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Abstract

Research in neuroevolution, i.e. evolving artificial neural networks (ANNs) through evolutionary algo-

rithms, is inspired by the evolution of biological brains. Because natural evolution discovered intelligent

brains with billions of neurons and trillions of connections, perhaps neuroevolution can do the same. Yet

while neuroevolution has produced successful results in a variety of domains, the scale of natural brains

remains far beyond reach. This paper presents a method called Hypercube-based NeuroEvolution of Aug-

menting Topologies (HyperNEAT) that aims to narrow this gap. HyperNEAT employs an indirect encoding

called connective Compositional Pattern Producing Networks (connective CPPNs) that can produce con-

nectivity patterns with symmetries and repeating motifs by interpreting spatial patterns generated within a

hypercube as connectivity patterns in a lower-dimensional space. The advantage of this approach is that it

can exploit the geometry of the task by mapping its regularities onto the topology of the network, thereby

shifting problem difficulty away from dimensionality to underlying problem structure. Furthermore, con-

nective CPPNs can represent the same connectivity pattern at any resolution, allowing ANNs to scale to new

numbers of inputs and outputswithout further evolution. HyperNEAT is demonstrated through visual dis-

crimination and food gathering tasks, including successful visual discrimination networks containing over

eight million connections. The main conclusion is that the ability to explore the space of regular connectivity

patterns opens up a new class of complex high-dimensional tasks to neuroevolution.
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1 Introduction

Many defining characteristics of natural brains have so far eluded attempts to evolve artificial neural net-

works (ANNs). Perhaps most dramatic is the astronomical complexity of biological brains. With 100 trillion

connections whose collective function no artificial system yet can even approach, the human brain is the

most complex system known to exist [31, 63]. Upon closer inspection, the brain’s complexity is manifested

through precise, intricate motifs that repeat throughout it, often with variation on a theme, such as cortical

columns [48]. In contrast, neuroevolution, i.e. the artificial evolution of ANNs, produces networks with

orders of magnitude fewer neurons and significantly less organization and regularity [19, 52, 61]. These

differences between the natural and artificial suggest that something is missing from present evolutionary

algorithms that prevents them from achieving similar feats.

Researchers ingenerative and developmental encoding, which is a branch of evolutionary computation

concerned with genetic encodings motivated by biology, often point out that repetition through genetic

reuse explains how such massive structures can be represented compactly in DNA [5, 24, 27, 53]. That is, a

structure that repeats many times can be represented by a single set of genes that isreusedin mapping from

genotype to phenotype.

Yet repetition through reuse is not the only important clue to such astronomical complexity. There is an

important organizing principlebehindmany observed regularities that explains their origin: The geometry of

the brain is often organized to reflect and exploit the geometry of the physical world. By preserving the most

salient physical relationships of the outside world, such as symmetry (e.g. left and right eyes and ears) and

locality (e.g. the retinotopic map of visual experience), sensory configuration allows neural organization to

largely mirror the same relationships. For example, the visual cortex preserves the retinotopic layout of the

eye [8]. In this way, nearby events in physical space are easily represented by similarly proximal neurons.

In fact, because neurons that are related to nearby events in space are also near each other in the brain,

many relevant operations can be performed through local connectivity. Such connectivity isnatural in a

physical substrate in which longer distance requires more resources, greater accuracy, and better organiza-

tion. Thus, the properties of physical space inherently bias cognitive organization towards local connectivity,

which happens to be useful for solving problems that are projected from the physical world.

Interestingly, neuroevolution and ANN optimization in general are normally cast as unknown mappings

between inputs and outputs [45, 52, 56, 61]. Yet although this perspective is widespread, in effect it ob-

fuscates the underlying problem geometry because geometric relationships among inputs and outputs are
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(a) Geometric Order (b) Random Order
Figure 1:Regular ANN Input Order is Irrelevant. Even though the order of inputs to the ANN in (a) is correlated
directly to the geometry of the front-facing robot sensors from which they are activated, traditional ANN learning
algorithms such as backpropagation [45] or current neuroevolution methods [52, 61] are blind to such ordering. In
fact, the arbitrary input order in (b) is identical from the perspective of the learning algorithm. Thus, counterintuitively,
organizing inputs (or outputs) to respect task geometry provides no advantage.

discarded when they are represented only as an unstructured set of independent parameters (figure 1). Cor-

relations and regularities in the task domain thereby become opaque to the learning algorithm, which must

consequently learn related functions in different parts of the network independently. For example, a visual

field or board game is often split into dozens of independent coordinates with noa priori explicit relation-

ship to each other [30, 32, 39]. A promising alternative would be to learn aconceptualrepresentation of the

solution that is a function of the problem’s geometric structure.

This paper presents such a neuroevolution method, calledHypercube-based NeuroEvolution of Aug-

menting Topologies (HyperNEAT), which is designed to evolve large-scale ANNs by exploiting geometry.

HyperNEAT employs an encoding calledconnective Compositional Pattern Producing Networks (connec-

tive CPPNs), which can represent connectivity patterns as functions of Cartesian space. Connective CPPNs

are an extension of regular CPPNs, an indirect encoding for spatial patterns that is abstracted from biologi-

cal development [49, 50]. Specifically, connective CPPNs represent patterns in hyperspace that are mapped

to lower-dimensional connectivity patterns. That way, connective CPPNs evolved with HyperNEAT can

encode large-scale ANNs by discovering regularities along geometric dimensions of variation in a manner

motivated by the evolution of biological brains in nature.

The two experiments in this paper aim to provide sufficient technical and conceptual insight to allow

progress in this new direction to proceed systematically from here. Thus, the first experiment explores how

geometry enables large-scale representation through reuse in a simple visual discrimination task with scal-

able resolution. The second experiment isolates the issue of exploiting geometric regularities by comparing

two different sensor and effector layouts for a simple food-gathering robot. An analysis of scaling concludes

3



by scaling an evolved ANNwithout further evolutionto a size of overeight millionconnections without loss

of functionality.

Because it not only implements repetition through reuse but also exploits domain geometry, HyperNEAT

opens up significant new directions for future exploration in evolving ANNs.

The paper begins with a review of CPPNs and NEAT in the next section. The HyperNEAT approach

is then detailed in Section 3. Sections 4 and 5 describe and present results in the visual discrimination

experiment. Sections 6 and 7 then present the food gathering experiment and results. The paper concludes

with a discussion and outlines future work in Section 8.

2 Background

This section provides an overview of CPPNs, which are capable of generating complex spatial patterns in

Cartesian space, and then describes the NEAT method that is used to evolve them.

2.1 Compositional Pattern Producing Networks (CPPNs)

In biological genetic encoding the mapping between genotype and phenotype isindirect. The phenotype

typically contains orders of magnitude more structural components than the genotype contains genes. For

example, a human genome of 30,000 genes (about three billion amino acids) encodes a human brain with

100 trillion connections [11, 13, 31]. Thus, the only way to discover structures with trillions of parts may be

through a mapping between genotype and phenotype that translates few dimensions into many, i.e. through

anindirect encoding. Because phenotypic structures often occur in repeating patterns, each time a pattern re-

peats, the same gene group can provide the specification. The numerous left/right symmetries of vertebrates

[41, pages 302-303], the receptive fields in the visual cortex [18, 28], and fingers and toes are examples of

repeating patterns in biology.

A most promising area of research in indirect encoding isdevelopmental encoding, which is motivated

from biology [2, 5, 27, 53]. Development facilitates reusing genes because the same gene can be activated

at any location and any time during the development process.

This observation has inspired an active field of research in artificial developmental encodings [2, 4, 5,

6, 10, 12, 14, 15, 16, 22, 27, 29, 33, 34, 35, 37, 38, 40, 47, 53, 58]. The aim is to find the right abstraction

of natural development for a computer running an evolutionary algorithm, so that evolutionary computation
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Figure 2:CPPN Encoding. (a) The functionf takes argumentsx andy, which are coordinates in a two-dimensional
space. When all the coordinates are drawn with an intensity corresponding to the output off , the result is a spatial
pattern, which can be viewed as a phenotype whose genotype isf . (b) The CPPN is a graph that determines which
functions are connected. The connections are weighted such that the output of a function is multiplied by the weight
of its outgoing connection. Note that the topology is unconstrained and can represent any relationships.

(EC) can begin to discover complexity on a natural scale. Prior abstractions range from low-level cell

chemistry simulations to high-level grammatical rewrite systems [53].

Compositional Pattern Producing Networks (CPPNs) are a novel abstraction of development that can

represent sophisticated repeating patterns in Cartesian space [49, 50]. Unlike most generative and develop-

mental encodings, CPPNs do not require an explicit simulation of growth or local interaction, yet still realize

their essential functions. This section reviews CPPNs, which will be augmented in this paper to represent

connectivity patterns and ANNs.

Consider the phenotype as a function ofn dimensions, wheren is the number of dimensions in physical

space. For each coordinate in that space, its level of expression is an output of the function that encodes

the phenotype. Figure 2a shows how a two-dimensional phenotype can be generated by a function of two

parameters.

Stanley [49, 50] showed how simple canonical functions can be composed to create an overall network

that produces complex regularities and symmetries. Each component function creates a novel geometric

coordinate framewithin which other functions can reside. The main idea is that these simple canonical

functions are abstractions of specific events in development such as establishing bilateral symmetry (e.g.

with a symmetric function such as Gaussian) or the division of the body into discrete segments (e.g. with a

periodic function such as sine). Figure 2b shows how such a composition can be represented by a network.

Such networks are calledCompositional Pattern Producing Networksbecause they produce spatial pat-

terns by composing basic functions. Unlike ANNs, which often contain only sigmoid functions (and some-

time Gaussian functions), CPPNs can include both types of functions and many others. Furthermore, the

termartificial neural networkwould be misleading in the context of this research because ANNs were so

named to establish a metaphor with a different biological phenomenon, i.e. the brain. The terminology
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(a) Symmetry (b) Imperfect Symmetry (c) Repetition with Variation

Figure 3:CPPN-generated Regularities.Spatial patterns exhibiting (a) bilateral symmetry, (b) imperfect symmetry,
and (c) repetition with variation (notice the nexus of each repeated motif) are depicted. These patterns demonstrate
that CPPNs effectively encode fundamental regularities of several different types.

should avoid making the implication that biological, thinking brains are in effect the same as developing

embryos or genetic encodings. In this paper, because CPPNs are used to encode ANNs, it is especially

important to differentiate these concepts.

