
Evolving an Integrated Phototaxis and Hole-avoidance Behavior for a Swarm-bot

Anders Lyhne Christensen and Marco Dorigo
IRIDIA, Université Libre de Bruxelles, Belgium

alyhne@iridia.ulb.ac.be, mdorigo@ulb.ac.be

Abstract

This article is on the subject of evolving neural network con-
trollers for cooperative, mobile robots. We evolve controllers
for combined hole-avoidance and phototaxis in a group of
physically connected, autonomous robots calleds-bots, each
with limited sensing capabilities. We take a systematic ap-
proach to finding a suitable fitness function, an appropri-
ate neural network structure, and we explore and compare
three evolutionary algorithms commonly used in evolution-
ary robotics: genetic algorithms,(µ,λ) evolutionary strate-
gies, and cooperative coevolutionary genetic algorithms for
optimizing weights in neural robot controllers. Finally, we
show that solutions evolved in our software simulator can be
transferred successfully to real robots.

Introduction
Robotics, evolutionary computation, and neural networks
are each well-established research fields in their own re-
spect. “Evolutionary robotics” is the name frequently used
for research in the hybrid field combining the three. One
of the goals in this field is to use evolutionary algorithms to
evolve robot controllers based on artificial neural networks.
A major advantage of this approach is that artificial evolu-
tion can find solutions that a human developer might not
have considered or predicted. When a robot is situated in
an environment, solutions found by evolution can exploit
features in the environmentas they are perceived through
the robot’s sensors, whereas a human developer will be lim-
ited to some degree by his or her understanding of the task
(Nolfi and Floreano, 2000). Therefore, an evolutionary ap-
proach can potentially find simpler, more robust, generic,
and scalable solutions to novel tasks in comparison with
hand-written controllers.

Although promising, evolutionary methods have to our
knowledge only been successfully applied to relatively sim-
ple tasks and are not yet used extensively in industry as a
tool for synthesizing robot controllers. This is most likely
explained by the fact that reaching the point where artificial
evolution produces a controller that solves a given task is
a difficult, tedious and time-consuming process, which in-
volves a large amount of trial-and-error. However, if evo-

lutionary robotics is ever to be used in more complex sce-
narios, we need to improve our understanding and meth-
ods for designing suitable evolutionary setups. With this in
mind, we discuss and apply a structured approach for evolv-
ing robot controllers for the phototaxis and hole-avoidance
task described below.

The task we are concerned with is the evolution of con-
trollers for a number of robots calleds-bots. An s-bothas a
variety of sensors and actuators including a gripper, which
enables multiple robots to physically connect and form an
artifact called aswarm-bot. In swarm-botformation eachs-
botmaintains autonomous control. Our objective is to obtain
controllers for a number ofs-botsin swarm-botformation to
allow them to safely navigate through an arena containing
holes.

Cooperative navigation for multiple autonomous robots
has previously been studied. In (Wang, 1991) strategies for
movement in formation based on nearest neighbor tracking
were developed. Collision avoidance for a group of robots
in environments with moving objects was studied in (Arai
et al., 1989). In both cases, controllers relied on formal
and hand-coded strategies for path planning and conflict
resolution and all experiments were conducted in simula-
tion. In a more recent study, Quinn et al. showed that arti-
ficial evolution is a useful tool for automating the design of
controllers capable of teamwork and role-allocation on real
robots (Quinn et al., 2002).

With the development of thes-bothardware platform, we
have been able to study cooperation, navigation, and artifi-
cial evolution of controllers at a different level, namely for
groups ofphysically connectedrobots. In the context of the
SWARM-BOTS project there is a body of research on evolv-
ing artificial neural network controllers, see for instance
(Dorigo et al., 2004) on evolving self-organizing behaviors
for a swarm-bot. Moreover, specific studies on evolving
controllers for coordinated-motion and hole-avoidance have
been performed, see for instance (Trianni et al., 2006). The
hole-avoidance studies performed to date have only included
coordinated movement and not motion towards a predefined
target such as a light source. However, other studies, such
as (Groß and Dorigo, 2004), have been concerned with col-

Figure 1: Different views of ans-bothighlighting the location of the sensors used and aswarm-bot. An s-bothas a diameter of
120 mm and a height of 190 mm.

lective transport of an object towards a light source, albeit
in obstacle-free environments. To the best of our knowl-
edge, combined phototaxis and hole-avoidance for a swarm
of robots has not been studied prior to the work presented
here.

