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Abstract
A single-ISA heterogeneous multi-core architecture is a

chip multiprocessor composed of cores of varying size, per-
formance, and complexity. This paper demonstrates that this
architecture can provide significantly higher performance in
the same area than a conventional chip multiprocessor. It does
so by matching the various jobs of a diverse workload to the
various cores. This type of architecture covers a spectrum of
workloads particularly well, providing high single-thread per-
formance when thread parallelism is low, and high throughput
when thread parallelism is high.

This paper examines two such architectures in detail,
demonstrating dynamic core assignment policies that pro-
vide significant performance gains over naive assignment, and
even outperform the best static assignment. It examines poli-
cies for heterogeneous architectures both with and without
multithreading cores. One heterogeneous architecture we ex-
amine outperforms the comparable-area homogeneous archi-
tecture by up to 63%, and our best core assignment strategy
achieves up to 31% speedup over a naive policy.

1 Introduction
The design of a microprocessor that meets the needs of to-

day’s multi-programmed compute environment must balance
the competing objectives of high throughput and good single-
thread performance. To date, these objectives have been ad-
dressed by adding features to monolithic superscalar proces-
sors to increase throughput at the cost of increased complex-
ity and design time. One such feature is simultaneous multi-
threading [24, 23] (SMT). An alternative approach has been to
build chip multiprocessors [8, 11] (CMPs) comprising multi-
ple copies of increasingly complex cores.

In this paper, we explore an alternate design point between
these two approaches, namely, CMPs comprising a hetero-
geneous set of processor cores all of which can execute the
same ISA. The heterogeneity of the cores comes from differ-
ences in their raw execution bandwidth (superscalar width),
cache sizes, and other fundamental characteristics (e.g., in-
order vs. out-of-order). This architecture has been proposed
and evaluated in earlier work [13, 14] as a means to increas-
ing the energy efficiency of single applications. However,

as we demonstrate in this paper, the same architecture may
be used to deliver greater throughput and improved area effi-
ciency (throughput per unit area) without significantly impact-
ing single-thread performance.

We evaluate a variety of heterogeneous architectural de-
signs, including processor cores that are themselves mul-
tithreaded, an extension to the original architecture pro-
posal [14]. Through this evaluation, we make the following
two contributions.

First, we demonstrate that this approach can provide signif-
icant performance advantages for a multiprogrammed work-
load over homogeneous chip-multiprocessors. We show that
this advantage is realized for two reasons. First, a heteroge-
neous multi-core architecture has the ability to match each ap-
plication to the core best suited to meet its performance de-
mands. Second, it can provide better area-efficient coverage
of the whole spectrum of workload demands that may be seen
in a real machine, from low thread-level parallelism (provid-
ing low latency for few applications on powerful cores) to high
thread-level parallelism (where a large number of applications
can be hosted at once on simple cores).

Overall, our representative heterogeneous processor using
two core types achieves as much as 63% performance im-
provement over an equivalent-area homogeneous processor.
Over a range of moderate load levels (e.g., 5-8 threads), we
see an average gain of 29%. For an open system with random
job arrivals, the heterogeneous architecture has much lower
average response time over a range of job arrival rates and re-
mains stable for arrival rates 43% higher than that for which a
homogeneous architecture breaks down.

Our second contribution is to demonstrate dynamic thread-
to-core assignment policies that realize most of the potential
performance gain. These policies significantly outperform a
random schedule, and even beat the best static assignment (us-
ing hindsight) of jobs to cores. These heuristics match the di-
versity of the workload resource requirements to the cores by
changing the workload-to-core mapping either periodically or
in response to triggering events. We study the design space of
job assignment policies, examining sampling frequency and
duration, and how core assignment is made. Our best policy
outperforms naive core assignment by 31%.



We also study the application of these mechanisms to the
cores in a heterogeneous processor that includes multithreaded
cores. Despite the additional scheduling complexity posed by
the simultaneous multithreading cores (due to an explosion in
the possible assignment permutations), we demonstrate the ex-
istence of effective assignment policies. With these policies,
this architecture provides even better coverage of a spectrum
of load levels. It provides both the low latency of powerful
processors at low threading levels, but is also comparable to a
large array of small processors at high thread occupancy.

The rest of the paper is organized as follows. Section 2
motivates heterogeneous design for performance. Section 3
describes our measurement methodology. Section 4 dis-
cusses the performance benefits from our architecture and our
scheduling approaches to solve the new design issues associ-
ated with these architectures. Section 5 concludes.

2 Architecture and Background

This section illustrates the potential benefits from archi-
tectural heterogeneity, introduces issues in using core het-
erogeneity with multi-programmed workloads, and discusses
prior related work.

2.1 Exploring the potential from heterogeneity

The advantages of heterogeneous architectures stem from
two sources. The first advantage results from more efficient
adaptation to application diversity. Applications (or different
phases of a single application) place different demands on dif-
ferent architectures, stemming from the nature of the compu-
tation [14]. While some applications take good advantage of
the most advanced processors, others often under-utilize that
hardware and suffer little performance loss when run on a less
aggressive processor. For example, a floating-point applica-
tion with regular code might make good use of an out-of-order
pipeline with high issue-width; however, a bandwidth-bound,
control-sensitive application might perform almost as well on
an in-order core with low issue-width. Given a set of diverse
applications and heterogeneous cores, we can assign applica-
tions (or phases of applications) to cores such that those that
benefit the most from complex cores are assigned to them,
while those that benefit little from complex cores are assigned
to smaller, simpler cores. This allows us to approach the per-
formance of an architecture with a larger number of complex
cores.

