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1. Introduction

The purpose of this review is threefold: to present a pedagogical introduction to the use of Dynkin
diagrams, and especially their application to unified model building; to summarize the representations,
quantum number structure, and tensor products of a number of simple Lie algebras that have attracted
attention; and to describe several problems in unified model building. Table 1 and the Contents provide
a fairly detailed summary of the topics covered. The choice of groups was suggested primarily by
research into Yang-Mills theories [1, 2] based on simple, local-symmetry groups that are supposed to
unify quantum chromodynamics (QCD) with quantum flavor dynamics (QFD). QCD is the candidate
theory of the strong interactions; it hypothesizes that the strong interactions are due to the interactions
of eight vector gluons with the eight symmetry currents of an SUj; locally-symmetric Yang-Mills theory
[3]. This local symmetry is denoted SUS, where ““c”” means “color” and distinguishes this use of SU;
from others. The gluons do not carry the charges of the flavor interactions. QFD is also a Yang-Mills
theory with local symmetry G" containing the SUY X UY of the electromagnetic and weak interactions
[4]; flavor bosons do not carry color charge. In addition to those, unified models hypothesize the
existence of additional interactions. For example, the model based on a local SUs symmetry, which was
the first example based on a simple group, has additional bosons that can mediate proton decay [5].

Section 2 contains a brief review of the “‘standard model” of electromagnetic, weak, and strong
interactions, based on the group SU7Z X UT X SUS. It is presented as background material for readers
from outside particle physics. Some kinematical features of the fermion mass matrix are reviewed, and
the main result, summarized in table 2, is the necessary part of the particle spectrum to be incorporated
in unified models.

The proposal of unification is examined somewhat critically in section 3. It is assumed that the
standard model can be embedded in a simple group G, as reviewed in ref. [6]. A qualitative review of
simple Lie algebras (to be elaborated in later sections) is given. Section 3 also has an introductory
description of specific models based on SUs [5], SOy [7], and Es [8], and some notes on group
theoretical problems to be solved when analyzing such models. Sections 2 and 3 contain “‘elementary”
material,

Much of the analysis of the SUs model is easily carried out using traditional tensor techniques, but
for a group as complicated as Es, those techniques often become quite cumbersome. Thus, there is a
motivation for wanting a simpler and more transparent notation. It is the contention of this review that
the use of Dynkin diagrams [9] is just such a simplification; although it is hardly needed for the SUs
work, it does make detailed discussions of larger groups like E¢ or SO,, quite easy. The Dynkin labels
of the representation vectors, used in conjunction with the Dynkin diagram, take the whole group
structure into account. In contrast, sets of tensor labels are easily made symmetric, antisymmetric, or
traceless, but further algebraic structure is oftentimes expressed rather awkwardly. For example, the
component-by-component analysis of the quantum number content of a representation is trivial using
Dynkin’s techniques; there even exist simple computer programs that do the whole job [10] for any
representation of any simple group, although the results presented here were derived mostly “by hand”.
Consequently the use of Dynkin labels for the states simplifies the details of many group-theoretical
calculations. Finally, the group theoretical structure of the symmetry breaking takes on a transparent
geometrical character, especially in those cases where the concept of the “breaking direction” in weight
space is applicable.

Sections 4, 5 and 6 are devoted to summarizing the group-theoretical results that are needed for
understanding Dynkin’s approach to representation theory. Readers familiar with unified models may
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wish to skip directly to section 4. The root system of a simple Lie algebra describes the effect of the
raising and lowering operators of the group’s algebra on the eigenvalues (or quantum numbers) of the
diagonal generators, and provides a geometrical interpretation of the commutation relations. The
Dynkin diagram is a convenient mnemonic for a special set of roots, called simple roots, that carry all
this information. It is then described how to compute the eigenvalues of the diagonalizable generators,
which form the Cartan subalgebra.

Our informal treatment of the underlying group theory is directed toward applications [11]. Thus, the
usefulness of many theorems is emphasized, but no proofs are reviewed. Hopefully, this approach will
supplement the many rigorous and more detailed treatments of simple Lie algebras already available in
textbook form for many years [12]. The reader who desires proof in addition to an intuitive picture
should look there for derivations.

Section 5 describes how Dynkin diagrams can be applied to the analysis of the finite-dimensional,
unitary, irreducible representations (irreps) of simple Lie algebras. Each representation vector in the
Hilbert space is labeled by the eigenvalues of the diagonal generators. It is demonstrated how to
calculate easily and quickly the eigenvalues in any irrep of any simple algebra. As examples that are
nontrivial in other notations, a complete analysis of the 27 and 78 of Es is given, including a calculation
of the electric charge, weak charge, and color charge of each component. (This calculation is begun in
section 5 and completed in section 6.)

To complete the analysis of standard-model physics, as embedded in a unified model, we study
further the subgroup structure of the unifying group. Dynkin’s analysis of subgroups is outlined in
section 6; although for many purposes it is quite adequate to have a list of maximal subgroups, a few of
the general results give important insights into model building. Explicit matrices that project the root
system of a group onto the roots and weights of its subgroups are derived. The basis independent results
used to establish the uniqueness (up to an equivalence transformation) of these projections are reviewed
here and in ref. [6]; many examples are provided. We also discuss reflections of the generators that can
be used for charge conjugation C and for CP [13]; these are associated with symmetric subgroups.

Sections 7 and 8 have discussions of the tables of irreps, tensor products, and branching rules. Section
7 is a detailed account of Ee and its subgroups. The purpose of the text is to offer comments on the
content, conventions, and applications of the tables. Then a consistent set of projection matrices from
Es through all the physical subgroup chains to U{™ X SUS3 is derived. These matrices are helpful for
calculations where explicitly labeled field operators are used. Finally a method for calculating vector-
coupling coefficients is outlined and some examples are worked out.

There is some interest in using larger groups; a sketch of the groups E;, Eg, SUs, and the use of the
complex spinor representations of the SO,,.s groups [14] is given in section 8.

Section 9 covers several topics in the application of group-theoretical techniques to symmetry,
breaking. For the case where the breaking is done by a single irreducible representation, Michel has
conjectured a classification of solutions to all possible (realistic) breaking mechanisms [15]. His solutions
rely on the notion of a “maximal stability group” or “maximal little group”. The breaking in unified
models is done by a reducible representation; a proposal for solving this more complicated symmetry-
breaking problem (without explicitly minimizing complicated Higgs potentials) is described [16]. Each
candidate little group may be a minimum for a range of parameters of the Higgs potential, including
radiative corrections; the minimization problem is reduced to a one-dimensional problem where a finite
number of candidate answers are substituted into the (effective) potential and compared. We then look
at some specific problems in Yang-Mills theories with the field operators labeled according to a
convenient basis; in this context the calculation of the vector-boson and fermion mass matrices are
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described in a number of examples [17]. There are some interesting examples where the concept of
symmetry-breaking direction in “weight space” greatly simplifies mass-matrix calculations. In con-
clusion there are some comments on the possible role of the charge conjugation reflection of the
unifying group in symmetry breaking.

There are a number of important topics in unified model building that are not covered in this review:
one that has received much attention is the use of renormalization group techniques to calculate the
proton lifetime (and the mass of the bosons that mediate the decay) in terms of the experimentally
measured strong and electromagnetic couplings [18-20]. There have been many other papers on the
phenomenology of small effects (“‘rare” or “forbidden” decays, neutrino masses, and other effects not
expected from the standard theory of electromagnetic, weak, and strong interactions) predicted at some
level in many unified models; these too are not discussed. We have also ignored the developments in
computing the spin 3 fermion mass ratios at low Q7 in terms of the symmetry ratios.

Many of the results contained here were derived in collaborations with M. Gell-Mann, J. Patera, P.
Ramond and G. Shaw, in our investigations of unified models and Lie algebras. It is a pleasure to
acknowledge their contributions and helpful conversations with J. Ginocchio. The drafts of this review
were cheerfully and excellently typed by Marian Martinez. R. Roskies and H. Ruegg provided many
helpful comments on the manuscript.

2. The standard model

The purpose of this section is to review briefly the standard model [3, 4] of electromagnetic, weak,
and strong interactions based on the local symmetry SUZ X UY X SU3, with focus on some elementary
features also basic to unified models [21]. This section is intended to provide for those outside particle
physics some explanation of the language used in later sections: the relationships of the vector bosons,
the adjoint representation, and interactions [2]; the structure of the representation of all left-handed,
spin 3 fermions, including particles and antiparticles and the construction of the kinetic energy and mass
terms in the Lagrangian; and the symmetry breaking of SU3 X U} down to the U™ of quantum
electrodynamics (QED). The group-theoretical language relied on so heavily in unified model building
is not meant to hide the physics, as it may appear at first glance, but is intended to communicate very
efficiently much of the physical content of these theories; our object here is to set up the physical
language so that the translation to group-theoretical language is explicit. The particle spectrum to
appear in the Lagrangian of the theory is listed-in table 2; the way that spectrum appears in the
Lagrangian can be restated in terms of representation theory.

A Yang-Mills theory based on a local symmetry G is a field theory with the symmetry currents
‘coupled minimally to vector-boson fields in a form analogous to QED, where the coupling of the
photon field A, (x) to the electromagnetic current j;"(x) has the form, e 5"(x) A*(x); e is the electric
charge of a particle contributing to the current. The space integrals of the time components of the
currents define formally the charges or generators of the Lie group, which, in the case of QED, is a U,
or phase symmetry. These generators are the elements of the Lie algebra of G. Thus each generator of
G is associated with a vector boson that is coupled directly to the symmetry current; it is in this fashion
that Yang-Mills theories account for the interactions of Nature.

For the studies of Yang-Mills theories described here, the properties of the Lie algebra of the Lie
group G are all that are needed; the global or topological properties of G are not used at this level of
model building, as they are in “instanton’ physics. Thus we may follow the traditional but incorrect
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usage, where the term “group” is often used when discussing infinitesimal transformations, which are
completely described by the Lie algebra of G, and where the same symbol G is often used to denote the
group and its Lie algebra. Perhaps a short, technical description of the problem will help the more
demanding reader; others should skip to the next paragraph. The identification of the group with the
algebra is ambiguous because usually there are several extensions of a given Lie algebra to the finite
transformations of the Lie group; the choice of extension depends on the choice of discrete group
elements factored out of the center of the covering group. For example, because electric charge is
quantized in 3 units, Q°™ generates a U, and not its covering group, obtained if the spectrum of charges
were to cover all real numbers. Similarly, the Lie algebras of U™ x SU§ and U, are the same, but
strictly speaking, those symbols refer to different extensions of the Lie algebra to finite transformations
[22]. In order to refer to the factors separately, we call the unbroken part of the theory U™ x SUS,
when, in fact, the extension from the algebra to finite transformations should be called U,, because of
the connection between triality of color and electric charge. In this review we need the properties of the
Lie algebra for most discussions, so all names really apply to the algebra; similarly here the term “group
theoretical” almost always means “Lie-algebra theoretical””. Viewed in this way, our notation is not as
sloppy as it first appears.

A boson field Bj (x) has the transformation properties of a gauge field and is coupled directly to the
ath symmetry current J;(x); J & (x) depends on B (x), so the theory is nonlinear. The generators of the
group, and consequently the currents from which the generators are constructed, transform as the
adjoint representation. In order for the coupling of the currents to the vector bosons to be invariant
under G, the bosons must also transform as the adjoint irrep, since group singlets (or invariants) occur
only in the products of an irrep with its complex conjugate, and adjoint irreps are always self conjugate.
The vector-boson fields transforming as the adjoint irrep are a necessary part of a Yang-Mills theory.

A Yang-Mills theory may also have other particles in the Lagrangian. For example, the leptons and
quarks, which are spin 3 fermions, are usually assumed to be fundamental fields in the Lagrangian. (They
may also be tightly-bound composites that behave like fundamental fields in an effective Lagrangian.)
Each particle field must be assigned to an irrep of G, so that when the field is put in the Lagrangian, the
invariance under G is kept manifest. Thus an important step in understanding the structure of these
theories is to know the irreps and the action of the generators of G on them. This is the same as
knowing the contributions of those particles to the currents and how those currents interact with the
vector boson fields, which explains why the group-theoretical language is so powerful.

QCD is an unbroken SU;-symmetric, Yang-Mills theory. (The meaning of “broken” is discussed
later.) The vector bosons (called gluons) mediating the strong interactions are gauge particles coupled to
the eight symmetry currents of SU3, so the gluons transform under SU3 transformations as the adjoint
irrep or octet 8 of SUS. (In this review irreps are designated by their dimensions, with conjugate irreps
marked by an over bar, e.g., 3, and other inequivalent irreps of the same dimension with primes or
similar markings. Most practitioners find these conventions convenient, even though there are some
justifiable objections to them. Other labelings are studied here too.) The gluons carry no flavor charges,
which means that they are singlets under any transformation in the flavor group; stated more formally,
the gluons transform as (1, 8°) under G" x SUS.

Several features of QCD due to its quantum mechanical structure should be noted; they are not
important for an elementary understanding of the role of QCD in model building, but they will help in
forming a physical picture of it. Isolated hadronic systems are composites of quanta carrying color
charges and are assumed to be color singlets. An individual color charge cannot be isolated in space and
time from other color charges; that is, color is believed to be confined inside hadrons. (In spite of much
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effort on the problem, the confinement conjecture has been difficult to prove in QCD; it is not crucial to
unified model building as described here.) As the spatial resolution of the probe of hadronic structure is
shortened, the effective coupling of the gluons to the color currents decreases, so that the constituents
of hadrons appear to interact more weakly. This behavior is called “asymptotic freedom”, and is
justified by perturbation theory calculations [23]. As a result, it appears possible to view hadrons as
composites of strongly interacting elementary quanta with fractional electric charges [24] that gain an
elementary identity, not by isolating them, but by probing hadrons at short distances, as is done in
deep-inelastic lepton scattering [25] and high-energy electron-positron annihilation [26]. Thus quarks
are elementary, not nucleons, pions, kaons, and other observed hadrons. The quarks are coupled to the
gluons through their contributions to the color currents, so they must transform as a nontrivial irrep of
SUS: the quarks are assigned to the 3°, the antiquarks to 3°. The representation theory of SUs is used to
illustrate more general results several times later on in this paper.

In Yang-Mills models a central problem, both physically and mathematically, is relating particle
states to representation vectors; each particle degree of freedom is in one-to-one correspondence with
one vector of a representation. Thus one tricolored, four-component Dirac quark of a given momentum
is described by 3 x 4 = 12 Hilbert space vectors: red, green, or blue (or whatever your favorite names for
the three colors) times the label, left-handed quark, right-handed quark, left-handed antiquark, or
right-handed antiquark, so the vectors have the labels, |color, handedness, particle or antiparticle). (In
the limit of zero mass, left-handed means the spin projection is antiparallel to the momentum vector,
and right-handed means the spin projection is parallel to the momentum; for a massive particle at rest a
chiral eigenstate is a 50-50 mixture of spin projections.) The fermion field operator ¢ that annihilates
(i.e., removes) a particle from the state (y|particle) = [vacuum)) carries the same set of labels as the
state, but with signs of appropriate quantum numbers reversed. The reason for using chirality
(handedness) rather than some spin component of the fermion is that the chirality projections (1= ¥s)
commute with the gauge and proper Lorentz transformations; the left-handed fermions transforming as
f. do not mix with the right-handed fermions in fz under a gauge transformation, so the set of all
fermion states cannot belong to an irrep. However, f (and consequently fg) by itself can be an irrep.

Let us examine in general the construction of the fermion kinetic energy and the fermion mass in any
Yang-Mills Lagrangian [2]. Our object is to show that the kinetic energy couples f. and fg, that fg
transforms as f, (the conjugate of f; ), and to discuss some group-theoretical aspects of the construction;
we then show that the mass operator couples f;_to f; (and fr to fr), and it transforms as representations
in the symmetric part of f; X f;.. The kinetic energy must be gauge invariant, but it is not necessary for
(f. x £+ fx X fr), to contain a singlet, since all fermion mass can arise from symmetry breaking.

The usual covariant kinetic energy has the form

Fiv* (@3, —igBa T, 2.1)

where ¢ is a column vector of real (Majorana) anticommuting fields, ¢ = ¢'y,, T, is an antisymmetric
matrix representation of the group, so that the current contribution ¢ry*T,¢ is nonzero and transforms
as the adjoint irrep, and By (x) are the vector boson fields, also transforming as the adjoint irrep. (The
advantages of beginning with Majorana spinors and constructing Dirac spinors later will become
apparent.) Since the chirality projections (= ¥s) commute with y°y*, the kinetic energy can also be
written iy - D+ ¢riy - Dygr, where D, =3, —igB;T, and each term by itself is gauge in-
variant.

The field operator ¢ (and any other operator in the theory) carries a definite change of quantum
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numbers; when ¢ acts on a state, it changes the quantum numbers of that state by amount A (called the

“weight” of ¢) and a change in angular momentum for a field with spin, whether it creates or
annihilates particles. The Hermitian con)ugate ¢' must change the quantum numbers of a state by —A,
and also make the opposite change in spin for . Looking at the ¢} (y°y - a).pL piece of the kinetic
energy, we note that the c-number pieces in parentheses cannot change quantum numbers, and the
combination ] - - - ¢ cannot either without destroying the global gauge invariance of the kinetic
energy. Thus, if Yo ~ £, (“~” means “transforms as”), then ¢] ~ f,, since a Hermitian conjugated field
operator " acts on the labels of the dual vector (- - -| in the same way that ¢ acts on the labels of the
ket |- - -). Moreover, when 1 acts on the ket |- - -), it changes the eigenvalues of all the diagonalizable
generators by an amount that is the negative of the change due to ¢, including chirality, so ¢ ~ fg;
these important results are summarized by

fR -~ EL. (22)

The kinetic energy can be written group theoretically as fx(Op)f. + f.(Op)fr.

The reflection that takes f; to fr includes changes of the signs of the internal quantum numbers
(often done by a charge conjugation C) and the handedness (often done by parity P). Individually C
and P do not have to exist in a theory, but CP must, since it is necessary to have a reflection that
exchanges f;. and fr in such a way that f; X fr contains a group invariant and an adjoint, as needed for
the gauge-invariant kinetic energy (2.1). As discussed in section 6, it happens in many unified models
where C exists that C reverses the signs of only some of the quantum numbers, with P reversing the
remaining ones. This is because C must reflect f;. onto itself; if f, is not self conjugate, then C cannot
reflect the signs of all the quantum numbers [13].

We can now relate f; to the column of N four-component spinors ¢ in the case where f; is
irreducible; note that if the dimension of f, is N, then ¢ has 2N independent components, so there must
be 2N constraints. The simplest example (N = 1) is a 4 component Majorana spinor, where f; is a
nontrivial one-dimensional irrep of a U;, and fr has the opposite charge. A Majorana spinor has two
independent components, so there are two constraints relating ¢ and ¢': it is ¥ = Cyo'", which is
called the Majorana condition. The 4-by-4 matrix C is defined so C, Cy;s and Cysy, are antisymmetric,
and Cy, and Co,, are symmetric. Thus, 3¢"Cy - D = 3y - Dy as in (2.1) is Lorentz and U, invariant,
and is a suitable kinetic energy for a Majorana spinor. It is nonzero because Cy - D is antisymmetric
and fermion fields anticommute.

The only case where group-theoretical complications might occur is for the irrep f; to be self
conjugate, because the matrix part of the relation between  and ' must be able to reverse the signs of
all weights within the irrep f.; thus, it is the matrix part of the unitary operator, 4?, (6P (€P)" =
C(CP)y, where the unitary matrix C acts on the spin degrees of freedom and the unitary matrix (CP)
acts on the weights in f.. (Obviously, C and (CP) commute.) The simplest generalization of the
Majorana condition is ¢'=y¢"(CP)Cyo, and the kinetic energy (which is Hermitian)

35 ¢T(CP)Cy - Dy =iy - Dy, where i = y"C(CP) = ¢ y,; the last equality follows from the Majorana
condition. Clearly, (CP) is symmetric.

This construction is completely adequate for real irreps: if f, is real, then (f. X f; ), contains the singlet
and (f, x f.), contains the adjoint, so (CP), which is the matrix coupling f; to f; to form the singlet,
must be symmetric. Moreover, if f, is not self conjugate, then (CP) is outside the group and can be
defined to be symmetric. However, there is also another kind of self conjugate irrep in some simple
groups: if f is pseudoreal, then (f, X f, ), contains the singlet and (f_ x f, ), contains the adjoint, so the
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(CP) matrix is antisymmetric. In this case ¢"(CP)y - Dy vanishes identically, so the construction above
must be revised. In the pseudoreal case, the kinetic energy must be written 3iy"(CP)Cysy - Dy =
Yiy - Dy, which is nonvanishing for the antisymmetric part of (CP). (This modification is not available
for spinless particles.) The Majorana condition should now be written with a ys, ¢' = y"(CP)Cysy,, so
that ¢ = ¢"(CP)Cys = ¢y, is again the usual Dirac conjugate. It should be emphasized that within a
unified theory of this type, QCD and QED can still be transformed into their usual form [27]. However,
it is not even possible to write down a kinetic energy term for spinless bosons if they transform as a
single, pseudoreal irrep, at least not without making some drastic revisions in the theory [28].
The fermion mass term has the general form

$(S +iPysp, 23)

where S and P are Hermitian matrices in the group space and need not have gauge-group singlets
in a spontaneously broken theory. Since this term can be rewritten as Yg(S — iP)gp + (S +iP)g, it
follows from (2.2) that the first term transforms as £, X f_ (since ¥k ~ f,) and the second as its Hermitian
conjugate, fr X fr. Moreover, since y, and yoys behave antisymmetrically between Majorana fields and
fermion fields anticommute, the mass operator is in the symmetric part, (f, X f_ + fg X fr)s.

The mass operator of a single quark is a bilinear form on the twelve quark states. One may conclude
that the mass matrix of a single quark is 12-by-12, but of course it is never written in that form since
symmetry requires most of the components to be zero and the remainder to have equal magnitude; the
144 parameters are reduced to one by rotational invariance, color conservation, and the phase freedom
in defining the field operators. The analysis of a single quark mass matrix is an important prototype for
illustrating some of the physics of the choice of the spin 3 fermion representation in unified models. First
of all, since the local symmetry transformations commute with 1%ys, the mass operator yay =
YLr + Prify breaks up into two six-by-six pieces. Group theoretically, for a single quark,

fL=3+3 (24

the most general quark mass matrix has the form,

= Qr (¢} a.

QL 0 0 M, M,

qQu 0 0 My My |

ar n My 0 0 23)
dr 2 Mn 0 0

where the rows and columns of (2.5) are labeled by states in such a way that the matrix is manifestly
Hermitian and the M, are elements of a symmetric 6-by-6 matrix M; the M, are 3-by-3 matrices in
color space. (The formulation here, which may appear clumsy for a single quark, is set up to be trivially
generalized to an arbitrary spin ;-fermion mass matrix; some comments about the general case will be
made. The labeling of the rows with a vertical column vector on the left and the columns by a row on
top is somewhat unorthodox, but makes it possible to fit some of the examples below on a page.) The
upper right-hand corner of (2.5) is the mass matrix associated with ¥zi.; the lower left-hand matrix is
the Hermitian conjugate M, since ($r¥)’ = Y. The notation in (2.5) is therefore redundant; we
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need only to consider the upper right-hand corner. This is especially so, since the 6-by-6 symmetric
matrix M with elements M, can be diagonalized by a unitary transformation of the form UTMU
(transpose, not adjoint). In the case that CP is conserved M is real symmetric and U is orthogonal. The
generalization to the CP violating case, where M is complex symmetric even after the phase freedom of
the quark states is used, is based on a theorem of Schiir [29-31]: there exists a unitary matrix U such
that UTMU is real diagonal with diagonal elements being the positive square roots of the eigenvalues
of the Hermitian matrix, MM* (* is complex conjugate), not det(M —A). (MM* is Hermitian and
positive definite.) Thus it is not necessary to diagonalize the whole matrix in (2.5), but only a “quarter of
it”, even in the CP violating case, as pointed out in ref. [30].

Next, we impose the requirement that the quark mass be invariant under SU$5 transformations. Let us
look at M;;, which must transform as the irreps in (3°X 3°), = 6°. Thus M;; (and M, for the same
reason) must be zero, because no component of a 6° (or any other nontrivial SU$ irrep) is invariant
under all SU3 transformations. The nonzero components must be in the singlet par of (quX qL)=
3 X 3° = 1° + 8§, which reduces (2.5) to one parameter. Stated another way, ¢y must annihilate the same
color state as g creates (and vice versa), so only one color state need be analyzed because the masses
of each color must be equal (i.e., the mass must be a color singlet). Thus, we can write the mass matrix
as (2.5) with M,, = M,, nonzero numbers (times 3-by-3 unit matrices). If M,, is written with a phase
m e' then the phase can be eliminated by the transformation, ¢ — exp(ifys/2)¢, which leaves (2.1)
invariant. It should now be obvious how to combine the 6 Majorana fields transforming as (2.4) into
three Dirac fields of definite mass and color.

The strong interactions are believed to conserve parity; this assumption is incorporated in QCD,
which is one reason for introducing the quark as a four-component Dirac spinor. Electric charge
conservation also prohibits connecting q;. with q. with a “Majorana” mass; however, neutral leptons
may have Majorana masses, which violate lepton-number conservation. All quarks appear to have
nonzero masses, although the “up’ quark ultraviolet mass (the mass appearing in the QCD Lagrangian)
may be small, on the order of an MeV or so. Moreover, parity conservation also means that the color
currents must be vector currents. These requirements imply that M;, = M,, = m (times a 3-by-3 unit
matrix) can be defined to be real; the eigenvalues of (2.5) are +m, +m, —m, —m, just as occurs in the
Dirac equation (for the same reasons), where the mass matrix is Bm, that is, myny = ' (Bm)y. These
various requirements are not so redundant in the general case.

We should call attention to one more feature of this trivial example. It is helpful to be able to relate
the left-handed antiquark to the left-handed quark by a charge conjugation operator C that complex
conjugates the 3° and matches up the q, with the §.. If we add C to SUS to form the group SU$, then
f, = 3°+3 is an irrep of SUS. In many unified models there exists an element of the gauge group G
itself that acts as C, and only when it exists, is it possible to assign f; to an irrep of G.

The quark masses are generally believed to be due to the flavor interactions, and thus are merely
parameters in the study of QCD. However, QFD is also included in unified models, so one of the main
topics in the study of unified models is the attempt to understand the origin and magnitudes of the
fermion masses in the theory. At present, this problem is far from solved.

At the time of this writing, five tricolored quarks have been identified by their experimental
manifestations. The u (up) with electric charge Q" =% and the d (down) with Q"= -3 are the
fundamental constituents of neutrons, protons, pions, and so on. The strange quark s was hypothesized
by Gell-Mann [24] to be the carrier of the strangeness quantum number. Charm (c) was originally
introduced to explain the suppression of neutral strangeness changing weak currents [32], and has been

substantiated as a fundamental constituent of the ¢ and charmed particles. Finally a third Q™ = —3
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quark called b (for “bottom” in some parts of the world) is a constituent of a new set of particles,
including the upsilon Y [33].

One noteworthy feature is the large number of quarks; this proliferation is of fundamental concern,
and it is one motivation for this review. There are at least 30 3° and 3° components of f; required by
phenomenology. For example, if all 30 of these are elementary and belong to one irrep of a unifying
group, then that irrep must be quite large. This, among other reasons, helps motivate the development
of powerful group-theoretical techniques.

The leptons are similar to quarks in that they are believed to be fundamental spin ; fermions. They
do not interact strongly, which completes the definition of a lepton; they are assigned to singlets 1° of
SUS. Leptons and quarks both carry the charges of the weak interaction, which brings us to an
introductory discussion of QFD.

One of the most significant developments of the 1970’s was the confirmation that a certain SU, X U,
Yang-Mills field theory [4] provides an excellent description of the combined electromagnetic and weak
interactions. The vector bosons mediating the charged- and neutral-current weak interactions have not
yet been observed, as their masses are expected to be of order 80 to 90 GeV, beyond the range of the
machines of the 1970’s. Since SU7 X UY has four generators, there are four vector bosons that are
coupled to four currents. The vacuum is invariant under a subgroup of the SU3 X UY, namely the U,
generated by the electric charge Q°™. The electric charge is a linear combination of the two diagonal
generators of SUZ X UY

where I3 is the neutral component of the SUZ (where w stands for weak, and distinguishes this
application of SU, in physics from others) and Y™ is the generator of the UY. The orthogonal
combination of I and Y™ is a weak interaction charge, and the current associated with it is coupled to
the Z° boson that mediates the neutral current weak interactions. That vector boson is expected to have
a mass of 90 GeV. (Although the Lagrangian of the Yang-Mills theory possesses that U, symmetry, the
vacuum does not, so the Z° boson has a mass.) The charge raising and charge lowering currents in the
SU? are coupled to the W~ and W* vector bosons, which mediate the charge-current weak interactions.
They are expected to have masses of about 80 GeV, which indicates that the vacuum carries all the
weak charges.

The phenomenon of vector bosons becoming massive in Yang-Mills theories is called spontaneous
breaking of local symmetry [34]. When we talk about broken local symmetries, we do not mean that a
symmetry breaking term is added to the Lagrangian. A vector boson mass term by itself is not invariant
under the local symmetry transformations. However, a vector boson mass term plus some additional
interactions can be, and that is what happens in a broken symmetry. (In this paper, “broken” means
spontaneously broken.) The Lagrangian is still invariant under the symmetry transformations, and the
current are conserved, or in the language of quantum field theory, the Ward identities (except for
anomalies) hold, which is crucial for the perturbative renormalizability of the theory. However, the
charge of a broken symmetry does not annihilate the vacuum, which corresponds to the charge being
spread through the vacuum. The mathematical description of electromagnetic radiation in a plasma is
completely analogous to that of a vector boson in a broken vacuum [34]. The main point of this
discussion is to emphasize that even for very badly broken symmetries, the Lagrangian is still invariant,
and so it is still important to study the invariants that can be formed from the fields in the theory.
However, certain “numbers” in the theory, like fermion mass matrix elements, will often have
nontrivial transformation properties. A complete study of the symmetry properties is still needed.
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Although the weak vector bosons of the standard SUZ x U} theory have not been observed, the
form of the currents of the low-mass elementary particles has been well established experimentally [35].
Aside from the photon and the gluons, the only low-mass particles that have been accessible in the
laboratory are the quarks and leptons. As we discussed earlier, the left-handed quarks, antiquarks,
leptons and antileptons must be assigned to representations of the gauge group and the right-handed
fermions to the conjugate representations. SU, has singlets, doublets, triplets, and so on, and the
assignment that works is to place the left-handed fermions in SUZ doublets and the left-handed
antifermions in SU7 singlets. This unsymmetrical left-right assignment is rather startling, but is
confirmed by a huge quantity of experimental data; the maximal parity violation in the charged current
weak interactions already provided a strong hint over 20 years ago [4] that this is a sensible assignment
phenomenologically. The choice of groups discussed in this paper is strongly influenced by the desire to
maintain these unsymmetrical assignments in a natural fashion. Specifically, only when f; is not self
conjugate is it not required for every left-handed doublet to be matched with a right-handed doublet.
Theories where f, is self conjugate are called vectorlike [36]; otherwise, the theory is called flavor chiral
[6].

We now discuss the specific assignment of the quarks to representations of SUZ X UY. The
left-handed u and d' quarks form a doublet, where the Y™ values are determined by (2.6) and the
assignment that u has charge 3 and d has charge — 3. (The prime indicates states coupled to the currents;
they are linear combinations of the mass eigenstates.) Thus, Y= Y3 = 3. (All members of an SUY
multiplet must have the same value of Y™, or else the Y™ generator will not commute with the SUY
generators, and the group will not factor.) The left-handed @ and d are SUY singlets, and have different
values of Y™ in accordance with (2.6). The CPT transformation relating the left-handed fermions to the
right-handed fermions just inverts this arrangement: u and d are right-handed singlets and @ and d form
a right-handed doublet. Since this is a basic feature of all fermion representations in local field theories,
we only need to discuss the left-handed fermion representation f;.

This pattern of quark assignments repeats itself at least once with the ¢ and s quarks, and is often
presumed to repeat itself again with the charge ~ ib quark and a conjectured charge It (top) quark. The b
quark has charged-current weak decays [37], which is consistent with a nonzero weak isospin assignment;
however, a zero weak isospin assignment is not yet ruled out.

Next we briefly indicate the relationships among these assignments to a representation of the gauge
group, the currents, and the masses. For simplicity we consider first the charge — 5 quark mass, including
just the d and s quarks, and ignoring any mixing with the b quark. The mass matrix (2.5) connects (the
left-handed) d to the d and s, and this combination has definite, nontrivial SUY x UY transformation
properties, with |[AI¥|=3 and |[AY™|=1, so that AQ*™ =0. Thus, the existence of the quark mass
indicates already that SU3 x UY is broken down to U{™. This also means that there can be mixing
among all the fermions with the same color and electric charge. Thus it is important to distinguish
between the states connected by the currents and those connected by the mass matrix. If we call the
mass eigenstates d and s, then the charge — 3 quarks coupled to the u and c by the charged currents of
the weak interactions are called

d=cosf8.d+sinb.s, s =-sinf.d+cosb.s 2.7
where the canonical transformation that connects the mass eigenstates to the states coupled by the

currents is parameterized by .. The transformation with three quarks (e.g., &, s’ and b’) depends on
four parameters, including a CP-violating phase [30]. [Recall the discussion below (2.5).] We summarize
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this discussion in table 2, again emphasizing that those designations summarize an incredible amount of
phenomenology in a powerful way.

Next, we review the lepton sector. The left-handed charged leptons e™ (m. = 0.51100 x 10~ GeV), the
©~ (m, =0.10566 GeV) and most likely the 7~ (m, = 1.81 GeV [38)) are all I = —; members of weak
isodoublets. To a high degree of accuracy, the mass eigenstates are the states in the currents, with the
charge raising current transforming e to ver, pr to v, and (most likely) 7 to »,.. If the neutrinos are
massless, but are only coupled to the vector bosons as in (2.1), then their current eigenstates can be
defined by convention, and the charged leptons cannot mix through the neutrinos. If the neutrinos have
small masses, then (2.3) need not be diagonal in the same basis as (2.1), and there can be mixing; there
has been considerable effort to search for muon-number violating processes [39] and neutrino oscil-
lations. The left-handed positron, u* and 7* are each assigned to be weak singlets. The analogy with
the quarks would be complete if there existed left-handed antineutrinos. There is no argument against
them since they would be neutral, I¥ =0, and, consequently, Y™ =0 particles, and would have no
electromagnetic, weak, or strong interactions. Thus they would be hard to “see” in present day
experiments, although they might have left their mark on the features of the universe, as described by
the big-bang cosmology. A conservative attitude is that there are no left-handed antineutrinos, since
they have not been observed. For most unified models, this attitude must be relaxed.

The model of the symmetry breaking of the standard SUY X UY theory down to the U™ symmetry of
QED is done by giving certain scalar fields carrying the charges of the weak interactions, but no electric
or color charge, a nonzero vacuum expectation value [40]. This problem can be studied in the Higgs
model [41] of symmetry breaking. The boson and fermion masses are then proportional to the vacuum
expected values of the scalar fields, as are the interactions induced by the symmetry breaking, at least in
the classical limit. There is controversy whether the scalar fields doing the breaking of SUY X UY are
fundamental fields in the Lagrangian of Nature, or are “effective scalars” formed, for example, as
fermion—fermion bound states. In the considerations in this paper, we often treat the symmetry
breaking in the Higgs model, but withhold judgement on the physical reality or origin of the scalar
fields. A study of the group theoretical structure of symmetry breaking is useful, no matter what the
breaking mechanism.

In the standard model, SU% x U} is broken by the neutral member of an V=3, Y“=1 scalar
doublet ¢(x). CPT invariance requires a conjugate doublet ¢'(x) with Y™ = —1, so there are four spin 0
degrees of freedom. Thus, up to three vector bosons can acquire masses, using the corresponding scalar
fields as the longitudinal degrees of freedom. The fourth scalar is physical and defines the symmetry
breaking direction. 'The covariant kinetic energy of the scalars has the form (D*¢)" D,¢, with
D,¢ = 3,.¢ —ig(./2) BL(x) ¢(x)—i(g'/2) B.(x) #(x), where g’/2 is the coupling of UY and B, (x) is the
vector boson coupled to the UY current, and Bg(x) (a = 1,2, 3) are the bosons coupled to the SUY
currents with gauge coupling g; the weak isospinor representation matrices are 7%/2, where 7 are the
Pauli matrices. In the unitary gauge the constant part of ¢, of which only the neutral component is
nonzero, provides (classically) masses to the three weak bosons, while leaving the photon massless. At
this point, we leave the calculation, since the details are now considered straightforward [21]. However,
the discussions of symmetry breaking in section 9 do rely on a thorough knowledge of this well-known
calculation.

In summary we can say that the standard model has provided an attractive framework for organizing
huge quantities of experimental data. Nevertheless, from a theoretical viewpoint it is somewhat
awkward, as discussed at the beginning of the next section; it does not appear to be the ultimate theory
of the interactions in Nature.
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3. Unification

The purpose of this section is to give a brief, but critical introduction to the unification of the
standard model into a Yang-Mills theory based on a simple group. The SUs example, which is a
prototype, is then described. Finally, the method of embedding flavor and color into the simple group,
as carried out in ref. [6], is described and at the same time a brief introduction to general features of the
simple algebras is given. (In this review, unified models based on simple groups are the only kind
analyzed; at the present stage of development, this restriction is physically quite arbitrary, but many of
the results discussed here are applicable to other kinds of gauge models.)

The “standard” SU7Z x UY X SU3 Yang-Mills theory of the electromagnetic, weak, and strong
interactions has provided a detailed phenomenological framework in which to analyze and correlate
many experimental data. Although the constraints of this model appear to be satisfied experimentally,
the choice of symmetry group, the assignment of scalars and fermions to representations, and the values
of many masses and coupling constants must be deduced from experimental data. Aside from being
derived from local symmetries, the three interactions are not related to each other in any specific way,
and each gauge coupling for the factors SU7Z, UY and SUs3 is a free parameter. Moreover, the standard
model ignores gravity and it gives no relationships among particles of different spins. Thus, in spite of its
enormous success, the standard model appears to be part of a more complete theory; it leaves too much
unsaid. It is an obvious question to ask whether there are more complete theories that include the
results of the standard model and also interrelate the interactions and correlate the many assignments
and parameters that are put into the standard model by hand. None of the unified models discussed
here is likely to be the ultimate theory either because they only partially solve some of the problems
above, but one can hope that studying them will lead to a step in the right direction. These models are
sometimes called “Grand Unified TheorieS”, but not here.