This paper is organized as follows: In the next section we
present our robot platform and the experimental setup. We
then outline and discuss a structured approach to finding a
suitable evolutionary setup. We follow this approach by first
engineering a fitness function. Then we focus on the neural
network structure for the robot controllers and test three evo-
lutionary algorithms. In the final section we describe initial
tests performed on real robots.

Robot Hardware and Experimental Setup
An s-bot and aswarm-botare shown in Fig. 1. Eachs-
bot is equipped with four infra-red ground sensors, mounted
between its differential treels (TRacks and whEELS), one
pointing 45 degrees forward, two pointing straight down-
ward, and one pointing 45 degrees backward. Microphones
and speakers allows-botsto emit and perceive sounds. An
s-botcan sense forces acting upon it in the horizontal plane
via traction sensors. These forces allow thes-bot to gauge
the direction of motion of the swarm. Thus eachs-botcan
align its own direction of motion to that of theswarm-bot,
allowing theswarm-botto move coordinately. The traction
sensors are mounted inside the robot between the bottom
part (the chassis) and the top part (the turret). The turret
can rotate independently with respect to the chassis: up to
180 degrees in each direction from the neutral position. The
result of an action in a given situation is likely to depend
on the current rotational difference between the top and bot-
tom part of thes-bot. We therefore use two sensors that
read the rotational difference in the clockwise and counter-
clockwise directions, respectively, at every control step. The
relative direction of the target, identified by a light source, is
perceived via 8 light-sensors distributed evenly around the
plastic ring on the chassis of thes-botas shown in Fig. 1.

The ground sensors are located directly under thes-bot,
which means that thes-botwill only detect the presence of a
hole once it is already partly over it. If a single robot triesto
navigate through the arena shown in Fig. 2, it is very likely to
fall into a hole unless it approaches the hole perpendicularly.
In swarm-botformation, however, thes-botsshould be able
to cooperate to safely navigate through the arena and reach
the location of the light source.

We have preprogrammed thes-bots to emit a sound,
which can be perceived by the others-botsin the swarm-
bot, when the presence of a hole is detected. This has previ-
ously been found to be an efficient aid when evolving hole-
avoidance for aswarm-bot(Trianni et al., 2006).

Methodology
We have taken a structured approach to determining anevo-
lutionary setup, which produces controllers capable of solv-
ing the combined hole-avoidance and phototaxis task. By
the term “evolutionary setup” we mean the following four
components: (i) the fitness function, (ii) the artificial neural
network type and structure (unless that is under evolutionary
control), (iii) the evolutionary algorithm, and (iv) the param-
eters associated with the evolutionary algorithm.

It is not customary for authors in the field of evolutionary
robotics to disclose how the chosen evolutionary setup was
found. We believe that many evolutionary setups are found
in an ad-hoc fashion. In this study we take on the challenge
of finding a good evolutionary setup in a structured manner.
Our objective is two-fold, namely to save time by reducing
the amount of manual trial-and-error necessary and to be ex-
plicit about the various setups tested and their results. Itis
reasonable to assume that both issues are important for the
use of evolutionary robotics in both academia and industry.

It is practically infeasible to perform an exhaustive search
in the space of evolutionary setups, that is, all possible com-
binations of parameter values, fitness functions, neural net-
work types, and so on. For evolutionary parameters such as
the population size, mutation rate, and number of crossovers,

we can discretize the intervals of values that we believe to be
reasonable based on experience and/or a few initial experi-
ments, then run a number of tests, and finally choose the
combination of values yielding the best results. For other
components of the evolutionary setup, for instance the fit-
ness function, such a discretization is not obvious.

Searching for a good evolutionary setup is often done in
an ad-hoc manner: an initial evolutionary setup is chosen
based on experience or a more or less qualified guess and
then modified until the results are satisfactory. We pro-
pose instead to consider each component of the evolution-
ary setup one at a time. In this way, we can focus on what
we assume to be the more predominant components initially
and then gradually move towards less predominant compo-
nents. The most important aspects of an evolutionary setup
are arguably those that require the largest amount of human
intuition, are hardest to find in a brute force manner, and
determine if a suitable controller can be evolved or not (as
opposed to how fast an acceptable solution is found).