The second advantage from heterogeneity results from a
more efficient use of die area for a given thread-level paral-
lelism. Successive generations of microprocessors have been
obtaining diminishing performance returns per chip area. This
is evident from the following. Microprocessor implementa-
tion technology has been scaling for many years according to
Moore’s Law [15] for lithography and roughly according to
MOS scaling theory [5]. For a given���� scaling of lithogra-
phy, one can expect an equivalent ���� increase in transistor
speed and an ����� increase in the number of transistors per

unit area. If the increases in transistor speed and transistor
count were to directly translate to performance, one would ex-
pect an ����� increase in performance. However, past micro-
processor performance has only been increasing at an ��� ��
rate [10, 9]. This is not too surprising, since the performance
improvement of many microprocessor structures (e.g., cache
memories) is less than linear with their size.

In an environment with large amounts of process or thread-
level parallelism, such a nonlinear relationship between tran-
sistor count and microprocessor speed means that higher
throughputs could be obtained by building a large number of
small processors, rather than a small number of large proces-
sors. However, in practice the amount of process or thread
level parallelism in most systems will vary with time. This
implies that building chip-level multiprocessors with a mix of
cores – some large cores with high single-thread performance
and some small cores with high throughput per die area – is a
potentially attractive approach.

To explore the potential from heterogeneity, we model a
number of chip multiprocessing configurations that can be de-
rived from combinations of two existing off-the-shelf proces-
sors from the Alpha architecture family – the EV5 (21164)
and the EV6 (21264) processors. Figure 1 compares the vari-
ous combinations in terms of their performance and their chip
areas. In this figure, performance is that obtained from the
best static mapping of applications to the processor cores. The
staircase represents the maximum throughput obtainable using
a homogeneous configuration for a given area.

We see from this graph that over a large portion of the graph
the highest performance architecture for a given area limit, of-
ten by a significant margin, is a heterogeneous configuration.
The increased throughput is due to increased number of con-
texts as well as improved processor utilization.

Constant-area comparisons do not tell the whole story, be-
cause equivalent area does not necessarily imply equal cost,
power, or complexity. But the results are instructive, nonethe-
less. Note also that we explore a smaller subset of the design
space than possible because of our constraint of focusing on
just two generations of a commodity processor family. How-
ever, even with this limited approach, our results make a case
for the general advantages for heterogeneity. For example, on
the far left part of the graph, the area is insufficient to support a
heterogeneous configuration of the EV6 and EV5 cores; how-
ever, our other data (not plotted here) on heterogeneous archi-
tectures using EV5 and EV4 (21064) cores confirm that these
designs are superior in this region.

While the design of this architecture is likely to be very
similar to a homogeneous CMP, designing the common inter-
face to the shared cache, clock distribution, coherence, etc.,
may be somewhat more complex with multiple core types. It
is also possible that verification costs might be higher if the di-
verse cores turn out to interact in less deterministic ways than
in the homogeneous case. In this work, we recognize these is-
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Figure 1. Exploring the potential from heterogeneity.
The points represent all possible CMP configurations
using up to six cores from two successive cores in the
Alpha family. The triangles represent homogeneous
configurations and the diamonds represent the optimal
static assignment on heterogeneous configurations.

sues by limiting the core diversity to a small set of commodity
processor cores from a single family.

The rest of this paper will examine particular points in this
design space more carefully, allowing us to examine in detail
the particular architectures, and how to achieve the best per-
formance.

2.2 Prior work
Our earlier work [14] used a similar single-ISA heteroge-

neous multiprocessor architecture to reduce processor power.
That approach moves a single-threaded workload to the most
energy efficient core and shuts down the other cores to provide
significant gains in power and energy efficiency. However,
that approach provides neither increased overall performance
nor increased area efficiency, the two goals of this research.

Heterogeneity has been previously used only at the scale of
distributed shared memory multiprocessors (DSMs) or large
computing systems [7, 16, 20, 3]. For example, Figueiredo
and Fortes [7] focus on the use of a heterogeneous DSM ar-
chitecture for the execution of a single parallel application at a
time. They balance the workload by statically assigning mul-
tiple threads to the more powerful nodes, and using fast user-
level thread switching to hide the context switch overheads of

interleaving the jobs. Oh and Ha [16] presented a provably op-
timal (under certain simplifying conditions) static scheduling
strategy for a heterogeneous DSM where each node can have
a different execution time. They also incorporate the effects
of interprocessor communication overhead. Banino et al [3]
show how to determine the optimal steady-state scheduling
strategy for allocating a large number of equal-sized tasks to a
heterogeneous ”grid” computing platform.

Given their significantly higher communication costs, pre-
vious work on DSMs has only statically exploited inter-thread
diversity ([7] being the closest to our work). In contrast,
heterogeneous multi-core architectures allow us to dynami-
cally change the thread-to-core mapping to take advantage
of changing phase characteristics of the threads/applications.
Further, heterogeneous multi-core architectures can exploit
fine-grained inter-thread diversity.

Other architectures also seek to address both single-thread
latency and multiple-thread throughput. Simultaneous multi-
threading [24] can devote all processor resources on a super-
scalar processor to a single thread, or divide them among sev-
eral. Processors such as the proposed Tarantula processor [6]
include heterogeneity, but the individual cores are specialized
toward specific workloads. Our approach differs from these in
its use of heterogeneous commodity cores to exploit variations
in thread-level parallelism and intra- and inter-application di-
versity for increased performance for a given chip area.

Prior work has also addressed the problem of phase de-
tection in applications [17, 25] and task scheduling on multi-
threaded architectures [18]. Our work leverages that research,
and complements these by demonstrating that phase detection
can be used with task scheduling to match application diver-
sity with core diversity for increased performance.

2.3 Supporting multi-programming

The primary issue when using heterogeneous cores for
greater throughput is with the scheduling, or assignment, of
jobs to particular cores. We assume a scheduler at the oper-
ating system level that has the ability to observe coarse-grain
program behavior over particular intervals, and move jobs be-
tween cores. Since the phase lengths of applications are typ-
ically large [17], this enables the cost of core-switching to be
piggybacked with the operating system context-switch over-
head. Core-switching overheads are modeled in detail for the
evaluations presented in this paper.

