, un-
disciplined, obfuscated (–)

Errors modular error detection to
some degree (+/–)

prone even to syntax
errors (–)

Granularity coarse granularity, often
requires workarounds (–)

fine granularity (+)

Optional feature pr. significant overhead,
additional modules (–)

straightforward
solution (+)

Uniformity usually language
dependent (–)

language independent (+)

Adoption difficult adoption, new
languages, new tools (–)

easy to use, lightweight
tools (+)

Table 3.1.: Overview of benefits and limitations of compositional and annotative approaches.

regarding the discussed criteria. It remains important to point out that the ta-
ble reflects our point of view as outlined before and depends on the criteria we
selected (and their perceived impact) and on the groups we formed.

Our personal experience with Berkeley DB has discouraged us from using com-
positional approaches for practical product-line implementation. In our experi-
ence, they are hard to use and some promised benefits like modularity are not
achieved to full potential; it is very difficult to convince industry to adopt compo-
sitional approaches. As discussed, some limitations of compositional approaches
(granularity, optional feature problem) are even conceptual and cannot be solved
with just a new language or composition tool.

Hence, instead of improving compositional approaches (which we still pursue
with partners in a different, parallel line of research [e.g., Apel et al., 2008c,e,
2009b, 2010; Kuhlemann et al., 2009b; Steimann et al., 2010]), we take a different
path in this thesis: Our goal is to improve annotative approaches that are already
broadly used in practice. Annotative approaches have hardly received any at-
tention in research. Many preprocessors were designed in the 70s and have not
changed much since. We address most of the discussed drawbacks, and propose a
novel perspective to see annotative approaches as virtual separation of concerns. Al-
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though, we cannot provide real modularity with benefits as separate compilation
or modular type checking, we show how annotative approaches can be improved
regarding traceability and obfuscation in Chapter 4, and regarding error detec-
tion in Chapter 5. In Chapter 6, we return to the comparison of compositional
and annotative approaches and set the proposed improvements into perspective;
finally, we discuss how and to what degree, we can integrate compositional and
annotative approaches.
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This chapter shares material with the ICSE’08 paper “Granularity in Software Prod-
uct Lines” [Kästner et al., 2008a] and the ViSPLE’08 paper “Visualizing Software
Product Line Variabilities in Source Code” [Kästner et al., 2008b].

In the previous chapter, we criticized annotative approaches for their subop-
timal separation of concerns, missing traceability, missing language support to
express variability, and tendency to obfuscate source code. All of these problems
make it difficult to understand and maintain annotation-based implementations.
In this chapter, we address these problems with different forms of tool support.
Although, our approach still relies on scattered annotations, tool support emulates
modularity.

We present and discuss a number of ideas to improve preprocessors. First, we
integrate feature models into our preprocessor to encapsulate and document con-
figuration knowledge. Second, we propose views to emulate benefits of modular
implementations, so that a developer can directly trace a feature to its (scattered)
implementation. Third, we propose a different visual representation for annota-
tions to avoid the obfuscated source code often associated with preprocessors. We
conclude with an empirical evaluation of selected facets of our suggestions. With
these ideas and solutions we intend to initiate a discussion about better annotative
approaches. In isolation, all proposed improvements are known in literature in
some form (see discussion of related work in Section 4.5), but in their combina-
tion, we believe that we can lift annotation-based implementation to a level that
can compete with compositional approaches.

We have implemented and integrated all discussed forms of tool support in
our prototype product-line tool called CIDE (originally for colored integrated de-
velopment environment). CIDE is an Eclipse plug-in that supports annotations on
code fragments, but that also integrates a feature model to reduce scattering of
configuration knowledge, provides views to emulate modularity, and represents
annotations visually to reduce code obfuscation. CIDE is available for download
at http://fosd.de/cide.

4.1. Integrating a feature model

A first problem, which is easy to fix, is the scattering of configuration knowledge
in annotation-based implementations (cf. Sec. 3.2.1). In the C preprocessor cpp,
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#ifdef directives refer to flags. Developers may or may not define flags in other
code fragments, in central header files or configuration files, or as command line
parameter to the compiler. There are no consistency checks for flags used in anno-
tations. Without external documentation, it is not possible to distinguish whether
a flag’s definition is missing by accident or on purpose. Reasoning about annota-
tions – for example, determining which decisions lead to a selection of a specific
code fragment [Hu et al., 2000; Anastasopoules and Gacek, 2001] or whether a
code fragment is included in at least one variant [Tartler et al., 2009] – is tedious
and difficult to automate.

In software product lines, often feature models are used to describe features and
their relationships (cf. Sec. 2.3). This way, configuration knowledge is coherently
described in one model. For many forms of feature models, automated-reasoning
approaches have been developed, which can, among others, determine valid fea-
ture combinations or dead features.

Many projects with annotation-based implementations do not maintain a fea-
ture model. Even if they do, the mapping between feature model and annotations
in the source code is usually loose. Most preprocessors do not consider the feature
model, and most feature modeling tools do not consider the implementation. For
example, Tartler et al. [2009] report how variability (implemented with cpp) is man-
aged in the Linux kernel: The kernel developers maintain a model of all features
(referred to as configuration options) and their dependencies with the kconfig tool
set. When generating a variant, a user selects features, then kconfig checks whether
this selection respects all feature dependencies and writes a corresponding C file
with a #define directive for every selected feature. This configuration file is used
subsequently to compile the kernel variant. However, there are more flags used
in #ifdef directives than defined in the feature model. Features are implemented
first, and added only later to the feature model.

We address consistency problems with a more rigorous preprocessor. Possible
variability must be documented in a feature model, and the preprocessor must be
aware of this feature model. It must reject every annotation as error that refers
to features not mentioned in the feature model. The other way around, source
code editors can use the feature model to assist developers with annotations, for
example, provide a list of all features or determine which features must be selected
to include a specific code fragment. With such a preprocessor, we prevent the
problems caused by scattered configuration knowledge.

4.1.1. Implementation

In our prototype implementation in CIDE, we strictly enforce consistency between
feature model and implementation. By default, a user can annotate code fragments
only with features that are part of the feature model (see Screenshot in Figure 4.1).
To annotate a code fragment with a new feature, developers must first add this
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Figure 4.1.: Annotations in CIDE are always based on the feature model (here shown in a window
on the right). Users assign annotations using the context menu. They can select only
from existing features, in this case Eval, Neg, Numbers, Plus, and ToString; the
menu “New Feature...” adds a new feature to the feature model.

feature to the feature model, before they can select it to assign an annotation. CIDE
manages all annotations in its tool infrastructure.

CIDE is open for different kinds of feature models. In the simplest case, all fea-
tures have only Boolean values (default case in CIDE). In a variant, each feature
is either selected or not selected. This is equivalent to cpp annotations, in which
only the predicates #ifdef and #ifndef are used. Automated reasoning about such
annotations is possible and efficient with SAT solvers and tractable even for very
large feature models [Batory, 2005; Mendonça et al., 2009] (which we use in Sec-
tion 5.3). More complex feature models are possible, such as feature models with
attributes. For example, to cover the cpp annotation “#if SIZEOF_INT <= 2”, fea-
tures can have numerical attributes. This expressiveness is supported by several
kinds of feature models [e.g., Czarnecki et al., 2002; Benavides et al., 2005], and au-
tomated reasoning is still possible with constraint-satisfaction-problem solvers or
others [e.g. Benavides et al., 2005]. In CIDE, we provide a plug-in to integrate the
more expressive feature model of the commercial pure::variants product [Beuche
et al., 2004]. With this plug-in, a user can specify more complex annotations in
textual form, but still a dialog checks these annotations and accepts only well-
formed ones that refer only to features that are defined in the feature model.

As alternative to an implementation of a new annotation mechanism in a con-
trolled environment as CIDE, we could implement also a preprocessor for tra-
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ditional textual annotations (e.g., #ifdef directives). Such a preprocessor would
check consistency between feature model and implementation during the gener-
ation process. For example, since 2007, the source code of the Linux kernel con-
tains a simple script to check this consistency for #ifdef flags [Tartler et al., 2009].
However, when implementing a backward compatible cpp-style preprocessor, it
is necessary to consider that annotations in cpp are not used only for variabil-
ity, but also for comments, to avoid redefinitions, to prevent multiple inclusion,
and others [Pearse and Oman, 1997; Ernst et al., 2002]. In this line, Sutton and
Maletic [2007] suggest namespaces or naming conventions for preprocessor flags
to distinguish for which purpose preprocessor flags are used. Interestingly, the
developers of the Linux kernel adopted such naming pattern and named all flags
controlled by the feature model (a subset of all preprocessor flags) with the prefix
“CONFIG_” [Tartler et al., 2009].

4.1.2. Discussion

In our experience, most developers do not document variability. There is rarely a
list of all features in an annotation-based implementation, or even a feature model
that describes the relationship between features. Annotations are mostly an ad-hoc
mechanism.

In our search for open source Java ME applications implemented with the An-
tenna preprocessor, we found only a single application that documented variabil-
ity: the academic product line MobileMedia [Figueiredo et al., 2008]. And even in
this case, the feature model was not part of the source code distribution; the au-
thors published an excerpt in [Figueiredo et al., 2008] and sent us the full model
upon request. Even in this case, there was no explicit mapping between the name
of a feature in the feature model and the preprocessor flag used in the implemen-
tation. For example, “Music” in the feature model was implemented with the flag
“includeMMAPI”. This way, the feature model can serve as a helpful documenta-
tion, but not to automatically generate variants, to check consistency, or for further
analysis.

We see a tendency that some product-line developers are slowly picking up fea-
ture modeling. There are some recent industrial experience reports that describe
how product-line developers structured their preprocessor flags and recently con-
nected them to a feature model, for example, HP’s Owen product line for printer
firmware [Refstrup, 2009], Danfoss’ product line of frequency converters [Jepsen
and Beuche, 2009], or Wikon’s product line of remote control systems [Pech et al.,
2009]. Also the Linux kernel developers adopted an approach to describe fea-
tures (configuration options in their terminology) and their dependencies to some
degree [Tartler et al., 2009].

However, all these approaches integrate feature models only in one direction:
For a feature selection, the used tools create a configuration file that defines the
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according preprocessor flags, but they do not check that the preprocessor flags
used in the implementation conform to the flags used in the feature model. In
such setting, it is still possible to use preprocessor flags that are not controlled by
the feature model, either intentionally or by accident (e.g., caused by a typing error
in the feature’s name). We are only aware of one annotation-based implementation
that checks this consistency: In the Linux kernel, a script checks whether all used
preprocessor flags with the prefix “CONFIG_” are defined in the feature model.
However, Tartler et al. [2009] report that the kernel developers apparently do not
use the script and found at least 321 inconsistencies (conservative estimate). We
argue that, due to the ad-hoc nature of annotations, consistency should not be
left to the discipline of developers, but should be enforced directly by a rigorous
preprocessor or compiler.

For all our case studies implemented with CIDE (see Appendix A.1 for a full
list), we always provide a feature model. We require developers to model fea-
tures and their dependencies; the, we enforce consistency between features in the
feature model and annotations in the implementation. In our experience, main-
taining the feature model adds only minimal effort and integrates well into the
normal development process. It structures the problem, makes variability explicit,
and enforces consistency. As a side effect, it allows automated reasoning about
annotations, for example, we can detect dead code or determine which features
we need to select to include a certain code fragment.

4.2. Views

One of the key motivations of modularizing features is that developers can find
all code of a feature in one spot and reason about it without being distracted by
other concerns. Clearly, a scattered, preprocessor-based implementation does not
support this kind of lookup and reasoning, but the core question of traceability
(“what code belongs to this feature”) can still be answered by tool support in the
form of views.

A view shows an excerpt of the source code and hides distracting parts that are
not relevant for the task at hand. Furthermore, a view can contain code fragments
which are physically located in different places (in different parts of a file, in
different files, in different directories, etc.). This way, a developer can focus on the
code fragment shown in the view.

We propose two kinds of views, views on a feature and views on a variant [Kästner
et al., 2008b], discuss different design decisions, and present an implementation
in our prototype tool CIDE.
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4.2.1. View on a feature

A view on a feature (also called realization view by Heidenreich et al. [2008a])
shows the source code of one or more features (and some necessary context) and
hides everything else. That is, it hides all files and directories that do not contain
any code of this feature, and, inside files, it hides all code fragments that do not
belong to this feature. Such view is roughly equivalent to a modularized feature
in compositional approaches (without explicit interfaces).

In Figure 4.2b, we show a view on feature Eval of a preprocessor-based im-
plementation of the expression problem in Figure 4.2a (slightly modified from
Figure 3.11 with an additional library that provides functionality for all variants).
The view contains all files that include code fragments of feature Eval, that is,
classes Add and Pow are included, but not class MathLib since it does not contain
any feature code. Inside the included classes, the view hides unnecessary code
fragments (marked with “[...]”), and leaves only some necessary context (printed
italic and gray).

Selecting the necessary amount of context information is a difficult design de-
cision. With no or too little context, we cannot understand the code fragments
in isolation. In our example, a view, just on both eval functions would probably
not be very helpful in understanding the feature’s implementation. Therefore, we
leave the container class and annotations that affect the feature code as context.
As additional context information, we furthermore leave markers to indicate hid-
den code. When the context information is not sufficient, a user can expand the
view (i.e., include additional features) or switch back to the entire source code.
We present a possible algorithm to determine the context in Section 4.2.3.

Note that the provided context is similar to the overhead required by composi-
tional approaches. In compositional approaches, interfaces, method signatures, or
pointcuts provide the context to understand a code fragment and its relationship
to the remaining source code. For example, an implementation of feature Eval

with Jak would contain the class name in the declaration “refines class Add”, an
implementation with AspectJ would contain the class name as part of an inter-
type declaration or pointcut (cf. Fig. 3.1, p. 20). If such context information is
insufficient, also developers of compositional approaches have to look into other
modules (in analogy to expanding the view).

All in all, a view on a feature emulates some form of modularity. A developer
can quickly trace a feature from the feature model to its implementation summa-
rized in a view. It is also possible to provide a view on multiple features in the
same way. Finally, views provide a natural form of multi-dimensional separation
of concerns: A code fragment that belongs to multiple features (e.g., evaluating a
plus expression) is part of multiple views.
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1 #ifdef ADD
2 class Add extends Expr {
3 Expr left, right;
4 Add(Expr l, Expr r)
5 {left=l; right=r;}
6 #ifdef EVAL
7 int eval() {
8 return left.eval() +
9 right.eval(); }

10 #endif
11 #ifdef PRINT
12 void print() {
13 left.print();
14 System.out.print("+");
15 right.print(); }
16 #endif
17 }
18 #endif

19 #ifdef POWER
20 class Pow extends Expr {
21 Expr base, exp;
22 Pow(Expr b, Expr e)
23 { base=b; exp=e; }
24 #ifdef EVAL
25 int eval() {
26 return MathLib.pow(
27 base.eval(),
28 right.eval()); }
29 #endif
30 #ifdef PRINT
31 void print() {
32 left.print();
33 System.out.print("^");
34 right.print(); }
35 #endif
36 }
37 #endif

38 class MathLib {
39 static int pow
40 (int b, int e)
41 {
42 if (e<=0)
43 return 1;
44 return b *
45 pow(b, e-1);
46 }
47 //...
48 }

(a) Original source code.

1 #ifdef ADD
2 class Add [...] {
3 [...]
4 #ifdef EVAL
5 int eval() {
6 return left.eval() +
7 right.eval(); }
8 #endif
9 [...]

10 }
11 #endif

12 #ifdef POWER
13 class Pow [...] {
14 [...]
15 #ifdef EVAL
16 int eval() {
17 return MathLib.pow(
18 base.eval(),
19 right.eval()); }
20 #endif
21 [...]
22 }
23 #endif

(b) View on the feature Eval.

1 #ifdef ADD
2 class Add extends Expr {
3 Expr left, right;
4 Add(Expr l, Expr r)
5 {left=l; right=r;}
6 #ifdef EVAL
7 int eval() {
8 return left.eval() +
9 right.eval(); }

10 #endif
11 [...]
12 }
13 #endif

14 class MathLib {
15 static int pow
16 (int b, int e)
17 {
18 if (e<=0)
19 return 1;
20 return b *
21 pow(b, e-1);
22 }
23 //...
24 }

(c) View on a variant with features Add and Eval.

Figure 4.2.: Views on a annotation-based implementation of the expression problem. Omission
inside a file are marked with “[...]”, additional context is printed in gray and italics.
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4.2.2. View on a variant

A view on a variant shows the code of a given feature selection. This view contains
all code of selected features and hides code fragments from deselected features. It
is roughly equivalent to a variant generated by executing the preprocessor.

In Figure 4.2c, we exemplify a view on a variant in which only features Add

and Eval are selected. This view includes the class Add, but without its method
print (since feature Print is not selected). It hides the class Pow entirely, because it
is not included in the variant. Finally, the view contains the class MathLib, because
it is not annotated and hence included in all variants. In this view, we can directly
see how features Add and Eval are connected. For example, in this case, the fields
left and right are used in Eval but declared in feature Add.

A view on a variant is similar to a view on multiple features, but there are three
differences.

1. Code fragments without annotations are included in all views on a variant,
but never in views on a feature (except partly as context information). We
can consider such code without annotations as part of a feature Base that is
included in all variants (and thus in all views on a variant).

2. A code fragment in nested annotations, which belongs to multiple features,
is included in a view on a feature if any of the annotated features is selected,
but included in a view on a variant only if all annotated features are selected.
The rational is that a view on a feature shows the entire code of a feature,
independent of any other constraints that might be necessary to include the
code, and a view on a variant shows all code of a variant, which might not
include the entire code of a feature. For example, in Figure 4.2, the method
eval in class Pow is included in the view on a feature but not in the view on
a variant. A view on a variant does not necessarily show the entire source
code belonging to a selected feature, but only fragments that are relevant for
the given variant.

3. Additional context is not necessary in a view on a variant; the variant always
contains all relevant code. We could even hide all annotations from the
view, as done in Version Editor [Atkins et al., 2002]. Nevertheless, we leave
annotations and provide markers for hidden code to assist developers to
keep the entire software product line in mind.

In compositional approaches, an application composed of multiple modules is
roughly equivalent to a view on a variant. Although some compositional ap-
proaches such as Jak allow inspecting the composed code (and even propagating
changes back to the software product line), most do not provide a distinct com-
posed representation of the source code. A view on a variant can show how
multiple features interact in the same file much more directly. A view on a variant
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plays to its strength as preview and for detecting problems in a specific variant, for
example problems due to feature interactions that occur only when certain feature
combinations are selected.

4.2.3. Design decisions

So far, we illustrated the basic concepts of views. When implementing them, there
are a number of design decisions. We discuss different design options and justify
our decisions for our prototype implementation in CIDE.

Implementation level. Views can be implemented at different levels. First, we can
implement views at editor level, for example, inside an integrated development
environment. That is, while the full source code is stored on disk, we extend exist-
ing editors to hide files and hide code fragments from the developer. Second, we
can devise a separate tool that creates views in a separate location and propagates
changes back again. Finally, we can even implement view functionality transpar-
ently inside the file system, so that already the operating system hides files or file
content.

In CIDE, we implemented views on editor level in Eclipse, because this provides
more flexibility and is less invasive. Developers can quickly switch between views,
and we can provide visual markers instead of textual ones. View implementations
at tool level and at file-system level have the advantage that they are independent
of an editor, but the process to switch between views can be more difficult, because
we have to generate new files and refresh them in all editors.

Editable views. Even though read-only views are certainly helpful to explore fea-
tures in a software product line, we argue that source code shown in views should
be editable, so that users can directly modify or extend the code of a feature or a
variant without having to go back to the original code. However, making modifi-
cations in a view (especially in views on a variant) can result in ambiguities. When
a developer inserts some source code next to a hidden code fragment, it is unclear
whether the new code should be inserted before, after, in between, or even instead
of the hidden code.

Implementation of editable views have been discussed intensively in work on
updatable database views [e.g., Bancilhon and Spyratos, 1981; Stonebraker et al.,
1990; Bohannon et al., 2006] and model round-trip engineering [e.g., Foster et al.,
2007; Giese and Wagner, 2009; Hettel et al., 2009]. For CIDE, we adopt a simpler
but still effective solution: We insert markers for hidden code as already exem-
plified in Figure 4.2. Thus, insertions occur before, after, or replacing the marker
so that changes can be unambiguously propagated to the original code. A tool
tip can show additional information about hidden code in the front end. Further-
more, markers make developers aware of additional code, which they might need
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to consider for a local change (e.g., by going back to the original code or by ex-
panding the view). The marker solution works at all implementation levels: We
can either provide graphical markers in an editor or generate textual markers in a
file.

Determining necessary context. There are different ways to determine the context
of a view on a feature, and there is no single obvious solution. From the provided
context, a developer must infer where the code fragment is located and how it
interacts with the base code and other features. If the context is too small, it is not
possible to understand a feature in isolation; if the context is too large, the benefit
of a view that hides irrelevant code is lost.

We found that the structural position of a code fragment is essential. For each
annotated code fragment, we want to see in which method and class it is located.
This is the necessary equivalent to information provided in interfaces of composi-
tional approaches.

To determine a context that shows the structural position, we use a simple al-
gorithm that considers the underlying structure of the source code and shows
parents but not siblings. For example, in Java, we can consider classes, methods,
fields and statements in hierarchical form. Whenever a code fragment is shown
in the view, all parent elements must be shown as context, but siblings can be
hidden. Thus, if a method is annotated, the view shows the class declaration, but
may hide other methods in the class; if a statement is annotated, the view shows
parent statements, the parent method, and the parent class, but may hide other
statements and other methods. Even from structures shown in the context, the
view can hide some information, for example, a class’ name is sufficient, the view
can hide the superclass declaration as in Figure 4.2b.

This mechanism to determine the context can be adapted to other languages,
or at other granularity (e.g., considering additionally packages, parameters, and
expressions; considering only classes, fields, and methods). Technically, in CIDE,
we use a model of the underlying language, which provides parent-child rela-
tionships between elements, for details see [Kästner et al., 2008b]. We present
this underlying model and how it can be extended for different languages in the
context of disciplined annotations in Chapter 5.

So far, we provide only this very simple mechanism to provide structural infor-
mation as context. In our experience, this is sufficient to roughly understand how
the annotated code fragments relate to the remaining code. The representation is
roughly equivalent to a class refinement or partial class. Still, many extensions are
possible and should be provided as options to the user. For example, we can show
a fixed frame of n lines (or n structural elements) before or after feature code, sim-
ilar to the Unix grep utility; or we can enable or disable hiding code fragments that
are more fine-grained than an entire line of source code. To find the best balance
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between hidden code fragments and necessary context for a practical tool, more
user experience is necessary. An empirical evaluation in a controlled experiment
is planned as future work.

4.2.4. Implementation

In our prototype CIDE, we implemented both kinds of views – views on a feature
and views on a variant – for the file browser and for editors of file content. In order
to select which features should be included in a view, we added an additional
dialog Feature List (of course, also other representations to select features from the
feature model are possible, e.g., a feature diagram). For views on a variant, this
dialog also provides immediate feedback whether the current feature selection
constitutes a valid variant.

First, we extended Eclipse’s existing Project Explorer, which represents the file
structure of a project. When activating the view with an additional button, CIDE
hides all files that do not contain any code of the selected features (view on a
feature) or all files that contain only code of deselected features (view on a variant).
The view can be changed on the fly by selecting other features. In the screenshot in
Figure 4.3, we illustrate a view on the feature Transactions on the file structure
of Berkeley DB; the transaction code is still heavily scattered, but easier to locate
since irrelevant files and directories are hidden.

Second, we provide views as code-folding strategies in Eclipse’s source-code
editors. When activated, irrelevant code fragments (even fragments inside one
line) are hidden in the editor, and only graphical markers remain as illustrated in
Figure 4.2. This implementation at editor level has the advantage, that internally
the editor can still reason about the entire code (e.g., for syntax highlighting or
type checking), but only portions of the code are visible to the developer. Again,
switching between different views is possible on the fly by selecting other features.

4.3. Visual representation

Next, we address the representation of annotations. As discussed in Section 3.2.2,
there are several problems that lead to obfuscated and difficult to understand
source code. First, annotations in form of textual preprocessor directives and
constructs of the host language are intermixed in the same file. Second, many pre-
processors are line-based, forcing developers to introduce additional line breaks
that can destroy the code layout, especially when fine-grained extensions are in-
volved. Third, long annotations are difficult to trace; finding out whether a local
code fragment may be affected by one or more annotations that started hundreds
of lines earlier is tedious and error-prone. Finally, nesting adds additional com-
plexity and can make it difficult to find out in which variants a local code fragment
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⇒
View on

Transactions

Figure 4.3.: View on feature Transactions in the file structure of Berkeley DB [Kästner et al.,
2008b]. The activated view on the right-hand side hides all files and directories that
do not contain annotations of feature Transactions.

is included.
There are many possible solutions that address one or more of these problems.

A straightforward solution is to use textual annotations with a less verbose syntax
that can be used within a single line (such as the preprocessor Munge) to avoid
some obfuscation and unnecessary line breaks. Furthermore, visual enhancements
to highlight preprocessor directives or annotated code can be used to make it eas-
ier to determine the scope of long, scattered annotations and easier to distinguish
between the intermixed host language and annotations. For example, many C de-
velopment environments display preprocessor directives in bold or colored font;
the development environment NetBeans highlights annotated Java ME code frag-
ments with a purple background color (independent of the feature to which the
annotation belongs); for web development, which intermixes languages such as
HTML, PHP, and CSS in a single file, several editors, such as NuSphere PhpEd,1

can provide distinct visual representations (font styles or background colors) for
each language.

We go one step further and visualize features in source code to enhance or even
replace contemporary textual annotations. That is, we not only visualize that a
code fragment is annotated, but we indicate also to which feature it belongs. This
way, it should be possible to browse a long code fragment and quickly look for a

1http://www.nusphere.com
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4.3. Visual representation

1 class Stack {
2 void push(Object o, Transaction txn) {
3 if (o==null || txn==null) return;
4 Lock l=txn.lock(o);
5 elementData[size++] = o;
6 l.unlock();
7 fireStackChanged();
8 }
9 }

Features: Synchronization

Figure 4.4.: Annotations represented by a background color instead of textual annotations.

visual representation of a feature. Since colors are processed preattentively,2 the
process should be faster than looking for textual annotations.

In the following, we first describe our initial solution in CIDE in Section 4.3.1,
subsequently discuss limitations regarding scalability in Section 4.3.2, and finally
present an empirical evaluation in Section 4.4.

4.3.1. Background colors

In CIDE, we abandon textual annotations and instead use background colors to
represent annotations, one color per feature [Kästner et al., 2008a]. In contrast to
font styles or foreground colors, background colors are not yet reserved in most
source-code editors. To annotate a code fragment, a developer selects the code
fragment in the editor and assigns a feature from a context menu. The code frag-
ment is then shown with the background color of the according feature. In Fig-
ure 4.4, all code belonging to feature Synchronization is highlighted with a pale
red background color. Technically, source code with existing textual preprocessor
directives can be parsed and represented with colors in the editor, or annotations
can be stored separately without modifying the underlying source code.

The use of background colors mimics our initial steps to mark features on
printouts with colored text markers. When feature-refactoring Berkeley DB (cf.
Sec. 3.1.7), we discussed different implementation patterns for difficult fine-
grained extensions. To get an overview of the involved code fragments and their
relationships, we marked all code that should be refactored into a feature module
(an AspectJ aspect in that case) with a colored text marker on source-code print-
outs. When multiple features were involved, we used multiple colors, one color
per feature. Colored text markers were a natural choice, we felt that textual mod-
ifications would have been distracting. We realized that instead of removing all

2Preattentive processing is an automatic and rapid stage of processing prior to processing with
focused attention. At this early stage, humans can recognize a limited set of visual properties
(e.g., line orientation, size, number, color) [Goldstein, 2002].
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marked code and introducing it again using a feature module, we could simply
interpret colors as conditional-compilation instructions, which could, for exam-
ple, remove all red code. With CIDE, we implemented this color metaphor in an
annotation-based product-line tool.

Especially for fine-grained extensions that require multiple additional and un-
natural line breaks with contemporary preprocessors, annotations on the repre-
sentation layer are more compact and easier to understand, in our experience.
We do not intermix host language with annotation language, but separate an-
notations into the representation layer; the implementation in the host language
remains unchanged. In Figure 4.4, we show the fine-grained extension from Fig-
ure 3.2 (p. 23), in which feature Synchronization is represented by a background
color. This representation is shorter and more direct than the equivalent modu-
lar implementation in Figure 3.3 (p. 25) or the annotation-based implementation
with cpp in Figure 3.8 (p. 37). At the other end of the spectrum, colors also scale
for very coarse-grained annotations on entire files or directories. As shown ear-
lier in Figure 4.3, we can represent annotations on entire files or directories with
background colors in the resource navigator.

Annotations for different features are represented by different colors. A map-
ping is maintained by the tool infrastructure. For each code fragment, it is appar-
ent to which feature it belongs, there is no need to search for the beginning or end
of potentially very long annotations. Furthermore, it should be simple to find all
code fragments in a file that belong to a specific feature, just by browsing the file.
As explained above, colors are processed preattentively, that is, they are quicker
to recognize and distinguish than textual annotations [Goldstein, 2002]. Since, ac-
cording to Kersten and Murphy [2005], “programmers tend to spend more time
navigating the code than working with it”, a quicker recognition of features could
significantly improve the speed of program comprehension.

Nevertheless, representing nested annotations poses a special challenge. Rep-
resenting just the inner annotation is not an adequate representation, because de-
velopers would again have to search for possible outer annotations. In CIDE, we
implemented two different solutions, and many other remain open to explore.

• In our first implementation, we naively blend colors of the involved features,
for example code that is annotated by a red and a yellow feature is repre-
sented by orange, as illustrated in Figure 4.5a for an excerpt of the expression
problem from Figure 3.11 (p. 42).3 By blending colors, we add more colors
that a user has to distinguish, which can make it difficult to scale this color
scheme.

• Kim et al. [2008] extended CIDE to display only the innermost color, but add
3In this example, we blend yellow and red to orange and yellow and blue to green. Since colors

are difficult to distinguish on some printouts, we provide a textual description of the colors in
comments.

60



4.3. Visual representation

1 class Add extends Expr { //yellow
2 Expr left, right;
3 Add(Expr l, Expr r)
4 { left=l; right=r; }
5 double eval() { //orange
6 return left.eval() +
7 right.eval();
8 }
9 void print() { //green

10 left.print();
11 System.out.print("+");
12 right.print();
13 }
14 }

(a) Blending colors.

1 class Add extends Expr { //yellow
2 Expr left, right;
3 Add(Expr l, Expr r)
4 { left=l; right=r; }
5 double eval() { //red
6 return left.eval() +
7 right.eval();
8 }
9 void print() { //blue

10 left.print();
11 System.out.print("+");
12 right.print();
13 }
14 }

(b) Framing nested colors.

Features: Add, Eval, Print

Figure 4.5.: Representing nested annotations with background colors.

a left frame for each outer color as illustrated in Figure 4.5b. This way, they
avoid blending colors, but some corner cases are more difficult to represent;
for example, we would need some additional mechanisms such as colored
borders to represent two congruent annotations on the same code fragment.

• Similarly, Coppit et al. [2007] use colored vertical bars to indicate concerns
in the margin next to the editor in their tool Spotlight. Nested annotations
are represented with multiple bars next to each other. Bars are more subtle
and elegant, as long as annotations are separated into distinct lines of source
code.

With the representation using background colors, we solve the problems out-
lined above. We no longer intermix host language with textual annotations; we do
not require additional line breaks, even for long and nested annotations; and we
see for every local code fragment to which feature(s) it belongs without searching
for #ifdef and matching #endif directives.

4.3.2. Scalability of colors

Colors are a straightforward choice to represent additional information in a pro-
gram, however there are limitations. Although humans can distinguish about
two million colors in direct comparison [Goldstein, 2002], they can distinguish
only few colors clearly in preattentive perception [Najjar, 1990; Rice, 1991]. Fur-
thermore, there are differences in color perception between humans and color-
deficient vision is not uncommon. Therefore, it is unrealistic to map 100 features

61



4. Views and visual representation

of a medium-size software product line to 100 different colors and expect devel-
opers to distinguish them while browsing the source code.

Fortunately, a one-to-one mapping between features and colors is not necessary.
In CIDE, we use a default of only 12 repeating colors,4 which the user can change.
That is, multiple features are represented by the same color; it is not possible to
distinguish annotations only by color. Additionally, different developers may se-
lect different colors for the same feature. In CIDE, we offer a tool tip on annotated
code that names the feature.

Despite repeating colors, the color metaphor is useful for a number of reasons:

• In our experience, there are rarely more than two or three features involved
on a single page of source code (on a screen in the editor or on a printed
page). Such low number of features can be distinguished clearly (more on
this later).

• Even though multiple features are assigned to the same color, we never ex-
perienced annotations of two features with the same color in a single file in
our case studies. When such clash occurs, the editor can detect it so that the
developer can change one of the colors.

• In a large software product line, a developer would not learn all colors for
all features anyway. Typically, a developer focuses on one or few features
at a time (e.g., searching for all transaction code or debugging a problem
regarding statistics about recovery). During the process, the developer learns
(or assigns) the colors of the involved features, but looks up other colors
when needed. Nevertheless, it is still possible to browse through a file and
search for a single color.

• Except for the features the developer currently works on, colors serve merely
as an indicator that a code fragment is annotated and where an annotation
begins and ends. The concrete annotation can be looked up quickly or is
often even apparent from the annotated code. For this reason, also naively
blended colors for nested annotations as in Figure 4.5a work, even though
colors often blend to some grayish/brownish tone.

The first argument – rarely more than three features are involved on a single
page of source code – is the most important one, because it means that in most
cases a low number of colors is sufficient. We therefore investigated this issue
empirically.

4We selected bright and distinguishable colors in an ad-hoc fashion: yellow, orange, red, three
shades of green, two shades of blue, purple, pink, brown, and gray. This selection was suffi-
cient for our needs; optimizing a color selection and amount regarding human perception (e.g.,
optimizing hue distance, saturation and brightness levels) is an interesting task but outside the
scope of this thesis.
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Analysis: Annotations per page. To determine how many annotations of different
features affect a typical page of source code, we analyzed four of our case studies
with more than 10 features implemented as software product line with CIDE.
MobileMedia (with 14 features) and the Graph Product Line (with 18 features)
were developed by others as software product line from scratch; the Functional
Graph Library (with 18 features) and Berkeley DB (with 42 features) were
decomposed from an existing legacy application; for more details on these case
studies, see Appendix A.1. Unfortunately, there are not many publicly available
implementations of software product lines; therefore, we additionally analyzed
the preprocessor usage in 40 open source C programs from different domains
with different sizes, selected for a related study on preprocessor usage by Liebig
et al. [2010]. For a description of the C programs including domain, version, lines
of code, and number of features, see Appendix A.2. In contrast to our four case
studies, the C programs usually were not developed as software product line.
Still, according to Ernst et al. [2002], conditional compilation with the C prepro-
cessor is often used in an ad-hoc fashion for variability in terms of features and
portability in practice (other frequent uses of annotations are comments, avoiding
redefinitions and preventing multiple inclusion). Already Liebig’s study shows
that annotations are used intensively in the selected C programs (23± 17% of the
source code is annotated; see Appendix A.2 for details). In addition to Liebig’s
study, we analyze how these annotations are distributed over pages of source code.