The component topping this list is the fitness function.
The fitness function represents the element for which our
understanding of the problem plays the largest role. If ev-
erything else is perfect, but the fitness function is wrong, we
are highly unlikely to obtain a satisfactory behavior. The
same is not necessarily true for the other aspects of the evo-
lutionary setup; if the mutation rate, for instance, is too low,
it could take longer than necessary to evolve the desired be-
havior. Likewise, if an artificial neural network has too many
or too few nodes, it might overfit or underfit the problem, but
still an approximation of the behavior we had in mind can be
evolved.

An important issue is that in the context of evolutionary
robotics we often cannot determine if a fitness function ex-
erts the correct evolutionary pressureunless we test it. How-
ever, we cannot test it before we have chosen a neural net-
work type and structure and unless we try to evolve con-
trollers under an evolutionary algorithm, which has all of
its parameters set to some value. This chicken-and-egg is-
sue can only be overcome by testing a fitness function with
a range of different neural network structures and an evolu-
tionary algorithm. These might of course not be optimal, but
they should be relativelyconservative, in the sense that if a
solution can be found, the evolutionary algorithm has a good
chance of finding it (although it might take several evalua-
tions more than strictly necessary). This means that every
fitness function is tested with a conservative and representa-
tive selection of neural network structures and evolutionary
parameters. We call the set of representative elements the
baseline setfor a given component.

After a suitable fitness function has been found, we shift
our focus to the type and structure of the artificial neural
network, then to the evolutionary algorithm, and finally to
the parameters of this algorithm. All results presented below
have been obtained by running artificial evolutions in the

480 cm

240 cmregion
start

Light

Figure 2: An example of an arena. The dark areas de-
note holes, while the white patches denote the
arena surface on which the robots can move. The
swarm-botmust move from the initial location
shown on the left-hand side to the light source on
the right without falling into any of the holes or
over the edge of the arena.

TwoDee simulator (Christensen, 2005).

Fitness Function Engineering
We engineered the fitness function by testing it in evolu-
tionary setups containing the elements of thebaseline sets
for the neural network structures and the evolutionary algo-
rithms. We made it progressively more complex as we found
it necessary. At each stage another component of the fitness
function was added.

The first component scores controllers depending on how
close they manage to get to the light source. In case they
manage to reach the light source1 they are scored based on
how fast they do so:

flight =

8

>

>

<

>

>

:

1− min distance
initial distance if light is not reached,

2− time light is reached
total time if the light is reached.

Notice that if aswarm-botfalls into a hole, the trial is
stopped and the controller’s fitness is computed. However,
using this fitness function only resulted inswarm-botsfre-
quently falling into holes close to the light source. There-
fore, another component was added, penalizing controllers
for falling into a hole:

fstayalive=



0.5 if theswarm-botfalls into a hole,
1.0 otherwise.

Previous studies have shown that coordinated motion can
be obtained by minimizing the traction between thes-bots

1If the swarm-botgets within 50 cm of the light source, we
consider it as having reached the light source.

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

’gnuplot_renderer_arena.dat’

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

SF

’gnuplot_renderer_arena.dat’

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

SF

’gnuplot_renderer_arena.dat’

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

SF

’gnuplot_renderer_arena.dat’

Figure 3: The four arenas used to evolve controllers.
Swarm-botsstart in the left-hand side of the are-
nas.

in a swarm-bot(Trianni et al., 2004). It is reasonable to as-
sume that coordinated motion is a prerequisite for perform-
ing hole-avoidance and phototaxis successfully. Therefore,
we added a component that rewards controllers which mini-
mize the traction between thes-bots. The traction forces are
measured in the two dimensions of the horizontal plane with
0 corresponding to no traction perceived and 1 to the max-
imum traction force perceivable. At each control stepi, we
record the maximum tractionτmax

i perceived by any of the
s-botsin the simulation:

fminimizetraction=

P

(1− τmax
i)

total number of control steps

The three components listed above are multiplied to ob-
tain the fitness score used by the evolutionary algorithm for
selection and reproduction.

In order to avoid specialization, we evaluate each geno-
type in swarm-botsof different sizes and in multiple are-
nas. We use the four arenas shown in Fig. 3 and rectan-
gularswarm-botformations consisting of 2x2, 3x2 and 4x4
robots. Controllers are evaluated in each of the arenas twice
and their overall fitness score is the average of the eight
scores obtained.

