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Abstract This paper presents a regional stabilization of an exothermal (bio)chemical process around a specified 
steady-state temperature and concentration profiles. These desired profiles provide a constant temperature 
equilibrium that has lead to a closed-loop steady-state behavior which is close to that of an isothermal process. To 
achieve the regional stability a nonlinear state estimator based on the component temperature measurements is 
included into a state feedback system so that there is no need for measuring the process component concentration. 
Performance issues are illustrated in a simulation study. 
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1. Introduction 
System theory properties for distributed parameter 

systems have been the object of active research over the 
last decades. In this direction, a large research activity has 
been dedicated, mainly to the analysis and to the control 
design of distributed parameter tubular (bio)reactors (see 
[1,2,3] and the references quoted therein). However, a 
number of important questions remained unsolved so far, 
in particular, the stability of unstable equilibrium points of 
non-isothermal tubular (bio)processes and, papers in this 
topic are scattered in the literature [4,5,6]. In [4], the 
authors provide a discontinuous feedback stabilization 
which globally and regionally asymptotically stabilizes 
non-isothermal chemical tubular reactors around desired 
steady-states. 

In this direction, this paper proposes an exponentially 
feedback stabilization with a region of attraction around 
an unstable profile in steady-state of an exothermal plug-
flow (bio)chemical reactor, corresponding to an optimal 
coolant temperature, this desired profile provides a 
constant temperature equilibrium, that forces the 
(bio)process to have a closed-loop steady-state behavior 
which is close to that of an isothermal reactor. To achieve 
the regional stability around the desired region of 
attraction, a component concentration estimator is 
constructed and included into a closed-loop system based 
on the component temperature measurements without 
need of component concentration measurement which is 
normally unavailable in practice. 

The dynamics of the (bio)process are given, for all time 
0t ≥  and for all [0,1]z∈ , by mass balance equations (see 

[4]): 

 1 1
1 0 2 1( ) (1 ) ( ),in

x x x x k x r x
t z

υ β δ
∂ ∂

= − − − + −
∂ ∂

 (1) 

 2 2
0 2 1(1 ) ( )

x x k x r x
t z

υ
∂ ∂

= − + −
∂ ∂

 (2) 

with the boundary and the initial conditions: 

 0
1 1 1( 0, ) 0, ( , 0) ,x z t x z t x= = = =  (3) 

 0
2 2 2( 0, ) 0, ( , 0)x z t x z t x= = = =  (4) 

where 1 2( , ), ( , ), ( , ),inx z t x z t x z t υ  and r  are the 
temperature and the reactant concentration, the influent 
reactant concentration ( )mol l , the fluid superficial 
velocity ( )m s , and the reactant rate ( )mol l s . We 
assume that the kinetics depend only on the temperature 1x  
and we consider a reaction rate model of the form 

1
1

1
( ) exp( )

1
xr x
x

µ
=

+
, where 0k  is the kinetic constant 

1( )s− . 0 0
1 2,x x  are the initial states. 

The real constants ,β µ  are strictly positive, whereas 
the constant δ  is strictly positive for of exothermic 
reaction and strictly negative for the endothermic reaction. 
In this paper, we investigate the case of exothermic 
reaction.  
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2. Notations and Preliminaries 

Throughout the sequel, we assume 2 2[0, ] [0, ]H L L L L= × , 
the Hilbert space with the usual inner product 

1 2 1 2 2 1 2 2, , ,
L L

z z x x y y〈 〉 = 〈 〉 + 〈 〉 , for all 1 1 1( , )Tz x y=  

and 2 2 2( , )Tz x y= in H , and the induced norm defined 

by 2 2
1 2 1 22 2( , )T

L L
x x x x= + for all 1 2( , )Tx x H∈ . 