Through interactive evolution, Stanley [49, 50] demonstrated that CPPNs can produce spatial patterns

with important geometric motifs that are expected from generative and developmental encodings and seen

in nature. Among the most important such motifs are symmetry (e.g. left-right symmetries in vertebrates),

imperfect symmetry (e.g. right-handedness), repetition (e.g. receptive fields in the cortex [63]), and repeti-

tion with variation (e.g. cortical columns [20]). Figure 3 shows examples of several such important motifs

produced through interactive evolution of CPPNs.

It is fortuitous that CPPNs and ANNs are so similar from a structural perspective because methods de-

signed to evolve ANNs can also evolve CPPNs. In particular, the NeuroEvolution of Augmenting Topologies

(NEAT) method is a good choice for evolving CPPNs because NEAT increases the complexity of evolving

networks over generations, allowing increasingly elaborate regularities to accumulate. The next section

describes the NEAT method.

2.2 NeuroEvolution of Augmenting Topologies (NEAT)

The NEAT method was originally developed to evolve ANNs to solve difficult control and sequential deci-

sion tasks [51, 52, 54]. Evolved ANNs control agents that select actions based on their sensory inputs. NEAT

is unlike many previous methods that evolved neural networks, i.e.neuroevolutionmethods, which tradi-

tionally evolve either fixed-topology networks [19, 46], or arbitrary random-topology networks [3, 23, 61].

Instead, NEAT begins evolution with a population of small, simple networks andcomplexifiesthe network

topology into diverse species over generations, leading to increasingly sophisticated behavior. A similar
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process of gradually adding new genes has been confirmed in natural evolution [36, 59] and shown to im-

prove adaptation in a few prior evolutionary [1] and neuroevolutionary [25] approaches. However, a key

feature that distinguishes NEAT from prior work in complexification is its unique approach to maintaining a

healthy diversity of complexifying structures simultaneously, as this section reviews. Complete descriptions

of the NEAT method, including experiments confirming the contributions of its components, are availabe in

Stanley and Miikkulainen [52, 54] and Stanley et al. [51].

Before describing the CPPN extension, let us review the three key ideas on which the basic NEAT

method is based. First, in order to allow network structures to increase in complexity over generations,

a method is needed to keep track of which gene is which. Otherwise, it is not clear in later generations

which individual is compatible with which in a population of diverse structures, or how their genes should

be combined to produce offspring. NEAT solves this problem by assigning a uniquehistorical markingto

every new piece of network structure that appears through a structural mutation. The historical marking is

a number assigned to each gene corresponding to its order of appearance over the course of evolution. The

numbers are inherited during crossover unchanged, and allow NEAT to perform crossover among diverse

topologies without the need for expensive topological analysis.

Second, NEAT speciates the population, so that individuals compete primarily within their own niches

instead of with the population at large. Because adding new structure is often initially disadvantageous, this

separaton means that unique topological innovations are protected and therefore have time to optimize their

structure before competing with other niches in the population. NEAT uses the historical markings on genes

to determine to which species different individuals belong.

Third, many systems that evolve network topologies and weights begin evolution with a population of

random topologies [23, 61]. In contrast, NEAT begins with a uniform population of simple networks with no

hidden nodes, differing only in their initial random weights. Because of speciation, novel topologies gradu-

ally accumulate over evolution, thereby allowing diverse and complex phenotype patterns to be represented.

No limit is placed on the size to which topologies can grow. New structures are introduced incrementally as

structural mutations occur, and only those structures survive that are found to be useful through fitness eval-

uations. In effect, then, NEAT searches for a compact, appropriate topology by incrementally complexifying

existing structure.

NEAT is easily extended to evolve CPPNs. While networks in original NEAT only include hidden nodes

with sigmoid functions, CPPN-NEAT allows each hidden node to specify its own activation function chosen

from a given set. These functions are intended to abstract canonical gradient patterns from nature, such as
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symmetric and periodic gradients. When a new node is created, it is assigned a random activation function

from the canonical set (e.g. including Gaussian, sigmoid, and periodic functions).

If the regularities of CPPN-generated patterns evolved with NEAT could be transferred to evolvedcon-

nectivity patterns, the representational power of CPPNs could potentially evolve large-scale ANNs and other

graph structures with symmetries and complex repeating patterns such as in biological brains. The next sec-

tion introduces an approach that enables CPPNs to represent and evolve just such networks.

3 HyperNEAT

If CPPNs are to evolve and represent connectivity patterns, the problem is to find the best interpretation of

their output to effectively describe such a structure. The two-dimensional patterns in Section 2.1 present a

challenge: How can such spatial patterns describe connectivity? This section explains how spatial patterns

generated by CPPNs can be mapped naturally to connectivity patterns while at the same time effectively

disentangling task structure from network dimensionality.

3.1 Mapping Spatial Patterns to Connectivity Patterns

It turns out that there is an effective mapping between spatial and connectivity patterns that can elegantly

exploit geometry. The main idea is to input into the CPPN the coordinates of thetwo pointsthat define a

connection rather than inputting only the position of a single point as in Section 2.1. The output is interpreted

as theweightof the connection rather than the intensity of a point. This way, connections can be defined in

terms of the locations that they connect, thereby taking into account the network’s geometry.

The CPPN in effect computes a four-dimensional functionCPPN(x1, y1, x2, y2) = w, where the first

node is at(x1, y1) and the second node is at(x2, y2). This formalism returns a weight for every connec-

tion between every node in the grid, including recurrent connections. By convention, a connection is not

expressed if the magnitude of its weight, which may be positive or negative, is below a minimal threshold

wmin. The magnitude of weights above this threshold are scaled to be between zero and a maximum mag-

nitude in the substrate. That way, the pattern produced by the CPPN can represent any network topology

(figure 4).

For example, consider a5× 5 grid of nodes. The nodes are assigned coordinates corresponding to their

positions within the grid (labeledsubstratein figure 4), where(0, 0) is the center of the grid. Assuming that
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Figure 4:Hypercube-based Geometric Connectivity Pattern Interpretation. A grid of nodes, called thesubstrate,
is assigned coordinates such that the center node is at the origin. (1) Every potential connection in the substrate is
queried to determine its presence and weight; the dark directed lines shown in the substrate represent a sample of
connections that are queried. (2) For each query, the CPPN takes as input the positions of the two endpoints and (3)
outputs the weight of the connection between them. After all connections are determined, a pattern of connections and
connection-weights results that is a function of the geometry of the substrate. In this way,connective CPPNsproduce
regular patterns of connections in space.

these nodes and their positions are givena priori, a connectivity pattern among nodes in two-dimensional

space is produced by a CPPN that takes any two coordinates (source and target) as input, and outputs the

weight of their connection. The CPPN is queried in this way for every potential connection on the grid.

Because the connection weights are thereby a function of thepositionsof their source and target nodes, the

distribution of weights on connections throughout the grid will exhibit a pattern that is a function of the

geometry of the coordinate system.

The connectivity pattern produced by a CPPN in this way is called thesubstrateso that it can be verbally

distinguished from the CPPN itself, which has its own internal topology. Furthermore, in the remainder of

this paper, CPPNs that are interpreted to produce connectivity patterns are calledconnective CPPNswhile

CPPNs that generate spatial patterns are calledspatial CPPNs. This paper focuses on neural substrates

produced by connective CPPNs.

Because the connective CPPN is a function of four dimensions, the two-dimensional connectivity pattern

expressed by the CPPN is isomorphic to a spatial pattern embedded in a four-dimensional hypercube. This

observation is important because it means that spatial patterns with symmetries and regularities correspond

to connectivity patterns with related regularities. Thus, because CPPNs generate regular spatial patterns

(Section 2.1), by extension they can be expected to produce connectivity patterns with corresponding regu-

larities. The next section demonstrates this capability.
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(a) Symmetry (b) Imperfect Sym. (c) Repetition (d) Rep. with Var.

Figure 5:Connectivity Patterns Produced by Connective CPPNs.These patterns, produced through interactive
evolution, exhibit several important connectivity motifs: (a) bilateral symmetry, (b) imperfect symmetry, (c) repeti-
tion, and (d) repetition with variation. That these fundamental motifs are compactly represented and easily produced
suggests the power of this encoding.

3.2 Producing Regular Connectivity Patterns

Simple, easily-discovered substructures in the connective CPPN produce important connective regularities

in the substrate. The key difference between connectivity patterns and spatial patterns is that each discrete

unit in a connectivity pattern hastwo x values andtwo y values. Thus, for example, symmetry alongx can

be discovered simply by applying a symmetric function (e.g. Gaussian) tox1 or x2 (figure 5a).

Imperfect symmetry is another important structural motif in biological brains. Connective CPPNs can

produce imperfect symmetry by composingbothsymmetric functions of one axis along with an asymmetric

coordinate frame such as the axis itself. In this way, the CPPN produces varying degrees of imperfect

symmetry (figure 5b).

Similarly important is repetition, particularly repetition with variation. Just as symmetric functions

produce symmetry, periodic functions such as sine produce repetition (figure 5c). Patterns with variation are

produced by composing a periodic function with a coordinate frame that does not repeat, such as the axis

itself (figure 5d). Repetitive patterns can also be produced in connectivity as functions of invariant properties

between two nodes, such as distance along one axis. Thus, symmetry, imperfect symmetry, repetition,

and repetition with variation, key structural motifs in all biological brains, are compactly represented and

therefore easily discovered by CPPNs.

3.3 Substrate Configuration

The layout of the nodes that the CPPN connects in the substrate can take forms other than the planar grid

(figure 6a) discussed thus far. Different suchsubstrate configurationsare likely suited to different kinds of

problems.