Workload-to-core mapping is a one-dimensional problem
in [14] as the workload consists of a single running thread.
With multiple jobs and multiple cores, the task here is not to
find the best core for each application, but rather to find the
best global assignment. All of our policies in this paper strive
to maximize average performance gain over all applications in
the workload. Fairness is not taken into consideration explic-
itly. All threads make good progress, but if further guarantees
are needed, we assume the priorities of those threads that need
performance guarantees will reflect that. The heterogeneous



Processor EV5 EV6 EV6+

Issue-width 4 6 (OOO) 6 (OOO)
I-Cache 8KB, DM 64KB, 2-way 64KB, 2-way
D-Cache 8KB, DM 64KB, 2-way 64KB, 2-way

Branch Pred. 2K-gshare hybrid 2-level hybrid 2-level
Number of MSHRs 4 8 16
Number of threads 1 1 4

Area (in���) 5.06 24.5 29.9

Table 1. Configuration and area of the cores.

architecture is also ideally suited to manage varied priority
levels, but that advantage is not explored here.

An additional issue with heterogeneous multi-core archi-
tectures supporting multiple concurrently executing programs
is cache coherence. In this paper, we study multi-programmed
workloads with disjoint address spaces, so the particular cache
coherence protocol is not an issue (even though we do model
the writeback of dirty cache data during core-switching).
However, when there are differences in cache line sizes and/or
per-core protocols, the cache coherence protocol might need
some redesign. We believe that even in those cases, cache
coherence can be accomplished with minimal additional over-
head.

3 Methodology
This section discusses the methodology we use for mod-

elling and evaluating the various homogeneous and heteroge-
neous architectures. It also discusses the various classes of
experiments that were done for our evaluations.
3.1 Hardware assumptions

Table 1 summarizes the configurations used for the cores in
the study. As discussed earlier, we mainly focus on the EV5
(Alpha 21164) and the EV6 (Alpha 21264). For our experi-
ments with heterogeneous multi-core architectures with mul-
tithreaded cores (discussed in Section 4.4), we also study a
hypothetical multi-threaded version of the EV6 processor that
we refer to as EV6+. All cores are assumed to be implemented
in 0.10 micron technology and are clocked at 2.1 GHz (the
EV6 frequency when scaled to 0.10 micron).

In addition to the individual L1 caches, all the cores share
an on-chip 4MB, 4-way set-associative, 16-way L2 cache. The
cache line size is 128 bytes. Each bank of the L2 cache has a
memory controller and an associated RDRAM channel. The
memory bus is assumed to be clocked at 533Mhz, with data
being transferred on both edges of the clock for an effective
frequency of 1GHz and an effective bandwith of 2GB/s per
bank. Note that for any reasonable assumption about power
and ground pins, the total number of pins that this memory
organization would require would be well within the ITRS
limits[1] for the cost/performance market. A fully-connected
matrix crossbar interconnect is assumed between the cores and
the L2 banks. All L2 banks can be accessed simultaneously,
and bank conflicts are modelled. The access time is assumed
to be 10 cycles. Memory latency was set to be 150 ns. We as-
sume a snoopy bus-based MESI coherence protocol and model
the writeback of dirty cache lines for every core-switch.

Table 1 also presents the area occupied by each core. These
were computed using a methodology similar to that used in our
earlier work [14]. As can be seen from the table, a single EV6
core occupies as much area as 5 EV5 cores. For estimating the
area of EV6+, we assumed that the area overhead for adding
the first extra thread to EV6 is 12% and for other threads, the
overhead is 5%. These numbers were based on academic and
industrial predictions [4, 12, 19].

To evaluate the performance of heterogeneous architec-
tures, we perform comparisons against homogeneous architec-
tures occupying equivalent area. We assume that the total area
available for cores is around 100���. This area can accomo-
date a maximum of 4 EV6 cores or 20 EV5 cores. We expect
that while a 4-EV6 homogeneous configuration would be suit-
able for low-TLP (thread-level parallelism) environments, the
20-EV5 configuration would be a better match for the cases
where TLP is high. For studying heterogeneous architectures,
we choose a configuration with 3 EV6 cores and 5 EV5 cores
with the expectation that it would perform well over a wide
range of available thread-level parallelism. It would also oc-
cupy roughly the same area. For our experiments with mul-
tithreading, we study the same heterogeneous configuration,
except with the EV6 core replaced with an EV6+ core, and
compare it with homogenous architectures of equivalent area.

For the chosen cache configuration, the area occupied by
the L2 cache would be around 135 ���. The rest of the
logic (e.g. 16 memory-controllers, crossbar interconnect etc.)
might occupy up to 50 ��� (crossbar area calculations as-
sume 300 bit wide links implemented in the M3/M5 layer;
memory-controller area assumptions are consistent with Pi-
ranha [2] estimates). Hence, the total die-size would be ap-
proximately 285 ���. For studying multi-threading hetero-
geneous multi-core architectures in Section 4.3, as discussed
above, we use a configuration consisting of 3 EV6+ cores and
5 EV5 cores. If the same estimates for L2 area and other
overheads is assumed, then the die-size in that case would be
around 300���. Note that actual area might be dependent on
the layout and other issues, but the above assumptions provide
a first-order model adequate for this study.

3.2 Workload construction
All our evaluations are done for various number of threads

ranging from one through a maximum number of available
processor contexts. Instead of choosing a large number of
benchmarks and then evaluating each number of threads using
workloads with completely unique composition, we instead
choose a relatively small number of SPEC2000 benchmarks
(8) and then construct workloads using these benchmarks. Ta-
ble 2 summarizes the benchmarks used. These benchmarks
are evenly distributed between integer benchmarks (crafty,
mcf, eon, bzip2) and floating-point benchmarks (applu, wup-
wise, art, ammp). Also, half of them (applu, bzip2, mcf, wup-
wise) have a large memory footprint (over 175MB), while the
other half (ammp, art, crafty, eon) have memory footprints of
less than 30MB.