As a page of source code, we conservatively consider 50 consecutive lines in a
file. That is the number on lines that fit on a single full-size editor in the default
installation of Eclipse on a SXGA screen (1280× 1024). We furthermore assume
that we navigate by skipping half a page at a time. For example, a file with
78 lines will be divided into the pages 1–50, 26–75, and 51–78. For each page,
we count how many annotations are shown on this page, including annotations
that begin prior to the page and end after the page. Multiple annotations to
the same feature (or feature combination) are only counted once, because they
are represented by the same color. Nested annotations are counted separately,
corresponding to the number of colors needed for a visualization that does not
blend colors as in Figure 4.5b. Due to the size, we automated the analysis with an
extension of Liebig’s analysis tools. For comparability, we furthermore prepared
the C programs by pretty printing, removing comments and empty lines, and
removing inclusion guards (which are not a variability mechanism).5

5There are two technical issues that can cause our analysis tools to measure slightly more annota-
tions per page than there actually are. First, to determine whether two cpp annotations refer to
the same feature expression, we use a string comparison and simple heuristics. This detects most
cases, but, for example, two annotations A ∧ B and B ∧ A can be considered equivalent but are
recognized as separate annotations. Second, due to technical limitations of our analysis infras-
tructure, we only analyze the first 65 536 lines of each file. This excluded several pages from one
file in gcc and from four files in opensolaris. We manually found that the ignored pages contain
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Name Pages Annotations per page (in %)
: 0 : 1 : 2 : 3 : 4–7 : more than 7

Graph Product Line 62
Functional Graph Lib. 117
Mobile Media (Ver. 8) 252
Berkeley DB 2 921

0 % 20 % 40 % 60 % 80 % 100 %

Table 4.1.: Annotations per page in four Java ME product lines.

As shown in Tables 4.1 and 4.2, already three colors are sufficient on most pages.
In all case studies developed as software product line from scratch or by decom-
posing legacy applications, annotations occur in over 60 % of all pages, but more
than three different annotations on the same page are rare. A page with more than
seven annotations occured only in GPL (4 pages) and Berkeley DB (2 pages). In
the analyzed C programs, most pages (67 %) do not contain a single annotation.
Futhermore, 96 % of all pages can be represented with three colors; only 1.2 % of
all pages would need more than seven colors. Nevertheless, in every C program,
there is at least one page (typically in a header file) that contains more than seven
annotations (up to 41 in freebsd and gcc). For these pages the color metaphor does
not scale; instead, developers have to switch back to textual annotations. Still, for
the far majority of annotations, few repeating colors are sufficient.

There are several threats to the external validity of our analysis, because publicly
available source code of commercial-size software product lines are rare. We have
only a small number of software product lines that were developed from scratch,
and those have relatively few features. The C programs are larger and contain far
more annotations, but have not been developed as software product line. They
contain a significant amount of annotated code, but not all annotations refer to
features in the sense of a software product line. Nevertheless, the analysis provides
an overall impression that in fact few colors are sufficient to represent all features
on – not all, but most – pages of source code. Some pages contain annotations
for many different features, for those, the user should be able to switch back to
textual annotations.

4.4. Experimental evaluation

Feature-model integration, views and visual representation, all aim at improving
program comprehension of a software product line. The feature model modular-

mostly no or one annotation per page. For the overall results, we argue that these deviations are
negligible.
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Name Pages Annotations per page (in %)
: 0 : 1 : 2 : 3 : 4–7 : more than 7

apache 8 313
berkeley db 7 267
cherookee 1 989
clamav 2 977
dia 5 027
emacs 9 448
freebsd 231 674
gcc 59 687
ghostscript 17 291
gimp 23 013
glibc 30 944
gnumeric 10 021
gnuplot 2 986
irssi 1 934
libxml2 8 368
lighttpd 1 515
linux 233 534
lynx 4 641
minix 2 488
mplayer 23 642
mpsolve 392
openldap 9 574
opensolaris 336 061
openvpn 1 358
parrot 3 839
php 22 623
pidgin 10 510
postgresql 17 674
privoxy 933
python 14 750
sendmail 3 286
sqlite 3 707
subversion 20 164
sylpheed 3 978
tcl 5 314
vim 8 968
xfig 2 896
xine-lib 19 392
xorg-server 20 666
xterm 1 964

0 % 20 % 40 % 60 % 80 % 100 %

Table 4.2.: Annotations per page in forty C programs. 65
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izes and documents configuration knowledge, so that features and their depen-
dencies are easier to understand. Views emulate modularity, so that developers
can directly trace a feature to its implementation. Visual representations decrease
code obfuscation often associated with preprocessors. We provided an overview
of possible mechanisms and design decisions to discuss a big picture of possible
improvements of program comprehension. However, program comprehension is
an internal cognitive process [Koenemann and Robertson, 1991]; hence, a thorough
evaluation requires empirical evidence.

We implemented all improvements – feature-model integration, views, and vi-
sual representation – in our prototype product-line tool CIDE and conducted a se-
ries of case studies (cf. Appendix A.1). Our experience from case studies provides
some first indication that the proposed mechanisms are feasible. Nevertheless,
case studies are not sufficient to demonstrate soundly that they improve program
comprehension compared to contemporary preprocessors (or even compared to
modular implementations). Therefore, we approach an experimental evaluation.

Unfortunately, we cannot evaluate feature-model integration, views, and visual
representation in their entirety. There are so many design decisions (editor level
or tool level; editable views with markers or other mechanisms; how much con-
text; which colors; blending colors versus frames versus colored lines; and many
more), each of which would require experimental evaluation on their own. For
example, just determining empirically the visual representation that supports pro-
gram comprehension most would be a major research project. In the scope of this
thesis, we can only take a first step. We evaluate only a single fundamental facet
in a controlled experiment [Feigenspan et al., 2010]:6

Can colors improve program comprehension over textual preprocessors?

We focus on the visual representation with background colors because it is a signif-
icant change compared to traditional textual preprocessors. In contrast to views,
especially views on a variant, which have already been evaluated to some degree
in a different context (Atkins et al. [2002] measured that views on variants increase
developer productivity by 40 %; see related work in Sec. 4.5), we are not aware of
any empirical study on the influence of background colors on program compre-
hension. In demonstrations of CIDE colors were also the most controversial part
of CIDE. Also in other contexts, colors have caused controversy; for example, the
color coding in Mylyn was eventually dropped after it received mixed feedback
and was perceived as visually loud by some [Kersten and Murphy, 2005]; Najjar
[1990] remarks “A computer display that is lit up like a Christmas tree distracts
users from their tasks and makes users feel like they are not being taken seri-
ously.” With our evaluation, we want to determine whether background colors
are feasible at all and how they are perceived by users.

6The experiment was conducted by Janet Feigenspan as part of her Master’s Thesis (Diplomar-
beit) [Feigenspan, 2009] supervised in the context of this PhD project.
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Specifically, we compare textual annotations in the style of the C preprocessor
cpp with a graphical representation using only background colors, as implemented
in our prototype CIDE. Here, we describe only the main design decisions and
results of the experiment for brevity. For all information necessary to replicate the
experiment, see [Feigenspan et al., 2010].

4.4.1. Experiment planning

Goal. The goal of the experiment is to assess the effect of colors on program com-
prehension, compared to textual annotations. To measure program comprehen-
sion – an internal cognitive process – there are several different methods available
[see discussion in Feigenspan, 2009; Dunsmore and Roper, 2000]. We measure the
correctness and response time for tasks that require an understanding of the pro-
gram. Specifically, we use static tasks to examine the structure and maintenance
tasks to fix a bug.

Static tasks represent the typical process of getting an overview of the source
code or finding feature code, without examining its specific statements. Both
representations, colors and textual annotations, carry the same information; hence,
we expect no difference in correctness. Nevertheless, we expect that colors reduce
the response time of static tasks, because colors are processed preattentively and
thus considerably faster than text [Goldstein, 2002].

In contrast, maintenance tasks require a deeper understanding of the source code.
For maintenance tasks, developers have to investigate the source code carefully.
We expect that the benefit of colors on correctness or response time is negligible.
After locating the code, developers focus mainly on the source code.

Additionally, we assessed the opinion of subjects: For each tasks, we ask subjects
that worked with colors to estimate how they would have performed with tex-
tual annotations and vice versa. This way, we can detect concerns for adoption
or a possible mismatch between perceived performance and actual performance
(which can often be observed with new technology; for example, in a study by
Henry et al. [1990] subjects performed better when introducing object-oriented
programming, but perceived a reduced performance).

In summary, we state our expectations in four hypotheses that we evaluate in
the experiment:

1. Colors as annotation increase response time in static tasks, compared to tex-
tual annotations.

2. There is no difference in response time between colors and textual annotation
for maintenance tasks.

3. There is no difference in the number of correctly solved tasks between colors
and textual annotations, neither for static nor for maintenance tasks.

67



4. Views and visual representation

4. For all tasks, subjects estimate a better performance with colors.

Subjects. As subjects, we recruited 43 students from the University of Passau that
are enrolled in a lecture on product-line implementation.7 Students of this course
were already familiar with software product lines and their implementation. In
one assignment, they have already implemented variability in a small program
with the preprocessor Munge. Thus, the recruited students already had sufficient
background knowledge so that we could minimize training for the experiment.

We split our sample into two groups: the first group (21 students) worked with
textual annotations, the second group (22 students) worked with annotations rep-
resented by background colors. Subjects of both groups were matched by pro-
gramming experience (measured with a preliminary questionnaire), gender, and
age; one subject with color-deficient vision was assigned to the textual-annotation
group; for details see [Feigenspan et al., 2010; Feigenspan, 2009].

Experimental material. For our tasks, we selected MobileMedia, a medium-sized
software product line to manage multi-media data on mobile phones (see also
Appendix A.1). It was developed from scratch as a software product line at the
University of Lancaster for a study on design stability [Figueiredo et al., 2008].
MobileMedia is implemented with Java ME and the textual preprocessor Antenna;
the implementation is code reviewed and published as open source. From the
development history of MobileMedia, we use the fifth release with about 4000
lines of code in 28 classes and four optional features SMS, CopyPhoto, Favorites,
and CountView.8 This release is sufficiently complex, but not too large to be
understood in a 2-hour experiment.

From the original implementation with textual annotations, we derived a second
equivalent version that uses background colors instead of #ifdef and #endif direc-
tives. In Figure 4.6, we show a direct comparison. As colors, we selected bright
and clearly distinguishable colors from CIDE: red for SMS, blue for CopyPhoto,
yellow for Favorites, and orange for CountView; shared code between SMS and
CopyPhoto is represented with violet (blend of red and blue). To minimize the
effect of confounding parameters, we did not provide a version that mixes textual
annotations and colors. We present the annotated code as HTML files to the sub-

7The German lecture “Moderne Programmierparadigmen” in Passau and their counterpart “Er-
weiterte Programmierkonzepte für maßgeschneiderte Datenhaltung” in Magdeburg are a joint
project of Sven Apel, Christian Kästner, and Gunter Saake. Since 2007, we annually teach dif-
ferent product-line implementation techniques, including preprocessors, frameworks, feature-
oriented programming, and aspect-oriented programming. Slides are available online: http:
//wwwiti.cs.uni-magdeburg.de/iti_db/lehre/epmd/

8To simplify the source code, we removed ten exception classes and two features for different
screen resolutions from the original implementation.
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Figure 4.6.: Comparison of textual #ifdef directives and background colors as annotation (in the
colored version Line 31 is annotated with orange background color, Lines 33 and 34
with yellow) [Feigenspan et al., 2010].

jects, to exclude the influence of tool support such as code folding, type hierarchy,
or outline view.

Tasks. We assessed program comprehension with two static tasks (S1, S2) and
four maintenance tasks (M1–M4):

• S1: First, subjects should determine which classes each feature affects. This
represents the typical task to find all code of a feature.

• S2: Second, subjects should find all code fragments that are affected by more
than one feature (shared code or glue code, cf. Sec. 3.1.5). Shared and over-
lapping features are of special interest in the implementation of product
lines, since they can represent feature interactions that are especially diffi-
cult to maintain [Calder et al., 2003; Liu et al., 2006]. Searching such code is
therefore a typical task for a developer.

• M1–M4: For the four maintenance tasks, we each introduced a defect into the
code and provide a defect description. Each defect is located in the code of a
single feature, and the defect description specifies this feature. For example,
the description of M1 was “If pictures in an album should be sorted by views, they
are displayed unsorted anyway. Feature, in which the bug occurs: CountViews.”
We checked that the defects were neither too difficult nor too easy to find in
a pre-test and ordered the tasks by difficulty, M1 being the easiest.

See [Feigenspan et al., 2010] for a comprehensive list of all tasks.

Design. We grouped the subjects into two groups. One group solved all tasks on
the source code with textual annotations, the other group used the source code
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in which annotations were represented as background colors. Answers and times
were collected with a web-based survey system.

In order to reliably measure the effect of different annotations (independent vari-
able) on program comprehension (dependent variable), Feigenspan [2009] identi-
fied a series of confounding parameters and considered them in the experimental
design. Among others, programming experience, domain knowledge, intelligence,
education, gender, position effect, Hawthorne effect, tool support, programming
language, coding conventions, difficulty, and many more were controlled in the
experiment, as explained in detail in [Feigenspan, 2009].

4.4.2. Results

We show the distribution of response times in our experiment in a box plot9 in
Figure 4.7. For both static tasks, subjects in the color group were significantly faster
than the group working with textual annotations (7 instead of 12 minutes and 5
instead of 6 minutes), which confirms our first hypothesis. For the maintenance
tasks M1, M2, and M3, the differences in response time are not statistically sig-
nificant; however, for M4, subjects in the color group were significantly slower (23
instead of 17 minutes). Therefore, we have to reject our second hypothesis and
assume that colors do in fact have an influence on response time in some mainte-
nance tasks.

In Figure 4.8, we show the results regarding the correctness of solutions. For
example, in task M1 was solved correctly by 19 out of 21 subjects of ifdef group and
by 21 out of 22 subjects of the color group. There are some differences, between the
two groups, but the differences are not statistically significant. This result confirms
our third hypothesis: The kind of annotation has no influence on the correctness
of solutions.

Finally, in Figure 4.9, we show the subject’s estimates of the performance with
the other representation. Regarding static tasks, subjects of the color group esti-
mated that they would have performed worse with textual annotations, and vice
versa. For the maintenance tasks, subjects of the color group still estimated that
they would perform worse with textual annotations (in contrast to the actual per-
formance, which was the same or better), whereas subjects of the ifdef group
responded with mixed estimates. Overall, there is a statistically significant differ-
ence in performance estimation in favor for colors for all tasks, which confirms
our last hypothesis.

To test statistical significance (with a standard 5 % significance level), Feigenspan
[2009] conducted a Mann-Whitney-U test for response times and the subjects’ es-
timations, and a χ2 test for correctness [for both tests, see Anderson and Finn,

9A box plot is a diagram to depict groups of numerical data and their dispersion. It plots the
median as thick line and the quartiles as thin line, so that 50 % of all measurements are inside
the box. Values that strongly deviate from the median are outliers and drawn as separate dots.
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Figure 4.7.: Response times [Feigenspan et al., 2010].
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Figure 4.9.: Subject’s performance estimation with other version [Feigenspan et al., 2010].

1996]. For detailed information on this choice and on the concrete test results,
see [Feigenspan, 2009].

4.4.3. Interpretation

Our experiment confirms that colors instead of textual annotations speed up pro-
gram comprehension in static tasks significantly (by 43 % and 23 % in our exper-
iment), which we explain with the preattentive perception of colors. We suspect
that the benefit in the second task is smaller because the subjects were already
familiar with the source code and because they had to pay closer attention to the
colors to detect blended colors. There is no significant difference in the correctness
of answers though, both representations convey the same information; colors are
only faster to recognize. We conclude that colors in general can help a program-
mer to understand a program when performing static tasks.

Regarding maintenance tasks, there was no significant difference for the first
three tasks, which is in line with our expectation. Reading source code is the main
focus when finding a defect in these tasks. In contrast to the time required for
reading source code, the time for locating the according feature code is marginal.
However, contrary to our expectations, subjects of the color group were signifi-
cantly slower (−37%) performing the last and most difficult task M4.
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A closer look at the source code reveals a possible explanation. The entire class,
in which the defect was located, was annotated with feature SMS, so the entire
file was represented with a bright, saturated red background color. That is, the
subjects had to carefully read and understand a rather long code fragment with
red background color. In contrast, the locations of the first three maintenance
tasks were annotated with lighter colors: orange and yellow. We suspect that the
saturated red background color was distracting and made it difficult to read the
source code or might have even caused visual fatigue. That explanation is also
supported by some comments, which the subjects were encouraged to enter at the
end of the experiment.

Nevertheless, almost all subjects that worked with textual annotations estimated
that they would have performed better with the color version. In the subjects’
comments, we found that some subjects of the color group expressed that they
were happy to get to work with it, whereas some subjects that worked with textual
annotations wished they had worked with the color version. We assume that
from the tedious static tasks, subjects developed a strong preference toward colors,
which reflected in their performance estimation, even for tasks in which colors
actually did not increase or even decreased performance. We interpret the results
as indication that our subjects liked the color idea in general.

Overall, we conclude that subjects mostly prefer colors to textual annotations
and that colors can significantly improve response time for static tasks. However,
background colors can affect program comprehension also negatively. Instead of
an ad-hoc mechanism to pick colors, we should carefully select the default col-
ors, which remains an important task for future work. In our prototype CIDE,
developers can adjust all colors, in contrast to our experiment, in which they were
fixed. Additionally, it can be beneficial to allow developers to fade colors or switch
between colors and textual annotations on the fly or optionally combine both rep-
resentations. In ongoing work, we test our assumptions and evaluate different
combinations in a follow up experiment.

Threats to validity. During the execution of the experiment, there were some mi-
nor deviations (subjects that were late, second room, missing question in final
survey) as described in [Feigenspan et al., 2010], which might threaten internal
validity, but we expect that the size of our sample is large enough to compensate
for those deviations. Furthermore, we might have unintentionally shown our ex-
pectations to the subjects and influenced their performance (known as Rosenthal
effect [Rosenthal and Jacobson, 1966]). Nevertheless, we intended to avoid this
problem by keeping the introduction as neutral as possible and communication
during the experiment to a minimum.

In our experiment, we have maximized our internal validity in order to fea-
sibly and soundly measure the effect of different annotations on program com-
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prehension. Thus, we have intentionally neglected external validity (i.e., ability
to generalize our results to other subjects and settings). For example, we used
students as subjects instead of professional developers, focused only on a single
domain unknown to the subjects, had only few features, and specifically excluded
tool support. Therefore, our results are only applicable to the setting of our ex-
periment, but not necessarily to industrial practice with larger software product
lines, more experienced developers, or other languages. To generalize our results,
further studies are necessary. Especially, whether and how colors as annotations
scale when hundreds of features are involved will be an interesting research topic.
Nevertheless, since we could not build on prior experiments on program compre-
hension of product-line implementations, the narrow scope was a necessary first
step to develop a sound base for future experiments.

4.5. Related work

There are several related proposals to improve preprocessors or to provide views
or specific visual representations. We structure our discussion according to the
structure of this chapter.

Integrating the feature model

Integrating a feature model into the implementation of a software product line is
a well-known idea in product-line research. Although feature models were orig-
inal designed for domain analysis [Kang et al., 1990] (see also Section 2.3), and
not for implementations, generative programming made it popular to centralize all
configuration knowledge and implement it in a generator [Czarnecki and Eise-
necker, 2000, Ch. 5]. In generative programming, there is some mapping from
features in the domain model to implementation artifacts, for example, to modu-
larized feature implementations such as components, feature modules, or aspects.
For a specific feature selection, the according artifacts are assembled. Generative
programming describes an open framework; it is open for different domain mod-
eling techniques, different ways to express configuration knowledge, and different
implementation techniques.

Among others, the commercial product-line–development tool pure::variants fol-
lows this concept [Beuche et al., 2004]. A feature model is used to describe the
domain, a second model, called family model, describes the mapping to imple-
mentation artifacts. For example, the family model describes which files to include
when certain feature combinations are selected. Similar separations into domain
model and implementation model with a mapping between the two are common
in product-line research and product-line tools [e.g., Krueger, 2002; Metzger et al.,
2007; Rabiser et al., 2007]
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Feature-oriented software development goes yet a step further and established a one-
to-one mapping between features and implementation artifacts [Prehofer, 1997;
Batory et al., 2004; Apel and Kästner, 2009]. The concept of a feature from domain
analysis is used directly at the implementation level, all configuration knowledge
is stored in the feature model, and there is no additional mapping.

All these solutions can be applied straightforwardly to annotative approaches as
well. In this case, features are not mapped to modularized implementation units,
but to preprocessor flags. Depending on a feature selection, different preprocessor
flags are defined for the preprocessor invocation. Both, a complex mapping, as in
generative programming, or a direct one-to-one mapping, as in feature-oriented
software development, are possible. Also our prototype CIDE supports both: By
default, each annotation is mapped to exactly one feature in the feature model;
with a pure::variants plug-in each annotation is mapped to a (possibly complex)
rule over features in the family model.

However, in practice, especially for ad-hoc variability implemented with an-
notations, configuration knowledge is rarely documented in a feature model, in
our experience. For example, HP’s Owen product line is implemented with cpp
and contains annotations to over 2000 different flags, none of which was docu-
mented in a feature model until recently [Pearse and Oman, 1997; Refstrup, 2009].
Even if a feature model and mapping to preprocessor flags exist, as in the Linux
kernel, only some preprocessor flags are controlled by the feature model (or its
mapping), others are still scattered in the source code. In such setting, reasoning
about annotations becomes very difficult and requires techniques such as symbolic
execution [Hu et al., 2000; Latendresse, 2004] or additional visualizations [Pearse
and Oman, 1997; Vidács and Beszédes, 2003]. In contrast, CIDE enforces that
actually all configuration knowledge is stored in the feature model or in the map-
ping, there is no equivalent to scattered #define directives. We are only aware of
two other annotation-based product-line tools that enforce a mapping this strictly:
fmp2rsm [Czarnecki and Antkiewicz, 2005] and FeatureMapper [Heidenreich et al.,
2008b]. Both map features to elements of (UML) models. In both cases, as in CIDE,
the mapping is maintained by the tool, and only mappings based on expressions
over features defined in a feature model are possible.

Views on annotations-based product-line implementations

Views on selected parts of the source code have been explored in different con-
texts. While views on a feature are rare, several solutions exist to create views on a
variant, especially for cpp-based implementations. Many source code editors, such
as Emacs, Vim, Visual Studio, and Eclipse CDT, already support folding of #ifdef
annotations. That is, a developer can manually fold or unfold each annotation. In
Emacs’ hide-ifdef-mode, there is even support to fold or unfold all annotations of
one feature at the same time. However, in all these editors, there is no connection
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to a feature model, and folding has to be done per file. There is no means to create
a view on an entire project.

The command line tools unifdef 10 and sunifdef 11 can partially evaluate cpp anno-
tations. Given a partial feature selection (a list of selected and a list of deselected
features), they evaluate annotations as far as possible and remove annotated code
fragments that are excluded by the partial selection and remove annotations of
code fragments that are always included by the partial selection. Annotations that
cannot be included or excluded based only on the partial feature selection are left
in the source code. Although these tools have been designed to clean source code
from annotations no longer needed (e.g., to remove a feature), they can also be
used to generate views on a variant at tool level (instead of editor level). However,
they provide no means to propagate changes back to the original code.

Closest to our proposal are the views on a variant on cpp-based implementations
with CViMe and C-CLR by Singh et al. [2006, 2007]. The authors describe the
tools only vaguely, but the general idea is to recognize all preprocessor flags and
create views for a configuration. They do not consider dependencies between
preprocessor flags or a full feature model. As in CIDE, they use code folding in
an editor to create a view on a variant, but there is no indicator of hidden code.

The Version Editor [Atkins, 1998; Atkins et al., 2002] provides an editable view
on a variant for a proprietary textual preprocessor. Changes in the view are prop-
agated back: Added code fragments are annotated to be included only in the
selected variant, removed code fragments are annotated such that they are ex-
cluded from the selected variant. In an empirical evaluation, Atkins et al. [2002]
found that views increase developer productivity by 40 % compared to standard
editors without views. The main difference to views on a variant in CIDE is that
annotations are not shown in the view, thus developers using the Version Editor
might not even be aware that they edit a variant of a software product line instead
of a standalone program. As a consequence, all information on features is lost in
views. Instead of mapping code fragments to features, code added in a view is
mapped to a variant. We argue that annotations provide useful context to devel-
opers. Even when working on a view on a variant, the developer is aware of the
software product line and can decide whether a change (e.g., a bug fix) should
affect only the selected variant or also other variants in the software product line.
Therefore, we explicitly show annotations in our views as well.

In parallel to our work, Heidenreich et al. [2008a] discussed several views on
annotated (UML) models and implemented them in their tool FeatureMapper. For
a view on a variant, FeatureMapper draws all model elements that are not part
of the variant in gray. Additionally, FeatureMapper is the only annotation-based
product-line tool we are aware of that provides a view on a feature. A view on a

10http://freshmeat.net/projects/unifdef/
11http://www.sunifdef.strudl.org/; short for “son of unifdef”
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feature (called “realization view”) draws all elements that do not belong to the
selected feature in gray. That is, the view still shows the entire model, but focuses
the attention with visual means. Since elements are not hidden but only faded
out, “the context of interaction between the feature realisation and the rest of the
system is preserved” [Heidenreich et al., 2008a].

Other views

For compositional approaches, pure::variants [Beuche et al., 2004], a commercial
product-line tool, can provide views on variants. The tool maintains a (potentially
complex) mapping between features and artifacts and can provide an on-the-fly
preview on all files that are included in a variant for a given feature selection. Due
to a coarse-grained mapping of features to entire files, their views do not need to
hide code fragments inside files, so editable views do not raise consistency issues.

Outside the context of software product lines, there have been approaches to
separate concerns by creating views on a concern, for example, visual separation of
concerns [Chu-Carroll et al., 2003], effective views [Janzen and De Volder, 2004], and
the concern manipulation environment [Harrison et al., 2005]. First, visual separation
of concerns builds views on top of the software configuration management tool
Stellation. Views aggregate code fragments (at the granularity of methods) that are
found by a query similar to a pointcut language. Additional context is not pro-
vided in the view, but the developer can quickly jump back to the corresponding
location in the original code for further exploration. To support editable views,
a view contains textual markers which are required to map changes back to the
original code [Chu-Carroll et al., 2003]. Second, effective views provide a more so-
phisticated mechanism to create views. To create a view on a concern, instead of
just hiding code fragments, their tool transforms (physically remodularizes) the
source code to provide a virtual file with a modular implementation of that con-
cern. That is, instead of just emulating modularity with views, effective views can
provide views on real modules. However, to enable editable views and consistent
transformations, effective views have only been implemented for a confined spe-
cialized language so far [Janzen and De Volder, 2004]. In a similar line, Ossher
and Tarr [2000b] suggested on-demand remodularizations, which Harrison et al.
[2005] later planned to provide with aspects in the concern manipulation environ-
ment; unfortunately, this project was stopped before views were implemented. We
regard a physical remodularization as the better solution, however it is very diffi-
cult to achieve; a view by hiding feature code as proposed in CIDE is a pragmatic
solution that can emulate modularity with similar effect.

More generally, views on a feature resemble cross-section views as in in 3D
engineering or tomography. They hide all details unnecessary for the current task
and let the user focus on a certain detail. An early example of such cross-section
views in software engineering is the concept of program slicing by Weiser [1984]. A
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program slice is a read-only view that shows only relevant code fragments for a
certain control flow, but hides everything else. The necessary context is determined
from a control flow graph (or dynamic information in some extensions) such that
the slice can reproduce the control flow. This way, program slicing helps to abstract
from the complete program and to focus on a concrete, usually comprehension or
maintenance related task. Similarly, Linton [1984] proposed an infrastructure for
relational views on the underlying structure and call graph of a program.

Also in other contexts, views have been explored. A recent approach that has
been quickly adopted for mainstream development is Mylyn [Kersten and Mur-
phy, 2005, 2006], an Eclipse plug-in that creates task-based views on the source
code, most notably on the file system. Depending on the task, only relevant files
are shown in the project explorer. Effectively, Mylyn provides a view on the file
system that is based on the context of the current task (which is collected in an in-
ternal model from development activity). Regarding the hiding entire files, CIDE’s
view and its implementation in Eclipse were inspired by Mylyn, but use feature
annotations instead of a task-context model. Although Mylyn’s model also in-
cludes information about classes and methods, views on file content in the editor
are provided only in a basic form. Mylyn uses Eclipse’s code folding capabilities
on the level of methods: All methods that are not in the current context are folded
by default; folding at statement level as in CIDE is not supported.

Visual representation of features

There is a huge body of work on program visualization (see [Diehl, 2007] for an
overview) or on using colors for various tasks, such as error reporting [Oberg and
Notkin, 1992] or merging [Yang, 1994]. We focus only on work that visualizes
features in a software product line or scattered concerns.

Closest to our visual representation are again the annotation-based model ed-
itors fmp2rsm [Czarnecki and Antkiewicz, 2005] and FeatureMapper [Heidenreich
et al., 2008b]. Both can – in addition to textual representations – represent some or
all annotations with different colors. Each annotated feature expression is drawn
with a distinct color. Overlapping annotations are not intended, but instead, for
annotations constructed from multiple features (e.g., A ∧ (B ∨ ¬C)), a new color
is selected instead of blending colors. There is no empirical evaluation, but Czar-
necki and Antkiewicz [2005] argue that models are usually split such that each
fragment fits on a computer screen, and Heidenreich et al. [2008b] provide the
possibility to enable coloring only for a subset of features. This way, both outline
possibilities to handle also larger models with many features.

With the AspectBrowser [Griswold et al., 2001], developers can use search pat-
terns to locate concerns (see discussion above). Search results are shown with
background colors in source code editors, with a distinct color for every query. Ad-
ditionally, they provide an overview of the entire code base in Seesoft style [Eick

78



4.6. Summary

et al., 1992], again using colors to indicate query results. Griswold et al. [2001]
evaluated their tool in a case study and found that the overview and highlighting
with colors indeed support developers in maintenance tasks. However, they only
evaluated scale regarding a large code base, not regarding many features, and they
do discuss overlapping search results.

Spotlight [Coppit and Cox, 2004; Coppit et al., 2007] interestingly uses vertical
bars in the left margin of the editor to visualize annotations. Again, different
colors represent different concerns. Bars of different colors are placed next to each
other. Compared to background colors, lines are more subtle and can represent
nesting easily. Even saturated and dark colors can be used, because colors are not
intermixed with the text. However, annotations are again restricted to entire lines
of source code; annotations within a line cannot be represented. The authors do
not discuss how this representation scales.

In contrast, existing mainstream development environments rarely use back-
ground colors for annotations. One notable exception is NetBeans, which shows
all annotations with a purple background color, and all nested annotations (re-
gardless of nesting depth) with a lighter purple background color. This makes
it possible to quickly find top-level annotations and annotations on first nesting
level, but it is not possible to recognize annotations on deeper nesting levels or to
distinguish different features by colors.

Finally, there are approaches that do not visualize annotations in the source
code, but separately with some other means. For example, the Conditional Compila-
tion Analyzer [Pearse and Oman, 1997] visualizes the tree structure or preprocessor
directives of a file in a separate window. From this visualization, a developer can
follow nesting levels and get an overview of the complexity of annotations inside
one file. Metrics help to compare files and establish guidelines. Similarly, Krone
and Snelting [1994], Favre [1997], Hu et al. [2000], and Vidács and Beszédes [2003]
all suggest some external or abstracted structures to visualize or reason about
preprocessors. Such external structures are beneficial for many analyses, but we
strive for a more direct integration. Still, the visualization of variability is largely
an open research problem.

4.6. Summary

Annotative approaches are criticized for many different problems, including sub-
optimal separation of concerns, missing traceability, missing language support for
variability, and tendency to obfuscate source code, which all make it difficult to
understand annotation-based implementations. In this section, we have collected
ideas how to address these problems with tool support and implemented them in
our prototype CIDE. Although, we cannot eliminate all problems, we can mitigate
many and can emulate some benefits of modular implementations.
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First, we argued that annotations should be strictly integrated with the feature
model of the software product line to avoid scattering of configuration knowledge,
which can often be observed in ad-hoc implementations with traditional prepro-
cessors. In CIDE, annotations are managed by a tool infrastructure, which allows
only annotations based on features previously defined in a feature model.

Second, we proposed and implemented editable views on the source code to em-
ulate modularity. Specifically, we distinguish between views on a feature, which
show only the code fragments belonging to a feature and some necessary context,
and views on a variant, which show all source code of a variant for a feature se-
lected, similar to a generated variant. Even though the implementation of a feature
is still scattered, in CIDE, a developer can quickly trace a feature from the feature
model to its implementation.

Third, we discussed different visual representations of features to enhance or
replace the common textual annotations. Background colors do not obfuscate the
source code and can be used within a single line. Visual representations of anno-
tations make explicit where annotations begin and end and how they are nested.
They are quicker to recognize and can thus aid program comprehension, due to
preattentive color perception. In a controlled experiment with 43 students, we
found that colors instead of textual annotations can speed up program compre-
hension significantly for some tasks by up to 43 %. We addressed concerns of scal-
ability by analyzing existing annotation-based software product lines and found
that only a low number of distinct features annotated on each page of source code,
so that also a low number of colors are sufficient.

The proposed solutions can be used in isolation but they can (and should) also
be integrated. For example, views and visual representations can be constructed
more efficiently, when annotations are strictly mapped to a feature model. Visual
representations can be integrated with views, to make views even more compact.
We combined all discussed improvements in our prototype tool CIDE. However,
our implementation implies no definite suggestion on how to implement feature
model integration, views, or visual representations. In fact, there are many alter-
natives and many design decisions, some of which we discussed, others which
remain to explore. In this chapter, our main focus was to illustrate that annota-
tive approaches, despite all criticism, are not beyond hope; they have just been
ignored. We understand our research as encouragement for researchers to take
another look at preprocessors and explore possible tool support, for tool builders
to invest in better editors, and for developers in practice to demand better tool
support. We will come back to a comparison of annotative approaches with our
improvements and compositional approaches in Chapter 6.
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This chapter shares material with the TOOLS’09 paper “Guaranteeing Syntactic Cor-
rectness for all Product Line Variants: A Language-Independent Approach” [Kästner
et al., 2009b] and the ASE’08 paper “Type-checking Software Product Lines – A
Formal Approach” [Kästner and Apel, 2008b].