For example, CPPNs can also producethree-dimensionalconnectivity patterns by representing spatial
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Figure 6:Alternative Substrate Configurations. This figure shows (b) a three-dimensional configuration of nodes
centered at(0, 0, 0), (c) a “state-space sandwich” configuration in which a source sheet of neurons connects directly
to a target sheet, and (d) a circular configuration. Different configurations are likely suited to problems with different
geometric properties.

patterns in thesix-dimensionalhypercubeCPPN(x1, y1, z1, x2, y2, z2) (figure 6b). This formalism is in-

teresting because the topologies of biological brains, including the human brain, theoretically exist within

its search space.

It is also possible to restrict substrate configurations to particular structural motifs in order to learn about

their viability in isolation. For example, Churchland [9] calls a single two-dimensional sheet of neurons

that connects to another two-dimensional sheet astate-space sandwich. The sandwich is a restricted three-

dimensional structure in which one layer can send connections only in one direction to one other layer.

Thus, because of this restriction, it can be expressed by the single four-dimensionalCPPN(x1, y1, x2, y2),

where (x2, y2) is interpreted as a location on thetargetsheet rather than as being on the same plane as the

source coordinate (x1,y1). In this way, CPPNs can search for useful patterns within state-space sandwich

substrates (figure 6c), as is done in the visual discrimination experiment in this paper.

Finally, the nodes need not be distributed in a grid. For example, nodes within a substrate that controls

a radial entity such as a starfish might be best laid out with radial geometry, as shown in figure 6d, so that

the connectivity pattern can be situated with perfect polar coordinates. The robot control experiment in this

paper compares such a circular layout to a grid-based one.
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Figure 7:Placing Inputs and Outputs. A robot (a) is depicted with eight radar sensors along its circumference and
eight motion effectors set at the same angle. In (b), the inputs (labeledI ) and outputs (labeledO) are laid out literally
according to the eight directions in space. In (c), the inputs are placed such at their location alongx determines whether
they represent a corresponding direction. Both arrangements create a geometric relationship between each input and
its corresponding output. In this way, it is possible the give evolution a significant advantage from the start.

3.4 Input and Output Placement

Part of substrate configuration is determining which nodes are inputs and which are outputs. The flexi-

bility to assign inputs and outputs to specific coordinates in the substrate creates an opportunity to exploit

geometric relationships advantageously.

In many ANN applications, the inputs are drawn from a set of sensors that exist in a geometric ar-

rangement in space. Unlike traditional ANN learning algorithms that are not aware of such geometry (as

illustrated in figure 1), connective CPPN substratesare aware of their inputs’ and outputs’ geometry, and

thus can use this information to their advantage.

By arranging inputs and outputs in a sensible configuration on the substrate, regularities in the geometry

can be exploited by the encoding. There is room to be creative and try different configurations with different

geometric advantages. For example, figure 7 depicts two methods in which the inputs and outputs of a

circular robot can be configured, both of which create an opportunity to exploit a different kind of geometric

relationship.

In one arrangement, the sensors on the circumference of the robot are arranged in a circle centered at the

origin of the substrate, and outputs form a concentric circle around that (figure 7b). In this way, if the CPPN

discovers radial symmetry or bilateral symmetry, it can use those coordinate frames to create a repreating

pattern that captures regularities in the relationship between inputs and outputs. An alternate arrangement

places the inputs and outputs on two parallel lines wherein equivalent horizontal position denotes equivalent

angle (figure 7c). That way, evolution can exploit the similarity of horizontal positions. Both methods

convey correspondence through a different geometric regularity.
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By arranging neurons in a sensible configuration on the substrate, regularities in the geometry can be

exploited by the encoding. Biological neural networks rely on such a capability for many of their functions.

For example, neurons in the visual cortex are arranged in the same retinotopic two-dimensional pattern as

photoreceptors in the retina [8]. That way, they can exploitlocality by connecting to adjacent neurons with

simple, repeating motifs. Connective CPPNs have the same capability. In fact, geometric information in

effect provides evolution with domain-specific bias, which is necessary if it is to gain an advantage over

generic black-box optimization methods [60].

3.5 Substrate Resolution

As opposed to encoding a specific pattern of connections among a specific set of nodes, connective CPPNs

in effect encode a generalconnectivity concept, i.e. the underlying mathematical relationships that produce

a particular pattern. The consequence is thatsame connective CPPNcan represent an equivalent concept

at different resolutions (i.e. different node densities). Figure 8 shows two connectivity concepts at different

resolutions.

For neural substrates, the important implication is that the same ANN functionality can be generated at

different resolutions.Without further evolution, previously-evolved connective CPPNs can be re-queried to

specify the connectivity of the substrate at a new, higher resolution, thereby producing a working solution

to the same problem at a higher resolution! There is no upper bound on substrate resolution, that is, a

connectivity concept is infinite in resolution. While the higher-resolution connectivity pattern may contain

artifacts that were not expressed at the lower resolution at which it was evolved, it will still embody a

good approximation of the general solution at the higher resolution. Thus, increasing substrate resolution

introduces a powerful new kind of complexification to ANN evolution.

3.6 Evolving Connective CPPNs

The approach in this paper is to evolve connective CPPNs with NEAT. This approach is calledHyperNEAT

because NEAT evolves CPPNs that represent spatial patterns in hyperspace. Each point in the pattern,

bounded by a hypercube, is interpreted as a connection in a lower-dimensional connected graph. Specif-

ically, in this paper, a spatial pattern in a four-dimensional hypercube is interpreted as a two-dimensional

connectivity pattern.

The basic outline of the HyperNEAT algorithm proceeds as follows:
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Figure 8:Equivalent Connectivity Concepts at Different Substrate Resolutions.Two connectivity concepts are
depicted that were evolved through interactive evolution. The CPPN that generates the first concept at5 × 5 (a) and
7× 7 (b) is shown in (c). The CPPN in (f) similarly generates the second concept atboth resolutions(d) and (e). This
illustration demonstrates that CPPNs represent a mathematical concept rather than a single structure. Thus, the same
CPPN can produce patterns with the same underlying concept at different substrate resolutions (i.e. different node
densities).CPPN activation functions in this paper are denoted byG for Gaussian,S for sigmoid,Si for sine,A for
absolute value, andL for linear.

1. Choose substrate configuration (i.e. node layout and input/output assignments)

2. Initialize population of minimal CPPNs with random weights.

3. Repeat until solution is found:

(a) For each member of the population:

i. Query its CPPN for the weight of each possible connection in the substrate. If the absolute

value of the output exceeds a threshold magnitude, create the connection with a weight

scaled proportionally to the output value (figure 4).

ii. Run the substrate as an ANN in the task domain to ascertain fitness.

(b) Reproduce the CPPNs according to the NEAT method to produce the next generation population.

In effect, as HyperNEAT adds new connections and nodes to the connective CPPN it is discovering new
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global dimensions of variationin connectivity patterns across the substrate. Early on it may discover overall

symmetry, whereas later it may discover the concept of receptive fields. Each new connection or node in

the CPPN represents a new way that an entire pattern can vary, i.e. a new regularity. Thus, HyperNEAT is a

powerful new approach to evolving large-scale connectivity patterns and ANNs.

The sections that follow present experiments that demonstrate the promise of this approach.

4 Experiment 1: Visual Discrimination

The first experiment in this paper is visual discrimination, which is later followed by robot food gathering.

Both tasks are chosen for their intuitive simplicity, ability to demonstrate specific HyperNEAT capabilities,

and ease of analysis, thereby laying the foundation for future research. They are both designed to provide

empirical evidence that HyperNEAT makes possible five novel capabilities: (1) compact encoding through

regular structure, (2) exploiting sensor placement and world geometry, (3) scaling substrate resolution, (4)

leveraging additional inputs that provide geometric bias, and (5) functional million-connection networks.

This section describes the visual discrimination task and Section 5 presents its results. The food gather-

ing task is then explained in Section 6.

4.1 Visual Discrimination Setup

Vision is well-suited to testing learning methods on high-dimensional input. Natural vision also has the

intriguing property that the same stimulus can be recognized equivalently at different locations in the visual

field. For example, identical line-orientation detectors are spread throughout the primary visual cortex

[8]. Thus there are clear regularities among the local connectivity patterns that govern such detection. A

repeating motif likely underlies the general capability to perform similar operations at different locations in

the visual field. Visual tasks are also easy to scale by increasing their resolution.

Therefore, in this paper a simple visual discrimination task demonstrates HyperNEAT’s ability to exploit

regularity in the task domain. The objective is to distinguish a large object from a small object in a two-

dimensional visual field. Because the same principle determines the difference between small and large

objects regardless of their location in the retina, this task is well suited to testing the ability of HyperNEAT

to discover and exploit regularities.

The solution substrate is configured as a state-space sandwich (figure 6c) that includes two sheets: (1)
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Visual Fields

Target Fields

Figure 9: The Visual Discrimination Task. The task is to identify the center of the larger box. Example visual
field activation patterns (top) and the corresponding correct target fields (bottom) are depicted. The “X” in each target
field denotes the point of highest activation, which is how the ANN specifies the location of the center of the larger
box. This task effectively tests HyperNEAT’s ability to discover regularity because the same principle differentiates
the larger box from the smaller one regardless of where the boxes appear on the input field.

Thevisual fieldis a two-dimensional array of sensors that are either on or off (i.e. black or white); (2) The

target fieldis an equivalent two-dimensional array of outputs that are activated at variable intensity between

zero and one. In a single trial, two objects, represented as black squares, are situated in the visual field at

different locations. One object is three times as wide and tall as the other (figure 9). The goal is to locate

the center of the larger object in the visual field. The target field specifies this location as the node with

the highest level of activation. Thus, HyperNEAT must discover a connectivity pattern between the visual

field and target field that causes the correct node to become the most active regardless of the locations of the

objects.

An important aspect of this task is that it utilizes a large number of inputs, many of which must be

considered simultaneously. To solve it, the system needs to discover the general principle that underlies

detecting relative sizes of objects. The right idea is to strongly connect individual input nodes in the visual

field toseveraladjacent nodes around the corresponding location in the output field, thereby causing outputs

to accumulate more activation the more adjacent loci are feeding into them. Thus, the solution can exploit

the geometric concept oflocality, which is inherent in the arrangement of the two-dimensional grid.