Early attempts to find such theories were made by Pati and Salam [42], who argued that a theory
with integer charged quarks [43] (which is not QCD) can be embedded into a larger theory, including
new interactions that violate baryon number. Shortly after, Georgi and Glashow [5] pointed out that the
standard model (including QCD) can be embedded into the simple Lie group SUs. This means that the
electromagnetic, weak and strong interactions are all contained in a larger set of interrelated inter-
actions. Such a theory must include the color and flavor interactions plus new interactions that mix color
and flavor quantum numbers. The Pati-Salam and Georgi—Glashow models have different mechanisms
(in detail) for proton decay, but in these models and others like them, proton decay does result from
additional interactions not in the standard model. Such theories have helped to motivate more sensitive
experiments on the proton lifetime [44] and neutrino masses [45].

If there were no spontaneous symmetry breaking, all the vector bosons would be massless and all the
vector boson-current coupling constants would be equal or related by group-theoretically determined
constants. The symmetry breaking then distinguishes between the different interactions: the leptoquark
bosons, which couple quarks to leptons and can mediate proton decay, acquire very large masses; the
weak interaction bosons acquire much smaller masses; and the photon and gluons remain massless. The
separation of the underlying interaction into electromagnetic, weak, strong, and other components is
due to the specific pattern of spontaneous symmetry breaking. It is important to realize that this
hypothesis of unification is very speculative, at least until some experimental evidence, such as proton
decay, is found to support it.

Unification by a simple group means there is only one gauge coupling constant, but it also implies
that the ratio of the strong and electromagnetic coupling constants is 3 in the limit that spontaneous
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symmetry breaking can be ignored [18] (in the SUs model). Experimentally, however, the ratio of the
strong coupling a, and fine structure constant a. is very different. At Q% = 10 GeV?, the ratio of a, to a.
is about 50 (with large theoretical and experimental uncertainties). As long as a. and a, are small and
the number of fermions and spinless bosons having color is not too large, this ratio decreases as a
logarithm of QZ, and approaches § around Q7 of order (10" GeV)? in the SU;s model [19, 20]. The new
interactions implied by unification are dramatic, but are so weak that very sensitive experiments are
needed to detect them. Unification does have a chance of being viable.

Before looking at the general structure of unified models, it may be helpful to describe the SUs
model proposed by Georgi and Glashow [5]. The simple group SUs has 24 generators, and therefore the
Yang-Mills theory has 24 vector bosons coupled to 24 different currents. SU;s contains SU, X U, X SU,
as a subgroup, and those 12 currents are identified with those of the standard model of the
electromagnetic, weak and strong interactions. The other 12 vector bosons mediate new interactions,
but they are very weak because the bosons are expected to be very massive: they include a 3° with
electric charge —3 in a weak isodoublet with a charge —3 boson, together with their 3° antiparticles.

The assignment of the fermions in the SUs model is fairly complicated. The u, d’, electron, and its
neutrino are assigned to one family of particles; the c, s, muon, and its neutrino are assigned to a
second family; and the b’, conjectured top, tau, and its neutrino are usually assigned to a third family.
Each family itself is assigned to a reducible representation.

We next go through the steps of searching for an SUs representation to which a family can be
assigned. The unifying group SUs contains several subgroups, but among the SU;s generators there must
be an SUY x UY X SUS to be identified with the standard model. In fact, as we shall discuss in great
detail in section 6, SU, x U, X SUj; is a maximal subgroup of SUs. We may carry out the embedding by
breaking up the fundamental five-dimensional, unitary, irreducible representation (irrep) of SU;s into
fundamental representations of SU, X U, x SU; as follows,

5=, 1))+ (1,3)-2/3); 3.1

in the entry (x,y), x is an irrep of SU, and y is an irrep of SU,, and the irreps are denoted by their
dimensions. The second parenthesis contains the value of the U, generator when acting on the states in
the (x, y). It is normalized so that it can be identified with Y™, if the SU, is identified with SU7 and the
SU, is identified with SU3. The relative value of the Y™ eigenvalues is determined from the
requirement that all generators of SUs must be traceless. The contents of an irrep of a group in terms of
the irreps of a subgroup, like (3.1), is called a branching rule. Knowledge of branching rules is crucial
for studying the content of models, so this review contains many examples. (The SUs branching rules
are contained in table 30.) There is no other way to fit nontrivial SU, X U, X SU; irreps into a five
dimensional irrep aside from conjugating the 3, so the choice (3.1) is unique once the embedding is
established. (Since the 5, 2 and 3 are faithful irreps of SUs, SU, and SUj, respectively, (3.1) already goes
a long way toward establishing the embedding. What must be done is to show that the generators of
SUs contain the generators of SU,, U, and SU;, which can be proven by looking at the branching rule
for the adjoint. See below.)

The next question is whether any of the known particles can be assigned to the 5, given the above
embedding of SUY x UY x SU§ in SUs. From (3.1) it is seen that the 5§ contains a lepton weak doublet
with electric charges +1 and 0, and a charge —3 quark weak singlet. Such a multiplet may be
appropriate for the right-handed (e*, 7.) doublet and the right-handed down quark, or equivalently,
f~1a may contain a 5 with the (v, € ). doublet and the d{ singlet. If this assignment is made, then we
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must find another representation of SUs for the left-handed e, @, u and d'. Consequently, there is use
for a list of irreps of SUs (or any other group that is a candidate for unification), such as the one in table
28, and the branching rules to see if there exists a suitable candidate. It is clear that the 10 is such a
candidate. This possibility can be derived from (3.1) and the tensor product,

(5x5).=10, (3.2)

which can be found in table 29, where sub a means that the irrep is found in the antisymmetric part of
the product. From (3.1) and (3.2) it follows that

10 = (5x 5), = [(2, 1)(1) + (1, 3)(~2/3)]3
=[@, 1% 2, 19L.Q) + [2, 19 x (1, 3)](1/3) + [(1, 3) X (1, 3)].(~4/3)
= (L, 19Q) + (2, 3)(1/3) + (1, I)-4/3), (3.3)

where the Y™ values add, since the Y™ is a U, generator. Thus it is immediately found from (3.3) and
(2.6) that the (1, 1°) is a charge 1, singlet lepton, to which the positron may be assigned; the (2, 3%) is a
quark doublet suitable for u and d’; and (1, 3) has charge —3 and is suitable for the @ singlet.

In summary, the electron family with e, v, u, @i, d’ and d’ may be assigned to a 5+ 10 of SUs. The
first step of model building consists of embedding QED, SU3 and QCD in the unifying group, and then
searching for a representation f; that reproduces the standard model. With three families, f; =
5+10+ 5+ 10+ 5+ 10, which is not self conjugate, the theory is flavor chiral. We are certain to recover
the results reviewed in section 2, as long as the additional interactions implied by unification do not
modify the SUZ X UY x SUS interactions too much.

Let us make a few comments concerning the “progress’” made by going from the standard model to
the SUs model. (1) The three independent gauge couplings of the standard model are reduced to a
single coupling, and given the experimental value of the QCD and QED coupling, SUs gives a
reasonable account of the relative amount of the vector and axial-vector weak neutral currents, which
depends on the free parameter sin %4, relating the two independent couplings in the standard model
[18-20]. (2) 1t describes the charged current weak interactions correctly. (3) If it is assumed that the
symmetry breaking is lacking certain terms, the neutrino is exactly massless due to a conservation law in
the theory. In more complicated models the neutrino often acquires a small but finite mass; depending
on future experimental results, the prediction of massless neutrinos may (not) continue to be an
advantage [45]. (4) It qualitatively predicts the mass of the b quark.

This impressive list of successes should be compared with the ambitions of unification: (1) The
number of fermion families is not predicted by the theory nor are most of the masses. (2) The SUs model
and others like it require ratios of boson masses to be of order 10">. This requirement is difficult to
satisfy with all symmetry breaking done with scalars appearing in the Lagrangian because quantum
corrections tend to obliterate large mass ratios unless very special values of the couplings are chosen
[46]. This may be a devastating criticism of the usual form of the SUs model. (3) Gravity has not yet
been unified with the other interactions, although masses of order 10~* of the Planck mass are involved.
Of course, there still remain the questions, why SUs? why families? and why the reducible choice 5 + 10
for each family? (Of course, not everyone considers the above to be requirements of unification, in
which case, they are not shortcomings.)

Let us dwell for a moment on another issue that SUs and related models do not face: they do not
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relate particles of different spin. It would seem that a truly unified model ought to relate the gauge
bosons to the other fundamental fields in the theory. Such relations do exist in theories in which the
symmetry structure has been extended beyond that of Lie algebras to include fermionic generators
satisfying anticommutation relations with one another and commutation relations with the members of
the Lie algebra. Such algebraic systems are called “graded Lie algebras” or “supersymmetries’”, and
model Lagrangians with global and local supersymmetries have been proposed [47].

Supergravity is perhaps the most interesting example proposed so far, especially when it is based on
extended supersymmetry, where the supersymmetry charges carry an extra index that ranges from 1 to
N. The N = 8 version Lagrangian contains explicitly the following particle spectrum: a single spin 2
graviton is accompanied by an SOjs octet of spin 3 particles, a set of spin 1 particles belonging to the
28-dimensional adjoint representation of SO, a set of Majorana spin ; particles belonging to the 56, and
scalar and pseudoscalar multiplets in two 35-dimensional representations of SOg. The SO; represen-
tation theory is summarized in tables 36 and 37. If this particle spectrum is identified with what we call
elementary particles, then the shortcomings of supergravity are severe: SOy is too small to include color
times a sufficient flavor group and the 56 of spin 5 fermions cannot include all three charged leptons.
Moreover, there is a serious problem if the SOy is gauged: measured values of the gauge coupling imply
a cosmological constant that is too large by a factor 10%. So it is possible that this interpretation of the
N = 8 supergravity Lagrangian is misleading, and all the particles normally considered “‘elementary”,
such as the e, u, ¥, etc., are composites on distance scales of order of the Planck mass [48], and the SOy
is not gauged. The elementary SOy fields in the Lagrangian may be tied up in bound states (except the
graviton), even at mass scales of order 10'° GeV, where the effective Lagrangian could be locally SUs
symmetric. More will be said about an effective theory “derived” from N = 8 supergravity in section 8;
its fate is not yet settled.

One may wish to speculate about a future unified theory of all interactions and all elementary
particles that would resemble SOz supergravity but involve sacrificing some principle now held sacred,
so that the notion of extended supergravity could be generalized. In such a hypothetical theory, an
internal symmetry group G larger than SO; would be gauged by spin 1 bosons, and both the spin 3 and
spin 3 fermions would be assigned to representations of G. It is then very natural to suppose that the
spin 3 fermions would belong to some basic representation of G and would include only color singlets,
triplets and antitriplets. The spin 3 particles would then presumably be assigned to a more complicated
representation. These speculations are a major motivation for this review, as they were for ref. [6].

Let us discuss briefly two other rather simple models. The simple group SO,, contains SUs X U] as a
maximal subgroup. (The label r on the U, merely distinguishes it from other U,’s.) It is possible to put
the 5 and 10 of an SU; family together into an irrep of SO,,. The 16-dimensional spinor irrep of SOy
has a branching rule into SUs x U7 irreps,

16 = 1(-5)+ 5(3) + 10(- 1), (3.9)

as can be found in table 43. There is a (possibly) important feature of (3.4). If a family of left-handed
fermions is assigned to the 16, then both the antiparticles and particles of a family are assigned to the
same irrep in f.. In fact, in SO,, there exists a group operation that exchanges the left-handed particles
and antiparticles: the quarks are reflected with their antiquarks, the electron with positron, and the
left-handed neutrino is exchanged with the SU; singlet in (3.4) [13]. This charge conjugation operation
C may have great significance in (for example) coming to a systematic understanding of the symmetry
breaking (and fermion masses). For example, in the SO,, theory, the mass matrix element connecting
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the SU; singlet 7. to the neutral lepton # in the § is even under C, but the C operation transforms the
diagonal SUs5 singlet mass into the diagonal |AI”| = 1 neutrino mass. The »; mass will be small if the
I'" = 0 mass violates C maximally (i.e., it is odd under C), so that the », — v, element is zero and the
v — v weak singlet term is huge. This is called a Majorana mass, since a #. — ;. mass term violates
lepton number. The C operation in unified models is discussed in sections 6 and 9.

The third model, which we only mention for now, is based on Es. The fermions are assigned again in
families to the fundamental 27-dimensional irrep. In fact, it is one goal of this review to be able to treat
the E¢ representation theory smoothly and without undo complication, and so we defer until later
discussion of this example.

In each of these models, we need also to discuss the symmetry breaking and other details, which will
be examimed later. Without further example or motivation, we now begin our plunge into the
group-theoretical details that should ease those discussions.

There are, essentially, two methods for studying the embedding of color and flavor in a simple group
G. The most direct method is to pick out the generators (or linear combinations of generators) of G that
may be identified as the color and flavor generators. This method can be complicated in practice (until
the short cuts are learned), but it provides so much knowledge about the structure of G that it is often
obvious how to proceed to a study of symmetry breaking, masses, and so on. It is this method that is
developed in some detail in sections 4-7, inclusive. The other method, advocated in ref. [6], requires
listing the possible flavor and color structure of the fundamental irrep of G and then checking that the
conjectured embedding gives the correct behavior of the group generators. Embedding through an irrep
is completely general and is easily implemented. Both methods provide insights into unified models.
The remainder of this section contains an informal restatement of the arguments and results of
embedding through the fundamental irrep, and at the same time, provides an elementary introduction
to the simple Lie algebras. A more formal and complete discussion of this approach can be found in ref.
[6], in section II and the Appendix there.

According to the Cartan classification, which has been proven complete in numerous ways, there are
four infinite series of simple Lie algebras: the algebra A, generates the group SU,,.,, which is the group
of transformations that leaves invariant the scalar products of vectors in an (n + 1)-dimensional complex
vector space; B, generates SO,,.,, the group of transformations leaving invariant scalar products of
vectors in a real (2n + 1)-dimensional vector space; C, generates Sp,,, the group of transformations that
leaves invariant a skew-symmetric quadratic form in a real 2n-dimensional vector space; and D,
generates SO,,,, which is analogous to B,, but has a different spinor and root structure. (As warned earlier
we often use the group name even when the algebraic properties are all that is needed.) In addition there are
five exceptional algebras, denoted by the symbols, G,, F,, Es, E; and Eg, where the subscripts denote the
rank. The exceptional groups leave invariant certain forms with octonions. The Jacobi identity of Lie
algebras requires that the commutation relations [A, B] = C can be realized by associative matrices, which
means that (AB)C = A(BC). Since matrices of octonions can be associative only in special cases, the
exceptional algebras are restricted in number. In building Yang-Mills theories, the representation theory
plays the central role; although the geometrical properties of octonions are not required for analyzing
theories based on exceptional groups, they can be helpful for some calculations and may also suggest a way
to transcend the confines of Yang-Mills theories [49].

The embedding through the fundamental representation is done as follows. If there is an embedding
of the form,

GO G"x SUS, (3.5)
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then the fundamental representation of G has a branching rule,

t= @9, (6)

where x; is an irrep of G" and y{ is an irrep of SUS. Moreover, the adjoint irrep, which is the
representation of dimension equal to the order of the group with matrix elements made from the
structure constants, is always in the tensor product fx f. (This statement is true of any nontrivial
irrep.)

This embedding procedure was worked out in ref. [6] only for the cases where the irreps of SUS in
(3.6) for some irrep are restricted to the set 1°, 3° and 3. If, for example, the spin ; fermions were
restricted to leptons, quarks and antiquarks, then there would be at least one such irrep. The discussion
can be made complete, due to the following theorem: If any irrep of G has a branching rule (3.6) with y;{
restricted to the set 1°, 3° and 3°, then the fundamental irrep must also satisfy the same restriction. (See
the Appendix of ref. [6] for a formal proof.) Once the color content of the fundamental irrep is
constructed, the color content of other irreps is found from their branching rules, which are easily
derived from tensor products. Although there is no direct evidence that spin ; fermions other than
quarks and leptons exist, it may be somewhat artificial to require no other color states from, say,
10 GeV to the unification mass. In fact, if the known quarks and leptons are fit into one irrep, then it is
quite usual to expect other color states. (For exceptions, see the SQO4,.¢ models in section 8.)
Nevertheless, the procedure of embedding this way is quite adequate, because embeddings where the
fundamental irrep has higher color states seem quite awkward, and little appears to be gained by the
new embeddings. A possible exception may be found in models based on Eg [50], where the
fundamental irrep is the adjoint, which must have an §°.

We now examine the simple groups, discussing their fundamental irreps, the embedding of color and
fiavor, the calculation of the generators, and a number of special features of the groups and their field
theories. The features mentioned here can all be derived with the techniques discussed in section 4 to
the end.

The unitary groups, SU,. The fundamental irrep of SU, (or A,-,) is the n, which is n dimensional.
The most general branching rule (3.6) with the 1°, 3%, 3° color restriction is, obviously, of the form,

n= (0, 1)+ (0, )+ (03, ), 3.7)

where the n; are irreps of the flavor group, and n = n; + 3n;+ 3n3. The identification of the flavor group
requires a study of the group generators. The flavor group of an SU,, theory is nonsemisimple because of the
U, factor(s). The adjoint of SU,, is computed from the n from the tensor product,

nXi=Adj+1, (3.8)
where the adjoint Adj has dimension n®— 1. It is quite trivial mathematically to work out (3.8) from the
general form of (3.7), but the most interesting cases physically appear to be those with n3=0 and n; = 1,
so that n, = n — 3. Then the adjoint has the branching rule of the form,

Adj=[m-3,1+(1, 30)] X [(Fjv 19)+(1, 3‘:)] -(1,1)

=@-3Xn-3,19+{0-3,3)+({n-3,3)+ (1 §). (3.9)
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The product n - 3 x n— 3 should contain flavor generators only, just as the (1, 8°) generators of QCD are
flavor singlets. Thus n~3 must be the fundamental irrep of SU,_;, or else that product would have
components that do not transform as flavor-group generators and G" would not be as large as possible. The
extra singlet in n—3 X n~ 3 implies a U, factor, so (leaving U, values implicit)

SU,DSU,.sxU;xSUS,  n=(n=3,19+(1,3)
(3.10)
Adj(SU,.) = (Adj(SU,_s), 1+ (1, I) + (1, 8) + (n =3, 3) + (n = 3, 3).

The color content of the other irreps of SU,, can be derived from tensor products of the n with itself;
this procedure generates all irreps of SU,. The “basic” irreps (‘“basic” has a special significance when
the Dynkin labeling of irreps is discussed) are obtained from (n X nX - - - X n),. In particular (n*), is an
irrep of dimension (¢) (a binomial coefficient). It is not difficult to multiply out (n*), with n given in
(3.10) to find that the color states in each of these irreps are restricted to the set 15, 3° and 3°. Any other
irrep must have pieces in (n'),, and must have higher color terms. For example, (n X n), is an irrep of
dimension n(n + 1)/2, containing a piece [(1, 3°) X (1, 3%)); = (1, 6°).

The irreps of SUs; fall into three categories, distinguished by their friality. The quantum numbers in
one triality class never coincide with those of another triality class. In the Eightfold Way SU,, the electric
charge is a representation vector label. In the triality zero irreps, such as the 8, 10, 27, etc., the electric
charge eigenvalue is an integer; triality one irreps, such as the 3, 6, 15, etc., have charge eigenvalues -1
plus an integer; and triality two irreps (3, 6, 15, etc.) have charge eigenvalues +3 plus integer. The
concept of triality for SU; generalizes to that of n-ality for SU,, where it again means that the quantum
numbers of the representation vectors in one class never coincide with those in another class.
As a generalization (but trivial for SU,), it is possible to distinguish irreps of any group in an
analogous ways; it is convenient then to speak of congruency classes [9, 51]. The number of congruency
classes is mentioned in this section, and it is more fully exploited in section 5. Irreps of SU,, fall into n
congruency classes, distinguished by n-ality.

The Georgi-Glashow SUs model is an example of (3.10), with n =5, § = (5%),, and 10 = (5% 5),. The
group theory is often implemented by writing the 10 as an antisymmetric tensor A; withi,j = 1,...,5.This
procedure is perfectly adequate for SUs, but it should be noted that the 10 is a basic irrep, which means that
the antisymmetric pair, i, can in a sense be replaced by a single label. This kind of simplification of the group
theory will be emphasized in the next few sections. The distinction among ‘basic”, “‘simple”,
“fundamental”, and “composite” irreps is made in section 5.

Other examples of (3.7), one with n3= 0 and n,> 1, and finally, n5>0 and n;> 1 are worked out in
ref. [6], and all three of these embeddings of QCD in SU,, are listed in table 3, cases 1, 2 and 3.

The tensor product of the SU, adjoint irrep with itself contains an adjoint symmetrically; the
existence of a completely symmetric d;; symbol that couples three identical adjoints (that is, three
vector bosons) into an invariant occurs only for the SU, (n >2) groups. (The coupling through the
structure constants is completely antisymmetric. Also note that SOs~ SU, has a d symbol.) The
existence of the d; symbol can be a problem, because fermions loops can contribute to the triangle
anomaly and destroy the theory’s renormalizability. If f; is self conjugate, the uncontrollable pieces
cancel out automatically; in that case the theory is called vectorlike [36]. If f; is complex, then it must
be reducible and of a special form for the cancelation to take place. The SUs model with f; =5+ 10 is
an example where the anomaly is cancelled. However, it is noteworthy that in SUs, there is no complex
irrep to which f; may be assigned without parity violation of the strong or electromagnetic interactions
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or the existence of massless charged particles. More generally, in unified models it is not difficult to
avoid the triangle anomaly problem. In theories where the C operator exists as a group operation, there
is never any difficulty. In any event the SO,,.s and E¢ groups, although they have complex irreps, do
not have a dy symbol, so there is no anomaly problem; the adjoint occurs only in the antisymmetric
part of adjoint times adjoint, as is required by the commutation relations. We place most emphasis on
“flavor chiral” models, which are defined by the requirement that f; is complex and the triangle
anomaly problem is absent [36].

The orthogonal groups. Cartan’s classification indicates two kinds of orthogonal algebras B, (SOzn+1)
and D, (SO-,). In both cases (SO,.,, m even or odd) the defining or vector irrep m is m dimensional and
the adjoint irrep is constructed irreducibly from (m X m),. However, it is noteworthy that not all irreps
of SO,, can be obtained from products of m with itself, but there are spinor irreps, just as fundamental
as the m, from which all irreps can be formed. The reason that m* cannot contain a spinor is essentially
the same reason that a 3 cannot be constructed from any number of 8’s in SUs; the congruence of irreps
of SO,, prohibit it [9, 51]. The irreps of B, fall into two congruence classes; the irreps of D,, fall into
four classes. For SO,,.,, spinor times spinor has ordinary irreps only, but spinor times ordinary has
spinor-like irreps only. For D,, two classes are spinor like. This classification is helpful when deriving
tensor products and is described later in detail.

The most notable difference in the spinor irreps of B, and D, is that B, has only one simple spinor,
of dimension 2" and always self conjugate, but D, has two inequivalent simple spinors, each of
dimension 2"~'. When n is odd, the spinors are complex and conjugate to each other, and when n is
even, they are self conjugate and inequivalent. Thus SO0, SO14, SOy, . . . all have complex spinor irreps
that can be used for f. to make a flavor chiral theory.

In carrying out the embedding of SUS in SO,,, the m plays the fundamental role. If the spinors satisfy
the color restriction, then so does m, but the converse is not necessarily true. Thus, our procedure is to
embed through m and then construct the branching rule for the spinors.

The m is a self conjugate irrep, which implies that the branching rule must also be self conjugate with
just as many 3° as 3%, so it has the form,

m= (0, 1)+ (3,39 + @,3), m=n,+6n, (3.11)

where n, in (3.11) must be self conjugate. Calculating the generators from (m X m),, we find easily that
the flavor group must be SO, X SU,, x U,. If n;> 1, then the simple spinor has higher color states. The
case that has attracted the most interest is n; = 1, in which case,

SO, D 80,,_¢ X U; X SUS
m=(m-6,19+(1,3)+ 1, 3) (3.12)
Adj(SO,,) = (Adj(SOwm—¢), 19+ (1, 19 + (1, 8) + (m— 6, 3°) + (m— 6, 3°) .

Actually (3.12) is not a maximal subgroup; it is a subgroup of SO,,_¢ X SO¢ with m= (m—6, 1)+ (1, 6).
There are general formulas for various tensor products and branching rules for some SO,, irreps, but
the discussion becomes simpler with the Dynkin notation to be developed. Consequently, we defer that
discussion to section 8.
The symplectic groups. Symplectic groups have had few applications in particle physics, with the
exceptions of Sp., which is isomorphic to SU,, and Sp,, which is isomorphic to SOs. There does appear
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to be a deep connection between SO,,.; and Sp,, [52], in addition to the fact that they have the same
number of generators. The symplectic groups have played almost no role in model building, but we
mention a few properties. The fundamental irrep is the 2n, and all other irreps are found in (2n)%,
k=2,3,.... The product (2n X 2n), gives irreducibly the adjoint, and the singlet is found in (2n X 2n),.
The embedding with the color restriction is found in table 3, case 6. There are two congruence classes,
which coincide with “real” and “‘pseudoreal”.

The exceptional groups. The exceptional groups, especially the E series, have received considerable
attention from model builders. Perhaps one of the main motivations is that if one of the exceptional
groups were part of a complete theory, then there might be a chance of going beyond the Yang-Mills
construction and “‘explaining” why it is the correct choice of gauge group. At present, such hope is
speculation, although the phenomenology of the Eq models being studied appears quite adequate.

G, is not large enough to contain QCD and any piece of the flavor group, since it is only rank 2.
Moreover, it is not likely to show up as a relevant subgroup because the fundamental irrep 7 has the
branching rule into SUs irreps, 1+ 3+ 3; the adjoint 14 branches to 8 + 3+ 3. Thus if G, D SUS, sets of
1%, 3° and 3 are likely to appear with equal flavor quantum numbers. Since G, has self conjugate irreps
only, it is not likely to make a good flavor group either. Nevertheless, it is oftentimes helpful to refer to
the properties of G, when studying general properties of other algebras and their representations. There
is only one congruence class for G, irreps.

F, has rank 4 and 52 generators; its irreps are all self conjugate, so all F, theories are vectorlike. The
embedding of color can be done through the maximal subgroup SU; X SU$, with the fundamental irrep
26 branching to (8, 1°) + (3, 3°) + (3, 3%); then no other irreps of F, satisfy the color restriction. For other
(inequivalent) embeddings of SUS$ in F,, there are no irreps of F, with color states restricted to 1°,
3° and 3. F, is investigated in some detail later on because it is a subgroup of Ee. There is only one
congruence class for F, irreps.

E¢ has rank 6 and 78 generators, and holds a prominent position in this review. It is the only
exceptional group with nonself conjugate irreps, so it is the only exceptional group for which a
flavor-chiral theory is possible. Moreover, it is a generalization of SO,, (SO, may be classified as “Es”),
which is itself a generalization of SUs (SUs may be classified as “E,”), so the chain of subgroups
E¢D SO0 X Ui D SUs x Ul X U contains many of the interesting flavor-chiral theories. E¢ irreps have
triality.

The only maximal subgroup decomposition of E¢ containing QCD as an explicit factor is E¢ D SU; X
SU;XxSU3, and the fundamental 27-dimensional irrep has the branching rule, 27=
(3,3,19+(3,1,3)+(1,3,3). Of course, depending on the symmetry breaking hierarchy from Eq to
U™ X SUS, it may be that other maximal subgroups, such as F,, SO, X U, or SU, x SUs, could play a
more significant role. Nevertheless, in each case the same generators of E¢ can be chosen to generate
SUS, and the same diagonal generator can be identified with Q°™; it is in this sense that these other
subgroups do not give a new embedding of color. In each case, the 27 has three 3, three 3°, and nine 1,
with the same distribution of electric charges. We have ignored the embeddings where the 27 has one
color singlet and a color octet, since obtaining a sensible looking lepton sector is awkward. The analysis
of E¢ and its subgroups is carried out in great detail in sections 6-9.

E, has rank 7 and 133 generators. All of its irreps are self conjugate and either real or pseudoreal.
The 56 is the only irrep that can have color restricted to 1°, 3° and 3°, and the embedding
E; D SUe x SU$ exhibits the embedding through the branching rule, 56 = (20, 1°) + (6, 3°) + (6, 3°). Al-
though models based on E; have been suggested, they are not currently popular because those theories
are vectorlike, so an explanation of the weak neutral current is tangled up with a detailed understanding
of the symmetry breaking.
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The fundamental irrep of Es, which has rank 8, is its adjoint, so for any embedding of SU$ there
must be color states beyond 1¢, 3 and 3°. It is the only group for which the adjoint cannot be
constructed from some simpler irrep. The SU; X E¢ decomposition of Eg of the 248-dimensional adjoint
is (8, 1)+ (1, 78) + (3, 27) + (3, 27), so the 248 can be arranged to have one 8°, 78 1°, 27 3° and 27 3,
which is “almost” without higher color states, and it has three families of 27. Again, all E; theories are
vectorlike, and the irreps of E; are all in a single congruence class. E; and Eg will both receive some
attention in section 8.

4. Dynkin diagrams

There exists much literature describing the theory and application of group theory, and especially Lie
group theory, to problems in physics. Often fairly small Lie groups such as SU,, SU,, SO, or SOs are of
interest; for these, one may get the impression that deriving the commutation relations, representations
and their content, the subgroup structure, tensor products, vector coupling coefficients, recoupling
coefficients, and so on is straightforward, but tedious. However, unified models are based on much
larger groups (rank four or more), so there appears to be cause for anxiety over the algebraic
complexity that must be faced in deriving those results. Our purpose in the next three sections is to set
up the analysis of simple groups in such a way that some of the chores encountered in unified model
building are not as tedious as might be expected.

Simple groups, their representations, and subgroup structure have been studied by many mathema-
ticians and physicists, but perhaps the most convenient approach for dissecting Yang-Mills theories
based on large simple groups is the one introduced by Dynkin in the early fifties [9]. Of course, it is
widely understood that field theory is an especially convenient formalism for describing symmetries, and
putting internal quantum number labels on field operators in a Yang-Mills theory is conceptually
simple. The reason why Dynkin’s labeling is so useful is that the action of a generator, or a tensor
operator, on a state is designated a little more conveniently for big groups than, say, by tensor labels; it
is easier to do the bookkeeping. For example, an important step in exploring a theory is identifying the
color and flavor quantum numbers of a field that transforms as a component of some representation of
the Yang-Mills group G, and finding out how it is transformed through its interactions with the vector
bosons in the theory. This problem is reduced to integer arithmetic, and constant reference to the
commutation relations is not needed except through the Dynkin diagram. Our account is brief,
informal, and descriptive, with emphasis on the results needed to derive the many tables. Rather than
proving theorems, we use examples for guidance. The mathematics can be found elsewhere [9, 11, 12].

The maximum number of simultaneously diagonalizable generators of a simple Lie algebra G is
called its rank /; the total number of linearly independent generators is called its dimension. A simple
group has no invariant subgroups, except the whole group and the identity; analogously, a simple Lie
algebra contains no proper ideals. A semi-simple algebra can be written as a direct sum of simple
algebras. Excepting the study of subalgebras, we discuss simple algebras only; U, is not simple.

In the standard Cartan-Weyl analysis, the generators are written in a basis where they can be divided
into two sets. The Cartan subalgebra, which is the maximal Abelian subalgebra of G, contains the /
diagonalizable generators H,,

[H,H}=0, ij=1,....1; @.1)

and the remaining generators are written so they satisfy eigenvalue equations of the form
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[H,E.]=E., i=1,...,1. 4.2)

The numbers a; in (4.2) are structure constants of the algebra in the Cartan-Weyl basis. For each
operator E,, there are ! numbers «; that can be used to designate a point in an /-dimensional
Euclidean space called root space. The term “root” refers to the fact that the root vector (ay, ..., a;) is
the solution to the eigenvalue equation (4.2). A fundamental problem of Lie algebra theory is to classify
all possible root systems for algebras of each rank, consistent with the Jacobi identity, simplicity
requirement, and the antisymmetry of the commutation relations. The most elegant statement of the
solution of that problem is given in terms of Dynkin diagrams, which is the topic of this section.

It is well known from the description of symmetries in quantum mechanics (or from Lie algebra
theory) that the generators H; and E, of the symmetry group G are characterized by their actions on
Hilbert space vectors, which describe the states of a physical system. A complete set of states that are
necessarily interconnected by the E, forms the basis of an irreducible representation (irrep) of G.
Again, the solution to the problem of finding all possible irreps of any simple group G is stated most
elegantly in terms of Dynkin diagrams. Irreps and Hilbert spaces are referred to rather often in this
section, since most physicists think in terms of representations rather than abstract operators. However,
the complete solution to the problem of enumerating irreps and their structures will not be discussed
until section 5.

The physical significance of the diagonalizability of the H; is that the Hilbert space vectors [A) in an
irrep can be labeled by the ! eigenvalues (quantum numbers) of H;: H;|A)= A;J]A). Note that A is not a
complete set of labels, since we need to know which irrep of G the set A belongs to, and in addition,
often there are several Hilbert space vectors in an irrep labeled by the same set A, so further labels of
the Hilbert space vectors are usually needed. The set A is called the weight of the representation vector.
The solution to the problem of finding the complete list of weights of an irrep will be given in the next
section; for problems in unified model building, the labeling problem can be solved by hand, so a
general solution is not needed very badly . . . fortunately, since there are unsolved cases and cases where
known solutions are not easily used. The labeling problem is raised again in section 7.

The only rank 1 simple algebra is SU,; it is conventional to select J; to be diagonal: J5lm)= m|m).
The commutation relations, [J5, J.] = £J., have the same structure as (4.2), so the root vectors are the
one-component vectors +1 and —1. Thus, from the example of angular momentum theory, it should be
suggestive that the E, are ladder operators: if |A) is an eigenfunction of the H; with eigenvalues
A (i=1,...,1]), then according to (4.2), E,|A) is proportional to the state |A + ), which has eigenvalues
A; + a;, assuming the proportionality constant is nonzero. In detail from (4.2),

H(E.|M) = E.Hi|A) + aiEL|A) = (\i + a(Ea|A)) . (4.22)

Just as in angular momentum theory, the precise form of the linear relation between E,|A) and |A + a)
depends on phase and normalization conventions, and calculation of the proportionality is done in the
same way: if (A|A’) = §,,-, then the normalization of E,|A) can be computed in a stepwise fashion from
(A|E-oE.|A) = (A|E.E_.|A)— (A|[E., E-.]IA), ignoring further labels on the states, where [E,, E_,] are
further commutation relations that need to be specified, and E. = E_,. The idea is to start the
calculation with a state such that E,|A) = 0 for appropriate a. (The equation for SU, is J,|j, j) = 0.) The
solution to the general problem of finding the state analogous to |j, j), which is called the state with
highest weight, for any irrep of any simple group is, again, given in terms of Dynkin diagrams!

Let us finish writing down the commutation relations. If « is a root, then so is —a. The commutator
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of E, and E_, is in the Cartan subalgebra
[Ea E-o] = a'H, (4.3)

where the components a' are related to the o, by a metric tensor, to be discussed. (In SU,,
[J., J_] = 275, so the metric tensor is 5.) The remaining commutation relations have the form,

[Em Eﬂ] = Na.BEOH’B (a + B# 0) s (44)

if @+ B is a root, and N,z =0 if @ + B is not a root. For example, 2a is never a root. (Although
[E.,, E,] =0, it takes some effort to prove that 2« is not a root.)

If we knew all possible ladder operators E, (or more simply, all possible root systems) for each /,
then we would know all possible simple Lie algebras, since the root vectors determine the structure of
the Lie algebra. In the Cartan-Weyl basis, the nonzero roots of a simple algebra are nondegenerate;
there is only one E, for each a. The Cartan subalgebra may be viewed as being associated with an
I-fold degenerate zero root, by comparing (4.2) and (4.1). The derivation of the root systems uses the
commutation relations (in abstract form), the Jacobi identity, and clever manipulation to derive the
crucial constraints on the roots, some of which were mentioned above [53]. The possible root systems
are summarized by the Dynkin diagrams. In order to motivate the results we review SUj, since SU, is a
little too trivial.

SU; has rank two, so the root vectors are defined in a two dimensional Euclidean space. The eight
generators of SU, satisfy commutation relations [54],

[E, F;] = i iika ’ (4‘5a)

where the structure constants f;; are antisymmetric in the indices; in the Gell-Mann basis, the nonzero
fn are

f123=1, f147=f516=f246=f257=f345=f637=%,

- 4.5b
f458=f678=%\/3' ( )
The structure constants are normalized so that =y, fu:fi: = 36;;.

Equation (4.5) does not give the generators of SU; in a Cartan-Wey! basis; a Cartan~Weyl basis can
be chosen as follows: select H, = F; and H,= Fg to be the members of the Cartan subalgebra, and
V2I. = F, +iF,, V2U. = F,*iFs, and V2V, = Fs+iF, to be the E,. The two component root vectors
are derived from (4.5):

[H, I.] = aul., ai ==x(1,0);
[I{i’ Uz] = alz.]i Ut’ alzJ = t(_ %7 %\/3) ; (4'6)
[H, V.]=a¥iV., a%==x(,3V3).

The well-known root diagram of SU; showing the vectors ai, ay and a{ is reviewed in table 4, because
we want to refer to a number of features of it that generalize to any simple algebra. The axes of the root
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diagram are labeled by I,= H; and Y = (2/\/3)H2, but we have fixed the scales of H; and H, to be
equal in accordance with the normalization condition on the structure constants. (The metric, or Killing
form, is a unit matrix.) The ladder operators of SUs raise and lower the values of H; and H, by the root
vectors, and the action of H; on a Hilbert space vector is to measure the value of H; for that state, but
not change the weight. Currents and field operators in a field theory have analogous effects.