Software product lines are inherently complex and prone to all kinds of errors.
The main problem is that certain errors only occur when a specific feature or fea-
ture combination is selected, potentially only in a single out of millions of possible
variants. Errors may hide in the implementation until a customer eventually re-
quests a problematic variant, possibly long after initial development. In contrast
to compositional approaches, annotative approaches provide no means to check
features in isolation; they are regarded as especially error prone. To avoid expen-
sive maintenance late in the development cycle, we aim at error detection for the
entire software product line (with all its variants) during initial development.

We see two causes of errors that are specific to annotative approaches and ad-
dress them in this chapter. After introducing a brief taxonomy of error detection
mechanisms to distinguish our approaches, we (1) prevent syntax errors with dis-
ciplined annotations and (2) detect type errors with a product-line–aware type
system. Both syntax errors and type errors are challenging to detect in annotative
approaches, due to the lack of modular error detection per feature. In both cases,
the challenge is to raise existing mechanisms from checking individual variants to
checking the entire software product line.

5.1. Taxonomy

To provide a common vocabulary for the following discussions of own and related
solutions, we start with a taxonomy of different possible errors and error detec-
tion approaches summarized in the morphologic box in Figure 5.1 [Kästner et al.,
2009b].

First, we distinguish three kinds of errors: syntactic errors, type errors and se-
mantic errors (first row in Fig. 5.1).

• Syntax errors occur when a variant is ill-formed regarding the language’s
syntax, for example, when an opened bracket is not closed, as exemplified
in Figure 5.2a.
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Syntax Typing Semantic

Single Multiple Inter-language
Check variants Check entire product line

OtherAnnotative Compositional

Kind of error

Languages
Error detection

Implementation

Figure 5.1.: Taxonomy of errors and corresponding checks in software product lines (morphological
box).

1 class DB {
2 ...
3 #ifdef X
4 }
5 #endif

(a) Syntax error.

1 class DB {
2 void insert(int o) {
3 this.put(o);
4 }
5 #ifdef X
6 void put(int o) {
7 ...
8 }
9 #endif

10 }

(b) Type error.

1 class DB {
2 void insert(int o) {
3 lock();
4 put(o);
5 #ifdef X
6 unlock();
7 #endif
8 }
9 }

(c) Semantic error.

Figure 5.2.: Examples for three kinds of errors when feature X is not selected.

• Type errors occur when a variant is ill-formed regarding the language’s type
system, for example, a statement invoking a method that is not defined in
that variant as exemplified in Figure 5.2b.1 In statically typed languages,
type errors can be detected during compilation. To detect type errors, usu-
ally a syntactically correct program is required.

• Semantic errors occur when a variant behaves incorrectly according to some
(formal or informal) specification. Semantic errors are most difficult to de-
tect. For example, in Figure 5.2c, a lock is only released when feature X is
selected, which can lead to a deadlock in variants without feature X. To de-
tect semantic errors, a program must be executable, which typically requires
the absence of syntax and type errors.

Second, we distinguish two general error detection approaches: check variants or
check the entire software product line (second row in Fig. 5.1).

1Whether a specific error is a syntax error or a type error can be debatable to some extend. We use
the following distinction: errors that are caught by a parser based on a (context-free) grammar
are considered syntax errors, all errors detected with further static analysis in the compiler are
considered type errors. One example of a borderline case are abstract methods in Java. Although
it is possible to write a parser that rejects abstract methods in nonabstract classes, typical Java
parsers use simpler grammars that accept programs with any kind of methods in abstract and
nonabstract classes. In this case, a separate compiler pass enforces that nonabstract classes may
not contain abstract methods. Depending on the implementation of the compiler different means
are used to detect the abstract method error. Consequently, depending on the implementation,
it can be classified as syntax or type error.
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• In the first case, (some or all) generated variants are checked in isolation. A
brute force strategy of generating and checking all variants is usually infea-
sible, because already with few features the number of variants that can be
generated from a software product line explodes (for n independent optional
features, there are 2n distinct variants). In practice, this typically means that
only some sampled variants or only those variants requested by customers
are checked [Pohl and Metzger, 2006]. Errors in other variants may remain
undetected until such variant is requested.

• In contrast, some approaches check the entire software product line and guaran-
tee certain properties for all variants when this check passes [e.g., Czarnecki
and Pietroszek, 2006; Thaker et al., 2007; Kästner and Apel, 2008b; Post and
Sinz, 2008]. This means that the error detection mechanism is aware of prod-
uct lines and has some ways of lifting the checks from a single variant to the
entire software product line.

Third, we classify error detection mechanisms by their coverage of different
programming languages: single language, multiple languages, and inter-language
errors (third row in Fig. 5.1).

• Some checks are specific to a single language. For example, different lan-
guages require different type checks.

• Next, there are errors that can occur in multiple languages and can be ad-
dressed by the same tool or mechanism.

• Finally, there are errors that occur only at the interaction of multiple languages.
One example of such inter-language error is a mismatch between the inter-
face specification of a web service in a web service description language and
its implementation in Java.

Fourth, different product-line implementation mechanisms on top of a program-
ming language can require different error detection strategies (fourth row in
Fig. 5.1). While some checks can be independent of the implementation, others
rely on certain mechanisms. For this classification, we use the groups annotative
approaches, compositional approaches, and others introduced in Chapter 3.

In the remainder of this chapter, we address first syntax errors (Section 5.2),
then typing errors (Section 5.3) for the entire software product line for annotative
approaches. Annotative approaches provide no means of modular syntax or type
checking and are especially prone to such errors (cf. Sec. 3.2.3). In contrast, se-
mantic errors are largely a common challenge to all product-line implementation
mechanisms and are outside the scope of this thesis (see also discussion of related
work in Section 5.4).
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5.2. Disciplined annotations

Enforcing disciplined annotations is a solution that prevents syntax errors in soft-
ware product lines developed with annotative approaches [Kästner et al., 2009b].
As shown in the taxonomy, syntax errors are the most fundamental category of
errors that have to be addressed before typing or semantic errors. Furthermore, as
discussed in Section 3.2.3, many annotative approaches are prone to syntax errors,
since arbitrary code fragments can be annotated and checking features in isolation
is not possible. In our experience, almost every product-line developer using pre-
processors can tell a story how she searched for hours to fix a simple syntax error
like a bracket mismatch.

In a nutshell, disciplined annotations are a subset of all possible annotations.
Disciplined annotations are annotations on those code fragments that do not in-
troduce syntax errors when deleted. Allowing only disciplined annotations limits
expressiveness (without significant restrictions on practical usage scenarios as we
will show) in exchange for certain safety guarantees for all variants. To determine
which annotations are disciplined, we present a language-independent solution.
In Figure 5.3, we show how disciplined annotations fit into our taxonomy.

Syntax Typing Semantic

Single Multiple Inter-language
Check variants Check entire product line

OtherAnnotative Compositional

Kind of error

Languages
Error detection

Implementation

Figure 5.3.: Properties of disciplined annotations [Kästner et al., 2009b].

5.2.1. Basic concept

The reason that preprocessor-based implementations, such as in Figure 3.6 (p. 34)
or Figure 5.2a, are so prone to syntax errors is that most preprocessors consider the
underlying source code as an arbitrary stream of characters. Thus, preprocessors
can remove any lines, tokens, or even characters. This flexibility makes them very
powerful, but also dangerous.

If we allow only annotations on entire methods in Java code, but no other con-
structs, we can trivially guarantee that removing code fragments will not intro-
duce any syntax errors (of course type and semantic errors are still possible; more
on this later). In Java, we can allow also to annotate entire classes, fields, and
statements and guarantee that those annotations cannot cause any syntax errors.
However, we cannot annotate the expression inside an if statement or the body of
a for loop, because those might cause syntax errors when removed. We call an-
notations that cannot introduce syntax errors disciplined annotations and all others
undisciplined annotations.
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The general lesson is that a restricted preprocessor can avoid syntax errors, but,
to do so, it needs an insight into the structure of the underlying source code. For
example, the preprocessor (or an external tool to detect undisciplined annotations)
must recognize classes and methods in Java source code to distinguish disciplined
from undisciplined annotations.

In order to analyze the underlying structure and to reason about annotations,
already the underlying source code must not contain any syntax errors. Disci-
plined annotations can only guarantee not to introduce new syntax errors. For
the remainder of this section, we implicitly assume that the underlying annotated
code is syntactically correct such that we can analyze its structure.

Finally, there is the question of how a tool determines which annotations are
disciplined and which are not. Instead of deciding which kinds of annotations are
disciplined in an ad-hoc fashion for each language, we design a solution that can
automatically infer, from the grammar specification of a target language, which
structural elements that can be annotated without causing syntax errors. That is,
the same grammar that is used to define which code fragments are syntactically
correct is used to determine which annotations are disciplined.

5.2.2. Detecting disciplined annotations

To detect which code elements can be annotated and removed safely, we consider
the grammar of the target language. The grammar specifies which code sequences
may appear in what order and where. From this information, we can derive which
elements are mandatory and optional in the source code; the optional elements are
those which can be annotated safely.

For illustration, consider the excerpt from a simple Java-like grammar in Fig-
ure 5.4 (in extended Backus-Naur form). It specifies that a compilation unit may
consist of any number of type declarations. That is, from a syntax point of view,
all type declarations are optional and can thus be annotated and deleted safely
with regard to the syntax; an annotation on a type declaration is considered dis-
ciplined. In contrast, inside a type declaration, the class keyword, the name of a
class, and the body with its opening and closing brackets are mandatory and must
not be annotated. This distinction would already recognize the annotation in Fig-
ure 5.2a as undisciplined. The extends and implements clauses are again optional,
so are the member declarations inside the class body. This way, we can infer from
the grammar of a language which structural elements are optional.

Technically, we generate a parser from the grammar that propagates information
whether structural elements are optional to the generated parse trees (for details
on the implementation and tool chain, see [Kästner et al., 2009b]). That is, when
the generated parser parses a Java code fragment, it creates a parse tree in which
all optional elements are marked. We exemplify such generated parse tree for a
small code fragment in Figure 5.5.
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1 CompilationUnit : (TypeDeclaration)* <EOF> ;
2 TypeDeclaration : "class" <ID> ( "extends" <ID> )? ( ImplementsList )? ClassBody;
3 ClassBody : "{" (Member)* "}" ;
4 Member : Method | Field ;
5 ImplementsList : "implements" <ID> ("," <ID>)* ;

Figure 5.4.: Excerpt of a grammar of a Java-like language.

1 class C implements D, E {
2 int x;
3 void m(){}
4 }
5 class F {}

Group

CompilationUnit

TypeDeclaration TypeDeclaration

“E”

ClassBody

EOF

“,“

“class” “C” ImplementsList

“implements” “D” Field Method

ClassBody“class” “F”

“{“ “}” “{“ “}”

… …

Figure 5.5.: Source code fragment and corresponding parse tree. In analogy to feature diagrams,
structural elements that are optional in the grammar are marked with an empty dot,
mandatory structural elements are marked with a filled dot.

A tool that enforces disciplined annotations must only compare whether the
provided annotations match to optional elements in the parse tree. Specifically,
we identified two rules to determine disciplined annotations [Kästner et al., 2008a,
2009b]:

• Optional-Only Rule: Only structural elements that are optional according to
the language’s grammar can be annotated and removed.

• Subtree Rule: When a structural element is removed all its children must be
removed as well. For example, when a class is removed also its class key-
word, name, extends and implements declaration, and body must be removed.
Common preprocessors evaluate nested annotations from the outer to the
nested inner ones and thus fulfill this rule automatically.

Our approach to determine disciplined annotations based on a grammar is lan-
guage independent in the sense that it can be applied to every language for which
a grammar specification exists.

In our implementation in our prototype CIDE, all these rules are enforced di-
rectly in the tool infrastructure. Instead of textual annotations as in cpp, CIDE
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manages all annotations internally. Annotations are only possible on code frag-
ments that correspond to optional structural elements. For all other code frag-
ments, CIDE refuses to add annotations. This way, CIDE enforces disciplined
annotations and guarantees the absence of syntax errors in all variants.

5.2.3. From string removal to AST transformations

Disciplined annotations as described so far are simple, language independent,
and backward compatible to existing preprocessors. Variants can be generated by
simple string removal. However, as we will show in this section, we can improve
the process regarding both expressiveness and ease of use. We therefore lift our
analysis from parse trees to Abstract Syntax Trees (ASTs) and modify the variant
generation process from string removal to AST transformations [Kästner et al.,
2008a].

An AST is similar to a parse tree, but abstracts many details that are necessary
for the technical parsing process. An AST is closer to the actual internal structure
of the document than a parse tree. To illustrate this abstraction, in Figure 5.6,
we show an AST that corresponds to our previous code fragment and parse tree
of Figure 5.5. The AST hides all tokens necessary for parsing, such as the class
keyword or commas.

Interface
Name=”D”

CompilationUnit

TypeDeclaration
Name=”C”

TypeDeclaration
Name=”F”

MembersImplementsList

Field
Name=”x”

Method
Name=”m”

… …

Interface
Name=”E”

Figure 5.6.: AST representing the underlying structure from Figure 5.5.

Benefits of AST representation

The AST representation has three main benefits: improved expressiveness, easier
use, and opportunities for extensions.

First, we improve expressiveness, since we can classify more annotations as dis-
ciplined with an AST than with a parse tree. For example, the grammar specifies
that the implements list is optional inside the type declaration, but inside the list
the first entry is mandatory due to special parsing requirements for the separating
comma. Using the parse tree in Figure 5.5, a user can only annotate the second pa-
rameter or the entire list. However, intuitively all interfaces are optional elements
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1 class C implements
2 #ifdef Feature1
3 D
4 #endif
5 ,
6 #ifdef Feature2
7 E
8 #endif
9 {

10 ...
11 }

(a) Annotations based on structural AST ele-
ments.

1 class C
2 #ifdef Feature1 ∨ Feature2
3 implements
4 #ifdef Feature1
5 D
6 #ifdef Feature2
7 ,
8 #endif
9 #endif

10 #ifdef Feature2
11 E
12 #endif
13 #endif
14 {
15 ...
16 }

(b) Backward compatible annotation of mul-
tiple list elements separated by comma.

Figure 5.7.: Disciplined annotations mapped to optional AST elements are less verbose, but not
backward compatible.

in a list and it should be possible to annotate each of them, including the first one.
The AST reflects this intuition and allows us to annotate every element separately.

Second, annotating AST elements is easier than annotating parse tree elements,
since the developers do not need to care about the syntactic overhead. Following
the previous example of the implements list, we annotate elements in the source
code, but not the separating comma or the implements keyword. In Figure 5.7a, we
show an example with annotations on both interface elements, but we can ignore
the comma and implements keyword. An equivalent backward compatible anno-
tation would require more and nested annotations, as shown in Figure 5.7b,2 to
get the syntactic overhead right in every variant. Of course this simpler annota-
tion comes at a price that we need a different variant generation mechanism as
explained below.

Finally, it is easier to reason about annotated AST elements instead of parse tree
elements. AST elements are used for several other tasks anyway, such as type
checking (see Sec. 5.3) and refactoring. Therefore, mapping annotations directly
to AST elements is beneficial for those extensions.

2For the sake of concise examples, throughout this chapter, we allow #ifdef instructions inside a
line, instead of breaking the source code into multiple lines. Additionally, we allow Boolean
operators in the condition as “#ifdef X ∧ Y” and “#ifdef X ∨ Y” as alternative to nested #ifdef
directives or “#if defined(X) || defined(Y)”.
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Technical realization

Using ASTs instead of parse trees raises two technical challenges. First, we need to
produce ASTs and decide which AST elements are optional. This process should
be safe and language independent as generating parse trees from a language’s
grammar. Second, we need to replace the variant generation process: Instead of
removing strings between preprocessor declarations, we need a more sophisticated
process based on AST transformations that takes care of the syntactic details.

Regarding the first problem, AST creation, many tools create an AST out of a
parse tree as a separate step after parsing. Writing an AST back into a source code
file is again implemented in a separate step. To guarantee syntactic correctness
for all variants, both transformations must be performed safely without loss of
information in every language.

To bridge this gap, we follow the lead of Wile, who used an extended gram-
mar specification language to derive the abstract syntax directly from a grammar
file [Wile, 1997]. Wile proposed a series of additional constructs in the grammar
specification language, so that the abstract syntax and its relationship to the con-
crete syntax are directly specified in the extended grammar file. This way, we can
extend our parser generator so that it directly produces an AST instead of a parse
tree and still propagates all information about optionality. Wile further proposed
a semi-automated process to transform an existing grammar describing a concrete
syntax into the extended format. For example, to solve problems like the imple-
ments list described previously, he proposes a special list construct. In Wile’s nota-
tion, the ImplementsList production is expressed as ImplementsList: ID ^ ",";,
in which the ^ symbol is a special construct for lists followed by the token that sep-
arates list entries. Using this construct, the parser can interpret identifiers directly
as lists and build the AST accordingly. We adopted Wile’s concept and added
those extensions to our tool chain (see [Kästner et al., 2009b]). This way, we can
generate a parser that creates structural elements based on the target language’s
abstract syntax from a grammar file. Only a single tree is created, no manual
mapping between parse tree and abstract syntax is required.

An alternative approach to bridge the gap between between textual syntax and
AST, successfully applied in the context of aspect weaving, is to reuse an existing
multi-language tool set that is responsible for a safe transformation, such as the
commercial DMS Software Reengineering Toolkit [Baxter et al., 2004; Gray and
Roychoudhury, 2004].

Regarding the variant generation mechanism, we can change the mechanism
from removing strings to performing AST transformations. Instead of removing
an annotated code fragment, we first parse the code file, identify the correspond-
ing optional AST element, remove this element from the AST, and finally write
the modified AST back into a file. During AST transformation, we still enforce the
optional-only rule and the subtree rule; that is, we forbid removing mandatory
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AST elements. Since tools for parsing a file into an AST and writing back an AST
into a file are generated from a grammar, this process is safe: Writing an AST
can never produce a syntax error. When elements in a list, such as the interfaces
in Figure 5.7a, are written into a file, the necessary syntactic overhead is added
automatically. For example, when both interfaces are removed in Figure 5.7, then
the implements keyword is not written in the generated variant.

In our prototype implementation in CIDE, much of the complexity added by
ASTs is hidden in the tool infrastructure. Since CIDE uses an own annotation
mechanism instead of cpp-style textual annotations, CIDE is in full control of an-
notations and the variant generation mechanism [Kästner et al., 2009b]. Therefore
it is simple, and even convenient, that only code elements, but not syntactic over-
head has to be annotated.

5.2.4. Wrappers

Finally, experience has shown that there is another class of annotations that is
classified as undisciplined so far, but needed to solve practical problems: wrap-
pers. Wrappers are code fragments that wrap around other code fragments, such
as the try-catch statement in Java. They are fundamental in many compositional
approaches.3 In some scenarios, wrappers should be removed, without removing
the wrapped statements. In Figure 5.8, we show two examples of optional excep-
tion handling and optional null-pointer checks that require wrappers. Both the
parse-tree–based and the AST-based solutions classify these annotations as undis-
ciplined (the annotated code fragments do not correspond to optional structural
elements; the subtree rule forbids excepting inner parts from an annotation).

There are some workarounds on how wrappers can be implemented with dis-
ciplined annotations, but they require boilerplate code and are counterintuitive.4

Therefore, we introduce an additional mechanism for wrappers that can be used
in any language, and we integrate it with our existing classification of disciplined
annotations based on ASTs.

In our solution, specific AST elements can be marked as wrappers (technically,
wrappers are specified with an attribute in our grammar specification language).
When wrappers are annotated, specific child elements can be excluded from this
annotation. For example, when annotating a try-catch statement in Java, we can
exclude the child that represents the wrapped body from this annotation. When
the wrapper is removed from the AST during variant generation, it is replaced by
its wrapped child element. To ensure that no syntax error can occur in this trans-

3Wrappers are similar to method refinements in AHEAD or advice in AspectJ. For example, in
AspectJ, before and after advice are not sufficient, some aspects wrap existing code with around
advice.

4For example, in Java, the wrapper code can be specified in an overriding method, using a super call
to invoke the wrapped code. To provide variability, the entire overriding method is annotated.
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1 class C {
2 void foo() {
3 #ifdef ExceptionHandling
4 try {
5 #endif
6 this.bar();
7 #ifdef ExceptionHandling
8 } catch (RuntimeException e) {
9 ...

10 }
11 #endif
12 }
13 void bar(C a) {
14 #ifdef NullPointerChecks
15 if (a!=null)
16 #endif
17 a.foo();
18 }
19 }

Figure 5.8.: Wrappers, such as try, if, and for statements, cannot be annotated without annotating
the wrapped elements.

formation, a type-based mechanism secures wrappers during parser generation.
For example, we ensure that a statement can only wrap other statements, but that
it cannot wrap expressions or parameters. For further details, see [Kästner et al.,
2009b].

5.2.5. Flexibility vs. safety

Disciplined annotations balance between two properties: flexibility and safety. By
imposing a tree structure on a source code artifact, we attain safety (guaranteeing
syntactic correctness for all generated variants). However, at the same time, we
impose restrictions on what developers are allowed to annotate and thus reduce
their flexibility, that is, developers have fewer possibilities to express variability:
Compared to an implementation using the undisciplined C preprocessor, which
works on token level, disciplined annotations can only annotate optional elements
of the underlying AST. Hence, there are undisciplined implementations for which
a corresponding implementation with disciplined annotations is difficult to find
or requires boilerplate code. For example, defining a class with two alternative
names is not possible with disciplined annotations since the name of a class is
mandatory in the underlying structure (see Fig. 5.5), but we could create two
copies of the class as a workaround.5

5It is always possible to replace undisciplined annotations by disciplined ones. In the worst case,
we replicate the entire file for each variant, so that variability is reduced to annotations on
files. This expansion mechanism is used, for example, by Vittek [2003] and on a finer level of
granularity also by Garrido and Johnson [2005], see Section 5.4.
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Sa
fe
ty

Parse tree AST
(with wrappers)

Token-based

Character-based
Flexibility

Figure 5.9.: Safety versus Flexibility.

Programming languages already define a certain structure for code artifacts by
their language syntax. For example, the Java syntax defines a top-down struc-
ture for Java code (e.g., Java files contain classes, which contain methods, which
contain statements). We expose this structure in the form of ASTs and exploit it
with the subtree rule and the optional-only rule to prevent syntax errors. Different
languages provide a different amount of structure in their syntax. For example,
JavaScript artifacts only contain a list of statements or function declarations, gram-
mar artifacts only contain a list of production rules with a simple inner structure,
and XML nodes are nested completely arbitrarily.

This raises two questions. (1) How much structure does an artifact language
need to enforce disciplined annotations? (2) Is the structure defined by a lan-
guage’s syntax a limitation when using disciplined annotations for other artifact
types in the future?

To answer the second question first, consider a “README.txt” file. It is a valid
artifact in a software product line, but will probably not provide any structure,
at least none that is described by a context-free grammar. Fortunately, such ar-
tifacts, for which no specific language grammar is specified, can still be parsed
based on a dummy grammar that accepts any file as a list of arbitrary optional
tokens or even as a list of optional characters. With a dummy grammar, every
character is optional with respect to the document; that is, every single character
in this document can be annotated independently just as when using preproces-
sors. This shows that a required structure is not a limitation of our approach. Even
if no structure is available, as in the “README.txt” file, we can still use the same
mechanisms to annotate this file uniformly next to other artifacts in a software
product line.

Nevertheless, structure is beneficial. When using a dummy grammar, the guar-
antee of syntactic correctness is lost, because any artifact (with a textual representa-
tion) adheres to this grammar. This shows that any structure – although it reduces
flexibility – is beneficial for safety. The structure restricts the possible parts of the
artifact that can be annotated and enforces reasonable annotations.

In Figure 5.9, we visualize the relative differences in safety and flexibility of all
discussed approaches. For annotations based on a parse tree, we can guarantee
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syntactic correctness. We can give the same guarantee with more flexibility for
annotations based on the AST, even when we introduce wrappers (see Sec. 5.2.3
and 5.2.4). In contrast, a character-based or token-based annotation – as with the
dummy grammar or contemporary #ifdef preprocessors – provides the highest
flexibility (every single character or token can be annotated) but no safety at all.

This discussion shows that a structure given by a grammar is not necessary
for an artifact to be handled by a preprocessor that enforces disciplined annota-
tions. However, when a reasonable grammar is provided, disciplined annotations
can ensure syntactic correctness and take advantage of the artifact’s structure to
support the developer toward reasonable annotations. The ability to use the ar-
tifact’s structure (if available) in every language to ensure syntactic correctness
distinguishes preprocessors based on disciplined annotations from naive cpp-like
preprocessors.

5.2.6. Evaluation

To evaluate expressiveness and flexibility of disciplined annotations, we target two
questions:

• Can disciplined annotations be applied language independently? One of the
key benefits of preprocessors is their language-independent and uniform
application. Complicated language-dependent tools will likely not replace
preprocessors, even with a guarantee of syntactic correctness.

• Are disciplined annotations sufficiently expressive in practice? Although
many errors are caused by the high flexibility of preprocessors, if we overly
restrict disciplined annotations, they would not be used.

Languages

Originally, our implementation of disciplined annotations in CIDE was tailored to
the Java AST provided by Eclipse’s Java development tools [Kästner et al., 2008a].
We then extended it to its current language-independent form, in which additional
languages can be added as plug-ins and plug-ins can be generated from grammar
specifications [Kästner et al., 2009b]. That is, CIDE is not entirely language in-
dependent, but it can be extended toward new languages quickly. Furthermore,
it is always possible to disable disciplined annotations as a fallback solution for
unsupported languages (e.g., by using a dummy grammar, as discussed earlier in
Sec. 5.2.5).

We generated 17 language plug-ins based on grammars of various code and
noncode languages. That is, in CIDE, we can enforce disciplined annotations for
all these languages. In Table 5.1, we list all supported languages and some infor-
mation describing optional structures, wrappers, and the number of production
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Language Optional structures Wrappers #Prod.

Featherw. Java∗ methods, fields, parameters - 16
Java 1.5† members, stmt., parameters, ... if, for, try, ... 133
C (plain)† functions, stmt., parameters, ... if, for, ... 80
C (pseudo)∗ functions, stmt., preprocessor, ... if, #ifdef, ... 46
C++ (pseudo)∗ classes, methods, stmt., prepr., ... if, #ifdef, ... 65
C#‡ classes, members, stmt., par., ... if, for, try, ... 215
Haskell (pseudo)† types, imports, data, classes, ... - 54
Haskell 98∗ types, imports, data, cl., par., ... if 71
Python† functions, stmt., parameter, ... if, for, ... 94
JavaScript† functions, statements, expr., ... if, for, ... 111
JavaCC†, Bali†,

ANTLR‡ productions, terminals, ... [], ()* 14–166
Property files∗ lines - 1
Manifest files∗ sections, attributes - 3
HTML† headings, paragraphs, list items, ... <b></b>, ... 11
XML∗ nodes, parameters - 13
∗handwritten based on external specification, †adapted fr. JavaCC grammar, ‡adapted fr. ANTLR grammar

Table 5.1.: Generated language plug-ins in CIDE.

rules each. The number of production rules can be used as a rough indicator of the
complexity of the language. For most languages, the grammar was derived from
an existing grammar in the JavaCC or ANTLR format (which required mostly just
syntactic changes); this usually took less than one hour per language.

The language extensions for C and C++ were the most problematic, due to the
existing preprocessor. Since our implementation of disciplined annotations does
not cover macros (#define) or file inclusion (#include), C is very difficult to parse.
To overcome this problem in CIDE, we wrote a pseudo parser, which does not ac-
tually parse the code based on the full language specification, but recognizes only
important constructs, such as functions, variable declarations, and statements. For
example, statements are recognized by the terminating semicolon, functions by
the typical pattern for return type and parameter declarations. Preprocessor di-
rectives are recognized as part of the language, as long as they are used within
certain limitations (e.g., #include must not occur inside functions). With a pseudo
parser, we are able to use CIDE on many C projects, but we weaken the guar-
antee for syntactic correctness to some degree (see discussion in Sec. 5.2.5). The
same pseudo-parser approach was used for C++ and also for an initial version of
Haskell, because of Haskell’s complex syntax and many extensions.

The XML grammar supports only plain XML files. All elements or attributes are
optional and can be annotated. This guarantees that every variant is well-formed
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in the XML terminology. Guaranteeing that all variants of an XML artifact are
valid based on the given document type definition or XML Schema description
(e.g., determining that the body tag in XHTML is mandatory) requires additional
information. This can either be done by providing a more specific grammar (e.g.,
a specific XHTML grammar) or by deferring some checks to a product-line–aware
type system (cf. Sec 5.3). We prototypically generated a XHTML grammar from
the XHTML specification; but in future work, we plan a more sophisticated mech-
anism to validate artifacts of XML-based languages.

All in all our experience shows that creating language plug-ins for new lan-
guages is simple for most languages. If a target language has a well-specified
grammar, creating a language extension is a matter of few hours. All generated
languages share the guarantee for syntactical correctness (with some limitations
for pseudo parsers).

Expressiveness

To demonstrate that disciplined annotations provide sufficient expressiveness for
practical application, we provide two kinds of evidence: (1) a number of case
studies successfully developed with disciplined annotations in CIDE and (2) an
analysis of how the preprocessor is currently used in existing Java ME and C
projects.

First, we and others have used disciplined annotations in CIDE to annotate fea-
tures in case studies such as Berkeley DB, Prevayler, FAME-DBMS, and an indus-
trial product line of software for Water Boilers. In Table 5.2, we give a list of case
studies and their size, grouped by languages. For details on those case studies,
the respective development process, and their contributors see Appendix A.1.

The general experience in our case studies was that expressiveness was suffi-
cient. There were a few cases, when we had to rewrite source code to make an-
notations disciplined, but these were only minor, obvious changes. For example,
we split complex expressions into multiple statements or changed the branches of
if-else constructs to apply wrappers. In our experience, disciplined annotations
were not a limitation.

Second, Baxter and Mehlich [2001] argue that developers prefer disciplined an-
notations, even when they could use undisciplined ones, so that most annotations
are in a disciplined form already. To support that theory with empirical data, we
had a look at three existing Java ME projects that have been developed with the
Antenna preprocessor, and 40 C projects that have been developed with the C pre-
processor. All projects are open source and were developed independently from
our analysis using a traditional undisciplined preprocessor.

All three Java ME projects (for more information on these projects, see Ap-
pendix A.1), were almost entirely disciplined as a manual investigation of all an-
notation revealed. As shown in Table 5.3, we found no undisciplined annotations
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Artifact language Case studies Lines of code

Java Berkeley DB Java Edition 84 000
Graph Product Line 1 350
Prevayler 8 000

C Water Boiler 10 000
C++ FAME-DBMS 5 000
Python Pynche 2 400
Haskell Arithmetic Expression Evaluator 460

Functional Graph Library 2 600
ANTLR grammar SQL Parser 60
XML ANT build script AHEAD Tool Suite 17 000
HTML documentation AHEAD Tool Suite 28 000

Graph Product Line 200
Berkeley DB 120 000

Table 5.2.: Case studies implemented with CIDE.

in Lampiro, three undisciplined annotations in MobileMedia and eight undisciplined
annotations in Mobile RSS Reader. All undisciplined annotations were very easy
to transform into disciplined ones. In Figure 5.10, we exemplify one of these
undisciplined annotations from Mobile RSS Reader and our transformation into a
disciplined annotation.

1 if (sdate.length() > 0) {
2 date = new Date(

Long.parseLong(sdate, 16));
3 //#ifdef DITUNES
4 } else {
5 ...
6 //#endif
7 }

(a) Original undisciplined annotation.

1 if (sdate.length() > 0) {
2 date = new Date(

Long.parseLong(sdate, 16));
3 }
4 //#ifdef DITUNES
5 else {
6 ...
7 }
8 //#endif

(b) Equivalent disciplined annotation.

Figure 5.10.: Example of an undisciplined annotation in Mobile RSS Reader.

There are by far more C programs using a preprocessor for variability than
Java programs. Therefore, we collected a large number of C programs for further
analysis. Mirroring an earlier study of Liebig et al. [2010], we analyzed 40 open
source C programs from different domains and of different sizes (together over 30
million lines of code; see Appendix A.2 for a description of the programs). Due to
the number and size of the projects, we developed an automated analysis tool (an
extension of Liebig’s analysis tools).
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Project # annotations # undisciplined annotations

Lampiro 108 0 (0.0 %)
MobileMedia (Rel. 8) 164 3 (1.8 %)
Mobile RSS Reader 1050 8 (0.8 %)

Table 5.3.: Disciplined annotations in four Java ME product lines.

An exact analysis of disciplined annotations in C code is difficult, as long a C
code is interwoven with preprocessor directives (macros, includes, and conditional
compilation). Our analysis tools use an approximation of the underlying structure,
which is reflected also in the collected metrics. Therefore, we collect two distinct
metrics regarding disciplined annotations.

• TL&S. Our metric TL&S counts the percentage of disciplined annotations,
but considers only annotations on entire top level elements (such as functions
and typedefs) and annotations on entire statements as disciplined. This met-
ric produces many false negatives (many disciplined annotations are classi-
fied as undisciplined) but no false positives, it serves as a conservative lower
bound.

• DIS. Our metric DIS counts the percentage of disciplined annotations as well,
but is closer to our notion of disciplined annotations. We count annotations
on entire parse subtrees as disciplined and we implemented a number of
special handlers to recognize some wrappers like those in Figure 5.8 (p. 91).
Nevertheless, this metric cannot be exact because of the underlying tools;
both false positives and false negatives are possible. Still, in several sampled
files, manual inspection confirmed that this metric recognizes disciplined
annotations mostly correct.

Although not perfectly accurate, both metrics provide a sufficient overview to give
a rough insight in how annotations are used in C projects. Additionally, we collect
lines of code (after pretty printing and removing comments and empty lines for
comparability) and number of annotations to give an insight into the size of these
projects.6

We show the results of our analysis in Figure 5.4. The results confirm our
expectations that most annotations are in a disciplined form anyway. The values
differ from project to project; except for mpsolve all contain some undisciplined
annotations, but in all cases by far most annotations are disciplined (on average
89 %). There is no significant correlation between the percentage of disciplined
annotation and the size of the project.

