
Synthesis of Externally Synchronous, Internally Asynchronous

Circuits

Bassam Tabbara� Luciano Lavagnoy Alberto Sangiovanni-Vincentelliz

Abstract

The purpose of this work is to take an arbitrary 2-

phase synchronous circuit and eliminate its global

clock while preserving its externally visible behavior.

This is done by converting it into a set of self-timed

combinational circuits with latches and a clock gen-

eration network that uses only a local handshake. We

discuss the overhead required by this approach to self-

timing and outline opportunities for future research.

1 Introduction

The problem of clock distribution is becoming in-

creasingly di�cult to manage with standard syn-

chronous digital design techniques. The methods for

tackling it are moving far from the original simplicity

and degree of automation that has made synchronous

synthesis-based design so successful.

One possible mechanism for tackling these prob-

lems is the technique of self-timing ([4, 6]). Unfor-

tunately, traditional Self-Timed Circuit (STC) de-

sign requires di�erent speci�cation methods (like Sig-

nal Transition Graphs, STGs, [1]) that are unfamil-

iar to designers. Moreover, understanding the com-

plex timing patterns of true STCs is an obstacle to a

widespread di�usion of this design style. In this work,

we follow an idea originally presented in [5] to build

a local synchronization network that, starting from

a two-phase synchronous circuit, derives the clock of

each latch in it from the signals that indicate termi-

nation of computation in the latches that drive the

inputs of its cone of logic.

The original paper of Varshavsky et al., though,

did not discuss the method to automate the parti-

tioning of the logic into two phases and the design of

the clock generation circuitry. It did not provide, ei-

ther, a general-purpose, cost-e�ective mechanism to

derive the \Done" signal for each block of combina-

tional logic, that is required to properly clock each

�University of California, Berkeley
yPolitecnico di Torino, Cadence Berkeley Labs
zUniversity of California, Berkeley

latch. Our work tackles both problems, and discusses

the advantages and disadvantages of the proposed so-

lution.

For the �rst problem, we provide a �rst-cut, simple

technique for partitioning an arbitrary synchronous

circuit into two phases, and discuss methods to im-

prove this partition. Moreover, we give an architec-

ture in which the combinational logic, latches and

clock generation circuitry cooperate correctly. Fi-

nally, we describe by means of a Signal Transition

Graph the speci�cation, to be synthesized by state-

of-the-art asynchronous design tools ([2]), of the clock

generation circuit.

For the second problem, we show that the Timed-

Shannon Circuit (TSC) (introduced in [3] for low-

power circuit design) can be modi�ed to produce an

acknowledge (Ack) signal when it has completed the

computation of a Boolean function. Hence it can be

used to implement the combinational part of the pro-

posed architecture.

Let us consider �rst the problem of implementing

a piece of combinational logic with an Ack signal.

2 Timed Shannon Circuits for

the combinational logic

The problem of generating an Ack signal from a

piece of combinational logic has been solved in vari-

ous ways, all depending on the single path propaga-

tion property, that is su�cient (but not necessary)

to guarantee correct completion detection. In this

paper we consider an automated solution, that uses

only static CMOS logic, and that has a reasonable

overhead with respect to the synchronous case. It is

based on Timed Shannon Circuits, that are concep-

tually similar to dynamic CMOS logic, but are less

sensitive than dynamic circuits to noise problems.

Recall that a Timed Shannon Circuit (TSC, [3]) is

derived by traversing a Binary Decision Diagram of

the Boolean function to be implemented. The traver-

sal is performed from the root to the leaves of the

TSC, and this guarantees that computation proceeds

1



along only one path. Thus it becomes easy to detect

its completion, by checking when the transition of the

\Enable" input to the TSC reaches one of the leaves.

Figure 3 shows the construction of the TSC at node

labeled E of the BDD appearing on the left (bold

edges are associated with the 0 value of the label-

ing variables xi, thin edges are associated with the

1 value). It also shows the �nal complete TSC. It

should be obvious that the top Enable signal starts

the computation when it rises from 0 to 1. The out-

put F of the circuit is the OR of all the edges leading

to the 1 terminal in the BDD. Similarly, the output

Ack can be derived by ORing together all the edges

leading both to the 1 and to the 0 terminal.