While the concept is simple, only a representation that takes into account substrate geometry can exploit

it effectively. Furthermore, an ideal encoding should develop a representation of the concept that is inde-

pendent of the visual field resolution. Because the correct motif repeats across the substrate, in principle a

connective CPPN can discover the general concept only once and cause it to be repeated across the grid at
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any resolution. As a result, such a solution can scale as the resolution inside the visual field is increased,

even without further evolution.

4.2 Evolution and Performance Analysis

The field coordinates range between[−1, 1] in thex andy dimensions. However, the resolution within this

range, i.e. the node density, can be varied. During evolution, the resolution of each field is fixed at11× 11.

Thus the connective CPPN must learn to correctly connect a visual field of 121 inputs to a target field of 121

outputs, a total of 14,641 potential connection strengths.

During evolution, each individual in the population is evaluated for its ability to find the center of the

bigger object. If the connectivity is not highly accurate, it is likely the substrate will often incorrectly choose

the small object over the large one. Each individual evaluation thus includes 75trials, where each trial places

the two objects at different locations. The trials are organized as follows. The small object appears at 25

uniformly distributed locations such that it is always completely within the visual field. For each of these

25 locations, the larger object is placed five units to the right, down, and diagonally, once per trial. The

large object wraps around to the other side of the field when it hits the border. If the larger object is not

completely within the visual field, it is moved the smallest distance possible that places it fully in view.

Because of wrapping, this method of evaluation tests cases where the small object is on all possible sides of

the large object. Thus many relative positions (though not all) are tested for a total number of 75 trials on

the 11 by 11 substrate for each evaluation during evolution.

Within each trial, the substrate is activated over the entire visual field. The unit with the highest activation

in the target field is interpreted as the substrate’s selection. Fitness is calculated from the sum of the squared

distances between the target and the point of highest activation over all 75 trials. This fitness function

rewards generalization and provides a smooth gradient for solutions that are close but not perfect.

An effective solution to this task must discover the correct underlying regularity that is distributed across

the substrate. Although it is possible for humans to imagine such a repeating motif, from the perspective of

a blind machine learning algorithm, such discovery is nontrivial. To demonstrate HyperNEAT’s ability to

effectively discover the task’s underlying regularity, two approaches are compared.

• HyperNEAT: HyperNEAT evolves a connective CPPN that generates a substrate to solve the problem

(Section 3).

• Perceptron NEAT (P-NEAT): P-NEAT is a reduced version of NEAT that evolves perceptrons (i.e.
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it is a direct encoding of the ANN that does not evolve CPPNs). ANNs with 121 inputs, 121 outputs,

and 14,641 (121× 121) links are evolved without structure-adding mutations. This restriction makes

a fair comparison because state-space sandwich substrates also have no hidden nodes. P-NEAT is

run with the same settings as HyperNEAT (Appendix A), because both are being applied to the same

problem. Because P-NEAT must explicitly encode the value of each connection in the genotype,

it cannot encode underlying regularities and must discover each part of the solution connectivity

independently.

This comparison is designed to show how HyperNEAT makes it possible to optimize very high-dimensional

structures (i.e. with 14,641 dimensions), which is difficult for directly-encoded methods.

4.3 Scaling to Millions of Connections

HyperNEAT is finally tested for its ability to scale solutions to higher resolutionswithout further evolution,

which is impossiblewith direct encodings such as P-NEAT. The resolution is increased to33 × 33 and

55× 55, requiring HyperNEAT to set over one million and nine million connections, respectively.

4.4 Inputting Additional Geometric Bias

The connectivity pattern produced by connectiveCPPN(x1, y1, x2, y2) is a function of four orthogonal

axes. The axes provide acoordinate framewithin which patterns are situated. A potentially useful feature

of CPPNs is that they can be biased to specific kinds of geometry by taking other coordinate frames as

input as well. Thus, because distance is an important factor in discrimination, the distance between the two

query points is input into the CPPN in addition to the usualx1, y1, x2, andy2. In visual discrimination the

additional inputs are vertical and horizontal deltas(x1 − x2) and(y2 − y1). To explore the benefits of this

capability in this domain, a separate experiment is performed with the additional inputs and performance is

compared to results without them.

Experimental parameters for both experiments in this paper are provided in Appendix A.

5 Visual Discrimination Results

The primary performance measure in this section is theaverage distance from targetof the target field’s

chosen position. This average is calculated for each generation champion across all its trials (i.e. object
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Figure 10: Generalization and Scaling. The graphs show performance curves over 300 generations averaged
over 20 runs each. (a) P-NEAT is compared to HyperNEAT on both evaluation and generalization. (b) HyperNEAT
generation champions with and without delta inputs are evaluated for their performance on11×11, 33×33, and55×55
substrate resolutions. The results show that HyperNEAT generalizes significantly better than P-NEAT(p < 0.01) and
scales almost perfectly.

placements in the visual field). Reported results were averaged over 20 runs. Better solutions choose

positions closer to the target. To understand the distance measure, note that the width and height of the

substrate are 2.0 regardless of substrate resolution.

HyperNEAT and P-NEAT were compared to quantify the advantage provided by generative encoding

on this task. Figure 10a shows the performance of both methods onevaluationtrials from evolution (i.e. a

subset of all possible positions) and on a generalization test that averaged performance overeverypossible

valid pair of positions on the board. An input is considered valid if the smaller and the larger object are

placed within the substrate and neither object overlaps the other.

The performance of both methods on the evaluation tests improved over the run. However, after gener-

ation 45, on average HyperNEAT found significantly more accurate solutions than P-NEAT(p < 0.01).

HyperNEAT learned to generalize from its training; the difference between the performance of Hy-

perNEAT in generalization and evaluation is not significant past the first generation. Conversely, P-NEAT

performed significantly worse in the generalization test after generation 51(p < 0.01). This disparity in

generalization reflects HyperNEAT’s fundamental ability to learn the geometric concept underlying the task,

which can be generalized across the substrate. P-NEAT can only discover each proper connection weight

independently. Therefore, P-NEAT has no way to extend its solution to positions in the substrate on which

it was never evaluated. Furthermore, the search space of 14,641 dimensions (i.e. one for each connection)
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is too high-dimensional for P-NEAT to find good solutions while HyperNEAT discovers near-perfect (and

often perfect) solutions on average.

5.1 Scaling Performance

The best individuals of each generation, which were evaluated on11× 11 substrates, were later scaled with

thesame CPPNto resolutions of33× 33 and55× 55 by requerying the substrate at the higher resolutions

without further evolution. These new resolutions cause the substrate size to expand dramatically. For33×33

and55× 55 resolutions, the weights of overone millionandnine millionconnections, respectively, must be

optimized in the substrate, which would normally be an enormous optimization problem. On the other hand,

the original11 × 11 resolution on which HyperNEAT was trained contains only up to 14,641 connections.

Thus, the number of connections increases by nearly three orders of magnitude. It is important to note

that HyperNEAT is able to scale to these higher resolutionswithout any additional evolution. In contrast, P-

NEAT has no means to scale to a higher resolution and cannot even learn effectively at the lowest resolution.

When scaling, a potential problem is that if the same activation level is used to indicate positive stimulus

as at lower resolutions, the total energy entering the substrate would increase as the substrate resolution

increases for the same images, leading to oversaturation of the target field. In contrast, in the real world,

the number of photons that enter the eye is the same regardless of the density of photoreceptors. To account

for this disparity, the input activation levels are scaled for larger substrate resolutions proportionally to the

difference in unit cell size.

Evolved CPPNs with and without the additionalx andy delta inputs (Section 4.4) were tested for their

ability to scale (figure 10b). While the deltas did perform significantly better on average between generations

38 and 70(p < 0.05), the CPPNs without delta inputs were able to catch up and reach the same level of

performance after generation 70.

Most importantly, both variants were able to scale almost perfectly from the11×11 resolution substrate

with up to 14,641 connections to a55 × 55 resolution substrate with up to 9,150,625 connections, with no

significant difference in performance after the second generation. This result is also significant because the

higher-resolution substrates were tested onall valid object placements, which include many positions that

did not even exist on the lower-resolution substrate. Thus, remarkably, CPPNs found solutions that lose no

abilities at higher resolution.

High-quality CPPNs at the55 × 55 resolution contained on average8.3 million connectionsin their
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Figure 11:Activation Patterns of the Same Connective CPPN at Different Resolutions.Activation patterns on
the target field of a substrate generated by the CPPN in (a) from the input trial shown in (b) are displayed at resolution
11 × 11 in (c) and55 × 55 in (d). Darker color signifies higher activation and the position of highest activation is
marked with a white “X.” The same 26-connection CPPN generates solutions at both resolutions, with 10,328 and
8,474,704 connections, respectively, demonstrating the ability of the solution to scale significantly.

substrate and performed as well as their11 × 11 counterparts. These substrates are the largest functional

ANNs produced through evolutionary computation of which the authors are aware.

5.2 Scaling Analysis

Figure 11 illustrates the ability to scale in this task by showing how theactivation patternson target sub-

strates of varying resolution produce the same result for the same input. The larger (55 × 55) substrate

(figure 11d) contains 8,474,704 connections and still solves the task. Activation patterns at all resolutions

result from several bands of output overlapping at the center of an object, causing it to activate highest.

Thus, the CPPN discovered this underlyingconceptrather than a specific set of connection weights.

5.3 Repeating Patterns

To identify the largest object irrespective of both objects’ locations, HyperNEAT must discover a fundamen-

tal connectivitymotif originating from each input neuron and repeat it across the substrate. Figure 12 shows

a diagonal crossconnectivity motif originating from three different input neurons on the same substrate,

which is generated by the connective CPPN in figure 12a.

CPPN encoding is highly compact. Ifgood solutionsare those that achieve an average distance under

0.25, the average complexity of a good solution CPPN was only 24 connections. In comparison, at11 ×

11 resolution the average number of connections in thesubstratewas 12,827 out of the possible 14,641

connections. Thus the genotype is smaller than the evaluated phenotype on average by a factor of 534,

demonstrating the significant efficiency gained by removing the need to find the same motif multiple times,
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Figure 12: Connectivity Motifs of the Same Substrate at Different Locations. The CPPN in (a) generates
the motifs shown in (b–d), which representoutgoing connectivity patternsfrom a single node in the visual field,
whose position is denoted by a small dot (i.e. each frame is a two-dimensional cross-section of the four-dimensional
hypercube encoded by the CPPN). Note that these patterns, which each originate from only one node, differ from those
in figure 11, which showsactivation patternsfrom an entire trial with multiple simultaneous active nodes. The cross-
diagonal hatch background represents areas of negative weight, while solid colors between white and black represent
increasingly-high positive weights. The figure shows that the connective CPPN is able to repeat the same motif across
the substrate.

even for substrates that contain millions of connections.