6We excluded 21 file because the preprocessor declaration were not well-formed; there were not
enough #endif directives to match the #ifdef directives.
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Name LOC ANN TL&S DIS

apache 214 250 4 087 84 % 87 %
berkeley db 187 298 2 907 89 % 92 %
cherookee 51 719 805 84 % 88 %
clamav 75 210 1 361 90 % 91 %
dia 128 850 614 90 % 92 %
emacs 237 003 6 072 89 % 91 %
freebsd 5 923 123 85 431 87 % 90 %
gcc 1 615 639 16 438 85 % 88 %
ghostscript 441 411 3 415 91 % 93 %
gimp 587 277 1 836 91 % 94 %
glibc 747 047 12 981 84 % 88 %
gnumeric 254 578 1 548 81 % 86 %
gnuplot 75 978 2 054 81 % 85 %
irssi 49 661 151 90 % 91 %
libxml2 210 762 7 886 93 % 94 %
lighttpd 38 925 723 90 % 96 %
linux 5 973 183 46 757 93 % 95 %
lynx 117 692 3 765 80 % 84 %
minix 64 035 1 152 95 % 96 %
mplayer 605 573 6 320 82 % 87 %
mpsolve 10 170 30 100 % 100 %
openldap 245 907 2 744 87 % 92 %
opensolaris 8 615 530 82 728 77 % 80 %
openvpn 34 975 963 93 % 95 %
parrot 98 227 1 597 92 % 93 %
php 573 724 8 396 85 % 89 %
pidgin 269 178 2 162 89 % 91 %
postgresql 449 695 2 898 82 % 85 %
privoxy 24 038 686 77 % 81 %
python 373 961 8 726 91 % 92 %
sendmail 83 643 3 116 80 % 84 %
sqlite 94 419 1 509 88 % 89 %
subversion 509 171 3 927 80 % 81 %
sylpheed 101 435 1 074 88 % 90 %
tcl 135 078 3 903 87 % 88 %
vim 225 410 11 001 68 % 77 %
xfig 72 443 375 83 % 87 %
xine-lib 494 903 6 162 89 % 91 %
xorg-server 527 335 8 932 88 % 92 %
xterm 49 589 2 019 89 % 90 %

Sum/Average 30 588 045 359 251 87 (±6) % 89 (±5) %

LOC: lines of code, after normalization and removal of comments; ANN:
total number of annotations; TL&S: conservative lower bound of disciplined
annotations (percentage of annotations that cover top level constructs or
statements); DIS: percentage of annotations considered as disciplined

Table 5.4.: Disciplined annotations in forty C applications.
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Although most annotations are already disciplined in practice, it is still benefi-
cial to enforce disciplined annotations with a tool and reject all undisciplined an-
notations. Already, a single undisciplined annotation in a large project can cause
a hard to find syntax error in few variants. The high percentage of disciplined
annotations in Java ME and C product lines are a good sign, since they mean that
disciplined annotations are hardly a limitation in practice; refactoring legacy code
to use only disciplined annotations will typically require only moderate effort.

All in all, our analysis shows that disciplined annotations are expressive enough
to develop software product lines. They are still easy to use and language inde-
pendent, thus keeping both important advantages of traditional preprocessors. At
the same time, disciplined annotations can guarantee the absence of syntax errors.

5.3. Product-line–aware type system

Building on top of disciplined annotations, we now focus on detecting type er-
rors in all variants of a software product line with a product-line–aware type sys-
tem [Kästner and Apel, 2008b]. Such type system can detect many errors, beyond
just syntax errors. For example, we can detect dangling method references or
missing types, even if they occur only in one variant out of millions. Still, to detect
type errors it is necessary that all variants are syntactically correct in the first place;
thus, we build our type system on top of disciplined annotations. Additionally,
disciplined annotations come in handy, since annotations are already mapped to
the underlying abstract syntax tree (see Sec. 5.2.3), which we use also for type
analysis. In Figure 5.11, we show how a product-line–aware type system fits into
our taxonomy.

Syntax Typing Semantic

Single Multiple Inter-language
Check variants Check entire product line

OtherAnnotative Compositional

Kind of error

Languages
Error detection

Implementation

Figure 5.11.: Properties of our product-line–aware type system.

Since language-independent (or inter-language) type systems are still a research
topic (with promising results, but without consensus), we focus on a product-
line–aware type system for a single language. We first explain our type system
for Featherweight Java (a subset of Java) and present a generalization to full Java,
other languages, and inter-language typing afterward in Section 5.3.5.

5.3.1. Type errors in software product lines

Before we start with a formal discussion of our type system, we give a quick
overview of different type errors that can occur and challenges for the type system.
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We present a couple of examples, which are simplified for conciseness almost to
the edge of triviality, but which stem from earlier experience in Berkeley DB (see
Sec. 3.1.7).

Method invocations. As a first example, consider the code fragment in Figure 5.12
of a class Storage used by another class Database. In a read-only database variant,
setting values in the storage class is not supported, therefore the according code
is annotated to be removed unless a feature Write is selected (#ifdef ).

1 class Database {
2 void insert(Object key, Object data, Txn txn) {
3 storage.set(key, data, txn.getLock());
4 }
5 }
6 class Storage {
7 #ifdef WRITE
8 boolean set(Object key, Object data, Lock lock) { ... }
9 #endif

10 }

Figure 5.12.: Ill-typed method invocation.

While this code is well-typed for all variants that actually select the feature
Write, the method invocation of set in Line 3 (underlined) cannot be resolved
in variants in which Write is not selected. In such cases the method invocation
is left without a method declaration. If read-only databases are not generated
during development, this error might go undetected for a long time. In some
cases, it might only be detected after development, when a customer actually
requests a variant without Write. To type check the entire software product line,
we need to make sure that the method invocation can reach a method declaration in
every variant in which the invocation itself is not removed. One of many possible
solutions to eliminate the error in our example is to annotate the insert method
with Write as well.

Type references. There are numerous similar type errors, for example, when an
entire class is annotated as in Figure 5.13. If a database without transactions is
generated, compilation will fail because the parameter’s type Txn (underlined)
cannot be resolved. Similar type errors can occur when the class is referenced
as return type, when referenced as supertype of a class, when new objects are
instantiated, and so on.

Parameters. To fix the previous error, we could annotate the parameter txn of the
method insert as well, as shown in Figure 5.14, so that in database variants without
transactions insert has a different signature. To avoid a problem when accessing
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1 class Database {
2 void insert(Object key, Object data, Txn txn) {
3 storage.set(key, data, txn.getLock()); }
4 }
5 #ifdef TRANSACTIONS
6 class Txn { ... }
7 #endif

Figure 5.13.: Ill-typed type reference.

the local variable txn, we annotate the invocation “txn.getLock()” as well. If a
database without transactions is generated, typing this variant still fails, because
the method invocation “storage.set(...)” has only two parameters, but the method
declaration expects three.

1 class Database {
2 void insert(Object key, Object data #ifdef TRANSACTIONS, Txn txn#endif) {
3 storage.set(key, data #ifdef TRANSACTIONS, txn.getLock()#endif); }
4 }
5 class Storage { boolean set(Object key, Object data, Lock lock) { ... } }

Figure 5.14.: Ill-typed method invocation due to annotation on parameter.

Again, there are different solutions to make all variants in this example well-
typed: we can annotate the lock parameter of set as well (and all occurrences in
the method’s body not showed here), or we can overload the method declaration
of set. Either way, when type checking the entire software product line, we must
ensure that the provided parameters match the expected formal parameters in all
variants.

Considering the feature model and alternative features. The previous examples
were relatively simple because they contained only annotations with a single op-
tional feature. However, a software product line can have hundreds of features
and not all combinations of features may make sense. For example, transactions
are not necessary in a read-only database; therefore, we do not need to consider a
variant with Transaction but without Write during type checking. Furthermore,
two features like Persistent and In-memory for data storage can be alternative
(mutually exclusive), so that every variant must select one of them, but not both
at the same time. Even more complex relationships like “feature A can be selected
only when B or C but not D is selected” can occur in practice (see Sec. 2.3).

Features and their relationships in software product lines are described in a
feature model. There are different forms of how to describe such feature models; a
common form is a feature diagram [Kang et al., 1990; Czarnecki and Eisenecker,
2000], but it is also possible to enumerate all valid variants, or to use logics to
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describe constraints on the feature selection [Batory, 2005; Benavides et al., 2005]
(see Sec. 2.3). Based on a feature model, we can decide which feature combinations
are valid and can be used to generate a variant. When type checking a software
product line, we need to consider all valid variants.

In Figure 5.15, we show an example of a code fragment that is well-typed only if
we know (a) that Persistent and In-memory are mutually exclusive (otherwise a
variant with both features would be ill-typed because class Storage would contain
two methods with the same signature) and (b) that Write can only be selected if
either Persistent or In-memory is selected (otherwise an ill-typed variant could
be generated with a method invocation of set but no according declaration). This
illustrates that we need to consider relationships between features for type check-
ing the software product line.

1 class Database {
2 #ifdef WRITE
3 void insert(Object key, Object data, Txn txn) {
4 storage.set(key, data, txn.getLock()); }
5 #endif
6 }
7 class Storage {
8 #ifdef PERSISTENT
9 boolean set(Object key, Object data, Lock lock) { /* implementation A */ }

10 #endif
11 #ifdef INMEMORY
12 boolean set(Object key, Object data, Lock lock) { /* implementation B */ }
13 #endif
14 }

Figure 5.15.: Alternative implementations of a method declaration.

5.3.2. Desired properties

There are two properties, which we want to achieve with a type system for soft-
ware product lines: generation preserves typing and backward compatibility. The first
is the necessary core of guaranteeing type safety for all variants and the second is
an optional, tool-driven property, as we will explain.

Generation preserves typing. We want to guarantee that every variant which we
can generate from a software product line is well-typed. If a software product line
allows ill-typed variants, we want an error message upfront, without actually gen-
erating a single variant. We call a software product line well-typed if all variants
it can generate are well-typed.

Backward compatibility. We want a software product line that we strip of all its
annotations to be a well-typed program (not necessarily a variant with reasonable
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runtime semantics). For our work with Java, this implies two things: (a) our type
system is an extension of Java’s type system and not a replacement, and (b) we do
not want to introduce new language constructs, because this would no longer be a
Java program. This desired property might appear arbitrary but has a background
from a tool developer’s perspective. As soon as we introduce a new keyword, or
just allow multiple methods with the same name, the existing tool infrastructure
can no longer be used and must be rewritten. For example, this problem was
experienced by the AspectJ-development-tools team and Scala team that provided
commercial-quality Eclipse plug-ins for AspectJ and Scala. Because AspectJ and
Scala extend the Java syntax, the existing editors including syntax highlighting,
outline views, navigation, or code completion could not be reused; enormous
effort was required to rewrite the entire tool infrastructure (often through “coping
and editing”) [Chapman, 2006; McDirmid and Odersky, 2006]. On the other hand,
adopting a new language for software product lines without adequate tool support
is difficult for developers that are used to the comfort of modern development
environments.

Backward compatibility is not necessary and can be discussed controversially.
On the one hand, if we drop backward compatibility, we can build a more expres-
sive language, especially considering alternative features, as we will discuss in
Section 5.3.4. On the other hand, if we retain backward compatibility and design
a type system as extension, we can leave the existing type checker and tool infras-
tructure as is, and just add the additional conditions on top. From our perspective,
backward compatibility is desirable; it influenced several design decisions, which
we discuss in the respective sections.

5.3.3. Colored Featherweight Java (CFJ)

With Colored Featherweight Java (CFJ), we introduce a calculus of a language
and type system for software product lines.7 We designed CFJ for a subset of
Java on top of disciplined annotations. It fulfills both desired properties: variant
generation preserves typing and backward compatibility.

We decided to provide a formalization and proof for both properties, after an
initial implementation of our type system for Java. We soon found that our imple-
mentation was incomplete: We could not give a guarantee and sometimes gener-
ated ill-typed variants because we forgot some checks. We found similar problems
in other implementations (see related work in Section 5.4). At the same time, a for-
malization of our type checks for the entire Java language is not feasible because of
Java’s complexity. Instead, we formalize product-line–aware type checking mech-

7We presented CFJ first in [Kästner and Apel, 2008b]. Here, we present a refined and extended
version of the type system. We made slight changes to increase flexibility regarding annotations
on parameters. Thüm [2010] contributed some simplifications to reduce redundant checks.
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anism for Featherweight Java (FJ), a subset of Java, and give an outlook how it can
be extended toward full Java or other languages in Section 5.3.5.

Although CFJ is based on the existing language FJ (and CFJ’s type system is
an extension of FJ’s type system, due to backward compatibility), CFJ must be
considered as a separate language, not as an extended one, to describe an entire
software product line instead of a single program. Software product lines written
in CFJ are never directly executed, but are used to generate FJ programs, as we
will show later.

Featherweight Java

FJ is a minimal functional subset of the Java language for which typing and evalu-
ation are specified formally and proved type-sound with the FJ calculus [Igarashi
et al., 2001; Pierce, 2002]. It was designed to be compact; its syntax, type judg-
ments and operational semantics fit on a single sheet of paper. FJ strips Java of
many advanced features such as interfaces, abstract classes, inner classes, and even
assignments, while retaining the core features of Java typing. There is a direct cor-
respondence between FJ and a purely functional core of Java, such that every FJ
program is literally an executable Java program.

The motivation behind FJ was to experiment with formal extensions of Java,
while focusing only on the core typing features and neglecting many special cases
that would require a larger calculus, without raising substantially different typ-
ing issues. Because of its simplicity even proofs for significant extensions remain
manageable. For the same reasons, we chose FJ over other calculi of Java sub-
sets such as Classic Java [Flatt et al., 1998], Javalight [Nipkow and von Oheimb,
1998], Javas [Drossopoulou et al., 2000], or Lightweight Java [Strniša et al., 2007].
Besides many other examples, FJ was used to formally discuss an extension of
Java with generics [Igarashi et al., 2001], to formally discuss inner classes [Igarashi
and Pierce, 2002], and to reason about new composition techniques such as nested
inheritance [Nystrom et al., 2004].

To save a tree, we do not repeat the FJ calculus, however its mechanisms will
become clear from our formalization of CFJ as we highlight our modifications and
repeat unmodified rules.

Syntax and annotations

First, we describe CFJ’s syntax and how feature annotations are introduced in
the calculus. For CFJ, we use the original FJ syntax without casts, as shown in
Figure 5.16.8 As in FJ, we use the following notational conventions: x denotes a

8An earlier version of our type system included casts [Kästner and Apel, 2008b]. Although casts
were essential in the original Featherweight Java publication for the discussion about parametric
polymorphism [Igarashi et al., 2001], casts do not add anything new for type checking product
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P ::=(L, t, FM) CFJ program (SPL)

L ::=class C extends C { C f; K M } class declaration

K ::=C(C f) { super(f); this.f=f; } constructor declaration

M::=C m(C x) { return t; } method declaration

t ::= terms:
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation

Figure 5.16.: CFJ syntax.

list of elements x1 x2 . . .xn and relations and operations on lists are applied to all
entries; for example, f (x) = y is short for

(
f (x1) = y

)
∧
(

f (x2) = y
)
∧ . . .∧

(
f (xn) =

y
)

and f (x) = g(y) is short for
(

f (x1) = g(y1)
)
∧
(

f (x2) = g(y2)
)
∧ . . . ∧

(
f (xn) =

g(yn)
)
. Finally, also as in FJ, we require elements of lists to be named uniquely;

for example, there may not be two methods with the same name in a class.
As in FJ, a class table CT maps each class’ name to its declaration and has

the sanity conditions: (a) CT(C) = class C... for every C ∈ dom(CT); (b) Object /∈
dom(CT); (c) for every class name C (except Object) appearing anywhere in CT,
we have C ∈ dom(CT); and (d) there are no cycles in the subtype relation (see
below) induced by CT.

Next, we need to define what code fragments can be annotated. Following
our model of disciplined annotations (see Sec. 5.2), only optional code fragments,
which can be removed without invalidating the syntax, can be annotated. In CFJ,
these are (printed bold in Fig. 5.16) elements of the class list (L), of field and
parameter lists (C f and C x), method lists (M), term lists (t), super call parameter
lists (f), or field assignments (this.f=f). Restricting annotations and removal to only
these elements guarantees syntactic correctness for all variants, but of course not
yet the absence of type errors.

To introduce annotations into the calculus, there are many different possibili-
ties. For example, we could change the syntax, such that we introduce #ifdef and
#endif directives. Instead, we use a more general solution, which can be mapped
to a specific surface syntax or tool. In our formalization, we introduce annota-
tions using an annotation table AT that maps code fragments to their annotations,

lines. We decided to remove casts to streamline presentation and proofs.
We make slight modifications to the notation in [Igarashi et al., 2001]: We use C f instead of C f

to emphasize that it is a list of pairs rather than a pair of lists; the same for C x and this.f=f. Note
that this.f=f is one syntactic expression and not a relation between two. Additionally, although it
is technically not a syntax rule in FJ, we explicitly introduce the program P into the syntax for
symmetry in the generation process and proofs later.
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similar to the class table CT. This corresponds directly to our mapping of anno-
tations to AST elements, as discussed in the context of disciplined annotations in
Section 5.2.3. When formalizing other preprocessors it is possible to parse textual
annotations like #ifdef of some surface syntax into the annotation table and remove
textual annotations from the product line’s code base during type checking.

The annotation table is used the following way: AT(L) returns the annotation
of a class declaration, AT(C f) returns the annotation for a field, AT(C x) returns
the annotation for a parameter, AT(M) returns the annotation for a method, AT(t)
returns the annotation for a term, AT(f) and AT(this.f=f) return annotations for
parameters and assignments inside the constructor. Furthermore, we use AT(C) as
syntactic sugar for AT(CT(C)) to look up annotations on a class from a class name.
Note that AT maps annotations from code elements (identified by their location)
to annotations, not from names. For example, AT can map two methods foo in
different classes to different annotations, the result of AT(foo) depends which
declaration of foo is referenced. The annotation table is equivalent to introducing
annotations into the syntax, but makes the formalization easier to read.9 Both
annotation table and class table are provided by the compiler.

Reasoning about annotations

So far, we did not discuss the nature of feature annotations. As illustrated in
our examples in Section 5.3.1, we are interested in reachability conditions like the
following sentence “whenever code fragment a is present, then also code fragment b is
present” based on their annotations. (We use the metavariables a and b to refer
to arbitrary annotatable code fragments.) This is necessary, for example, to check
whether a method invocation in code fragment a can always reference a method
declaration in code fragment b, in all variants in that a is present. To answer such
question we need to define both (a) what kind of annotations are possible and (b)
how are they evaluated.

For annotations there are different approaches in different tools. In our im-
plementation in CIDE, we even support different kinds of annotations through a
plug-in mechanism. For a given variant with feature selection F this can be:

1. In [Thaker et al., 2007], each code fragment is (implicitly) annotated with
exactly one feature; a code fragment is removed if the annotated feature is
not selected in F.

2. In CIDE, by default, each code fragment can be annotated by one feature

9Actually, the annotation table is close to our implementation in our prototype CIDE, in which
annotations are mapped to AST elements, which are identified by a unique ID. In contrast, for
his formalization of CFJ with the proof assistant Coq, Thüm [2010] included annotations in the
syntax, instead of adding an additional annotation table, which avoids keeping track of element
locations or identifiers.
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or a set of features. This is equivalent to #ifdef directives and nested #ifdef
directives over single features. For a feature selection F, an annotated code
fragment is removed if one of the annotated features is not selected in F.

3. In [Czarnecki and Pietroszek, 2006], arbitrary propositional formulas called
presence conditions like “(A or B) and not C” are annotated. An annotated
code fragment is removed if the formula evaluates to false for an assignment
corresponding to the feature selection from F.10

4. Finally, in pure::variants (and also in CIDE when using the pure::variants con-
nector) an annotation can be specified as Prolog expression or in a propri-
etary constraint language. Features can additionally have attributes (text,
numerical values, etc.) and annotations can reason about these attributes
(e.g., include code fragment only if text attribute title is not “default” or if
numerical attribute max-weight < 4.25). Some other feature modeling tools
also provide their own languages. Again, the code fragment is removed if
the expression evaluates to false given the feature selection.

In our implementation, we use propositional formulas for feature models and
for annotations, but in our formalization, we abstract from concrete formalisms.
AT(a) generally returns some expression that evaluates to false for a variant with
feature selection F (i.e., eval(AT(a), F) = false) when the code fragment a should
be removed, while each tool has to provide some implementation of eval. The
empty annotation always evaluates to true, thus elements without annotations are
never removed. Throughout this section, we use the term ‘a code fragment is present’
for “the code fragment’s annotation evaluates to true, therefore the element is not
removed in the given variant(s)”.

We can now define reachability between a and b as “whenever AT(a) evaluates
to true then also AT(b) must evaluate to true” and denote it as follows:

AT(a)→ AT(b) ::=

∀F ∈ valid feature selections : eval(AT(a), F)⇒ eval(AT(b), F)

In other words, the variants in which code fragment b is included are a subset of
(or are the same as) the variants in which code fragment a is included.

A naive approach of determining reachability by iterating over all valid selec-
tions does not scale, since there could be millions of valid variants. Still, there are
several ways to evaluate the reachability formula efficiently using a SAT solver,
a constraint-satisfaction-problem solver, or a Prolog engine, depending on how

10Complex presence conditions can also be encoded in CIDE by adding a new (dummy) feature to
the feature model. In the feature model, a condition can express that the new feature is selected if
and only if a certain condition on other features such as “(A or B) and not C” is fulfilled. Then the
new feature can be used to annotate code, representing the more complex presence condition.
We used this encoding in several case studies.
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valid feature models, feature selections, and annotations are specified. In the com-
mon case that constraints between features can be represented by a propositional
formula CFM (e.g., most feature models can be transformed directly into propo-
sitional formulas [Batory, 2005; Thüm, 2008]), and when all annotations can be
transformed into propositional formulas (which is possible in most tools), then
we can automatically evaluate AT(a)→ AT(b) with a SAT solver as described by
Thaker et al. [2007]: If the formula ¬(CFM ⇒ (AT(a)⇒ AT(b))) is not satisfiable
then b is always reachable from a. For technical details how to reason about fea-
ture models and annotations using a SAT solver, see Batory [2005] and Thaker et al.
[2007]. As Mendonça et al. [2009]Mendonça et al. and Thüm et al. [2009]Thüm et
al. have shown, reasoning about feature models with SAT solvers is tractable for
even very large feature models.

Annotation rules

Before we formally model the annotation checks as extensions in CFJ’s type judg-
ments, we first informally introduce the annotation rules that are to be checked.
In general, we need to check code fragments that reference other code fragments.
The code fragments – references and targets – must be annotated such that the
target is always reachable from the reference. Otherwise, dangling references that
typically result in ill-typed programs can occur. We start with this informal list of
annotation rules, then model them formally in CFJ’s type system (pp. 110ff), and
later prove them to be complete (pp. 116ff). We have identified checks for thirteen
different pairs of references and targets:11

(L.1) A class L can extend only a class that is reachable.

(L.2) A field C f can have only a type C of a class L that is reachable.

(K.1) A super constructor call (i) can pass only those parameters that are bound to
constructor parameters and (ii) must pass exactly the parameters expected
by the super constructor.

(K.2) A field assignment this.f=f in a constructor can (i) access only present fields C
f in the same class and (ii) assign only values that are bound to constructor
parameters.

(K.3) A constructor parameter C f can have only a type C of a class L that is reachable.

(M.1) A method declaration C m(C x) { return t; } can have only a return type C of a
class L that is reachable.

11The names in this list reference the according productions in CFJ’s syntax in Figure 5.16. For
example, K.1 is the first check that addresses the constructor.
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(M.2) A method declaration overriding another method declaration must have the
same signature in all variants in which both are present.

(M.3) A method declaration parameter C x can have only a type C of a class L that is
reachable.

(T.1) A variable x must be bound to a reachable parameter C x of its enclosing
method.

(T.2) A field access t.f can access only a field C f that is reachable in the enclosing
class or its superclasses.

(T.3) A method invocation t.m(t) (i) can invoke only a method M that is reachable
and (ii) must pass exactly the parameters t expected by this method.

(T.4) An object creation new C(t) (i) can create only objects from a class L that is
reachable and (ii) must pass exactly the parameters t expected by the target’s
constructor.

Furthermore, there are some rules that deal with the removal process of chil-
dren from their parent element. For example, if a class is removed also all meth-
ods therein must be removed, if a method is removed also its parameters and
its term must be removed. This is an instance of the subtree rule for disciplined
annotations to properly propagate annotations from parent to child elements (see
Sec. 5.2.2). These rules seem obvious and are actually enforced in #ifdef -like pre-
processors by nesting annotations. However, when formalizing the calculus with
arbitrary annotations, we either have to always take all parent annotations into
considerations, or we have to make these rules explicit for all elements that can be
annotated. We decide for the latter because it better integrates with wrappers in
our implementation; we add the following subtree rules:

(SL.1) A field is present only when the enclosing class is reachable.

(SL.2) A method is present only when the enclosing class is reachable.

(SK.1) A constructor parameter is present only when the enclosing class is reachable.

(SK.2) A super constructor invocation parameter is present only when the enclosing
class is reachable.

(SK.3) A field assignment in a constructor is present only when the enclosing class is
reachable.

(SM.1) A method parameter is present only when the enclosing method is reachable.

(ST.1) A method invocation parameter is present only when the enclosing term is
reachable.
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C <: C
C <: D D <: E

C <: E
class C extends D { . . . }

C <: D

Figure 5.17.: CFJ subtyping.

(ST.2) An object creation parameter is present only when the enclosing term is reach-
able.

In the remainder of this section, we highlight changes compared to the original
FJ calculus for the annotation rules (L.1–T.5) in light gray and changes for the
subtree rules (SL.1–ST.2) in darker gray.

Typing

Subtyping. CFJ’s subtyping relation <:, shown in Figure 5.17, is identical to FJ’s.
Though we could check the annotation rule (L.1) here, we decided to postpone
this check to FJ’s type judgments instead (see T-Class).

Auxiliary functions. As in FJ, we need some auxiliary definitions for the type judg-
ments shown in Figure 5.18. Although we try to perform most annotation checks
in the type judgments, there are cases in which already the auxiliary functions –
that are used in FJ to recursively look up fields or methods across the inheritance
hierarchy – need to evaluate annotations. We use A as a metavariable for annota-
tions (e.g., presence conditions in the form of a propositional formula) and use •
to denote an empty sequence.

Field lookup. First, a field lookup determines all fields of a class C including fields
inherited from superclasses. In CFJ, the function fields is identical to FJ.
Annotations on fields are checked later in the type judgments.

Method lookup. Second, similar to the field lookup, the method lookup mtype finds
methods with a given name m in a class C or its superclasses. In contrast to
fields, the method lookup needs to be adapted because of the possibility of
method overriding (in contrast to overshadowing fields, which is not allowed
in FJ [Igarashi et al., 2001]). Thus, it could be possible that a method m in
class C is not always reachable for a given annotation A, but another method
m in a superclass of C is. Therefore, we cannot check annotations only in the
type judgments but have to adapt the auxiliary function mtype as shown in
Figure 5.18.

In FJ, there are two possible cases, either the method is found in class C, then
its signature is returned, or the method is not found, then the search pro-
ceeds to the superclass. In CFJ, we additionally have to distinguish whether
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Field lookup fields(C) = C f

fields(Object) = •

CT(C) = class C extends D { C f; K M } fields(D) = D g

fields(C) = D g,C f

Method lookup mtype(m,C,A) = B x→B

CT(C) = class C extends D { C f; K M } M = B m(B x) { return t; } M ∈ M
A→ AT(M)

mtype(m,C,A) = B x→B

CT(C) = class C extends D { C f; K M } M = B m(B x) { return t; } M ∈ M
¬(A→ AT(M))

mtype(m,C,A) = mtype(m,D,A∧¬AT(M))

CT(C) = class C extends D { C f; K M } m is not defined in M

mtype(m,C,A) = mtype(m,D,A)

Overriding override(m,C,C x→C0,A)

override(m,Object,C x→C0,A)

CT(C) = class C extends D { D f; K M } override(m,D,C x→C0,A)
M = B0 m(B g) { return t; }

M ∈ M implies C = B and C0 = B0 and (A∧ AT(M))→ (AT(C x)↔ AT(B g))

override(m,C,C x→C0,A)

Figure 5.18.: CFJ auxiliary functions.

111



5. Error detection

found method is always reachable or not. Reachability is checked against a
given annotation that is provided as a parameterA (i.e., A→ AT(M)). In case
the method is not always reachable, the search is continued in the superclass
for the remaining variants with a reduced annotation (A ∧ ¬AT(M)). For
technical reasons, we return the entire parameter list B x instead only their
types, so that we can later (in rule T-Invk) reason about annotations on pa-
rameters. Note that auxiliary function override, as described below, checks
that all these methods have compatible signatures; here, we check overrid-
den methods only regarding reachability.

Overriding. Finally, the third auxiliary function override checks valid method over-
riding in FJ. In the presence of annotations, checking valid overriding is
trickier than expected. We need to ensure that the return type and parame-
ter types match in every variant in which two methods with the same name
appear in the inheritance hierarchy of a class. This is complicated by allow-
ing developers to annotate both methods and their parameters.

Method overriding is also the first and most important rule for which consid-
erations regarding the desired backward compatibility – every CFJ program
stripped of its annotation should be a well-typed FJ program – have influ-
enced design decisions. We describe our solution fulfilling this property first
and discuss possible alternatives later.

Our function override works in the following way: for a given method m
with annotation A and type C→ C0, we iterate over all superclasses un-
til we reach Object. Whenever we find a method in a superclass with the
same name, we perform the two checks. First, for backward compatibility,
the return type and all parameter types must match independent of any
annotation (C0 = B0 and C = B); this implies also that both methods have
the same number of parameters. Second, for (M.2), in all variants in which
both methods are present (i.e., for which both A and AT(M) both evaluate
to true) the annotations on parameters must be equivalent (formalized as(
A ∧ AT(M)

)
→
(

AT(C f)↔ AT(B g)
)
).12 Taking both checks into account,

we define the auxiliary function override as shown in Figure 5.18.

Due to our design decision for backward compatibility, our override function
does not allow different signatures of a method in mutually exclusive fea-
tures. For example, although the following code fragment generates only

12 The formula is evaluated as follows:

∀F ∈valid feature selections :
(
eval(A, F) ∧ eval(AT(M), F)

)
⇒((

eval(AT(C1 f1), F)⇔ eval(AT(B1 g1), F)
)
∧ · · · ∧

(
eval(AT(Cn fn), F)⇔ eval(AT(Bn gn), F)

))
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well-typed variants given that features X and Y are mutually exclusive, it is
rejected by our override function.

1 class C extends Object { #ifdef X C foo(C x) { ... } #endif }
2 class D extends C { C foo(#ifdef Y D y, #endif C x) { ... } }

Different type judgments would be possible that drop backward compatibil-
ity in exchange for increased expressiveness. In such case, we would need to
check valid overriding only when two methods can occur in the same vari-
ant. Since we pursue backward compatibility, we keep our simpler version
of override. For developers this restricted expressiveness is not limiting since
simple workarounds can be used; in the code example above, we could add
a parameter D y to the first method declaration and annotate it such that it is
never present in any variant.

Type judgments. For term typing and well-formedness rules, we revisit each type
judgment in FJ and adapt it for CFJ to incorporate annotations as shown in Fig-
ure 5.19. For brevity, we discuss only changes compared to FJ.

For all term type judgments, we need an environment that, compared to FJ, is
extended for annotations. The environment Γ is a finite mapping from variables
to pairs of a type and an annotation written x : C with A. Additionally, the current
annotation A is stored as environment. For the outermost term in a method,
the current annotation is the annotation of a method (see T-Method), for inner
terms the current annotation may change because parameters can be annotated
individually (see T-Invk and T-New). The type judgment for terms has the form
A;Γ ` t : C and reads “in the environment Γ with the current annotation A, term t
has the type C”.

T-VAR. When typing a variable, we need to ensure that the variable is reachable in
all variants in which x is accessed. This means that we check the current an-
notation of the variable access A against the annotation A′ of the parameter
(or this) passed through the environment Γ from T-Method.

T-FIELD. For typing field accesses, we require that the target field declaration is
reachable (T.2). Therefore, we check the current annotation A against the
annotation of the target field (AT(Ci fi)). The type judgment for classes
(see T-Class) ensures that the class corresponding to each field’s type (Ci) is
reachable (L.2).

T-INVK. For typing method invocations, we similarly check that the target method
is present (T.3i) using the filtering of mtype. In method invocations, param-
eters can be annotated individually, so we need to check that the invocation
parameters match the expected parameters of the method declaration in ev-
ery variant (T.3ii). We use the same mechanism A→ (AT(t)↔ AT(D y)) as
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Term typing A;Γ ` t : C

x : C with A′ ∈ Γ A→A′

A;Γ ` x : C
(T-Var)

A;Γ ` t0 : C0 fields(C0) = C f A→ AT(Ci fi)

A;Γ ` t0.fi : Ci
(T-Field)

A;Γ ` t0 : C0 mtype(m,C0,A) = D y→C
AT(t);Γ ` t : C C <: D A→

(
AT(t)↔ AT(D y)

)
AT(t)→A

A;Γ ` t0.m(t) : C
(T-Invk)

fields(C) = D f AT(t);Γ ` t : C C <: D
A→ AT(C) A→

(
AT(t)↔ AT(D f)

)
AT(t)→A

A;Γ ` new C(t) : C
(T-New)

Method typing M OK in C

M = C0 m(C x) { return t0; } AT(M) =A
A→ AT(C0) AT(C x)→ AT(C) AT(C x)→A

CT(C) = class C extends D { . . . } override(m,D,C→C0,A)
Γ = x : C with AT(C x), this : C with AT(C) A;Γ ` t0 : E0 E0 <: C0

M OK in C
(T-Method)

Class typing C OK

K = C(D g, C f
′
) { super(g′); this.f=f; } M OK in C fields(D) = D g

′′

AT(C) =A A→ AT(D) C f = C f
′

D g = D g
′′

g = g′

AT(C f)↔ AT(this.f=f) AT(C f)↔ AT(C f
′
)

AT(D g)↔ AT(g′) A→
(

AT(D g)↔ AT(D g
′′
)
)

AT(C f)→ AT(C) AT(C f)→A AT(M)→A AT(D g)→A
class C extends D { C f; K M } OK

(T-Class)

Product-line typing P OK

L OK ;` t : C

(L, t) OK
(T-SPL)

Figure 5.19.: CFJ typing.
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for the override function (with the same implications for backward compati-
bility). Furthermore, when typing a parameter, the annotation context is set
to the annotation of this parameter (AT(ti);Γ ` ti : Ci). Finally, the subtree
rule (ST.1) is checked: There must not be a variant in which the invocation
is removed but not its parameter (AT(t)→A).

T-NEW. Typing an object creation term is similar to typing a method invocation.
First, the target class must be present (T.4i), which is checked explicitly
with A → AT(C). Additionally for rule (T.4ii), we ensure that the pro-
vided parameters match the expected constructor parameters in every vari-
ant (A→ (AT(t)↔ AT(D f))). Finally, the subtree rule (ST.2) is checked.

T-METHOD. The type judgment for method declarations has the form M OK in C
and reads “method declaration M is ok, when it occurs in class C”. We make
several extensions shown in Figure 5.19: First, we pass the method’s anno-
tation to override to check valid overriding in all variants (M.2). Second, we
check that the class corresponding to the return type and all parameters of
the method (C0 and C) are reachable (M.1, M.3).13 Third, we provide the
annotations of parameters in the type context to be checked in T-Var later
(T.1), and use the current annotation of the method A as annotation context.
Finally, we check the subtree rule (SM.1).

T-CLASS. The type judgment for class declarations has the form L OK. At first, it
appears very complex because it covers several annotation rules, but each
rule by itself is simple. To distinguish the occurrences of g as constructor pa-
rameters, super invocation parameters, and fields of the superclass – which
can all have different annotations – we distinguish g, g′ and g′′ but still as-
sume that all g’s are named the same (g = g′ = g′′). The same for C f that is
used both for fields and constructor parameters (C f = C f

′).