Let us emphasize several features of table 4: all the nonzero roots have equal length (in a simple
algebra there are nonzero roots of at most two different lengths); if a is a root so is —a, which is
completely general; the angle between any pair of roots is an integer multiple of 60°. (The angle
between any pair of roots in any simple algebra is greatly restricted.)

It is useful to have a basis for the Euclidean root space, of course, but this basis should be chosen
with foresight and cleverness or else the general discussion of the generators and representation theory
will be a mess. Specifically for SU,, the choice of Y and I; is a simple choice only because there is no
difficulty in visualizing the changes in those quantum numbers due to the ladder operators. Thus, the
raising operator associated with a raises I; by 3 and Y by 1. The difficulty with this basis is that for
larger groups, the action of a generator usually corresponds to a complicated change of coordinates; of
course this is only a difficulty in practice, but it can be quite nontrivial to deal with it. Even the
orthonormality of the Ir-Y coordinate system is no real advantage for algebras of rank four or more,
because visualizations must be replaced by analytical methods. A better choice of basis is rank(G)
specially chosen roots that span the space, because then the coordinate changes due to ladder
operators should have a simpler description. It is clear from table 4 that it is not possible to have an
orthonormal basis for the root space of SU; if the basis vectors are chosen from the roots, but this is not
a practical problem. A specially chosen set of roots, called simple roots, contain in a simple way all the
information about the other roots and even about the quantum number labels of the representation
vectors, which can be derived from the Dynkin diagram; a detailed picture of the /-dimensional root
space is not needed.

The simple roots are identified as follows. Write the roots in any Cartesian basis; half of the nonzero
roots are positive, which is defined by the requirement that the first nonzero component of a positive
root in that basis is positive. Then find the positive roots that cannot be written as a linear combination
with positive coefficients of the other positive roots. There are only rank(G) such roots and they are linearly
independent; that defines a set of simple roots. Of course, different selections of coordinate systems will
lead to a different set of simple roots; however, the members of any set are equivalent to those of any other
in the sense that there is a Weyl reflection of the root diagram that relates the two sets. A Weyl reflection
does not change the relative lengths or angles among the roots.

The positive roots of SU, from (4.6), if the coordinates are written as (Y, ), for example, are a7,
ay and ay. Since av = a7 + ay, the simple roots in this coordinate system are a1 and a (. The lengths
of ay and a{; are the same and the angle between them is 120°. Note that for any other Cartesian coordinate
system placed on table 4, the simple roots will still have the same lengths and an angle of 120° between them.
That is a defining feature of the SU, root system; the length and angle relations among the simple roots
completely characterize any simple Lie algebra. It will be shown soon how to compute all the roots from the
simple roots; they are obviously linear combinations of the simple roots. The difference of two simple roots
is not a root.

Dynkin has pointed out how the simple roots of any simple Lie algebra can be represented
graphically by a two-dimensional diagram (called a Dynkin diagram). Such a diagram must indicate the
relative lengths of the simple roots and the angle between each pair of simple roots. Each simple root is
denoted by a dot on a diagram. In many algebras, all nonzero simple roots have the same length, so
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each root is designated by an open dot “O”. No simple algebra has nonzero simple roots with three or
more different lengths. In those cases where simple roots come with two different lengths, the longer
roots are denoted by open dots O, and the shorter roots by filled-in dots, @.

The angle between a pair of simple roots is denoted by lines connecting the corresponding dots: no
line means the angle is 90°; one line means 120°; two lines means 135°; and three lines means 150°.
These are all the possibilities. Moreover, the detailed analysis shows that the ratio of lengths of two
roots connected by three lines must be \/3 the ratio of lengths of two roots connected by two lines is
V2, and the ratio of lengths of roots connected by one line is unity. There is no constraint if two roots
are not connected by lines. Returning to the SU, example, we see from the above conventions that its
Dynkin diagram is O—O.

The roots systems of all simple Lie algebras and the numbering conventions for the simple roots are
shown in table 5. For much of the following analysis, the Dynkin diagram contains all the information
we need, so we do not have to refer back to the commutation relations. Any other diagrams than those
in table 5 do not give a root system of a simple Lie algebra; for example, the Jacobi identity may fail for
some set of generators. An algebraic proof that table S is an exhaustive list of all simple root systems of
simple Lie algebras can be found in ref. [12].

The simple roots do not form an orthonormal basis for root space; if a Dynkin diagram has several
pieces that are completely unconnected, then the algebra is semisimple, and each connected piece is
simple. The matrix that keeps track of the nonorthogonality is called the Cartan matrix. It has elements

Ay = Aa;, aj)a;, ;) , ' 4.7

where the vector a; is the ith simple root (not component as in earlier equations), numbered as
indicated in table 5. The matrix A can be read off of the Dynkin diagram; the Cartan matrices of simple
algebras are listed in table 6. Each element of the Cartan matrix is an integer. The importance of these
matrices [or the Dynkin diagram that serves as a mnemonic for (4.7)] will become obvious. The Cartan
matrix is both useful for working out the entire root system and is indispensible for representation
theory.

According to (4.2) the eigenvalue of H; acting on a nonzero E,|A) is A; + ;. Since a; is a vector in
root space, it is convenient to supplement the root space with points corresponding to the possible
weights of the representation vectors. For example, a field operator ¢'(A) transforms the vacuum (with
zero quantum numbers) to a state with quantum numbers A;: ¢'(1)|0) « |A). Thus the weight A can be
represented as a vector in the same Euclidean space where the root vectors live.

The simple roots form a basis of root space, so each root or weight vector A in root space can be
written as a linear combination of the simple roots a;,

A 2 A ) a;, (48)

(a,,

where (i, ;) is the length-squared of the ith simple root. The longer simple roots are normalized
conventionally to a length- squared of 2, so for groups with all simple roots of the same length (SU,,
SO,,, E,), the 2/(a,, a;) factor is unity. Otherwise it simplifies some crucial formulas later on. The
coordinates [4, ..., A;] give the vector A in the dual basis. The Dynkin components a; of A (to which
the A; are dual) are defined by
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a = A a, Z ; (al, a}) /. , (49)

(@) <

where the last equality follows from (4.7) and (4.8). Equation (4.9) is one of the most important
formulas in this review.

This selection of basis is made worthwhile by the following crucial theorem: for any weight or root, the
Dynkin labels a; in (4.9) are integers. (These integer coordinates were known to Weyl, but it was Dynkin
who first exploited them for all their worth.) For SU, A, = 2, s0 a = 2m is always an integer; A = ma is
the dual vector, where m is the magnetic quantum number.

Weight space is an /-dimensional Euclidean space with a scalar product that has already been used in
constructing the Cartan matrix. The scalar product of any two weights can be written in the dual basis
(4.8), in a mixed basis (which is extremely convenient), or in the Dynkin basis (4.9); writing out the
scalar product in several forms,

A, A)=(A",4)= E/\' )(a,,a,)(]’ ])A—ZA’(a" o) AyA;

y
= 2 Aa)= 2 Aa, = 2 a:Ga;, (4.10)
i i ij
where G is a symmetric metric tensor with elements,
= (A7), 2% (a (@) @.11)

which, comparing with (4.10) or (4.9), shows that A; = G,a,. The matrices G for each simple group can
be computed from the Cartan matrices in table 6, and are listed in table 7.

The members of the Cartan subalgebra have zero roots; any linear combination Q of the H; is also a
member of the Cartan subalgebra. The diagonal generator Q is characterized by an axis in root space.
(For SU,, the I; and Y axes are marked on table 4.) A state |[A) with weight A is an eigenstate of
Q, O|A)= Q(A)|A), with eigenvalue Q(A),

Q4)=(Q,A). (4.12)

[Compare with (4.2).] The Q axis can be normalized to suit some set of conventions; for example, for
Q°™, the charge of the positron is +1. The most convenient form for computing (4.12) is to put the Q
axis in the dual basis with components [§y, . .., 4], and the weight A in the Dynkin basis so that

Q)= T ga:. 4.13)

The general tactic for setting up the §; for each charge Q in unified models is to establish first that there
is a Q in the Yang-Mills theory satisfying relevant physical properties (that is physics), complete the
explicit embedding of Q by working backward for one irrep to get the §; from (4.13) (choice of
coordinates), and then compute Q(A) for the other weights from (4.12).
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The electric charge, I3, and the two diagonal generators of SUS are in the Cartan subalgebra of a
unifying group, so finding these axes is an important step in extracting the physical content of a theory.
Although the embedding of SUY X UY X SUS in G usually must be found before this problem can be
solved (see section 6), it is easy to understand the form of its solution from an elementary discussion of
the Eightfold Way, where the diagonal generators of SU; correspond to the third component of strong
isospin and strong hypercharge. We may select the root (2 —1) (in the Dynkin basis) to correspond to
the isospin raising operator, as in table 4. Recalling the elementary results of SU;, we know that the I,
value of 2 -1)is +1, of (1 1) is +3and of (1 —2) is +3. Thus any root or weight A with labels (a,a,) has I5
value,

L(aa)=L-A=a/2, L=310]. 4.14)

As emphasized above, it is convenient to give the axes in the dual basis because of the ease of
computing scalar products. In a similar fashion, the hypercharge axis, normalized in the usual way is
Y =i[1 2], with

Y(aa:)=Y - A. (4.15)

Finally, the electric charge Q™ = I;+ Y/2 can be computed by adding axes, so Q™ = 3[1 0]+ }[1 2] =
2 1], with Q°™(a,a,) = Q™ - A. This trivial example is a prototype for more complicated ones in
section 6.

The simple root a; has Dynkin components A;, which is just the ith row of the Cartan matrix, but it
is perhaps easier to remember the Dynkin diagram. For example, the two simple roots of SU; in the
Dynkin basis are a;=(2 —1) and a,= (-1 2), as labeled on table 4. The third positive root is
arta=(11).

Deriving the entire root system from the simple roots requires knowing which linear combinations of
simple roots are roots. The following theorems make this exercise simple. (1) In a Cartan-Weyl basis
the zero root has a degeneracy equal to the rank of the algebra, and the remaining nonzero roots are
nondegenerate. (There is just one generator per nonzero root.) (2) If & is a root, then so is —a. The
roots that can be formed by linear superpositions of simple roots with nonnegative coefficients are
positive roots in some basis, so we need list only that half of the nonzero roots, which number
3[dim(G) — rank(G)). (3) There is a “highest root” from which the remaining roots may be computed by
subtracting simple roots. The highest root for each algebra is listed in table 8, along with the number of
simple roots that must be subtracted before reaching the simple roots. This procedure is slightly easier
than building up the positive roots from the simple roots. The root diagrams for the rank 2 and rank 3
algebras are given in table 9, where the positive roots of SUs and SO, are also listed. We note that the
algebras B, and C, are isomorphic, as can be seen by comparing their Dynkin diagrams; D, is
isomorphic to the semisimple algebra SU, x SU, (it is not simple); and D and A; have the same Dynkin
diagrams, so they too are isomorphic.

The root system is the list of eigenvalues of the Cartan subalgebra when acting on the adjoint irrep,
and the rules for working out the root diagram are a special example of the rules needed for obtaining
the Dynkin labels weight-by-weight for any irrep. The reader can figure out the rules for the adjoint
from table 9; a more formal statement with many examples is found in the next section.
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5. Representations

The representation theory of simple algebras is summarized elegantly in terms of Dynkin diagrams.
The problems (with solutions) to be discussed in this section are: (1) enumeration of all the irreps of
each algebra; (2) the weight system of each irrep; (3) dimensionality and index of each irrep; and (4) the
computation of tensor products. We begin with a few preliminary comments and a recapitulation of
some results of section 4.

If there is an n-dimensional irrep n of G, then there exists an n-dimensional Hilbert space on which
the generators of a simple G act faithfully. The n-by-n matrices representing the generators acting on
this Hilbert space satisfy the commutation relations of the algebra. Each vector in the Hilbert space may
be (partially) labeled by the eigenvalues of the diagonalized generators in the Cartan subalgebra. Each
possible set of eigenvalues corresponds to a point in root space, and is called the weight vector of the
Hilbert space vector of the irrep. (For example, the vector |j, m) of the j representation of SU, has
weight m (A = ma) in the dual basis, or a = 2(A, a)/(a, @) = 2m in the Dynkin basis.) Thus, a weight is a
vector in an /-dimensional Euclidean space [/ = rank (G)], and as mentioned in section 4, the points in
root space can be supplemented with the set of points that can correspond to weights of the irreps. We
refer to this lattice of points as weight space. Perhaps some confusion will be avoided by stating that it
should be clear from context whether “vector’ refers to a vector in Hilbert space or to the vector in the
weight space being used to label a Hilbert space vector.

The structure constants f;; can be made into matrices with elements (f;);. These matrices satisfy the
commutation relations of the algebra, which is proven from the Jacobi identity, and form an irrep called
the adjoint (or regular) representation with dimension equal to the dimension of the algebra. Each
ladder operator is specified by a unique root «, and is represented by a matrix that replaces the vector
Ir, A) by a vector |r, A + @), up to normalization and phase. At the end of section 4, it was shown how to
represent the roots in terms of the Dynkin basis, which is a set of integer coordinates in root space, and
the Cartan subalgebra by axes in root space. There is a highest root from which the remaining roots may
be derived by subtracting simple roots. That prescription is a special case of the general prescription for
obtaining the weight system of any irrep.

The problem is to designate each irrep of any simple Lie group and its weight system in the Dynkin
basis. The incredible convenience of the Dynkin basis is, as stated before, that each component of any
weight A of any irrep of any simple algebra is an integer; that is, a; = 2(A, a;)/(a;, @) is always an integer
if A is a weight. This is the generalization of the theorem in SU, theory that 2m is always an integer.

In a given irrep, some weights may be degenerate, that is, several vectors in Hilbert space may have
the same weight, so that distinguishing them calls for additional labels. However, there are always some
weights in an irrep that are not degenerate and one of those weights uniquely defines (up to an
equivalence transformation) the irrep. That weight is called the highest weight A, and it is defined in a
way similar to the way we defined the highest root in table 8, which is the highest weight of the adjoint
representation. The highest weight is, as any weight, a set of integers when written in the Dynkin basis.
Dynkin has shown the following crucial theorem [9 and references there]: The highest weight of an irrep
can be selected so that the Dynkin labels are non-negative integers. Moreover, each and every irrep is
uniquely identified by a set of integers (a,, ..., ;) (a; =0), and each such set is a highest weight of one
and only one irrep.

The complete set of weights for each irrep can be derived from the highest weight and the Dynkin
diagram, just as the root system was derived from the highest root in section 4, except now we shall be
much more explicit. Once the weight system is in hand, the Dynkin labels can then be converted into
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the eigenvalues of a convenient set of diagonal generators from (4.13), including, for example, I3, Y™,
Q°™, and the color charges. Needless to say, having a simple method for extracting the quantum
number content of an irrep is an important technical tool for studying unified models. (Subgroup
designations are another solution to this problem, and will be discussed later.) The irreps listed in the
tables are designated by their highest weight in the Dynkin basis. As a matter of notation, a comma is
not inserted between a; and a;., when all a; <9.

The highest weight A has the same meaning as it does in SU,, where the Hilbert space vector with
highest weight in the j irrep is the one that is annihilated by J.: J.|j, j)=0. In the general case, any
ladder operator belonging to a positive root acting on the Hilbert space vector |r, A), with highest
weight A in irrep r, annihilates it. The vectors with lower weights are obtained by acting on the vector
with highest weight with the lowering operators; in SU,, J_|j,j) is proportional to |j,j— 1), until
J_|j, —j) = 0. The significance of the simple roots is that the entire weight system of an irrep can be
obtained in an orderly fashion. There even exists a general formula in terms of the highest weight for
the maximum number of simple roots that can be subtracted from the highest weight; in SU,, it is well
known that the positive root, which is 2 in the Dynkin basis, can be subtracted 2j times, giving an irrep
of dimension 2j + 1. By now the reader should not find it very suprising that so many resuits of SU,
theory are generalized to any simple algebra so trivially.

As another important example showing how the well-known SU, results generalize, consider the
following calculation. Suppose that |r, A) has the highest weight of the irrep r; then [r,A —a) is
proportional to E_,|r, A), where from (4.3) E_,|r, A) has the normalization

|E_alrA) = (r, A|[E., E_.]Ir, A)= (A, a)r, Alr, A)= (4, a). 6.1

This first step in a stepwise calculation of the matrix elements (up to a phase) of the ladder operators
has many applications. (The first step has no labeling problems, but subsequent ones may.) One
application, discussed in section 9, is to the analysis of mass matrices.

We need to know if a weight A’ belongs to a vector (or vectors) in an irrep with highest weight A. The
relevant theorems, stated rather informally here, simplify the procedure, and with a little practice the
weight systems of quite large irreps can be produced rapidly by hand. The examples should be viewed
as problems for practice.

Suppose that the highest weight has components A = (a,...a) in the Dynkin basis. Then the ith
simple root can be subtracted from A ag; times. This means subtracting the ith row of the Cartan matrix
from A a; times, which corresponds to the fact that E_,, (E_..)>, ..., (E-.,)® (no sum on i) do not
annihilate the state of highest weight, but (E_.,)**' does. Applying this rule to the (a,) irrep of SU,,
where the simple root in the Dynkin basis is the vector 2, we find the weight system (a,), (a;—
2),...,{—ay), so we identify a, = 2j and prove that the dimensionality is a, + 1 = 2j + 1, if we ignore the
possibility that some of the weights might be degenerate. (Of course the SU, weights are not
degenerate.) Not many other rules are needed to deal with the general case.

The level of a weight of an irrep is the number of simple roots that must be subtracted from the
highest weight to obtain it; it is a unique number, even if a weight can be obtained by several different
orderings of the lowering operators. The general formula for the highest level of an irrep of highest
weight A = (a, ... a;), which is called the height of the irrep, is

T(A ) = Z Iiia.' B (52)
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where R is the level vector, written in the dual basis so that taking the scalar product in (5.2) is a single
sum. The level vectors for all the simple algebras are listed in table 10. The components R; are given by
R; =23, (A™"); [55]. Note that the level of a weight with components a/ is 3 = R;(a; - a}), where a; is a
component of the highest weight of the irrep. The rest of the weight diagram is constructed by repeating
the procedure of the previous paragraph at each level.

A useful theorem for constructing the weight systems by hand is Dynkin’s theorem that the weight
diagram must be “spindle shaped”. This means two things: the number of weights, counting degenerate
weights separately, at the kth level must be equal to the number of weights at the (T(A)— k)th level.
(For example, the single weight at the T(A )th level must be nondegenerate, since the highest weight at
level zero is.) Moreover, the number of weights at the (k + 1)th level is greater than or equal to the
number at the kth level, for k < T(A)/2.

For the low-dimensional irreps, the degeneracy problem is easily resolved by imposing the spindle
shape on the weight diagram; in the examples discussed below this is so. For very large irreps a
computer is helpful in finding the weight system [10], and in that instance there exists an iterative
formula (the Freudenthal recursion formula) for computing the degeneracy n,. of a weight A’ in terms
of the degeneracies at the lower levels and the highest weight A:

[(A+8,A+8)-(A'+8,A'+8)]na=2 D npunalA'+ka ), 5.3)
P hositve k-
where § = (1, 1, ..., 1) in the Dynkin basis is half the sum of all positive roots and n 4., is a degeneracy

already computed. For example, the degeneracy of the zero weight of the 8 of SUs; is no[((22), (22)) -
((11), (11))] = 2 = (@, @) = 12, where the sum is over positive roots, the length-squared of (22) is 8, and
the length squared of (11) and the other positive roots is 2. [Recall (4.10).] Since there are 3 positive
roots, no = 2.

As familiar examples, we construct the weight diagrams for a few SU, irreps. From (5.2) and table 10,
we find that the (1 0) has height 2. The first root can be subtracted from (1 0) to give (1 0)-(2 —-1)=
(-1 1); then the second root (~1 2) can be subtracted from (-1 1) to give (0 —1). Since there are no
more positive Dynkin labels and no higher level was reached by subtracting a simple root several times,
we are done; (1 0) is the highest weight for the 3. Following the above rules, it is easy to find the:
following weight systems:

© 1) 2 0) an

(-1 (UNY -12) 2-1

(<100 (=22 (1-1) (00) (00 (5.4)
(-1 0) 1-2 (21
0 -2) (-1 -1),

which the reader will recognize as 3, 6 and 8, respectively. The weight system of the 8 is, of course, just
the root system for SU; already worked out in table 9. Note that (0 0) is obtained two different ways,
which only places an upper limit on the degeneracy, but it must have degeneracy two, as required by the
spindle-shape theorem, or the fact that the 8 is the adjoint of a rank 2 group, or by the Freundenthal
recursion relation.

To show a less trivial example, the weights of the (0 0 0 0 1) of SO,o, which is the 16 dimensional
spinor, and of the (1 0 0 0 0 0) of Es, which is 27 dimensional and has height 16, are given in table 11,
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where the simple root subtracted from each weight is referred to explicitly; it is educational to check
table 11. Note that the 16 and 27 have no degenerate weights, and if A is a weight, then —A is not,
which characterizes nonself-conjugate (‘‘complex”) irreps. The calculation of the electric charge, and so
on, is carried out in section 7, although we have enough machinery to do it now.

The weight system of an irrep falls into one of three categories, called complex, real, or pseudoreal.
These categories are characterized as follows [56]: A nonself-conjugate (which we call, somewhat
loosely, complex) irrep has the feature that the weights at level k are not the negatives of those at level
T(A)~- k. For example, the Oth and second levels of the 3 of SU; are (1 0) and (0 —1), respectively, so
the 3 is complex. If the Dynkin diagram has a nontrivial symmetry axis, as do A,, D, and Eg, then there
may be complex irreps. A necessary condition for (a, . . . a;) to be complex is that the highest weight not
be invariant under the reordering induced by the reflection. In the case of SU,.,, any irrep satisfying
(@,...a)#(a...a,) is complex, and any Eq irrep satisfying (a,a,a:a4asas) # (asasa:a.a.a.) is also
complex. In the case of D,, the condition (a,...a.-2a.-1a,)#(a,...a. .a.a,_,) is a sufficient
condition only for n odd. All irreps of SO,, are self conjugate.

Self-conjugate irreps have weight systems satisfying the requirement that the weights at level k are
the negatives of those at level T(A)— k. If T(A) is even then the representation matrices can always be
brought to real form by a group transformation and the irrep is called real. However, if T(A) is odd, but
the irrep is self conjugate, then the irrep cannot be brought to real form and the irrep is called
pseudoreal (but not complex, even though it is, in fact, complex). The 5 integer spin irreps of SU, are
pseudoreal. These results are tabulated in table 12; they can be confirmed by comparing the results with
table 10 for the level vectors, and will be further characterized when we discuss tensor products.

As mentioned in section 3, the terms “‘basic”, “simple”, ‘“fundamental”, and ‘“‘composite” are often
used to describe various irreps of simple groups. (Needless to say, the choice of the term that fits a given
definition tends to vary with author.) A basic irrep is one with highest weight satisfying £ a; = 1; it has
only one nonzero Dynkin label. A simple irrep is a basic irrep where the nonzero a; corresponds to an
endpoint of the Dynkin diagram. All other irreps can be constructed from tensor products of the simple
ones; there is one simple irrep from which all other irreps can be constructed. For example, in the
orthogonal groups the vector and spinors are both simple. All irreps can be constructed from tensor
products of one of the spinors, but the spinors cannot be constructed from products of the vector. The
fundamental irrep is the simple irrep used to do the embedding in section 3. The composite irreps are
those with highest weight satisfying % a, =2. The simple irreps from which all other irreps can be
constructed by tensor products are listed in table 13, along with their dimensionalities and their Dynkin
designations. Each weight of all of those irreps is nondegenerate, with the exceptions of the twofold
zero weight of the 26 of F, and the eightfold zero weight of the 248 of Es. Note that Eg is the only
simple algebra for which the adjoint is the fundamental irrep.

The next problem we discuss is finding the dimensionality of an irrep from the famous Wey! formula
[12}:

Nay= ] ¢roa) 55)

positive (8’ a ) ’
roots

where 6 =(1,1,...,1,1) in the Dynkin basis, A is the highest weight of the irrep, and a is a positive
root. This formula has a very simple structure when the positive roots are written as sums of simple

roots. If a = E_X,a,- 2/(a, a;), where a; is a simple root, then from (4.8) and (4.10), (8, @)= 2 A; and
(A +8,a)=Z Ai(a; + 1). It is easy to look at the root diagram (see table 9) and immediately write down
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N(A), although for a group with many positive roots, the actual computation by hand can be
cumbersome. (Thus we have listed the dimensions in the tables; in many cases the dimensions and
indices were copied from ref. [57].) For example, for SUs the positive roots are a;, @, and a; + as, so

2+a1+a2)

N(aia2)=(1+a)(1+ az)( 5 (5.6)

It is quite clear from (5.6) that the Dynkin labels provide a compact summary of the usual tensor
notation: if symmetric traceless tensors are used for the representation space, then a, is the number of
upper indices and a. is the number of lower indices.

The positive roots in table 9 for G, are, reading from right to left, and bottom to top, a, a1, a, + a,,
a; + 2a;, o1+ 3a,, 2, + 3a,, which have dual coordinates 5[0 1], [1 0], 5[3 1], 3[3 2], [1 1] and [2 1],
respectively, so we can immediately write down the dimension formula for irreps of G, as

N(a,a2)= (1+ ax)(1+ al)(l Jata )1+ 3a, ; 26)(14+ & ; )1+ 2“‘; az), .7)

where the factors are in the same order as the roots above.
The SU; formula has 10 factors and can be written down by keeping in mind the structure of the root
diagram:

N(a,a:asa4) = (1+ a)(1 + a)(1 + as)(1+ a4)<1 tﬁﬁ_"z 1+ a_2+ 3\ (1 + a_3; a..)
a1+a2+a3 a2+a3+a4 a,$a2+a3+a4
x(1+ : )(1+ ; )(1+———, 4 ) (5.8)
Thus, N(O 1 0 1)is 45 and N(0 0 1 1) is 40.
The second-order Casimir invariant is [58]:
C=fafaX*X'= HGH,+ ¥ E.E_,, (5.9)

all
roots

where fj, are structure constants, X* are generators, and C commutes with any generator X;. The
Racah formula for the eigenvalue of C for an irrep is easily derived by letting C act on the state with
highest weight A and manipulating the sum on roots with (4.3):

C(A)= (A, A +26). (5.10)

Oftentimes C(A) is not an integer; moreover, in some applications such as in the renormalization group
equations, another quantity called the index is more useful:

N@A)

)= Ntadj)

c), (5.1)

where N(adj) is the dimension of the adjoint irrep (or the order of the group) and /(A) is always an
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integer. (Do not confuse the index /(A) of an irrep with / = rank(G).) The index is closely related to the
lengths of the weights in the irrep A ; (5.11) can be written [59]:

I(A) - rank(G) = > (A, 1) (5.11a)

where (A, A) is the length-squared of a weight in irrep A, following the conventions below (4.8), and the
sum is over all weights in A.

The index gives the one loop contribution to the 4 dependence of the couplings, u dg/du = B(g)
[23]:

BEg)= ﬁi [% c(vector) — % c(Dirac fermion) - % c(spinless)] g+ (5.12)

where, as derived below, c(...) is the index of the representation to which the (...) particles are
assigned. The factor 3 should be replaced by 3 if (two-component) Majorana spinors are used. In the
usual notation, c(...) is defined by [23]

c(..) 8, =TH(T,T,), (5.13)

where T, [a =1, ..., N(adj)] is the ath generator in the (...) representation. In this same notation, the
Casimir invariant (5.9) is

Cs,; =3 (T°T?);, (5.14)

where i,j=1,..., N(4); (5.13) and (5.14) provide the identification c¢(4) = I(A).
The index for the SU, irrep (a,a,) is

l(a1a,) = 1sN(a1a,) (a3 + 3a, + a,a, + 3a.+ a3), (5.15)

so that /(1 1) = 6 for the 8 and /(1 0)= 1 for the 3. These results are substituted into (5.12) to obtain the
famous QCD formula for the B function in the one loop approximation: B(g)=
-2°(33 - 2n,)/(247%) + O(g°), where n, is the number of quark flavors. The indices of the irreps are listed
in the tables.

Tensor products of irreps of a simple Lie algebra are reducible into a direct sum of irreps. Thus, the
product R, X R, of the irreps R; and R; can be written as

R XRy= 2 R, (5.16)

where a given irrep may occur several times in the sum.

The tensor product R, X R, can (in principle) be computed as follows: find each weight vector a,, of
R; and bs of R,, where a=1,...,N(R;) and B8=1,...,N(R;) (N is the dimension); form the
NR;)NR,) weights a,, + bg; find the highest weight, whlch is the weight a, + bg with the largest value
R - (a. + bg) (R in table 10); calculate the weight diagram of the irrep with that highest weight and
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remove those weights from the set {a, + bg}; find the highest weight in the remaining set; subtract the
weight system of that irrep; ... and so forth. This method is cumbersome, even on a computer, but it
does illustrate the important point that the reduction of a tensor product can be done in weight space.

The methods used for obtaining the products in the tables are reasonably systematic and simple, but
not very illuminating. Nevertheless, it is almost inevitable that the tables will fall just short of your
needs, so a description of the methods is useful:

(1) Highest weights: The highest weight in (a;...a)X (b, ... b)is (@, + by, ..., ai + b;). There is also
a rule for computing the irrep of second highest weight: subtract from the highest weight in the product
the minimal sum of simple roots that connect together a nonzero component a; in the highest weight of
R; with a nonzero component b; in the highest weight of R,. As examples: if a, and b, are nonzero,
subtract the first simple root from the highest weight; in Ec (1 0 0 0 0 0)x (0 0 0 0 0 1) has highest
weight (1 0 0 0 0 1) and the second highest weight is obtained by subtracting as+ a3+ a,+ a; from
(1 000 0 1), which gives (0 0 0 1 0 0). There are many cases where this rule gives several irreps in a
product; try, for example, 8 X 8 in SUs.

(2) The dimension and index sum rules:

NR;xXR;)=N(R;):NRy)= 2 NR:), (5.17)

where N(R,) is the dimensionality of irrep R;;

IR, XRy)= IR) NR)+ NR)) IR;) = X I(Ry), (5.18)

where /(R;) is the index (5.11) of R;. The solution to these simultaneous Diophantine equations is very
restrictive. There also exists a fourth order index sum rule [59].

(3) Crossing: If R, X R, contains R,, then R, X R; contains R,, etc., where R is the conjugate to R,
which is inequivalent to R only if R is not self conjugate.

(4) Rx R always contains the singlet and adjoint representations. If R is self conjugate, then there
are two cases, which depend on whether (R X R) contains the singlet in the symmetric or antisymmetric
part of the product [56]. If (R X R), contains 1, then the adjoint representation is contained in the
antisymmetric part, and it is possible to find a basis where the representation matrices are real. The
defining representation of the orthogonal groups are real, as are the adjoint representations of all
simple groups. If (R X R), contains 1, then the adjoint is contained in the symmetric part, and it is never
possible to find a basis where the matrices are real, so the irrep is pseudoreal. The 2-dimensional irrep
of SU, is the most famous example of a pseudoreal irrep. The defining representations of the symplectic
groups are all pseudoreal, as is the 56 of E,. Again, see table 12.

(5) Congruency constraints: If R, and R, are both real and not singlets, the irreps in R, X R, are real
or occur in R+ R conjugate pairs. If R, and R, are pseudoreal, then the irreps in R, X R, are real or
occur in R+ R conjugate pairs. If nontrivial R, is real and R, is pseudoreal, then the irreps in R, X R,
are pseudoreal or occur in conjugate pairs. If nontrivial R, is self conjugate and R, is complex, then all
the irreps in R; X R, are complex. These rules can be generalized to triality for SU,, quadrality for SU,,
etc., and to triality for Es. All irreps in R, X R, have the same triality (or quadrality, etc.), which is equal
to the sum of that for R, and R,. With the concept of congruency class introduced in section 3, these
constraints can be made tighter in some cases. If R, is in congruency class ¢; and R; is in ¢, then all
irreps in R, X R, are in congruency class ¢, + c,. There is only one congruency class for G,, F, and Eg, so
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congruency gives no constraint. Congruency coincides with n-ality for SU,, and is defined by c¢(R)=
2 kai (mod n), and triality for E¢ with ¢ = a,— a,+ as— as (mod 3). It corresponds to “spinor” or
“vector” in SO,,+1 50 ¢ = a, (mod 2); and to real or pseudoreal in Sp,, [c = a1+ a3+ as+ - - - (mod 2)]
and in E; [¢ = a4+ as+ a; (mod 2)]. The only case not discussed before is for SO,,, where the con-
gruency class is labeled by a two component vector, (a,_ + a, (mod 2), 2a,+2as+ - -+ (n-2)a,_ +
na, (mod 4)). This always reduces to four classes for SO,, [51].

Very rarely are these rules insufficient for giving a unique solution to the products (5.16) needed for
unified model building. When they are inadequate, the confusion is often resolved by looking at simple
pieces of the product, which is a form of intelligent guessing. Young tableaux can be used to solve (5.16)
completely for some groups, but this method is not described here.

Let us illustrate these procedures with an almost nontrivial SUs example. Suppose the tensor product
40 X 10 is needed, where 40=(0 0 1 1) and 10= (0 1 0 0) from table 28. The quintality of 40 X 10 is
-1, and the highest weight is (0 1 1 1). The second highest weight is the highest weight minus a, minus
as, or 0111)—(-12-10)-(0 —12 -1)=(1 0 0 2). Moreover, 10x5 [(0 1 0 0)x(0 0 0 1)]
has a §=(1 0 0 0), so (1 0 1 0) is likely to be in the product, and 10X 10 has a (1 0 0 1) and a
(0 0 0 0), so the irreps (1 0 0 2), which is the second highest weight, and (0 0 0 1) are expected to be
there. These subproducts can be found in table 29. The dimensionality of (0 1 1 1)+(1 0 1 0)+
(1002)+(© 00 1)is 280+45+ 70+ 5= 400, which is necessary for the correct answer. The result
can then be double checked with the index sum rule: 40X 10 has index 40X3+10x22=
340 = 266 + 24+ 49+ 1, where the index for each irrep is given in table 28. Thus, we conclude,

40% 10 =5+45+ 70+ 280,

where we have defined all irreps with quintality 1 or 2 without bars and their conjugates with bars. A
further confirmation comes from the crossing relation: since 40 X 10 contains a 5, then 5x 10 must
contain a 40 = (1 1 0 0), which it does. This line of reasoning is easily implemented for groups used for

unified models; just look at all those tables.

6. Subgroups

A Yang-Mills theory with local symmetry G has a vector boson coupled to each current implied by
G. Since G has N(adj) generators, there are N(adj) vector bosons in the theory. A fundamental
problem of classifying and describing unified models is finding all the ways that the known interactions
can be embedded in G. As reviewed in section 3, this requires finding all possible subgroups of G of the
form,

GO G*x SUS (6.1)

with G® generated by the color singlet generators of G, including SUZ X UY. The solution to the
embedding problem is the spectrum of quantum numbers of the vector bosons and other particles of a
Yang-Mills theory. This problem is solved explicitly in ref. [6] (in section II and the Appendix) with the
proviso that the color content of at least one irrep, the fundamental one, of G be no greater than 1°, 3
and 3. (See table 3 and the discussion following eq. (3.5) for a summary.)

In this section the problem is studied in a slightly different fashion; of course, the answer is
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unchanged. Dynkin has given a method (or a set of methods) for classifying the maximal subalgebras of
simple algebras. One reason for taking this approach is that it provides a detailed picture of the
geometrical significance of the embedding in weight space.

Before starting the rather technical discussion, it may be helpful to look at the answer to the
problem: the maximal subalgebras of the classical simple algebras of rank 8 or less are listed in table 14,
and the maximal subalgebras of the exceptional algebras are listed in table 15.

A proper subalgebra G’ of G is denoted GD G’; G’ is a maximal subalgebra of G if there is no
algebra G* such that GO G*D G'. The problem considered here is that of finding all maximal
subalgebras of G, since the embedding of any other algebra in G can then be found in a stepwise
fashion, GO G'D G".... Tables 14 and 15 can be used to identify all the subgroup chains of a group of
rank 8 or less that can possibly reduce to U™ x SUS. The nontrivial example explored in section 7 is a
study of all subgroup chains of E, that reduce to U™ x SUS with O™ having —}+ integer eigenvalues
on J° states and integer eigenvalues for lepton states.

Maximal subalgebras of a simple algebra fall into two categories called (of course) regular (R) and
special (S). Regular subalgebras can be obtained by looking directly at the root diagram (there exists a
very simple algorithm for finding them); special subalgebras are not so obvious, and are discovered by
comparing irreps of G with those of the candidate subgroups. They can be derived using methods
identical to those in ref. [6].

Before getting involved in the intricacies of the general case, a review of the subgroups of SU; may
serve as a useful orientation. By explicit examination of the SU; commutation relations (4.6), we can
immediately find two difterent subalgebras. (“Different” means not equivalent; “not equivalent” means
that there is no automorphism of G that relates the two embeddings.) The SU, x U, subalgebra with
generators F;, F,, F; and Fg, which is used in the Eightfold Way classification of hadrons, has the
feature that its Cartan subalgebra, consisting of F; and Fg, can be identified with the Cartan subalgebra
of SUs; similarly the roots of SU, X U, are a subset of the SU; roots. These features of the embedding
of the root system of SU,X U, in SUj; are characteristic of a regular subalgebra. Note that here the
subalgebra SU, x U, C SU, is nonsemisimple: the U, factor is generated by an invariant Abelian ideal
of the algebra of SU, X U,. U, factors are important in gauge theories, so nonsemisimple subalgebras of
simple algebras must not be ignored.

The other maximal subalgebra, which is used in nuclear physics applications of SUj, is of the special
type: it is an SU, that is generated by 2F,, 2Fs and 2F, [or equivalently 2F;, 2F,, 2F;, etc.; see the
structure constants (4.5b)]. The 3 of SU; is projected onto the 3 of SU.. (SU., irreps are labeled here by
their dimension instead of their j value. Since the branching rules are to single-valued irreps only, the
subgroup is actually SOs, and not the covering group SU,; recall section 2, where our use of group
names for algebras was discussed.)