Clearly the Hilbert space H is a real Banach Lattice (for 
more details, see [7]) where, 

 x y≤ ⇔ ( 1 1x y≤ , 2 2x y≤ ) 

for almost all [0,1]z∈  
for all given 

 1 2 1 2( , ) , ( , ) ,T Tx x x H y y y H= ∈ = ∈  

In the (bio)chemical process (1)-(4), inx  is considered 
as the control law. In order to facilitate our study we write 
the dynamic model (1)-(4) in terms of a nonlinear 
differential equation on H , viz., for all positive t and all 
initial condition 0 0

0 1 2: ( , )Tx x x=  in H , on its abstract 
form as 

 
0

( ) ( ) ( ( )) ( )
(0)

x t Ax t N x t Bu t
x x

= + +
 =



 

where, x  stands for the time derivative of the state 

1 2( ) ( (., ), (., ))Tx t x t x t= , and the linear operator A  is 
defined by (see [1] for more details), 

 

1 1

2 2

1

2

0 ( )
( ) :

0 ( )

0 ( )
( )0

A x t
Ax t

A x t

d
x tdz
x td

dz

υ β

υ

  
=   
  

⋅ − −  
 =  ⋅  − 
 

 

on its domain 

 
1 2

1,2

: ( ( ), ( )) : .
( )

, , (0) 0

T

i

x x t x t H x is absolutely
D A dxcontinuous H x

dz =

 = ∈
 =  

∈ = 
 

 

Remark 2.1 The linear operator A is non-positive definite 
on its domain ( )D A , for all 1 2( , ) ( ),Tx x x D A= ∈  

 

1
1 1 1 1 10

2 2
1 100

( )
, ( ( )) ( )

1 ( ) ( )
2

0

L

L L

dx zA x x x z x z dz
dz

x z x z dz

υ β

υ β

< >= − −

 = − − 
≤

∫

∫  

and 

 
2

2 2 2 20

2
1 0

( )
, ( )

1 ( ) 0
2

L

L

dx zA x x x z dz
dz

x z

υ

υ

< >= −

 = − ≤ 

∫
 

The control operator B  is a bounded linear operator 

from 2IR to H , which is defined by 
0
I

B
β 

=  
 

. The 

control law ( ) ( )inu t x t= . 
The nonlinear operator N is defined on 

1 2 1 2( , ) , 0 ( ) 0 ( ) 1,:
[0,1]

Tx x x H x z and x tD
for almost all z

 = ∈ ≤ ≤ ≤ =  
∈  

 

for all 1 2( , )Tx x x=  in D, 

 

1
1 10 21

12
1 10 2

(1 )( )
( ) :

( )
(1 )

x
x

x
x

k x eN x
N x

N x
k x e

µ

µ

δ +

+

 
 −   = =    
 − 

 (5) 

From physical point of view, it is expected that in the 
case of exothermic reaction, for all ( , ) [0,1] [0, )z t ∈ × +∞  

 1 1,max 21 ( , ) , 1 ( , ) 1x z t x x z t− ≤ ≤ − ≤ ≤  

where 1,maxx  could possibly be equal to +∞  (see e.g. [4,8] 
and the references within) 
Lemma 2.2 The nonlinear operator N  given by (5) is Nl  
- Lipschitz on D , where  

 0: (1 )(1 )Nl k eµ µ δ= + + . 

Proof: Let 1 2( , )Tx x x= and 1 2( , )Ty y y= be in D  then,  

 
2 21 1 2 2( ) ( ) max( ( ) ( ) , ( ) ( ) )L LN x N y N x N y N x N x− = − −

 
Observe that 1 2N Nδ= , therefore it is sufficient to 

prove that 2N  is a Lipschitz operator on D . Now for all 

 1 2( , )Tx x x= and 1 2( , )Ty y y=  in D ,  

 

22 2

1 1
0 2 2

21 1

1 120 2 2 0
21 2

2 20 2 2 1 1

2 20 2 2 1 1

( ) ( )

(1 )exp( ) (1 )exp( )
1 1

exp( ) exp( )
1 1

( )

(1 )( )

L

L

L
L

L L

L L

N x N y

x yk x y
x y

x yk e x y k
x y

k e x y x y

k e x y x y

µ

µ

µ

µ µ

µ µ

µ

µ

−

= − − −
+ +

≤ − + −
+ +

≤ − + −

≤ + − + −

 

Thus,  

 2 22 2 0( ) ( ) (1 )L LN x N y k e x yµ µ− ≤ + −

 Whence 2N is a Lipschitz operator on D. Thus we can take 

0: (1 )(1 )Nl k eµ µ δ= + +  as a Lipschitz constant of N . 