First, rule (L.1) checks that the superclass is always reachable (A→ AT(D));
thus, from every reachable class, we can reach all its superclasses. Sec-
ond, rule (K.1) specifies that the super-constructor call receives exactly those
parameters from the constructor’s parameter list that are defined as fields
in the superclass in all variants (AT(D g)↔ AT(g′) and A → (AT(D g)↔
AT(D g

′′
))). Third, rule (K.2) specifies that the other constructor parameters

match the field assignments and that those match the fields declared in the
class (AT(C f)↔ AT(this.f=f) and AT(C f)↔ AT(C f

′
)). Fourth, we check that

the class corresponding to the type of each field in this class is reachable
when the field is reachable (AT(C f)→ AT(C)), which indirectly covers rules
(L.2) and (K.3). Finally, subtree rules for fields, methods and constructor
parameters (SL.1–2, SK.1–3) are checked.

13Thüm [2010] proved that the check A → AT(C0) is actually redundant. Still, we leave it for
readability.
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T-SPL. Finally, we are able to define when a software product line is well-typed
(T-SPL): A software product line is well-typed if all of its classes are well-
formed and the type judgment returns a type for the start term t (provided
an empty environment with an empty annotation, written as “;` t : C”).

Variant generation

Although technically possible, we do not execute product lines written in CFJ
directly. Thus, there are no evaluation rules for CFJ, and it is not possible or nec-
essary to prove type soundness with the standard theorems progress and preser-
vation [Wright and Felleisen, 1994]. Instead, with a valid feature selection, we
generate a tailored FJ programs by removing certain annotated code fragments.
The resulting FJ program can be evaluated with FJ’s evaluation rules [see Igarashi
et al., 2001]. For FJ, Igarashi et al. [2001] already proved type soundness. Hence,
we describe the variant generation mechanism and subsequently prove that gen-
eration preserves typing.

To generate a program variant, we define a function variant that takes a CFJ
product line P and a feature selection F as input and returns an FJ program. The
function variant descends recursively through the code of the product line and
applies a function remove to all code fragments that can be annotated. The func-
tion remove evaluates possible annotations (as described in Section 5.3.3): those
code fragments, for which the annotation evaluates to false are removed, all other
code fragments remain in the code. In implementations based on disciplined an-
notations with ASTs as CIDE, remove is implemented using AST transformations,
which ensures that separating tokens are placed correctly (see Sec. 5.2.3)

We define the generation rules (bottom-up) in Figure 5.20. For brevity, we write
variant(a, F) as [[a]] and remove(a, F) as 〈〈a〉〉.

Properties of CFJ

In Section 5.3.2, we discussed two desired properties: backward compatibility and
generation preserves typing. With the presented type system and variant gener-
ation rules, we can now prove both properties for CFJ. Backward compatibility
is straightforward to prove. Generation preserves typing is more complex, so we
performed the proof with the proof assistant Coq; for brevity, here, we describe
only the theorem and proof strategy. For the interested reader, Thüm [2010] pro-
vides a detailed description of the proof, its structure, and its strategies.14

Theorem 5.3.1 (Backward compatibility). Every well-typed CFJ product line stripped
of the feature model and all annotations (without removing any code fragments) is a well-
typed FJ program.
14The machine-checked proof was developed by Thomas Thüm as part of his Master’s Thesis

(Diplomarbeit) supervised in the context of this PhD project.
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remove(a, F), short 〈〈a〉〉

remove(a, F) =
{

a1,remove(a2 . . .an, F) if eval(AT(a1), F)
remove(a2 . . .an, F) else

remove(•, F) = •

variant(a, F), short [[a]]

[[x]] = x (G.1)

[[t.f]] = [[t]].f (G.2)

[[t.m(t)]] = [[t]].m([[〈〈t〉〉]]) (G.3)

[[new C(t)]] = new C([[〈〈t〉〉]]) (G.4)

[[C m(C x) {return t;}]] = C m(〈〈C x〉〉) {return [[t]];} (G.5)

[[C(C f) {super(f); this.f=f;}]] = C(〈〈C f〉〉) {super(〈〈f〉〉); 〈〈this.f=f;〉〉} (G.6)

[[class C extends D { C f; K M }]] = class C extends D { 〈〈C f〉〉; [[K]] [[〈〈M〉〉]] } (G.7)

[[(L, t,FM)]] = ([[〈〈L〉〉]], [[t]]) (G.8)

Figure 5.20.: CFJ variant generation with remove and variant.

Proof. CFJ has the same syntax as FJ. For stripping annotations, we assume that
all annotations evaluate to true for all variants (i.e., ∀F∀a : eval(AT(a), F); called
empty annotation). Now, we can prove that with empty annotations, the type
systems of FJ and CFJ are equivalent: All reachability checks are always fulfilled;
mtype in CFJ and FJ are equivalent considering that CFJ’s override ensures the same
method signature for all methods with the same name in a class hierarchy; and the
remaining differences are straightforward to prove to be equivalent as well.

Theorem 5.3.2 (Generation preserves typing). Every FJ program variant that is gener-
ated from a well-typed software product line P with a valid feature selection F is well-typed.

P OK F is valid
variant(P, F) OK

Proof Strategy. We prove the theorem by induction on the structure of CFJ product
lines, that is, induction over all possible CFJ class tables and all possible CFJ terms.
Using induction, we recursively iterate over all elements of the CFJ class table
(classes, methods, fields, parameter lists and terms) and the start term. For every
CFJ element, if well-typed, we do an induction over the variant generation rules to
determine all possibly generated FJ elements and prove that they are well-typed

117



5. Error detection

according to the FJ type system.15 The proof that the generated element is a
well-typed FJ element is specific for each different kind of element (e.g., class or
method invocation). Generally speaking, we use the CFJ typing rules (including
reachability conditions) and the variant generation mechanism to prove that all
code elements needed to type a generated FJ element (e.g., referenced classes or
methods) are part of the generated FJ program.

To illustrate the proof mechanism, consider the following example for the small-
est element: an access to a variable. Variant generation for variables (G.1) is inde-
pendent of the feature selection F and just returns this variable. Still, we have to
prove that any generated FJ variable access is well-typed according to FJ’s typing
rules. FJ’s typing rule T-Var for variable access requires two conditions: (1) the
provided environment Γ must not contain duplicates, and (2) the environment
must contain the analyzed variable. For both conditions, we need to consider the
FJ environment, which is formed by the enclosing generated method. Hence, we
have to consider variant generation for methods, in which parameters can be re-
moved (G.5). We can prove both conditions of FJ’s T-Var using induction on the
environment:

1. CFJ’s type system forbids duplicates in parameter lists (cf. Sec. 5.3.3); thus,
it forbids duplicates in the CFJ environment; variant generation can only
remove entries (cf. Fig. 5.20); hence, all parameter lists generated from well-
typed CFJ product lines are duplicate free.

2. The generated variable always occurs in the FJ environment. This can be
proved as follows: The variable access has been generated from a well-typed
CFJ product line. In the well-typed CFJ product line, CFJ’s T-Var ensures
that the variable occurs in the CFJ environment A;Γ and that A → A′, in
which A′ is the annotation of the corresponding CFJ method parameter. Ad-
ditionally, we know that eval(A, F) is true, because otherwise we would not
have reached the current point (G.1) of variant generation (variant genera-
tion would have stopped in G.3, G.4, G.7, or G.8). Consequently, reachability
A→A′ implies that eval(A′, F) is also true, so the parameter is not removed
during variant generation; it is part of the FJ environment.

The proofs for other elements follows a similar pattern. They are often more
complex, because more context information (other classes, methods, and fields)
has to be considered; nevertheless, the general proof pattern is the same: induc-
tion over well-typed CFJ elements and variant generation rules, proving that each
generated FJ element is well-typed with information from the induction steps (and

15In line with FJ, to support Java’s mutually recursive types, we assume a fixed CFJ class table. For
the same reason, we also assume that the feature selection is fixed so that variant generation
produces a unique, fixed FJ class table. Still, since the proof covers arbitrary CFJ class tables and
arbitrary feature selections, it holds for all CFJ product lines and all feature selections.
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often induction over other elements). Thüm [2010] provides the entire proof as
script for Coq.

A third interesting property of CFJ’s type system is completeness: Given a soft-
ware product line P and given that all valid feature selections F yield well-typed
FJ programs according to Theorem 5.3.2, is P well-typed according to the CFJ
type judgments? Unfortunately, this property does not hold due to backward
compatibility. It is possible to find an ill-typed CFJ product line, of which only
well-typed variants are generated; for an example consider the discussion about
overriding with different parameters in Section 5.3.3. That is, due to our decision
for backward compatibility, CFJ is stricter than actually necessary. Nevertheless,
as discussed before, we decided to enforce these restrictions for the benefit of tool
developers. Still, with tests and our case studies (see Section 5.3.6), we confirm
that CFJ is not too strict for practical applications.

5.3.4. Alternative features

In the formalization of CFJ, our roots in decomposing legacy applications are
clearly visible. It is possible to make code fragments optional and to express an-
notations like either FeatureA or FeatureB must be selected. However, in CFJ it is
difficult to have two alternative (mutually exclusive) implementations of the same
class or method, similar to the persistent vs. in-memory storage example in Fig-
ure 5.15 (p. 102). Since we want CFJ to be backward compatible (see Sec. 5.3.2),
we cannot simply allow multiple classes or members with the same name (or sig-
nature) because this is not supported by FJ (and Java). Nevertheless, alternative
features are used in software product lines, when a common implementation ex-
pects to reach exactly one (of multiple alternative) implementations of a class or
method. Thus, when using a product-line–aware type system for product-line de-
velopment in general, we need to provide a way to implement and type check
alternative features.

In CFJ, alternative features may influence the implementation in different loca-
tions:

1. Alternative Classes: Depending on the feature selection, there might be en-
tirely alternative implementations of a class. Different implementations may
contain different methods, common methods, or different implementations
of the same method. They might even have nothing in common except the
class’s name, as long as both classes are annotated to be mutually exclusive.
For example, in the original Jak implementation of the Graph Product Line
(see Appendix A.1), different implementations of the classes Graph, Edge,
and Vertex were used, depending of the feature selection [Lopez-Herrejon
and Batory, 2001].
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1 public class Settings {
2 //#ifdef DCOMPATIBILITY2
3 public static final int MAX_REGIONS = 10;
4 //#else
5 public static final int MAX_REGIONS = 15;
6 //#endif
7 ...
8 }

(a) Alternative field declarations in Settings.java.

1 public boolean isItunes() {
2 //#ifdef DITUNES
3 return (m_itunes);
4 //#else
5 return (false);
6 //#endif
7 }

(b) Alternative return statements
in RssItunesFeed.java.

1 //#ifndef DTESTUI
2 import javax.microedition.lcdui.List;
3 //#else
4 import com.substanceofcode.testlcdui.List;
5 //#endif

(c) Alternative imports in PromtList.java.

Figure 5.21.: Three examples of alternative features in Mobile RSS Reader.

2. Alternative Members: There can be different methods with the same name,
but different bodies, parameters, or return types. Depending on the feature
selection, a method may be implemented differently as illustrated earlier in
Figure 5.15 (p. 102), even with different signatures. Similarly, alternative
fields may be defined as shown in an excerpt from the Mobile RSS Reader
case study (see Appendix A.1) in Figure 5.21a.

3. Alternative Terms: There can be different implementations of a method
body, or alternative terms passed as parameters of a method invocation de-
pending on the feature selection. Thus, it is also necessary to discuss alterna-
tive implementations of a term as in Figure 5.21b, rather than only of classes
or methods.

In full Java and other languages, alternative features may influence other code
fragments as well. For example, in 5.21c alternative import statements are used.

Reduction to alternative terms

There are different strategies how to deal with alternative features (in CFJ and in
practice). One useful strategy is to reduce most alternative implementations to
alternatives at the term level (respectively at statement level in Java). For CFJ, the
reduction proceeds in two steps and can be done by the developer or be automated
by a tool. Limitations of these steps are written in square brackets and discussed
subsequently.

• When there are two or more classes with the same name [and same super-
class, see below] but different implementations and annotations, they can be
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all merged into one class. The new class is annotated with a disjunction of all
individual annotations (A1 ∨A2 ∨ . . . ∨An), so that it is present in a variant
if any of the original classes would be present. All members from the origi-
nal classes are moved into the merged class and keep their annotations (the
subtree rules (SL.1) and (SL.2) are automatically fulfilled). This step reduces
alternative classes to alternative methods in a single merged class.

• When there are two or more methods with the same name [and return type,
see below] in a single class declaration, they can be merged to a single
method annotated with a disjunction of all previous annotations. Parameters
also are merged and annotated with a disjunction of all previous annotations
of each parameter. If their bodies are not the same, we need a way to repre-
sent alternative terms inside this method. Analogously, multiple fields with
the same name [and type, see below] can be merged. This way, we reduce
alternative methods to alternative terms.

In Figure 5.22, we show an example of this reduction. In practice this is very
useful, for example, we applied it in the CIDE version of the Graph Product Line to
eliminate the alternative classes and methods of the original Jak implementation.

1 #ifdef PERSISTENT
2 class Storage extends Object {
3 boolean save() { /* impl. A */ }
4 boolean clear() { /* impl. B */ }
5 boolean set(Object key, Object data, Lock lock) { return /* impl. C */; }
6 }
7 #endif
8 #ifdef INMEMORY
9 class Storage extends Object {

10 boolean clear() { /* impl. B */ }
11 boolean set(Object key, Object data) { return /* impl. D */; }
12 }
13 #endif

⇓
1 #ifdef PERSISTENT ∨ INMEMORY
2 class Storage extends Object {
3 #ifdef PERSISTENT
4 boolean save() { /* impl. A */ }
5 #endif
6 boolean clear() { /* impl. B */ }
7 boolean set(Object key, Object data #ifdef PERSISTENT, Lock lock#endif) {
8 return #ifdef PERSISTENT/* impl. C */#endif #ifdef INMEMORY/* impl. D */#endif;
9 }

10 }
11 #endif

Figure 5.22.: Reducing alternative classes and alternative methods to alternative terms.
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The reduction to alternative terms is limited regarding superclasses, return
types, and field types. That is, if two alternative classes with the same name
do not have the same superclass, if two methods with the same name do not have
the same return type, or if two fields with the same name do not have the same
type, they cannot be merged. We can either accept this limitation and disallow the
three problematic cases, or we can search for mechanisms that support alterna-
tive implementations beyond alternative terms. To retain backward compatibility
and since such cases are rare in practice (usually alternative implementations of
a class still provide a common interface), we accept the limitation and suggest
workarounds instead of new language features (such as multiple inheritance). A
simple workaround, which works for all three problems, is to rename classes,
methods, or fields with fresh names. By renaming the target declarations, vari-
ability is again propagated to alternative terms where depending on the feature
selection either of the now distinguishable methods is invoked, either of the fields
is accessed, or either classes is instantiated.For CFJ and our implementation for
Java, we prefer this limitation – enforcing constant superclasses, return types, and
field types in all alternative implementations of a class method or field – and use
this renaming workaround (which can even be automated) for all other cases, in-
stead of complicating the type system. Nevertheless, other solutions without these
limitations but with more complex type judgments are possible, see Section 5.4.

Handling alternative terms

So far, we could reduce the problem to alternative terms (in CFJ) or alternative
statements (in Java and many other languages). Now, we have to make sure that
parser and type checker understand alternative terms/statements and check them
accordingly.

In CFJ, the situation is especially problematic, since every method must contain
exactly one return statement (i.e., a single term). We must make sure that in every
variant exactly one (not none, not multiple) of these terms remains. In [Kästner
et al., 2010], we discuss three solutions. Although the first two have significant
drawbacks, we briefly summarize all three here:

1. Method overriding. Without changes to the CFJ calculus, we found only one
way to implement alternative terms by using method overriding. The ba-
sic idea is to create an artificial superclass for each alternative term and use
method overriding to provide different terms in different classes. In such
an implementation, the target method has a different annotation in each
subclass, and in a generated variant only one of these methods remains. Al-
though this approach can be used without modification of CFJ and is back-
ward compatible to FJ, it has the drawback of significantly obfuscating the
source code with boilerplate code.
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2. New language constructs. A whole group of solutions for alternative terms be-
comes available once we drop backward compatibility and decide to change
the syntax or type judgments of CFJ. For example, we could simply allow
two methods with the same name or a method with two return statements
and adjust the syntax and type judgments to ensure that at most one of
them remains in a generated variant. Another solution is to introduce new
language constructs which allow refinements of classes or methods. That is,
we could integrate language mechanisms such as mixins [Bracha and Cook,
1990; Flatt et al., 1998], class refinements [Batory et al., 2004; Apel et al.,
2008c], virtual classes [Madsen and Moller-Pedersen, 1989; Ernst et al., 2006],
aspects [Kiczales et al., 1997], classboxes [Bergel et al., 2005], nested inher-
itance [Nystrom et al., 2004], traits [Ducasse et al., 2006], hyperslices [Tarr
et al., 1999], object wrappers [Jorgensen and Truyen, 2003], and others (cf.
Section 3.1). These approaches are interesting when designing a completely
new language, however in our work, we prefer a backward compatible solu-
tion.

3. Metaexpressions. Czarnecki and Antkiewicz [2005] suggested metaexpres-
sions as a mechanism to support alternative values in a software product
line of UML models. In their setting, they did not have the opportunity
to change the syntax of UML but sought for another way to express alter-
natives. Metaexpressions are special annotations, stored separately, which
specify one or more alternative values for a language construct. For exam-
ple, they can specify alternative names for an UML association. Instead of
changing the syntax, they specify alternatives externally by a tool. During
variant generation, the generation mechanism selects which of the alterna-
tives to include (or whether to remove the construct altogether). The key
difference to additional language constructs is that alternatives are specified
on a tool level, but still checked by the type system.

For CFJ, we have formalized metaexpressions [Kästner et al., 2010] and imple-
mented an according solution in CIDE [Rosenthal, 2009].

Still, for full Java and most other languages, there are simpler workarounds
because there can be multiple statements inside a method, so backward compati-
bility does not impose so many restrictions. Having two statements in a method
with alternative annotations is still backward compatible. The only problematic
exception in Java are return statements, because of Java’s unreachable code de-
tection (code after a return statement results in a compiler error). Still, simple
workarounds are possible, for example, we can rewrite the code example from
Figure 5.21b as shown in Figure 5.23a. As another trick in full Java, actually
quite close to metaexpressions, we can use conditional expressions (which can be
annotated disciplinedly as wrappers, see Sec. 5.2.4) as shown in 5.23b. In our
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experience with Java, almost all alternative features can be reduced to alternative
statements and implemented with these simple workarounds.

1 public boolean isItunes() {
2 boolean result;
3 //#ifdef DITUNES
4 result = (m_itunes);
5 //#endif
6 //#ifdef ¬DITUNES
7 result = (false);
8 //#endif
9 return result;

10 }

(a) Alternatives as separate statements.

1 public boolean isItunes() {
2 return
3 //#ifdef DITUNES
4 true ? m_itunes :
5 //#endif
6 false;
7 }

(b) Conditional expression for alternatives.

Figure 5.23.: Rewritten example of alternative return statements in Figure 5.21b.

5.3.5. Beyond Featherweight Java

Our formalization is based on Featherweight Java because it allows proving the
feasibility of a product-line–aware type system in a confined setting. Nevertheless,
for a practical application, a product-line–aware type system should be provided
for full Java or other languages (see Figure 5.24). Our experience with CFJ guides
the way for a more general implementation in CIDE.

Syntax Typing Semantic

Single Multiple Inter-language
Check variants Check entire product line

OtherAnnotative Compositional

Kind of error

Languages
Error detection

Implementation

Figure 5.24.: Multi-language and inter-language type checking in our classification.

The formalization showed that backward compatibility is possible, so that
we only have to add additional reachability checks between pairs (or triples or
quadruples) of code fragments and their annotations. Interestingly, the mechanics
of the variant generation preserves typing proof are very similar to our discussion
that lead to the annotations rules (L.1–T.5) initially. We iterated over all generation
steps and analyzed what additional checks have to be added to the type system
to cover all possible annotations. This means, such a proof can be used construc-
tively, to extend the type judgments of another calculus with annotation checks,
be it of some FJ extensions such as FGJ [Igarashi et al., 2001] or FJI [Igarashi and
Pierce, 2002]; or of a larger Java calculus such as Classic Java [Flatt et al., 1998],
Javalight [Nipkow and von Oheimb, 1998], or Javas [Drossopoulou et al., 2000]; or
even of a type system for completely different programming language.
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On a practical level, to achieve language independence (or at least extensibil-
ity toward new languages) similar to disciplined annotations, we implemented a
framework for product-line–aware type checking in CIDE that provides a general
mechanism to iterate over a project, check reachability conditions, and report er-
rors. Detected errors are shown like standard Java errors directly at the location
of the type reference, method invocation, and others, and suggestions for fixing
them can provided. This framework can be extended with plug-ins for specific
languages. A plug-in is responsible to determine what reachability conditions are
to be checked for a given language; for example, it looks up method invocations
and corresponding method declarations. It is even possible check reachability
conditions between elements of different languages (inter-language typing).

Currently, we provide the following type-checking plug-ins for CIDE:

• Featherweight Java. We implemented the CFJ type system in CIDE, including
our metaexpression extension for alternative features (see Sec. 3). Specifi-
cally, Rosenthal [2009] implemented the entire type system natively without
reusing an existing implementation.

• Java. For Java, we implemented all checks from Featherweight Java and
several additional checks regarding local variables, interfaces, generics, im-
ports, abstract classes, abstract methods, and others. This type system was
implemented on top of Eclipse’s type checks for Java, that is, we reused the
existing lookup mechanisms and add only reachability checks on top. To be
precise, we could not reuse all lookup mechanisms, but had to slightly adapt
those that are equivalent to mtype and override in Section 5.3.3. Although our
implementation is certainly not complete, we believe that we have covered
the most important causes of type errors to be still useful in practice.

The product-line–aware extension for Java is built on top of the standard Java
compiler. Thanks to backward compatibility, the existing syntax- and type
checking mechanisms, the internal Java model, and the background compi-
lation process of Eclipse remain untouched. Therefore, Eclipse provides tool
support such as syntax highlighting, code completion, and code navigation;
and Eclipse already detects all type errors of standard Java, we only added
reachability checks on top.

• Bali. Bali is a grammar specification language in the AHEAD tool suite [Ba-
tory et al., 2004], for which we added reachability checks between references
to and declarations of productions and tokens. In this language, looking up
pairs is straightforward with a simple name table. Still, the entire mecha-
nism to check reachability in the context of a feature models is reused and
shared with the other languages.

• OSGi Manifest + Java. As a demonstration of inter-language typing, we im-

125



5. Error detection

plemented a plug-in that looks up package references between a manifest
file of an OSGi bundle [OSGi Alliance, 2009] and the bundle’s implementa-
tion with Java. It again checks that the implementation is reachable from the
according declaration in all variants, so that, in this case, no variant of an
OSGi bundle can declare to export a package that it does not contain. So far,
we implemented only checks for the Export-Package declaration as a proof of
concept, but this can be extended easily to other checks between an OSGi
manifest and Java or inter-language checks between other languages.

Together with an industrial partner, we are currently also implementing a product-
line–aware type system for C that is largely backward compatible to the C pre-
processor. This type system is developed outside CIDE, but follows the same
mechanisms.

Finally, the mechanism to actually reason about feature models and annota-
tions (to determine whether AT(a) → AT(b) holds for all valid variants) also
is abstracted behind an interface so that different reasoning mechanisms can be
plugged in. Currently, we have implemented two mechanisms: a very simple one
based on set relations (which however supports only very simple feature models
that can only express dependencies in form of parent-child relationships in a tree,
but no alternatives) and one for full feature models, originally developed for Fea-
tureIDE [Leich et al., 2005; Kästner et al., 2009d]. In the latter, which we use by
default, reasoning is performed by transforming the feature model and reacha-
bility conditions into Boolean satisfiability problems as described by Thaker et al.
[2007]; we subsequently solve the problem with the off-the-shelf SAT solver sat4j.16

To summarize, the formalization of CFJ is tailored to Featherweight Java, but
the underlying mechanisms are general and can be transferred to other languages.
Currently, the additional reachability checks for every language (and combination
of languages in case of inter-language typing) are be provided manually using
plug-ins. Whether these plug-ins can be generated automatically (e.g., from at-
tribute grammars) is an open research question. Regarding inter-language typing,
further research is needed to find the right abstractions or a suitable polylingual
type system [e.g., Grechanik et al., 2004]. From a tool perspective, recent ad-
vances in inter-language refactorings in Eclipse can be used as possible starting
point [Fuhrer et al., 2007].

5.3.6. Evaluation

To demonstrate practicality of a product-line–aware type system, we have per-
formed a series of case studies with our Java type system in CIDE. Specifically, we
want to answer the following questions:

16http://www.sat4j.org
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• What performance can we expect from type checking a software product line
(especially since SAT solvers are involved)?

• What are typical shapes of annotations?

• Does type checking detect relevant errors in software product lines?

We applied our type checking approach to four case studies. We selected Java
programs that implement variability using some form of preprocessor. Since Java
does not have a build in preprocessor, there are not as many projects as in C or
C++, but, interestingly, providing variability is essential in the domain of software
for mobile phones, so we found some open source projects that use the Java ME
preprocessor Antenna (cf. Sec. 3.2). We selected the following software product
lines (see also Table 5.5 and Appendix A.1):

1. MobileMedia. MobileMedia is a Java ME application to manipulate photo,
music, and video files on mobile devices. It has been developed at Lancaster
University as a software product line and has been used as case study in
several studies on aspect-oriented software development [Figueiredo et al.,
2008; Conejero et al., 2009]. The software product line has several optional
features implemented with #ifdef directives, such as support for photos, mu-
sic, video, SMS transfer, or favorites. We selected this software product line
because the code is peer reviewed [Figueiredo et al., 2008] and because the
development is well documented in several incremental releases (each added
one or more features), which allowed us to analyze simple as well as more
complex versions. Specifically, we look at two releases: Release 6 with nine
features and the latest Release 8 with 14 features [cf. Figueiredo et al., 2008].

2. Mobile RSS Reader. Mobile RSS Reader is an open source project to imple-
ment a portable RSS reader for mobile phones on the Java ME platform.
Variability is crucial to support different devices, therefore typical features
refer to Java ME libraries: MIDP 1.0, MIDP 2.0, CLDC 1.1, JSR 75 (file sys-
tem), and JSR 238 (internationalization). Additional features include support
for devices with small memory capacity, logging and testing features, and
several compatibility features for different RSS formats.

3. Lampiro. Lampiro is an instant-messaging Java ME client for the XMPP pro-
tocol developed by Bluendo s.r.l., released as open source. Several features,
such as Compression, Encryption (TLS), Profiling and Debugging, or
Screensaver, are implemented using #ifdef directives.

4. Berkeley DB. Finally, Oracle’s Berkeley DB is an open-source database engine
written in Java, which we decomposed into features in prior work [Kästner
et al., 2007a, 2008a]. Berkeley DB is different from the preceding case studies
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Name LOC #FEA #ANN Features

MobileMedia (Rel. 6) 4 600 9 88 Photo, Music, SMS, Sort-
ing, CopyMedia, Favorites,
128x149, 132x176, and 176x205

MobileMedia (Rel. 8) 5 700 14 164 Photo, Music, Video, SMS,
Sorting, CopyMedia, Fa-
vorites, Privacy, Cap-
turePhoto, CaptureVideo,
PlayVideo, 128x149, 132x176,
and 176x205

Mobile RSS Reader 20 000 14 1 050 MIDP10, MIDP20, JSR75,
JSR238, CLDC11, Small-
Mem, iTunes, Logging, Test,
TestUI, 4×Compatibility

Lampiro 45 000 11 108 Motorola, TLS, Compres-
sion, BXMPP, Screen-
saver, UI, Glider, Bludeno,
Timing, SendDebug, and
PlainSocket

Berkeley DB 70 000 42 1 825 Transactions, Statistics,
DeleteDbOperation, Envi-
ronmentLock, FileHandle-
Cache, . . .

LOC: approximate lines of code; #FEA: number of features; #ANN: number of annotated code
fragments

Table 5.5.: Size and features of our type-system case studies.

in two ways. First, it was not originally developed as a software product
line, but we later refactored it into features, such as Transactions, Statis-
tics, EnvironmentLock, or DeleteDbOperation. Second, we annotated
the code base with CIDE after having implemented an initial version of our
type system. This gives a different perspective on the type system regarding
the development of a new software product line from a legacy application.

Performance

To provide some intuition about the complexity and performance of type checking
a software product line, we measure the time to compile a single variant (tVar) and
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the time to check all reachability constraints in the software product line (tSPL).17

Additionally, we estimate the number of variants to illustrate what it would mean
to check every variant in isolation.

We show the results of our measurements in Table 5.6. In a nutshell, our results
show that our current implementation of the type system is about ten times slower
than Eclipse’s industrial-strength compiler. That means type checking the entire
software product line takes only as long as type checking ten variants (ten variants
are typically a fraction of the amount of potential variants in a software product
line).

The slowdown is mostly caused by our algorithm to locate the pairs for reach-
ability checks, such as method invocation and declaration, field access and dec-
laration, type reference and declaration, and others. There are up to such 72 534
pairs in our case studies, as shown in Table 5.6. To enable quick incremental type
checking on changes to the source code, to annotations, or to the feature model,
we store also all checks for future reevaluation. We assume that an optimized im-
plementation can significantly speed up this process. In contrast, the time needed
to actually solve Boolean satisfiability problems is marginal. Many checks (60 % to
98 %) can be skipped without consulting an SAT solver either (a) because neither
code element is annotated or (b) because both are annotated with the identical
feature expression. For the remaining checks, the results for unique feature com-
binations can be cached, so that, in our case studies, only some hundred unique
satisfiability problems remain to be solved. Solving all satisfiability problems re-
quires less than 50 ms in each software product line.

Furthermore, there is evidence that indicates that the performance scales for
even larger projects. Due to the typical shape of feature models, reasoning about
them with SAT solvers is tractable even for very large feature models [Mendonça
et al., 2009; Thüm et al., 2009]. Therefore, determining reachability does not pose
problems in practice, even though it introduces satisfiability problems into the
type-checking process.

All in all, this shows that, although reachability checks are required in all type
judgments, they can be executed with reasonable performance that is acceptable
for practical development. Our current implementation slows down type checking
by a factor of ten, which means that for every software product line with more
than ten potential variants, it is faster to check the entire software product line
than to check every variant in isolation. Type checking is still reasonably fast that
it can be executed in the background during development to find errors as early
as possible.

17We measured all times on a standard 2.66 GHz lab PC with 4 GB RAM, Windows Vista, Sun Java
VM 1.6.0.03, and Eclipse 3.5.
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Name tVar tSPL #Variants #Checks #SAT #USAT

MobileMedia (rel. 6) 0.2 1.3 144 5 714 1 924 39
MobileMedia (rel. 8) 0.3 1.8 2 784 7 359 3 569 111
Mobile RSS Reader 0.6 8.3 2 048 35 094 10 684 127
Lampiro 2.0 19.0 2 048 72 534 780 26
Berkeley DB 2.6 21.0 3.6 billion 70 316 19 517 324

tVar: time to compile a single variant in seconds; tSPL: time to evaluate all reachability checks in
seconds; #Variants: approximate number of potential variants; #Checks: number of performed
reachability checks; #SAT: number of satisfiability problems solved; #USAT: number of unique
satisfiability problems solved

Table 5.6.: Performance of type checking in our case studies.

Shape of annotations

Most annotations in our case studies were simple and consisted only of a single
feature (#ifdef X) or a negated feature (#ifndef X), however, nesting was quite com-
mon (up to level 4 in Mobile RSS Reader). Beyond single features and nesting,
only MobileMedia used some pattern like A ∧ B or A ∨ B (the most complex an-
notation we found was “(Music∧Photo)∨ (Music∧Video)∨ (Video∧Photo)”
in MobileMedia Release 8). Usually it is quite easy to reason about reachability
manually and to interpret the errors reported by the type system. Nevertheless,
automatically checking reachability constraints in a type system is helpful due to
the sheer number of reachability constraints.

In all software product lines that were developed with #ifdef directives orig-
inally, we found alternative features or alternative implementations depending
on whether a feature is selected. Alternatives generally occurred on the level of
statements or for setting initial values of constants. In Mobile RSS Reader, also
alternative superclasses were used, so that a class inherits from different classes
depending on whether feature TestUI is selected. To avoid complexity, we forbid
alternative superclasses (see discussion in Sec. 5.3.4) and rewrote the correspond-
ing implementation. In general, we found three alternative code fragments in
MobileMedia Release 6, eight in MobileMedia Release 8, 70 in Mobile RSS Reader,
and 10 in Lampiro that could all be reduced to alternative statements as explained
in Section 5.3.4.

Detecting errors

To our surprise, we found inconsistencies or type errors in all case studies except
Berkeley DB. Berkeley DB is not relevant in this context, because it was already de-
veloped with CIDE and an early version of our type system; thus, we already elim-
inated all type errors in Berkeley DB during development. In all other case studies

130



5.3. Product-line–aware type system

that were developed without a product-line–aware type system, we checked exist-
ing annotations in released source code.

In MobileMedia Release 6 (and Release 8), we found that a variant with SMS but
without Photo would not compile. On closer inspection, we found that feature
SMS actually depends on Photo, it is only meant to send photos, rather than
music or video. This dependency was neither shown in the simplified feature
model published in [Figueiredo et al., 2008], nor in a feature model provided by
the authors on request, nor was any description about the relationship of features
shipped with the source code. After adding this dependency to the feature model,
CIDE indicates that all variants are well-typed. This detected mismatch between
feature model and implementation is a typical example of the strength of product-
line–aware type systems.

In Release 8, MobileMedia has five additional features, and annotations became
more complex. CIDE initially indicated several type errors, because we inferred
an incorrect feature model from the source code; we could easily fix this when
we received a complete feature model from the authors and added the constraint
between SMS and Photo as discussed earlier. Still, there were two remaining type
errors caused by incorrectly annotated import statements (import statement are
not part of the CFJ calculus but checked in the Java type system in CIDE). Al-
though the target class and its references were correctly annotated, the import
statements were not annotated. This causes a Java type error in several vari-
ants because a removed class is imported (e.g., in variants with SMS but without
capturePhoto and without Video, or in variants with CopyMedia but without
Photo). A product-line–aware type system can point out even such seemingly
insignificant errors.

In Mobile RSS Reader, our type system found also inconsistencies: Variants
with both MIDP20 and SmallMem and variants with TestUI but without MIDP10
contain type errors. Our domain knowledge is not sufficient to judge whether
these are undocumented constraints or incorrect implementations. As an easy fix,
adding the constraints “¬(MIDP20 ∧ SmallMem)” and “TestUI⇒ MIDP10” to
the feature model reduces the number of possible variants, but all variants are
well-typed. It is up to the developers and domain experts to either change the
implementation or the feature model.