It is often useful to restate the embedding in terms of a projection matrix that takes the roots and weights
of G onto the roots and weights of G'. This coordinatization of the weight space of G requires some
conventions, since Weyl-reflected root diagrams should give an equivalent embedding, but with a
projection matrix with different entries. Let us study SU; D SU, X U,. Since both algebras have rank two,
we can project any root or weight onto a weight of SU, x U, by a square matrix acting as

P(SU, 2 SU, X Ul)(Z;) - (g:;) 63)

where (a;a,) is an SU; weight, (b) is 2I;, the weight of SU,, and (u) is the eigenvalue of the U,
generator. In the Eightfold Way P is given by
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P(SU;D SU,x U, = (i g) (6.4)

with the U, generator normalized to three times the hypercharge; (6.4) can be easily verified from table
4. It is a general feature that P is always an integer matrix. This feature is automatic if G’ is semisimple;
if there is a U, factor, its generator can be normalized to maintain this feature. If P(SU; D SU, x U,) is
applied to the weight system of the 3, [(1 0), (-1 1), (0 —1)}, the resulting weights are (1)(1), (-1)(1) and
(0)(-2), which can be identified as an SU, doublet with Y =3 and a singlet with Y = —3; the result is
summarized as a branching rule,

3=2(1)+ 1(=2). (6.5)

This exercise should be carried out for other irreps of SUs.
In the other embedding, SU; D SO;, the subgroup has rank one, so the projection matrix is a
one-by-two matrix:

P(SU;DSO;)= (2 2). (6.6)

The 8 of SUs is projected to the weights (4), (2), (0), (=2), (-4), (2) (0), (=2), which correspondtoa 3+ 5
of SU,; the branching rule for the 3 of SU, is 3=3.

There is at least one projection that demonstrates explicitly an embedding; the existence of the
projection matrix is trivial mathematically, since some of the roots of G, or linear combinations of them,
must be identified with the roots of G'. However, for physical applications the projection matrices can
be quite useful, for example, for finding the flavor and color quantum numbers of a field operator
bearing a weight A of the unifying group. The result of applying the projection P from the unifying
group to the flavor (or color) subgroup on A is its weight under flavor (or color); the quantum numbers
of the operator can then be identified as described below (4.12). In other words, the projection matrices
are needed (at least implicitly) whenever an explicitly labeled basis for the field operators is helpful. It is
worthwhile to take a break from the formal development, to assert that SU, X U, X SU; is indeed a
subgroup of SUs, and, as an example, to apply these techniques to finding the quantum numbers in the
5-10.

One convention for deriving the projection matrix is to require that the highest weight of an irrep of
SUs is projected onto the highest weight of the SU, x SUj; representation. For example, (1 0 0 0) is the
highest weight of the 5, which branches to (2, 1) + (1, 3) of SU, X SU; [recall (3.1)], and the color 3 state
of highest weight can be defined to be the highest weight of this representation, so P(1 0 0 0)=
(0)(1 0). Similarly the highest weight of the 5, (0 0 0 1), projects to (0}0 1). The 10 with highest
weight (0 1 0 0) branches to (1, 1)+ (2, 3)+ (1, 3), so the highest weight of the subgroup is (1)(1 0), and
the highest weight of the 10, (0 0 1 0), must branch to (1)(0 1). With these conventions the projection
matrix is

0110
P(SUsDSU,xSUs)={ 1 1 0 0 ) 6.7)
0011

where the U, factor will be analyzed separately, so (6.7) is a 3-by-4 matrix.
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A family of left-handed fermions is assigned to a 5+10 of SUs; (6.7) can be used to compute the
SU, X SU; weights of those 15 states. In the 5, we find

P(0 0 0 1)=(0)(© 1) is a charge ; antiquark singlet.

PO 0 1 —1)=(1)(0 0) is a charge 0 member of a lepton doublet.

PO 1 -1 0)=(0X1 -1) is a charge ; antiquark singlet. (6.8)
P(1 -1 0 0)=(-1)(0 0) is a charge —1 member of a lepton doublet.

P(-1 0 0 0)= (0)(—1 0) is a charge } antiquark singlet.

These 15 equations also determine (6.7).

The weight diagram of the § is quickly derived following the rules of section 5, and keeping the
Dynkin diagram in mind. The diagonal quantum numbers I3, Y™ and Q°™ are described by axes, with their
values for any weight given by scalar products; Y™ generates the U, factor in the subgroup. We can
conclude immediately from the above assignments that

Iy=30110] orL=3-111-1)

Y=3i-21-12] or YY=3(-11-11) 6.9

Om=Ty+Y*2=4-1211 orQ™=4i-44-11),
where the dual basis (useful for taking scalar products) and the Dynkin basis coordinatizations are
given. The simple color roots are (1 1 —1 0) and (0 ~1 1 1), as is found easily by applying the
projection (6.7) to the SUs roots in table 9.

We may now calculate the weights and quantum numbers of the 10. Of course, the content of any

other irrep of SUs can be analyzed in a similar fashion.

PO 10 0)= (1)1 0)is the u quark with Q°" =3 and I% =}

P(1 -110)=(0)0 1)is & with Q=~-%and I¥=0

P(-1010)=(1)-11)isu with Q=3and I} =3

P(1 0 -1 1)=(-1)(1 0)is d with Q=3 and I} =3

P(-11-11)=(0)0 0)ise* with Q=1and I} =

PA 00 -1)=0)1 -1)isd withQ=-%and I¥=0

P110-1)=(1)0 -1)isu withQ=3and I¥ =1}

PO -1 0 1)=(-1)~1 1)isd with Q= -5 and I = —3

PO -1 1 -1)=(0)-1 0)isd withQ=-3and I}=0

1

PO 0 -1 0)=(=1)0 -1)is d with Q= -3 and I} = —3.

(6.10)

Note the ease with which the quantum number structure is analyzed from scratch in this notation. Of
course, it is not very difficult to use the tensor notation to work out these results either, and it is
worthwhile comparing methods. For a group as complicated as Eq, however, the Dynkin analysis does
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not increase in difficulty. The projections and axes for Ee and its subgroups are worked out in
section 7.

The solution to the problem of classifying all maximal subalgebras of a simple algebra is somewhat
messy, although the regular subalgebras are easily found. We only summarize the solution; details can
be found in Dynkin [9).

We first find all the maximal regular subalgebras, which are now defined: let G’ be a subalgebra of G
and write G’ in any Cartan-Weyl basis with its Cartan subalgebra being the set {Hi} and its ladder
operators being the set {E.}. If there exists a basis of G such that {H;} D {H}} and {E.} D {E.}, then G' is
a regular subalgebra of G.

Dynkin has derived a clever way to find all maximal regular subalgebras. The regular subalgebras fall
into two categories: nonsemisimple and semisimple. Each maximal nonsemisimple subgroup is a U,
factor times a semisimple factor obtained by removing one dot from the Dynkin diagram (table 5) for
G. Clearly, there are at most ! = rank(G) possibilities; usually there are fewer independent cases.

The maximal regular semisimple subalgebras are constructed in a similar fashion, by removing a dot
from the extended Dynkin diagram. The extended diagram is constructed by making a simple root
system that satisfies all the requirements of the simple root systems of the Dynkin diagram, except for
linear independence. It is possible to add only one root to the set of simple roots that satisfies the
requirement that the difference of two roots in the extended set is not a root: it is the negative of the
root of highest weight [55]. The extended diagrams are listed in table 16, with the new root marked by
an “x”. The extended diagram with a dot removed is guaranteed to be the diagram of a semisimple Lie
algebra.

There are a few cases where the method is trivial or breaks down; for example, removing a dot from
the SU, extended diagram gives back SU,, so SU, has no regular maximal semisimple subalgebras.
(Note that the rank of G is the same as the rank of its regular maximal subalgebras.) There are five
cases for the exceptional algebras where the subalgebra derived by removing a dot from the extended
diagram is not maximal [60].

F.: 3 removed is contained in the subgroup with 4 removed (SOo D SU, X SU,)

E;: 3 removed is a subgroup of the subgroup with 1 or S removed (SU, X SO;; D SU, x SU, x SU,)

Es: 2 removed is a subgroup of that with 7 removed; 3 removed is a subgroup of that with 6 removed;
and 5 removed is a subgroup of that with 1 removed. (SU, X E; D SU, X SUj; SU3 X E¢ D SU; X
SU, x SUs; and SO;6 D SU, X SO, respectively.)

The extended Dynkin diagrams have other interesting applications, so these exceptions do not
detract too much from the beauty of this procedure.

Table 14 is a list of the maximal subalgebras of the classical simple algebras of rank 8 or less; the sets
marked (R) are regular maximal subalgebras, derived from the analysis of the root diagram just
discussed. We should make a number of comments on table 14.

For small rank, some Dynkin diagrams from different series become equivalent. For example,

Al ~ B1 ~ CI(SU2 ~ SO3 ~ sz)
all have the same root diagram, a single dot;

C,~ B(Sps~ SOs)
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(Sps rather than SOs is used in discussing subgroups); and
A3 ~ D3(SU4 ~ 806)

(we use SU, instead of SOs in labeling subgroups). Moreover D, ~ A, X A, is semisimple. The symbol
“~" means “isomorphic to”.

Often a maximal nonsemisimple subgroup is strictly a subgroup of a semisimple one; nonmaximal
subgroups are not listed. It also sometimes happens that a maximal subgroup contains as a subgroup
just the semisimple part of a nonsemisimple subgroup, but not the U, part. It is best to go against the
custom of dropping these nonsemisimple subgroups from the list of maximal subgroups. They are
maximal, and in model building it is possible to blunder rather seriously if the list of maximal subgroups
is left incomplete in this way. SU, has a subgroup of this type; it contains SU, X SU,x U, and Sp, as
maximal subgroups, where Sp, itself contains an SU, X SU,, which is embedded in SU, in the same way
that the SU, x SU, portion of the nonsemisimple subgroup is. Table 14 includes SU, X SU,x U, as a
regular maximal subgroup of SU,. Perhaps a more subtle example is the list of regular subgroups of Sp,.
The branching rule of the 4 of Sp, to irreps of the regular maximal subgroup SU, X SU, is 4= (2, 1)+ (1,
2). This subgroup contains a subgroup SU,x U; with 4=2(0)+ 1(1)+ 1(-1), which is a maximal
nonsemisimple subgroup obtained by removing one of the dots from the Sp, Dynkin diagram. However,
there is another SU, x U, obtained by removing the other dot with 4= 2(1)+2(—1). The semisimple
part SU, is embedded in Sp, as the sum of the SU, generators of the SU,x SU, subgroup. The
additional U is not contained in the SU, X SU, subgroup, so this SU, x U, is maximal, while the other
one is not.

We now turn to the problem of enumerating the special subalgebras. Since the Cartan subalgebra of
G’ is constructed from the ladder operators of GO G/, it is clear that an analysis of the root diagram is
not likely to be very convenient. The situation can be greatly simplified by looking at the representations
and analyzing the possible branching rules,

R=3R, (6.11)

where R is an irrep of G and R; are irreps of G’ C G. This is just the procedure discussed in section 3
and in ref. [6).

The analysis of maximal special subalgebras of a classical algebra has the significant feature that
makes the discussion simple, that the branching rule for at least one of the simple representations of G
into irreps of G’ C G has only one term. (Do not forget that the vector and spinors of SO,, are both
simple.) In other words, there is a branching rule of the form r=r'. (This is not always so for the
exceptional groups.) Thus we look for a representation of G’ with these dimensions, and then check that
we recover the generators of G. For example, consider G =SO,. The groups with less than 21
generators, with rank three or less, and with a 7-dimensional irrep are SU, and G,. The generators of
SO, are given irreducibly as (7 X 7),. In SU,, (7 X 7), = 3+ 7+ 11, which contains the SU, adjoint, so SU,
is a subgroup. However it is not maximal: in G,, (7X7),=7+ 14, so G, contains SU, as a maximal
subgroup with 7= 7 and 14 = 3+ 11. Thus G; is the only maximal special subgroup of SO,.

This approach can be used to recover the results listed in table 14. The diligent reader who derives
table 14 will note several patterns emerge; there are some corresponding theorems that simplify the
procedure when going beyond rank 8 (see ref. [9]), but there are a few exceptions and caveats. The
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discussion given above is complete enough for unified model building as now practiced, but is not
exhaustive.

Finally, the special subgroups for the exceptional groups are listed in table 15. In this case, the
branching rules for the simple irreps are more complicated than in the classical case. The derivation of
those results is a major topic of ref. [9]; no further discussion is given here, since a fairly potent way to
proceed is to guess systematically.

In applications to unified model building, the list of subgroups is needed, but it is most conveniently
expressed in terms of branching rules. To derive the branching rules it remains simply to project the
weights of r of G onto the weight space of G’ by P(GD G'), and then pick out (by highest weight
method) the irreps of G'. Powerful computer programs have been written that implement this procedure
[10, 57]. Another approach, which is very convenient for hand calculation, relies on a knowledge of
tensor products of R, of G and r; of G'. If Ri=Z2r;;, R,=2ry; and R, xR, =3, R,, then I, R, =
2, I X 125 A constructive approach starting with simple irreps for R; is usually quite fast; many of the
branching rules in the tables were derived this way. A useful check is the index sum rule: for our
normalization of the index (5.11), the index of R in (6.11) is the sum of the indices of the R!. Also see
[57]. Except for working out many examples (see sections 7 and 8) this completes the discussion of the
embedding of color and flavor in simple groups.

Let us analyze the possibility of defining a charge-conjugation operator [13, 61] that carries each
particle into its antiparticle within f; and representations of other kinds of particles. The charge
conjugation operator C must anticommute with electric charge and with the first, third, fourth, sixth
and eighth generators of SUS, while commuting with the second, fifth and seventh generators of SU$ in
the Gell-Mann basis [54], which generate an SO, subgroup of SUS.

For each simple group G of interest, a candidate for C may be either an element of the group (inner
automorphism) or not (outer automorphism). It anticommutes with a set A of Hermitian generators of
G [C(A)=—A] and commutes with the remaining set S [C(S)=S], which generate a symmetric
subgroup Gs C G. The commutation rules evidently must exhibit the behavior that defines a symmetric
subgroup:

[S,S1CS, [S,A]JCA and [A,A]CS, 6.12)

so that C leaves the commutation relations unchanged.

When the candidate for C is inner, it carnes every irrep of the group into itself. Conversely, if C
carries every irrep into itself, then the phase changes under charge conjugation can be arranged so that
C is inner. When C is outer, there are two possibilities:

(1) For G = SU,,, SO,,+> and Eg, each complex irrep is carried into its complex conjugate.

(2) For G = SO,,, which has only real and pseudoreal representations, there are candidate C’s that
carry representations into reflected ones that are in many cases inequivalent; for example, SO, has two
inequivalent 32-dimensional spinor irreps, 32 and 32', which could be carried into each other, while the
12-dimensional vector irrep could be taken into itself.

The mathematics of the various candidates for C is well-known [12] for all simple groups and we list
the possibilities in table 17, giving the simple group G, the symmetric subgroup Gg left invariant by the
candidate C, the number “rank(A)” of the generators of the Cartan subalgebra of G that anticommute
with C, and the result of the action of C on an irrep R of G, whether it reflects R into itself, into R, or
into R'. We have included, for completeness, cases in which G is too small to contain color and flavor
and cases in which rank(A) is less than three.
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We have assumed that there is a C that carries f; into itself. Let us break up f, into irreps of the
group G* formed by G and C. When C is inner, G* = G and each irrep of G is an irrep of G*. If C' is
outer, but carries R into R, then any self conjugate irrep of G is an irrep of G* and the other irreps of
G* are of the form R+ R. If C is outer, but carries R into R/, then any self-reflected irrep of G is an
irrep of G* and the other irreps of G* are of the form R+R'.

In those cases where C carries R into R and R is complex, then the irrep of G*, also an irrep of G, is
complex. In all other cases, the irrep of G* is self conjugate. If we assign the left-handed fermions f; to
a self conjugate irrep of G* or a direct sum of such irreps, then the theory is ‘“‘vectorlike; otherwise, it
is “flavor chiral”. The simplest flavor-chiral case, is, of course, the assignment of f; to a single complex
irrep of G, with C carrying every irrep into itself.

It is useful to turn at this point to another automorphism of G, namely the unitary operator CP that
exchanges f, and fz. In a Yang-Mills theory based on G, there is no freedom in the choice of CP. The
kinetic energy operator has a part that creates f_ and fr together and another part that destroys them
together; since the kinetic energy is a singlet under G, f;. and fr must have opposite values of all the
operators in the Cartan subalgebra of G. Thus CP, for each G, is the unique operator in table 17 that
changes the sign of the whole Cartan subalgebra, with rank(A) = rank(G). For each case, that operator
carries R into R when there are complex representations, and R into R when there are not. Recall the
discussion below (2.2).

The components of f; may be listed in terms of Majorana spinors, or else pairs of Majorana spinors
may be classed as Dirac spinors. A Dirac spinor can be made out of a pair of Majorana spinors with
opposite behavior under C. In many cases, however, it turns out that there are some unpaired Majorana
fermions left over, a number |n. — n_|, where n, and n_ are the number of + and - (or +i and -i)
eigenvalues of the group theoretical part of C applied to a given representation of G. As a familiar
example of the matrix part of C, recall the Dirac theory of the electron, where the matrix part is
proportional to o, when acting on ¢ or yr. Leftover Majorana spinors that cannot be paired to make.
Dirac spinors can occur only in the case of electrical neutrality, of course. Below, when specific
examples are considered, |n. — n_| is computed for a number of representations of various simple
groups G and choices of C. :

Now, just as the fermion kinetic energy operator involves f; (operator) fz, so the fermion effective
ultraviolet mass operator involves the symmetrized parts of (f.)? and (fz)°. If the effective mass operator
has the most general possible behavior under C and G, then studying the transformation of f; under C
is not very rewarding. For example, the electrically neutral color singlets can just be treated as a set of
Majorana fermions, with an arbitrary mass matrix. However, it may be that the C-conserving and
C-violating parts of the mass operator have special group theoretical properties. In that case, there may
be important restrictions on fermion masses, particularly for neutral leptons, but also for other
fermions.

Let us now proceed to study some examples. We look at the assignment of f; to an irreducible
complex representation of G. If G is small, we may be picking out only one “family” of fermions here;
if G is sufficiently large, we can accommodate all the known and suspected families, along with other
fermions. The simplest interesting example of a flavor-chiral assignment consists of putting a single family
of left-handed fermions into the 16 of SO, while fx goes, of course, into the 16. Since we are assuming the
existence of a C operator (which takes f; into itself), we can see from table 17 that there is only one
candidate that works. The one that leaves invariant the symmetric subgroup SO, X SO¢ of SOyo; we note
that SO, X SOg has the same algebra as SU, x SU, X SU.,. The other candidates either take 16 into 16 or else
flip the signs of too few generators of the Cartan subalgebra. Thus CP, which does take 16 into 16, leaves .
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invariant SOs X SOs; there are candidates that leave invariant SO; X SO, and SO, respectively, but they
also take 16 into 16; there are two more candidates that take 16 into 16, the one that leaves SUsx U,
invariant and the one that leaves SO, X SOy invariant, but they both flip the signs of only two commuting
generators of G, not enough to cover the charge conjugation of color and electromagnetism.

It is important to note that the C-invariant symmetric subgroup SO, X SO is embedded in SO,
differently from the SO, X SO¢ subgroup that classifies flavor and color. Using the SU, x SU,x SU,
notation, we would normally put 16 = (2, 1, 4) + (1, 2, 4), where 4 = 3°+ 1° and 4 = 3°+ 1°; the first SU, is
chosen to be SU3. We thus have in (2, 1, 4) a left-handed electron and neutrino and u and d quarks,
while in (1, 2, 4) we have the corresponding left-handed antiparticles, including (7.).. The symmetric
subgroup SO, X SO (also treated as SU, X SU, x SU,) also breaks 16 into (2, 1, 4) + (1, 2, 4), but with a
totally different basis. The common generators of the two different SO, X SO, subgroups form the group
SU, x SU, and they consist of 2F5>, 2F ", 2F$°, I+ I5, IY— I} and I5 - IS, where I" generates
SUY and I® generates the other SU,. We see that, in the physical SU,x SU,x SU, notation, C
interchanges the first two SU,’s, as well as conjugating them in the usual way, and also complex
conjugates the representations of SU,. The C-invariant SU, x SU, X SU, is, by definition, left unaltered by
C.

We now show how to calculate |n. — n_|. Each irrep of the C-invariant subgroup SU, x SU, x SU,
carries a + or'a —. For the 16 we have (2, 1, 4)+ (1, 2, 4), giving eight +’s and eight —’s, so that
|n, — n_| = 0. The neutral fermions in the 16 are v, and (#). only, and the condition |n, — n_| = 0 tells us
only that these can be paired to form a Dirac spinor; note that |n, — n_| = 2 for the 10, so the result for
the 16 is not completely trivial. The mass matrix in Nature, however, if the 16 representation of SO, is
to be relevant, must supply a huge Majorana mass to (#), so that the effective mass of »,_ comes out to
be m&/M pajorana (), Where mp is the Dirac mass connecting v and (#).. This is discussed further in
section 9. '

In terms of SO0, and remembering that we are treating just one family, the mass matrix must fit into
the symmetric part of 16X 16, which gives 10+ 126, where under SU,x SU, X SU, we have 10=
(2,2,1)+(1,1,6) and 126 = (3,1, 10)+ (1, 3, 10) + (2, 2, 15) + (1, 1, 6). We note that the 1, 10, 10 and 15
of SU, each contain one color singlet component, and 6 contains none, so that in terms of SU, x SU,
the mass matrix belonging to 10 acts like (2, 2) while that belonging to 126 acts like (3, 1), (1, 3) and
(2, 2). We do not want a large term that violates I by |AI*| = 1, so we are left with possible fermion mass
terms with (2, 2) from 10 and/or 126 and (1, 3) from 126. The electrically neutral component of the (1, 3)
from 126 is just the term that gives a Majorana mass to (#).; if the (3, 1) term is set to zero, the |[AT*| =0
mass violates C maximally. The electrically neutral components of the (2, 2) from 10 and 126 are all
C-conserving and merely give Dirac masses to e, », u.and d. Thus an attempt to fit a single family of
fermions to the 16 of SO, leads to the result that all the C-violation in the mass matrix must lie in the
(1, 3, 10) part of the 126 representation of SO, and that this piece of the mass matrix just gives a huge
Majorana mass to (#),. This term is also the one that breaks SO, down to SUs,, giving 16=10+5+1,
where (#), is precisely the singlet under SU;.

For a less trivial example we study briefly the assignment of f;. to the complex 27 of E, [8], still
keeping just one family. In the usual color-flavor decomposition to SU; x SU; X SUS, where SU3 is in
the first SU,, the 27 contains (3, 3,19+(3,1,3)+ (1, 3, 5°). We see from table 17 that the only candidate
for C leaves the symmetric subgroup SU, X SU, invariant, and that SU, X SU¢ contains two generators
from the Cartan subalgebra of Es. The 27 has (2, 6) + (1, 15) of SU, X SUs, so the neutral leptons in the
27 consist of a pair that may be joined together to form a Dirac spinor, and three unmatched
Majorana spinors, which are eigenstates of C. Under SO, the 27 contains 16+ 10 + 1; as is obvious
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from the previous example, the three neutral leptons in 10 + 1 are the unmatched Majorana spinors, and
the two neutral leptons in the 16 are connected by C.

The mass matrix, contained in the symmetric part of 27 X 27, has parts transforming as 27 and 351’;
both Eg irreps have both C-violating and C-conserving terms. The charge 3 quark has only a
C-conserving mass. The remaining mass matrices (charge —3 quarks, charged and neutral leptons) have
both C-violating and C-conserving |AI"|=0 contributions in the Es model. Of course, physically
realistic conjectures about the C behavior of the mass matrix depend on the choice of G and f,.
Nevertheless, it may be useful to study this behavior in models; the 27 of Es is investigated further in
section 9, where it is shown that if the I = 0 mass violates C maximally (that is, the I = 0 mass is C
odd), then it leaves a 5+ 10 family of SUs out of the 27 of Eg massless. If the I™ = 0 mass is C even, a

1+ 5+ 10 is left massless.

7. E¢ and subgroups

The first topic of this section is a description of the tables of irreps, tensor products, and branching
rules of E¢ and its subgroups, SUs, SU,, SUs, SU,, SO5, SOg, SOy, SOy and F, (tables 18-49). After the
choice of subgroups is explained and the tables are described, a consistent set of projection matrices
[recall (6.4) and (6.7)] through the different subgroup chains is derived; the matrices follow the
convention that the Q™ axis and the QCD roots in Es are fixed and do not depend on the subgroup
chain. This is possible because there is only one embedding of color and electric charge in Es, as
discussed near the end of section 3. The final topic is an outline of a method for calculating
vector-coupling coefficients. The method is particularly effective for analyzing products of basic irreps,
which are typically all that are required in unified model building today. Its simplicity is due to the use
of simple roots to relate states at different levels. The labeling problem must be more directly addressed
for products of composites irreps [62].

The choice of E¢ as a starting point is based on a conjecture that an E¢ (or a subgroup of Eg)
Yang-Mills theory might someday be part of a realistic theory. There is little reason at present (aside
from the more-or-less successful phenomenology) to feel such a commitment very strongly, and other
groups (SOsn+s, 1 =2, 3, 4, SUs, E; and Eg) are described briefly in section 8. At best, this kind of
survey will aid in the search for more satisfactory theories. [See section 3.]

With the exception of SU; itself, only the simple subgroups of E¢ large enough to contain U™ x SUS,
at least in one subgroup chain, are analyzed. In table 18, the maximal subgroups of E¢ are divided into
“satisfactory” and “unsatisfactory”. (Compare table 18 with tables 14 and 15.) Each satisfactory
subgroup is then listed in the left-hand column, and its maximal subgroups are classified in a similar
fashion; all the maximal subgroup chains that are physically acceptable for the symmetry breaking of Es
(or one of its subgroups) can then be listed.

The subgroups that do not contain U™ X SUS3 are called unsatisfactory; there are three ways for a
subgroup to be unsatisfactory:

(1) If the maximal subgroup is rank two or less, it cannot contain U™ x SUS. For example, E,
contains G; and SUj; as maximal subgroups. If these subgroups contain SUS, then there can be no U,
left over for electromagnetism.

(2) It may not be possible to guarantee the usual charge assignments with fractionally charged quarks
and integrally charged leptons. Consider, for example, the maximal subgroup SU; X G, of E¢. The 27 of
E, branches to (3,7) + (6, 1) of SU; X G,. If SU; were color with U™ in G,, then the (6°, 1) states would
be neutral. Since 6° has the same triality as 3°, it would be impossible to maintain the usual quark
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charges. If SU3 were in G,, there would again be quarks and leptons with the same electric charge, since
the 7 of G, branches into 1°+ 3°+3° and a U™ from the SUj factor cannot distinguish these. Thus,
SU; X G, is an unsatisfactory maximal subgroup for E¢ to break down to.

(3) Sps is another unsatisfactory subgroup of E¢, even though it is possible to arrange for the correct
spectrum of electric charge eigenvalues. The problem is the difficulty of obtaining a satisfactory
phenomenology: even if f; were a 351 plus any number of 27’s, there would be room for only two
charged leptons. This is seen as follows: The 27 of E¢ branches to the 27 of Sps. The only maximal
subgroups of Sps that could contain U™ x SUS are SU,X U, and SU, X Sps. In both cases the color
content of the 27 is 1°+ 3 - 3+ 3 - 3+ 8§, where the 1° is neutral. The 351 then has 9 color singlet states;
2 have charge +1 and two have charge —1. In a flavor chiral assignment, this could correspond to the e
and u, but there would be no room for the 7. Thus, we list the Sps subgroup as unsatisfactory, although
in fact it is merely awkward, and indicate this difficulty in table 18 by putting it in square brackets. (The
color content of the 27 of Es for the satisfactory subgroups is 9 - 1°+ 3 - 3°+ 3 - 3°.) With these comments
in mind, the rest of table 18 is easily derived.

The explicit coordinatization of the E¢ weight space is summarized in tables 19, 20 and 21, which
correspond to (6.8)~(6.10) for SUs. Table 19 shows a choice of the color roots and the flavor axes, both
in the Dynkin and dual bases. It is this choice that sets most of the conventions for the projection
matrices for the subgroups listed in table 18. Table 20 lists the nonzero roots of E4 and their flavor and
color content. Table 21 provides similar information for the 27 of Eg; both tables will be discussed
further.

We now describe the contents and conventions of the tables; table 22 shows the labeling of the
Dynkin diagrams used in the next 31 tables in the order the algebras are analyzed. There are rank of the
group independent Casimir invariants; (5.9) is the second order invariant. The orders of a complete set
with the lowest possible orders, as derived by Racah [58], are also listed in table 22.

Table 23. SU; Irreps of Dimension Less Than 65. The convention that triality one irreps [c = a, + 2a;
(mod 3), “c” for congruence class] are unbarred and the conjugate with Dynkin designation (a, a,) with
triality two is barred is followed with one exception: the symmetric tensor in 3x 3, [(1 0)x (1 0)],=
(2 0) with triality two, is called 6, not 6; that convention has been followed for too many years to switch
now. In other tables we advocate conventions based on congruence classes, so a few traditional, but not
so universal conventions in the larger groups have been switched. The index is computed from (5.15).
The last two columns list the number of SU, (or SU, x U,) singlets in embedding (6.4), and SO, singlets
in embedding (6.6).

Table 24. SU; Tensor Products. A table of SU; tensor products hardly needs any explanation, and is
included here for convenience. The irreps on the right-hand side of the products are either all of triality
zero or all of triality one. An irrep in the symmetric part of the product R X R carries a subscript s, and
an irrep in the antisymmetric part of R X R has a sub-a.

Table 25. SU, Irreps of Dimension less than 180. SU, irreps (a; a, as) have quadrality, defined as
¢ =a;+2a,+3a; (mod 4). Each quadrality three irrep (a, a, as) is conjugate to (a; a. a,) with
quadrality one. The conjugate of a quadrality zero (or two) irrep also has quadrality zero (or two). The
conventions are obvious from the table. The existence of four congruence classes is in accord with the
number for SO~ SU,. The number of SU, singlets in the irrep is listed in the last column; an asterisk
(1*) indicates that the SU, singlet is also neutral (has no phase change) under the U, in the
decomposition SU, D SU; X U;. (Also see table 27.)

Table 26. SU, Tensor Products. Quadrality conventions analogous to the triality conventions of table
24 are followed.

Table 27. SU, Branching Rules for SU,2 SU,x U,. The eigenvalue of the U, generator in SU,D
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SU;x U, is given in parentheses and is normalized to correspond with the usual electric-charge
eigenvalues. Again, note that the 3, 6 and 15 of SU; are defined to have triality one, so they have electric
charges in the sequence -3 plus integer.

Table 28. SUs Irreps of Dimension less than 800. The quintality of a SUs irrep (2, a. as au) is
defined as a, +2a,+ 3a; + 4a, (mod 5). An irrep with quintality 4 (or 3) is conjugate of an irrep with
quintality 1 (or 2). For dimension greater than 800, we list only those irreps with sum of the Dynkin
labels less than 5. In the “SU, singlet” column an asterisk on 1* means the singlet is an SU,x U,
singlet; similarly in the last column, 1* means an SU, X SU; X U, singlet.

Table 29. SUs Tensor Products. All products between irreps with the sum of Dynkin labels less than
or equal to two are included.

Table 30. Branching Rules for SUs. The values of the U, generator are included in the parentheses.
The normalization convention for the U, generator Z=3Y"™ in SUsD SU,x SU,;X U, is such that
Q" = I+ ZJ6 in the SUs model.

Table 31. SUs Irreps of Dimension less than 1000. Sextality is defined as a, + 2a,+ 3as+ 444+ 5as
(mod 6), and self-conjugate irreps can have sextality zero or three. Sextality four and five irreps are not
listed, as they are conjugate to sextality two and one irreps, respectively, that are listed. All irreps of
dimension less than 1000 are given, as are the irreps with sum of Dynkin labels less than 5. The three
maximal subgroups that are analyzed are all nonsemisimple; if the singlet in the compact part carries
no charge of the U, factor, it is marked by an asterisk.

Table 32. SU¢ Tensor Products.

Table 33. SUs Branching Rules. The eigenvalues of the U, generator are normalized according to
the branching rule for the 6.

Table 34. SO, Irreps of Dimension less than 650 and Branching Rules for SO, D SU,. The SO, irreps
are all real, and self-conjugate. The weights in irreps with a; odd (spinor irreps) are in a different
congruence class than the irreps with a; even.

Table 35. SO, Tensor Products.

Table 36. SO Irreps of Dimension less than 1300 and the Branching Rules into SO, Irreps. SO; (and
any SO,,, n > 1) irreps fall into one of four congruence classes. For SOs, the four classes are exemplified
by the three eights and the adjoint, and can be defined by [as+ a4 (mod 2), a, + a; (mod 2)] [51]. (The
congruency class of any SO, irrep is a similar two-component vector.) We have followed the convention of
marking irreps in class (0, 1) by sub-v for “vector”, in (1, 0) with sub-s for “spinor”, in (1, 1) with sub-c for
“conjugate”, and in (0, 0) with no subscript. There is one exception: there are some (0, 0) irreps that also
come in sets of threes, such as the 35’s, 294’s, 567’s, etc. The convention for the v, c, s 1abel is obvious. One of
the 8’s branches to 1+ 7 of SO, and the other two branch to the 8 of SO5; this arbitrariness is due to the high
symmetry of the SOg Dynkin diagram. If we select the convention that the 16 of SO, branches to the 8, + 8.,
and the 16 of SO,, contains the same colors and electric charges as the 16 of SO, then it is a physical choice
to select the 8, to branch to the 1+ 7 of SO,. We follow those conventions in deriving the explicit projection
matrices below. The SU, x U, branching rules are not listed because the semisimple part is trivially derived
from the embeddings SOz D SO, D SU,. The branching rules for the simple SOg irrep to SU, x U, irreps,
following the conventions of the v, ¢ and s labels just mentioned, are

8, = 4(1)+4(-1)
8.=4(1)+4(-1)

8, =1(2) + 1(-2) + 6(0)
28 =1(0) + 6(2) + 6(—2) + 15(0),

where the generator of the U, is in parentheses.
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Table 37. SO; Tensor Products. The subscripts i, j, k, take on values, v, s and c, as defined in table 36.

Table 38. SO, Irreps of Dimension less than 5100.

Table 39. SO, Tensor Products.

Table 40. SO, Branching Rules. Note conventions discussed under table 36. To examine the
SO, D SO, X U; embedding, we need to look forward to the SO,, D SO, branching rule, 16 = 16. The
branching rules for SOy D SO, X U, are

9=1(2)+ 1(-2) +7(0)
16 = 8(1) + 8(-1)
36 = 100) + 7(2) + 7(=2) + 21(0).

If we require that the 16 of SO, contain the electric charge and color spectrum of a family, then the
SOy D SO, X U, embedding is irrelevant.

Table 41. SOy, Irreps of Dimension less than 12000. The irreps of SOy, fall into four congruency
classes, defined by 2a; + 2a; — a4+ as (mod 4). (The congruency class of an SO,,,., irrep is a single number.)
The adjoint is in the 0 class, the spinor in 1, the conjugate spinors in —1, and the vector and bispinors (126
and 126) are both in the 2 class. This explains why the 10 and bispinors have no zero weights. Thus, we call
(1 0 0 1 0)the 144, not 144, as would be natural from a tensor product construction from 10 x 16. The SU;
singlets marked with an asterisk are SUs X U, singlets.

Table 42. SO, Tensor Products [63]. Note that the congruency conventions are followed.

Table 43. Branching Rules for SO;. The U, generator, normalized by the branching rule for the 10
for SO, D SUsx U], is given in parenthesis; this convention is used in table 19. The SO, D SO x U,
embedding is defined by the branching rules

10 = 1(2) + 1(-2) + 8,(0)

16 = 8,(1) + 8, (-1)
16=8,(-1)+8,(1)

45 = 1(0) + 8,(2) + 8,(~=2) + 28(0)
(i#j#k#i, i=c,vors).

Note the discussions for tables 36 and 40; specifically, in SO; D SU,X SO, D SO, the 16 =8+ 8, not
1+7+8.

Table 44. F, Irreps of Dimension less than 100000. All irreps of F, are real and fall into one
congruency class.

Table 45. F, Tensor Products.

Table 46. F, Branching Rules. There are 27 SU; X SU; irreps in the 1053, 19 in the 1053', and 29 in
the 1274; the lengthy lists are quickly derived if needed [57].

Table 47. E¢ Irreps of Dimension less than 100000. Congruency reduces to triality, defined as
a,— ax+ as— as (mod 3). Following the kind of conventions as before, the triality two irreps are marked
with a bar,s027=(0 0 0 0 1 0) and 351=(0 1 0 0 0 0), since both have triality two.

Table 48. E¢ Tensor Products.

Table 49. E, Branching Rules.

It is not necessary to have a basis for weight space in order to derive the results in the tables above;
for many purposes the coordinate-independent statement of the embedding is sufficient. However, for
practical calculations of symmetry breaking, mass matrices, and other details of Yang-Mills theories, it
is often convenient to have a labeled basis. Some examples are considered in section 9. It has already
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been argued that there is only one embedding of U™ x SUS$ (up to Weyl reflections) in E that is likely
to be relevant for model building; it is the one where the 27 has nine 1°, three 3° and three 3°, with the
electric charge spectrum of the three 3° being 3, —3, —3. The projection matrices that project a weight of Es
down through the weights of any subgroup chain to a weight of U™ x SUS$ can then be chosen so that the Es
roots and axes that coincide with the SUS roots and Q°™ axis are independent of the subgroup chain. It is
convenient in applications to unified models to follow this convention, rather than the standard convention,
that of projecting highest weights of an irrep onto the highest weights of the subgroup representations [10].