All the data points are generated by evaluating 8 workloads
for each case and then averaging the results. A workload con-
sisting of � threads is constructed by selecting the benchmarks
using a sliding window (with wraparound) of size � and then
shifting the window right by one. Since there are 8 distinct
benchmarks, the window selects eight distinct workloads (ex-
cept for cases when the window-size is a multiple of 8, in those
cases all the selected workloads have identical composition).
All of these workloads are run, ensuring that each benchmark
is equally represented at every data point. This methodology
for workload construction is similar to that used in [24, 18].

Diversity in server workloads is either due to different ap-
plications being run together (as in batch workloads), due to
varying computational requirements of an application over
time (as in media workloads), or because different threads
of execution exhibit different phases, process different data
streams, and are typically not in sync (as in transaction-
oriented workloads). We believe that the simulated workloads
are sufficiently representative of the diversity of computational
requirements in a typical server workload mix.
3.3 Simulation approach

Benchmarks are simulated using SMTSIM, a cycle-
accurate execution-driven simulator that simulates an out-of-
order, simultaneous multithreading processor [21]. SMTSIM
executes unmodified, statically linked Alpha binaries. The
simulator was modified to simulate the various multi-core ar-
chitectures.

The Simpoint tool [17] was used to find good representative
fast-forward distances for each benchmark. Table 2 also shows
the distance to which each benchmark was fast-forwarded be-
fore beginning simulation. Unless otherwise stated, all sim-
ulations involving � threads were done for ��� � � million
instructions. All the benchmarks are simulated using ref in-
puts.
3.4 Evaluation metrics

In a study like this, IPC (number of total instructions com-
mitted per cycle) is not a reliable metric as it would inordi-
nately bias all the heuristics (and policies) against inherently
slow-running threads. Any policy that favors high-IPC threads
boosts the reported IPC by increasing the contribution from
the favored threads. But this does not necessarily represent an
improvement. While the IPC over a particular measurement
interval might be higher, in a real system the machine would
eventually have to run a workload inordinately heavy in low-
IPC threads, and the artificially-generated gains would disap-
pear. Hence, we use weighted speedup [18, 22] for our eval-
uations. In this paper, weighted speedup measures the arith-
metic sum of the individual IPCs of the threads constituting
a workload divided by their IPC on a baseline configuration
when running alone. This metric makes it difficult to produce
artificial speedups by simply favoring high-IPC threads.

As another axis of comparison, we also present results from
open system experiments where jobs enter and leave the sys-
tem at random rates. This represents a real system with vari-
able job-arrival rates and variable service times. The systems

Program Description fast-forward
(billion instr)

ammp Computational Chemistry 8.75
applu Parabolic/Elliptic Partial Diff. Equations 116
art Image Recognition/Neural Networks 15
bzip2 Compression 65
crafty Game Playing:Chess 83
eon Computer Visualization 55
mcf Combinatorial Optimization 55
wupwise Physics/Quantum Chromodynamics 88

Table 2. Benchmarks simulated.

are then compared in terms of average response time of ap-
plications as well as system queue lengths. Response time of
an application, as used in this paper, is the time between job
submission and job completion, and hence accounts for the
queueing delays that might be incurred when the processor is
busy. We believe that this is a better metric than throughput
to quantify the performance of a real system with variable job
inter-arrival rates and/or variable job service times.

4 Results

In this section, we demonstrate the performance advan-
tage of the heterogeneous multi-core architectures for multi-
threaded workloads and demonstrate job-to-core assignment
mechanisms that allow the architecture to deliver on its
promise. The first two subsections focus on the former, and
the rest of the section demonstrates the further gains available
from a good job assignment mechanism.

4.1 Static scheduling for inter-thread diversity

The heterogeneous architecture can exploit two dimensions
of diversity in an application mix. The first is diversity be-
tween applications. The second is diversity over time within
a single application. Prior work [17, 25] has shown that both
these dimensions of diversity occur in common workloads. In
this section, we attempt to separate these two effects by first
looking at the performance of a static assignment of applica-
tions to cores. Note that the static assignment approach would
not eliminate the need for core switching, because the best as-
signment of jobs to cores will change as jobs enter and exit the
system.

Figure 2 shows the results comparing one heterogeneous
architecture against two homogeneous architectures all requir-
ing approximately the same area. The heterogeneous architec-
ture that we evaluate includes 3 EV6 cores and 5 EV5 cores,
while the two homogeneous architectures that we study have
4 EV6 cores or 20 EV5 cores, respectively. For each archi-
tecture, the graph shows the variation of the average weighted
speedup for varying number of threads.

For the homogeneous CMP configuration, we assume a
straightforward scheduling policy, where as long as a core
is available, any workload can be assigned to any core. For
the heterogeneous case, we use an assignment that seeks to
match the optimal static configuration as closely as possible.
The optimal configuration would factor in both the effect of
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Figure 2. Benefits from heterogeneity - static scheduling
for inter-thread diversity.

the performance difference between executing on a different
core and the potential shared L2 cache interactions. How-
ever, determining this configuration is only possible by run-
ning all possible combinations. Instead, as a simplifying as-
sumption, our scheduling policy assumes no knowledge of L2-
interactions (only for determining core assignments – the in-
teractions are still simulated) when determining the static as-
signment of workloads to cores. This simplification allows us
to find the best configuration (defined as the one which max-
imizes weighted speedup) by simply running each job alone
on each of our unique cores and using that to guide our core
assignment. This results in consistently good, if not optimal,
assignments. For a few cases, we compared this approach to
an exhaustive exploration of all combinations; our results in-
dicated that this results in performance close to the optimal
assignments.

The use of weighted speedup as the metric ensures that
those jobs assigned to the EV5 are those that are least affected
(in relative IPC) by the difference between EV6 and EV5.
In both the homogeneous and heterogeneous cases, once all
the contexts of a processor get used, we just assume that the
weighted speedup will level out as shown in the Figure 2. The
effects when the number of jobs exceeds the number of cores
in the system (e.g., additional context switching) is modeled
more exactly in Section 4.2.