Additionally, we found some dead code fragments in Mobile RSS Reader that
would require a feature selection that is not allowed by the feature model. Al-
though, such analysis is not part of the type system (dead code is always well-
typed regarding reachability constraints), we can easily add a warning to our
implementation to point out dead code.

Finally, in Lampiro, we already had difficulties to create a single Java version
of the source code with all features (for backward compatibility). We found that
feature Screensaver is dead (since the first revision in the project’s repository)
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1 // #ifndef GLIDER
2 setTitle("Lampiro");
3 Image logo = Image.createImage("/icons/lampiro_icon.png");
4 UILabel ul = new UILabel("Loading Lampiro...");
5 // #endif
6 UILabel up = new UILabel(logo);
7 up.setAnchorPoint(Graphics.HCENTER | Graphics.VCENTER);
8 uvl.insert(up, 1, logo.getHeight()+10, UILayout.CONSTRAINT_PIXELS);
9

10 ul.setAnchorPoint(Graphics.HCENTER | Graphics.VCENTER);
11 uvl.insert(ul, 2, UIConfig.font_body.getHeight(), UILayout.CONSTRAINT_PIXELS);

Figure 5.25.: Code excerpt from Lampiro (SplashScreen.java, Lines 79–89) with type errors
when accessing local variables logo and ul in lines 6, 8, and 11 in variants with
Glider.

and must never be selected: Its implementation calls methods that do not exist,
introduces duplicate methods, and contains both missing and duplicate import
declarations. Similarly, feature Glider is dead; it is obvious from code fragments
as shown in Figure 5.25 that it makes no sense selecting this feature (otherwise
local variables logo or ul are not declared before used). Since Glider was only
introduced in the last revision in the repository; we assume that it is an incomplete
part of an upcoming feature. Our type system in CIDE points out these problems
immediately. It forces developers to document in the feature model that certain
features are incomplete and must not be selected.

All in all, we did not expect to find many errors, because all software product
lines released their code, and because the number of features is still manageable
small. We were surprised to find inconsistencies or type errors in every software
product line that was annotated with #ifdef directives. In all cases these were only
minor problems (undocumented dependencies, forgotten annotation on an im-
port statement, dead code), nothing significant and all easy to fix. Nevertheless,
this shows how easy subtle errors can be introduced into well-developed software
product lines and how product-line–aware type systems can help to maintain con-
sistency and fully document all implementation-relevant dependencies between
features. In Berkeley DB, our type system helped to achieve consistency during
the development process.

5.4. Related work

There is a large body of research to detect errors in software product lines. We
structure our discussion according to our taxonomy as follows: First, we review
approaches that check individual variants instead of the entire software product
line, known as product line testing. Second, we discuss approaches that check the
entire software product line for (a) syntax errors, (b) type errors, and (c) semantic
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errors.

Product-line testing

A first group of approaches focus on product-line testing [Tevanlinna et al., 2004;
Pohl and Metzger, 2006]. Testing can be applied to different implementation mech-
anisms, different languages, and can detect even inter-language defects. Tests pri-
marily address semantic errors during the execution of a variant, but since variants
are compiled in the process, testing can find also syntax and type errors.

There are different ways a software product line can be tested. If possible, sub-
systems representing certain features can be tested in isolation. However, many
errors occur only in the combination of features in a variant, therefore also inte-
gration tests and whole system tests of the final variant are necessary [McGregor,
2001; Pohl et al., 2005].

As described earlier, typical software product lines can have millions of fea-
ture combinations, so testing all valid variants is not feasible. Testing strategies
therefore typically sample certain variants, including those variants which are cur-
rently requested by customers. Research on product-line testing focus mainly on
reuse of test cases between variants [e.g., McGregor, 2001; Tevanlinna et al., 2004;
McGregor et al., 2004; Gälli et al., 2005; Pohl and Metzger, 2006].

Product-line testing is a pragmatic approach, common in current product line
practice. However, tests are not exhaustive and cover only a relatively small num-
ber of variants. For each generated variant, at least some manual effort for test-
ing is required. Product-line testing scales only to software product lines with
a limited number of variants or customers. In industrial practice, most software
product lines produce only such limited amount of variants (despite a high feature
number that could theoretically be combined into millions of variants), developers
ignore the remaining variants until needed. For example, in HP’s Owen product
line with over 2000 features, less than 100 variants which are needed for their
current printer hardware are compiled and tested [Refstrup, 2009]; Nokia’s Mo-
bile Browser product line has only four variants, which are compiled in nightly
builds to catch syntax and type errors while still all variants are tested indepen-
dently [Jaaksi, 2002].

In our work, we target an automated synthesis of variants allowing the full vari-
ability identified in domain analysis (see Sec. 3.3). Therefore, testing features in
isolation and testing few sampled variants may detect important problems, but
we focus primarily on error detection approaches that cover the entire software
product line with all its variants. Nevertheless, there is a trade-off between check-
ing only those variants currently needed and checking the entire software product
line. On the one hand, covering the entire software product line requires a higher
effort during development, since consistency is enforced even for variants which
are probably never built. On the other hand, new variants are easier to produce
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and maintenance costs are not delayed until late in the development cycle, when
they are more expensive to fix. We argue for early consistency, especially when it
can be achieved with simple mechanisms as disciplined annotations and product-
line–aware type checking.

Syntax errors

Syntax errors are typically a problem of annotative approaches. In compositional
approaches, typically each feature’s implementation can be checked for syntax er-
rors in isolation, and the composition engine enforced syntactically correct input
and transforms it into output that is, by construction, always syntactically correct.
Recent composition tools that support multiple languages in a uniform way, such
as the AHEAD tool suite [Batory et al., 2004] and FeatureHouse [Apel et al., 2009b],
can even check the product line’s syntax for multiple languages. Furthermore, for
(language-specific) generators, there have been approaches to check the generator,
to ensure syntactical correct output for any input [Huang et al., 2005]. In con-
trast, annotative approaches are often so general that they work only on plain text;
although there is some work on safe macro expansion [e.g., Leavenworth, 1966;
Kohlbecker et al., 1986; Weise and Crew, 1993; McCloskey and Brewer, 2005], de-
tecting syntax errors related to annotations (especially conditional compilation) is
largely unexplored.

Interestingly, there are some annotative tools that – as a byproduct, by the way
they are constructed – ensure syntactic correctness for some languages by trans-
forming and annotating software artifacts on a higher level of abstraction. One
example is Czarnecki’s tool fmp2rsm to generate variants of annotated UML mod-
els [Czarnecki and Antkiewicz, 2005]. Using this tool, syntax errors (e.g., a class
without a name) cannot occur because annotations and variant generation is not
performed on the textual representation of the model, but on an abstract level with
the Rational Software Modeler engine, which does not allow transformations that
would invalidate UML syntax. Heidenreich’s FeatureMapper is a similar example
for annotated models in Eclipse’s modeling framework [Heidenreich et al., 2008b].
In our approach to prevent syntax errors with disciplined annotations, we employ
the same mechanism: We abstract from plain text and remove code fragments
from this safely from the underlying structure.

Also in other fields of software engineering, this abstraction principle is ap-
plied to source code. For example, refactorings in development environments
such as Eclipse are usually not performed directly on the textual source code,
but on an abstract representation such as an abstract syntax tree [Fuhrer et al.,
2007]. Similar, many general-purpose program transformation systems, such as
Stratego/XT [Visser, 2004] and DMS Software Reengineering Toolkit [Baxter et al.,
2004], work on abstract syntax trees to prevent syntax errors and avoid dealing
with separating commas or similar syntactic overhead. Work on Intentional Pro-
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gramming drives this abstraction to an extreme and stores all program code in
a tree structure [Simonyi, 1995; Simonyi et al., 2006]; instead of editing a textual
representation, developers use a sophisticated tree editor. For disciplined anno-
tations, we use the same abstraction principle to ensure syntactic correctness in
software product lines.

Finally, disciplined annotations have already been proposed in different con-
texts, independent of syntax errors. Source code with undisciplined annotations
can not only be very hard to understand (see Sec. 3.2.1 and 3.2.2), but also difficult
to manipulate by tools [Stroustrup, 1994; Favre, 1997; Ernst et al., 2002; Garrido
and Johnson, 2005]. For example, refactorings of C or C++ code are much more
difficult to automate due to the preprocessor than refactorings of Java or Smalltalk
code [Garrido, 2005; McCloskey and Brewer, 2005]. There are three general strate-
gies to deal with annotations:

1. Enforce disciplined annotations. Disciplined annotations restrict possible an-
notations to a level that can be understood and manipulated by a tool. All
undisciplined annotations are rejected by the parser and it is the developer’s
responsibility to refactor the annotations into a disciplined form.

This strategy is used by the DMS transformation system [Baxter and
Mehlich, 2001], such that #ifdef directives are allowed only in certain dis-
ciplined locations. Disciplined annotations are needed in this context to
understand and manipulate C source code safely. The authors claim that
this strategy covers 85 % of unprocessed C source files in large, real source
system and that manually rewriting a system with 50 000 lines of code into a
disciplined form will typically take only “an afternoon.” Baxter and Mehlich
[2001] further report that developers oppose undisciplined annotations any-
way: “The reaction of most staff to this kind of trick is first, horror, and then second,
to insist on removing the trick from the source.” Our analysis in Section 5.3.6
corroborates this experience.

Additionally, a new generation of programming languages has learned from
the problems caused by undisciplined annotations and provides conditional
compilation in a disciplined form directly as language constructs. For ex-
ample, in D, ASTEC [McCloskey and Brewer, 2005], PL/SQL, and Adobe
Flex, constructs corresponding to #ifdef directives are part of the grammar
and can be used at certain disciplined locations only, such as on methods
and statements. Annotations are evaluated directly in the compiler (after
parsing), rather than in a separate preprocessor step. Similarly, with Fea-
tureJ and rbFeature, Sunkle et al. [2009] and Günther and Sunkle [2009a,b]
integrated disciplined annotations into Java and Ruby and additionally even
make information about features available at runtime. With our approach,
we provide disciplined annotations in a uniform way for multiple languages,
without designing annotations for each language.
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In our approach, we enforce disciplined annotations to prevent syntax errors.
We use a fine granularity as defined by the language’s grammar. From our
experience and analysis, we can confirm that disciplined annotations are suf-
ficiently expressive and undisciplined annotations can be quickly rewritten
into a disciplined form.

2. Ignore undisciplined annotations. Instead of rejecting undisciplined annota-
tions, some approaches can simply ignore them and reason only about the
remaining disciplined annotations. However, this is only suitable for some
analysis approaches, but not for source code transformations, since transfor-
mations can break ignored undisciplined annotations. Nevertheless, Adams
et al. [2009] receive sufficiently accurate results even when they ignore undis-
ciplined annotations during analysis of preprocessor usage in legacy systems
(to evaluate potential refactoring toward aspects).

3. Expand undisciplined annotations. Finally, approaches that want to be fully
backward compatible must understand all possible annotations. An ap-
proach, taken by Garrido [2005] and Vittek [2003], is to expand undisci-
plined annotations to disciplined annotations. For example, a method with
two alternative return types (annotating a return type is usually not disci-
plined) can be expanded into two annotated methods that only differ in the
return type. This way, fine-grained undisciplined annotations are expanded
into coarse-grained disciplined annotations, at the cost of code replication.
Changes in the expanded code are then traced back to the original code.
Both systems require sophisticated rewrites and significant overhead (in the
case of [Vittek, 2003], using expansion is almost identical to a brute force ap-
proach that generates and parses all valid variants). These approaches can
also be used to check for syntax errors (and to build a type system on top),
but the complexity and overhead is overwhelming compared to enforcing
disciplined annotations.

Type errors

Product-line–aware type systems. The concept of checking type safety for an en-
tire software product line (instead of only for a single program) emerged from
research on generative programming.

First, in an influential approach, Huang et al. [2005] ensure that Java code gen-
erated by their tool SafeGen is well-typed. Though their tool is used for metapro-
gramming in general, rather than as product-line technology, the basic idea is sim-
ilar to proving the variant generation process to be safe in CFJ. Using first-order
logics and theorem provers, they check whether generators written in their con-
fined metalanguage (with selection and iteration operators) produce well-typed
output for arbitrary Java input. However, checks cover only some of Java’s type
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judgments; there is no guarantee that the output is well-typed. In recent work, they
introduced a newer metaprogramming language MorphJ with similar constructs
that supports modular type checking and has been proven type sound [Huang
and Smaragdakis, 2008].

The work on checking the generation mechanism instead of individual input
programs in SafeGen influenced Czarnecki and Pietroszek [2006] to check an en-
tire software product line instead of individual variants. Specifically, they target
product lines of UML models in their tool fmp2rsm and guarantee well-formedness
for all variants. Their tool extends an existing UML editor so that a user can anno-
tate presence conditions to UML elements, such as classes or associations; a variant
of the UML model is generated by removing elements of which the annotation
evaluates to false for a feature selection. Czarnecki and Pietroszek [2006] then
describe a mechanism for this tool environment to check that all variants con-
form to certain well-formedness rules of UML – for example, “an association in
UML class diagrams connects exactly two elements.” These well-formedness rules
are similar to type judgments in programming languages and can be specified in
UML’s metamodel formally (and machine-readable) using constraints written in
the object constraint language OCL. Their tool transforms presence conditions, the
feature model, and constraints into a propositional formula, which can be solved
by an off-the-shelf SAT solver in a single step. Error messages are reconstructed
from the SAT solver’s result. Well-formedness can only be guaranteed with regard
to those constraints that have been specified as machine-readable constraints. For
UML those must be first inferred from the informal, textual UML specification,
which is similar to how Java’s type judgments must be inferred from the textual
Java Language Specification. The authors do not discuss completeness of their
inferred constraints. The metaexpression solution for alternative features was first
described for their tool [Czarnecki and Antkiewicz, 2005], however metaexpres-
sions have not (yet) been considered in their well-formedness checks [Czarnecki
and Pietroszek, 2006].

Regarding alternative features, Aversano et al. [2002] sketched an early type
checking mechanism for alternative variable declarations in C. Depending on a
feature selection, a variable can have alternative types, which they store in an ex-
tended symbol table. This work mainly addresses low-level portability issues in
C (such as different integer types), not on product line implementation in general.
Since Java abstracts from most low-level portability issues, alternative declara-
tions were not important in our case studies, we could always achieve backward
compatibility and reduce alternatives to the statement level as described in Sec-
tion 5.3.4.

Beyond annotations on existing languages, there have been approaches to type
check software product lines implemented using compositional approaches. Some
compositional approaches can check feature modules in isolation, similar to com-
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ponents, so that only their combination into variants need to be checked [e.g., Os-
sher and Tarr, 2000a; McDirmid et al., 2001; Warth et al., 2006; Huang and Smarag-
dakis, 2008; Bettini et al., 2010]. The first type checking approach to cover an entire
software product line for feature composition was safe composition by Thaker et al.
[2007]. They analyze language semantics of Jak [Batory et al., 2004]. To type check
software product lines, they identify six constraints that need to be satisfied, which
their tool maps to propositional formulas and checks with an SAT solver in one
step. One constraint deals with references to fields and methods (roughly cor-
responding to T-Field and T-Invk), two deal with abstract classes and interfaces
(no correspondence in FJ), and three deal with specific constructs of the Jak com-
position mechanism (no correspondence in FJ). Their checks are not claimed or
even proved complete, and in fact – compared to CFJ – checks that ensure the
presence of types uses in signatures such as (M.1), (M.3) are missing. In recent
work, safe composition was eventually formalized and proved type-sound with
a machine-checked model by providing an algorithm to reduce it to Lightweight
Java [Delaware et al., 2009].

Kim et al. [2008] ported Thaker’s implementation of safe composition to an-
notations in CIDE, in parallel to our work. As Thaker’s implementation, it is
incomplete and checks only six selected constraints. Additionally, in line with
Thaker et al. [2007] and Czarnecki and Pietroszek [2006], it solves all constraints
in a single step and reconstructs a single error message from the SAT solver’s re-
sult, in contrast to small checks in CFJ, which allow better error reporting. CFJ
can report multiple errors in the same software product line and trace them to a
distinct method invocation, type reference, or other language construct.

In a parallel line of research, we have formalized a calculus Feature Feather-
weight Java (FFJ) for class refinement and module composition [Apel et al., 2008c]
and extended it toward checking entire software product lines [Apel et al., 2010].
In this work, we entirely drop backward compatibility since the host language
with its composition semantics is already incompatible to Java and there is no
sophisticated tool support, yet. Instead, we aimed at flexibility so that even alter-
native classes with different supertypes or alternative fields with different types
and alternative methods with different return types within the same class hier-
archy are possible. Compared to CFJ the formalization is much more complex,
because a term in the software product line may have different types and even
the subtype relation may change in different variants depending on the feature
selection. CFJ and FFJ tackle type checking software product lines for different
implementation mechanisms and from different perspectives: CFJ targets at anno-
tations and tool support, whereas FFJ targets module composition and explores
maximum flexibility.
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Conditional language constructs

Independent of product-line research, the programming language community de-
veloped several type systems that support type conditions on methods or other
language constructs. So, invoking a conditional method is only well-typed when
the condition is satisfied in the context of the invocation. Conditional language
constructs are discussed in the context of parametric polymorphism. For exam-
ple, in a collection class, such as List, clients should only be allowed to invoke a
method print if the class is parametrized with a type that can be printed; a col-
lection should only implement the interface Printable if the type parameter imple-
ments this interface as well. Conditional language constructs have been explored
in object-oriented languages at least since CLU [Liskov et al., 1981] and have been
studied, for example, in extensions to Cecil [Litvinov, 1998], Java [Myers et al.,
1997; Huang et al., 2007], and C# [Emir et al., 2006]. In all these languages, type
constraints are structural constraints (parameter X contains method Y) or subtyp-
ing constraints (parameter X is a subtype/supertype of Y).

Conditional methods with type constraints and CFJ are related, because both re-
strict the access to methods in some variants (#ifdef vs. condition on type param-
eter) and both statically ensure that all variants are well-typed. So, in some sense,
we could replace #ifdef directives on statements by conditions on type parame-
ters and instead of generating a variant by removing code, we could instantiate
the program with a suitable type parameter. However, there are four important
differences:

• Code removal vs. multiple instances. Our work addresses conditional compi-
lation in the context of product lines, such that code is actually removed in
a generation step. In contrast, all languages with conditional methods we
are aware of do not generate variants but check that a present method is
never called when the condition on the type parameter evaluates to false.
Type conditions have the benefit that different instances of a class with dif-
ferent configurations may be used in the same program, but they does not
remove code and thus does not reduce binary size as sometimes desired in
product-line development, especially for embedded systems [Beuche et al.,
1999; Lohmann et al., 2006; Rosenmüller et al., 2009].

• Expressiveness of conditions. Compared to a full feature model, the expres-
siveness of type conditions is restricted. In languages with structural con-
straints, they can express part-of relationships; in language with subtyping
constraints, they can express simple parent-child relationships (similar to
our initial ‘set relations’ implementation, see Sec. 5.3.5). Most type con-
ditions have the benefit that reasoning can be performed without a SAT
solver; however, more expressive feature constraints are needed in product-
line practice (see Sec. 5.3.6), such as alternative features, negated features
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(¬A), or propositional expressions (e.g., A∨ ¬B∧C).

• Granularity. Annotations and type conditions provide different levels of
granularity. In contemporary languages with type conditions, typically con-
ditions can only be placed on methods (and sometimes fields and super-
types); type conditions aim primarily at providing flexible libraries. In con-
trast, #ifdef directives and annotations in CFJ and CIDE are more flexible
and can annotate entire classes, individual statements, or even method pa-
rameters, which is typically not needed in libraries. Our work targets at
variability in applications and product lines, in which also the behavior of
an individual method may change depending on the feature selection. Of
the four case studies in Section 5.3.6, only the first can be implemented and
checked with type conditions of contemporary languages.

• Backward compatibility. Finally, to add type conditions to Cecil, Java, or C#,
all approaches introduce new language constructs. In contrast, we aim ex-
plicitly at backward compatibility to reuse the existing tool infrastructure.

These differences are mostly design decisions for a specific language. It is possi-
ble to develop conditional language constructs that are similar to CFJ (backward
compatible, at finer granularity, with more expressive conditions) or product-line–
aware type systems with characteristics of conditional language constructs. How-
ever, so far the product-line community and the programming language commu-
nity pursued different goals (product-line development by code removal, back-
ward compatibility, flexible annotations, and alternative implementations vs. ex-
pressive type system for libraries and multiple instances), which lead to different
design decisions. With contemporary conditional compilation constructs, our case
studies would be very difficult to implement. We argue that both approaches are
complementary and may eventually converge. In this context, we contribute a
different perspective with different design decisions and their trade-offs for con-
ditional language constructs.

Semantic errors

Regarding semantic errors, most developers rely on tests of features and some
variants (see above). Recently, there have been a number of early approaches
toward checking an entire software product line instead of individual variants
by adapting formal methods for product-line engineering. In general, the idea is
similar to product-line–aware type checking: Existing mechanisms are extended
to understand and reason about annotations. Detecting semantic errors is beyond
the scope of this thesis, but may be a valuable extension in future work. Therefore,
we give only a brief overview.
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Model checking can be adapted for software product lines in different ways.
Lauenroth et al. [2009] extend a CTL model checking algorithm to understand
annotations inside the model. In contrast, Post and Sinz [2008] and Gruler et al.
[2008] encode annotations into the model before checking, so that they can use
an off-the-shelf model checker. Fisler and Krishnamurthi [2001] and Classen et al.
[2009] adapt a model checking approach similarly for model composition.

Additionally, other formal verification approaches have been explored regarding
software product lines. For example, Poppleton [2007] extended the specification
language Event-B for features, Fisler and Roberts [2004] explored ACL2 to describe
and verify feature-oriented compositions. Integration with a feature model to
verify the entire software product line is still an open research topic. There is still
much research necessary to scale these approaches to realistic product lines. So
far, none of them has been evaluated for nontrivial examples.

5.5. Summary

Annotative approaches are regarded as error prone (see Sec. 3.2.3). In software
product lines, where errors may potentially occur only in a single out of millions
of variants, such errors can be very difficult to detect. Errors may hide in the
implementation until a customer requests a problematic variant, possibly long
after initial development, when fixing them is expensive. We see two causes of
errors that are specific to annotative approaches and addressed them each in this
chapter.

First, most annotative approaches work on plain text without an understanding
of the underlying code base. Therefore, it is easy to introduce syntax errors that oc-
cur only in some variants with incorrect or incomplete annotations. As a solution,
we propose disciplined annotations. Disciplined annotations (a subset of all anno-
tations) cannot cause syntax errors, variants with and without the annotated code
fragment are syntactically correct. To decide which annotations are disciplined,
we consider the underlying structure. Only optional code fragments in this struc-
ture (such as entire classes and entire methods, but not individual brackets, or
just the return type of a method) may be annotated. Disciplined annotations are
less expressive (for some extensions, workarounds are required), but as we have
shown, still expressive enough in practice. In fact, not all but most annotations we
found in practice are already disciplined. Thus, with some automated analysis as
implemented in CIDE and with only minor restrictions to the way developers can
annotate code, we can prevent annotations from causing syntax errors altogether.

Second, annotative approaches support no form of modular type checking. In-
stead, only individual variants are type checked. Checking only variants again
raises the problem that type errors, such as dangling method invocations, may re-
main undetected until a problematic variant is eventually generated. As solution,
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we propose a product-line–aware type system on top of disciplined annotations,
that type checks all variants of the software product line in a single step. The basic
idea is to check for every pair of method invocation and according method declara-
tion (and many other pairs) by comparing their annotations, so that, whenever the
method invocation is included in a variant, also the according method declaration
must be included. With CFJ, we have developed a formal calculus and proofed
that all variants generated from a well-typed product line are well-typed. We have
implemented an according type system for Java in CIDE and found type errors
in some variants of several existing software product lines, which were developed
with traditional preprocessors.

With disciplined annotations and a product-line–aware type system, we can
detect syntax and type errors in the entire software product line. This way, we
enforce consistency for all valid variants, even for variants which are currently not
deployed. Although this enforced consistency increases effort during initial devel-
opment, it reduces maintenance costs later on and reduces the costs for generating
additional variants.
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This chapter shares material with the McGPLE’08 paper “Integrating Composi-
tional and Annotative Approaches for Product Line Engineering” [Kästner and Apel,
2008a] and the GPCE’09 paper “A Model of Refactoring Physically and Virtually
Separated Features” [Kästner et al., 2009a].

After discussing five improvements of annotative approaches in the previous
chapters, we take a step back to look at the big picture. We integrate the proposed
improvements as virtual separation of concerns and compare them with composi-
tional approaches. Finally, we outline their integration to combine their respective
advantages.

We name our concept of an improved annotative approach with tool support vir-
tual separation of concerns, because – even though we do not physically decompose
concerns (or features) into modules – we provide some form of virtual separa-
tion with tool support. Although annotations are scattered in the implementation,
tools can provide views on features or variants on demand. Integrating the fea-
ture model, disciplined annotations, and a product-line–aware type system ensure
consistency and completeness of annotations, which is necessary to make views
and other tool support efficient. A visual representation of features addresses the
obfuscation often associated with annotations. We summarize virtual separation
of concerns as follows:

Virtual separation of concerns = annotations + tool support

6.1. Comparison

We revisit our comparison of annotative and compositional approaches from
Chapter 3 and additionally include our concept of virtual separation in this com-
parison. We discuss each criterion and conclude with a grade of either good sup-
port “(+)”, partial support “(+/–)” or weak/no support “(–)”. Again, the grades,
in this brevity, reflect our point of view and are debatable; they are meant to give
a quick overview.

6.1.1. Modularity

Modular implementations of features are possible with compositional approaches,
but not all languages enforce modularity strictly (see Sec. 3.1.1). In contrast, con-
temporary annotative approaches do not support modularity, code of a feature
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is usually scattered. A virtual separation with views can emulate modularity to
some degree, but cannot reach true modularity and its benefits.

On the positive side, tool support offers several improvements compared to
contemporary annotative approaches. It simplifies many tasks that were previ-
ously tedious with contemporary preprocessors. Modular reasoning is possible to
some degree in a view (at least in a nonmonotonic form as discussed for aspect-
oriented programming [Ostermann, 2008; Kiczales and Mezini, 2005a]). Views
hide distracting tangled code of other features and emulate cohesion; they ease
the previously tedious task of searching for feature code. Context information
shown in views plays the role of interfaces in modular implementations. Addi-
tionally, all configuration knowledge is encapsulated. With tool support includ-
ing a feature model and disciplined annotations, we can always reason about an-
notations and determine the condition to include a code fragment. Removing
an obsolete feature, which was criticized as especially tedious without modu-
larity [Favre, 1997; Baxter and Mehlich, 2001], is straightforward with tool sup-
port.

Despite all improvements, virtual separation of concerns cannot provide real
modularity with well-defined encapsulated modules that provide benefits such
as separate compilation, separate testing, parallel development, and black-box
reuse. For example, since different views work on the same code base, multi-
ple developers may work on the same file in parallel, which requires integration
later on.

Nonetheless, we need to emphasize that virtual separation of concerns does
not require dropping modularity completely. There are different degrees of
modularity (independent of how variability is achieved). On the one end of
the spectrum, we can decompose a concern entirely and encapsulate it in a
strictly modular form. On the other end of the spectrum, we can find en-
tirely scattered implementations of a concern that are not decomposed at all.
In between, there are many further degrees of modularity (see excursus be-
low). Many annotation-based implementations are partially modularized, at
least by small-scale means as functions and classes provided by the host lan-
guage. While only a strict modularization provides the full benefit of modu-
larity, we still gain some advantages of modularity with a partial modulariza-
tion. For example, we can test the modularized parts in isolation and we can
reuse modularized parts (even in a black-box fashion). That is, we cannot test
or reuse an entire feature implementation, but the main parts of this imple-
mentation. Partially modularized features also reduce potential conflicts during
parallel development. In the best case, a feature is mostly modularized, only
some invocations – which can be regarded as glue code – remain scattered and
have to be tested in variants or rewritten when the feature’s implementation is
reused.
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With our discussion partial modularization, we want to stress that virtual sep-
aration of concerns does not automatically mean that modularity is entirely lost
or reuse is not feasible. Annotations added in an ad-hoc fashion will probably
not benefit from modularity, but even with annotations it is possible to develop
largely modularized features. It depends entirely on how developers implement
features.

Summary: Modularity
Compositional approaches good support in some approaches (+/–)
Contemp. annotative approaches no perceivable form of modularity (–)
Virtual separation of concern modularity emulation only (–)

Excursus: Degree of modularity. In this brief excursus, we give an in-depth expla-
nation of partial modularization and different degrees of modularity. We illustrate
different degrees of modularity by means of an example from Berkeley DB. Read-
ers familiar with this idea may skip to Section 6.1.2.

The highest degree of modularity with a strictly modular implementation sep-
arates a concern entirely and decouples it from the remaining concerns (typically
via an interface). Many languages, including some but not all compositional ap-
proaches, support strict modular implementations with some language mecha-
nisms. As discussed in Section 3.1.1, some compositional languages provide a
lower degree of modularity; they implement concerns in a cohesive form (subclass,
feature module, aspect, etc.), but they are less strict regarding encapsulation and
interfaces, resulting in a loss of separate compilation and in difficulties regarding
modular reasoning and reuse. The same holds for hybrid forms of compositional
and annotative approaches discussed in Section 3.3 and our integration later in
Section 6.2.

At the other extreme, there are implementations that are entirely scattered,
which are not even decomposed with small-scale means such as functions or
classes. After decades of software-engineering education teaching separation of
concerns, it can be difficult to imagine implementations that do not even use the
most basic forms of decomposition. As example, consider a concern that is rep-
resented only by some entirely scattered statements in various methods. Annota-
tions are typically used on top of some host language that already supports at least
some hierarchical form of decomposition into functions, classes, or some form of
modules. Even noncode artifacts are typically structured in some form. Thus, even
in many annotation-based implementations, we find some partial decomposition.

Let us illustrate different degrees of modularity on the example of the crosscut-
ting feature Statistics in the database engine Berkeley DB (see Sec. 3.1.7). The
feature maintains over 100 counters to collect various statistics of different parts of
the system, such as size of the cache, number of open transactions, and open files.
Consider these different implementations:
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• In an implementation without any means of modularity, we can entirely
distribute counters and code to adjust these counters (in the form of isolated
statements) in different parts of the program. In such implementation, there
is no decomposition at all, not even on a small scale in terms of functions;
Statistics is entirely intertwined with the base code.

• In the actual implementation of Berkeley DB (and also in our annotation-
based implementation with CIDE), counters and code to adjust them are
still scattered, but there is an additional infrastructure to collect statistics
from these counters and to present them to users in an aggregated from.
This infrastructure is implemented in eight classes (scattered over different
packages) and several methods (scattered over several classes). Although
there is still massive scattering, and even the classes and methods are scat-
tered, at least some parts of the statistics system are decomposed from the
base implementation in terms of methods and classes. This achieves a low
degree of modularity.

• With an advanced compositional language as Jak or AspectJ (see Sec. 3.1),
we could refactor also the scattered methods of the infrastructure into class
refinements or an aspect. We could group these refinements or the aspect
together with the other classes of the feature Statistics in a module (e.g.,
package or feature module). This way, we increase the degree of modular-
ity. There is still severe scattering of counters and corresponding code, but
already the entire infrastructure is decomposed. Note that the discussion
of granularity is independent of the variability mechanism: We can either
include or exclude the infrastructure module in a compositional manner, or
we can annotate the module to be conditionally removed before compilation.

• We can further increase the level of modularity by refactoring additionally all
local counters and all code to adjust them into class refinements or aspects, as
we did in our AspectJ implementation of Berkeley DB [Kästner et al., 2007a].
This way, we decompose all code related to statistics from the base code
and encapsulate it in a single module (again independent of the variability
mechanism).

• As discussed above, aspects written in AspectJ are not considered to be
strictly modular; for example, separate compilation is not possible. To
achieve strict modularity, we can implement the feature with one of the
more modular extensions of AspectJ [e.g., Sullivan et al., 2005; Aldrich, 2005;
Steimann et al., 2010], as we did in [Steimann et al., 2010], or with some other
modular implementation mechanism.

When we look at annotation-based implementations, they are often decomposed
to some degree. The implementations of many features are completely scattered,
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but many other features are partially modularized. There are many examples
of partially modularized feature implementations among our case studies (see
Appendix A): In Berkeley DB, statistics are partially modularized, as discussed
above; similarly the majority of the transaction system’s implementation is scat-
tered, but some parts are decomposed into several classes in a single package and
a number of scattered methods. In MobileMedia (release 6), 67 % of feature SMS
is decomposed into a distinct package, further 20 % are modularized in two addi-
tional classes, so that only some method declarations and invocations are scattered
(13 %). In contrast, (academic) software product lines with modern composition
languages that support crosscutting concerns usually pursue a high degree of
modularization [e.g., Hunleth and Cytron, 2002; Zhang and Jacobsen, 2003; Ba-
tory et al., 2004; Tešanović et al., 2004; Apel and Batory, 2006; Kästner et al., 2007a;
Figueiredo et al., 2008; Rosenmüller et al., 2009; Bettini et al., 2010; Apel, 2010].

6.1.2. Traceability

In contrast to modularity, traceability can be fully achieved with tool support. In
compositional approaches, there is a more or less complex mapping from features
to modules. In the simplest case each feature is mapped to a single module, so
that traceability is trivially provided. With consistent annotations (integrated with
the feature model), we can similarly trace a feature to all related code fragments.
Views can additionally make even complex mappings easy to trace.

Note that keeping traceability links up to date is not a problem in virtual separa-
tion of concerns. In contrast to external traceability links as in FEAT [Robillard and
Murphy, 2002], Spotlight [Coppit et al., 2007], or AspectBrowser [Griswold et al.,
2001] (see discussion in Sec. 3.3) or traceability links in tools of the requirements-
traceability community [e.g., Cleland-Huang et al., 2003; Mäder et al., 2008], fea-
ture annotations in a software product line are required to generate variants. Ad-
ditionally, we enforce consistency of annotations with disciplined annotations and
a product-line–aware type system. Hence, we can expect that developers maintain
even scattered annotations and keep them up to date.

Summary: Traceability
Compositional approaches direct traceability to module (+)
Contemp. annotative approaches scattered and tangled code (–)
Virtual separation of concern tool-supported traceability (+)

6.1.3. Language integration

Compositional approaches use a language mechanism to implement variability,
whereas annotative approaches usually use external ad-hoc tools that do not con-
sider the underlying language. Compositional approaches offer limited but disci-
plined mechanisms to express variability; having variability or composition mech-
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anisms as part of the language is beneficial, because the compiler or other tools can
reason about variability and the composition process without external overhead.
In contrast, contemporary annotative approaches use annotations in an undisci-
plined way on top of a host language, which obfuscates the source code with
external annotations and makes reasoning (e.g., for refactoring or static analysis)
about a product-line implementation difficult.