3. Feedback Stabilization 
The problem that arises is how to stabilize the nonlinear 

system (1)-(4) around a desired profile 
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( )1 2,
T

e e ex x x= solution of the following steady-state 

equation: 

 *( ) 0e eAx N x Bv+ + =  (6) 

under a prescribed control *v  that ensures the (optimal) 
profile dx  in the steady state. 

In [5] temperature equilibrium profiles are studied that 
minimize different kinds of performance criterion. The 
following deals with the case where the performance 
criterion represents the energy consumption along the 
reactor. In [8] the author gives an unstable equilibrium 
profile that minimizes the energy consumption by  

 0
,

0
(.) , (.) exp( .)

1 exp( .)e c e e
e

k
x x

δ
α

α β
 

= = − − − − 
 

Where, 

 0 exp( )e
in

k E
RT

α
υ

= −  

with , , inE R T  are respectively the activation energy, 
the ideal gas constant, and the inlet temperature. 

We aim in this paper to achieve a temperature feedback 
stabilization around this optimal profile. 

3.1. State Observer Design 
Hereafter we consider, as in [4], that the temperature 

1( , )x z t  is the only available measurement on the system. 
In this case, as in [4], a simple component state observer 
for the dynamical system (1)-(4) is constructed as: 

 1 1
1 0 2 1

ˆ ˆ
ˆ ˆ( ) (1 ) ( )in

x x x x k x r x
t z

υ β δ
∂ ∂

= − − − + −
∂ ∂

 (7) 

 2 2
0 2 1

ˆ ˆ
ˆ(1 ) ( )

x x k x r x
t z

υ
∂ ∂

= − + −
∂ ∂

 (8) 

with the boundary and the initial conditions: 

 0
1 1 1ˆ ˆ ˆ( 0, ) 0, ( , 0) ,x z t x z t x= = = =  (9) 

 0
2 2 2ˆ ˆ ˆ( 0, ) 0, ( , 0)x z t x z t x= = = =  (10) 

The reconstruction error 2 2 2ˆ( , ) ( , ) ( , )e z t x z t x z t= −  is 
shown to converge to zero. 
Theorem 3.1: Consider the observer dynamics (7)-(10) for 
the controlled system (1)-(4). Let for all 

[0,1],z∈ 1 1ˆ ( ,0) ( ,0)x z x z= , then the reconstruction error 

2 ( , )e z t  has the property that 22 (., ) exp( )Le t l tµ≤ −  for 

all initial error 2 (.,0)e  satisfying the condition 

22 (.,0) Le l≤  with a positive constant l . 
Proof: Representing the observer dynamics (7)-(8) in 
terms of the reconstruction error 2 ( , )e z t  and 
differentiating the functional 

 2 2
22 2 20

( ) ( ) (: ( , ) )
L

LV t e t e z t dz= = ∫  

along the trajectories of the resulting error system, we 
obtain for all 0t ≥  

 
2 2 2 2

2 2 2 2

0 1 2 2 2

( ) 2 ( ), ( )
2 ( ), ( )
2 ( ( )) ( ), ( )

V t e t e t
A e t e t

k r x t e t e t

= < >
= < >
− < >





 

by applying Remark 2.1, we have 

 
2

2 0 1 20

0 min 2

( ) 2 ( ( , )) ( , )

2 ( ).