HyperNEAT discovered several motifs that are all effective at this task. The most intuitive motif is the

halo, which produces activation patterns such as those in figure 13. Halo motifs were discovered in eight

of the 20 runs. Although they were less common, diagonal cross motifs evolved separately four times. The

remaining eight runs produced a variety of different shapes that all work equally well. These results show

that HyperNEAT creatively exploits the task geometry to find a variety of effective repeating patterns.

5.4 Discovering Regularities

Figure 13 shows a solution at two different generations in the same run, illustrating the unique process

through which regularities in the solution are discovered. In generation 20 (figure 13a–c), the substrate

produces halo connectivity patterns projecting from a single input node that are at the correctvertical posi-

tion, but it has not yet learned the principle of horizontal locality. Four generations later (figure 13d–f), it

augments this concept by adding a new connection fromx1 (i.e. its horizontal position) to an internal sine

function (figure 13d). This change recalibrates the horizontal position of the halo center to be closer to the

source node. This example explicitly demonstrates the process through which geometric relationships are

discovered. In effect, the problem is recast from finding the correct weight of every connection originating

from the visual field to a problem of finding the geometric concepts that underly the solution.

While this experiment demonstrated HyperNEAT’s ability to exploit regularities to optimize very large

ANNs, the next experiment focuses on the novel capability to test differing sensor placement schemes in the
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Figure 13: Discovering Regularities through CPPN Complexification. CPPNs and their respective substrate
output are depicted at generations 20 (a–c) and 24 (d–f). As in figure 12, the connectivity pattern originates in each
case from the location of the small dot. The figure shows that the CPPN learned to horizontally calibrate the positions
of positive-weighted connections in the substrate by discovering a new connection fromx1 and changing the sign
of the connection fromx2. Both connections are highlighted in (d) as dotted lines. Thus, HyperNEAT learns high-
level concepts rather than searching for the weight of individual connections in a massive ANN independently. The
13-connection CPPN in (d) produces the 8,644,480-connection substrate in (e) and (f).

same task, which is not possible with traditional methods.

6 Experiment 2: Food Gathering

If sensors and outputs are placed such that they respect regularities in the outside world, HyperNEAT can

discover those regularities through connective CPPNs and exploit them to solve the problem, as the visual

discrimination task demonstrates. Interestingly, there can be more than one way to place inputs and outputs

while still respecting the right regularities. The food gathering task is designed to demonstrate this capability

and its implications. This task was chosen for its simplicity as a proof-of-concept; it effectively isolates the

issue of sensor and output placement. In the experiment, two different sensor placement arrangements are

compared that both present a chance to exploit regularity in different ways.
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6.1 Food Gathering Setup

The food gathering domain works as follows. A single piece of food is placed within a square room with

a robot at the center (as in figure 7a). A set ofn rangefinder sensors, placed at regular angular intervals,

encircle the robot’s perimeter. The robot has a compass that allows it to maintain the same orientation at all

times, that is, its north-facing sidealwaysfaces north and never rotates. Internally, the robot also contains a

set ofn effectors. Each effector, when activated, causes the robot to move in one ofn directions, which is

similar to the non-rotating robot in Zhao and Jin [62]. Thus, there is one effector for each sensor that points

in the same direction. The robot’s objective is to go to the food.

The interpretation of effector outputs constrains the problem and the potential solutions. For the experi-

ment in this paper, the motion vector resulting from effector output is interpreted to incentivize HyperNEAT

to find holistic solutions, i.e. solutions that do not only require a single connection. The robot moves in the

direction corresponding to the largest effector output. In the case of a tie, the robot moves in the direction

of the first tied output in sampling order. The robot’s speeds is determined by

s = (smaxomax)(
omax

otot
), (1)

wheresmax is the maximum possible speed,omax is the maximum output, andotot is the sum of all outputs.

The first term correlates speed with output, such that to go the maximum speed, the robot must maximize

the output corresponding to the direction of the food. The second term encourages the robot to excite a

single output by penalizing it for activating more than one at a time. Furthermore, outputs havesigmoidal

activation, which means that if their input is zero, they will output 0.5. Thus, the robot also needs to inhibit

effectors that point in the wrong direction because they will otherwise slow down motion in the chosen

direction. Thus, while diverse solutions still work in this domain, many are not optimal in terms of speed.

The best solutions require a correct pattern connecting to all the outputs from all the sensors.

It is important to note that the compass-based robot is intentionally designed not to rotate so that it is

forced to learn aseparateoutput for each discrete direction. That way, HyperNEAT’s ability to geometrically

correlate inputs to outputs and scale the resolution ofboth inputs and outputs can be tested expicitly.

Each robot attemptsr trials, wherer is twice the resolution; thus higher resolutions are evaluated on

more trials. For each trial a single piece of food is placed 100 units away from the robot at either the center

of a sensor or the border between two sensors. Each trial tests a different such location. If a robot is not

able to get food for a particular trial after1,000 ticks, its trial ends. Individuals are evaluated based on their

amount of food collected and the average speed at which they obtain each item:
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fitness = (10, 000
fc

r
) + (1, 000r − ttot), (2)

wherefc is the total number of food collected andttot is the total time spent on all trials.

This task is a good proof of concept because it transparently requires discovering the underlying regu-

larity of the domain: Two nodes at the same angle (i.e. the sensor and effector) should be connected and the

others inhibited. If this concept is discovered, the task is effectively trivial. Because HyperNEAT can dis-

cover the general concept, it can use it to solve the task efficiently. Demonstrating this fact helps to explicate

how HyperNEAT works.

6.2 Sensor Placement

Two different sensor placements and substrate configurations are attempted that capture the key correlation

in different ways:

(1)Two concentric circles of nodes (figure 7b).The inner circle (radius 0.5) is the sensors and the outer

circle (radius 1.0) is the effectors. The nodes are placed at the same angle as they exist in the robot. In this

layout, the key regularity is captured by shared angle. It is also interesting because the sensors and effectors

are placed exactly in the shape of the robot, an intuitive scheme that would not be meaningful to traditional

methods.

(2)Two parallel lines of nodes (figure 7c).The top row of sensors are placed in clockwise order starting

from the sensor closest to 45◦ above west. In the bottom row, effectors are placed in the same order. In this

way, the key regularity is geometrically expressed as two nodes being in the same column.

6.3 Scaling

Similarly to the visual discrimination task, the number of inputs and outputs of each generation champion

from all runs of both configurations is doubled several times starting from the evolved8 × 8 resolution

without further evolution. Each double-resolution substrate samples twice as many points as its predecessor

by decreasing the angular sampling interval around the robot by half. Doubling for each champion proceeds

from the initial 8 × 8 resolution to a maximum size of128 × 128, a 16-fold increase in resolution. As

a consequence, few of the angles present at the prior resolution are sampled at the new resolution. This

disparity further requires the CPPN to learn a general connectivity concept, rather than a static mapping

between points.
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6.4 Additional Geometric Bias in Food Gathering

As in visual discrimination, the distance between two nodes is an important factor in their relationship.

Therefore, in food gathering, because there are two differing substrate configurations, Euclidean distance

between(x1, y1) and(x2, y2) is input in addition to the usualx1, y1, x2, andy2. As with visual discrim-

ination, the benefit of such additional inputs is investigated by comparing results with and without such

inputs.

Experimental paramters for food gathering are described in Appendix A. The next sections describe

results from the food gathering experiment.

7 Food Gathering Results

All sensor configurations were able to collect food at all positions within the first few generations except

concentric without the Euclidean distance input, which took on average 33 generations to learn how to get

food at every position. Thus, for most configurations, the main challenge was to learn to get foodefficiently.

The performance measure in this section is thus the average time (i.e. number of ticks) it takes the robot to

get a piece of food over all its trials. Robots that cannot get the food in a trial are given the maximum time

1,000 for that trial. Results are averaged over 20 runs.

Figure 14a shows how performance improved over 500 generations for both placement schemes, with

and without the Euclidean distance-input geometric bias. Parallel placement on average evolved signifi-

cantly faster strategies (p < .05) than concentric. This disparity is explained by a more complex relation-

ship, in Cartesian coordinates, between corresponding nodes in the concentric case. However, the added

geometric information in this experiment significantly increased performance of both methods after the

fourth generation (p < .01). Furthermore, the Euclidean distance input is so useful that it erases the differ-

ence between the two schemes, causing both to perform similarly when present. Thus, parallel placement is

easier to exploit for HyperNEAT except when the CPPN is provided connection length as input.

7.1 Scaling Performance

As in visual discrimination, substrates were scaled and testedwithout further evolution. Individuals gener-

ally did retain the ability to collect food although, unlike visual discrimination, there is some degradation in

performance at each increment in resolution. To illustrate this degradation for different configurations, figure
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Figure 14:HyperNEAT Food Gathering Performance. The performance of both sensor layouts at resolution eight
with and without the extra Euclidean distance input is shown in (a). The difference in speeds when different methods
are scaled from 8 to 32 is shown in (b). Graphs (c) and (d) show the speeds of the two sensor placement schemes at all
resolutions with and without the distance input (i.e. biased towards exploiting locality), respectively. The conclusion
is that HyperNEAT learns to exploit the placement geometry.

14b shows the averagedifferencein efficiency between resolution eight and resolution 32; lower numbers

imply better ability to scale.

Parallel placement scaled significantly more effectively than concentric except in the earliest generations

(p < .01). However, as with efficiency, when concentric placement’s CPPN was provided length as input, it

scaled as well as parallel placement did with length input. In both cases with extra input, scaling significantly

improved over runs using concentric placement without the additional input (p < .01), but not significantly

over regular parallel placement.