Virtual separation of concerns provides a form of disciplined annotations that
are harmonized with the language. By restricting annotations to disciplined anno-
tations, we can map annotations to language elements of the underlying language.
This way, annotations can be integrated seamlessly into the type system and into
various tools. For example, refactoring a software product line with disciplined
annotations is much easier than with undisciplined annotations [Garrido, 2005];
we come back to this in Section 6.2.3. We can even provide disciplined annotations
as part of a language, as in FeatureJ [Sunkle et al., 2009] and rbFeature [Günther
and Sunkle, 2009a,b] or in D, PL/SQL, and Adobe Flex (see Sec. 5.4), but even
when we implement disciplined annotations with a separate tool, we can consider
them as language extension.

With some additional overhead, we can even design a language with disciplined
annotations that can access information about features at runtime; we can imple-
ment dynamic feature activation and deactivation with annotations, as demon-
strated by Sunkle et al. [2009] and Günther and Sunkle [2009a,b].

Another question is how to present annotations to the user. We can (a) use
conventional #ifdef directives or similar textual syntax, (b) develop a syntax for
disciplined annotations that integrates well into the host language (e.g., D, Adobe
Flex, FeatureJ, rbFeature), or (c) even use graphical representations, such as back-
ground colors. Note that variability mechanisms in compositional approaches also
require some overhead in a more or less verbose syntax. For some compositional
languages such as AspectJ, there is even sophisticated tool support to visualize
the effect of language constructs [e.g., Clement et al., 2003]. In this regard, virtual
separation and compositional languages are quite similar.

Summary: Language integration
Compositional approaches direct language support, disciplined (+)
Contemp. annotative approaches undisciplined ad-hoc tools (–)
Virtual separation of concern seamlessly integrated disciplined ann. (+)

6.1.4. Errors

While compositional approaches support modular syntax checking of features and
often also modular type checking and separate testing of modules, the scattered
nature of implementations in contemporary annotative approaches prevents such
local error detection mechanism; only generated variants can be checked. With
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disciplined annotations and a product-line–aware type system, virtual separation
of concerns overcomes many problems of contemporary annotative approaches
and even improves error detection beyond what is possible in most compositional
approaches.

Regarding syntax errors, disciplined annotations bring virtual separation to the
same level as compositional approaches. As in compositional approaches each
code artifact can be checked in isolation. If the artifact is syntactically correct and
all annotations are disciplined, no syntax errors can occur during generation.

Regarding type errors, several compositional languages can type check a mod-
ule in isolation (including black-box frameworks and components, Hyper/J [Ossher
and Tarr, 2000a], Jiazzi [McDirmid et al., 2001], MorphJ [Huang and Smaragdakis,
2008], and Traits [Bettini et al., 2010]). That is, the internals of the module are
checked against its interface. When composing modules, it is still necessary to
check the individual composition (e.g., whether interfaces match and whether
all dependencies between modules are met). When variants are generated by
composing modules in different combinations, type errors can still occur. With
exception of the work of Thaker et al. [2007] and Apel et al. [2010] which also
introduce a product-line–aware type system (see Sec. 5.4), we are not aware of any
compositional approach that provides a mechanism to check whether all valid
feature selections can be composed without type errors. Our product-line–aware
type system skips modular checks and directly checks the entire product-line im-
plementation against a feature model. Thus, without enforcing any additional
interfaces between feature modules, our type system can determine whether all
variant generated from the product line are well-typed. Thus, we argue that vir-
tual separation of concerns can detect type errors at least as effectively as compo-
sitional approaches, or even better compared to most contemporary compositional
approaches.

Regarding semantic errors, we do not see a major difference between compo-
sitional approaches, contemporary annotative approaches, and virtual separation
of concerns. Although the modularization in compositional approaches allows
local tests, a similar (partial) modularization is also possible with annotative ap-
proaches. Of course scattered implementations are difficult to test, but testing
modular implementations of crosscutting concerns in compositional approaches
is a challenge as well [Elrad et al., 2001; Parizi and Ghani, 2007]. From our per-
spective, semantic errors caused by the combination of the behavior of different
features (known as feature interactions [Calder et al., 2003]) are the most critical
semantic errors in product lines; they only occur in specific variants and cannot be
detected modularly. We argue that semantic errors in variants are equally difficult
to detect in compositional approaches and annotative approaches. Researchers
currently explore solutions for different approaches of product-line implementa-
tion; for example, they adopt formal methods for both compositional and annota-
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tive approaches (see Sec. 5.4).
All in all, error detection in software product lines is difficult and many issues

remain open. Nevertheless, we argue that virtual separation of concerns brings
error detection for annotations to a level that can be compared to (or even improves
over) error detection in compositional approaches.

Summary: Errors
Compositional approaches modular error detect. to some degree (+/–)
Contemp. annotative approaches prone even to syntax errors (–)
Virtual separation of concern product-line–wide error detection (+)

6.1.5. Granularity

Compositional approaches provide only coarse-grained extensions, which can
lead to verbose workarounds for some extensions. In contrast, annotative ap-
proaches are usually fine-grained and can change lines, tokens, or even characters
in an artifact; they are very expressive. With disciplined annotations, virtual sepa-
ration of concerns provides a granularity in between: finer than in compositional
approaches, but coarser than in annotative approaches. With a visual represen-
tation of annotations, we provide also suggestions how to cope with obfuscation
caused by many fine-grained annotations with traditional textual annotations.

Disciplined annotations restrict granularity, so that developers can annotate only
code fragments that represent optional elements in the underlying structure. Nev-
ertheless, they still provide finer granularity than compositional approaches: Dis-
ciplined annotations typically include statements and parameter; as in contempo-
rary annotative approaches, there are no conceptual limitations regarding fixed
signatures or position and ordering (cf. Sec. 3.1.4).

As discussed in Section 5.2.6, despite slightly reduced granularity, disciplined
annotations hardly impose any restrictions compared to traditional preprocessors
in practice. Most annotations are in a disciplined form already, or can be easily
refactored into one. Compared to compositional approaches, a virtual separation
with disciplined annotations is still very fine-grained and can express most exten-
sions without workarounds.

Summary: Granularity
Compositional approaches coarse granularity, req. workarounds (–)
Contemp. annotative approaches fine granularity (+)
Virtual separation of concern fine granularity (+)

6.1.6. Optional feature problem

The optional feature problem (or feature interaction problem, or more generally
the tyranny of the dominant decomposition) describes the difficulty to modularize
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two interacting features. The code that connects both features should only be
included when both features are selected. A typical strategy of compositional
approaches is to encapsulate it in an additional module (see Sec. 3.1.5), which
causes additional effort and makes the system more difficult to understand. In
contrast, annotative approaches use nested annotations to describe that a code
fragment belongs to two features and should only be included when both features
are selected.

In this context, the views of virtual separation of concerns play their strength.
As discussed in Section 4.2, a code fragment that belongs to multiple features is
shown in multiple according views. A physical on-demand remodularization has
been proposed to address such multi-dimensional views with compositional ap-
proaches [Ossher and Tarr, 2000b; Janzen and De Volder, 2004; Harrison et al.,
2005], but they are very difficult to implement (see discussion in Sec. 4.5). In
contrast, virtual separation provides a straightforward virtual remodularization
that is pragmatic and easy to implement and adopt. Again, disciplined annota-
tions and product-line–aware type system support views by enforcing consistent
annotations.

Summary: Optional feature problem
Compositional approaches sign. overhead, additional modules (–)
Contemp. annotative approaches straightforward solution (+)
Virtual separation of concern straightforward solution + views (+)

6.1.7. Uniformity

A software product line typically contains artifacts of many different (code and
noncode) languages. Still, compositional approaches are usually tied to one spe-
cific language. For example, even for a general concept as pointcut and advice
mechanisms in aspect-oriented programming, developers must learn different
tools for different languages, each with a different concrete syntax. Addition-
ally, many (especially noncode) languages might not even be supported. In con-
trast, most annotative approaches consider all artifacts as a stream of characters
or tokens and ignore the underlying language; hence they can be used language
independently. Developers can use the same tool in a uniform way for multiple
artifact languages.

Virtual separation of concerns uses the underlying structure of an artifact for
several purposes, which makes it language-dependent. For example, we need to
understand the structure of an artifact to decide which annotations are disciplined;
type checking requires details on the semantics of a language to check; and even
our algorithm to determine the context for a view on a feature use the underlying
structure.

Nevertheless, in each step, we specifically designed the mechanisms such that
they can be extended toward new languages. We defined disciplined annotations
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and views on an abstract structure that can be provided for different languages
(we even automate the generation of new language plug-ins from a grammar spec-
ification). This way, the same tool infrastructure (variant generation, visualization,
views) can support several languages in a uniform way. For type checking, we
need more language-specific information, but still, we have shown how exist-
ing type systems can be extended and we implemented product-line–aware type
checking in CIDE such that new languages can be plugged in. Even though virtual
separation of concerns is not language independent, we can still apply it to many
languages in a uniform way – as demonstrated for Java, C, C++, Python, Haskell,
Bali, XML, and HTML (see case studies in Sec. 5.2.6, 5.3.6, and Appendix A.1).

Summary: Uniformity
Compositional approaches usually language dependent (–)
Contemp. annotative approaches language independent (+)
Virtual separation of concern uniform support for multiple languages (+)

6.1.8. Adoption

Compositional approaches are difficult to adopt for product-line development in
practice, because they introduce novel concepts, languages, tools, or processes.
Modularity is a long-term investment, which causes higher initial effort but pro-
vides little short-term benefits, which makes it difficult to convince developers and
management. In contrast, annotative approaches have a very simple programming
model, which is flexible, easy to understand, and easy to use: Code is annotated
and removed. Annotations can be introduced in an ad-hoc fashion into existing
projects.

With virtual separation of concerns, we keep the simple model of annota-
tions. Although we enforce a disciplined form of annotations and slightly change
the variant generation process from string removal to AST transformations (see
Sec. 5.2.3), the general variability mechanism is as simple as before. On the one
hand, we slightly restrict expressiveness, on the other hand, we even simplify
annotations so that developers to not have to deal with syntactic elements like
separating commas.

We provide immediate feedback of type errors, which is helpful to achieve con-
sistency and can reduce the amount of variant-specific error checking. Error mes-
sages for type errors for variants that the developer is currently not working on
might be demanding at first use and increase initial development effort. In ex-
change we reduce maintenance effort and guarantee that a change does not break
other variants at syntax and type level. We additionally designed our type system
in a backward-compatible fashion, so we conserve existing tool support, to which
many developers became accustom.

Finally, views and visual representation provide an immediate improvement
over contemporary preprocessors, which fosters adoption of virtual separation [cf.
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Atkins et al., 2002; Feigenspan et al., 2010]. Subjects in our experiment preferred
the improved representation.

Overall, we expect that the benefits of additional tool support outweigh the
minor increase in effort for consistent and type-safe annotations. The big picture
of simply annotating and removing source code is the same as for contemporary
annotative approaches.

Summary: Adoption
Compositional approaches difficult adoption, new languages/tools (–)
Contemp. annotative approaches easy to use, lightweight tools (+)
Virtual separation of concern easy to use + tool support (+)

To conclude, we give an overview our evaluation, reduced to approximate
grades, in Figure 6.1. It becomes apparent that virtual separation of concerns keeps
all benefits of annotative approaches and addresses most of their weaknesses com-
pared to compositional approaches. Nevertheless, we still cannot achieve strict
modularity, but at most partial modularity. Since modularity is a very important
criterion, missing modularity can be critical and outweigh benefits such as easy
adoption or being language independent. Therefore, we conclude this thesis in
the next section with a discussion on how we can integrate virtual separation of
concerns with compositional approaches to leverage the respective advantages.

Criterion Compositional
approaches

Contemporary
annotative
approaches

Virtual separa-
tion of concerns

Modularity +/– – –
Traceability + – +
Language integration + – +
Errors +/– – +
Granularity – + +
Optional feature pr. – + +
Uniformity – + +
Adoption – + +

+: good support, +/–: partial support, –: weak/no support

Table 6.1.: Summary of our comparison of compositional approaches, contemporary annotative ap-
proaches, and virtual separation of concerns.
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6.2. Perspective: Integrating compositional and annotative
approaches

Despite all improvements, compositional approaches and annotative approaches
(respectively our improvement as virtual separation of concerns) still have com-
plementary benefits. We cannot generally choose one over the other. At the same
time, there are many similarities; we can typically rewrite an annotation-based im-
plementation into an implementation with a compositional language (sometimes
straightforward, sometimes with some demanding code changes). In this section,
we provide a perspective on how we can integrate both compositional and anno-
tative mechanisms and explore challenges and opportunities of such integration.
Specifically, we discuss automated refactorings between both representations.

6.2.1. Spectrum between physical and virtual separation

We regard the discussed compositional approaches and (improved) annotative ap-
proaches as two ends of a spectrum between a pure physical separation (variability
by adding and composing modules, no annotations) and pure virtual separation
(variability by removing annotated code fragments, no composition mechanism).1

In between, we find implementations that use both composition and annotation
mechanisms, for example, annotations inside plug-ins, inside feature modules, or
inside aspects.

We visualize this spectrum and show some code examples in Figure 6.1. In this
example, in a pure virtual separation, we use only two annotations to conditionally
remove a method declaration and a statement depending on the feature selection.
In a pure physical separation, we use two feature modules implemented in Jak,
and we generate variants by including or excluding the second feature module
from composition. In one of many possible combinations in between, we again
use two feature modules, but one of them still contains annotations. Variants
are generated both by conditionally removing annotations and conditionally in-
cluding the second module, both depending on the feature selection. All three
implementations are equivalent; they expose the same behavior in all variants.

Technically, integrating physical and virtual separation is straightforward: We
simply use annotations inside modules. Since annotations are language indepen-
dent – or can be extended toward new languages quickly – we can annotate class

1The discussion of variability mechanisms between physical separation and virtual separation is
independent of our discussion of different degrees of modularity in Section 6.1.1. In approaches
with a high degree of modularity, a module (e.g., an aspect) either (a) can be located in a feature
module that is included or not included in the composition process depending on a feature
selection or (b) can be annotated and removed or not removed before compilation depending
on a feature selection. In both cases the implementation is modularized, but the variability
mechanism differs. In this section, we focus only on the variability mechanism.
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pure virtual
separation

pure physical
separation

only module composition
(plug-ins, aspects, class refinements)

only annotations composition and annotations 

1 class Stack {
2 void push(Object o) {
3 data[size++] = o;
4 #ifdef Logging
5 log("pushed");
6 #endif
7 }
8 #ifdef Logging
9 void log(String m) {}

10 #endif
11 }

Feature Base

1 class Stack {
2 void push(Object o) {
3 data[size++] = o;
4 #ifdef Logging
5 log("pushed");
6 #endif
7 }
8 }

Feature Logging

9 refines class Stack {
10 void log(String m) {}
11 }

Feature Base

1 class Stack {
2 void push(Object o) {
3 data[size++] = o;
4 }
5 }

Feature Logging

6 refines class Stack {
7 void push(Object o) {
8 Super.push(o);
9 log("pushed");

10 }
11 void log(String m) {}
12 }

Figure 6.1.: Spectrum between physical and virtual separation of concerns.

refinements (including method introductions and method refinements), aspects
(including pointcuts, advice, and inter-type declarations), or other novel composi-
tional language constructs without technical problems. During variant generation,
either we evaluate annotations first and afterward compose the resulting code or
we compose modules first and afterward evaluate annotations in the result.

Language extensions of C and C++, such as FeatureC++ [Apel et al., 2005] and
AspectC++ [Spinczyk et al., 2002], and framework implementations based on C
and C++ support a combination of composition and annotation out of the box.
For example, Rosenmüller et al. [2009] refactored the C version of Berkeley DB
into feature modules with FeatureC++; in their implementation they refactored
most, but not all, #ifdef directives of the original C code into class refinements.
As we observed in [Kästner et al., 2009c], the resulting implementation integrates
feature composition and annotations.

Finally, all discussed improvements of annotations can be adopted seamlessly
for implementations that integrate composition and annotations. Just as we en-
force a mapping from annotations to the feature model, we can enforce a mapping
from modules to the same feature model. Regarding views, we handle a module
just as a class or package that is entirely annotated; thus, a view on a feature in-
cludes all annotated code fragments and all modules associated with this feature
and hides all other modules. For consistency, we can even use the same visual
representation with background colors on modules. Disciplined annotations are
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again determined by the grammar of the host language, in this case a language
as Jak or AspectJ, and enforce that also additional language constructs as method
refinements or pointcuts can only be annotated in a way that cannot introduce
syntax errors. A product-line–aware type system for integrated product-line im-
plementations is the biggest technical challenge. In theory, a product-line–aware
type system can be build on top of the type system of the host language (e.g.,
Jak or AspectJ) as described in Section 5.3.5; however, different means to express
alternative features and the composition order pose additional challenges. Nev-
ertheless, existing product-line–aware type systems for compositional languages
provide a solution how to handle alternative features and ordering [Thaker et al.,
2007; Apel et al., 2010], incorporating them is mostly an engineering task.

6.2.2. Benefits

The question of what benefits we gain from such integration remains. We have al-
ready shown in Section 6.1 that compositional approaches and virtual separation
of concerns have distinct advantages, which we aim to combine. Nevertheless,
as soon as we integrate a single annotation in a compositional language, we may
loose the benefits of modularity – the distinct advantage of compositional ap-
proaches. So, what is there to gain for virtual separation of concerns? Or what is
there to gain for compositional approaches?

Benefits for virtual separation of concerns. As discussed in Section 6.1.1, we can
gain some advantages of modularity by partially modularizing code. For example,
we can test modularized parts in isolation and we can reuse modularized parts
(even in a black-box fashion). By integrating modern compositional languages
with annotations, we offer better modularization mechanisms and can presum-
able modularize a larger portion of the feature’s implementation than with a clas-
sic host language as C or Java. For some features, we may even switch entirely to a
compositional mechanism (pure physical separation), so that for those features we
gain all benefits of modularity (including separate compilation, parallel develop-
ment, black-box reuse etc.). By this integration, we do not necessarily make a big
step for virtual separation of concerns, but we provide developers with more expres-
siveness to partially modularize features when they want. We do not force developers
to use only compositional mechanisms, but we provide additional implementation
mechanisms a developer can select from.

Benefits for compositional approaches. From the perspective of compositional ap-
proaches, we see significant opportunities to lower the adoption barrier. Modu-
larity is a long-term investment for lower maintenance costs and easier extension
in later phases of the development cycle. However, it requires a high investment
in early phases: developers have to learn new language concepts and tools (for
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each artifact language), fine-grained extensions are more difficult to implement,
and solving the optional feature problem requires significant effort. To lower the
adoption barrier of compositional approaches, we envision a gradual transition from
annotations to compositional mechanisms [Kästner and Apel, 2008a].2 In early eval-
uation and adoption stages, developers can implement variability mostly with
annotations in an ad-hoc fashion. They can use the lightweight capabilities of an-
notative approaches without significant changes to their code base. In later stages,
when the concept of software product lines is established, developers can gradu-
ally make a transition toward compositional approaches. Still, it is not necessary
to refactor all annotated code fragments at once, but developers can start with
the obvious coarse-grained ones (separate entire classes or method introductions
as in Fig. 6.1) and introduce first explicit extension points. Still, they can use
annotations inside modules for difficult to express extensions: First, they can im-
plement coarse-grained extensions with compositional mechanisms; but instead
of workarounds, they can simply implement fine-grained extensions with anno-
tations. Second, instead of extracting additional modules for the optional feature
problem, they can again simply use annotations inside a module. Nevertheless, in
the long run, developers can still strive for modularity. They can gradually refac-
tor also remaining annotations into compositional mechanisms and slowly move
toward a pure physical separation without any annotations.

As a side effect, with a gradual transition, we delay the decision what and how
to modularize artifacts. Sullivan et al. [2001] argue that a delayed modulariza-
tion is beneficial, because developers gain more insight into the environment and
the future of the project during development. Thus, later modularity decisions
can respond to changes (new features, different scope, etc.) and even influence
changes instead of anticipating them upfront. This delayed modularization makes
compositional approaches more effective [Sullivan et al., 2001].

Since a gradual refactoring of existing code is tedious and difficult to achieve in
practice, tool support is necessary to ease the transition. In the next section, we
propose (and have partially implemented) automated refactorings that can automat-
ically replace some or even all annotations by composition mechanism [Kästner
et al., 2009a].

With automated refactorings, another benefit of integration for compositional
approaches arises: We can use annotations as a means to transform legacy appli-
cations into modular product-line implementations with lower effort. It is typically
much faster to add an annotation (in CIDE, a developer selects a code fragment
and assigns a feature from the Editor’s context menu) than to manually restruc-
ture the code. For example, our manual refactoring of Berkeley DB required about

2The idea to adopt product-line technology slowly and in a stepwise manner was originally con-
tributed by Olaf Spinczyk in a discussion at the Dagstuhl seminar “Software Engineering for
Tailor-Made Data Management” [Apel et al., 2008a].
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one month, annotating Berkeley DB with CIDE took about three days [Kästner
et al., 2008a]. We argue that, in many cases, it might be more efficient to annotate
a code fragment and afterward perform an automated refactoring. We present
some examples, in which we successfully exploited this automation later.

Benefits for theories, models and tools. Integrating both compositional mecha-
nisms and annotations into the same language or environment provides oppor-
tunities for theories, models, and tools that use both approaches uniformly, in
contrast to the current practice of searching for solutions for each representation
separately. For example, we can integrate the previously independent research on
product-line–aware type systems for composition and annotations.

Given automated refactorings between both representations, we can use tools
developed for one representation for the other representation as well. For ex-
ample, we can refactor a compositional implementation into an annotation-based
representation and subsequently use our type checking mechanisms or views on
this representation. If we even achieve reversible refactorings in both directions
(round-trip engineering), we can always refactor a product-line implementation
into the representation that is most suitable for the task at hand. We can eventu-
ally leverage respective strengths of both representations.

6.2.3. Automated refactoring

For some annotations, refactorings into equivalent compositional implementations
are straightforward and can be easily automated. For example, with contempo-
rary compositional languages such as Jak or AspectJ, we can move an annotated
method or field into an according class refinement or aspect (as inter-type declara-
tion). However, transformations become more difficult, once we reach limitations
of compositional approaches regarding granularity and the optional feature prob-
lem and once conceptual differences, such as composition order, become relevant.

Automated refactorings between physical and virtual separation are on the
boundary of the scope of this thesis; their main purposes are easing the adop-
tion of compositional approaches and building uniform theories, models and tools
for product-line implementation, not primarily improving annotative approaches.
Consequently, we give only an informal outline by means of examples and illustrate
some of the challenges and their solutions. For brevity, we exclude also the details
of reverse refactorings from physical separation to virtual separation. Instead, we
refer interested readers to [Kästner et al., 2009a], in which we formally discussed
refactorings between disciplined annotations and Jak-style class refinements (in
both directions) for a language that supports both annotations and class refine-
ments. In this work, all refactorings perform small transformations within the
spectrum between physical and virtual separation. We subsequently prove that
our refactorings – within this language – are complete: Every program with any
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combination of annotations and refinements (including fine-grained and nested
annotations and considering the composition order) can always be refactored into
a purely physical separation and a purely virtual separation.

Nevertheless, we still need to introduce some additional terminology for the
discussed compositional approach. For describing our refactorings, we use the
language Jak. As explained in Section 3.1, Jak can introduce classes and refine-
ments of existing classes; class refinements can introduce new methods and fields
and extend existing methods with method refinements. Classes and class refine-
ments are located in a feature module – in the simplest case a directory – that is
mapped to the feature model with a feature expression (propositional formula over
the set of features, like annotations). The module is included in the composition
process if and only if the feature expression evaluates to true for a given feature
selection. Thus, different feature selections lead to different compositions. Feature
modules are composed in a specific order. The order is relevant when two method
refinements extend the same method. We assume that there is a fixed composi-
tion order; a feature selection specifies only which modules are composed, not the
composition order. We furthermore assume a feature module Base that is included
in all variants and always composed first.

Refactoring by example

For most coarse-grained annotations, refactorings from annotations to class refine-
ments are straightforward. If an entire class in annotated, a refactoring can drop
the annotation and move the class into a feature module associated with the same
feature expression (if such feature module does not already exist, the refactoring
creates it). If an entire method or field is annotated, a refactoring can move it into
an according class refinement. Refactorings can be executed one step at a time or
in a batch process. In Figure 6.2, we illustrate refactorings of an annotated method
and an annotated class by means of a simple stack example similar to the one in
Figure 3.1 (p. 20): Before the refactoring all code is located in feature module Base

and code of the feature Locking is annotated; after the refactoring, class Lock and
method lock are moved to a newly created feature module.

Code in nested annotations is included only when all annotations evaluate to
true. We can move elements in nested annotations into feature modules with a
feature expression that conjoins all annotations as shown in the example in Fig-
ure 6.3. As shown in the same example, this scales also for more complex an-
notations: Method log is already annotated to be included if feature Logging or
feature Tracing is included, this is propagated to an according feature module.
When many nested annotations occur in a program, the refactoring will produce
many modules. Many modules may decrease readability, but, as discussed in Sec-
tion 3.1.5, this is a problem of compositional approaches in general, not one of our
refactorings.
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Feature Base

1 class Stack {
2 void push(Object o) { /*...*/ }
3 #ifdef Locking
4 Lock lock(Object o) { /*...*/ }
5 #endif
6 }
7 #ifdef Locking
8 class Lock { /*...*/ }
9 #endif

(a) Virtual separation.

Feature Base

1 class Stack {
2 void push(Object o) { /*...*/ }
3 }

Feature Locking

4 refines class Stack {
5 Lock lock(Object o) { /*...*/ }
6 }
7 class Lock { /*...*/ }

(b) Refactored physical separation.

Figure 6.2.: Refactoring annotated classes and methods.

Feature Base

1 #ifdef Stack
2 class Stack {
3 void push(Object o) { /*...*/ }
4 #ifdef Locking
5 Lock lock(Object o) { /*...*/ }
6 #endif
7 #ifdef Logging ∨ Tracing
8 void log(String msg) { /*...*/ }
9 #endif

10 }
11 #endif

(a) Virtual separation.

Feature Stack

1 class Stack {
2 void push(Object o) { /*...*/ }
3 }

Feature Stack ∧ Locking

4 refines class Stack {
5 Lock lock(Object o) { /*...*/ }
6 }

Feature Stack ∧ (Logging ∨ Tracing)
7 refines class Stack {
8 void log(String msg) { /*...*/ }
9 }

(b) Refactored physical separation.

Figure 6.3.: Refactoring nested annotations.

Annotations at finer granularity than members can be challenging. It seems
that extracting annotated statements inside a method into a method refinement
is straightforward, however, there are several conditions [Kästner et al., 2009a]:
(1) the annotated statements must occur at the beginning or end of a method (or
both), (2) annotated statements at the end of the method must not access vari-
ables modified by the inner statements (except the return value), (3) if the target
method is already extended by method refinements, the target feature module
must be composed before all feature modules that already contain method refine-
ments of the same method. We illustrate these conditions with three examples in
Figure 6.4. We start with a version that is already partially implemented with class
refinements. First, the annotated statement in method pop can be refactored into a
method refinement in feature module Logging, because it is the first statement in
the method. Second, we cannot refactor the first annotated statement in method
push, because it is not the first statement in the method; we cannot refactor the
second annotated statement, because it refers to the local variable l defined within
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the method. Both remain annotated, we refactor them later. Third, we can extract
the lock and unlock statements in method clear only if feature module Locking is
composed before Logging, because Logging already refines that method. If Lock-
ing was composed after Logging, we could not apply the refactoring, because it
would alter the behavior and execute the log statement after the lock statement.

Feature Base

1 class Stack {
2 Object pop() {
3 #ifdef Logging
4 log("pop");
5 #endif
6 return elementData[--size];
7 }
8
9 void push(Object o) {

10 if (o == null) return;
11 #ifdef LOCKING
12 Lock l = lock(o);
13 #endif
14 elementData[size++] = o;
15 #ifdef LOCKING
16 l.unlock();
17 #endif
18 }
19
20 void clear() {
21 #ifdef LOCKING
22 Lock l = lock();
23 #endif
24 size = 0;
25 #ifdef LOCKING
26 l.unlock();
27 #endif
28 }
29 }

30 refines class Stack {
31 void clear() {
32 log("clear");
33 Super.pop();
34 }
35 }

(a) Initial version with annotations and re-
finement.

Feature Base

1 class Stack {
2 Object pop() {
3 return elementData[--size];
4 }
5 void push(Object o) {
6 if (o == null) return;
7 #ifdef LOCKING
8 Lock l = lock(o);
9 #endif

10 elementData[size++] = o;
11 #ifdef LOCKING
12 l.unlock();
13 #endif
14 }
15 void clear() {
16 size = 0
17 }
18 }

Feature Locking

19 refines class Stack {
20 void clear() {
21 Lock l = lock();
22 Super.clear();
23 l.unlock();
24 }
25 }

Feature Logging

26 refines class Stack {
27 Object pop() {
28 log("pop");
29 return Super.pop();
30 }
31 void clear() {
32 log("clear");
33 Super.pop();
34 }
35 }

(b) Refactored version.

Figure 6.4.: Refactoring annotated statements into method refinements.

To refactor annotated statements for which method refinements do not provide
a solution (as the statements in method push of Figure 6.4), we need to apply the
workarounds known for fine-grained extensions in compositional approaches (see
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Sec. 3.1.4). Typically, this means to prepare the code and extract the annotated
statements into one or more hook methods (with a common extract-method refac-
toring [Fowler, 1999, pp. 110ff.]). After such preparation, which can be automated
as well, the annotated statements are the only statements in the hook method, so
we can extract them with a method refinement (i.e., all three conditions are ful-
filled). We show a simple example in Figure 6.5. First, we extract a hook method
(Fig. 6.5b). Second, we extract a method refinement as before (Fig. 6.5c). In the
presence of local variables as in Figure 6.4, return statements, or wrappers (cf.
Sec. 5.2.4), more complex preparations can be necessary. We have already shown
a rather complex implementation of lock and unlock in Figure 6.4 with two nested
hook methods in Section 3.1.4 (Fig. 3.3, p. 25). As alternative solution, also with
plenty boilerplate code, we can prepare the source code by refactoring a method
into a method object [see Fowler, 1999, pp. 135ff.], which, as a useful side effect,
replaces local variables by fields.

Feature Base

1 class Stack {
2 void push(Object o) {
3 if (o == null)
4 return;
5 #ifdef Logging
6 log("push");
7 #endif
8 data[size++] = o;
9 }

10 }

(a) Virtual separation.

Feature Base

1 class Stack {
2 void push(Object o) {
3 if (o == null)
4 return;
5 hook();
6 data[size++] = o;
7 }
8 void hook() {
9 #ifdef Logging

10 log("push");
11 #endif
12 }
13 }

(b) Prepared virtual separa-
tion with hook method.

Feature Base

1 class Stack {
2 void push(Object o) {
3 if (o == null)
4 return;
5 hook();
6 data[size++] = o;
7 }
8 void hook() { }
9 }

Feature Logging

10 refines class Stack {
11 void hook() {
12 log("push");
13 Super.hook();
14 }
15 }

(c) Physical separation.

Figure 6.5.: Refactoring an annotated statement in the middle of a method.

Similarly, other fine-grained annotations on parameters, expressions, and oth-
ers can be refactored with a certain effort. We simply have to automate the
well-known workarounds. We refrain from further examples. To draw a line,
which refactorings to implement, disciplined annotations provide a useful guide-
line. When we already restrict our tool chain to disciplined annotations, we do not
have to deal with all kinds of annotations (for some of which it is already difficult
to find a refactoring manually). To ease implementation of automated refactor-
ings, we might even restrict disciplined annotations further (e.g., only classes,
members, and statements, but no parameters may be annotated). As a fall-back
solution, it is always possible to expand even undisciplined and fine-grained an-
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notations to more coarse-grained disciplined annotations at the price of some code
replication [Garrido and Johnson, 2005; Vittek, 2003] (see also Sec. 5.4).

All in all, we can refactor all virtually separated implementations into a pure
physical separation. However, nested annotations result in many refactored mod-
ules and fine-grained annotations in boilerplate code. We again reach the limita-
tions of compositional approaches. In some cases, the generated code will prob-
ably look worse than manually implemented workarounds. It is questionable,
whether modular reasoning on modules generated from fine-grained annotations
is efficient. We found cases, when it was significantly easier to understand the
code in a virtual separation. Thus, we emphasize that automated refactorings
do not solve the limitations of compositional approaches. They can decrease the
effort to implement necessary workarounds, but developers that plan to refactor
annotations later should strive for coarse-grained annotations with little nesting
in the first place. This requires more planning and less ad-hoc implementation.
Automated refactoring can ease the adoption of compositional approaches and
reduce the effort to decompose legacy applications into composable modules, but
it is no silver bullet to achieve modularity. We argue that, in many cases, virtual
separation of concern with emulated modularity can be a more efficient form of
implementation.

Implementation and experience

An implementation of an environment that integrates physical and virtual sep-
aration and that supports partial refactorings within the spectrum between both
representations is outside the scope of this thesis. Nevertheless, we have exem-
plarily integrated automated refactorings to a large degree as export and import
functionality in our prototype CIDE [Kästner et al., 2007b, 2009a]. Again, we give
only a brief overview of the export functionality.

CIDE can export annotated Java code (with disciplined annotations on classes,
members, and statements) in a single step into composable modules implemented
with Jak [Batory et al., 2004], FeatureHouse [Apel et al., 2009b], or AspectJ [Kicza-
les et al., 2001]. During the export, small refactorings (moving methods into class
refinements, extracting method refinements, inserting hook methods, etc.) are
executed as described above on an internal intermediate representation, which
supports both annotations and refinements. Currently, this intermediate represen-
tation is not accessible to the developer. The result of an export is a modular im-
plementation without annotations. The export process is very similar for all three
compositional languages, because the languages provide similar capabilities. For
all languages, we use similar refactorings and have to create similar boilerplate
code.

Although our implementation is prototypical (some annotations are not sup-
ported yet), we have already used it to export a series of annotation-based product-
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line implementations. Here, we selected two interesting cases.

• We exported the annotated version of Berkeley DB (see Appendix A.1) to cre-
ate a large scale case study for feature composition in FeatureHouse [Apel
et al., 2009b]. Few annotations were not supported by our refactoring im-
plementation (especially annotated parameters), so we prepared the code
slightly (e.g., using overloaded methods instead of annotated parame-
ters). Then, we exported the Java implementation with 2297 annotations
mapped to 38 features into feature modules with 338 class refinements and
954 method refinements. In this process, many additional feature modules
were created (99 feature modules for 38 features) due to nested annotations.
Furthermore, fine-grained annotations caused the generation of 858 hook
methods.

Similar to our experience with AspectJ, we regard the annotated implemen-
tation as much more understandable than the decomposed version with lots
of boilerplate code. Nevertheless, the refactoring demonstrates that we can
reach physically separated implementations even from an annotated code
base.

• Kuhlemann et al. [2009a,b] were searching for a case study for a refactoring
mechanism of Jak modules. They identified the domain of compression-
algorithm libraries as interesting in their context, but, since no such library
was developed with Jak, they would have to provide their own feature-
oriented implementation. Instead of writing a new library from scratch,
they decided to refactor an existing library. They used CIDE to annotate fea-
tures in three libraries and subsequently export the code into feature mod-
ules. Even though they subsequently restructured the result, they valued
the automated refactoring as an efficient way to create modules compared to
manual refactoring.