As can be seen from Figure 2, even with a simple static
approach, the results show a strong advantage for heterogene-
ity over the homogeneous designs, for most levels of thread-
ing. The heterogeneous architecture attempts to combine the
strengths of both the homogeneous configurations - CMPs of a
few powerful processors (EV6 CMP) and CMPs of many less
powerful processors (EV5 CMP). While for low threading lev-
els, the applications can run on powerful EV6 cores resulting

in high single thread performance, for higher threading levels,
the applications can run on the added EV5 contexts enabled
by heterogeneity, resulting in higher overall throughput.

The results in Figure 2 show that the heterogeneous con-
figuration achieves performance identical to the homogeneous
EV6 CMP from 1 to 3 threads. At 4 threads, the optimum
point for the EV6 CMP, that configuration shows a slight ad-
vantage over the heterogeneous case. However, this advantage
is very small because with 4 threads, the heterogeneous con-
figuration is nearly always able to find one thread that is im-
pacted little by having to run on an EV5 instead of EV6. As
soon as we have more than 4 threads, however, the heteroge-
neous processor shows clear advantage.

The superior performance of the heterogeneous architec-
ture is directly attributable to the diversity of the workload
mix. For example, mcf underutilizes the EV6 pipeline due
to its poor memory behavior. On the other hand, benchmarks
like crafty and applu have much higher EV6 utilization. Static
scheduling on heterogeneous architectures enables the map-
ping of these benchmarks to the cores in such a way that over-
all processor utilization (average of individual core utilization
values) is maximized.

The heterogeneous design remains superior to the EV5
CMP out to 13 threads, well beyond the point where the het-
erogeneous architecture runs out of processors and is forced
to queue jobs. Beyond that, the raw throughput of the homo-
geneous design with 20 EV5 cores wins out. This is primar-
ily because of the particular heterogeneous designs we chose.
However, more extensive exploration of the design space than
we show here confirms that we can always come up with a
different configuration that is competitive with more threads
(e.g., fewer EV6’s, more EV5’s), if that is the desired design
point.

Compared to a homogeneous processor with 4 EV6 cores,
the heterogeneous processor performs up to 37% better with
an average 26% improvement over the configurations consid-
ering 1-20 threads. Relative to 20 EV5 cores, it performs up
to 2.3 times better, and averages 23% better over that same
range.

These results demonstrate that over a range of threading
levels, a heterogeneous architecture can outperform compa-
rable homogeneous architectures. Although the results are
shown here only for a particular area and two core types (as
discussed in Section 3.1), our experiments with other configu-
rations (at different processor areas and core types) indicate
that these results are representative of other heterogeneous
configurations as well.

4.2 Open system experiments
Graphs of performance at various threading levels are in-

structive, but do not necessarily reflect accurately real system
performance. Real systems typically operate at a variety of
threading levels (run queue sizes), and observed performance
is a factor of the whole range. Thus, while a particular ar-
chitecture may appear to be optimal at a single point (even if
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that design point represents the expected average behavior), it
may never be optimal on a system that experiences a range of
demand levels. This section explores the performance of het-
erogeneous architectures on an open system. It does so with
a sophisticated simulation framework that models random job
arrivals and random job lengths. This addresses some method-
ological issues that remain, even when using the weighted
speedup metric. In this experiment, we are able to guarantee
that every simulation executes the exact same set of instruc-
tions. Additionally, we are able to use average response time
as our performance metric.

We model a system where jobs enter and leave the system
with exponentially distributed arrival rate � and exponentially
distributed average time to complete a job T. We study the
two systems for varying values of � and observe the effects
on mean response time, queue length, and stability of the sys-
tems. Whenever a system is stable, it is better to measure re-
sponse time rather than throughput, since throughput cannot
possibly exceed the rate of job arrival. If two stable systems
are compared and one is faster, the faster one will complete
jobs more quickly and thus typically have fewer jobs queued
up waiting to run.

For these experiments, we randomly generate jobs (using
a Poisson model) centered around an average expected execu-
tion time of 200 million cycles on an EV6. Jobs are generated
by first generating random numbers with average distribution
centered around 200 million cycles and then executing that
many instructions multiplied by the single-threaded IPC of the
benchmarks on EV6. We then simulate different mean job ar-
rival rates with exponential distributions. To model a random
system but produce repeatable results, for each point on the

job arrival rate axis, we feed the same jobs in the same order
with the same arrival times to each of the systems.

For the heterogeneous configuration, we use a naive
scheduling heuristic which simply assigns jobs randomly, only
ensuring that the more powerful processors get used before the
less powerful. Significant improvements over this heuristic
will be demonstrated in the following sections.

Figure 3 shows the results for these experiments. The most
profound difference between the homogeneous and the het-
erogeneous architectures is that they saturate at very different
throughputs. The homogeneous architecture sees unbounded
response times as the arrival rate approaches its maximum
throughput around 2 jobs per 100 million cycles. At this point,
its run queue becomes (if we ran the simulations long enough)
infinite.

However, the heterogeneous architecture remains stable
well beyond this point. Furthermore, the scheduling heuristics
we will demonstrate in the following section will actually in-
crease the maximum throughput of the architecture, so its sat-
uration point would be even further out. The heterogeneous ar-
chitecture also sees average response time improvements well
before the other architecture becomes saturated. There is only
a very narrow region where the homogeneous architecture sees
no queueing beyond 4 jobs, but the heterogeneous is forced to
use an EV5 occasionally, where the homogeneous architec-
ture sees some slight advantage. As soon as the probability
of queue lengths beyond four becomes non-insignificant, the
heterogeneous architecture is superior.