Neural Network
The neural controller has 19 inputs (8 light sensors, 4 ground
sensors, 4 traction sensors, 2 rotation sensors, and one sound
sensor) and 2 outputs (one for each treel). Our aim is to
find a simple neural network capable of solving the task,
since simpler networks require less computational resources,
which are often limited on physical robots. Moreover, sim-
pler networks result in search spaces of lower dimensional-
ity and we assume that the lower the dimensionality of the
search space the faster an evolutionary algorithm will con-
verge to a good solution if such a solution exists.

To test the performance of different neural network types
and structures, we ran 20 evolutions of 1000 generations

2 4 6 8 10 12

Rank

multilayer 10h (1%)
multilayer 19h (10%)
multilayer 19h (1%)

perceptron (1%)
multilayer 19h (5%)
multilayer 2h (1%)

perceptron (5%)
multilayer 10h (5%)

multilayer 10h (10%)
perceptron (10%)

multilayer 2h (5%)
multilayer 2h (10%)

ANN

Figure 4: Box-plots for all neural network structures
evolved with different mutation rates ordered ac-
cording to their average ranking obtained in the
post-evaluation phase. Each box comprises obser-
vations ranging from the first to the third quartile.
The median is indicated by a bar, dividing the box
into the upper and lower part. The whiskers ex-
tend to the farthest data points that are within 1.5
times the interquartile range. Outliers are shown
as circles. The solid vertical lines on the left-
hand side indicate lack of statistical significance
at confidence level 95%. The results show that
the multi-layer network with 2 hidden nodes and
weights evolved using a genetic algorithm with a
mutation rate of 10% received the highest average
ranking. Statistically, however, the results for this
setup are not significantly different from the next
three evolutionary setups listed, including a per-
ceptron whose weights were evolved with a muta-
tion rate of 10%.

for each of the following neural networks: a perceptron and
three multi-layered feed-forward networks with one hidden
layer of 2, 10 and 19 nodes, respectively.

For each of the neural network structures we tested evo-
lutionary setups with three different mutation rates: 1%,
5%, and 10%, on genotypes consisting of one floating-point
value for each weight in the neural network.

In order to compare the performance of the controllers
evolved in the different evolutionary runs, we took the high-
est scoring controller of the last generation, post-evaluated
it 25 times in each of the four arenas shown in Fig. 3, and
recorded the average fitness score.

We use Friedman’s test to compute statistical significance
of our results and to determine which neural network struc-
ture yields the best performance (Conover, 1999). Fried-
man’s test is convenient to use because it is non-parametric
and therefore no strong assumptions need to be made about
the distributions underlying the phenomenon of interest. The
fitness scores obtained during the different post-evaluation
runs are mutually independent and we can rank them accord-
ing to their numerical value, which are the only requirements

for Friedman’s test to be applicable.

A box-plot of the results is shown in Fig. 4. The results
have been ordered according to the average ranking of the
evolutionary setups and the lack of statistical significance
between them is indicated by the solid vertical lines on the
left-hand side of the figure (i.e. those evolutionary setups
covered by the same vertical line are not significantly differ-
ent). The results shown in the figure suggest that the simpler
networks outperform the more complex networks.

Based on the results shown in Fig. 4, a perceptron seems
to perform well in comparison with the other networks
whilst also being the simplest structure we tested. The best
performing networks were the multi-layered neural network
with 2 hidden neurons and the perceptrons. Statistically,
there is no significant difference between the performances
of these networks. In order to choose which network to pro-
ceed with, we analyze the nature of the solutions found.

The solutions can be divided into three strategy types:fail
strategies,reversestrategies, andturn strategies. Whilefail
strategies fail to solve the task, bothreverseandturn strate-
gies solve the task, but in different ways. Controllers dis-
playing areversestrategy invert the direction of motion once
a hole is detected and then reapproach the hole at a slightly
different angle, see Fig. 5a. Controllers displaying aturn
strategy do not reverse their direction of motion, but instead
they keep turning away from the hole until it is no longer
perceived, see Fig. 5b.