Our experience shows that automated refactorings are feasible. We can use the
mechanisms of our export also for small-step refactorings within the spectrum
between pure physical and pure virtual separation. Our experience confirms that
creating modules by refactoring annotations is indeed efficient, but also shows that
some planning and restructuring is necessary to generate understandable code.

Related work

Related to our automated refactorings, researchers in the field of aspect-oriented
software development have investigated transformations from #ifdef statements in
legacy C programs into aspects [Adams et al., 2009; Bruntink et al., 2007; Reynolds
et al., 2008]. The key concern, so far, is to understand existing preprocessor usage
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(e.g., classify typical patterns and determine how to extract them) in order to eval-
uate whether a manual or automated refactoring is feasible [Adams et al., 2009;
Bruntink et al., 2007; Reynolds et al., 2008]. The approaches eventually enforce
disciplined annotations for this analysis [Reynolds et al., 2008] or parse code par-
tially, while ignoring undisciplined annotations [Adams et al., 2009]. We are not
aware of any tool that actually automates refactorings. Also nested annotations
and composition order are usually not considered.

Aside from annotations, there is plenty of work on how to refactor legacy ap-
plications into a more modular form using aspects or feature models. Examples
are refactorings from object-oriented to aspect-oriented implementations [e.g., Ha-
nenberg et al., 2003; Monteiro and Fernandes, 2005; Cole and Borba, 2005; Binkley
et al., 2005] and from object-oriented to feature-oriented implementations [e.g., Liu
et al., 2006; Kästner et al., 2009d]. Some of these refactorings are automated with
tool support. Many of the mechanisms to refactor fine-grained extensions (e.g.,
code preparation with hook methods) are already described in these refactorings.

In [Kästner et al., 2009a], we even discuss refactorings in the opposite direction
from physical separation to a virtual separation. We argue that some features
with many fine-grained extensions are easier to understand when annotated in a
common implementation instead when implemented modularly with plenty boil-
erplate code. Reverse refactorings (implemented as import in CIDE) can be used
to create a virtual view on a physically separated implementation. Additionally,
it allows us to apply the discussed improvements (views, visual representation,
product-line–aware type checking) also for compositional approaches. With auto-
mated refactorings in both directions, we can switch between different represen-
tation, and always use the representation best suited for the task at hand. Reverse
refactoring become challenging when alternative features are involved, see [Käst-
ner et al., 2009a]. In literature, refactorings from physical to virtual separation are
rare, because most researchers regard a physical separation as the more desirable
form. The only exception we are aware of is the work of Kim et al. [2008], who
discuss differences regarding ordering and type-checking for virtual and physical
separation. In their work, they mention that they have mechanically transformed
Jak implementations into an annotated code base.

6.3. Summary

In this section, we wrapped up our efforts to improve annotative approaches. We
named our concept of an improved annotative approach with tool support virtual
separation of concerns. In a comparison to compositional approaches and contem-
porary annotative approaches, we showed how tool support can address almost
all problems of traditional preprocessors. Regarding traceability, language inte-
gration, and errors, annotations become comparable to compositional approaches.
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At the same time, we maintain all benefits of annotative approaches over composi-
tional approaches: Virtual separation of concerns can express fine-grained exten-
sions, provides a straightforward solution to the problem of multiple dimensional
decomposition and optional features, is uniform for many artifact languages, and
is easy to adopt.

The main obstacles of virtual separation of concerns are rooted in its lack of
modularity. Tool support cannot replace modularity but only emulate some of its
benefits. Fortunately, modularity is usually not dropped altogether in annotation-
based implementations. Instead, parts of a feature’s implementation can be mod-
ularized using the hierarchical decomposition mechanisms of the host language.
This way, we can test, compile, or reuse parts in isolation. Whether missing mod-
ularity is a significant limitation in practice depends on the context of the project
and on how annotations are used.

Finally, we outlined how we can integrate compositional approaches and im-
proved annotative approaches. An integration allows developers to use both
variability mechanisms depending on the task at hand. Automated refactorings
between both representations furthermore promise an easier adoption path and
lower development effort for compositional approaches. As a typical use case, we
expect that developers create modular product-line implementations by annotat-
ing feature code and subsequently refactoring these annotations it into composable
modules.
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Software product lines are more difficult to implement than single applications,
because they cover the requirements of an entire domain. From a product-line
implementation, we can generate an entire family of related variants. Thus, de-
velopers need adequate mechanisms to implement variability and generate vari-
ants from a common code base. We discussed different approaches to implement
software product lines, specifically compositional approaches and annotative ap-
proaches.

Research in software engineering and programming languages focuses mostly
on compositional approaches, which divide the implementation into modules and
generate variants by composing selected modules. Compositional approaches aim
at modularity and are a disciplined approach to product-line implementation; they
often provide direct language support for encapsulation and composition. Never-
theless, there are several (conceptual) difficulties, such as coarse granularity and
feature interactions, which can cause a high effort during implementation and
which raise the adoption barrier.

In contrast, annotative approaches provide a simple mechanism to implement
variability: Developers annotate code fragments to conditionally exclude them
from compilation with preprocessors or similar lightweight tools. Despite well-
known problems and strong criticism in literature – for ignoring modularity, be-
ing undisciplined and error prone, and obfuscating the source code – annotative
approaches are still broadly used in practice.

Contrary to the current research trend, we took sides with annotative ap-
proaches. We explored possible improvements of broadly used annotative ap-
proaches. We name the improved annotative approach with tool support virtual
separation of concerns, because – even though we do not physically decompose con-
cerns (or features) into modules – we provide some form of virtual separation
with tool support. Specifically, we contributed five improvements for annotative
approaches and implemented and evaluated them in our prototype CIDE:

1. We strictly integrate a feature model to avoid scattering of configuration knowl-
edge and to enforce discipline and consistency of annotations. A controlled
mapping between the feature model and annotations in the implementation
provides a sound base for reasoning about annotations for other improve-
ments. Among others, it prevents inconsistent annotations that refer to un-
defined features.
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2. Editable views emulate modularity. A view on a feature shows the feature’s
implementation, but hides all other code. Switching between views is an
easy operation and handling overlapping features (i.e., feature interactions or
multi-dimensional decomposition) becomes straightforward this way. Even
though a feature’s implementation is still scattered in the underlying code
base, views allow developers to quickly trace a feature from the feature
model to its implementation. Additionally, views on a variant provide even
a preview on the resulting variant for a feature selection.

3. Different visual enhancements of how annotations are represented are pos-
sible. We discussed to use colors instead of textual annotations to reduce
obfuscation and implemented a representation based on background colors
in CIDE. We demonstrated that colored annotations are quicker to recognize
and can speed up program comprehension for some tasks (up to 43 % in our
controlled experiment).

4. Disciplined annotations restrict annotations such that no syntax errors can oc-
cur during generation. Instead of mapping features to sequences of charac-
ters or tokens, disciplined annotations map features to elements of an arti-
fact’s underlying structure. This way, we prevent (often subtitle and hard
to find) syntax errors and, as a side effect, provide a useful basis for other
mechanisms and tools that reason about annotated code. Although disci-
plined annotations restrict expressiveness by prohibiting certain kinds of an-
notations, we demonstrated that they are still expressive enough in practice
and applicable uniformly to multiple languages.

5. On top of disciplined annotations, a product-line–aware type system detects
type errors in the entire product-line implementation in a single step, in-
stead of compiling each variant (of potentially millions) in isolation. Our
type system checks the implementation and its annotations against the fea-
ture model. Among others, it ensures that a method declaration cannot
be annotated and removed if it is still invoked from code fragment that is
not removed from the same variants. With our CFJ calculus, we formally
proved that all variants generated from a well-typed software product line
are well-typed (variant generation preserves typing). With our type system,
we enforce consistency of product-line implementations and detect errors
early during development.

With such tool support, virtual separation of concerns addresses most problems
for which preprocessors are criticized. For example, regarding traceability, lan-
guage integration, and error detection, we bring annotations to at least the same
quality level as compositional approaches. Additionally, annotative approaches
provide their own advantages, such as fine granularity, uniformity, and easy adop-
tion. Even though we cannot solve all problems – regarding modularity, we can
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only emulate modules and advise developers to partially modularize features –
we regard virtual separation of concerns as serious alternative to compositional
approaches.

Still, we do not intend to give a definite answer on how to implement software
product lines. In collaborations, we explore different implementation approaches
in parallel and look also at improvements of compositional approaches [e.g., Apel
et al., 2008c,e, 2009b, 2010; Kuhlemann et al., 2009b; Steimann et al., 2010]. As
shown in this thesis, we have excellent experiences with virtual separation of con-
cerns, and we believe that it can become a respectable approach for product-line
implementation. On the other hand, others may still argue against annotative
approaches and claim that modular implementation approaches may provide the
superior form of product-line implementation in the long term (e.g., with better
languages and tools, with variability support in mainstream programming lan-
guages, or with better training of developers). So far, beyond isolated case studies,
there is only little empirical evidence regarding evolution, maintainability, and
program comprehension, which could guide us in an objective decision. To al-
low a high level of flexibility, we even integrate compositional and annotative
approaches and provide a migration path with automated refactorings in case
developers eventually decide for a pure compositional approach.

With our work, we have shown that annotation-based implementations are not
a lost cause. Researchers have neglected them, but improvements are possible.
With adequate tool support, they become a serious alternative to compositional
approaches. We want to encourage researchers to overcome their prejudices (usu-
ally from experience with cpp) and to reconsider research on annotation-based
implementations. At the same time, we want to encourage practitioners that are
currently using preprocessors to demand improvements from tool builders. Since
tool support is necessary for product-line implementation anyway, it is well worth
investing also into tool support for new preprocessors and virtual separation of
concerns.

Future work. We have suggested many improvements of annotative approaches,
but still many remain to explore. Regarding visualization, we barely scratched
the surface of possibilities of program visualization approaches. Our approach to
background colors is quite naive, and it remains to explore how annotations (or
features in general) are best represented to the user. We recently started a col-
laboration in this direction. Similarly, views should be explored in more detail.
It would be interesting to evaluate how developers use views, how much con-
text is necessary, and whether we can further support them in expanding views
or switching between views. For example, can we exploit the feature model’s
structure and provide drill up/down functionality between views on parent and
child features? Can we separate features into dimensions and represent software
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product lines as multi-dimensional cubes with slice and dice operations?

Work on views and visualizations always aims at improving program compre-
hension. Unfortunately, rather little is known about the program comprehension
process, and because it is an internal cognitive process we have to measure it
empirically. Even the broadly accepted benefit of modularity is derived mostly
from anecdotal evidence and hardly based on empirical result. A major research
endeavor (which would require an entire series of experiments) would be to em-
pirically assess the impact of compositional or annotative approaches on program
comprehension. For example, can we measure the impact of modularity on pro-
gram comprehension and can we compare it with the impact of views? More case
studies of software product lines that others can analyze as well are needed to this
end.

Furthermore, disciplined annotations and a product-line–aware type system
open interesting opportunities for future work. A major implementation challenge
– that we currently pursue with an industrial partner – is to provide a product-
line–aware type system for C that is backward compatible with the C preprocessor
and that can be used on the vast amount of existing C implementations. The main
challenge is to deal with the peculiarities of cpp, so we presumably will have to in-
tegrate the automatic expansion techniques of Garrido [2005], symbolic execution
techniques as used by Hu et al. [2000] and Latendresse [2004], and attribute fea-
ture models and constraint-satisfaction-problem solver as discussed by Czarnecki
et al. [2002] and Benavides et al. [2005]. In another line of research, we automat-
ically propose fixes to type errors, for example, we might recommend annotating
another method invocation. Taken this idea further, we can use type errors to de-
cide which code fragments belong to a feature, because the type system provides
some indication when a feature is consistent or complete. We currently explore
this idea as feature mining (compared to work on feature location [e.g., Eisenbarth
et al., 2003; Poshyvanyk et al., 2007], we take the feature model, annotations, and
type information into account).

Finally, there are many challenges from integrating compositional approaches
and annotative approaches. In future work, we want to develop an environment
that supports both representations and small-step refactorings between them. We
will evaluate the gradual transition from annotations to compositional mecha-
nisms in an exploratory study. An interesting challenge is to make all refactor-
ings reversible (such that refactoring a code fragment forth and back yields the
same source code) to enable true round-trip engineering. We envision using the
same technique for an on-demand remodularization of features. Except for the
described refactorings, we mostly worked on compositional approaches and an-
notative approaches in isolation. In the future, we aim at integrating and unifying
the developed theories, models, and tools. For example, we intend to develop
an integrated product-line–aware type system that supports both annotations and
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refinements (and can prove that refactorings between them preserve the behavior
of all variants).
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A.1. Case studies developed in CIDE

In the context of this research project, we conducted a series of case studies to
explore different concepts. Among others, we explored whether integrating a fea-
ture model is feasible (Sec. 4.1), how features and annotations are distributed (Sec.
3.1.7, 4.3.2 and 5.3.6), whether disciplined annotations restrict expressiveness and
whether they are applicable uniformly to multiple languages (Sec. 5.2.6), what
kind of performance we can expect from type checking a product line (Sec. 5.3.6),
and whether automated refactorings are feasible in practice (Sec. 6.2.3). Since our
case studies crosscut different topics – we analyzed case studies such as Berke-
ley DB in different contexts – so far, we provided only a brief description in the
corresponding sections. Instead, we give a more detailed description in this ap-
pendix. We proceed in alphabetical order. Additionally, we make the source code
of all case studies in CIDE (except the industrial product line for Water Boilers)
available on CIDE’s website http://fosd.de/cide.

AHEAD Tool Suite

Version: February 2008
Developed by: Don Batory et al. (University of Texas at Austin)
Developed as: single script/document
Previous decomp. by: Salvador Trujillo (University of the Basque Country)
URL: http://www.cs.utexas.edu/users/schwartz/

CIDE version: Annotated artifacts based on prev. decomposition
Annotated by: Christian Kästner
Language: ANT (XML), HTML
Size: 17 000 lines of ANT build scripts (54 files)

28 000 lines of HTML documentation (85 files)
Features: 14 (various tools: xak, guidsl, drc, ...)

The AHEAD Tool Suite has been bootstrapped and is implemented in a feature-
oriented way [Batory et al., 2004]. Its build scripts and documentation – on which
we focused in this case study – were subsequently decomposed into feature mod-
ules by Trujillo et al. [2006]. We annotated the original (not decomposed) build
scripts and documentation equivalently to Trujillo’s decomposition. Our main
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focus was to evaluate disciplined annotations for noncode artifacts (see Sec. 5.2.6).

Arithmetic Expression Evaluator

Developed by: Armin Größlinger (University of Passau)
Developed as: single application

CIDE version: Identified features and annotated existing artifacts
Annotated by: Malte Rosenthal (University of Passau)
Language: Haskell
Size: 460 lines of Haskell code (2 files)
Features: 25 (variables, various operators and lamda abstractions, ...)

With the Arithmetic Expression Evaluator, we wanted to explore (1) suitability for
Haskell code and (2) how far we can go with fine-grained annotations in CIDE.
Armin Größlinger developed an arithmetic-expression evaluation for us, which
Malte Rosenthal subsequently annotated at very fine granularity. Within only 460
lines of Haskell code, 25 different features were annotated. We later decomposed
some of these features physically as well to compare granularity and expressive-
ness, for details see [Apel et al., 2009a].

Berkeley DB Java Edition

Version: 2.1.30 (January 25, 2006)
Developed by: Sleepycat Software, Inc.
Developed as: single application (with some runtime variability)
URL: www.oracle.com/database/berkeley-db

CIDE version: Annotated artifacts based on prev. decomposition
Annotated by: Christian Kästner
Languages: Java, HTML
Size: 84 000 lines of Java code (315 files)

120 000 lines of HTML documentation (390 files)
Features: 38–42 (transactions, statistics, logging, db operations, ...)

Berkeley DB Java Edition is an open source database engine, entirely written in Java.
It can be embedded as a library into applications. It provides tables, in which
key-value pairs can be stored. Although, it does not support ad-hoc queries (such
as SQL), it scales to large amount of data, provides sophisticated multi-threading
support, indexes, transactions, and other functionality.

Berkeley DB was originally not developed as a product line, but we have
subsequently decomposed it to evaluate product-line implementation mecha-
nisms [Kästner, 2007; Kästner et al., 2007a, 2008a, 2009a,b,c; Apel et al., 2009b;
Steimann et al., 2010]. It is our largest and most used case study. There are four
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decomposed versions of Berkeley DB Java Edition: AspectJ, CIDE, FeatureHouse,
and IIIA.

• First, we decomposed Berkeley DB into 38 features using AspectJ [Kästner,
2007; Kästner et al., 2007a]. Therefore, we identified the code of each feature
and manually refactored it into one or more aspects. The decomposition was
performed in about one month. As discussed in Section 3.1, we used the
AspectJ decomposition of Berkeley DB to evaluate (1) the shape of features
in database systems [Kästner, 2007; Kästner et al., 2007a], (2) the impact of
the optional feature problem [Kästner, 2007; Kästner et al., 2009c], (3) the
influence of the feature order [Kästner, 2007; Apel et al., 2008b], and (4)
the suitability of AspectJ (and compositional approaches in general) as an
implementation mechanism [Kästner, 2007; Kästner et al., 2007a, 2008a].

• Based on the previous decomposition with AspectJ, we annotated Berkeley
DB in CIDE. We added annotations for the same 38 features and 4 additional
features. In addition to the source code, we annotated the HTML docu-
mentation. Since the code base and features were already known, and since
annotating is faster than manual refactoring, this second decomposition was
performed in about three days.

With this case study, we evaluated (1) disciplined annotations (see Sec-
tion 5.2), (2) the respective advantages and disadvantages of compositional
and annotative implementations (see Chapters 3 and 6), (3) the performance
of our product-line–aware type system (see Section 5.3), and (4) refactorings
between compositional and annotative implementations (see Section 6.2).

• Based on the annotated implementation, we generated a feature-oriented de-
composition of Berkeley to be composed with FeatureHouse by exporting our
annotated version with CIDE. The resulting implementation was used to
evaluate the FeatureHouse composition tool [Apel et al., 2009b] and the au-
tomated refactorings in CIDE [Kästner et al., 2009a] (see Section 6.2).

• In cooperation with Steimann et al. [2010], we rewrote some aspects of the
AspectJ-implementation of Berkeley DB with new language mechanisms of
the IIIA compiler. This implementation strives for strict modularity and
introduces join-point interfaces to encapsulate aspect behavior. As an im-
proved compositional approach, it is outside the scope of this thesis.
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FAME-DBMS

Developed by: FAME-DBMS team
Developed as: software product line (compositional approach)

CIDE version: Own implementation based on existing compositional impl.
Annotated by: Syed Saif ur Rahman (University of Magdeburg)
Language: C++
Size: 5 000 lines of C++ code (15 files)
Features: 14 (inmemory vs. persistent, B-tree, queue, ...)

FAME-DBMS is a prototype of an embedded data management system developed
from scratch as software product line. It was originally developed with the compo-
sitional language FeatureC++. One of the developers then created an annotation-
based implementation with CIDE that demonstrates the feasibility of disciplined
annotations for C++. In a different context, we compared both implementations
with regard to the optional feature problem in [Kästner et al., 2009c].

Functional Graph Library

Version: June 2006
Developed by: Martin Erwig (Oregon State University)
Developed as: single library
URL: http://web.engr.oregonstate.edu/~erwig/fgl/haskell

CIDE version: Identified features and annotated existing artifacts
Annotated by: Malte Rosenthal (University of Passau)
Language: Haskell
Size: 2600 lines of Haskell code (32 files)
Features: 18 (static vs. dynamic graph, labels, 13 graph algorithms, ...)

The Functional Graph Library is a library of graph data structures and algorithms,
but, it contrast to the Graph Product Line, it has not been developed as product
line. Malte Rosenthal introduced variability by annotating the legacy code for
18 features. In parallel, the Functional Graph Library was also physically decom-
posed into feature modules with FeatureHouse [Apel et al., 2009a]. With this case
study, we primarily explored suitability and granularity of annotations in Haskell
code.
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Graph Product Line

Version: gg4 (last change Feb. 2006)
Developed by: Roberto Lopez Herrejon (University of Texas at Austin)
Developed as: software product line (compositional approach)

CIDE version: Own implementation based on existing compositional impl.
Annotated by: Christian Kästner
Language: Jak, HTML
Size: 1350 lines of Java code (16 files)

200 lines of HTML documentation (1 file)
Features: 18 (directed/undirected, weighted/unweighted, 9 alg., ...)

Lopez-Herrejon and Batory [2001] developed the Graph Product Line as a bench-
mark for product line technology. Similar to the Functional Graph Library, a user
can select between weighted and unweighted and between directed and undi-
rected edges, between three different underlying data structures (vertex lists,
neighbor lists, edge objects), and several algorithms such as depth first search,
cycle detection, or Kruskal’s algorithm. The Graph Product Line is interesting as
a case study, because it contains many alternative features and nontrivial depen-
dencies (e.g., Kruskal’s algorithm requires undirected and weighted edges) and
because the domain is well-known.

The Graph Product Line was developed from scratch with the feature-oriented
language Jak (27 feature modules). We manually wrote a Java implementation
that merges all features in a single code base and annotated that implementa-
tion. Additionally, we annotated the HTML documentation, so each variant has a
documentation that describes only available features.

Lampiro

Version: 9.6.0 (Subversion revision 30)
Developed by: Bluendo s.r.l.
Developed as: software product line (annotative approach)
URL: http://lampiro.bluendo.com/

CIDE version: Annotated based on existing textual annotations
Annotated by: Christian Kästner
Languages: Java ME
Size: 45 000 lines of Java code (148 files)
Features: 11 (screensaver, compression, encryption, profiling, ...)

Lampiro is an open source project to implement an XMPP instant messenger for
mobile phones on the Java ME platform. It was developed with annotations for
variability (using the preprocessor Antenna) from scratch. Although variability
was not explicitly documented, we consider Lampiro as software product line.
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We only transformed existing annotations of the textual preprocessor Antenna
into disciplined annotations in CIDE. It is the largest of our product lines that
were developed with annotations from scratch. We use this case study to evaluate
the shape of annotations (Sec. 4.3.2 and 5.2.6) and type correctness (Sec. 5.3.6) in
software product lines.

MobileMedia

Version: July 9th, 2009, releases 5, 6 and 8
Developed by: Figueiredo et al. (Lancaster University)
Developed as: software product line (annotative approach)
URL: http://mobilemedia.cvs.sf.net

CIDE version: Annotated based on existing textual annotations
Annotated by: Christian Kästner
Languages: Java ME
Size: 4 000–5 700 lines of Java code (38–50 files)
Features: 6–14 (support for photo, music, video, SMS, ...)

MobileMedia was developed at Lancaster University from scratch as software
product line. To implement variability, they used the preprocessor Antenna. We
directly transferred these textual annotations to disciplined annotations in CIDE.
For their research, the authors kept a history of several development steps, with an
increasing number of features over time. In different contexts, we use releases 5,
release 6, and the latest release 8. We used release 5 with six features and 4000 lines
of code in our experiment in Section 4.4, because it is sufficiently complex, but not
too large to be understood in a 2-hour experiment. We use the more complex im-
plementations of release 6 and 8 (with 9 and 14 features respectively) to evaluate
the shape of annotations (Sec. 4.3.2 and 5.2.6) and type checking (Sec. 5.3.6) in
product lines that were developed from scratch with annotations.

Mobile RSS Reader

Version: Subversion revision 1596 (May 21st, 2009)
Developed by: Tommi Laukkanen
Developed as: software product line (annotative approach)
URL: http://code.google.com/p/mobile-rss-reader/

CIDE version: Annotated based on existing textual annotations
Annotated by: Christian Kästner
Languages: Java ME
Size: 20 000 lines of Java code (54 files)
Features: 14 (internationalization, logging, Java ME profiles, ...)
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Mobile RSS Reader is an open source project to implement a portable RSS reader
for mobile phones on the Java ME platform. It was developed with annotations
for variability (using the preprocessor Antenna) from scratch. Although variabil-
ity was not explicitly documented, we consider Mobile RSS Reader as software
product line. We only transformed existing annotations of the textual preproces-
sor Antenna into disciplined annotations in CIDE. As Lampiro and MobileMedia,
we use this case study to evaluate the shape of annotations (Sec. 4.3.2 and 5.2.6)
and type correctness (Sec. 5.3.6) in software product lines, developed from scratch
with annotations.

Prevayler

Version: 2.4
Developed by: Klaus Wuestefeld et al.
Developed as: single library
Previous decomp. by: Irum Godil and others
URL: http://www.prevayler.org/

CIDE version: Annotated artifacts based on prev. decomposition
Annotated by: Virgilio Borges de Oliveira (PUC Minas)
Languages: Java
Size: 8 000 lines of Java code (141 files)
Features: 5 (replication, gzip, censor, monitor, snapshot)

Prevayler is an open-source in-memory database to be embedded in Java appli-
cations. It was not developed as software product line, but researchers have
identified variability and used it frequently as case study for compositional ap-
proaches [e.g., Godil and Jacobsen, 2005; Liu et al., 2006]. The CIDE version
of Prevayler was annotated by Virgilio Borges de Oliveira as part of a research
project, independent of our work.

Pynche

Version: 1.3
Developed by: Barry A. Warsaw
Developed as: single application
URL: http://www.python.org/

CIDE version: Identified features and annotated existing artifacts
Annotated by: Alexander Dreiling (University of Magdeburg)
Language: Python
Size: 2400 lines of Python code (13 files)
Features: 12 (different windows, viewers, and colors)
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Pynche (short for “PYthonically Natural Color and Hue Editor”) is a color editor
written in Python, which is included in the Python distribution. Pynche was
not developed as a software product line, but subsequently decomposed by into
12 features to demonstrate the feasibility of developing software product lines
written in Python with CIDE (see Section 5.2.6).

SQL Parser

Developed by: Sagar Sunkle (University of Magdeburg)
Developed as: software product line (compositional approach)

CIDE version: Annotated artifacts based on prev. decomposition
Annotated by: Christian Kästner
Language: ANTLR
Size: 60 lines of ANTLR grammar (1 file)
Features: 4 (single vs. multi column, set quantifiers, where clause)

As part of a research project on tailor-made data management, Sunkle et al. [2008]
developed a decomposed SQL grammar, so that, for different feature selections,
they could generate different grammars and parsers. In this case study, we tested
feasibility of disciplined annotations for grammar specification languages and an-
notated four features of an SQL grammar excerpt from this project.

Water Boiler

Developed as: multiple programs (clone and own)

CIDE version: Annotated based on existing textual annotations
Annotated by: Salvador Trujillo (IKERLAN Research Center)
Language: C
Size: 10 000 lines of C code
Features: 14 (analog, digital, 24 KW, 30 KW, propane, butane, ...)

A customer of IKERLAN developed a control software for a water boiler system.
To cope with variability (different hardware), they copied and modified the source
code for each system. At IKERLAN, researchers identified features and refactored
the existing systems into a single software product line that can generate all pre-
vious variants from a common code base. In this project, they originally used the
textual preprocessor of Biglever’s Gears tool suite [Krueger, 2002]. Subsequently,
they transformed this implementation toward disciplined annotations in CIDE.
For disciplined annotations, only few minor source code changes were necessary.
Our focus of this case study was to apply CIDE to a realistic product line im-
plemented in C. To protect the intellectual properties of our partners, we cannot
publish the source code of this product line.
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A.2. Forty C programs

We analyzed variability in 40 C programs to determine how many annotations are
visible on one page of source code (Sec. 4.3.2) and to determine the percentage
of disciplined annotations in practice (Sec. 5.2.6). Liebig et al. [2010] selected the
programs for an earlier study on the C preprocessor. They selected well known
open source programs from different domains. For completeness, we give some
additional information about these programs in Table A.1: domain, web address,
analyzed version, lines of code, percentage of annotated lines of code, number of
annotations, and number of features (distinct #ifdef flags).
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Name Version Domain LOC ALOC ANN FE

apache∗ 2.2.11 web server 214 250 21 % 4 087 1 158
berkeley db∗ 4.7.25 database system 187 298 15 % 2 907 1 537
cherookee∗ 0.99.11 web server 51 719 15 % 805 328
clamav∗ 0.94.2 antivirus program 75 210 14 % 1 361 285
dia∗ 0.96.1 diagramming softw. 128 850 4 % 614 91
emacs∗ 22.3 text editor 237 003 32 % 6 072 1 373
freebsd∗ 7.1 operating system 5 923 123 14 % 85 431 16 167
gcc∗ 4.3.3 compiler framework 1 615 639 18 % 16 497 5 063
ghostscript∗ 8.62.0 postscript interpreter 441 411 5 % 3 415 816
gimp∗ 2.6.4 graphics editor 587 277 3 % 1 836 392
glibc∗ 2.9 programming library 747 047 12 % 12 981 3 012
gnumeric∗ 1.9.5 spreadsheed appl. 254 578 5 % 1 548 291
gnuplot∗ 4.2.5 plotting tool 75 978 27 % 2 054 434
irssi∗ 0.8.13 IRC client 49 661 3 % 151 55
libxml2∗ 2.7.3 XML library 210 762 66 % 7 886 2 047
lighttpd∗ 1.4.22 web server 38 925 22 % 723 167
linux∗ 2.6.28.7 operating system 5 973 183 11 % 46 757 9 102
lynx∗ 2.8.6 web server 117 692 37 % 3 765 806
minix∗ 3.1.1 operating system 64 035 17 % 1 156 356
mplayer∗ 1.0rc2 media player 605 573 19 % 6 321 1 236
mpsolve† 2.2 mathematical softw. 10 170 3 % 30 13
openldap∗ 2.4.16 LDAP directory 245 907 27 % 2 744 708
opensolaris‡ dev¶ operating system 8 615 530 19 % 82 728 10 901
openvpn∗ 2.0.9 security application 38 363 61 % 1 098 276
parrot∗ 0.9.1 virtual machine 98 227 27 % 1 597 539
php∗ 5.2.8 program interpreter 573 724 34 % 8 396 2 426
pidgin∗ 2.4.0 instant messenger 269 178 15 % 2 162 576
postgresql∗ dev‖ database system 451 259 5 % 2 906 692
privoxy∗ 3.0.12 proxy server 24 038 37 % 686 153
python∗ 2.6.1 program interpreter 373 961 27 % 8 726 5 127
sendmail∗ 8.14.2 mail transfer agent 83 643 38 % 3 116 880
sqlite∗ 3.6.10 database system 94 419 54 % 1 509 292
subversion∗ 1.5.1 revision control sys. 509 171 6 % 3 927 409
sylpheed∗ 2.6.0 e-mail client 101 435 19 % 1 074 271
tcl∗ 8.5.7 program interpreter 135 078 20 % 3 903 2 481
vim∗ 7.2 text editor 225 410 59 % 11 001 779
xfig∗ 3.2.5 vector graphics editor 72 443 7 % 376 107
xine-lib∗ 1.1.16.2 media library 494 903 34 % 6 163 1 692
xorg-server§ 1.5.1 X server 527 335 18 % 8 932 1 360
xterm∗ 2.4.3 terminal emulator 49 589 39 % 2 019 453

LOC: lines of code, after normalization and removal of comments; ALOC: percentage of annotated lines
of code; ANN: number of annotations; FE: number of features (distinct #ifdef flags); ∗http://freshmeat.
net, †http://www.dm.unipi.it/cluster-pages/mpsolve/, ‡http://opensolaris.org/os/, §http://x.
org; ¶ version from 2009-11-10, ‖ version from 2009-05-08

Table A.1.: Additional information on the selected 40 C programs [adapted from Liebig et al.,
2010].
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Warth, A., Stanojević, M., and Millstein, T. (2006). Statically scoped object adap-
tation with expanders. In Proc. Int’l Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pp. 37–56. New York: ACM Press.

Weise, D., and Crew, R. (1993). Programmable syntax macros. In Proc. Conf.
Programming Language Design and Implementation (PLDI), pp. 156–165. New York:
ACM Press.

Weiser, M. (1984). Program slicing. IEEE Transactions on Software Engineering (TSE),
10(4), 352–357.

Wile, D. (1997). Abstract syntax from concrete syntax. In Proc. Int’l Conf. Software
Engineering (ICSE), pp. 472–480. New York: ACM Press.

Wirth, N. (1971). Program development by stepwise refinement. Communications
of the ACM, 14(4), 221–227.

Wirth, N. (1979). The module: A system structuring facility in high-level pro-
gramming languages. In Proc. Symposium on Language Design and Programming
Methodology, vol. 79 of Lecture Notes in Computer Science, pp. 1–24. London:
Springer-Verlag.

Wright, A. K., and Felleisen, M. (1994). A syntactic approach to type soundness.
Information and computation, 115(1), 38–94.

Yang, W. (1994). How to merge program texts. Journal of Systems and Software,
27(2), 129–135.

Zhang, C., and Jacobsen, H.-A. (2003). Quantifying aspects in middleware plat-
forms. In Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD), pp. 130–
139. New York: ACM Press.

Zhang, C., and Jacobsen, H.-A. (2004). Resolving feature convolution in middle-
ware systems. In Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), pp. 188–205. New York: ACM Press.

Zhang, H., and Jarzabek, S. (2004). XVCL: A mechanism for handling variants in
software product lines. Science of Computer Programming, 53(3), 381–407.

207


	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Contribution
	Outline

	Background
	Software product lines
	Domain engineering and application engineering
	Variability modeling
	Separation of concerns

	Software product line implementation
	Compositional approaches
	Modularity
	Traceability
	Language support for variability
	Coarse granularity
	The optional feature problem
	Difficult adoption
	Case study: Berkeley DB

	Annotative approaches
	Separation of concerns
	Obfuscation
	Error proneness
	Simple and uniform programming model
	Fine granularity
	Variability despite feature interactions

	Other approaches
	Summary, perspective, and goals

	Views and visual representation
	Integrating a feature model
	Implementation
	Discussion

	Views
	View on a feature
	View on a variant
	Design decisions
	Implementation

	Visual representation
	Background colors
	Scalability of colors

	Experimental evaluation
	Experiment planning
	Results
	Interpretation

	Related work
	Summary

	Error detection
	Taxonomy
	Disciplined annotations
	Basic concept
	Detecting disciplined annotations
	From string removal to AST transformations
	Wrappers
	Flexibility vs. safety
	Evaluation

	Product-line–aware type system
	Type errors in software product lines
	Desired properties
	Colored Featherweight Java (CFJ)
	Alternative features
	Beyond Featherweight Java
	Evaluation

	Related work
	Summary

	Comparison and integration
	Comparison
	Modularity
	Traceability
	Language integration
	Errors
	Granularity
	Optional feature problem
	Uniformity
	Adoption

	Perspective: Integrating compositional and annotative approaches
	Spectrum between physical and virtual separation
	Benefits
	Automated refactoring

	Summary

	Conclusion and future work
	List of case studies
	Case studies developed in CIDE
	Forty C programs

	Bibliography