As figure 14b shows, concentric placement without the length input degraded significantly between

resolution eight and 32; in fact individuals could no longer collect food in every position. However, it turns
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out that information about the task was still retained implicitly at the higher resolution: When allowed to

continueevolving at the higher resolution, solutions that collect all the food were always found within five

generations (2.5 on average). On the other hand, when concentric evolution is started from scratch at a

lower resolution, it takes on average 33 generations to learn to get food on every trial. Thus, even when

performance degrades significantly after scaling, the resultant individual still retains important geometric

information that can be quickly tweaked to work at the higher resolution.

Figure 14c shows the average absolute performance at different resolutions for CPPNs without the ad-

ditional input, and 14d shows the same comparison for those with it. Parallel placement consistently out-

performed concentric on the same resolution (figure 14c). However, again, when provided the length input

(figure 14d), the performance of the two placement schemes no longer significantly differed. Although

each increment in resolution leads to a graceful degradation in performance, scaled individuals at all res-

olutions and in all configurations significantly outperformed a set of random individuals, showing further

that scaling indeed retains abilities present in the lower-resolution network (p < 0.01 vs. random). Further-

more, althoughaverage timedegrades, most scaled networks could still collect all the food if their unscaled

predecessor could.

In a more dramatic demonstration of scaling, one high fitness individual of each sensor placement

scheme was scaled to a resolution of 1024. The resulting ANNs each had overone millionconnections

and could still gather all the food.

An important question that emerges from the scaling results in food gathering is why substrates do not

scale perfectly as in visual discrimination. This question is addressed in the following analysis and revisited

later in the paper’s discussion (Section 8).

7.2 Repeating Motifs

To consistently activate highly the one output pointing in the right direction and inhibit all others requires

discovering such amotif and repeating it across the substrate. Figure 15 shows several examples of this

motif at different locations in both concentric and parallel substrates. The benefit of CPPN representation is

that it need only discover the correct motifonceby exploiting how it relates to the geometry of inputs and

outputs.

The CPPN in figure 15a (top row) shows how such exploitation is possible. HyperNEAT discovered

that by connectingx1 to a Gaussian node with a positive weight andx2 to the same node with a negative
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Figure 15:Repeated patterns in solutions. The CPPNs in (a) represent parallel (top row) and concentric (bottom
row) substrates that solve the task. The connectivity patterns in (b) and (c) are outgoingmotifs, each from a single
input node in the substrate. These images show that the same motif is repeated in different locations.

weight, the weight connecting any two nodes in the substrate is made a function of horizontal distance. This

principle is all that is necessary to cause the same motif to appear at every locus of horizontal correlation.

On the other hand, the principle of radial symmetry that underlies the correct motif in concentric sub-

strates is more challenging. Angular differences necessary to exploit concentric regularity take more struc-

ture to compute, although the concept is eventually discovered.

7.3 Scaling Analysis

Figure 16 (a,b) shows evolved parallel and concentric motifs at both8× 8 and16× 16 resolution.

Scaling up can sometimes produce small artifacts that are not apparent at lower resolutions (figure

16c,d). These imperfections vary greatly as do their effect on performance, although in all cases sufficient

information was retained to quickly recover the old behavior in under five generations.

Analyzing the source of higher-resolution imperfections explains how CPPNs represent regularities.

Recall that a connective CPPN is in effect a pattern within a four-dimensional hypercube. If two of those

dimensions, i.e.x1 andy1, are fixed, then the remaining two dimensions define a two-dimensional cross-
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Figure 16:Perfect and Imperfect Scaling. The parallel (top row) and concentric (bottom row)8 × 8 motifs in (a)
scale perfectly to the16 × 16 motifs in (b). However, because of artifacts at higher resolution, not all motifs scale
perfectly, as shown between (c) and (d), in which missing connections are identified by arrows. While the motif is
mostly intact, slight imperfections of this type are common during scaling in this task.

section of the hypercube. The pattern within that cross-section is in effect the infinite-resolution connectivity

pattern for one input node from which all finite substrate resolutions are sampled. Figure 17 depicts two

such cross-sections for both concentric and parallel substrates. The figure shows that the CPPN constructs

a pattern that, when sampled at the right resolution, defines the connectivity weights of all connections

between the fixed source location and the sample point.

Because only the sample points are required to be correct during evaluation, the unsampled portion of the

pattern can exhibit artifacts that are not visible at the sample resolution, but may become so at higher reso-

lutions. However, interestingly, the pattern often elegantly captures the fundamental geometric relationship,

as in figure 17a and 17c, which explains why scaling sometimes is perfect or close to perfect.

In contrast to food gathering, scaled CPPNs in visual discrimination performed almost perfectly, with

statistically insignificant degradation across all resolutions. What distinguishes the two tasks? An important

difference between them is that theprecisionof the substrate in visual discrimination does not need to

increase because the sizes of the boxes remains the same relative to the size of the substrate. In food

gathering, on the other hand, the size of the food is in effectshrinkingwhen resolution goes up because food

can only be detected by a single sensor and there are more sensors at higher resolution. Therefore, in food

gathering, in order to scale perfectly, the precision of the solution would need toincreasewith the resolution.

Because the task is never evaluated at higher resolution during training, it is not possible to ensure such an

increase through training.
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Figure 17:Hypercube Cross-Sections. Typical (a and c) and atypical (b and d) two-dimensional cross-sections
of hypercubes generated by CPPNs are depicted for working concentric (a and b) and parallel (c and d) substrate
configurations. Each cross-section represents the infinite-resolution outgoing connectivity pattern originating from
the location of the “X.” When substrates are generated in practice, these cross-sections are sampled at the substrate
resolution. Thus, much of the detail in the patterns is discarded for low-resolution substrates, though it may reemerge
when scaling to higher resolution.

Thus, one conclusion on scaling is that depending on the task, it may be perfect or imperfect; however,

the more important conclusion is that it always retainsat leastwhat was known at the lower resolution,

which is significantly better than starting from scratch if evolution is to continue at the higher resolution.

Furthermore, a useful result of these experiments is that there is now a basis on which to predict what kinds

of tasks will scale perfectly.

7.4 Evolving Motifs

Rather than finding the value of each connection separately, evolution in HyperNEAT progresses by dis-

covering global regularities. Figure 18 traces progress over parallel and concentric runs of evolution. The

early solutions are simple linear combinations of the coordinates. Although inefficient, these patterns learn

to gather food through a few good connections that compensate for others. Later in evolution, symmetries

and regularities begin to be discovered, although they are not always the most fundamental to the task. For

example, the concentric substrate in figure 18b partially solves the task by exploiting its bilateral symmetry,

even though the task is more fundamentally radially symmetric. Finally, evolution discovers the essential

regularity of the task domain, which is horizontal distance for parallel substrates and angular disparity in

concentric substrates (18c).

The next section discusses the major ramifications of this work.
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Figure 18:Evolution Discovers Regularities. Early-generation connective CPPNs typically produce simple con-
nectivity patterns (a). Eventually, HyperNEAT begins to exploit regularities (b), though they may not be the most
fundamental ones. Finally, HyperNEAT discovers the fundamental regularity that underlies the task for the given sub-
strate configuration (c). Thus, instead of optimizing individual connection weights, evolution is a process of gradually
discovering and exploiting holistic regularities.

8 Discussion and Future Work

The central insight in HyperNEAT is that regularity in higher-dimensional spatial patterns is easily mapped

to regular connectivity in lower-dimensional space, creating a new kind of indirect encoding for ANNs.

Experimental results show how it is possible to encode up to millions of connections by discovering the

pattern of recurring motifs underlying a solution. This section explores the implications of this capability

and its underlying methodology.

8.1 Limitations of Direct Encoding

The comparison between P-NEAT and HyperNEAT in visual discrimination highlights that direct encod-

ings are vulnerable to high dimensionality, i.e. a large number of connections, regardless of underlying

regularities in the domain. Thus, like other direct encodings, P-NEAT can only improve by discovering each

connection strength individually.

While previous research has confirmed the advantage of indirect encoding over direct encoding [5, 15,

26, 44, 53], the comparison with P-NEAT gives a sense of its urgency in neuroevolution. If P-NEAT cannot

optimize a network of 14,641 connections to discover a simple repeating motif, it is evident that tasks

requiring more than 15,000 connections are going to require some form of indirect encoding.
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In contrast, HyperNEAT demonstrates how it is possible to optimize orders of magnitude beyond 10,000

connections. Because connective CPPNs represent the solution conceptually, a single solution in effect

represents an infinite range of resolutions, i.e. node densities. Thus, the same solution can scale to higher

resolutions, which is a new capability for even indirect encodings of ANNs.

8.2 Substrate Scaling Implications

Visual discrimination solutions suffer no statistically significant degradation in performance as they scale.

However, scaling results in food gathering demonstrate that solutions cannot always be expected to scale

perfectly. This conclusion is not surprising; in tasks like food gathering scaling requires not only higher res-

olution buthigher precisionbecause the detail present in the additional substrate is germane to the solution.

A candidate trained at lower resolution has no means to evaluate such details and therefore may contain

artifacts when they are brought into greater focus.

Nevertheless, while not always perfect, the ability to scale without further evolution is a significant

advance for neuroevolution. The important consequence is that information learned at the lower resolution

is retained at the higher resolution; it is only within the expanded portions that error may be introduced.

Thus, the real benefit of this capability is that in the future, further evolution can be performed at the higher

resolution. Instead of starting over from scratch, HyperNEAT can continue to build on lower-resolution

solutions after they are magnified. The number of sensors, hidden nodes, and outputs can be multiplied

without losing prior knowledge because CPPNs in effectdecouplesolutions from individual inputs and

outputs. Such scaling may prove an important tool to ultimately achieving million or more connection

solutions to problems thatrequiresuch high dimensionality to solve. For example, a potentially promising

application of substrate scaling is machine vision, wherein general regularities in the structure of images can

be learned at low resolution, and then scaled up

Scaling the substrate connectivity concept suggests an interesting high-level explanation for how brains

evolved increasing complexity in nature. It is implausible that the human brain evolved by one new connec-

tion at a time from one generation to the next. How then could complexity have increased over generations?