L
V t k r x z t e z t dz

k r V t

≤ −

≤ −
∫

 

Thus, 
 2 2 0 min( ) (0)exp( 2 )V t V k r t≤ − , 
and that ensures the exponential stability of the error 
system, thereby yielding that  

 22 0 min(., ) exp( 2 )Le t l k r t≤ −  

for all initial error 2 (.,0)e satisfying the condition 

22 (.,0) Le l≤ . The proof of the Theorem 3.1 is thus 
completed. 

3.2. Temperature Feedback Stabilization 
The aim of this section is to involve the system 

observer into a closed-loop system to achieve feedback 
stabilization of the temperature of (1)-(4) , with the region 
of attraction containing a prescribed set of the form 

 
1 2

2 2
1 2 1 1 2 22 2

( , )

( ), ( ) :

l

L L

R e e

x z x z x e x e l = − + − ≤ 
 

 

In the sequel, such a stabilization is referred to as a 
regional stabilization. 

The following control law is shown to regionally 
stabilize system (1)-(4) around the desired steady state:  

 

1
* 0 1

1
1 2

1
1

ˆ( ( ) ( )) ˆ( ) ( ) ( )
ˆ ( ) ( )

ˆ( ( ) ( ))

N e
in e

e L

e

k l x t x t
x t v x t x t

x t x t

x t x t

δ

β

γ

−
= − −

−

+ −

 (11) 

where ( )1 2ˆ ˆ ˆ( ) ( ), ( ) Tx t x t x t=  is the output of the 
concentration observer (7)-(10) and g  is a positive 
number . Theorem 3.2: Let consider the dynamic temperature 
feedback controller (7)-(10) and (11) such that 0.γ >  
Then, the (bio)chemical process (1)-(4) is regionally 
exponentially stable around the optimal steady-state 
profile (6). 
Proof: Let us represent the feedback controller (7)-(10) 
and (11) in term of the reconstruction error 

 
( )

( )
1 2

1 2
1 2

( )(: ( ), ( ) )

ˆ ˆ( ) , ( )

T

T
e e

e t e t e t

x t x x t x

=

= − −
 

by 

 
01 1

1 1 1
21

2 1
0 2 1ˆ((1 ) ( ) (1 ) ( )),

N

L

e e

k l ee e e e e
t z e

k x r x x r x

δ
υ β βγ

δ

∂ ∂
= − − − −

∂ ∂

+ − − −

 (12) 
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 2 12 2
0 2 1ˆ((1 ) ( ) (1 ) ( ))e e

e e k x r x x r x
t z

υ
∂ ∂

= − + − − −
∂ ∂

 (13)

 
 0

1 1 1( 0, ) 0, ( , 0) ,e z t e z t e= = = =  (14) 

 0
2 2 2( 0, ) 0, ( , 0) ,e z t e z t e= = = =  (15) 

Let now differentiating the functionals  

 2 2
2 21 1 2 2( ) ( ) , ( ) ( )L LV t e t V t e t= =

 
along the trajectory (12)- (15), yields 

 

1 1 1 2

0
1 1 1 2 1 1 2

21

1 1 2
1 2

0 1 1 2 1 1 2

( ) 2 ( ), ( )
( )

2 ( ), ( ) 2 ( ), ( )
( )

2 ( ), ( )

ˆ2 ( ( ), ( )) ( ( ), ( )), ( )

N

L

e e

V t e t e t
k l e t

A e t e t e t e t
e t

e t e t

k N x t x t N x t x t e t

δ

βγ

δ

= < >

= < > − < >

− < >

+ < − >





 
From Remark 2.1 and Lemma 2.2, we obtain for all 
0t ≥  

 

2
21 0 1 1 2

20

1

( ) 2 ( ) ( ) 2 ( )

2 ( ) ( )

2 ( )

N L L

N L

V t k l e t e t e t

k l e t e t

V t

δ βγ

δ

βγ

≤ − −

+

≤ −



 

Thus, 

 1 1( ) (0)exp( 2 )V t V tβγ≤ − ,  

Suppose 0g > , that ensures the exponential stability of 
the temperature error, yielding that  

 1(., ) exp( 2 )e t l tβγ≤ −  

for all initial error 1(.,0)e  satisfying the condition 

1(.,0)e l≤
 
, with a positive constant l . 