We shall follow the convention of projecting highest weights onto highest weights for the subgroup
chain,

E¢D SO, X Ui D SUsx Ui x Ui D SUY x SUSx UY x U{ x Uj, 7.1)
which is a convention for picking out the E¢ roots to be identified with I} and the color changing

operators. Since it is related to any other choice by a Weyl reflection, the results of calculations based
on this basis are completely general. The projection matrices for the subgroup chain in (7.1) are [10}:

011100
00000 1
Pi(EsDSOw)=| 0 0 1 0 0 0 |; (7.2)
000110
110000
11000
00101
PZ(SOIO D SUS) = 0 0 0 1 O ; ] (7'3)
01100 ,
0110 !
PsSUsDSUYxSUy)=(1 1 0 0 ). f (7.4)
0011

[also (6.7)]

The elements are always nonnegative integers when following the highest weight to highest weight
convention. The U, factors are in the Cartan subalgebra of E¢, and therefore correspond to axes in the root
space. Those axes are identified in table 19, along with the color roots and the weak isospin root. Tables 20
and 21 contain the color and flavor content of the 78 adjoint irrep and the 27. The calculation is the same as
we did for SUs and SU; in section 6, except in addition, more attention is paid to the subgroup structure. As
an example consider the root (1 —1 1 —1 1 0), which is projected onto (-1 0 1 0 0) by (7.2), which is a
root in the 45 of SO, and can then be projected by (7.3) to the SUs weight (-1 1 0 1), whichisarootin the
adjoint 24. Finally (7.4) projects (—1 1 0 1)to (1)(0 1) of SU, x SUs, which identifiesthe(1 -1 1 =1 1 0)
root of Es as a color anti-triplet with I'} = 3; it is the charge %, SU; antilepto-diquark that mediates proton
decay. It is a simple computation to construct the rest of table 20 for the 78, and also to work out the 27 of Eg,
as done in table 21.

With the identification of the color and weak interactions of (7.1) and the conventions of (7.2), (7.3) and
(7.4), it is possible to identify the color and weak interaction quantum numbers in E, directly by computing
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the matrix product, P(E¢D SU7Z x SU$) = P(SU;s D SUY X SUS) X P(SO40 D SUs) X P(E¢ D SOy0). Thus,
the Dynkin labels (a3, a3) of SUS and a™ of SUY for an E¢ weight (a, a, as a. as a) are, respectively,

aS=a,+2a;+2a:+ as+ as
as=as+as+as+as (7.5)

aw=a1+a2+a3+a4+a5.

The electric charge axis (recorded in table 19) is Q°"= 33 -23-32 -2) for E¢ is Q™=
3(-2 =2 3 -1 1) for SOy, and is Q*" = 5(-4 4 =1 1) for SUs. The corresponding dual axes are,
respectively, @™ =3[2 1 2 0 1 0]forEs, O°™ =3[—1 0 3 1 2]for SO0, and Q°™ = }-1 2 1 1]for SUs.
There are numerous other subgroup chains from E¢ to UT™ X SUS, as can be seen from table 18, We now
list the corresponding projection matrices and make a few comments on the derivations.
The maximal subgroup SU3 X SU; x SUS is ordered so that the first SUY contains SUY; electric charge
has contributions from the Cartan subalgebras of both of the SUY and SU;,

1 1 1 1 10
o -1 -1t -1 -1 0
0 0 1 0 00
P4(E6:) SU‘; X SU3 X SU;) = 0 0 _1 _1 0 0 (76)
1 2 2 1 01
0 0 1 1 11

As an example of a constraint on (7.6), recall from the example above (7.5) that the projection matnx must
carrythe(1 =1 1 =1 1 O)rootto(1 0)(1 0)(0 1)of SU;x SU, x SUS, since this root has I3 = 2, Qo™=3
and is an antilepto-diquark. Since the 78 branches to (8,1, 1)+ (1,8, 1)+ (1,1, 8)+ (3,3,3)+ (3, 3, 3), it is
easy to continue this procedure and derive (7.6) uniquely.

The other subgroup projections must be consistent with the two above; however, there is still some
freedom. A guide to the numbering of the projection matrices is given in table 50, where all the subgroup
chains are shown. Let us build up to the larger subgroups of Eg, starting from SU, D SUS X U,. Depending
on the subgroup chain in table 50, the generator of the U, factor is sometimes Q°", sometimes Y™, and
sometimes just a part of Y. A convenient choice of projection matrix is

P(sUOSUY=(; 1 o)

7.7
so the QCD Dynkin labels are a, and a,, when SUS is contained in an SU,. Thus, the weights (1 0 0),
(-1 1 0)and (0 -1 1)give a 3 in the 4, where the bottom weight (0 0 —1)is the 1°. In the case that Q*™
generates the U, factor, the electric charge axis in SU, is

Q™=-3004), or Q™=-§123]
so the 4 has a quark of charge —3 and a charge one lepton, and the 6 has a charge 3 quark and a charge-—3

antiquark. The chain SO, D SO; D SO, D SU, is now studied; here, Q°™ is required to be a generator in
each subgroup.
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The branching rule for the SO, 7 into a 1+ 6 of SU, must give a neutral lepton for the singlet; the 8

branches to 4+ 4, and the charges of the 15 states in 7 + 8 must coincide with those of a family. Subgroup
chains with SO, may be relevant for analyzing symmetry breaking. A convenient projection is

0 10
PG(SO7 D SU4) ={ 1 O 0 ) (78)
011
and the electric charge is
Q"=-3004) or Q™=-i243]
The deviation of P(SOsD SO-) requires the same foresight mentioned for table 36; if the 16 of SO,

branches to the 8; + 8. of SOs, then the 8, (or 8.) must branch to 1+ 7 of SO, so the 16 of SO, branches to
1+ 7+ 8. The choice of projection is

000 1
PA(SOgD so7)=(o 10 0) (7.9)
1010

with
Q™=-52020), or Q"=-}3432]

The projection for SOy D SOg can then be chosen as

, (7.10)

OO O
—— O O
O =D

1
0
Pg(SOg ») SOs) = 0
0

with
Q™=-32002 or Q™=-3[3453]

The color weights of SUS, given in terms of the SO, weights (a, a. as ay), are derived from the product of
projections Ps(SU, D SU$) X Ps(SO7 D SU,) X PA(SOs D SO,) X Pg(SOy D SOs) to be, simply, af = a, and
as= as.

We may now derive the projections for E¢ D F, D SO, and F, D SU; x SUS, which must be consistent
with the projection for SOy D SOs. The projection matrix P(Es D F,) (with the branching rule 27 = 1+ 26)
annihilates three weights of the 27 in giving the singlet and the two zero weights of the 26. Those weights
must be among the color singlet, electrically neutral weights as identified in table 21. Since the 16 of SOy
branches to the 16 of SOy, which has no zero weights, P(EsD F,) must annihilate (1-101-10),
(-101-100)and (01-1010).

There are additional constraints in this derivation: the consistency relations P(EsD SU; x SU3) =
P(F,DSU;xSUS)XP(EsDF,) and  P(E¢D SOo)= P(FsD SOg) X P(E¢ D F,) = P(SO10 D SOy) X
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P(E¢D SOy0), and the convention that the generators of the first SU; in the chain E¢D F,D SU; X
SUS3 are the sums of the corresponding SU3 X SU; generators in P,. We may then orient the color in F,
according to [10]:

0011
Ps(Fs D SU, x SUS) = ‘1) g i ‘1) : (7.11)
1110
0 1 2 2 11
0 0 -1 -1 -1 0
Po(E¢DFy) =
10(Es D Fa) 0 -1 0 o0 10 (7.12)
1 2 2 1 00

Thus, the color and flavor content of the F, weights can be identified and P(F, D SOy) can be obtained by
matching up the corresponding weights:

-1 -1 -1 -1

1 2 1 1
Py(F, D SOq) = .
11(Fa 9) 1 1 1 0 (7.13)

-2 -4 -3 -1
From P,, P,, and the quantum numbers of the SO, weights, it follows that

-1 -1 -2 -1 -1
1 1 1 0 1

Plz(solo D SOg) = O 1 1 1 O (714)
0 -2 -2 -1 -1
The Dynkin labels for SUSDF, are
a‘i = a1+ 2a2+ a3+ as
(7.15)

a;= a;ta,+ as,
and the electric charge axis in F, is
Q"=4-2-2 42 or Q™=3[0232].

The projection from SO, to SU3 X SU, X SU, can now be identified from the quantum numbers from
the other SO,, subgroup chain and Ps:

P13(SOm D SU3 x SU, x SU4) = (716)

= =]
= OO
Y N
el =
OO O =
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If the generators of the SU, in SOy D SU, X SU, are identified as the sum of the SU, generators in P;3, we
obtain

-2 -2 -2 -1
0 1 0 0
Pu(SOg ) SU2 X SU4) = 0 0 1 0 . (717)

0 -1 -2 -1

The last of the SO,, subgroups is SU, X SO, where we assume that the SU, is generated by the sum of the
SU3 x SU, generators in P;;. From Ps and Ps we then obtain

P15(8010 D SUZ X SO7) = ’ (718)

o 0 2 1 1

0 1 1 1 0

1 1 1 0 1
-2 -2 -2 -1 -1
where the SO, contains a piece of Y™. Note that since the 10 of SO, branches to (3, 1) + (1, 7) of SU, x SO,,
the 7 has a charge —; quark, and consequently Q°™ cannot be completely contained in SO-; the SU; is
generated by the sum of the corresponding SU, generators in SO0 D SU3 X SU, X SU,.

Finally, we examine the subgroup chains beginning with E¢ D SU, X SUs. The SUZ may be the explicit
SU,, or it may be buried in the SUs. In the former case the SU, contains SU3 and the isoscalar part of Q°™;
then the SUS may be embedded in SUs so that the color Dynkin labels are ai = a, and a5 = a,, with
6 =1°4+1°+ 1°+ 3° of SUS. Then 27 = (2, 6) + (1, 15)is the appropriate branching rule since it contains (2, 3°)
for (u, d)r, and not (2, 3°):

1 1 1 1 1 0
1 2 2 1 0 1
0 0 1 1 1 1
P{s(EﬁD SU; X SU6) = 0 -1 -1 -1 -1 -1 ' (719)
0 0 -1 0 0 0
0 0 0 -1 0 0

The weak hypercharge generates a U, in SU with axis Y™ =3[1 2 3 0 3. It is also possible that SUj
contains SUs (with 6=1+5), where SU; contains SU3 X UY X SU3 as embedded before. Then the
branching rule should have the form 27 = (2, 6) + (1, 15) so it contains 5 + 10; the projection matrix can be
chosen to be

0 0 -1 -1 0 0
-1 -1 -1 -1 0 -1
o 1 1 1 o0 1
P6(Es D SU, X SUg) = 1 1 1 0 o o0F (7.20)
0 0 0 1 1 0
0 0 1 0 0 1

where the projection of SUs to the standard SU; basis is
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01000
00100
PiSUsDSUs)=\ 4 0 0 1 0
0001 (7.21)

The E¢ D SU, X SU, branching rule in table 49 is based on the convention, 27 = (2, 6)+ (1, 15).

In the embedding E¢ D SU, X SU, with the SUZ X UY X SU3 contained entirely in the SUq, SU¢ can
break down to color by two different subgroup chains besides (7.21): SUs D SU% x U, X SU,, where SU,
contains color; and SUs D SUY X UY x SUS, where SU7Y is the same SUY identified in P4(E¢ D SUZ X SU; X
SUS3). The projection matrices are

0 0 1 1 0
P5(SUs D SUY x SUY) = 0 1 1 0 0 ,
I (7.22)
"‘1 —1 —1 ._1 __1 .
0 0 1 1 0
Pu(SU,DSUYxsUg)=| 1 -1 -1 -10
00 0 1 (7.23)
0o 0 0 1 1 _
Finally, SUs contains SU,, and maintaining consistency with Ps(SU, D SU$), we identify
1 1 0 0
Po(SUsOSU)=[0 o0 1 1},
0 -1 -1~ (7.24)

where SUj contains UT™.

This completes all the connections of the subgroup diagram shown in table 50. Some applications of these
projections are considered in section 9.

It is instructive to check explicitly the effect of these projections on the weights of an irrep of Es.
Although there is only one embedding of U™ x SU$ in Eg, there can be several inequivalent embeddings of
some subgroups between them. For example, the 10 of SO,, breaks up into 1+1+1+7 of SO, in
SO40 2D SU, X SO, but is broken up into 1+ 1+ 8 in the chain SO, D SOy D SO D SO-, and described by
the product P,P3P;,. The difference in the branching rules indicates two inequivalent embeddings. As
another example SU, can be embedded in SO, with 9=1+4+4 (SO, SO0sD SO,DSU)) or as
9=1+1+1+6(S80;D SU; X SU, D SU,). The latter is a regular subgroup, but the former is special. The
maximal group-subgroup pairs inside E¢ are marked explicitly in table 50.

Let us beat this problem to death with an example (insisted on by somebody). Consider the
(1 0 0 0 0 0)weight of Es, which projectsto (0 0 0 0 1)of the 16 of SO, by P;,to (0 1 0 0) of the 10 of
SUs by P,, and to (1)(1 0) of SUY X SUS by P,. Thus, the (1 0 0 0 0 0) is uniquely identified as the Es
weight of a charge % quark with I} =} and color (1 0). This is consistent with P, (by construction), which
gives (1 0)(0 0)(1 0) of SU3 X SU; x SUS, where P(SU3 D SU3)= (1 0). The F, weight from Py, is
(0 0 0 1)in the 26, which gives (1 0)1 0)of SU;x SU$,and (-1 1 0 —1)of the 16 of SO, by either Py, or
Py,. In the SOy D SU, x SU, projection P, acting on (-1 1 0 —1) gives (1)}(1 0 0), consistent with the
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branching rule, 16 = (2,4)+ (2, 4). In the other subgroup chain that goes through SOs, P; acting on
(-1 10 -1)becomesthe (-1 1 —1 0)of the 8, of SOg; P,on (-1 1 -1 0) becomes the (0 1 -2)of the 7
of SO,, which by Ps becomes the (1 0 —1) weight of the 6 of SU,.

Returningtothe (0 0 0 0 1)SO,, weight, we find it projected to (1)(0 1 —1) of SU, x SO, by P;s, where
(0 1 —1)projectsto(1 0 0)of SU, by Ps, which is required by the consistency condition P,,P;, = P¢P;s. By
Py, (0 0 0 0 1) is projected to (1)(0)(1 0 0) of SUY x SU, X SU,, consistent with the SU, in SU, x SO,
being generated by the sum of the corresponding SUY x SU, generators in SUY x SU, x SU,. The
projection of the (0 1 0 0) of SUs onto an SU; weight by P,, gives (1 0 —1), which is in the 6. (The
SU; C SUs coincides with the SO;0 D SOy D SOg D SO, D SU; chain since 5+ 10 = 1+ 6+ 4+ 4 of SU,; thus
we have chosen the P; so that P»P, = PsP,PgP;,. Finally Pigon(1 0 0 0 0 0)is(1X1 0 0 0 0)and P,son
(10000 0)is(0O-1010 0),with(-10 10 0)giving(0 1 0 0)of SUs, (1X1 0 0)of SUZ x SU,, and
(1 0)(1 0) of SU% x SUS. Let’s go on to another topic.

This section concludes with an outline of a method for calculating the vector-coupling (VC) coefficients
for groups as large as those required for unification [62]. The VC coefficients are matrix elements of the
unitary transformation between the Hilbert-space basis |r,A;) |r2A,) of the direct product r, X r, and the
vectors |riA;) of the irreps occurring in the reduction of the product, r;Xr,=Z; r;; each space is
dim(r,) x dim(r,) dimensional, so the weight A; implicitly carries labels needed to distinguish different
vectors with the same weight. Other labels are needed if a given irrep occurs several times in r; X r,, but
those too are left implicit. The VC coefficients are defined by the transformation,

[F3As) = > [MADIRAXEAL; F2ARlrsds), (7.25)
AlA2

where (r,A; r2A,|r3A5) is nonzero only if rs is in the tensor product r; X r, and if A; = A, + A,. Since thisis a
unitary transformation, the VC coefficients satisfy the orthonormality conditions,

2 (ra lrlAl; r2A2XrAy; l‘z)izll"/\ "= 8erban

AtA2

z <I'1A 1 l'zAz,l'A )(rA )(rA Ir,A { N l'2/\ é) = 8Al»\|’8h)"27 (726)
rA

where r and r’ are in r; Xr; and A is a weight in r. The right-hand sides of (7.26) should be multiplied by
functions of the additional labels, which are often chosen to be delta functions.

There are methods in the literature for computing the VC coefficients. For example, Wybourne’s
“building up principle” involves working back and forth between the 6-j symbols of H and the isoscalar
factors of G D H [11], starting at SU, or SU; and building up to some large group of interest; building up to
Es through a physical sequence of maximal subgroups can be tedious. Sometimes, especially if the particle
states are identified directly in terms of weights of the representation of the large group (as done in section
6), it is the VC coeflicient that is desired (that is, the product of the isoscalar factors) and not the individual
isoscalar factors through some subgroup chain. Anyhow, the isoscalar factors for G O H can be computed
by “dividing” the VC coefficients of G by those of H. That relationship is often useful, so we interrupt the
main discussion for a moment to review it.

The crucial theorem relating the VC coefficients of G and H (G D H) to the isoscalar factors is the Racah
factorization lemma [64], which follows from the Wigner-Eckhart theorem. Let g; be an irrep of G with
weights A;; the VC coefficient to be factored is (g,A1; g2A2]gsA3). The branching rule for g into irreps h; of
HC G isg=Z3,h, so astate [gA) can be relabeled as |h;(g)PA), where P = P(G D H) is the weight-space
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projection matrix so PA is a weight in the irrep h; of H, and for simplicity, the embedding is arranged so h;(g)
is just one irrep in the branching rule. In cases where a given irrep occurs several times in the branching rule,
this choice of basis for degenerate projected weights is not always possible, which means that the
factorization is not always complete. The Racah factorization lemma states that

(@A gz)¢2|33/\3> = 2 (hy(g1); hz(gz)lhs(ga)xhxpl\l; h2P)¢2,h3PA3>, (7.27)
deg
where the sum on “deg” is over the degeneracy of h, in the branching rule g; = =; hs;, (hi(g:); hx(g2){hs(g5)) is
the isoscalar factor, and (h; PA,;h, PAjths PAs)is a VC coefficient for H. It should now be clear how the
isoscalar factors are computed by “dividing” a VC coefficient for g; X g, D g3 by one for h; X h, D h; for an
appropriate weight.

The method for computing the VC coefficients described here is a ““trivial generalization” of the standard
method used for SU,, where the lowering operator J_ = J,_ + J,_ is applied again and again to the states,
beginning with the state of highest weight |j, + jz, j1 + j2) = li1, /1) |/, J2), which is unique up to a phase chosen
to be +1. The matrix elements of J_, which are needed for this procedure, are well known:

G, m = 1L, m) = +[(G+ m)( —m + D]

the convention that all the matrix elements for any irrep of J_ are nonnegative should be noted. The
calculation then relies on the fact that the generators of a group do not mix irreps. of course, so it
immediately follows that J_|j,+ jo, ji+j2) = +(2j1+22)"?ji + ja, 1+ j2— 1), and the VC coefficients
G 1= 15 Jo, Jolia + jor o+ jo— 1) = [j1/(j1 + j2)]"? and so on, follow complete with normalization. Since
there are two linearly independent vectors with weight j, + j> — 1, there is an orthogonal vector belonging to
the highest weight of another irrep, the j, +j,—1 irrep in the product j, X j,. Thus, another phase
convention is needed; in the Condon-Shortley phase convention, the minus sign is attached to

G j1= o Jolis 4 j2= L ji+ j2= 1 = = [/ Gy + )12,

which then sets all the phases for the rest of the j, + j, — 1 states in j; X j,. The next level is reached by acting
again with J_; if the dimensionality of the product space of some weight increases, a new irrep enters, and
the phase conventions are again needed. Wigner was able to sum the iterations of all these formulas for SU,
and give a general (but complicated) formula for the VC coefficients.

Precisely the same procedure could be used for larger simple groups, if we only knew which lowering
operators E_ to use, had a phase convention for (r, A — @|E_;|rA), and could set up the phase conventions
when irreps of the tensor product of r, X r, appear in E_z([r;A,)|r2A2)) that are not in [r;A;)|r2A5). In fact,
some of these generalizations can be made quite simply.

The weight diagram of an irrep is systematically obtained by subtracting from the highest weight the
linearly independent simple roots in the manner prescribed in section 6; thus the VC coefficients can be
calculated using only the matrix elements of E; = E_,, where a; is a simple root. Moreover, it is not self
contradictory to define the phases of all nonzero values of (r, A — &;|E;|rA) to be positive for all irreps of G
[65]; eq. (4.3) determines the matrix elements of E; acting on a state of weight A in terms of the scalar
product of &; and A, which is simply the ith Dynkin label of A, a;, and the matrix element of E; at the next
lower level:

r,A — ai|[Ei[rA) = +[a; + (r, A|Ei|r, A + ;)] (7.28)
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(This expression is not adequate when there are degenerate weights; also a; should be replaced by
a:(a, a;)/2 when there are both long and short simple roots. Equation (7.28) should be viewed as schematic
[62].) As a first trivial application of (7.28), note that the matrix elements of the lowering operators denoted
by their simple roots and arrows in table 11 for both the 16 of SO,, and the 27 of E¢ are all +1. The remaining
phase conventions concern the appearance of the highest weight of a new irrep after the application of E; at
some level, it is easily put in by hand in the examples below. For an extensive calculation in a labeled basis of
VC coefficients of SUs, see [66], and for SU,, see [67].

The first example is familiar, can be done in full detail, but is not completely trivial. It is to compute the
VC coefficients for 6 X 3 = 8 + 10 of SU;. The matrix elements of the lowering operators in the 3, 6, 8 and 10
irreps are shown in table 51, where the lowering operator of the first simple root (2 —1) is denoted E, and
the lowering operator associated with the second simple root (-1 2)is denoted by E; on the left-hand side
of the line of the states connected by E,, and the matrix element computed from (7.28) is placed on the
right-hand side of the line. It is not always necessary to work out the weight diagrams for the irreps in the
reduction of r, X r,, but they are convenient for obtaining the normalization (and thereby checking the rest
of the calculation), for keeping track of which E; do not annihilate a given state, for labeling degenerate
weights, and sometimes for computing specific VC coefficients without reproducing the whole table. The
states with zero weight in the octet, defined as E,|(2 —1)) = V2|(0 0),)and E;}(-1 2))= V'2|(0 0),) are not
orthonormal (see below).

Consider the coupling of the highest weights

1103 0)) = +/6(2 0); 3(1 0)). (7.29)

The next weight in the 10 is obtained by acting on both sides of (7.29) with E;; reading the matrix elements
from table 51,

V3|10(1 1)) = V2/6(0 1); 31 0))+ 1|6(2 0); 3(=1 1)). (7.30)

The vector with highest weight of the 8 is orthogonal to |10(1 1)), which completely determines [8(1 1)) up
to an overall phase:

V381 1)) = 160 1); 3(1 0))— V2|6(2 0); 3(-1 1)).

This is the last phase convention needed for the 6 X 3 calculation. Occasionally it is helpful to beautify the
results into a table; for example, a traditional format is

© 1) Q0 6

6x3 (11 | (10 -11 3
— — , (7.31)
10 V23 1V3
8 1/V3 -V2/3

but we shall not bother with such niceties here.
The next level of VC coefficients are obtained by applying E, and E,, respectively, first to [10(1 1)) and
then to 8(1 1)):
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V3|10(-1 2)) = |6(-2 2); 3(1 0))+ V260 1); 3(-1 1))
V3102 -1)) = V2/6(1 —1); 3(1 0))+ 1]6(2 0); 3(0 —1))
V3|8(-1 2))= V2|6(=2 2); 3(1 0))- 1{6(0 1); 3(-1 1))
V3|82 -1))=1]6(1 —1); 3(1 0))— V2/6(2 0); 30 -1)).

(1.32)

Orthonormality provides a good check on this arithmetic. From table 51, the lowering operations to the
next level are: E; and E, can act on [10(—1 2)), and E, [10(-1 2)) must agree with E;|10(2 —1)), since there
isonly one vector with (0 0) weight in the 10; according to the 8 weight diagram E,|8(-1 2))and E,|8(2 -1))
lead to zero-weight vectors that are linearly independent. These four states are, respectively,

[10(=3 3))=|6(-2 2); 3(-1 1))
V3100 0)) = |6(-1 0); 3(1 0))+[6(1 —1); 3(-1 1))+6(0 1); 30 —1))
VE|8(0 0),)=2/6(—1 0); 3(1 0))—|6(1 —1); 3(-1 1))~ [6(0 1); 3(0 —1))

(7.33)

VEIBO 0)) = I6(-1 0); 3(1 0))+16(1 ~1); 3(-1 1))~ 2600 1); 30 ~1).

The reason for pushing the calculation this far (besides emphasizing its simplicity) is to make explicit the
fact that the simple root subtraction procedure does not always leave the VC coefficients for degenerate
weights orthogonal to one another, since the simple roots are often not orthogonal. In the 8§,
(8(0 0),|8(0 0),) = 3. However, this would seem to be a small price for the advantage that the VC coefficients
can be calculated in terms of the Dynkin labeled states for any simple group, without an explicit choice of
basis through some subgroup chain. The example of 27 X 27 in E¢ will exemplify this point.

It should be noted that, when there are many routes in the weight diagram that lead to a degenerate

weight, as happens in composite irreps, the weight diagram is not trivially lifted to Hilbert space, because
there is ambiguity about the best routes to label the degenerate weights. (This may be a helpful restatement
of the labeling problem.) The simplest example where this problem can.be found is in the calculation of the
SU; VC coefficients for 6 x3=15+3 in the Dynkin basis. (Of course the calculation of these VC
coefficients is trivial using the SU, X U; labeling, but the whole object of this method is to avoid a detailed
selection of subgroup structure for the labeling.)
__As a final example that also does not involve the labeling problem, consider the VC coefficients for
27 x 27 = 27, + 351, + 351, of Eg; this calculation was done in a single afternoon by J. Patera in our first effort
to apply the above techniques. The highest weight is in the 351’, so all VC coefficients coupling 27 x 27 to
351’ are positive. If the 351’ weight has +2 and 0 entries only, VC = 1; if the multiplicity of the 351’ weight is
greater than 1, which means the multiplicity is 4 and the weight has the same entries as a weight in the 27,
VC = }; and otherwise it is 1/V2, including many cases where the weight includes 0, +2.and 1. The VC
coefficients for the 351 are =3 if the 351 weight multiplicity is greater than one (i.¢., it is S when the weight
coincides with one in the 27), and otherwise it is +1/V/2; the signs are such that 351 is antisymmetric in the
27 x 27 basis. The VC coefficients of the 27 are arranged symmetrically in 27 X 27, and are all of magnitude
1/V10. Computation of the remaining phase is left as an exercise [62]. Displaying the answer is not as trivial
as it is for small irreps of SU,, SU; or SU,.
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8. Larger groups

Section 7 is a guide to E¢ and its subgroups that are large enough to contain U™ X SUS. A number of
models based on larger groups have been suggested; this section contains a brief introduction to the irreps
and tensor products of E;, Eg, SUg, SO, SO45 and SO,,, and some aspects of and questions about theories
based on these groups.

The maximal subgroups of the exceptional groups E; and Eg are listed in table 15. A short list of irreps,
tensor products, and branching rules for E, is found in table 52 and for Es in table 53. The notation is the
same as followed in section 7. The irreps of E, fall into two congruence classes, depending on whether
a4+ a¢+ a,is odd (pseudoreal) or even (real); there is only one congruence class for the irreps of Eq. (Recall
table 12.)

A major objection to E; and Eis that they have self-conjugate irreps only, so it appears to take a detailed
analysis of the symmetry breaking to determine whether the flavor-chiral character of the weak interactions
is recovered in the low-energy limit. As an example, suppose a single family of left-handed fermions is
assigned to a 56 of E, [56=(0 0 0 0 0 1 0)]. The fermion mass of a single family is symmetry breaking,
since (56 X 56), has no E; singlet. The Eq X U, content of the 56 is 27 + 27 + 1+ 1. If the low-mass fermions
are in the 27, then the correspondmg states in the 27 must 1st acquire much larger masses, at least 17 GeV from
the e*e results, but not too large since those masses in 27 X 27 must have |AI™| = ; components, and masses
above a few TeV would indicate strong contributions to the weak interactions [68]. (See ref. [69] for more on
E, models.)

Separating the masses of such conjugate pairs is a problem in any vectorlike theory. So far, the larger mass
of the “wrong-handed” doublets and singlets has been blamed on the details of the symmetry breaking, but
it is not clear at this time what requirements must be satisfied for a vectorlike theory to reduce to a chiral
weak-interaction theory at low energies. A nice solution to this problem would open Pandora’s box,
because many more groups would become likely candidates for unification. For example, a positive result
would make it conceivable that the Lie algebra part of some future attractive theory is vectorlike. Since the
generalization of Yang-Mills theories will probably be approached in a constructive fashion, this problem
deserves more analysis.

Perhaps some insight will be gotten from a careful analysis of Es. Not only is Es mathematically
intriguing, but it has some possible physical interest, since its fundamental irrep 248 is also its adjoint
(fermions are assigned to adjoints in some Yang-Mills theories with global supersymmetries [70]) and,
moreover, there is an embedding of color and flavor where the 248 can accommodate three or four families
of quarks and leptons [50]. The branching rules of the 248 to irreps of the maximal subgroups SU; X E¢and
SO, are given in tables 15 and 53. [When an irrep has not appeared in a previous table, it is listed as (Dynkin
highest weight)r.] These subgroups contain a common rank 8 subgroup SU; X U; X SOy, which is a
maximal nonsemisimple subgroup of Eg derived by removing the appropriate dot from the Dynkin diagram.
Either going through SU; X E¢ or SU, X SO, the branching rule to SU; X SO, X U, irreps is

248 = (1, 16)(3) + (3, 16)(-1) + (1, 16)(-3) + (3, 16)(1) + (3, 10)(2)
+(3,10)(-2) + (3, 1Y(-4) + (3, 1)(@) + 8, 1)(0) + (1, 45)(0) + (1, 1)(0), 8.1)
where the U, generator is in parenthesis and color and flavor are embedded in SO, as described in section

6; the explicit SU; is a family group in this example.
In order for the 248 to be flavor chiral at low energies, both the fermions and their antifermions (when the
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antiparticle exists at low energy) are assigned to the (3, 16) + (1, 16). It may be helpful to study C and CP for
Es, following the formalism of section 6, in formulating the mass problem.

The CP operation in Eg is the reflection of the group generations that leaves an SO, C Eg invariant. As
always, CP reverses the signs of all weights, and in this case, it is an inner automorphism. From table 17,
SO,6 and SU, X E, are the only two symmetric subgroups of Eg, and the reflection leaving SU, X E,
invariant flips the signs of just four elements of the Cartan subalgebra of Es. Thus
there are just two candidate schemes for defining C and P; in terms of the (3, 16) fermionic sector of (8.1),
they are:

c _ . c)
(3, 16),——(3, 16), (3. 16).
@ 1 - Cpl_ lp 8.2)
(3.16): (3, 16)r
Scheme 1 Scheme 2

where C' leaves the SO ¢ invariant and Cleaves SU; X E,invariant. Thus P’ in scheme 1 simply exchanges L
and R, but P in scheme 2 exchanges L and R and has a nontrivial action on the Eg weights. (C and P each
leave an SU, X E- invariant, but the product CP leaves SO, invariant.)

The more physical candidate for C appears to be scheme 2, where C commutes with the SUs, U, and one
of the SO,, Cartan subalgebra generators of SU;x U; X SO, C Eg, and anticommutes with the same
members of the SQ,, Cartan subalgebra as the C for SOy, described in section 6. Perhaps C or C’ plays an
important role in classifying and analyzing the possible symmetry breaking patterns. For example, C’
conserving masses match (3, 16) to (3, 16) (and so on) in a vectorlike fashion, while C conserving masses
match (3, 16) to itself (and so on). C conservation at some level seems to help obtain a flavor chiral breaking
pattern. The analysis does not end here, since the neutrino mass problem also needs consideration; the
I'" = 0and |AI™| = 3 breaking terms may also have definite C properties. The Cin (8.2)is closely related to C
in the E¢ flavor chiral models, which is discussed in more detail in section 9.

There is another aspect of C properties that deserves comment. Often researchers make up rules for
giving fermion masses at various stages of the spontaneous breaking: the most popular is that at a given
stage all singlet combinations get masses. This may be sensible in chiral theories, but it is a disaster in Eg,
where already (248 x 248), has a singlet. The rules must be modified for vectorlike theories, perhaps to state
that the nonzero masses are only those singlets that conserve (or violate) the C properties in a particular
way. The E; singlet violates C of (8.2), while conserving C'. These fragmentary comments will have to
suffice here. :

Some hopes and shortcomings of extended supergravity were briefly described in section 3. (Also see [47]
for a review.) In the traditional interpretation, the elementary fields of N = 8 extended supergravity
transform as representations of SOg and are identified with the elementary particles. The helicity 2 field
transforms as an SO singlet, and is identified with the graviton; helicity 3 as 8, = (1 0 0 0), helicity 1 as
28=(0 1 0 0),helicity;as56,= (0 0 1 1), helicity 0 as35.+35.=(0 0 0 2)+ (0 0 2 0), and the negative
helicities as the appropriate conjugates. Tables 36 and 37 review the irreps and tensor products of SOg. If the
SOgis gauged (the vector bosons do transform correctly) and if SU$ is contained in this SOs, then the largest
possible flavor group is U, X U,, and the charged weak interactions cannot be mediated by elementary
gauge particles. The elementary fermion sector also has problems: besides being vectorlike, there is room
for only two charge —1 leptons; the e, u and 7 cannot all be treated as elementary. A gauge coupling of
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about 1/50 implies a cosmological constant so huge that the universe should be 107* cm in diameter, a
prediction needing change or reinterpretation. Either N = 8 extended supergravity appears irrelevant as a
physical theory, or this interpretation is wrong. The theory is attractive enough to attempt other
interpretations [48]. Speculations about the interpretation are based on hidden symmetries of the global
N = 8 Lagrangian; Cremmer and Julia found it to have a hidden SUjs local symmetry [71].

The crucial conjecture is that the kinetic energy terms for the vector bosons associated with a formal,
local symmetry are generated dynamically. For example, in certain two-dimensional field theories with
hidden symmetries, the propagators of the currents of those symmetries, which are at least bilinear in the
fundamental fields, do acquire poles in the quantum field theory [72]. Thus, the currents become
dynamically generated, composite gauge particles. The generalization to the N =8 supersymmetry
currents, where all particles should be gauge particles, was conjectured in ref. [48]; the composite particles
are identified with the supercurrents. The composite particles of each helicity fall into representations of
SU;. The helicity —3 states transform as a8=(0 0 0 0 0 0 1), the helicity —1as63=(1 0 0 0 0 0 1),
helicity —5 as 216=(0 10 0 0 0 1), helicity 0 as 420=( 0 1 0 0 0 1), helicity 3 as 504=
000100 1), helicity 1 as 378=(0 0 0 0 1 0 1), helicity 3as168=(0 0 0 0 0 1 1), helicity 2 as
36=(0 000 00 2),and helicity3as8=(0 0 0 0 0 0 1), plus CPT conjugates. This spectrum is overly
chiral and leads to anomalies and other nonrenormalizable diseases. Thus, SUs must be broken at, say, the
Planck mass to something smaller, for example, SUs or SUs X SU,. Some speculations on the symmetry
breakdown and the efforts to make sense out of this spectrum are found in ref. [48]; the SU; representation
theory, tensor products, and branching rules are listed in table 54.

We conclude this section with a brief introduction to yet another class of models, intended to unify
the family structure with color and flavor, in which f, is assigned to a simple complex spinor of SO,
(n is number of low-mass families): SO,4 has two families in the 64-dimensional spinor; SO,z has three
families in the 256, and SO, has four families in the 1024. The vector bosons in. SO,,.¢ are divided into
the sets in SOun_s % SOy0, where the SOy, is generated by color and flavor and SOy,_4 contains a
gauged SUY family group [14], and the bosons that mix family with color and flavor. The group theory of
SO, is reviewed in table 55, of SOy; in table 56, and of SO, in table 57. There are many regularities in
the tables that should not have to be mentioned explicitly.

Even if such ungainly groups appear far fetched, the systematics of the masses and mixing angles of
the families could have wide generality. In order to give another example of the power of Dynkin
diagrams (and raise some more questions), we show the initial steps in setting up the mass matrix for
Sols.

Let us break up SO, D SOg X SO,o, where SO,o contains the usual color and flavor SU3 x U} X SUS.
If it is supposed that SO, is broken to SO x SU3 X UY X SUS at some large mass scale, and the SOy is
broken to its maximal subgroup SU% x Sp} at some smaller scale, then it is conceivable that the Spy, if
unbroken, may be confining and have a scale parameter much larger than the one in QCD; Spy is the
extended color group (or “color prime” or ‘“technicolor”) in this theory. Then it is usually assumed that
QQ bound states, where Q is a fermion carrying the Sp% charge, do the weak breaking in these kinds of
theories [73]. (We should not lean too heavily on this breaking scenario, because even if it does survive
certain criticisms [74], we have no simple example to support it.) We assume that the fermions with
nonzero Spi charges are much heavier than the ordinary quarks and leptons. Most of the important
physics issues still need to be faced, even with these assumptions, and we don’t face any of them here.
The discussion below is intended as examples in manipulation the Dynkin notation.

The 256 of SO,s has the SOgx SO,, branching rule 256 = (8,, 16) + (8., 16); the nine-by-nine SO; X
SO, projection matrix can be selected as
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P(SO13 » SOs X SO;o) = (83)
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which is derived from the branching rule, 18 = (8,, 1) + (1, 10) and the conventions of section 7. This is a
regular subgroup embedding.

The embedding of SU%X Sp§ in the SOg can be derived from the branching rules, 8, = (2,4),
8.=(2,4), or 8,=(3,1)+ (1, 5). The choice that 8, has the “different” branching rule is analogous to
similar conventions made in section 7. The projection matrix is

1210
P(SOg . SUz X Sp4) =11 010 ) (84)
0101

The weight diagram of the 4 of Sp, is (1 0), (-1 1), (1 —1), (-1 0) and the 5, which is the vector of
SOs~ Sps, is (0 1), (2 —1), (0 0), (-2 1), (0 —1). SU, X Sp, is a special subgroup of SOg. There are two
weights in the 8, that project to the same SU, X Sp, weight. Specifically, one linear combination of states
with weights (-1 0 1 0)and (1 0 —1 0) of 8, is the zero weight in (3, 1) and the orthogonal combination
is the zero weight in (1,5). Clearly, the full analysis of the mass matrix requires computing some
vector-coupling coefficients using, for example, the techniques in section 7; the I = 0 family in the 256
is a linear combination of states with different weights. For example, the (0 0 0 0 1) SOy, quark is a
linear combination of the states with weights (-1 01 -10000 1)and(10-1000 0 0 1).