Another interesting point to note is that, besides support-
ing greater throughput in peak load conditions, heterogeneous
chip-level multiprocessor response time degrades more grace-
fully under heavier loads than for homogeneous processors.
This should enhance system reliability in transient high load
conditions. This is particularly important as reliability and
availability of systems become more important with the ma-
turity of computer technology.
4.3 Dynamic scheduling for intra-thread diversity

The previous sections demonstrated the performance ad-
vantages of the heterogeneous architecture when exploiting
core diversity for inter-workload variation. However, that
analysis has two weaknesses – it used unimplementable as-
signment policies in some cases (e.g., the static assignment
oracle) and ignored variations in the resource demands of in-
dividual applications. This section solves each of these prob-
lems, and demonstrates the importance of good dynamic job
assignment policies.

Prior work has shown that an application’s demand for pro-
cessor resources varies across phases of the application. Thus,
the best match of applications to cores will change as those
applications transition between phases. In this section, we
examine implementable heuristics that dynamically adjust the
mapping to improve performance.

These heuristics are sampling-based. During the execution
of a workload, every so often, a trigger is generated that ini-
tiates a sampling phase. In the sampling phase, the scheduler
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Figure 4. Three strategies for evaluating the perfor-
mance an application will realize on a different core.

permutes the assignment of applications to cores, changing
the cores onto which the applications are assigned. During
this phase, the dynamic execution profiles of the applications
being run are gathered by referencing hardware performance
counters. These profiles are then used to create a new assign-
ment, which is then employed during a much longer phase of
execution, the steady phase. The steady phase continues un-
til the next trigger. Note that applications continue to make
forward progress during the sampling phase, albeit perhaps
non-optimally.

4.3.1 Core sampling strategies

There are a large number of application-to-core assignment
permutations possible, both for the sampling phase and for the
steady phase. We prune the number of permutations signif-
icantly by assuming that we would never run an application
on a less powerful core when doing so would leave a more
powerful core idle (for either the sampling phase or the steady
phase). Thus, with four threads on our 3 EV6/5 EV5 configu-
ration, four possible assignments are possible based on which
thread gets allocated to the EV5. With more threads, the num-
ber of permutations increase, up to 56 potential choices with
eight threads. Rather than evaluating all these possible alter-
natives, our heuristics only sample a subset of possible assign-
ments. Each of these assignments are run for 2 million cycles.
At the end of the sampling phase, we use the collected data to
make assignments.

Selection of the assignments to be sampled depends on how
much we account for interactions at the L2 cache level (which,

if large, can color the data collected for all threads and lead
to inappropriate decisions). We evaluated three strategies for
sampling the assignment space.

The first strategy, sample-one, samples as many assign-
ments as is needed to run each thread once on each core-type.
This assumes that the single sample is accurate, regardless of
what other jobs are doing. Then the assignment is made, max-
imizing weighted speedup under the assumption future per-
formance will be the same as our one sample for each thread.
The assignment that maximizes weighted speedup is simply
the one that assigns to the EV5s those jobs whose ratio of av-
erage EV5 throughput to EV6 throughput is highest.

The second strategy, sample-avg, assumes we need multi-
ple samples to get the average behavior of a job on each core.
In this case, we sample as many times as there are threads run-
ning. The samples are distinct and are done such that we get at
least two runs of each thread on each core type, then base the
assignment (again maximizing expected weighted speedup)
on the average performance of each thread on each core.

The third strategy, sample-sched, assumes we know little
about a particular assignment unless we have actually run it.
It thus samples a number of possible assignments, and then
is constrained to choose one of the assignments it sampled.
In fact, we sample 4 � n representative assignments for a n-
threaded workload (bounded by the maximum allowed for that
configuration). Selection of the best core assignment, of those
sampled, is the one that maximizes total weighted speedup,
using average EV5 throughput for each thread as the baseline.

Figure 4 presents a quantitative comparison of the effec-
tiveness of the three strategies. The average weighted speedup
values reported here were obtained using a default time-based
trigger that resulted in a sampling phase being triggered ev-
ery 500 million processor cycles; Section 4.3.2 evaluates the
impact of other time intervals. Also included in the graph,
for comparison, are (1) the results obtained using the homoge-
neous multi-core processor, (2) the random assignment policy
described in the previous section, and (3) the best static as-
signment found previously.

As suggested by the graph, the sample-sched strategy per-
forms the best, although sample-avg has very similar perfor-
mance (within 2%). Even sample-one is not much worse. We
observed a similar trend for other time intervals and for other
trigger types. We conclude from this result that for our work-
load and L2 cache configuration, the level of interaction at the
L2 cache is not sufficient to affect overall performance unduly.
We use sample-avg as the basis for our trigger evaluation in
the sections to follow as it not only has lower overhead than
sample-sched, but is also more robust than both sample-sched
and sample-one against worst-case events like phase changes
during sampling.

The second significant result that the graph shows is that
the intelligent assignment policies make a significant perfor-
mance difference, allowing us to outperform the random core
assignment strategy by up to 22%. Perhaps more surprising



is the importance of the dynamic sampling and reconfigura-
tion, as we outperform the static best by as much as 10%.
We take a hit at 4 threads, when the sampling overhead first
kicks in, but quickly recover that loss as the number of threads
increases, maximizing the scheduler’s flexibility. The results
also suggest that fairly good decisions can be made about an
application’s relative performance on various cores even if it
runs for no more than 2 million cycles on each core. This also
indicates that the cold-start effect on core-switching is much
less than the running time on a core during sampling. More
discussion about sampling overhead can be found in the next
section.

4.3.2 Trigger mechanisms

Sampling effectively requires juggling two conflicting goals
– minimizing sampling overhead and reacting quickly to
changes in workload behavior. To manage this tradeoff, we
compare two classes of trigger mechanisms, one based on a
periodic timer, and the second based on events indicating sig-
nificant changes in performance.

We begin by evaluating the first class and the performance
impact of varying the amount of time between sampling
phases, that is, the length of the steady phase. For smaller
steady phase lengths, a greater fraction of the total time is
spent in the sampling phases, thus contributing overhead. The
overhead derives from, first, the overhead of application core
switching each time we sample a different configuration, and
second, the fact that sampling by definition is usually running
non-ideal configurations.