The idea is that during the passive stage both F

and not-F are 0 (because the circuit is disabled by

pulling the Enable low) i.e. the circuit is performing

no computation and is passive. When the circuit is

Enabled, either F or not-F is 1 (and the other is 0)

since only one and only one path will be active. Ack

is 0 during the passive stage. Therefore the Timed

Shannon Circuit (TSC) is indeed self-timed, since ev-

ery transition on the Enable signal is acknowledged

by a transition on the Ack signal.

In order to build the STC that will be substi-

tuted for the initial synchronous design, we �rst build

the BDD of each combinational circuit whose output

function feeds a latch input, and then construct the

TSC.

Let us consider now the complete architecture us-

ing the TSC to implement the combinational logic.

3 The proposed Self-Timed

Circuit architecture

In order to preserve the external equivalence between

the synchronous and the asynchronous circuit, we

need to divide the set of memory elements of the

original speci�cation into two classes, and guaran-

tee that two adjacent (with respect to combinational

logic true paths) memory elements always belong to

di�erent classes. In this way, at each point in time

one class can be in the active phase, and the other

one can be in the passive phase. Passive latches keep

their outputs stable, active latches update their out-

puts with the new values computed by their combi-

national logic cones.

As a �rst step to achieve this goal, we assume to

start from a synchronous circuit and we split each

latch into two latches. This does not change the be-

havior, but only requires two clock cycles to perform

one step of computation. We can then use retiming

techniques to move those latches around while pre-

serving the behavior, and partially recover the loss in

performance due to the doubling of the number of cy-

cles per computation. Note that the self-timing tech-

nique does not require to perform timing analysis of

this retimed circuit, because the combinational logic

itself signals the completion of computation. This

new circuit with split latches by construction yields

a latch adjacency graph that can be colored with 2

colors.

In the future we will look at better partitioning

schemes, that allow to share the clock generation

logic between latches, based on connectivity analy-

sis. Latches with a high number of common fanins to

their respective combinational logic cones should be

kept together in this approach.

Once we have partitioned the circuit into latches

driven by cones of logic, we can look at the architec-

ture that ties them together. It is depicted in Fig-

ure 1, assuming that the combinational logic cone for

the latch implementing signal F2 is driven by sig-

nals F1 and F3, with associated Done signals X1

and X3. The notation in the �gure is as follows:

TSC Timed Shannon Circuit

F2 Input of latch 2 (from TSC)

T2 Synchro-element output for latch 2

A2 Acknowledge signal for F2 (from TSC)

X2 Done signal for latch 2

EN Enable for the TSC

The Done signal rises to indicate that this portion

of the circuit is entering the passive phase, and its

fanout blocks of logic can start computing (by enter-

ing the active phase).

Let us examine the behavior of this architecture

by starting with the TSC. This is derived from the

original circuit (as described in Section 3) to imple-

ment the combinational circuit feeding the input of

the latch. The output latch is used to allow other

portions of the circuit to compute while keeping F2

stable. The Enable of the TSC is hooked to the out-

put T2 of the synchro-element. This element can

be thought of as a gateway that is initially disabled.

Therefore the TSC is disabled and the Ack signal (A2

in Figure 1) is at 0. This means that the Done sig-

nal (X2 in Figure 1) is at 0, and this portion of the

circuit is passive (i.e. it is not doing any computa-

tion). Other portions can freely look at the output

stored in the latch, that is waiting to be enabled by

its neighbors when they are done computing.

This brings us back to the top of Figure 1. The

synchro-element can be activated (opened) only by

all the Done signals from its neighbors going to 1

(X1 and X3 in Figure 1).