An interesting result is that none of the evolutionary runs
produced controllers that moveswarm-botsdirectly towards
the light source as one might expect given that phototaxis
should be performed. Theswarm-botsinstead move left (or
right) with respect to the direction of the light source and
follow one of the sides of the arena and/or holes until the
light source is reached. The reason for this behavior is likely
that the evolutionary setup comprises evaluation of individ-
uals in the four arenas shown in Fig. 3, where for instance
the first arena in the bottom row requires theswarm-botsto
move left around the first hole, then right around the second,
and finally left again around the third hole before the light
source is reached. A controller which movesswarm-botsdi-
rectly towards the light source would have to decide whether
to move left or right when a hole is encountered. In the are-
nas shown in the bottom row of Fig. 3 a wrong choice of
direction could lead to theswarm-botsgetting stuck in a cor-
ner, which would be difficult to escape given the reactive na-
ture of the neural network controllers tested. Simpler “hole-
following” strategies perform better since the light source
can be reached in this way in all of the areas used during
evolution.

We tested bothturn strategies andreversestrategies on
real robots and found that controllers based on theturn strat-
egy transfer to the real robots better than controllers based
on thereversestrategy. This is due to the fact thatreverse
strategies require control steps in all members of theswarm-

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

S
FS

F

S
FS

F

’gnuplot_renderer_arena.dat’

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

S

F

S

F

S

F

S

F

’gnuplot_renderer_arena.dat’

(a) (b)

Figure 5: Examples of the two different strategies found by
evolution:reverse(a), andturn (b).

Reverse strategy
Turn strategy

 0

 5

 10

 15

 20

m
ul

til
ay

er
 2

h(
10

%
)

m
ul

til
ay

er
 2

h(
5%

)

pe
rc

ep
tr

on
(1

0%
)

m
ul

til
ay

er
 1

0h
(1

0%
)

pe
rc

ep
tr

on
(5

%
)

m
ul

til
ay

er
 1

0h
(5

%
)

m
ul

til
ay

er
 2

h(
1%

)

m
ul

til
ay

er
 1

9h
(5

%
)

pe
rc

ep
tr

on
(1

%
)

m
ul

til
ay

er
 1

9h
(1

%
)

m
ul

til
ay

er
 1

9h
(1

0%
)

m
ul

til
ay

er
 1

0h
(1

%
)N

um
be

r
of

 s
tr

at
eg

ie
s

fo
un

d
ou

t o
f 2

0
ev

ol
ut

io
ns

Figure 6: The number ofreverseand turn strategies found
by the different evolutionary setups.

bot to be highly synchronous, which is the case in simulation
but not for real robots, for which control programs are not
started at the exact same instant and clocks can drift. Fig. 6
shows the number of strategies from each group found by
the different evolutionary setups.

In setups using a single layer perceptron, artificial evo-
lution found onlyreversestrategies. On the other hand, a
multi-layer network with 2 hidden nodes out-performed the
other setups, both in terms of average fitness score obtained
during post-evaluation and the number of transferable strate-
gies found. We therefore choose this network structure.

Evolutionary Algorithm
The results presented above have all been obtained with a
genetic algorithm (GA) with rank-based selection, muta-
tion, and single-point crossover (Goldberg, 2002), (Mitchell,
1996). In this section we compare the results obtained using
a GA with two other evolutionary algorithms often used in
evolutionary robotics, namely the(µ,λ) evolutionary strat-
egy ((µ,λ)-ES), (Schwefel, 1995), and a cooperative coevo-
lutionary genetic algorithm (CCGA) (Potter and De Jong,
1994; Potter and De Jong, 2000). One of the main differ-
ences between a GA and the(µ,λ)-ES is that in the former
crossover is used, while in the latter mutation is the only ge-
netic operator used to perform the search. The CCGA differs
from both the GA and the(µ,λ)-ES, because it employs mul-
tiple, isolated sub-populations. Each sub-population con-

2 4 6 8 10 12 14

Rank

CCGA (5%)
CCGA (15%)
CCGA (10%)

(mu=5,lambda) (5%)
(mu=20,lambda) (5%)

Standard GA (5%)
Standard GA (15%)

(mu=10,lambda) (5%)
Standard GA (10%)

(mu=5,lambda) (15%)
(mu=5,lambda) (10%)

(mu=20,lambda) (10%)
(mu=10,lambda) (10%)
(mu=10,lambda) (15%)
(mu=20,lambda) (15%)