Figure 5 presents a comparison of the average weighted
speedup obtained with steady-phase lengths between 31.25
million and 500 million cycles for the sample-average strat-
egy. We note from this graph that the sampling frequency has
a second-order impact on performance while the steady-phase
length of 125 million cycles performs best overall. Also, in a
similar observation as in [14], we found that the act of core-
switching has relatively small overhead. So, the optimal sam-
pling frequency is determined by the average phase length for
the applications constituting the various workloads, as well as
the ratio of the lengths of the steady phase and the sampling
phase.

While time-triggered sampling is very simple to imple-
ment, it does not capture either inter-thread or intra-thread di-
versity fully. A fixed sampling frequency is inadequate when
the phase lengths of different applications in the workload mix
are different. Also, each application can demonstrate multiple
phases each with its own phase length. For example, in our
simulation window, while art demonstrates a periodic behav-
ior with phase length of 80 million instructions, mcf demon-
strates at least two distinct phases with one of the phases
at least 350 million instructions long. Any sampling-based
heuristic that hopes to capture phase changes for both art and
mcf, with minimal overhead, needs to be adaptive.
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Figure 5. Sensitivity to sampling frequency for time-
based trigger mechanisms using the sample-avg core-
sampling strategy

Next, we consider the second class of trigger mechanisms.
Here, we monitor the run-time behavior of the workload and
detect when sufficiently significant changes have occurred.
We consider three instantiations of this trigger class. With the
individual-event trigger, a sampling phase is triggered every
time the steady-phase IPC of an individual thread changes by
more than 50%. In contrast, with the global-event trigger, we
sum the absolute values of the percent changes in IPC for each
application, and trigger a sampling phase when this value ex-
ceeds 100%. The last heuristic, bounded-global-event, modi-
fies the global-event trigger by initiating a sampling phase if
more than 300 million cycles has elapsed since the last sam-
pling phase, and avoiding sampling if the global event trigger
occurs within 50 million cycles since the last sampling phase.
All the thresholds were determined by observing the execution
characteristics of the simulated applications.

Figure 6 presents a comparison of these three event-based
triggers, along with the time-based trigger mechanism using
a steady-state length of 125 million cycles (the best one from
the previous discussion). We continue to use the sample-avg
core-sampling strategy. The graph also includes the static-
best heuristic from Section 4.1, and the homogeneous core.
As we can see from the figure, the event-based triggers out-
perform the best timer-based trigger and the static assignment
approach. This mechanism effectively meets our two goals
of reacting quickly to workload changes and minimizing sam-
pling.

While the individual event trigger performs well in general,
using a global event trigger achieves better performance. This
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Figure 6. Comparison of event-based triggers using the
sample-avg core-sampling strategy.

is because a change in the behavior of a single application
might often not result in changing the workload-to-cores map-
ping. Using a global event trigger guards against these false
positives. The bounded-global-event trigger achieves the best
performance (close to a 20% performance improvement over
static) indicating the benefits from a hybrid timer-based and
event-based approach. It has all the advantages of a global-
event trigger, but the bounds also help to guard against false
positives and false negatives. By eliminating most of the sam-
pling overhead, this hybrid scheme also closes the gap again
with the homogeneous processor at 4 threads. Similar trends
were observed for different values of parameters embodied in
the event-based triggers.

4.3.3 Summary

The results presented in this section indicate that dynamic
heuristics which intelligently adapt the assignment of appli-
cations to cores can better leverage the diversity advantages of
a heterogeneous architecture. Compared to the base homoge-
neous architecture, the best dynamic heuristic achieves close
to a 63% improvement in throughput in the best case (for 8
threads) and an average improvement in throughput of 17%
over configurations running 1-8 threads. Even more interest-
ing, the best dynamic heuristic achieves a weighted speedup
of 6.5 for eight threads, which is close to 80% of the optimal
speedup (8) achievable for this configuration (despite the fact
that over half of our cores have roughly half the raw com-
putation power of the baseline core!). In contrast, the ho-
mogeneous configuration achieves only 50% of the optimal

speedup. We have also demonstrated the importance of the in-
telligent dynamic assignment, which achieves up to 31% im-
provement over a random scheduler.

While our relatively simple dynamic heuristics are effec-
tive, there are clearly many other heuristics that could be con-
sidered. For example, event-based sampling could be based on
other metrics aside from IPC, such as changes in ILP, cache or
branch behavior, or basic block profiles as suggested in [17].
Further, rather than using past behavior as a simple approx-
imation for future behavior, more complex models for phase
identification and prediction [17] could also be used.

4.4 Cores supporting multithreading
The availability of multithreaded cores adds one more di-

mension of heterogeneity to exploit. While the previous sec-
tion demonstrated that interactions between scheduled threads
could be largely ignored when that interaction occurs at the
L2 cache, jobs co-scheduled on a simultaneous multithread-
ing processor interact at a completely different level, sharing
and competing for virtually all processor resources. In this
case, interactions cannot be ignored. For example, running
ammp co-scheduled with mcf tells us little about the perfor-
mance of ammp co-scheduled with bzip. Prior research has
indeed shown that not all combinations of jobs coexist with
the same efficiency on a multithreaded processor [18], a phe-
nomenon called symbiosis.

In a heterogeneous design with only some cores multi-
threaded, those jobs that do have high symbiosis will migrate
to the multithreaded cores (assuming intelligent core assign-
ment), resulting in more efficient multithreaded execution than
if all cores were run in multithreaded mode.