2



F

x1

x3

1 0

C D

E

BAx2

x4

from A from B

x3 x3

to C to D

Enablex1 x1

x2 x2 x2

x3 x3 x3

x4 x4 x4

F Ack

F

Figure 1: Sample TSC construction from a BDD

Synchro-element

Timed Shannon Circuit

Latch

F2

X1

F2

F1

External EnableX2

X2

A2

Enable

F Ack

Figure 2: The proposed circuit architecture

The External Enable shown in the �gure is used to

preserve the external interface of the system. It deter-

mines the time at which the primary inputs (if any)

are sampled by the TSCs. It corresponds functionally

to the clock of the original synchronous circuit, but

must be distributed to fewer elements in general. The

primary outputs, on the other hand, are ready when

the corresponding Ack outputs rise. This means that

in order to interface this circuit with a synchronous

circuit, some timing analysis is required to verify that

the circuit can absorb input transitions fast enough

and that its outputs are ready when the other circuits

will latch them.

When the neighbors of this circuit are done com-

puting, they enable the TSC. When the TSC is done

computing, Ack (A2 in Figure 1) goes to 1, and since

it is connected to the edge-triggered clock of the latch,

the latch memorizes the result. The computation is

now done, and this sub-circuit turns itself o� again

(i.e. it goes back to its passive stage). The other sub-

circuits that depend on F2 have also been noti�ed

that this signal is ready to be used, at their earliest

convenience.

The STG of the design presented above section is

shown in Figure 2. It describes formally the causal

dependencies between signal transitions (denoted by

+ for the rising transition and by - for the falling

transition).

3



X1+

T2+

X3+

X2- A2+

T2-

A2-

X2+

X1- X3-

Figure 3: The STG of the synchro-element

4 Conclusions and future work

So far we have experimented with several toy exam-

ples, and were able to verify the correct functionality

of their STCs. We also built the STCs for the sequen-

tial multi-level subset of the MCNC91 and ISCAS89

benchmarks and noticed roughly a two-fold increase

in area in general. This can be considered quite high

in the current technology, but its importance is going

to decrease in the future.

The problem of distributing each signal together

with its local clock, on the other hand, is much more

serious, since it requires

� a two-fold increase in routing resources as well,

and

� a tight control over the relative skews of each

such pair of signals.

In a sense, we are replacing a global synchronization

and skew problem with several local instances. Place-

ment and routing algorithms, currently targeted at a

single critical net (the clock) will have to be mod-

i�ed to take into account this \divide-and-conquer"

approach.

In the future we have several directions to explore,

including optimizing the multi-level logic of the STC

without destroying the property of self-timing, and

improving the initial partitioning scheme in order to

minimize interaction among the di�erent components

and exploit locality of computation.

References

[1] T.-A. Chu. Synthesis of Self-timed VLSI Circuits

from Graph-theoretic Speci�cations. PhD thesis,

MIT, June 1987.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev,

L. Lavagno, and A. Yakovlev. Technology map-

ping of speed-independent circuits based on com-

binational decomposition and resynthesis. In Pro-

ceedings of the European Design Automation and

Testing Conference (EDTC), March 1997.

[3] L. Lavagno, P. C. McGeer, A. Saldanha, and Al-

berto Sangiovanni-Vincentelli. Timed Shannon

Circuits: A power-e�cient design style and syn-

thesis tool. In Proceedings of the Design Automa-

tion Conference, pages 254{260, June 1995.

[4] C. L. Seitz. Chapter 7. In C.Mead and L. Conway,

editors, Introduction to VLSI Systems. Addison

Wesley, 1981.

[5] V. Varshavsky., V. Marakhovsky, and T.-A. Chu.

Asynchronous timing of arrays with synchronous

prototype. To be published, 1996.

[6] V. I. Varshavsky, M. A. Kishinevsky, V. B.

Marakhovsky, V. A. Peschansky, L. Y. Rosen-

blum, A. R. Taubin, and B. S. Tzirlin. Self-timed

Control of Concurrent Processes. Kluwer Aca-

demic Publisher, 1990. (Russian edition: 1986).

4