This situation does not occur in the SO, model, but it is too small for phenomenology anyhow. In
the embedding SO, D SU3 x SU% X SOy, which is a regular subgroup, the 64 branches to (2,1, 16) +
(1,2, 16). It does happen in SO,,, where the embedding of SU% X Sp§ in SO, is special. The spinor 32’
for SO, is arranged to branch to (3, 6) + (1, 14') [14'= (0 0 1)), so that the 16’s of SO;,, which occur in
1024 as (32,16) + (32, 16), all carry extended color. The 32 then branches to (4, 1)+ (2, 14) [the weight
system of the 14is (0 1 0), (1 -1 1), (-101),(11~1),(-22 -1),(2 -1 0), (0 0 0), (0 0 0), and
the negatives of the 6 nonzero weights} and the (x1)(0 0 0) weights occur in both of the SU% x Sp§
irreps in the branching rule of the 32.

From the projection matrices for SO:5 and SO, it is easy to derive the dual coordinates of the roots
and axes. They are

2I5=[12100000 0] .

at=[101000000] a3={000001110]
ay=[011222211] 21_;::£000000111]1 (8.5)
a$=[000011101] 30"=[0000-10312]

Thus, the quantum numbers of an SO,s weight can be immediately identified.
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Writing down the 256 weights of 256 is tedious, but the calculation can be focused on the 64 weights
that are relevant for the low-mass fermions. The ordinary low-mass quarks and leptons are contained in
the (3, 1, 16) of SU% x Sp X SO, and the heavy extended colored objected are in (1, 5, 16) and (2, 4, 16).
If Spix SUSx U™ is conserved, each extended color, color, and electric charge sector is decoupled
from the others in the mass matrix, and the (3,1, 16) can be analyzed by itself. This then requires
extracting the 48 states, and for that, we need to find the relevant 64 weights.

Let us find the four SO, weights that contribute to the Sp} singlet, charge 5 quarks with SO, weight
(0 0 0 0 1). Each SO,s weight then has the form (@ b ¢ d 0 0 0 0 1), so the SOg X SO, weight from
(8.3)is (a,b,c,c+2d +1)0 0 0 0 1), and the SU% X Sp}; weight from (8.4)is (a+2b+c)a+c, b+c+
2d + 1). The Sp, weight must be (0 0), so ¢ = —a and 2d = a — b - 1; thus, I = b. The I values are +1,
0 and —1. For b=1, a =0, since an SO,, spinor never has a weight with Dynkin label +2. The weight
of this state is (0 1 0 ~1 0 0 0 0 1). The I5=—1 state has weight (0 =1 00 0 0 0 0 1), and the
weights for the I5=0statesare (10 -1 00000 1)and(-10 1 —1 0 0 0 0 1), the former giving
the (1 0 —1 0) and the latter giving the (=1 0 1 0) weight of the 8, of SOs.

Let us compare this with the traditional way of computing the weight diagram. From (5.2), and with
R =1[16,30,42, 52, 60, 66, 70, 36, 36] (table 10), we find the level of (0 1 0 =1 0 0 0 0 1) to be 11 (it is,
with this information, easy to see that the simple roots subtracted from the highest weight are
agt+ agt+2a;+ 206+ 2as+2a,taz), of (0 -10000001)is 15, of 1 0-10000 0 1) is 13,
andof (-1 0 1 =1 0 0 0 0 1)is also 13; since the 256 is quite broad by level 15, it takes some writing
to obtain all those weights. The rest of the calculation is simply a matter of subtracting the SO, weights,
with a;=(000-12-1000),,=(0 000 —-12 ~10 0), etc., where the only change from the
procedure in table 11 is the first SO,, simple roots, which affects a;. The projection worked out in table
21 shows that the charge —3 antiquarks with SU$ Dynkin labels (-1 0) are (0 10100 -1 1 0),
0-10100-110) and the I{=0 weights are (10 -1100-110) and (<-101000
-110).

This procedure can be carried out for other states of the 16. The weights of the mass matrix elements
can then be derived and their transformation properties analyzed, but such analyses require more
knowledge about the symmetry breaking than we have here.

9. Symmetry breaking

Our purpose in this section is to analyze Yang-Mills theories with a representation of (effective)
spinless fields ¢(r), transforming as r, with components that acquire vacuum expectation values (¢(r))
that break the symmetry group G to a subgroup H. We then give some simple applications to the
analysis of various mass matrices. Let us begin with some general comments.

Since Yang-Mills theories are constructed on Lie groups and rely in essential ways on the structure
of Lie groups [2], it might be possible to classify the candidate symmetry breaking directions in the
Hilbert space for r without detailed study of specific symmetry breaking mechanisms. This would be
fortunate, because the origin and determination of (¢(r)) (given r) is not completely specified in the
Yang-Mills formalism (except for very special choices of r). If, for example, the symmetry breaking is
done by the Higgs mechanism, then (¢(r)) depends on the arbitrary parameters in the Higgs potential,
and the symmetry breaking pattern does also; in present theories they are evaluated phenomenologic-
ally. The Higgs potential is a fourth order, invariant polynomial in ¢(r) (although radiative corrections
bring in higher-order invariants) that has its absolute minimum at a non-zero value of (¢ (r)). The usual
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approach to symmetry breaking has been to minimize the Higgs potential (or an effective potential),
that is, solve for (¢(r)) in terms of those parameters, then find the subgroups that leave (¢ (r)) invariant
for various values of the parameters. Finally the desired subgroup is selected, which usually leaves
(¢(r)) invariant for a range of parameters, and the parameters are adjusted within that range so various
masses agree as well as possible with experiment [75,76]. When ambiguities arise, they are often
resolved by looking at the radiative corrections [77, 78]. If accurate relations among the parameters are
needed phenomenologically, it is important to check whether radiative corrections modify them [46]. In
any event, the ultimate goal of the calculation is to determine (¢(r)) and the subgroup HC G that
leaves (¢ (r)) invariant, where (¢(r)) minimizes the Higgs potential.

Let us dwell on the Higgs problem a moment longer. The minima for many classical potentials have
been found. L.-F. Li already studied many cases with r irreducible in 1973 [75]. His approach was to set
up a canonical form for ¢(r) (which reduces the number of variables, but often requires foresight),
substitute it into V(¢ (r)), and then explicitly minimize it. This approach was extended by Ruegg and his
collaborators to a number of cases where r is reducible [76]. The algebraic complexity of this program
grows rapidly with the complexity of the representations, since essentially, it requires minimizing a
function in a dim(r)-dimensional space, but it does have the advantage of being terribly explicit. It is
also adequately powerful for some cases of physical interest. However, there are difficulties that suggest
“explicit Higgsism” may not account for all the symmetry breaking. For example, consider the
minimum of the Higgs potential for the 5+ 5+ 24 breaking of SUs. The parameters can be chosen so
(¢(24)) breaks SUs to SU3 x U7 x SUS; in order to agree with experiment, (¢(24)) must have
magnitude of order 10'*GeV. The 5+5 breaks SUYx UY to U™, where (¢(5)) is of order
300GeV. This breaking pattern holds for a range of parameters, but, unfortunately, the huge
ratio [(¢(24))|/|(¢(5))| is maintained over a tiny range of parameters only; it requires that the
renormalized coefficient of the (¢'(5) ¢(5))#'(24) ¢(24)) term is tiny, even much smaller than the
several loop radiative corrections. Thus, the radiative corrections to the parameters in the Higgs
potential tend to obliterate huge mass ratios, unless that coefficient is carefully chosen (in an
“unnatural” fashion) so its renormalized value is nearly zero. This predicament is called the “hierarchy
problem” [46].

The technical problems and dilemmas of explicit Higgsism will not be discussed further here;
dynamical symmetry-breaking mechanisms that can resolve some of these difficulties are not discussed
either. Instead, we give an introductory group theoretical discussion of the possible breaking directions
that a general class of breaking mechanisms can give. Of course we are guided by the Higgs problem,
where (¢(r)) is determined by minimizing an invariant function of ¢(r). Because of the parameter
dependence of the minimum, the most general answer is a list of subgroups H for the (¢(r)) that can
minimize some class of invariant functions of ¢(r). Specifically, we expect that any realistic breaking
mechanism is determined by a symmetry breaking direction that minimizes a nontrivial invariant
function of ¢(r). Let us restate the problem more formally.

For a group G and representation r of G, we want to find the components of r that can extremize
nontrivial invariant functions of r, and then to find the subgroups of G that leave each of these
components invariant. If we can do so, then finding the breaking direction is reduced to a one-
dimensional problem, which can be solved by substituting each candidate answer into the specific
function to minimized, and selecting the minimum.

L. Michel has conjectured a solution to this problem in the case that the function is a Higgs potential
and r is real and irreducible, or r = r' + ¥ where the irrep r’ is complex [15]. The presentation here of his
results is intuitive and not quite as general mathematically as is possible; the reader should refer to [15]
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and {79] for references and proofs. His conjecture does not cover the breaking of the group of a unified
model, which must be done by a reducible representation. However, there is reason to speculate that
Michel’s conjecture can be formulated to cover all possible “realistic”’ breaking schemes. An algebraic
(or geometrical) solution to the symmetry breaking problem would be attractive. Unfortunately, some
conditions (not necessarily satisfied for an arbitrary Higgs potential) should be satisfied before such
solutions can be guaranteed.

The Michel-Radicati theorems on symmetry breaking motivate the above conjectures [80]. They are
restated here in a somewhat restricted form in terms of a Yang-Mills theory based on the simple group
G with a representation of (effective) spinless fields ¢(r) that breaks G to H by an effective Higgs
mechanism, in the simple case that r is a real irrep or a self-conjugate pair of complex irreps.
(Irreducibility is not an essential requirement of the theorems, but it is essential for Michel’s
conjecture.) The vacuum value (¢(r)) is a point (or ray) in the Hilbert space of r, which is a
dim(r)-dimensional space. The Michel-Radicati theorems connect properties of the space of (¢(r)) to
the subgroups H leaving (¢ (r)) invariant, and to the existence of stationary points of invariant functions
of ¢(r), such as a Higgs potential. Specifically, their theorems relate a subset of those subgroups to the
existence of stationary points of the functions. (Of course the real problem is to relate stationary points,
or more specifically the extrema, of the function to the subgroups, which is the converse of the
theorems.) Let us first state the theorems, complete with new jargon, and then define the new terms in
detail.

(1) If HCG is a maximal little group of r, then the (¢(r)) that are invariant under the trans-
formations in H are in a closed stratum of the dim(r) space.

(2) If (¢(r)) is in a closed stratum of the dim(r) space, then (¢(r)) is a stationary point of some (or in
some cases, all) smooth real invariant functions of ¢(r). (This theorem will be restated below more
completely.)

The largest subgroup of G that leaves a nonzero (¢ (r)) invariant is called the little group (or stability
group) of {(¢(r)), H; the generators in G/H do not annihilate (¢(r)). As (¢(r)) goes through all possible
directions in the dim(r) space, the corresponding little groups go over a subset of the subgroups of G.
For each little group, the branching rule of r into irreps of H must have at least one singlet: r=1+---.
H is a maximal little group if there is no (¢(r)) in the dim(r) space with little group H* satisfying
G D H* D H, where, of course, H and H* both have branching rules of the form r=1+---. In this
problem we hold the length [(¢(r))| fixed, and vary its direction only.

It is worthwhile repeating an elementary but important point: the embedding of the little groups of r
in G can be specified by the branching rule for HC G as r=1+- - -, or the branching rule for some
other faithful irrep of G. Just as for the maximal subgroups, a little group of a given name in some
instances can have several inequivalent embeddings in G. For example, E; has three inequivalent SU,
maximal subgroups; there are less academic examples in symmetry breaking problems.

The total list of little groups often includes many of the subgroups of G, ranging from maximal or
nearly maximal subgroups down to nothing. Of course some of these breaking patterns may not be
possible for a given irrep in a Yang-Mills theory: if r does not have enough degrees of freedom to give
masses to all the bosons in G/H, then that breaking is excluded; and more trivially, if r has no singlets in
some (nearly) maximal subgroup, that subgroup is never the unbroken Yang-Mills theory after the
symmetry breaking. The group theoretical solution to the symmetry breaking problem keeps track of
both of these features of a Yang-Mills field theory.

Next, we examine the relation of the little groups to the regions in the dim(r) space of the (¢(r)).
Suppose H is the little group of (¢(r)). The subgroup constructed from gHg™', where g is a trans-
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formation in G, is isomorphic to H; since the gauge freedom of G allows (¢(r)) to be transformed to
A(gX@(r)) (A(g) is the matrix representation of g on r), this transformation makes no change in the
physical content of the theory. The “line” traced out in the dim(r) space by A(gX¢(r)) for all g is called the
orbit of (¢ (r)). Except in a few special cases, the orbit covers only part of the dim(r) space. (Recall (¢ (r)) is
of fixed length.)

Next we gather together sets of orbits into strata. Let us examine the little group of a point in the
dim(r) space that is an infinitesimal distance away from the orbit of (¢(r)), asking whether the little
group has changed; if it has not changed up to a conjugation of the little group, that orbit belongs to the
same stratum as (¢(r)). Thus, the dim(r) space can be divided into strata, which are distinguished by
their little groups.

One of the most interesting characteristics of a stratum is the nature of its “‘edge’’, whether it is open
or closed in the topological sense. An orbit is in a generic stratum if there is an orbit within every
infinitesimal distance of each orbit (that is, the stratum is open), so the boundary is itself in a different
stratum, which is closed. Actually, the boundary orbit of a generic stratum is in a stratum with a larger
little group. This statement can be tightened up considerably: if the little group of (¢(r)) is a maximal
little group, then (¢(r)) is in a closed stratum, which is the first theorem above.

It may be helpful to use this language on a trivial situation. Let the little group be the set of
reflections x + a<>—x + a that leaves V(x)= x? invariant. For a# 0 the little group is “‘nothing”’; the
intervals (strata) a# 0 are open. At the boundary point a = 0, which is a ‘“‘closed stratum™, there is a
twofold reflection symmetry x<>—x. This illustrates the first theorem. The feature that V(x) is also
minimum at a = x = 0 corresponds to the second theorem. The feature that there are no other minima
corresponds to the Michel conjecture.

The second theorem relates the topological characteristics of the edge of the strata to the existence of
stationary points of invariant functions of ¢(r). Theorem 2 above can be broken down into several cases
[80]. Let the magnitude of (¢(r)), which is the second-order invariant of r, be fixed. Michel and
Radicatti then prove that:

(1) No higher-order invariant of r has an extremum on an orbit in a generic stratum. (However,
functions of invariants may have extrema in generic strata without the individual invariants being
extreme.)

(2) If there is only one orbit in a closed stratum (called a critical orbit), then all real smooth functions
of the invariants of r are stationary (i.e., dV(¢(r)) =0 for any V(@) at ¢(r) = (¢(r))). Orbits small
distances away from a critical orbit have smaller little groups.

(3) If there is more than one orbit in a closed stratum, any function of the invariants is stationary on
at least two orbits (a relative minimum and maximum), and for any given orbit there is some function of
the invariants that is stationary on it. '

Let us summarize the line of argument just followed: H is a maximal little group implies {(¢(r)) is in a
closed stratum, which in turn, implies that V(¢(r)) is stationary for (¢(r)) on some orbit in that stratum.
This line of argument is converse to the one needed for minimizing the Higgs potential, where the little
groups should be determined by minimizing V(¢(r)). Michel shows [15] for a special case that the
converse is, indeed, true: If V(4(r)) is a 4th order Higgs potential and r is an irrep or a conjugate pair
of complex irreps, then the little group of any (¢(r))# 0 that minimizes V{(¢) is maximal. When
extended to include radiative corrections, we call this the Michel conjecture.

This conjecture is probably not obvious to many model builders, because there are some popular, but
trivial counter examples. If the Higgs potential depends only on the second order invariant ¢ "¢, then
(¢(r)) of fixed magnitude may have nonmaximal little groups. For example, octet breaking of SU, with
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a reflection symmetry 8 «> —8 classically breaks SU; to SU, x U, or U, x U,. Even without the reflection
symmetry the adjoint 78 can break Eq in the classical Higgs problem down to (U,)°. However, the value
of the minimum of V((¢(r))) is the same for all subgroups (afterall, V(¢ (r)) depends only on [{¢(r))|, so
it is constant), and it is necessary to examine the radiative corrections to make a choice. After the
quantum corrections are completed, the only remaining stationary points do have maximal little groups.
(The concern that V(¢(r)) may have additional minima can be seen from studying an SU invariant sixth
order function of the 8 of the form (8% — a)*+ (8* - b)’ the ratio of cs/c, at the minimum depends on the
coefficients, and so it is arbitrary. (; is the ith order invariant.) Only for a special value of the ratio is the
little group SU, X Uy; otherwise it is the nonmaximal little group U, x U, [81].) Of course, renormalizability
restricts the potential to 4th order, so this example is academic. However, it makes it clear that the Michel
conjecture could be wrong: extreme values of V(¢ )can be due to extremizing the function or to extremizing
the invariants. The evidence is that, for a Higgs potential plus radiative corrections, the extreme values of
V(¢) results from extremizing the invariants (not the function), so Michel’s conjecture holds for cases of
physical interest.

The symmetry breaking patterns derived from Michel’s conjecture coincide with the patterns derived
by explicitly minimizing Higgs potentials with radiative corrections. Thus, the list of maximal little
groups gives a complete list of possible minima of the Higgs potential. This list gives as complete an
answer as possible, at least until there is a theory for the arbitrary parameters in the (effective)
potential. When there is, the minimum can be found by substitution. It must be noted, however, that there
may be some maximal little groups of (¢) that cannot minimize a Higgs potential. For example, adjoint
breaking of SO,,., yields SO,,_, X U; or SU,, X U, only, depending on parameters [75], where the other
maximal little groups are merely stationary points.

A few examples of the above procedure will establish its simplicity in applications; the answers to
well-known problems and many new ones can be obtained with essentially no work.
One of the prettiest examples is single adjoint breaking; it is easy to verify the following rule [82]: each
maximal little group of the adjoint irrep of G is found by removing one dot from the Dynkin diagram;
the group of the resulting Dynkin diagram times a U, factor is a maximal little group. [Recall the
discussion below (6.10).] (To get a complete list of maximal stability groups this procedure should be
repeated for each dot in the Dynkin diagram of G.) Thus the 78 of E¢ can break it to SO0 x Uy,
SU, x SUsx U;, SU,XSU;xSU3XxU,, or SUsX U;. As mentioned before, in the Higgs problem
without radiative corrections, the potential depends on the invariant ¢'(78) ¢(78) only, so the minimum
does not depend on direction; the symmetry group of V(¢) is SO D Es until quantum corrections are
included. However, the one-loop corrections bring in higher-order invariants; for a model with adjoints of
scalars and vectors, SOy X U, is the stability group of the absolute minimum [78].

As another example, SU,, can be broken by n+ii to SU,_; only, since n has no singlets in other
subgroups of SU,, that are not also subgroups of SU,,_;. Similarly, n breaks SO, to SO,_,. The breaking
of SO, by 16+ 16 is a quite nontrivial Higgs problem. The singlet of the 16 in SUs is already familiar,
where 16 =1+ 5+ 10 and 10 = 5+ 5. There is another maximal little group, which can be found by the
chain SO;6 20 SOy D SO D SO, with 16 = 1+ 7+ 80f SO,and 10 = 1 + 1 + 8. Clearly SO, with rank 3isnot a
subgroup of SUs: either look at table 14 or note that there are no candidate branching rules of the § of SUsto
irreps of SO,. The numerics of other conceivable branching rules of the form, 16 =1+ - -, of other
maximal little groups are clearly impossible, as can be seen from table 14 and a rudimentary knowledge of
the irreps of those subgroups of SO, or their subgroups. So the complete list of maximal little groups of the
16 + 16 of SO,, are SUs and SO,. Michel’s conjecture yields the same list of breaking patterns as explicit
Higgsism [76]. _

Finally, consider some E¢ examples. The maximal stability groups of 27+ 27 are SOy, and F,; all
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other singlets of 27 are in subgroups of SO, and F,. The 351'+ 351’ [351'=(0 0 0 0 2 0)] has more
maximal stability groups: SO, Fs, Sps, SU,, SU, X SU,, and G.. This example makes it clear that all
the maximal subgroups are of interest for a complete analysis of symmetry breaking, so the more
lengthy tables of ref. [57] are indispensable. The shortcoming of our tables, that they are restricted
mainly to physical embeddings of color and flavor, is partially rectified in table 58, where the branching
rules to the irreps of all the maximal subgroups of the first few irreps of each simple group up to rank 6
are listed. The reader should enjoy finding little groups of other irreps; a long list will appear in [16].

There are a number of candidate extensions of Michel’s conjecture to reducible representations, but
without a statement of the physical constraints on the symmetry breaking in unified models, they may
appear rather ad hoc. Without some restrictions any little group appears possible, including
nothing. As another example, if a strictly maximal little group is required so that the singlets of the
different irreps are “lined up” as well as possible, then E¢ and SO,, cannot be broken to just QCD and
QED. Besides there are many Higgs-model countér examples to such a stringent requirement. (See ref.
[76], or consider the algebraically trivial example of 3+ 3+ 8 breaking of SU; with 8 <> —8 symmetry, up
to dimension 4 terms, and nonzero vacuum values of (3, 3) and (8, 8). SUs; is then broken to either SU,
or U,, depending on the sign of the 3(8%),3 invariant, where (8%, is coupled to the 8 in 3x 3. Apparently,
proper attention must be paid to the “mixed” invariants, made from different irreps in the Higgs
problem, so attention to this is required in general.)

A possible method for finding the little group in the reducible case can be physically motivated as
follows. Consider a two representation problem with r; +r, (or fields ¢(r;) and ¢(r)), where r; and r,
are each real irreps or complex-conjugate pairs of irreps of G. (Generalization to more irreps will be
obvious.) Since it is likely that the breakings (¢(r,)) and (¢(r,)) are due to different physical
mechanisms, there is no reason a priori to believe that the vacuum values have the same order of
magnitude. (The mass hierachies required for unified models to be viable support this viewpoint.) Thus,
the symmetry breaking should be treated sequentially, not simultaneously, with (¢(r,)) > (¢ (r2)).

The first breaking can be analyzed by Michel’s conjecture: (¢(r;)) breaks G to H;, where H, is a
maximal little group of ry; r, is broken into a sum of irreps Z; r,; of H,, where each ry; is a real irrep of
H, or a complex-conjugate pair. At first sight, the sequential picture does not seem to help, since the
next problem, that of breaking H, to H, by the reducible representation Z,; r,;, looks like the original
problem. However, at mass scales much below {¢(r,)) the effective Lagrangian with symmetry H, and
spinless bosons X, ¢(r2;) in an effective Higgs potential still knows about the symmetry G. For example,
the invariants of r, break up into specific sums of the invariants of H;,. In many cases, the nonzero
component of (¢p(r2)) is in only one ry; of Hy, so that H, is a maximal little group of r». This proposal
correctly reproduces the symmetry breaking patterns of the Higgs potentials that have been solved;
however, (¢(r:)) can be moved from its orbit in an H, invariant direction, so although the group H, may
be correct, {(¢(r,)) is no longer invariant under H,. Thus, the feature that the subgroups work out
correctly could be a coincidence [83].

A simple example will illustrate the conjecture and its difficulties. Reconsider the 3+ 3+ 8 of SU,
problem. If the 3 breaking is first, its maximal little group is SU, only. Then, with 8=1+2+2+3 of
SU,, the final possibilities are SU,, U;, and nothing. In the other order, 8 can break SU; to SU, X U,
with 3 = 2(—1)+ 1(2). The 3 then breaks SU, x U; to SU, or U,. Only in the case of SU, do both the 3 82
3 and 3 83 invariants have stationary points (the stationary point of the 383 invariant is a saddlepomt)
in the other two cases only the 3 823 is stationary. If there is the notion of a critical orbit in the
reducible representation breaking case, it seems to require the breaking directions of the various
representations to line up as well as possible. However, at least in this example, the Higgs mechanism
can select other cases, so the notion of a critical orbit is not as attractive as for the irreducible case. Even
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with these concerns in mind, it is interesting to apply the rule to cases that have been solved explicitly.

The above rules can be used to rederive rather quickly the breaking patterns of the n + i + n + i of SU,,,
which breaks it to SU,,_,; the n + n of SO,,, which breaks it to SO, _,; the n + ii + adjoint of SU,,, which gives
the long list in ref. [76]. The reader might enjoy checking their answer for 16 + 16 + 45 breaking of SOso.

As a final simple example, consider how far the difermions in a one-family Es model with f; = 27 can
break E¢ along the chain, SO, D SUsD SU,Xx U, xSU3D U™ x SU5. The difermions are spinless
bosons in (27 X 27), = 27 + 351'. There exist vacuum values in the 351’ that can break Eq to SU, X U, x
SUS$, with a vacuum value in the 27 completing the physical breaking chain, up to additional U, factors.
However, our question is, is there a Higgs potential that can do this? In fact, this complicated Higgs problem
has been solved by a computer program written by Stech and collaborators [8], and their preliminary results
are that E¢ can at best be broken to SU, X U, x SUS3.

As stated before, the maximal little groups of the 27 are SO, and F,, and the maximal little groups
of the 351 are SO0, F4, Sps, G2, SU3, and SU, x SU,. (In the last case, the branching rule of the 27 is
(2,6)+ (1,15).) Thus, it is clear that the greatest flexibility is gotten if the 27 does the first breaking.
Then the 351 breaks up into 1+ 10 + 16+ 54+ 126 + 144 of SOm The 126 can break SOy to SUs, and the
144 can break it to SU,x U, x SUS. Thus, U™ X SUS is not a solution of 27+ 351’ breaking. Further
exploration and application of these techniques will not be described here; they are planned to be the topics
of [16]. Also, family physics and other efforts to be more realistic are not discussed here.

Exploitation of the correspondence between weight space and Hilbert space of an irrep greatly
simplifies representation theory, and if one is willing to select a basis for the embedding of flavor and
color in G, this correspondence can often be used to simplify greatly explicit calculations in Yang-Mills
theories. For example, there are several interesting cases where the concept of symmetry breaking
direction in weight space (in addition to the Hilbert space direction) is useful, and can be used to analyze
the breaking by directly computing the vector-boson mass matrix. The generality of this procedure is
vindicated by the above analysis; we discuss this in more detail now.

The vector-boson mass matrix of a Yang-Mills gauge theory with local symmetry G can be obtained
in the lowest-order approximation to the Higgs symmetry-breaking mechanism often in a very simple
way once the vacuum expectation values of the spin zero fields are known. Its group theoretical
structure is abstracted from the term in the Lagrangian, (D,¢)" D*¢, where D, = 3, —igAaT,, T, is a
representation matrix of the scalar fields, and (¢(r)) = ¢, is a set of constant fields in the unitary gauge
corresponding to the spontaneously broken vacuum state of the quantum field theory. The mass matrix,
obtained from (D,¢.)" D*¢,= M*® A, A% is often written in the notation,

(M?)as = g%(@%)i (T-a)i (T (@, 9.1

where (T,); is the ij matrix element of the ath generator in the representation r to which the spinless
fields are assigned, so a=1,..., N(adj) and i=1,..., N(r). T, is a ladder matrix with root a, so
(T.)' = T-.. The notation in (9.1) is rather schematic, since, i, j, k are weights plus whatever other labels
are needed for the representation vectors. In a more explicit notation (T,); = (r, A|X,|r, A"), where X,
is the generator with root a, and the matrix element of X, is nonzero when A = @ + A’, Since Hermitian
conjugation (or CP conjugation) reverses the signs of the weight of a field and takes r to f, (9.1) may be
written,

(M) = g* 2”¢$(i', —A") (%, —A"| X_a|F, —A) (r, A|Xolr, A7) @u(r, A). 9.2
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This notation has the advantage of making it explicit that ¢.(r, A) is a tensor operator and ¢ I(F, —A) is
an adjoint tensor operator, with ¢(f, —A)= phase X (¢.(r, A))'.

In the (classical) Higgs model, (9.2) is evaluated by computing the vacuum values ¢.(r,A) by
minimizing the Higgs potential for some choice of the parameters, and then diagonalizing (9.2) to find
the vector boson masses. The little group is determined by the eigenstates of (9.2) with zero eigenvalues,
or, equivalently, by the set of transformations leaving ¢.(r, A) invariant. We now look at some special
cases where a choice of basis makes the analysis of (9.2) easy.

There are cases where the mass matrix is greatly simplified if the definition of a tensor operator is
substituted into (9.2). A tensor operator T(r, A) is defined by the commutation relations,

[Xa, T(r, A)) = 3 (r, M| X, Ir, A) T(r, A, 9.3)

and the adjoint of the operator changes weights when acting on kets by —A. Thus (9.2) may be written
without loss of generality as [84]

(w)ab == gz ; Tl'{[X_a, ¢'fl(i’ —A)] [Xb, ¢v(r1 A)]}’ (94)

which is a convenient form in cases where ¢.(r, A) is easily expanded as a polynomial of the generators.
Of course, the simplest case is adjoint breaking, where ¢, is just a generator.

Suppose that r is the adjoint of G and ¢.(r, A) has zero weight, so that ¢, can be expanded in terms
of the generators in the Cartan subalgebra as

st A =0)= S GH; 9.5)

i=1

the axis defined by [y, .. ., &) is the symmetry breaking direction in weight space, as is now shown. If
(9.5) is substituted into (9.4), along with the commutation relation (4.2) ((H,, E.] = a:E,, where a is a
root), then (9.4) becomes

(M?)a = g* Tr{ (2 a@) X, (2,: b;E,-) X.,} =g ba (Ei‘, Eiai)2, (9.6)

where an obvious normalization convention on the group generators is used in the last step. Note that
2 ag; = (c, a) is a scalar product in weight space, so the mass is proportional to the projection of the
weight of the vector boson onto the symmetry breaking axis ¢; no boson in the Cartan subalgebra gets a
mass by this breaking.

We use this result to answer explicitly and quickly, can 24 adjoint breaking take SUs to SU, x U, x
SU,. The breaking must be in the Cartan subalgebra since the rank of the two groups is the same. An
affirmative answer is required by the “dot removing procedure”, so it must be possible to find a vector ¢
that does so. Any adjoint breaking must leave the gluons massless. Thus ¢ must be perpendicular to the
color roots, identified from the action of (7.4) on the roots in table 9tobe (1 0 0 1), (1 1 -1 0) and
(0 -1 1 1). Thus, ¢ must have the form [a, b, a + b, —a). For the big I = 0 breaking, ¢ must also be
perpendicular to the I root (-1 1 1 —1), so a = —2b. Thus ¢ is proportional to [-2 1 —1 2] and ¢ is
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proportional to (1 —1 1 —1). The magnitudes of (¢, a)for the lepto-diquark roots are equal and nonzero;
this gives an explicit representation of the breaking of SUs to SU, x U, x SU; by the 24.

It is easy to carry out the analogous analysis for adjoint breaking of Es. The breaking direction must
be perpendicular to the simple color roots, (0 1 0 0 ~1 1) and (0 —1 0 0 1 1) (see table 20), so

é=[-cdabdo0), ©.7)

where the embedding of color and flavor follows the conventions of section 7. If, in addition, ¢ is
perpendicular to the IY root, as is necessary for the very large components of the I = 0 breaking, the
big breaking B has the form

B=[-ccabc0) 9.8)

The vector-boson mass eigenvalues are then parameterized in terms of a, b and c; the scalar products of
B with the roots are listed in table 20.

Three of the six vector bosons associated with the Cartan subaigebra of Es must acquire a mass by
other means, since the adjoint breaking alone leaves all six massless. The weak breaking has |AI*| = 3, so
its E¢ weight is nonzero. Nonzero components ¢,(r, A) with A nonzero also contribute to the mass of
bosons in the Cartan subalgebra.

Let us suppose for simplicity that there is a ¢.(r) on an orbit with a ¢, that is nonzero for just one,
nondegenerate value of A. The portion of (M?),, referring to the Cartan subalgebra is usually not
diagonal, but the part for the bosons corresponding to the nonzero roots is diagonal, since the nonzero
roots are not degenerate. In this simple case the sums in (9.2) reduce to

(M2)ab = g2 ab[l(r’ A+ a|Xa|r, A) ¢V(r’ A)‘2+ |<P’ -A+ a|Xa'i" —A> ¢1(iv _A)|2] (99)

The matrix elements of the generators may be computed in a stepwise fashion from (4.2a), as discussed
at the end of section 7. Consider the simple yet useful case where the A for which ¢, is nonzero is an
“extreme” weight. An extreme weight is one where for any root q, if A + a is a weight, A —a is not.
From (9.9) it is clear that if neither A + a nor A — a is a weight, then M,, = 0; it is always true that
(A, a)=0in such a case. Next, let us select the sign of root a so that A — a is a weight of r; then

(M3 aa = g7(r, A — a|X_a|r, A)? |@u(r, )P = (M?)_a-a. (9.10)

The value of [{r, A — a|X_,[r, A)? is (A, @), which follows immediately from (r, A|r, &) = 8,,., (r, A| X, =0,
and [X,, X_.] = a.H;; cf. (5.1).

Suppose the |AI"|=3; breaking of E¢ is due to a single, nonzero, extreme weight, L. Then
(Q*™,L)=0, (L, I%¥) = +3, and L is perpendicular to the color roots, which requires L to be of the form,

L=[-d d+1l,d+eed=*1,0], (9.11a)
or from (4.9),
L=(-3d¥1,2d-e+2,d+e¥1,e-2d+1,2d—e*2,-d—-¢). (9.11b)

All the Q°™ =0, |AIY) =3 weights of the 27 (table 21) are of this type; the three candidates are:
©0010-1),(-101-100)and(0 1 -1 0 1 0). A linear combination of the bosons coupled to
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@', O" and Y™ (see table 19) gets a mass from any one of these breakings, so SUY x Uy x Ui x U} is
broken to U™ x U, x U,. A boson with nonzero weight, a, gets a mass-squared contribution propor-
tional (L, a).

In the above Es examples, ¢, is in a stratum where it can be brought to a form ¢,(r, A), which is
nonzero for just one weight: in the first case A = 0 and in the second A # 0. Then there is a geometrical
interpretation of the boson masses as scalar products in weight space, and it is easy to identify the
maximal little group solutions in terms of this parameterization. However, there are closed strata where
the ¢, are not equivalent to a single-weight ¢,(r, A). (The existence of such strata corresponds to, in the
classical Higgs problem, the problem of finding a canonical form for the vacuum value [75, 76].) Often
(perhaps always) ¢, in any closed stratum can be brought to a two weight form ¢.(r, A1) + ¢.(r, A2), if it
cannot be brought to a one weight form. As an example of a stratum where the canonical form must
have two weights, recall the breaking of SO, to SO, by 16 + 16. Here the canonical two-weight form
has A, related to A, by the C reflection (see section 6), so C ¢.(r, A1) C' = ¢.(r, A2). A vacuum value in
the 27 + 27 that breaks Eg to F, has the same property. These C conserving breakings transform a chiral
into a vectorlike theory. Thus the two-weight form of (9.2) may be irrelevant; it is not recorded here
because it is messy, but easily derived from (9.2).

We return to the E¢ model in order to make a few more comments.

Suppose the I'™ = 0 breaking belongs to just one nonzero weight of the 78. Then B has the form
(9.8), further constrained by the requirement that (B, Q°™) = 0 from QED. Using table 19, (9.8) is further
simplified by the constraint a = b + c. Note from table 20, though, that the SU; leptodiquarks then
remain massless. In fact, the only nonzero IV = 0 weight is (0 —1 1 1 —1 —1), which is left invariant by
an entire SUs. (This would not necessarily be so for a nonextreme weight, since both terms in (9.9) then
contribute.) This would have the unwanted implication of a large proton decay rate, so presumably the
I'" = 0 breaking has a component with zero weight or several nonzero weights. If we require that B have one
zero weight, then the big breaking must transform as a component of the 78, 650, 2430, 2925, or
higher-dimensional, triality-zero representation. If the fermions are assigned to triality 1 or 2 represen-
tations, those triality zero irreps do not contribute to the fermion masses directly. Consequently, models
with a big IV = 0 breaking of zero weight only are not adequate, since they do not solve the neutrino mass
problem, at least not in the tree approximation. Thus, we conclude that the breaking of E¢ is more
complicated than these naive guesses. :

Suppose that B is due to an explicit adjoint representation of Higgs scalars alone. The only
independent Casimir invariants of E¢ are of order 2, 5, 6, 8, 9 and 12, so the Higgs potential can depend
on the length of the 78 only, since the fourth order invariant is proportional to the square of the second
order one. Thus, in the tree approximation, @, b and c¢ in (9.8) are not restricted, which is-an example
where Michel’s conjecture does not apply for E4 since the symmetry is SO55. The one-loop corrections to the
effective potential select a = 0 and b = —c, so an entire SO, X Uy is left unbroken [78)]. There is, however,
no reason to believe that, when the fermions and scalars (which contribute with the opposite sign of the
vector masses in the one-loop approximation) are included, these radiative corrections would dominate the
determination of B. It is even conceivable that B is determined by the weak breaking.