However, the multithreaded processor core creates a signif-
icant challenge to the core scheduler. First, because jobs inter-
act at such an intimate level on an SMT processor, the simpler
sampling policies that ignored job interactions will not work
well, meaning we should only consider scheduling the per-
mutations we are willing to sample. Second, the permutation
space of potential assignments is itself much larger. Consider
just one multithreaded core and several smaller cores. With 4
jobs, if the larger core were not multithreaded, we would con-
sider only four permutations. But with the multithreaded core,
it is not clear whether one, two, three, or four jobs should go
on the faster core before we decide to use the others. In fact,
there are now 15 permutations that have reasonable chances
of being the best. It should be noted that this problem is not
unique to heterogeneous cores. A homogeneous SMT multi-
processor will require very similar sampling just to find the
optimal partitioning of jobs to cores. In fact, the application
of our heterogeneous scheduling principles to a homogeneous
SMT CMP architecture, and a comparison of the two architec-
tures, is the subject of future research.

For a system with more multithreaded cores and more
threads, the sample space becomes unmanageable very
quickly. To test some scheduling mechanisms for a hetero-
geneous architecture which includes multithreaded cores, we



change our base heterogeneous configuration to have the EV6
processors modified to support multithreading (which we call
EV6+) while continuing to have 5 EV5 cores as before. This
uses 4.66 times the area of an EV6 core and 22.6 times the
area of an EV5 core. We chose EV6+ for this study over other
possible multithreaded configurations, such as EV8, because
in the time-frame we are targeting multiple EV8 cores per die
are not as realistic. Also, we wanted results comparable with
the rest of this paper. Multithreading is less effective on EV6s,
but the area-performance tradeoffs are much better than the
large EV8.

Because EV6+ is a narrower width machine than assumed
in most prior SMT research, we expect the incremental perfor-
mance of the 2nd, 3rd, and 4th thread to be lessened. For this
reason, we will make the following assumption which helps
prune the sample space considerably – we assume that it is al-
ways better to run on an EV5 than to be the third thread on an
EV6+. Even with this assumption, we still need sampling to
know whether a thread would be better off as the 2nd thread
on an EV6+ or alone on the EV5.

For these remaining choices, we examine the following
sampling strategies for this architecture. pref-EV6 always as-
sumes it is best to run 2 threads on each EV6+ before using
the EV5s, and samples accordingly. pref-EV5 always assumes
it is best to run on the EV5 rather than put two threads on an
EV6+ and samples accordingly. pref-neither assumes either
is equally likely to be optimal and samples random schedules
within the constraint that we don’t put a third thread on a core
until all EV5’s are used. pref-similar assumes that the config-
uration we are running with now has merit, and that the next
configuration will be similar. In this case, sampling is biased
toward a similar configuration (same number of total jobs on
the EV6+’s), with only about 30% of the samples deviating
from that.

For all these heuristics, the sampling phase is again 2 mil-
lion cycles while the steady phase is 500 million cycles. Ev-
ery experiment involving � threads involves � � � samples.
Performance of pref-similar does depend on the initial config-
uration. We started each simulation with the jobs in a known
good assignment to better reflect steady state behavior.

The results with multithreaded cores are shown in Figure 7.
Also included in the graph are random scheduling results as
well as an extrapolation of the homogeneous results from ear-
lier graphs. Those results are extrapolated to a hypotheti-
cal 4.66 EV6 (eqv-EV6-homogeneous) and a hypothetical 22.6
EV5 (eqv-EV5-homogeneous) configuration, to provide more
accurate/fair comparisons at constant area. These results show
that the core assignment policy is indeed more important to
this architecture than the non-multithreaded cores. Compared
to the differences between the sample-one, sample-avg, and
sample-sched (Figure 4), the differences between the heuris-
tics in Figure 7 are significantly higher. The trends here are
also similar to those in the earlier section that showed that the
more permutations available to the scheduler, the more oppor-
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Figure 7. Performance of heuristics for a heterogeneous
architecture with multithreaded cores.

tunity there was to choose a good assignment schedule. It also
shows that with fewer threads available it is best to be some-
what pessimistic about the performance of additional threads
on the EV6+. Of course, this is an artifact of the particular
multithreaded architecture we model, rather than a general re-
sult. The adaptive pref-similar technique, which samples the
immediate neighborhood of the current configuration provides
significant benefit over the entire range. This indicates that (1)
there is typically not a clear answer between whether to put
extra threads on EV6 or to use another EV5, (2) there is sig-
nificant value in making the right decision in this respect, and
(3) using the current configuration as a pruning tool is effec-
tive in finding a good assignment.

With the addition of modest multithreading cores to our
heterogeneous architecture, we provide much better perfor-
mance with higher threading levels. In fact, we significantly
reduce the portion of the graph where many smaller processors
are optimal, relative to Figure 2.

5 Conclusions
We have demonstrated that heterogeneous multi-core archi-

tectures can provide significant throughput advantages over
equivalent-area homogeneous multi-core architectures. This
throughput advantage results from the ability of heterogeneous
processors to better exploit both variations in thread-level par-
allelism as well as inter- and intra- thread diversity. We also
propose and evaluate a set of thread scheduling mechanisms
to best realize the potential performance gain available from
heterogeneity.

Over a wide range of threading parallelism, the representa-
tive heterogeneous architecture we study perform 18% better



on average than a homogeneous CMP architecture of the same
area on SPEC workloads. For an open system with random
task arrivals and exits, our results showed that heterogeneous
architectures can have much lower response times than cor-
responding homogeneous configurations. Also, the heteroge-
neous systems were stable at job arrival rates that were up to
43% higher.

Having a diversity of cores with varying resources and
pipeline architectures enables the system to efficiently lever-
age application diversity both at the inter-thread and intra-
thread level. Applications least able to derive significant ben-
efits from large and complex cores can instead be run on
smaller, less complex cores with much better area efficiencies.

This work demonstrates effective yet relatively simple task
scheduling mechanisms to best match the applications to
cores. Our best core assignment strategy achieves more than
a 30% performance improvement over a naive heuristic, while
still being straightforward to implement. Relatively simple
heuristics are also demonstrated to be effective even when one
or more of the heterogeneous cores are multithreaded.
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