Neuro−evolution
method

Figure 7: Box-plots of the ranking obtained during the post-
evaluation phase for the GA, the(µ,λ)-ES, and the
CCGA with various mutation rates. The results
show that the(µ,λ)-ES achieves the highest aver-
age ranking, and that several evolutionary setups
involving the(µ,λ)-ES perform better than the GA
and the CCGA.

tains a component of the final solution. Applied to neural
networks, a sub-population contains neurons for a specific
position in the final network. A neuron, in this case, is de-
scribed by a set of weights for its incoming connections.
When a neuron in a sub-population is evaluated, a complete
network is constructed using the neuron itself and neurons
from the other sub-populations. During evolution the sub-
populations shouldco-evolveby specializing and adapting
to each other. This can result in better solutions being ob-
tained faster (Potter and De Jong, 2000). However, our re-
sults, presented below, indicate that this is not always the
case.

In order to compare the performance of GAs,(µ,λ)-ESs,
and CCGAs on our task, we have chosen a subset of evolu-
tionary parameters for each method and conducted 20 evo-
lutionary runs for each of the resulting setups. The approach
is similar to the approach taken for finding an appropriate
neural network structure described above.

For all three evolutionary algorithms we use the fitness
function described earlier. The controller consists of a multi-
layer feed-forward network with 2 hidden nodes. We tested
setups with three different mutation rates, namely: 5%, 10%
and 15%, and for the(µ,λ)-ES we tested three different val-
ues for the number of parents selected for reproduction,µ,
in each generation: 5, 10 and 20. For the CCGA we use 4
sub-populations (one for each of the hidden nodes, and one
for each of the two output nodes) of 25 individuals each.
For both the GA and the(µ,λ)-ES, population sizes of 100
individuals were used.

Box-plots of the post-evaluation results for the best con-
trollers obtained in the different evolutionary setups are
shown in Fig. 7. The most successful evolutionary setups
are those involving the(µ,λ) ES, followed by the GA. The
CCGA performs poorly for all three mutation rates tested.

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

S

FS
F

S
FS

F

’gnuplot_renderer_arena.dat’

Light

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

S

F

S F

S

F

S F

’gnuplot_renderer_arena.dat’

Figure 8: Example of how a controller capable of solving
the task behaves in two of the arenas using a sim-
ple, but nonetheless general and successful, hole-
following strategy.

Figure 9: A photo of the arena for the real robots where
holes are replaced by black duct tape. The arena
is a replica of the simulated arena shown on the
left-hand side in Fig. 8.

The final choice is therefore to use an evolutionary setup
in which the weights in a multi-layered neural network with
two hidden neurons are optimized by a(µ,λ)-ES, withµ =
20 and a mutation rate of 15%. Fig. 8 shows an example of a
successful phototaxis and hole-avoidance behavior evolved
in this evolutionary setup.

Validation on Real Robots
We ported the best controllers evolved in simulation to real
s-botsand conducted initial experiments with aswarm-bot
consisting of three robots. Theswarm-botwas tested in the
arena shown in Fig. 9, which has the layout and measures
shown in Fig. 2.

Two main differences between simulation and the real
world were introduced: First, we reduced the maximum
speed of the real robots compared with the speed used for
the simulated robots in order to compensate for the differ-
ences in the types of noise, sensor delays, and so on, be-
tween simulation and reality. By reducing speed, noise was
smoothed and the impact of each action (or control cycle)
was decreased. Second, black duct tape was used instead of
holes. A black surface and holes are perceived in the same
manner by thes-bots’ ground sensors, while using duct tape
instead of holes prevents physical damage to the robots in
case they should “fall in”. The interaction of aswarm-bot
with an arena containing holes differs from the interaction

with an arena in which holes are replaced by black duct tape.
In an arena with real holes, ans-botwhich is over a hole can-
not directly influence the rest of theswarm-botby moving its
treels. If duct tape is used instead of holes, ans-botstill has
surface contact while moving on the duct tape. The motion
of its treels therefore has some influence on theswarm-bot.

Initial tests on the real robots showed that despite these
differences the evolved controllers are capable of perform-
ing integrated phototaxis and hole-avoidance using aturn
strategy similar to what was observed in simulation.