In simple Higgs models with a reducible representation of scalars, it often happens that scalars in
different irreps get vacuum values and, for a range of parameters, their directions.are perpendicular in
weight space. (Recall the SU; Higgs model with scalars transforming as 3+ 3+ 8.) The weak breaking in
the standard SUs model transforms as 5§+ 5, or the 10 of the SO;, model, which suggests that the weak
breaking L have weights (0 —1 1 0 -1 0) and (1 0 —1 1 0 0) of the 27 E¢; see table 21. L is
perpendicular to B if a=2¢c and b=3c. f B is in this direction, then it breaks Es down to
SU% x SU, x U; x Ui X SUS.
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We now continue the study of the fermion mass terms begun in section 2, applying the results of the
C analysis of section 6. Consider the SO,, model with a single family f; = 16. Following the embedding
conventions of section 7, we identify the physical significance of each of the 45 SO,, roots. The nonzero
color roots are (0 1 0 00), (100 —-11)and (-110 1 -1), and their negatives, and the electric
charge axis, properly normalized, is 3(—~2 ~2 3 —1 1). The action of C on the generators is to flip the
signs of these roots and the Q°™ axis. The remaining equations can be gotten from the generators, but it
is slightly simpler to study the weights in the 10: write out the weights of the 10, compute their flavor
and color content according to (7.3) and (7.4), and then require that the action of C (an inner
automorphism) on the weights do what it must to color and electric charge. It follows that the action of
C on the SO, weights in the Dynkin basis is

-1 0 0 0 0
0 -1 0 0 0
C(Som) = 0 0 -1 -1 -11]. (9.12)
0 0 0 0 1
0 0 0 1 0

Thus C leaves invariant the axis with Dynkin labels (0 0 1 —1 —1), which corresponds to the diagonal
generator (3Y™ +4Q" - 10I3)/5; C inverts the SUS roots, electric charge, and 2Q"+ Y™, where the Y™
axis is 3(—-4 -1 6 -5 —1).

The action of C on the weights in the 16 is as follows: the u quark weights, (0 0 0 0 1),
(-10010) and (0 ~1 0 0 1) are reflected to the i weights, (0 0 -1 10), 10 -10 1) and
(0 1 ~1 1 0), respectively; the d quark weights (0 1 0 -1 0), (-1 100 —1) and (0 0 0 —1 0) are
reflected to the d weights, (0 -1 10 —1), (1 =1 1 =1 0) and (0 0 1 0 —1), respectively; and the e
(1 0 0 0 —1) is reflected to the e* weight (=1 0 1 —1 0). Finally, the ». with weight (1 —=1 0 1 0) is
reflected to (-1 1 -1 0 1), which is the SU; singlet and is called the (7).

The weights of the neutral lepton mass matrix are the sums of the weights of the corresponding
states. Thus, the », mass matrix element (vi|M|p) has weight (2 -2 0 2 0) with |AI*|=1: It is
reflected by C onto ((#).|M|(#).), which has weight (=2 2 —2 0 2) and is a weak isospin singlet. The
off-diagonal element (v |M|i.) and its transpose have weight (0 0 —1 1 1), |AI*] =3, and are invariant
under C. The neutral-lepton mass matrix can be written in the form,

VL ﬁL
(1-1010) (-11-101)
148 .
1-1010 [2-2020) [00-111)
A" =1 |ATY| =3 . 9.13)
oy <
(-11-10D{[00-111) (-22-202
|AT*| =3 |AI"] =0

where the [. . .] signify that the mass matrix element is reflected onto itself by C.
The |AI*| = 5 mass has the same weight (0 0 —1 1 1) as the u quark, so it is expected to have a value
of a few MeV. In order for the small eigenvalue of (9.13) to be a few eV or less, the |[AI"] = 0 term must
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be huge, and if we ignore the |AI*| = 1 term, the mass matrix has the form [14],

(2 ) 9.14)

which has small eigenvalue m?*/M, approximately. Note that (9.14) can be restated as: the weak isospin
conserving mass violates C maximally, that is, it is odd under C, while the |AI"| = 3 mass conserves C.
Analogous observations for larger groups or larger irreps are not as trivial as they appear here.

The second example is less trivial: the unifying group is E¢ and a single family is assigned to a 27. The
27 has two charge —3 quarks and their antiparticles, so there is an opportunity to study the C properties
of the quark masses in this example.

The symmetric subgroups of E¢ are Sps, SU,X SUs, SO40X Uy, and F,. Of these, the reflection
associated with Sps and F, reflect 27 to 27; CP is associated with Sps. We have already argued that C
must be associated with SU, x SUs, since it is inner and flips the signs of enough diagonal generators; C
leaves invariant two of the six diagonal quantum numbers in Ee.

The embedding of color and flavor in Es can be described by the subgroup chain
EsDS0;0xUiDSUsx UixUiDSUYxUYxSUSx Ui x Ui, with the projection of the Eg¢ to
SO,, weights given by (7.2) and the remaining projections are given by (7.3) and (7.4).

The C reflection is constructed in the same fashion as (9.12) for SOy. It is

CEe)=1| - 9.15)

OO OO
|

O OO
|

OO OO

SO = O -

OO =D

_—o O o OO

It inverts color roots and reverses the signs of electric charge and 2Q"+ Y™, while leaving
3Y"+4Q - 10I7 and Q" invariant. :

Three of the neutral lepton weights in the 27 are eigenvectors of C(E¢) with eigenvalues +1:
-101-100), 01-1010) and (1 -101 -10). The other two neutral weights
00010 -1)and (1 0 -1 0 0 1) are transformed into one another by C. The remaining weights
carry electric charge and transform under C as required: for example, the charge 3 u quark has weights
100000),1-10010)and(1 00 0 0 —1), which are reflected by C in (9.15) to the G weights,
©00-1100),01-11-10),and(© 0 -1 1 0 1), respectively. The u quark mass carries weight
(1 0 -1 1 0 0), which is a C conserving, |AI"| = ; mass.

The mass matrices of the charge —3 quarks and the charged leptons have precisely the same weight
structure, so we consider the quarks only. The charge —3 quarks in the SUs 10 of the SO, 16, to be
denoted 10(16), have the weights, (0 0 0 0 =1 1), (0 -1 00 0 1)and (0 0 0 0 —1 0); the C partners
©0-1100-1,0010-1-1)and(© -1 1 0 0 0), respectively, are in 5(16). The other charge -}
quark is in 5(10), with weights (-1 10000), (-1 00010)and (-1 1000 —1), and with C
partners (0 0 0 =1 10), (010 -1 0 0)and (0 0 0 —1 1 1), respectively, in 5(10). The mass matrix
M for the color state (1 0) for quarks and (—1 0) for antiquarks is, following the notation of
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D 5(10) d 10(16) d 5(10) D 5(16)
(-110000) (©000-11) (©00-110) (O -1100-1)
D 5(10)
(-1 1000 0) 0 0 (110-110)] (-10100—1)
AM=0 . JAF=0
d 10(16) —
©000-11) 0 0 ©00-101) [©-110-10) |(.16)
I WES AT =2
d5(10)
©00-110\[(-110-110]_.000-101) 0 0
D 5(16) —
©-1100-D\-10100-1) [0 ~110-10)] 0 0

There are two candidate assignments with extreme C behavior for the weak isospin conserving mass:
either the (-1 0 1 0 0 —1) mass is nonzero, the d state is left massless (before the weak breaking), and
C is maximally violated; or the (-1 1 0 —1 1 0) mass is nonzero, the D is massless, and the mass is C
conserving. For the purposes of studying the charged particle masses, these situations appear inter-
changeable, although the precise identification of the 5+ 10 left massless in the limit of no weak
breaking differs in the two cases. In the first case (d massless), the 5 belongs to the SO, 10; in the second case
(D massless), the 5 comes from the SO,, 16. The same result holds for the two charged leptons in
the 27.

In order to decide which assignment is more attractive, we turn to a study of the neutral lepton mass
matrix, which can be written as a matrix of weights where the labels on the rows and columns is given in

(9.17a) below:

00020 -2) [@0-1100)] 1-102-1-1) -=10100 -1 ©1r-111-1

[(10—1100);\(20—2002) (2—1—1¢1—11) ©00-101) 11-2011)
1-102-1) e 2-1-11-11 [2-202-20) [0-110-10) [A0-1100) 9.17)
(-10100-1) & (©O00-101) [0 -110-10) [-202-200)] [(-110-110)]
O1-111-1)e (@11-2011) [(10-1100)] [(-110-110)] f02-2020)

where the I's value of the mass matrix element is one-half the sum of the first five Dynkin labels; the weights
are in 27, 35Y', or both; the bold faced weights have I's = 0; and the bracketed ones are C eigenstates. It
may be helpful to write (9.17) in the more transparent notation of table 21:

5(16) 1(16) 1(1) 5(10) 5(10)

5(16) | 15(126) 5(126)  5(16) 24(144)  15(144)
+5(10) +1(16)

1(16) | 5(126) 1(126)  1(16) 5(144) 5(144)

+5(10) +5(16) (9.17a)

11) | 5(16) 116)  11(351))  5(10) 5110)

5(10) | 24(14)  5(149) 1(1(27))

+1(16)  +5(16)  5(10) 15(54)  +24(54)

5(10) | 15(144) 5(144)  5(10) 1127)  15(54)
+24(54)
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where the matrix elements correspond directly with those in (9.17). The 14, , 126, 54 and 16 of SOy, occur
only in the 351’ of Es; the 5(10) and 5(10) have components in both the 27 and 351'; the 16 is always in the 27;
and additional selection rules from U} and Uj restrict the origin of 1(1) as shown explicitly. Let us first
assume that the weak isospin conserving part of (9.17) is maximally C violating, so that only the entries
with weights (20 -2 0 0 2) [1126(351))), (2 -1 -1 1 -1 1) [1(16(351))], and (=10 10 0 —1)
[24(144(351')) + 1(16(27))] are nonzero. For a general choice of parameters, (9.17) has four nonzero
eigenvalues and one zero eigenvalue; the massless fermion has weight (0 1 —1 0 1 0), which is in 5(10).
Thus, with maximal C violation, the massless fermions at the weak isospin conserving level are classified by
5+10.

In the case of C conservation, the elements with weights (2 =2 0 2 -2 0) [1(1(351))] and
(=110 =1 1 0) [1(1(27)) + 24(54(351'))] are nonzero, and the neutrals in the SOy, 1+ 10 get masses.
Both neutral states in the 16 remain massless, at least until some C violation is introduced at the SO,
level. Thus, the C conservation hypothesis leaves a 1+ 5+ 10 of SUs to get masses from other sources,
such as the weak interactions. If the four component v mass comes from the weak interactions, then its
mass is of order the u mass, not in accord with experience.

Stated in a slightly different way, all the C conserving weak isosinglet masses leave SO, invariant, so
the fermions occur in SOy irreps, 16’s in this case, but the C violating masses leave just SUs invariant,
while violating SO;, and the low mass fermions in the 27 occur in a 5(10) + 10(16) pattern.

In summary, we find that the hypothesis of maximal C violation of the weak isospin invariant masses
can lead to a satisfactory fermion spectrum in several one-family flavor-chiral models. However, this
formulation needs more analysis, since at least two of the I = 0, C-violating matrix elements must be
nonzero, which requires both the 27 or 351’ irreps; the weak breaking must have another source in
models of this type. Consideration of C and application of the technology described here should help in
the search for a more satisfactory solution of the symmetry breaking problem; there is at present much
physics to be done.

Tables Table |
Table of tables

Table Title

Table of tables

Model builders’ view of the elementary particle spectrum
Embeddings of SUS§ in simple groups

Roots of SU;

Dynkin diagrams

Cartan matrices

Metric tensors for weight space

Root diagrams in the Dynkin basis

Root diagrams of rank 2 and 3 algebras

Level vectors

The weight system of the 16 of SOy and 27 of E;

Self conjugate irreps of simple groups

Simple irreps

Maximal subalgebras of classical Lie algebras of rank 8 or less
Maximal subalgebras of the exceptional algebras
Extended Dynkin diagrams

Symmetric subgroups and charge conjugation

Es and its subgroups with U™ x SU§

Physical roots and axes in E, weight space

Nonzero E, roots

00~ O B W N —

B m= oma et s e e e e
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Table 1 (continued)

Table

Title

21
2

Weights and content of the 27 of Eg
Ordering of simple roots for tables

SUs; irreps of dimension less than 65

SUj tensor products

SUj irreps of dimension less than 180

SU, tensor products

Branching rules for SU,D SU; x U,

SUs irreps of dimension less than 1200

SUs tensor products

Branching rules for SUs

SUgs irreps of dimension less than 1000

SU, tensor products

SUs branching rules

SO; irreps of dimension less than 650 and SO, D SU, branching rules
SO;7 tensor products

SOg irreps of dimension less than 1300 and SOg D SO, branching rules
SO tensor products

SOy irreps of dimension less than 5100

SOy tensor products

Branching rules for SOy irreps

SO irreps of dimension less than 12000
SOy tensor products

Branching rules for SOy irreps

F,4 irreps of dimension less than 100000

F4 tensor products

Branching rules for Fy irreps

Eg irreps of dimension less than 100000

Eg tensor products

Branching rules for Eg irreps

Guide to Eg projection matrices

Matrix elements for SUs vector-coupling coefficient-examples
Irreps, products, and branching rules for E;
Irreps, products, and branching rules for Eg
Irreps, products, and branching rules for SUsg
Irreps, products, and branching rules for SOy
Irreps, products, and branching rules for SOy
Irreps, products, and branching rules for SOz,
Branching rules to all maximal subgroups
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Table 2

Model builders’ view of the elementary particle spectrum

Spin 2:
Spin 3/2:
Spin 1:

Spin 1/2:

One graviton, considered in supergravity, but usually ignored in models that unify just color and flavor.

An intriguing “hole” in the spectrum; ignored in unified models, but supergravity Lagrangians suggest it should be filled.

Vector bosons mediating Nature's interactions, including the photon of QED, the charged and neutral weak bosons, and the eight gluons
of the strong interactions. Unified models suggest additional vector bosons; for example, in some models there are bosons that mediate

proton decay.

Quarks and leptons (only the left-handed states are listed)

@ G ()

i, do & 8 b w®

@ G G

+ + +
€L ML TL

Are there additional quarks and leptons, or other fermions with higher colors?

Spin 0:

Weak doublets

Weak singlets

doublets

singlets

None are known for certain. The weak breaking follows a |AI"| = § rule and the superstrong breaking, |AI"| = 0, but it is not known
whether either of these are associated with explicit scalar particles. One possibility is that the superstrong breaking is due to explicit
scalars in the Lagrangian, but the weak breaking is due to composites. The origin of the symmetry breaking is a major puzzle in today's

particle theory.

Table 3

Embeddings of SU$ in Simple Groups G, subject to the constraint that at least one
irrep of G has no more than 1°, 3 and ¥. G* (i for flavor) is the largest subgroup
defined by G D G"x SUS. The irreps of G satisfying the restriction to the set I°, 3,
¥, are listed, along with their dimensionality. See ref. (6]

Case G G" t Dimensionality

1. SU. SU,, X SU,, X Uy n n=n;+3n;

2. SU,  SU,.ax U, @) (:)

3. SU,  SU,XSU,,XSUsxU;xU; n=n+3n3+ 305

4, SO, SO, X SU,, x Uy n n=ny+6n;

5. SO. SO,-sx U n n=n+6
o0’ or g Q-1

6. Span Sp2a, X SU,, x U, 2 2n =2n,+6n;

7. | SU; 26 26

8. Es SU; x SU; 27 27

9. E; SUs 56 56
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Table 6

Cartan matrices of simple Lie algebras

2
-1

anan=| °

A(B.)=

2

A(D,)=

-1

-1

o .

-1

!
SO DO - OO

|
(== S

=T S 2= = =

0 0 2 -1
0 0 -1 2 -1
0 0 0 -1
S AE)N=] 0o o -1
-1 -1 0 0 0
2 0 0 0 0
0 2 0 0 -1
0 0
0 0
0 -1
0 0
0 0
-1 0
20
0 2

0 0 2 -3
0 0 A(GZ)’(—l 2)
0 0
oo 2-1 0 0
2 -1 -1 2 -2 0
-2/ AR g g
0 0 -1 2
0 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
. ABI=l 4 o -1 2 -
~2 0 0 o0 -1
2 0 0 -1 0

1
(=T S R — =~

ON - OO DO OO

OO O - OO

81



Table 7
Metric tensors G for weight space

1'n I-n-1) 1-n-2) --- 1:2 1-1
I'n-1) 2:(n-1) 2:-(n-2) --- 2-2 2-1
G| LD EEID S0 e B
1-2 2:2 3.2 o (n-1)2 (n-1)01
1-1 2-1 3.1 v (n=1D-1 n-1
222 - 2 1
2 4 4 - 4 2
1| 246 -6 3
CRETE R
2406 2n-1) n-1
123 =1 n2
111 1 1
122 - 2 2
fr23 3 3
G(C,.)=§ ...............................
123 - n-1 n-1
123 n-1 n
222 -0 2 1 1
2 4 4 .- 4 2 2
1 246 - 6 3 3
G(D,.)=§ ..................................................
2 46 - 2An-2) n-2 n-2
123 -+ n-2 n2 (n-2)2
123 - n=-2 (=22 nl2
4 5 6 4 23
5 10 12 8 4 6
1§ 6 12 18 12 6 9
GE=31 4 512 10 5 6
2 4 6 543
3 6 9 636
4 6 8 6 4 2 4
6 12 16 12 8 4 8
1 8 16 24 18 12 6 12
GE)=5| 6 12 18 15 10 5 9
4 8 12 10 8 4 6
2 4 6 5 43 3
4 812 9 6 3 7

4 710 8 6 42 5
7 14 20 16 12 8 4 10
10 20 30 24 18 12 6 15

8

GEI=| 6 12 18 15 12 84 9
4 81210 8 63 6
2 4 6 5 4 32 3
510 1512 9 6 3 8

6@=3(3 3)

G(Fy) =

[P T S

-0 W
N a2 NW
=
(%)

w
2
o
—_ N
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Table 8
Root diagrams in the Dynkin basis. “Level of simple roots” is the
number of simple roots that must be subtracted from the highest root
in order to obtain the simple roots; the next level has the n zero roots
corresponding to the Cartan subalgebra

Algebra  Highest root Level of Dimension
simple roots

A (100...001) n-1 n(n+2)
B. ©10...000) 2n-2 n2n+1)
C, 200...000) 2n-2 n(2n+1)
D, 010...000) 2n-4 nQ2n-1)
G, (10 4 14
F, (1000 10 52
E¢ 00000 10 78
E; (1000000 16 133
Es ©00000010) 28 248
Table 9

Positive roots in the Dynkin basis of rank 2 and 3 simple algebras, of SUs (rank 4) and of SOy (rank 5)

SU; Sp4 G,
an 20 a0
2-1x-12) on (-13)
Q-1-22 o1
t-n
SU. 2 -3)-12)
1o
A1-1)-111 SO,
2 -10)-12-1)0 -12) ©10
(1-12)
(100)-102)
(11-2-110)
Sps @ -1 0)-12-2)¢0 -12)
Q00
©10)
(1-11(-220) SUs
11-1%-101) (too1)
@2 -10)-12-1%0-22) 101 -1-1101)

Q1-10)-111-1%0-111)
(2 -100)=12-10)0 -12-1)00 ~12)

SO10
©1000)
1 -1100)

(-10100K10-111)
((11-111100-11X1001 1)
©-1011-110-11(-1101-1)101-1-1)
©-11-11)0-111-1)-111~1-1)11-100)
©0-102)00-120)§0 —12~1-1)-12-10 0)2 -1000)
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Table 10

Level vectors of simple groups. The ordering follows the conventions of table 5

SUpsi  R=[n2An-1),3(r-2),...,(n-12n]
SUS Ig = [4, 6’ 6» 4]
SUs R=[589,85]
8O R=[2n,22n-1),32n-2),42n=-3),....,(n - )(n+2),n(n+1)72)
SOy R=18,14,18,10]
Spon R=[2n-1),22n-2),32n-3),....(n - )(n+1),n?
SO;, R=[@Qn-2),22n~3),32n-4),....(n=2n+1),n(n-1)/2, n(n - )2}
SOg R =16,10,6,6]
$Oyo R =[8,14,18,10, 10]
G, R =[10,6]
F, R =[22,42,30, 16]
Es R =[16,30,42,30, 16,22]
E; R =[34,66,96,75, 52,27, 49]
Eg R =%, 182, 270, 220, 168, 114, 58, 136]
Table 11a
Weight diagram for the 16 of SOy
level
(0000 1) 0
ol
(001 0-1) 1
o3
(01-110) 2
a / \ a
A L
(1-1010) (010-10) 3
dl (!4 \ ‘uz
(=1 001 0) ///Sl—l 1-1 0) 4
% / 4 \ a3
(-1 0 1-1 0) (10-101) 5
o o / o
3 1 5
(-1 1-10 &z\\. (100 0-1) 6
o [+ o
zl 5 l 1
N\
(0-1001) (-1 10 0-1) 7
N ‘/,2
(0-110-1) 8
.,31
(00-110) 9

y

(00 0-10) 10
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Table 13
Simple irreps of simple Lie algebras

Algebra  Dynkin designation ~ Dimensionality

A, (10...0) nt+l
or (0...01) n+l
B, 10...0)* In+1
(000...01) »
C, (10...0) 2n
D 10...0)* 2n
©0...01) !
or (00....010)* ol
G, ©01) 7
Fi (0001) 26
| (100000) 27
or (000010)* 27
E; (0000010) 56
Es (00000010) 248

* This irrep can be constructed from products of the
unstarred irrep.

Table 14
Maximal subalgebras of classical simple Lie algebras with rank 8 or less

Rank 1
SU; DU R)
(SU,, SOs, Spy, all isomorphic)
Rank 2
SU; DSU,x U, (R)
J8uU, )
Sp4 D SU,; x SUy; SU, x U,y (R)
28U, S)
(SOs isomorphic to Sps, SO4~ SU, x SU,)
Rank 3
SU, DSU3x Up; SU,x SU, x Uy (R)
D Sps; SU, x SU, (S)
SO7 D SUy; SU2x SU, x SUy; Spax Uy R)
0G; ©)
Sp5 JSU3x Uy, SUz X Sp4 (R)
o] SUz; SUz X SUz (S)
(SO¢ is isomorphic to SU,)
Rank 4
SUs D SU,x Uy; SU,x SUsx U, R)
D Spq ®)
SOy 2 8S0g; SU,x SU, x Sps; SU, x SUy; SOy x Uy R)
D SU;; SU,x SU, )
Sps D SU,x Uy; SU, X Spe; Spa X Sps R)
D SU,; SU, x SU, X SU, S)
$0;g D SU, X SU, X SU, X SU,; SU,x Uy (R)

D SUj; 807; SU, X Spy ()]
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Table 14 (continued)

Rank 5

SUs D SUsx Uy; SU; x SUgx Up; SU3 x SU;3 x Uy
D SUs; SUy; Spe; SU, % SU3

S0O41 2 SOy0; SU, X SOg; Spa X SUs; SU, x SU, X SO7; SOy x U,
D SU;,

Spio D SUs x Uy; SU, X Sps; Sps X Spe
2 SU;y; SUz X Sp4

Solo 2 SUs x Uy; SUz X SUz x SUy; 503 x Uy
2 Sp4', $Oy; SU, x SO7; Sp4x Sp4

Rank 6

SU; DSUgx Uy; SU,x SUsx Uy; SUsx SU,x Uy
180,

8013 D §80y3; SU» x SOye; Spa X SOg; SU,4 % SO5; SU; x SU; X SOy; SOy x Uy
J8SuU,

Sp12 2 SUs x Uy; SUs X Spia; Spe X Sps; Sps X Spe
D SU,; SU, x SUy; SU, x Sp4

S0;2 D SUg x Uy; SU, x SU; % SOg; SU4 x SU4; SO0 x Uy
D SU, x Spe; SU;, x SU, x SU»; SOyy; SU; X SOg; Sps X SO;

Rank 7

SUg D SU;x Uy; SU;x SUg X Uy; SU3 x SUsx Uy; SU X SU4x U,y
D SOs; Sps; SUz X SU4

$0;5 D SOy4; SU2 X SOy Sp4 X §O10; SO7 X SOg; SU,4 x SOg; SU,; X SU, % SOyq; SO13x Uy
D SUz; SU4; SU2 X Sp4

Sp14 D SU; X Uy; SUz X Spra; Spa X Spio; Sps X Sps
D SU,; SU, x SO

80142 SU; x Uy; SU; x SU5 X §Oq0; SU, X SOg; SO x Uy
D Sps; Sps; G2; SO13; SU3 X SO415 Sps X SOy;, SO;7 X SO

Rank 8
SUg D SUgx Uy; SU, x SU;x Uy; SU;3 X SUg x Uy; SU4X SUs x Uy
D3 SOy; SU; X SU;
S0172 SO16; SU2 X SOw4; Spa X SO12; SO7 X SOy9; SO X SOg; SU, x SO11;
SU, x SU; x §O43; SO15 X Uy
28U,
Sp16 D SUs x Uy; SU2 X Spia; Spa X Spiz; Sps X Spio; Sps X Sps
D SUj; Sps; SU2xSO4
S$046 D SUz X Uy; SU; X SU;2 % §O42; SU4 X SO0; SOg X SOg; SO x Uy
D S0q; SU; X Spg; Sp4 X Sp4; 804s; SU; % SO43; Spa X SO41; SO7% SOy

R)
®
R)
®
R)
®
R)
®

®)
®
®R)
®

®)
R)
©®

R)
®
®R)
®)
®)
®
®)
®

®R)
®

®)
®)

®
(R)
®
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Table 15 Table 16
Maximal subaigebras of exceptional algebras; branching rules for the fundamental represen- Extended Dynkin diagrams for simple Lie al-
tation gebras. (The extended root is marked by x; black
- dots represent shorter roots.)
G;DSU; T=1+3+3 R)
D 8U,x SU; 7=(2,2+(1,3) (R) 040’//0"\0
A, 0=0—0— ... —D
b} SUz 7=7 (S) 1 2 3 n~1 n
FADSOQ 26=1+9+16 (R) ! 2 3 n-1 n
D SU; x SU; 26=8,1)+(3,3)+3.3) R) B, >o—o— . —T
D SU, x Spe 26=(2,6)+(1,14) (R)
X
28U, 26=9+17 ) x 1 2 o-1 =n
J8U,x G, %=(51+3.7 ®) ¢, T3—+— ... —CD
E¢D SOy x U, 27=1+10+16 (R) n-1
2 SU, x SUs 7=, 6)+(1,15) o R) X 2 3 o-
DSUsxSUsxSUs  27=(3,3,19+(3,1,3)+(1,3,3) (R) b >)__o_ .
n
2 SU; 27=27 (S) 1 n
2G; 27=27 ) -
D Sps 27=27 ®) X
SF, 27=1+2 ©) 6, —=
JSU3X G, 27= (6, 1+3,7) ® X 1 2 3 4
B F, 0—0—a=2—
E;DEex U 56=1+1+27+27 (R)
DSUg 56=28+28 (R) X
55U, xS0 56=(2,12)+(1,32) ®) £ o o
D SU3x SUe¢ 56 = (3, 6)+(3,6)+(1,20) (R) 6 1 2 3 4 5
28U, 56=10+18+28 )] _87
osU, 56=6+12+16+22 (S) E, 0—0—0—0—0—0—0
JSU; 56=28+28 ) 1 2 3 4 5 6
D SU,x SU, 56=(52+(3,6)+(7,4) ®) a8
S5U;xG, 56=(@,7)+ 2, 14 ) B, 0—0—do0—0—00 o
28U, x Fy 56= (4, 1)+ (2, 26) () 1 2 3 4 5 6 7 «x
DG, x Spe 56=(1,14)+(7,6) )
Es2 80y 248=120+128 _ _ (R)
D SUsx SUs 248=(24,1)+(1,24)+ (10,5)+ (10,5+ 5, 10)+ 5,10)  (R)
D SU;x Eg 248=(8,1)+(1,78)+ (3,27 +(3,27) (R)
JSU,xE, 248=(3,1)+(1,133)+ (2, 56) R)
28Uy 248=80+84+84 (R)
28U, 248=3+15+23+27+35+39+47+59 S)
JSU, 248=3+11+15+19+23+27+29+35+39+47 S)
28U, 248=3+7+11+15+17+19+23+23+27+29+35+39 (S)
DG,xF, 248 = (14, 1)+ (1, 52) + (7, 26) _ S)
DSU;x SUs 248=(3, 1)+ (1,8)+(7,8)+ (5, 10) + (5,10) + (3, 27) S)

oSp, 248=10+84+154 ©®
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Table 17

Symmetric subgroups of simple groups

G Gs rank(A) Action of C on irrep R
SuU, SO, n-1 R
SUp+q SU, xSU,xU;  min(p,q)* R
SU,, Span n-1 R
§$O,+q SO, x SO, min(p,q)* R (p or g even)
Ror R’ (p and ¢ odd)®
S0;, SU, xU, [/2) R
Span SU, x U, n R
Sprp+2q Sp2p X Spzg min(p,q)* R
G, SU, x SU, 2 R
F, SU, x Spe 4 R
0 1 R
Es Sps 6 R
SU, x SUg 4 R
SOwx U, 2 R
F4 2 R
E,; SUg 7 R
SU, x SOy, 4 R
Ee¢x U 3 R
Es SO 8 R
SUz x E; 4 R

* The case p or g equal unity defines a symmetric subgroup with SU; or
SO, empty; the Lie algebra of Sp, is isomorphic to that of SU,.

®If p+g=4n+2, C reflects complex spinor irreps into their con-
jugates; if p + g = 4n, C reflects the real or pseudoreal spinor irreps into the

nonequivalent spinor of the same dimension.

Table 18

Eq and its subgroups with U{™ x SU§

Group  No. max. Satisfactory maximal Unsatisfactory maximal
subgroups subgroups subgroups
E¢ 8 Fa, SO0 % Uy, SU,; X SUs, Gy, SU3, SU3 X G,
SU; x SU3 x SU3 (Sps]
| 5 SOy, SU3x SU; SU,, SU>X G,
[SU2 x Spe)
SOy 5 §0;, SU; x SU, SU,, SU; X SU,,
SU,; x SU, x Spa, SO, x U*
SOs 4 SO, SUx U, SU;, SU, X Sp4,
SU, x SU, x SU, x SU,
SO, 3 SU, G,, SU; % SU,; x SU,, Sp4 x U
SU, 3 SU;x Uy Spg, SU, x SU,
SOy 6 SUs x Uy, SU, x SU, x SU,, Spa, Spa X Sps
SOy, SU2X 8O,, SOsx U,
SUs 7 SUs x Uy, SU; x Uy x SU,, SU;, SU, x SU;,
SU3x SU3 x Uy [SU4], [Sps]
SUs 3 SUx Uy, SU; x Uy X SU3 Sps

* See discussion for table 40,
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Table 19
Physical roots and axes in E¢ weight space
Dynkin basis Duat basis Dynkin basis Dual basis
(11nEooool 123212 I3 axis 10001 -1 M11110
Color roots C-D©0100-10 (122101 Y™ axis i3-46-61-1 f1-11-3-10
-12)0-10011 f001111) Q" axis 31-101-10) [1-101-10)
Weak isospinroot (10001 ~1) 111110] Q" axis (-3-141-1-4) 114310}
Q™™ axis i3-23-32-y 4212010 Y +40"-10B) (-1 -12-1-10) -1 -10 -1 ~10]
Table 20
Nonzero Eg roots
Root Level  Color o I3 Q' SUsSOyp) B-a [-a
Color SUj; roots
000001) 0 amn 0 0 0 24(45) 0 0
©0100-10) 4 Q-1 0 0 0 24(45) 0 0
©-10011) 7 -12) 0 0 0 24(45) 0 0
Left-handed SU; roots
10001 -1 6 © 0) 1 1 0 24(45) 0 x1
11001-1) 7 ©0) 0 12 -3 3(16) 3¢ 3d=+2
(-210000) 12 00 -1 -12 -3 516) 3¢ 3d+1
Right-handed SUj3 roots
0-111-1-1) 9 ©0) 0 0 3116 ath-2 -d+2e72
©00-12-10) 10 © 0 -1 0 3 10(16) —a+2b-c -2d+ev1
©0-12-10-1) 10 ©0) 1 0 0 10(45) 2a-b-c¢ d+3%1
SUs antilepto-diquarks
1-11-110 4 0 4/3 12 0 24(45) a-b-c 0
(101-10-1) 8 -0 43 12 0 24(45) a-b-c 0
1-11-11-1) 15 (-1 0) 4/3 12 0 24(45) a-b-c¢ 0
©-11-101 9 01 13 -1 0 24(45) a-b-c 71
©01-1-10) 13 a-n 113 -1 0 24(45) a-b-c z1
0-11-100) 20 (-10) 13 -12 0 24(45) a-b-c 71
$010/SUs leptoquarks
©0100-1) 1 10 2/3 12 0 1045) a d+e
©0-1101-1) 8 11 213 12 0 1045) a d+e
©00100-2) 12 0 -1 23 117] 0 1045) a d+e
(-1010-10) 6 0 -13 -1 0 1045) a d+ev1
(-1-11000) 13 -11) -13 -1n 0 10(45) a d+e=1
(<1010 ~1-1) 17 o-1y -13 -1z 0 1045) a d+e71
(-100100) 4 ©1) -23 0 0 1045) b+c d+e
-1101-1-1 8 a-1y -2 0 0 10(45) b+c d+e
(-10010-1) 15 -100 -213 0 0 1045) b+c d+e
E¢/SOyo leptoquarks
©10-110) 3 0 2/3 12 -3 10(16) —b+2 2d-ex2
©00-120) 10 -11) 2/3 12 -3 10(16) ~b+2 2d-e+2
©010-11-1) 14 0 -1 2/3 112 -3 10(16) —b+2 2d-ex2
(-110-101) 8 (1 0) -13  -12 -3 10(16) -b+2c 2d-ex1
-100-111) 15 -11) -13 -12 -3 10(16) -b+2 2d-ex1
(-110-100) 19 ©-1) -13 =12 -3 1016) -b+2 2d-~ex1
-101-110) 5 01 13 0 -3 516 a-b+2c  3dx1
-111-10-1) 9 -1 13 0 -3 516) a-b+2c  3d=1
-101-11-1) 16 (-1 0) 113 0 -3 §(1e6) a-b+2 3dx1
-11-1011) 6 o1 -23 0 -3 10(16) —a+3c 2d-ex2
-12-1000) 10 a-1y -2 0 -3 10(16) -a+3c 2d-ex2
-11-1010) 17 100 -2 0 -3 10(16) -a+3c 2d-ex2
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Table 23
SUsj irreps of dimension less than 65

Dynkin  Dimension / SU; SO;
label (name) (index)  Triality singlets singlets
(10) 3 1 1 1 0
(20) 6 S 2* 1 1
an 8 6 0 1 0
(30) 10 15 0 1 0
1 15 20 1 1 0
(40) 15 35 1 1 1
5) 21 70 1 1 0
(13) 24 50 1 1 0
(22) 27 54 0 1** 1
(60) 28 126 0 1 1
41) 35 105 0 1 0
(70) 36 210 1 1 0
32) 42 119- 1 1 0
08) 45 330 1 1 1
(51) 48 196 1 1 0
90) 55 495 0 1 0
(24) 60 230 1 1 1
(16) 63 336 1 1 0
(33) 64 240 0 1** 0

*Note standard convention that 6 = (20).
**SU; x U, singlet.

Table 24
SUs tensor products; triality 0 and 1 combinations shown

3x3=3,+6
3x3=1+8
6x3=8+10
6x3=3+15
6X6=06.+15,+ 15,
6X6=1+8+27
8x3=3+6+15
8x6=3+6+15+24
8X 8= 1,4 8+ 8, + 10, + 10, + 27,
10x3=15+15
10x3=56+24
10x8=3+15+42
0x6=15+21+24
10x8=8+10+27+35
10X 10 = 10, + 27, + 28, + 35,
10x10=1+8+27+64
15x3=6+15+24
15x3=8+10+27
15Xx6=3+6+15+24+42
15%6=8+10+10+27+35
15X8=3+6+15+ 15+ 15 +24+42
15%10=6+15+15+24+42+48
15x10=3+6+15+24+ 42+ 60
15X 15 = 3,4 6+ 15+ 15, + 15,4 21, + 24, + 24, + 42, + 60,
15X15=1+8,+8+10+10+27,+27,+ 35+ 35+ 64
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Table 25 Table 26
SU, irreps of dimension less than 180 SU, tensor products; quadrality 0, 1 and 2 shown
Dynkin Dimension [ SUs 4x4=6,+10,
labe! (name) (index)  Quadrality singlets 4x4=1+15
6x4=4+20
(100) 4 1 1 1 6x6=1,+15,+20;
010) 6 2 2 0 10x4=20+20"
(200) 10 6 2 1 10x4=4+36
(101) 15 8 0 1* 10x6=15+45
(011) 20 13 1 0 10x 10 = 20; + 35, + 45,
(020) 20 16 0 0 10x10=1+15+84
(003) 20" 21 1 1 15x4=4+20+36
(400) 35 56 0 1 15x6=6+10+10+64
(201) 36 33 1 1 15x10=6+10+64+70 _
(210 45 48 0 0 12( 15 = 15+ 15, + 15, + 205 + 45, + 45, + 84,
(030) 50 70 2 0 20x4=15+20'+45
(500) 56 126 1 1 0x4=6+10+64
(120) 60 7 1 0 _20><6=4+20+36+60
{18 64 64 2 0 20x10=20+36+ 60+ 84
(301) 70 98 2 1 20x10=4+20+36+ 140
(02) 84 112 0 1* 20x 15=4+20,+20,+ 20"+ 36 + 60 + 140 .
(310) 84’ 133 1 0 20><2_0=6,+ 105+105+50.+64;+_64.+70.+ 126,
(600) 84" 252 2 1 20%x20=1+15+15+20+45+45+84+175
(040) 105 224 0 0 200x4=20+60
(104) 120 238 1 1 20'x6=6+50+64
(007) 120 462 1 1 20x10=10+64+ 126
(220) 126 210 2 0 20 x15=15+20"+45+ 45+ 175
112) 140 203 1 0 20'x20=4+20+ 36+ 60+ 140 + 140’
031) 140 259 1 0 20' X 20" = 15+ 15, + 205 + 84, + 105, + 175,
(410) 140" 308 2 0
(302) 160 296 1 1
(800) 165 792 0 1
(121) 175 280 0 0

*SU;3 x U singlet.