An interesting hypothesis is that, at a high level of abstraction, the evolution of brains in biology in effect

included several such increases in density on the same connectivity concept. Not only can such an increase

improve the immediate resolution of sensation and action, but it can provide additional substrate for increas-

ingly intricate local relationships to be discovered through further evolution. If neural connectivity patterns

are represented in DNA as concepts, then such increases would be possible, thereby creating new opportu-
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nities for further structural elaborations to evolve within the higher-resolution substrate. Connective CPPNs

are a concrete formal explanation of how such complexification can work at a high level of abstraction.

8.3 Substrate Configuration and Geometry

The food gathering task demonstrates that in contrast to regular ANNs, different substrate placement schemes

create geometric relationships that are exploitable in different ways, some more easily than others. Connec-

tive CPPNs exploit regularities in parallel placement more efficiently than in concentric because the angular

differences necessary to exploit concentric regularity take more structure to compute with the given set of

activation functions. Thus the activation functions in the CPPN are like alanguagethat describes geometric

structure. With the right words, it is easier to describe a particular relationship. HyperNEAT allows the

experimenter to inject knowledge into the search through such configurations, e.g. by grouping correlated

objects or arranging sensors analogously to their real world geometry.

Furthermore, additional geometric information provided as input to the connective CPPN can signifi-

cantly simplify the structure necessary to describe key motifs. Whenconnection lengthis provided as input,

both placement schemes produce equivalent results. This result is important because it shows that connec-

tive CPPNs allow the experimenter to providehints to the learning algorithm about the kinds of geometric

principles that may underly the solution.

It is important to note that connectivity patterns can include hidden nodes and recurrence. Just as a

subset of nodes in the substrate are assigned as inputs and another subset as outputs, a third subset can be

reserved as hidden nodes. Regular patterns of hidden nodes, like cortical columns in the human brain [48],

can potentially be discovered.

Thus more complex problems requiring hidden nodes are an important future research direction. For ex-

ample, board games like checkers [17] and Go [55] likely require hidden nodes to permit effective strategies.

Such games exhibit numerous tactical regularities across different positions on the board that connective

CPPNs can potentially encode efficiently.

Recurrence, on the other hand, is naturally expressed by simply querying connections in the substrate

that would be recurrent. HyperNEAT can potentially evolve massive recurrent structures such as continuous

time recurrent neural networks (CTRNNs) that control walking gaits for diverse animal morphologies [42,

43, 57]. This application is promising because gaits and body morphologies are often highly regular, with

left and right sides related and one leg’s timing related to that of others.

34



It is also possible that non-neural connectivity patterns can be evolved in the future, e.g. to describe

robot body morphologies. Furthermore, because CPPNs can describe spatial patterns [50] in addtion to

connectivity patterns, the two types of pattern may be combined in the future.

9 Conclusion

This paper addressed how it is possible to represent and discover large-scale ANNs. The suggested approach

searches for regularities in the task domain by representing the solution as a function of the task geometry.

That way, it is possible to generate ANNs with millions of connections based on underlying geometric

motifs. To demonstrate this approach, HyperNEAT evolved connective CPPNs that solve simple visual

discrimination and food gathering tasks at varying resolutions. Both tasks required HyperNEAT to discover

a repeating motif in neural connectivity. Furthermore, because CPPN encoding is independent of the number

of sensors, solutions were possible to scale to variable resolutions. Most importantly, HyperNEAT suggests

how someday it may be possible to tackle problems that heretofore have proven too complex for modern

machine learning methods because of their astronomically high dimensionality. HyperNEAT shifts the

locus of difficulty away from problem dimensionality to problem structure, thereby providing hope that

such domains may ultimately be conquered by discovering their underlying regularities.
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A Experimental Parameters

Because HyperNEAT extends NEAT, it uses similar parameters [52]. Furthermore, extending a given NEAT

implementation to HyperNEAT requires minimal effort because HyperNEAT fits on top of the existing

NEAT algorithm. Thus, the two experiments in this paper were performed with different NEAT packages,

both of which come already equipped with preexisting facilities for each respective experiment. The visual

discrimination task utilizes a custom version of NEAT developed by Jason Gauci at the University of Central

Florida that includes optimizations for processing visual input and output. The food gathering experiment

is implemented in Colin Green’s public domain SharpNEAT package [21], which includes infrastructure for
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Parameter Gauci-HyperNEAT SharpNEAT-HyperNEAT

Pop. Size 100 150

c1 2.0 2.0

c2 2.0 2.0

c3 1.0 0.2

ct variable variable

Prob. Add Link 0.1 0.03

Prob. Add Node 0.03 0.01

Target # Species 8 10 to 15

Elitism 20% 20%

CPPN Output Range -1 to 1 -1 to 1

CPPN Weight Range -3 to 3 -3 to 3

Function Set Gaussian, Sigmoid Gaussian, Sigmoid

Sine, Bounded Linear Sine, Absolute Value

Table 1: Parameter Settings. Gauci-HyperNEAT is applied to visual discrimination while food gathering was
evolved in SharpNEAT-HyperNEAT.

robot control experiments. Both NEAT packages differ slightly in their implementations and both experi-

ments were performed separately; therefore they use slightly different parameters. However, both packages

preserve the core NEAT algorithm and with it evolve CPPNs. Both packages, including HyperNEAT exten-

sions, are available athttp://eplex.cs.ucf.edu .

Table 1 shows the parameters used in both implementations of HyperNEAT. In addition, if the magnitude

of the CPPN’s output for a particular query is less than or equal to0.2 then the connection is not expressed

in the substrate. If it is greater than0.2, then the number is scaled to a magnitude between zero and three.

The sign is preserved, so negative output values correspond to negative connection weights.

While some parameters differ slightly, they follow similar logic, that is, parameters’ relative relation-

ships are similar within in each system. NEAT has been found to be robust to moderate variations in

parameters [51, 52, 54].

References
[1] Altenberg, L. (1994). Evolving better representations through selective genome growth. InProceedings of the

IEEE World Congress on Computational Intelligence, 182–187. Piscataway, NJ: IEEE Press.

[2] Angeline, P. J. (1995). Morphogenic evolutionary computations: Introduction, issues and examples. In Mc-
Donnell, J. R., Reynolds, R. G., and Fogel, D. B., editors,Evolutionary Programming IV: The Fourth Annual
Conference on Evolutionary Programming, 387–401. MIT Press.

36



[3] Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1993). An evolutionary algorithm that constructs recurrent
neural networks.IEEE Transactions on Neural Networks, 5:54–65.

[4] Belew, R. K., and Kammeyer, T. E. (1993). Evolving aesthetic sorting networks using developmental grammars.
In Forrest, S., editor,Proceedings of the Fifth International Conference on Genetic Algorithms. San Francisco:
Kaufmann.

[5] Bentley, P. J., and Kumar, S. (1999). The ways to grow designs: A comparison of embryogenies for an evolution-
ary design problem. InProceedings of the Genetic and Evolutionary Computation Conference (GECCO-1999),
35–43. San Francisco: Kaufmann.

[6] Bongard, J. C. (2002). Evolving modular genetic regulatory networks. InProceedings of the 2002 Congress on
Evolutionary Computation.

[7] Brooks, R. A., and Maes, P., editors (1994).Proceedings of the Fourth International Workshop on the Synthesis
and Simulation of Living Systems (Artificial Life IV). Cambridge, MA: MIT Press.

[8] Chklovskii, D. B., and Koulakov, A. A. (2004). MAPS IN THE BRAIN: What can we learn from them?.Annual
Review of Neuroscience, 27:369–392.

[9] Churchland, P. M. (1986). Some reductive strategies in cognitive neurobiology.Mind, 95:279–309.

[10] Dawkins, R. (1986).The Blind Watchmaker.Essex, U.K.: Longman.

[11] Dellaert, F. (1995).Toward a Biologically Defensible Model of Development. Master’s thesis, Case Western
Reserve University, Clevekand, OH.

[12] Dellaert, F., and Beer, R. D. (1996). A developmental model for the evolution of complete autonomous agents.
In Maes, P., Mataric, M. J., Meyer, J.-A., Pollack, J., and Wilson, S. W., editors,From Animals to Animats 4:
Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT
Press.

[13] Deloukas, P., Schuler, G. D., Gyapay, G., Beasley, E. M., Soderlund, C., Rodriguez-Tome, P., Hui, L., Matise,
T. C., McKusick, K. B., Beckmann, J. S., Bentolila, S., Bihoreau, M., Birren, B. B., Browne, J., Butler, A.,
Castle, A. B., Chiannilkulchai, N., Clee, C., Day, P. J., Dehejia, A., Dibling, T., Drouot, N., Duprat, S., Fizames,
C., and Bentley, D. R. (1998). A physical map of 30,000 human genes.Science, 282(5389):744–746.

[14] Eggenberger, P. (1997). Evolving morphologies of simulated 3D organisms based on differential gene expression.
In Husbands, P., and Harvey, I., editors,Proceedings of the Fourth European Conference on Artificial Life, 205–
213. Cambridge, MA: MIT Press.

[15] Federici, D. (2004). Evolving a neurocontroller through a process of embryogeny. In Schaal, S., Ijspeert,
A. J., Billard, A., Vijayakumar, S., Hallam, J., and Jean-Arcady, editors,Proceedings of the Eighth International
Conference on Simulation and Adaptive Behavior (SAB-2004), 373–384. Cambridge, MA: MIT Press.

[16] Federici, D. (2004). Using embryonic stages to increase the evolvability of development. InProceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2004) Workshop Program. Berlin: Springer
Verlag.

[17] Fogel, D. B. (2001).Blondie24: Playing at the Edge of AI. San Francisco: Kaufmann.

[18] Gilbert, C. D., and Wiesel, T. N. (1992). Receptive field dynamics in adult primary visual cortex.Nature,
356:150–152.

[19] Gomez, F., and Miikkulainen, R. (1999). Solving non-Markovian control tasks with neuroevolution. InProceed-
ings of the 16th International Joint Conference on Artificial Intelligence, 1356–1361. San Francisco: Kaufmann.

[20] Goodhill, G. J., and Carreira-Perpinn, M. A. (2002). Cortical columns. In Nadel, L., editor,Encyclopedia of
Cognitive Science, vol. 1, 845–851. London: MacMillan Publishers Ltd.