Then, there exists a time t  such that for all t t≥  the 
reconstruction error 1( )e t  is maintained within the 
manifold  

 1( ) 0e t =  (16) 

It follows that for all t t≥  the system motion along the 
manifold (16) is governed by  

 1 2 12 2
0 2ˆ((1 ) ( ) (1 ) ( ))e e e

e e k x r x x r x
t z

υ
∂ ∂

= − + − − −
∂ ∂

 (17) 

with the conditions (13)-(14). 
The derivative of the functional 

2
22 2( ) ( ) LV t e t= yields from Remark 2.1, for all t t≥  

 

2 2 2 2

2 2 2 2
1 1 2

2 2 2 2 2

0 min 2 2 2

0 min 2

( ) 2 ( ), ( )
2 ( ), ( )

ˆ( , ) ( , ), ( )
2 ( ), ( )
2 ( )

e e e

V t e t e t
A e t e t

N x x N x x e t
k r e t e t
k r V t

= < >
= < >

+ < − >

≤ − < >

≤ −





 

Thus, 

 2 2 0 min( ) (0)exp( 2 )V t V k r t≤ −  

More precisely, for all t t≥   

 

1
1

2 2
2 2 2 2

0 min

( ) exp( 2 )

ˆ ˆ( ) ( ) ( ) ( )

2 (exp( 2 )

e

e e

x t x l t

x t x x t x t x t x

l k r t

βγ− ≤ −

− ≤ − + −

≤ −

 

Now, if 0g > , then the reconstruction errors 1
1 ex x−  

and 2
2 ex x−  are exponential stability. The proof of the 

Theorem 3.2 is thus completed. 

4. Simulation Results 
In order to test the performance of the proposed 

observers, numerical simulations will be given with the 
following set of parameter values (see [4,5,8]): 

 6 1 1
0

0.5 0.025 , 1 ,

10 , 0.05 , 340in

m s L m

k s s T K

δ υ

β− −

= = =

= = =
 

 1 1 111.250 . , 1.986 . . ,E cal mol R cal mol L− − −= =  

The process model has been arbitrary initialized with 
the constant profiles 1 2 1̂(0, ) 1, (0, ) 0, (0, ) 0x z x z x z= = = , 
and 2ˆ (0, ) 1x z = . In order to response to the assumption of 
the Theorem 3.2 we set 1γ β=

 
for the compensator 

design parameter. 

 

Figure 1. Evolution of the component temperature error 1
1 1 ee x x= −  

 

Figure 2. Evolution of the component concentration error 2
2 2 ee x x= −
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Figure 1 and Figure 2 show respectively the time 
evolution in time and space of the temperature and 
concentration errors 1

1 ex x−  and 2
2 ex x− , it can be 

observed that the optimal equilibrium ex  is exponentially 
stable and, more precisely, the temperature converges 
exponentially to the constant temperature equilibrium. 

It is proved as expected in the theoretical study that the 
error between the component state (1)-(4) and the optimal 
steady-state (6) converges exponentially to zero. 

5. Conclusions 
The exothermic reactors represent an interesting class 

of systems that may exhibit multiple steady states, either 
stable or unstable. In this paper, we present a conception 
of a regional exponentially feedback stabilization around 
an optimal unstable profile in steady-state when the 
temperature is the only available measurement on the 
system. This desired profile provides a constant 
temperature equilibrium, that has lead to a closed-loop 
steady-state behavior which is close to that of an 
isothermal reactor model. It is shown in the simulations 
that the given regional compensator is effective and 
satisfactory since it answers to difficulties of the reactant 

concentration measurements for a wide range of (bio)-
chemical reactors. 
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