Conclusion
In this study we discussed and applied a structured approach
to finding a suitable evolutionary setup. We obtained a fit-
ness function that exerts the correct evolutionary pressure.
Moreover, we showed that a multi-layer feed-forward net-
work with a layer of 2 hidden nodes was the simplest net-
work structure tested for which evolution found transfer-
able controllers. During the evaluation of evolutionary algo-
rithms it was found that evolutionary setups involving(µ,λ)-
ESs outperformed the setups with GAs and CCGAs. Finally,
the controllers evolved in our software simulator do perform
integrated phototaxis and hole-avoidance and they can be
successfully transferred to real robots.

Acknowledgements
Anders Christensen acknowledges support from
COMP2SYS, a Marie Curie Early Stage Research Training
Site funded by the European Community’s Sixth Frame-
work Programme (grant MEST-CT-2004-505079). The
information provided is the sole responsibility of the authors
and does not reflect the European Commission’s opinion.
The European Commission is not responsible for any use
that might be made of data appearing in this publication.
Marco Dorigo acknowledges support from the Belgian
FNRS, of which he is a Research Director, and from the
“ANTS” project, an “Action de Recherche Concertée”
funded by the Scientific Research Directorate of the French
Community of Belgium.

References
Arai, T., Ogata, H., and Suzuki, T. (1989). Collision avoid-

ance among multiple robots using virtual impedance.
In Proceedings of IEEE/RJS International Workshop
on Intelligent Robots and Systems (IROS) ’89, pages
479–485. IEEE Computer Society Press, Los Alamitos,
CA.

Christensen, A. L. (2005). Efficient neuro-evolution of hole-
avoidance and phototaxis for a swarm-bot. Technical
Report TR/IRIDIA/2005-14, IRIDIA, Université Libre
de Bruxelles, Belgium. DEA Thesis.

Conover, W. J. (1999).Practical Nonparametric Statistics.
Wiley & Sons, New York, 3rd edition.

Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H.,
Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mon-
dada, F., Floreano, D., and Gambardella, L. M. (2004).
Evolving self-organizing behaviors for a swarm-bot.
Autonomous Robots, 17(2–3):223–245.

Goldberg, D. E. (2002).The Design of Innovation: Lessons
from and for Competent Genetic Algorithms. Kluwer
Academic Publishers, Boston, MA.

Groß, R. and Dorigo, M. (2004). Group transport of an
object to a target that only some group members may
sense. InParallel Problem Solving from Nature – 8th
Int. Conf. (PPSN VIII), volume 3242 ofLNCS, pages
852–861. Springer Verlag, Berlin, Germany.

Mitchell, M. (1996).An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA.

Nolfi, S. and Floreano, D. (2000).Evolutionary Robotics:
The Biology, Intelligence, and Technology of Self-
Organizing Machines. MIT Press/Bradford Books,
Cambridge, MA.

Potter, M. A. and De Jong, K. (1994). A cooperative coevo-
lutionary approach to function optimization. InPro-
ceeding of the Third Conference on Parallel Problem
Solving from Nature – PPSN III, volume 866 ofLNCS,
pages 249–257, Springer Verlag, Berlin, Germany.

Potter, M. A. and De Jong, K. (2000). Cooperative coevolu-
tion: An architecture for evolving coadapted subcom-
ponents.Evolutionary Computation, 8(1):1–29.

Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2002).
Evolving teamwork and role allocation for real robots.
In Proceedings of 8th International Conference on Ar-
tificial Life, pages 302–311. MIT Press, Cambridge,
MA.

Schwefel, H.-P. (1995).Evolution and Optimum Seeking.
Wiley & Sons, New York.

Trianni, V., Labella, T. H., and Dorigo, M. (2004). Evo-
lution of direct communication for a swarm-bot per-
forming hole avoidance. InAnt Colony Optimization
and Swarm Intelligence – Proc. of ANTS 2004 – 4th
Int. Workshop, volume 3172 ofLNCS, pages 131–142.
Springer Verlag, Berlin, Germany.

Trianni, V., Tuci, E., and Dorigo, M. (2006). Coopera-
tive hole avoidance in a swarm-bot.Robotics and Au-
tonomous Systems, in press.

Wang, P. K. C. (1991). Navigation strategies for multiple au-
tonomous mobile robots moving in formation.Journal
of Robotics Systems, 8(2):177–195.