[21] Green, C. (2003–2006). SharpNEAT homepage.http://sharpneat.sourceforge.net/ .

[22] Gruau, F. (1994).Neural Network Synthesis Using Cellular Encoding and the Genetic Algorithm. PhD thesis,
Ecole Normale Superieure de Lyon, France.

[23] Gruau, F., Whitley, D., and Pyeatt, L. (1996). A comparison between cellular encoding and direct encoding
for genetic neural networks. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and Riolo, R. L., editors,Genetic
Programming 1996: Proceedings of the First Annual Conference, 81–89. Cambridge, MA: MIT Press.

37

http://www.mpi-sb.mpg.de/services/library/proceedings/contents/icga93.html
http://www.mpi-sb.mpg.de/services/library/proceedings/contents/alife94.html
http://www.mpi-sb.mpg.de/services/library/proceedings/contents/alife94.html
http://www.cshl.edu/labs/mitya/ChklovskiiKoulakov04.pdf
http://w3.uniroma1.it/cordeschi/Articoli/churchland.htm
http://citeseer.nj.nec.com/dellaert95toward.html
http://citeseer.nj.nec.com/dellaert96developmental.html
http://citeseer.nj.nec.com/eggenberger97evolving.html
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco2004.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=1545866
http://nn.cs.utexas.edu/keyword?gomez:ijcai99
http://www.cs.toronto.edu/~miguel/papers/ps/ecs02.pdf
http://sharpneat.sourceforge.net/
http://citeseer.nj.nec.com/frederic94neural.html


[24] Hart, W. E., Kammeyer, T. E., and Belew, R. K. (1994). The role of development in genetic algorithms. Technical
Report CS94-394, University of California San Diego, San Diego.

[25] Harvey, I. (1993).The Artificial Evolution of Adaptive Behavior. PhD thesis, School of Cognitive and Computing
Sciences, University of Sussex, Sussex.

[26] Hornby, G. S., and Pollack, J. B. (2001). The advantages of generative grammatical encodings for physical
design. InProceedings of the 2002 Congress on Evolutionary Computation.

[27] Hornby, G. S., and Pollack, J. B. (2002). Creating high-level components with a generative representation for
body-brain evolution.Artificial Life, 8(3).

[28] Hubel, D. H., and Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas
(18 and 19) of the cat.Journal of Neurophysiology, 28:229–289.

[29] Jakobi, N. (1995). Harnessing morphogenesis. InProceedings of Information Processing in Cells and Tissues,
29–41. University of Liverpool.

[30] James, D., and Tucker, P. (2005). Evolving a neural network active vision system for shape discrimination. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005) Late Breaking Papers.
New York, NY: ACM Press.

[31] Kandel, E. R., Schwartz, J. H., and Jessell, T. M., editors (1991).Principles of Neural Science. Amsterdam:
Elsevier. Third edition.

[32] Kohl, N., Stanley, K., Miikkulainen, R., Samples, M., and Sherony, R. (2006). Evolving a real-world vehicle
warning system. InProceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006),
1681–1688.

[33] Komosinski, M., and Rotaru-Varga, A. (2001). Comparison of different genotype encodings for simulated 3D
agents.Artificial Life, 7(4):395–418.

[34] Lindenmayer, A. (1968). Mathematical models for cellular interaction in development parts I and II.Journal of
Theoretical Biology, 18:280–299 and 300–315.

[35] Lindenmayer, A. (1974). Adding continuous components to L-systems. In Rozenberg, G., and Salomaa, A.,
editors,L Systems, Lecture Notes in Computer Science 15, 53–68. Heidelberg, Germany: Springer-Verlag.

[36] Martin, A. P. (1999). Increasing genomic complexity by gene duplication and the origin of vertebrates.The
American Naturalist, 154(2):111–128.

[37] Miller, J. F. (2004). Evolving a self-repairing, self-regulating, French flag organism. InProceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2004). Berlin: Springer Verlag.

[38] Mjolsness, E., Sharp, D. H., and Reinitz, J. (1991). A connectionist model of development.Journal of Theoretical
Biology, 152:429–453.

[39] Moriarty, D., and Miikkulainen, R. (1993). Evolving complex Othello strategies with marker-based encoding
of neural networks. Technical Report AI93-206, Department of Computer Sciences, The University of Texas at
Austin.

[40] Prusinkiewicz, P., and Lindenmayer, A. (1990).The Algorithmic Beauty of Plants. Heidelberg, Germany:
Springer-Verlag.

[41] Raff, R. A. (1996).The Shape of Life: Genes, Development, and the Evolution of Animal Form. Chicago: The
University of Chicago Press.

[42] Reil, T., and Husbands, P. (2002). Evolution of central pattern generators for bipedal walking in a real-time
physics environment.IEEE Transactions on Evolutionary Computation, 6(2):159–168.

[43] Reil, T., and Massey, C. (2001). Biologically inspired control of physically simulated bipeds.Theory in Bio-
sciences, 120:1–13.

[44] Reisinger, J., Stanley, K. O., and Miikkulainen, R. (2005). Towards an empirical measure of evolvability. In
Genetic and Evolutionary Computation Conference (GECCO2005) Workshop Program, 257–264. Washington,
D.C.: ACM Press.

[45] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations by error propaga-
tion. In Parallel Distributed Processing, 318–362.

38

http://www.cogs.susx.ac.uk/users/inmanh/inman_thesis.html
http://demo.cs.brandeis.edu/papers/long.html#hornby_cec01
http://demo.cs.brandeis.edu/papers/long.html#hornby_cec01
http://www.demo.cs.brandeis.edu/papers/hornby_alife02.pdf
http://www.demo.cs.brandeis.edu/papers/hornby_alife02.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=14283058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db=pubmed&dopt=abstract&list_uids=14283058
http://citeseer.nj.nec.com/jakobi95harnessing.html
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco2004.pdf
http://nn.cs.utexas.edu/keyword?reisinger:gecco05


[46] Saravanan, N., and Fogel, D. B. (1995). Evolving neural control systems.IEEE Expert, 23–27.

[47] Sims, K. (1994). Evolving 3D morphology and behavior by competition. In [7], 28–39.

[48] Sporns, O. (2002). Network analysis, complexity, and brain function.Complexity, 8(1):56–60.

[49] Stanley, K. O. (2006). Exploiting regularity without development. InProceedings of the AAAI Fall Symposium
on Developmental Systems. Menlo Park, CA: AAAI Press.

[50] Stanley, K. O. (2007). Compositional pattern producing networks: A novel abstraction of development.Genetic
Programming and Evolvable Machines Special Issue on Developmental Systems, 8(2):131–162.

[51] Stanley, K. O., Bryant, B. D., and Miikkulainen, R. (2005). Real-time neuroevolution in the NERO video
game.IEEE Transactions on Evolutionary Computation Special Issue on Evolutionary Computation and Games,
9(6):653–668.

[52] Stanley, K. O., and Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies.Evolu-
tionary Computation, 10:99–127.

[53] Stanley, K. O., and Miikkulainen, R. (2003). A taxonomy for artificial embryogeny.Artificial Life, 9(2):93–130.

[54] Stanley, K. O., and Miikkulainen, R. (2004). Competitive coevolution through evolutionary complexification.
Journal of Artificial Intelligence Research, 21:63–100.

[55] Stanley, K. O., and Miikkulainen, R. (2004). Evolving a roving eye for Go. InProceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2004). Berlin: Springer Verlag.

[56] Sutton, R. S., and Barto, A. G. (1998).Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.

[57] Terzopoulos, D., Rabie, T., and Grzeszczuk, R. (1994). Artificial fishes: Autonomous locomotion, perception,
behavior, and learning in a simulated physical world.Artificial Life, 1(4):327–351.

[58] Turing, A. (1952). The chemical basis of morphogenesis.Philosophical Transactions of the Royal Society B,
237:37–72.

[59] Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., and Weiner, A. M. (1987).Molecular Biology of the
Gene Fourth Edition. Menlo Park, CA: The Benjamin Cummings Publishing Company, Inc.

[60] Wolpert, D. H., and Macready, W. (1997). No free lunch theorems for optimization.IEEE Transactions on
Evolutionary Computation, 1:67–82.

[61] Yao, X. (1999). Evolving artificial neural networks.Proceedings of the IEEE, 87(9):1423–1447.

[62] Zhao, D., and Jin, W. (2005). The study of cooperative behavior in predator-prey problem of multi-agent systems.
In Proceedings of the International Symposium on Autonomous Decentralized Systems (ISADS 2005), 90–96.
Piscataway, NJ: IEEE Press.

[63] Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L., and Squire, L. R., editors (1999).Fundamental
Neuroscience. London: Academic Press.

39

http://www.mpi-sb.mpg.de/services/library/proceedings/contents/alife94.html
http://www3.interscience.wiley.com/cgi-bin/jissue/102525814
http://nn.cs.utexas.edu/keyword?stanley:ec02
http://nn.cs.utexas.edu/keyword?stanley:alife03
http://nn.cs.utexas.edu/keyword?stanley:jair04
http://nn.cs.utexas.edu/keyword?stanley:gecco04
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1452025

	Introduction
	Background
	Compositional Pattern Producing Networks (CPPNs)
	NeuroEvolution of Augmenting Topologies (NEAT)

	HyperNEAT
	Mapping Spatial Patterns to Connectivity Patterns
	Producing Regular Connectivity Patterns
	Substrate Configuration
	Input and Output Placement
	Substrate Resolution
	Evolving Connective CPPNs

	Experiment 1: Visual Discrimination
	Visual Discrimination Setup
	Evolution and Performance Analysis
	Scaling to Millions of Connections
	Inputting Additional Geometric Bias

	Visual Discrimination Results
	Scaling Performance
	Scaling Analysis
	Repeating Patterns
	Discovering Regularities

	Experiment 2: Food Gathering
	Food Gathering Setup
	Sensor Placement
	Scaling
	Additional Geometric Bias in Food Gathering

	Food Gathering Results
	Scaling Performance
	Repeating Motifs
	Scaling Analysis
	Evolving Motifs

	Discussion and Future Work
	Limitations of Direct Encoding
	Substrate Scaling Implications
	Substrate Configuration and Geometry

	Conclusion
	Experimental Parameters