Table 27
Branching rules for SU,D SU; x U,

(100)=4=1(1)+ 3(_—1/3) (establishes normalization of U, generator)
(010) = 6 = 3(2/3) + 3(-2/3)

(200) = 10 = 1(2) + 3(2/3)+ 6(- 2/3)

(101) = 15 = 1(0) + 3(-4/3) + 3(4/3) + 8(0)

(011) = 20 = 3(=1/3) + 3(=5/3) + &~1/3) + 8(1)

(020) = 20 = 6(—4/3) + 6(4/3) + 8(0)

(003)= 20" = 1(~3)+ 3(=5/3)+ 6(~1/3) + 10(1)

(400) = 35 = 1(4) + 3(8/3) + 6(4/3)+ 10(0) + 15'(—4/3)

(201) = 36 = 1(1)+ 3(= 1/3)+ 3(7/3) + 6(-5/3) + 8(1) + 15(~ 1/3)

(216) = 45=3(8/3) +_§_(4/3) +6(4/3) + 6(4/3) + 8(0) + 10(0) + 15(—4/3)
(030) = 50 = 102) + 10(-2) + 152/3) + 15(-2/3)

(500) = 56 = 1(5)+ 3(11/3) + 6(7/3) + 10(1) + 15'(=1/3) + 21(- 5/3)

(120) = 60 = 6(-1/3)+ 6(7/3) + 8(1) + 10(1) + 15(~1/3)+ 15(-5/3)

(111) = 64 = 3(2/3) + 3(~2/3) + 6(2/3) + 6(-2/3) + 8(2) + 8(=2) + 15(2/3) + 15(-2/3)
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Table 28
SUs irreps of dimension less than 800

Dynkin Dimension [ SU, SU, x SU;
label (name) (index) Quintality singlets  singlets
(1000) 5 1 1 1 0
(0100) 10 3 2 0 1
(2000) 15 7 2 1 0
(1001) 24 10 0 1* 1*
(0003) 35 28 2 1 0
(0011) 40 2 2 0 0
(0101) 45 24 1 0 0
(0020) 50 35 1 0 1
(2001) 70 49 1 1 0
(0004) v 84 1 1 0
(0110) 75 50 0 0 1*
0012) 105 91 t 0 0
(2010) 126 105 0 0 0
(5000) 126’ 210 0 1 0
(3001) 160 168 2 1 0
(1101) 175 140 2 0 1
(1200) 175 175 0 0 0
(0300) 175" 210 1 0 1
(2002) 200 200 0 1* i
(1020) 210 203 2 0 0
6000y  210' 462 1 1 0
(3100) 224 280 0 0 0
(1110) 280 266 1 0 0
(3010) 280 336 1 0 0
(0210) 315 357 2 0 1
(1004) 31§ 462 2 t 0
(7000) 330 924 2 1 0
(2200) 420 574 1 0 0
(4100) 420 714 1 0 0
(1012) 450 510 2 0 0
(3002) 450 615 1 1 0
(1102) 480 536 1 0 0
(0040) 490 882 2 0 1
(0008) 495 1716 2 1 0
010) 540 882 2 0 0
0202) 560 728 2 0 0
(1300) 560 868 2 0 0
(1005) 560" 1092 1 1 0
(2110) 700 910 2 0 0
(1030) 700’ 1050 0 0 0
0009y 715 3003 1 1 0
1021y 720 924 1 0 1
(5100) 720’ 1596 2 0 0
(0130) 980 1666 1 0 1
(1111) 1024 1280 0 0 1*
(0121) 1050 1540 2 0 0
0211) 1120 1624 1 0 0
0220) 1176 0 0 1*

1960
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Table 29
SUs tensor products

5% S=10,+ 15,
5x3=1+24
10x5=10+40
10x35=5+45
10% 10 = 5, + 45, + 50,
10x10=1+24+75
15x5=35+40
15%5=5+70
15% 10 = 45+ 105
15x 10 =24+ 126
15 15 = 50, + 70, + 105,
15x 15= 1+ 24+ 200
24x5=5+45+70
24x10=10+15+40+175
24%15= 10+ 15+ 160+ 175
24X 24 = 1.+ 24, + 24, + 75, + 126, + 126, + 200,
0x5=10+15+175
_40x3=45+50+105
40x10=24+75+126+175
20x10=5+45+70+ 280
0% 15="75+126+ 175 + 224
20X 15=54+45+70+ 480
40X 24 =10 + 35+ 40, + 40, + 175+ 210+ 450
40 x 40 = 45, + 50, + 70, + 1757 + 280, + 280, + 280} + 420,
40X 40 = 1+ 24, + 24, + 75+ 126 + 126+ 200+ 1024
45%5=10+40+175
45X 5=24+75+126
45x 10 = 5+45+ 50+ 70+ 280
45%x10= 10+ 15+ 40+ 175+ 210
45% 15 = 45+ 70+ 280 + 280’
45x15=10+40+ 175+450
45X 24=5+45,+ 45, + 50+ 70 + 105 + 280 + 480
45% 40 = 10+ 15+ 40+ 160+ 175, + 175, + 210+ 315+ 700
45% 40 = 45+ 50, + 50, + 70 + 105 + 280 + 480 + 720
45X 45 = 10, + 15+ 35, + 40, + 40, + 175, + 175, + 210, + 315, + 450, + 560,
545 =1+24,+24,+ 75+ 75, + 126+ 126 + 175'+ 175’ + 200 + 1024
50x 5= 40+210
0Xx5=75+175
50% 10= 10 + 175+ 315
50% 10 = 45+ 175" + 280
50% 15= 15+ 175+ 560
50x 15 = 50 + 280 + 420
50X 24 = 45+ 50+ 105+ 280 + 720
50x 40 = 40+ 175+ 210 + 315 + 560’ + 700
50 % 40 = 5+ 45+ 70 + 280 + 480 + 1120
50 x 45 = 10 + 40+ 175+ 210+ 315 + 450 + 1050
50x 45 = 24+ 75+ 126+ 126+ 175' + 700’ + 1024
50 50 = 15, + 175, + 210, + 490, + 560, + 1050,
50% 50 = 1+ 24+ 75+ 200+ 1024+ 1176
75 5= 45+ 50+ 280
75% 10 = 10+ 40 + 175+ 210+ 315
75% 15 = 40+ 175+ 210 + 700
75X 24 = 24+ 75, + 75, + 126+ 126+ 175 + 175’ + 1024
75% 40 = 10+ 15+ 40+ 175 + 175, + 210 + 315 + 450 + 560 + 1050
75X 45 = 5+ 45, + 45, + 50+ 70+ 105 + 175" + 280, + 280, + 480 + 720 + 1120
75% 50 =5+ 45+ 50 + 70 + 280 + 480 + 720 + 980 + 1120

I5X T5 = 1o+ 24, + 24, + 75, + 75, + 126, + 126, + 175, + 175: + 200, + 700 + 700, + 1024, + 1024, + 1176,
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Table 30
Branching rules for SUs

SUsD SU,x U,

(1000) = 5= 1(4) + 4(-1)

(0100) = 10 = 4(3) + 6(=2)

(2000) = 15 = 1(8) + 4(3) + 10(-2)

(1001) = 24 = 10} + 4(-5)+ 4(5) + 15(0)

(0003) = 35 = 1(-12) + &(=7) + 10(~2) + 20"(3)

(0011) = 40 = 4(=7)+ 6(=2) + 10(=2) + 20(3)

(0101) = 45 = 4(~1) + 6(=6) + 15(4)+ 20(-1)

(0020 = 50 = 10(=6) + 20(-1) + 20'(4)

(2001) = 70 = 1(4) + 4(=1) + 4(9) + 10(—6) + 15(4) + 36(-1)
(0004) = 70’ = 1(~16) + 3(—11) + 10(-6) + 20*(- 1)+ 35(4)
(0110) = 75 = 15(0) + 20(-5) + 20(5) + 20°(0)

SUs D SU, x SUs x Uy
5= (2, 1)3)+(1,3)-2)
10= (1, 1X6) + (1, 3)(-4) + (2, 3X1)
15= 3, 1)(6) + (2, 3)(1) + (1, 6)(-4)
24 = (1, 1(0)+ 3, (O} + (2, 3)Y(=5)+ (2. 3)(5) + (1, 8)(0)
35= (4, 1X-9) + (3, 3}-4) + (2, 6)(1) + (1, 10X6) B
40= (2, 1X=9)+ (2, 3N1) + (1, IX-4) + (3, 3)(-4) + (1, 8)6) + (2, 6)(1)
45= (2, 1)(3)+ (1, 3%-2) + (3, 3)(=2) + (1, 3)B) + (2, I(~7) + (1, 6X-2)+ (2, 8)(3)
50 = (1, 1(~12)+ (1, 3¥-2)+ (2, 3}~ + 3, 6)}-2) + (1, 6X8) + (2, 8)(3)
0= (2, 1)3)+ @4, 1X3) + (1, 3)-2)+ (3, 3}-2) + (3, 3)(8) + (2, 6X-7) + (2, 8)(3) + (1, 15)(~2)
0 = (5, 1)(~12) + (4, 3(-T) + 3, 6)(=2) + (2, 10)3) + (1, 15'X8)
75= (1, 1(0)+ (1, 3)(10) + (2, 3)(=5)+ (1, IN-10)+ (2, 3)(5) + (2, 6X=5) + (2, 6X5) + (1, 8X0) + (3, 8)(0)

Tabie 31

SU, irreps of dimension less than 1000
Dynkin i SU; SU,xSU,; SU3xSU;
label Dimension  (index)  Sextality  singlets singlets singlets
(10000) 6 1 1 1 0 0
(01000) 15 4 2 0 1 0
(00100) 20 6 3 0 0 2
(20000) 21 8 2 1 0 0
(10001) 35 12 0 1* 1* 1*
(30000) 56 36 3 1 0 0
(11000) 70 33 3 0 0 0
(01001) 84 38 1 0 0 0
00101) 105 52 2 0 0 0
(00020) 105 64 2 0 1 0
(20001) 120 68 1 1 0 0
(00004) 126 120 2 1 0 0
(00200) 175 120 0 0 0 241
(01010) 189 108 0 0 1* 1*
©0110) 210 131 1 0 0 0
(00012) 210 152 2 0 0 0
(00005) 252 330 1 1 0 0
(20010) 280 192 0 0 0 0
(30001) 315 264 2 1 0 0
00102) 336 248 1 0 0 0
(11001) 384 256 2 0 1 0
(20002) 405 324 0 1* 1* 1*
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Table 31 (continued)

Dynkin ! SUs SU,xSU,  SU3x SU;Z
label Dimension  (index) Sextality singlets singlets singlets
(00021) 420 358 1 0 0 0
(00006) 462 792 0 1 0 0
(00030) 490 504 0 0 1 ]
(00013) 504 516 1 0 0 0
(10101) 540 378 3 0 0 2
(02001) 560 456 3 0 0 0
(40001) 700 810 3 1 0 0
(30010) 720 696 1 0 0 0
(70000) 792 1716 1 1 0 0
(11010) 840 668 1 0 0 0
(10200) 840' 764 1 0 0 0
(30100) 840" 864 0 0 0 0
(11100) 896 768 0 0 0 0
(00300) 980 1134 3 0 0 4
(10110) 1050 880 2 0 0 0
(21001) 1134 1053 3 0 0 0
(22000) 1134’ 1296 0 0 0 0
(02010) 1176 1120 2 0 1 0
(02100) 117¢' 1204 1 0 0 0
(11002) 1260 1146 1 0 0 0
(01200) 1470 1568 2 0 0 0
(10102) 1701 1620 2 0 0 0
(13000) 1764 2310 1 0 0 0
(04000) 1764’ 2688 2

(02002) 1800 1920 2 0 0 0
(01110) 1960 1932 3 0 0 2
(10021) 2205 2352 2 0 1 0
(21010) 2430 2592 2 0 0 0
(21100) 2520 2868 1 0 0 0
(20200) 2520 2976 2 0 0 0
(10030) 2520" 3156 1 0 0 0
(01102) 3240 3564 3 0 0 0
(11011) 3675 3780 0 0 1* 1*
(10201) 3969 4536 0 0 0 2+1*
(00400) 4116 7056 0 0 0 4+1*
(10111) 4410 4767 1 0 0 0
(12100) 4410 5712 2 0 0 0
(00301) 4410” 6216 2 0 0 0
(01021) 4536 5508 3 0 0 0
(00130) 4704 7056 3 0 0 0
02011) 5040 6024 1

(01030) 5040 7104 2

(02101) 5670 7128 0

(00211) 5880 7812 3

02020) 6720 9216 0

(01201) 6804 8010 1

(00220) 7056 10752 2

(00310) 7056 11256 1

1111) 8064 9984 2

01120) 10080 14352 1

(01210) 11340 16848 0
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Table 32
SUg tensor products

6X6=15.+21,
6Xx6=1+35
15x6=20+70
15x6=6+84
T5x15=1+35+189
15 x 15 = 15, + 105, + 105,
20x6=15+105
20xT5=6+84+210
20% 20 = 1, + 35, + 175, + 189,
21x6=56+70
21x6=6+120
21x 15 = 105+ 210’
21x15=135+280
21x 20 =84 +336
21x21=1+35+405
21 x 21 = 105, + 126, + 210,
35%6=6+84+120
35%15=15+21+105+384
35x 20 = 20+ 70+ 70 + 540
35x21=15+21+315+38%4
35% 35 = 1,+ 35, + 35, + 189, + 280, + 280, + 405,
70x6=15+21+384
0% 6= 105+ 105 + 210'
70 x 15 = 6.+ 84+ 120+ 840
70x 15 = 84 + 210 + 336 + 420
70 x 20 = 35+ 189+ 280 + 896
70% 21 = 6+ 84+ 120 + 1260
70 x 21 = 210+ 336+ 420 + 504
70 % 35 = 20+ 56+ 70, + 70, + 540 + 560 + 1134
70X 70 = 175, + 189, + 280, + 490, + 8403 + 896, + 896, + 1134;
T0% 70 = 1+ 35,+ 35, + 189+ 280 + 280 + 405 + 3675
84% 6= 15+ 105+ 384
84x6=135{189+280
84X 15=20+70+70+ 540 + 560
84% 15= 6+ 84+ 120 + 210 + 840
84x 20 =15+ 21+ 105+ 105' + 384 + 1050
84x21=20+70+540+1134
84 x 21 = 84+ 120+ 840+ 720
84 35 = 6+ 84; + 84, + 120 + 210 + 336 + 840 + 1260
84% 70 = 15+ 21 + 105+ 315 + 384 + 384, + 1050 + 1176 + 2430
8470 = 15X 105, + 105, + 105' + 210 + 384 + 1050 + 1701 + 2205
84 % 84 = 15, + 21, + 105, + 105, + 105} + 210; + 384, + 384, + 1050, + 1176, + 1701, + 1800,
84% 84.=1+35;+ 35+ 175+ 189, + 189, + 280 + 280 + 405 + 896 + 896 + 3675
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Table 35
SO, tensor products

Tx7=1,+21,+27
§x7=8+48
8X8=1,+7,+21,+35
21x7=7+35+105
21x8=8+48+112
21X 21 = 15+ 21,4 27, + 35, + 168, + 189,
27x7=7+77+105
27 x 8 =48+ 168
27x21=21+27+ 189+ 330
27%27 = 1+ 21, + 27, + 168, + 182, + 330,
35x7=21+35+189
I5x8=8+48+ 112+ 112
35%x21=7+21+35+105+ 189+ 378
35x27=135+105+ 189 + 616
35%35=1,+7,+21,+27,+ 35, + 105, + 168, + 189, + 294, + 378,
48x 7=8+48+ 112+ 168
48x8=7+21+27+35+ 105+ 189
48x 21 = 8+48,+48,+ 112+ 112+ 168’ + 512
48x27=8+48+ 112+ 168"+ 448+ 512
48X 35=8+48,+48;+ 112;+ 112, + 112"+ 168’ + 512 + 560

48X 48 = 1+ 7, + 214 + 212+ 27, + 355 + 350 + 77, + 105, + 105, + 168, + 189, + 189, + 330, + 378, + 616,

Table 36

SO irreps of dimension less than 1300

Dynkin  Dimension Congruency  //8

Branching into

label (name) class (index) SO irreps
(1000) 8, ©1) 1 8

(0001) 8, (10) 1 147

(0010) 8 (11) 1 8

(0100) 28 (00) 6 7421
2000) 35, (00) 10 35

(0002) 35 (00) 10 1+7+27
(0020) 35, (00) 10 35

(0011) 56, ©1) 15 8+48
(1010) 56, (10) 15 21435
(1001) 56 an 15 8+48
(3000) 112, ©1) 54 112

(0003) 112 (10) 54 1+7427477
(0030) 12 an 54 12

(1100) 160, (01) 60 48+ 112
(0101 160, (10) 60 7421427+ 105
(0110) 160, 1) 60 48+ 112
(1002) 24,, ©1) 100 8+48+ 168
{1020) 224., 1) 100 112+ 112
(2001) 224, (10) 100 35+ 189
(2010) 224, (11) 100 112+ 112
(0012) 224, (1) 100 8+48+ 168
(0021) 224 (10) 100 35+ 189
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Table 36 (continued)

Dynkin Dimension  Congruency /8 Branching into

label (name) class (index) 8O, irreps

(4000) 294, (00) 210 294

(0004) 294, (00) 210 147427+ 77+182

(0040) 294, (00) 210 294

(0200) 300 (00) 150 27+ 105+ 168

(1011 350 {00) 150 21435+ 105 + 189

(2100) 567, (00) 324 189 + 378

(0102) 567, 00) 324 7+21+27+77+105+ 330

(0120) 567, (00) 324 189+ 378

(3001) 672 (11) 444 112’ + 560

(3010) 6724 (10) 444 294 + 378

(1003) 672, (11 444 8+ 48+ 168’ + 448

(1030) 672, (10) 444 294+ 378

0013) 672 (1) 444 8+48+ 168 + 448

(0031) 672 1) 444 112+ 560

(5000) 672, 1) 660 672

(0005) 672, (10) 660 1+7+27+77+ 182+ 378

(0050) 672 (1) 660 672

0111) 840, 01) 465 48+ 112+ 168 + 512

(1110) 840, (10) 465 105 + 168 + 189 + 378

(1101) 840, (11) 465 48+ 112+ 168' + 512

(0022) 840, (00) 540 35+ 189+ 616

(2020) 840; (00) 540 168 +294 + 378

(2002) 840; 00) 540 35+ 189+ 616

2011) 1296, (01) 810 112+ 112"+ 512+ 560

(1012) 1296, (10) 810 21+ 35+ 105+ 189+ 330 + 616

(1021) 1296, (1) 810 112+ 112"+ 512+ 560
Table 37

SOg tensor products

8 X8 =1+28,+(35) (i=v,s,0r c)
8; x 8; = 8 + 56, (i, j, k cyclic)

28x 8, = 8; + 56, + 160;

28x 28 = 1,+28, + (35,) + (35,) + (35c)s + 300, + 350,

35.' X 8,‘ = 8,' + 112, + 160,
35; 8,' = 56, + 224.'] (l#])

35; x 28 = 28+ 35; + 350 + 567;

35; X 35; = 1,+ 28, + (35:)s + (294 ) + 300, + (567,)s
35; x 35; = 35, + 350 + 840}, (i, j, k cyclic)

56; X 8; = 28+35;+ 35, +350 (i# j# k#1i)

56,'7(8,'=8k + 56, + 160, +224]k

56; X28= 81 + 56;1 + 56‘2 + 160, + 224,-,' + 224*,' + 840,'

56; % 35; = 56,-+160,~+224,,-+224k,-+1296,- (l#}# k# l)
56,X35,=8,+56,+160i+224,,-+672,-,,+840; (l#]# k#l)

56, X 56, = 1,+ 28,1+ 28,2+ (35), + (35) + (35 + 300, + 350, + 350, + (567)s + (567 )a + (840}), (i j# k# i)

56; X 56/ = 8 + 5651 + 5642+ 1124 + 1601 + 1602 + 224, + 224,1 + 840, + 1296, (i,j, k CyCliC)
(28°%), = 28, + 28, + 28, + 350 + 567, + 567, + 567, + 1925
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Table 38

SOy irreps of dimension less than 5100
Dynkin  Dimension 2 SOg SU,; x SU,
label (name) (index) singlets  singlets
(1000) 9 1 1 0
(0001) 16 2 0 0
(0100) 36 7 0 0
(2000) 4 1 1 1
(0010) 84 21 ] i
(0002) 126 35 0 0
(1001) 128 32 0 0
(3000) 156 65 1 0
(1100) 231 77 0 0
(0101) 432 150 0 0
(4000) 450 275 1 1
(0200) 495 220 0 1
(2001) 576 232 0 0
(1010) 594 231 0 0
(0003) 672 308 0 0
(0011) 768 320 0 0
(2100) 910 455 0 0
(1002) 924 385 0 0
(5000) 1122 935 1 0
0110) 1650 825 0 0
(3001) 1920 1120 0 0
(0020) 1980 1155 0 1
(2010) 2457 1365 0 1
(6000) 2508 27117 1 1
(1101) 2560 1280 0 0
(1200) 2574 1573 0 0
0102) 2772 1463 0 0
0004) 2772 1848 0 0
(3100) 2772 1925 0 0
(2002) 3900 2275 0 0
(0300) 4004 3003 0 0
0012) 4158 2541 0 0
(1003) 4608 2816 0 0
0201) 4928 3080 0 0
(1011) 5040 2870 0 0
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Table 41

SOy irreps of dimension less tan 12000
Dynkin Dimension Congruency 12 SUs SU, x SU,; x SU, SOy SU, x SO,
label (name) class (index)  singlets singlets singlets singlets
(10000) 10 2 1 0 0 1 0
(00001) 16 1 2 1 0 0 0
(01000) 45 0 8 1* 0 0 0
(20000) 54 0 12 0 1 1 1
(00100) 120 2 28 0 0 0 1
(00002) 126 2 35 1 0 0 0
(10010) 144 1 4 0 0 0 0
(00011) 210 0 56 1 1 0 0
(30000) 210 2 7 0 0 1 0
(11000) 320 2 9 0 0 0 0
(01001) 560 1 182 1 0 0 0
(40000) 660 0 352 0 1 1 1
(00030) 672 1 308 1 0 0 0
(20001) 720 1 26 0 0 0 0
(02000) 770 0 08 1 1 0 t
(10100) 945 0 336 0 0 0 0
(10002) 1050 0 420 0 0 0 0
(00110) 1200 1 470 0 0 0 0
(21000) 1386 0 616 0 0 0 0
(00012) 1440 1 628 1 0 0 0
(10011) 1728 2 672 0 0 0 0
(50000) 1782 2 1287 0 0 1 0
(30010) 2640 1 1386 0 0 0 0
(00004) 2172 0 1848 1 0 0 0
(01100) 2970 2 1353 0 0 0 0
(01002) 3696 2 1848 1 0 0 0
(11010) 3696 1 1694 0 0 0 0
(00200) 4125 0 2200 0 1 0 1
(60000) 4290 0 4004 0 1 1 1
(20100) 4312 2 2156 0 0 0 1
(12000) 4410 2 2401 0 0 0 0
(31000) 4608 2 2816 0 0 0 0
(20002) 4950 2 2695 0 0 0 0
(10003) 5280 1 3124
01011) 5940 0 2904
(00102) 6930 0 4004
(00013) 6930’ 2 4389
(03000} 7644 0 5096
(40001) 7920 1 5566
(02001) 8064 1 4592
(20011) 8085 0 4312
(10101) 8800 1 4620
(00022) 8910 0 5544
(70000) 9438 2 11011
(00005) 9504 1 8580
(00111) 10560 2 5984
(10021) 11088 1 6314
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Table 42
SOy tensor products

10X 10 = 1, + 45, + 54,
16x 10 = 16+ 144
16x 16 = 10, + 120, + 126,
16x16=1+45+210
45x 10=10+ 120+ 320
45x 16 = 16+ 144+ 560
45X 45 = 1,+ 45, + 54,+ 210+ 770, + 945,
54% 10= 10+ 210’ + 320
54x 16=144+720
54% 45 = 45+ 54+ 945 + 1386
54% 54 = 1, + 45, + 54, + 660, + 770, + 1386,
120 x 10 = 45 + 210+ 945
120 x 16 = 16+ 144 + 560 + 1200
120 X 45 = 10+ 120+ 126 + 126+ 320 + 1728 + 2970
120 x 54 = 120+ 320+ 1728+ 4312
120 X 120 = 1,+ 45, + 54, + 210, + 210, + 770, + 945, + 1050, + 1050, + 4125, + 5940,
126 x 10 = 210 + 1050
126 x 16 = 144 + 672+ 1200
126 X 16 = 16+ 560+ 1440
126 x 45 = 120 + 126+ 1728 + 3696
126 x 54 = 126+ 1728+ 4950
126 X 120 = 45 + 210 + 945 + 1050 + 5940 + 6930
126 X 126 = 54, + 945, + 1050, + 2772, + 4125, + 6930,
126 x 126 = 1+ 45+ 210+ 770 + 5940 + 8910
144 % 10 = 16+ 144 + 560 + 720
T4 x 16 = 45+ 54+ 210 + 945 + 1050
144x16 =10+ 120+ 126+ 320 + 1728
144 % 45 = 16+ 144, + 144, + 560 + 720 + 1200 + 3696’
144 X 54 = 16+ 144+ 560 + 720 + 2640 + 3696’
144 % 120 = 16+ 144; + 144+ 560; + 560, + 720 + 1200 + 1440 + 3696’ + 8800
144 X 126 = 144+ 560 + 720 + 1200 + 1440 + 5280 + 8300
144 x 126 = 16 + 144+ 560 + 1200 + 1440 + 3696’ + 11088
144 X 144 = 10, + 1205, + 1202 + 126, + 126, + 210, + 320, + 320, + 1728, + 1728, + 2970, + 3696, + 4312, + 4950,
T44 X 144 = 1+ 45, + 45, + 54+ 210, + 210, + 770+ 945, + 945, + 1050 + 1050 + 1386 + 5940 + 8085
210% 10 = 120 + 126 + 126+ 1728
210X 16 = 16+ 144 + 560 + 1200 + 1440
210x 45 = 45+ 210; + 210, + 945+ 1050 + 1050 + 5940
210 x 54 = 210 + 945+ 1050 + 1050 + 8085
210 % 120 = 10+ 120, + 120, + 126+ 126+ 320 + 1728, + 1728, + 2970 + 3696 + 3696 + 10560
210X 126 = 10+ 120+ 126+ 320 + 1728+ 2970 + 3696 + 6930’ + 10560
210 x 144 = 16+ 144, + 144, + 560, + 560 + 672 + 720 + 1200, + 1200, + 1440 + 3696’ + 8800 + 11088
210X 210 = 1, + 45, + 454 + 54, + 210, + 210, + 770, + 945, + 945, + 1050, + 1050, + 4125, + 5940, + 5940, + 6930, + 6930, + 8910,
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Table 43
Branching rules for SO,

S0, D SUsx U,

(10000) = 10 = 5(2) + 5(-2)

(00001) = 16 = 1(=5)+ 5(3) + 10(-1)

(01000) = 45 = 1(0) + 10(4) + 10(~4) + 24(0)

(20000) = 54 = 15(4) + 15(~4)+ 24(0) _ N

(00100) = 120 = 5(2) + 5(~2) + 10(-6) + 10(6) + 45(2) + 45(-2)

(00002) = 126 = 1(~10)+ 5(~2) + 10(~6)+ 15(6) + 45(2) + 50(-2) _

(10010) = 144 = 5(3) + 5(7)+ 10(~1) + 15(~ 1) + 24(~5) + 40(~1) + 45(3) _

(00011) = 210 = 1(0) + 5(-8) + 5(8) + 10(4) + 10(~4) + 24(0) + 40(—4) + 40(4) + 75(0)

(30000) = 210 = 35(-6)+ 35(6) + 70(2) + 70(-2)

(11000) = 320 = 5(2)+ 5(~2) + 40(~6) + 40(6) + 45(2) + 45(-2) + 70(2) + 70(-2) o
(01001) = 560 = 1(=5) + 5(3) + T0(~9) + 10(~1); + 10(~1), + 24(~5)+ 40(~1) + 45(7) + 35(3) + 50(3) + 70(3) + 75(=5) + 175(1)

$0,02D SU, xSU, x SU,
10=(2,2, 1)+(1, 1,6)
16=(2,1,4)+(1,2,3)
45=(3, 1, 1)+ (1,3, 1D)+(1,1,15+(2,2,6)
54=(1,1,1)+(3,3, 1)+ (1,1,20)+(2,2,6)
120= 2,2, )+(1, 1,100+ (1, 1, 10)+ (3, 1, 6) + (1, 3,6) + (2,2, 19)
126=(1,1,6)+ (3,1,10)+ (1, 3, 10)+ (2,2, 15)
144=(2,1,4)+(1,2,8)+ (3,2,3) + (2,3, 4)+ (2, 1,20)+ (1, 2, 20)
210= (1,1, 1)+(1, 1, 15)+(2,2,6)+ (3, 1, 15) + (1,3, 15) + (2, 2, 10} + (2. 2, 10)
210°= (2,2, 1)+ (1, 1,6)+ (4,4, 1)+ (3,3, 6) + (2,2, 20) + (1, 1, 50)
320=(2,2,)+(1, 1,6} + &2, )+ (2,4, 1)+ 3, 1.6)+(1,3,6)+ (2.2, 15)+(3,3,6) + (1, 1,64) + (2,2, 20")
560=(2,1,4)+(1,2,9)+ 41,4+ (1,4, 9+ (2.3, 4+ (3, 2,9+ (2, 1,20)+ (1,2, 20) + 2, 1, 36)+ (1, 2, 36) + (2, 3, 20) + (3, 2, 20)

10=1+9

16=16

45=9+36
54=1+9+44
120=36+84
126=126
144=16+128
210=84+126
210=1+9+44+156
320=9+36+44+231
560 = 128 + 432

SOy D SU, x SO,
10= 03, 1)+(17)
16=(2,8)
45=6,D+1,2D0+3,7
S4=(1, 1)+ 5, D+3,D+(1,27)
120=(1, )+ (3, 7)+ (1,35)+ (3,21)
126 = (1,21)+ (3, 35)
144 = (2, 8) + (4, 8) + (2, 48)
210=(1, 7+ (1,35)+ (3,21)+ (3, 35)
20=G, D+7, D+, N+ 6, N+ @ 2N +(L, 7D
20=G,D+G, D+, D+E.D+G,7N+G.21)+(3,27)+(1, 105)
560 = (2, 8) + (4,8) + (2, 48) + (4, 48) -+ (2, 112)
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Table 44
F, irreps of dimension less than 100000

Dynkin Dimension 6 SOy SU3 x SU;
label (name) (index)  singlets singlets
(0001) 2% 11 0
(1000) 52 3 0 0
(0010) 273 210 0 1
(0002) 34 7 1 1
(1001) 1053 108 0 0
(2000) 1053 135 0 1
(0100) 1274 147 0 1
(0003) 2652 357 1 1
(0011) 4096 512 0 0
(1010) 8424 1242 0 1
(1002) 10829 1666 0 1
(3000) 12376 2618
(0004) 16302 31 1
(2001) 17901 n13
(0101) 19278 230 1
(0020) 19448 3366 0 2
(1100) 29172 5610
0012) 34749 6237 0 1
(1003) 76076 16093
(0005) 81081 20790

Table 45

F, tensor products

26X 26 =1,+26,+ 52, + 273, + 324,
52x26=26+273+1053
2% 52=1,+ 52, + 324, + 1053, + 1274,
273% 26 =26+ 52+ 273+ 324 + 1053 + 1274 + 4096
273x 52= 26+ 273 + 324 + 1053 + 4096 + 8424
273% 273 = 15+ 265+ 52, + 2735y + 27352 + 32441 + 324, + 1053, + 1053, + 1053 + 1274, + 2652, + 4096, + 4096, + 8424, + 10829, + 19278, + 19448,
324 x 26 = 26+ 273 + 324 + 1053 + 2652 + 4096
324 x 52 =52+ 273+ 324 + 1274 + 4096 + 10829
324 X 273 = 26+ 52+ 2731 + 273, + 324 + 1053, + 1053, + 1274 + 2652 + 4096, + 4096, + 8424 + 10829 + 19278 + 34749
324 X324 = 1, + 26, + 52, + 273, + 324, + 324, + 1053, + 1053, + 1274, + 2652, + 4096, + 4096, + 8424, + 10829, + 16302, + 19448, + 34749,

Table 46
Branchings of F, representations

F4D S0,

(0001)=26=1+9+16

(1000) = 52 = 16+ 36

(0010) =273 =9+ 16+ 36 + 84 + 128
(0002) = 324= 1+9+ 16+ 44+ 126+ 128

(1001) = 1053 = 16+ 36+ 84+ 126 + 128+ 231 + 432
(2000) = 1053’ = 126+ 432+ 495

(0100) = 1274 = 36+ 84 + 128+ 432+ 594

F4DSU3x SU3

26=(8, 1)+ (3,3)+G,3)

52=(8,1)+(1,8)+(6,3)+6,3) _
273=(1, 1)+ (8, 1)+ (3,3)+ (3, 3)+ (10, 1)+ (10, 1) + (6, 3) + (6, 3) + (3, 6) + (3, 6) + (15, 3) + (15, ) + (8, 8)
324=(1,1D+@,D+(1,8)+3,3+(3,3)+6,3)+(6,3)+ (27, 1)+ (6,6)+ (6, 6) + (15, 3) + (15, 3) + (8, 8)
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Eg irreps of dimension less than 100000

Table 47

Dynkin Dimension 6 | A SOy SU, x SUs SU3 x SU3 x SU,
label (name) (index)  Triality  singlets singlets singlets singlets
(100000) 27 1 1 1 1 0 0
(000001) 78 4 0 0 1* 0 0
(000100) 351 25 1 0 0 0 0
(000020) 351 28 1 1 1 0 0
(100010) 650 50 0 1 1* 1 2
(100001) 1728 160 1 0 1 0 0
(000002) 2430 270 0 0 1* 1 1
(001000) 2925 300 0 0 0 0 1
(300000) 3003 385 0 1 1 0 1
(000110) 5824 672 0 0 0 0 0
(010010) 731 840 1 0 0 0 0
(200010) 7722 946 1 1 1 0 0
(000101) 17550 2300 1 0 0 0 0
(000021) 19305 2695 1 0 1 0 0
(400000) 19305 3520 1 1 1 0 0
(020000) 34398 5390 1 0 0 0 0
(100011) 34749 4752 0 0 1 0

(000003) 43758 7854 0

(100002) 46332 7260 1

(101000) 51975 7700 1 0 0 0 0
(210000) 54054 8932 1 0 0 0 0
(100030) 61425 10675 1

(010100) 70070 10780 0 0 0 1

(010020) 78975 12825 0 0 0 0 0
(200020) 85293 14580 0 1 1* 1 2
(100110) 112320 18080 1

*SOpx Uy singlet.
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Table 52
Irreps, products and branching rules for E;

Dynkin Dimension 12 Branching into Eg irreps

label (name) index  Uj factors suppressed

(0000010) 56 1 1+1+27+27

(1000000) 133 3 1+27+27+78

(0000001) 912 30 27+27+78+78+351+351

(0000020) 1463 55 141+ 1+27+427+27+427+350'+ 351’ + 650
(0000100) 1539 54 1+27427+27+27+78+ 351+ 351 +650
(1000010) 6480 270 Branching rules to other

(2000000) 737 351  regular subgroups below.

(0100000) 8645 390

(0000030) 24320 1440

(0001000) 27664 1430

(0000011) 40755 2145

(0000110) 51072 2832

(1000001) 86184 4995

56x 56 = 1+ 133, + 1463, + 1539,
133 x 56 = 56 + 912 + 6480
133 % 133 = 1+ 133, + 1539, + 7371, + 8645,
912 x 56 = 133+ 1539 + 8645 + 40755
912 % 133 = 56+ 912 + 6480 + 27664 + 86184
912x 912 = 1, + 133, + 1463, + 1539, + 7371, + 8645, + 40755, + 152152 + 253935, + 365750,
1463 x 56 = 56 + 6480 + 24320 + 51072
1463 x 133 = 1463 + 1539 + 40755 + 150822
1463 x 912 = 912 + 6480 + 27664 + 51072 + 362880 + 885248
1463 x 1463 = 1,+ 133, + 1463, + 1539, + 7371, + 150822, + 152152, + 293930, + 617253, + 915705,
1539 x 56 = 56 + 912 + 6480 + 27664 + 51072
1539 x 133 = 133+ 1463 + 1539 + 8645 + 40755 + 152152
1539 X 912 = 56 + 912 + 6480, + 6480, + 27664 + 51072 + 86184 + 362880 + 861840

E;D SUs _
(0000010) = 56 = 28+ 28

{1000000) = 133 = 63+ 70
(0000001) = 912 = 36 + 36 + 420 + 420
(0000020) = 1463 = 1+ 70+ 336+ 336 + 720
(0000100) = 1539 = 63 + 378 + 378 + 720

E; D SU;x SO,
56=(2,12)+(1,32)
133=(3,1)+(2,32})+ (1, 66)
912 =(2,12)+ (3,32)+ (1, 352) + (2, 220)
1463 = (1, 66) + (3, 77) + (1, 462) + (2, 352')
1539 = (1, 1)+ (2, 32)+ (1, 77)+ (3. 66) + (1, 495) + (2, 352)

E,2SU3x SUs_ _
56=(3,6)+(3,6)+ (1, 20)
133=(8, 1)+(1 35)+(3 15)+(3 15)
912=(3, 6)+(3 6)+(6 6)+(6 6)+(1 70)+ (1, 70)+(8 20)+ (3, 84)+(3 84)
1463 = (1, 1)+ (1,35)+ (3, 15)+(3 15)+(6 21)+(6 21)+(1 175)+ (8, 35)+(3 105)+(3 105)
1539=(1, )+ (8, 1)+ (1,35 + (3, 15)+(3 15)+ (3, 21)+(3 21)+ (6, 15)+(6 15)+(1 189)+ (3, 105)+(3 105) + (8, 35)
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Table 53
Irreps, products and branching rules for Eg

Dynkin label Dimension (name) /60 (index)

(00000010) 248 1
(10000000) 3875 25
(00000020) 27000 25
(00000100) 30380 245
(00000001) 147250 1425
(10000010) 779247 8379
(00000030) 1763125 2750
{00100000) 2450240 29640
(00000110) 4096000 51200
(20000000) 4881384 65610
(01000000) 6696000 88200
(00000011) 26411008 31736

248 x 248 = 1, + 248, + 3875, + 27000, + 30380,
3875 x 248 = 248 + 3875 + 30380 + 147250 + 779247
3875 % 3875 = 15+ 248, + 3875, + 27000, + 30380, + 147250, + 779247, + 2450240, + 4881384, + 6696000,

Branching rules to regular maximal subgroups; SO;6 and SU, Dynkin labels given.

Es D80y
248 = (01000000)120 + (00000001)128
3875 = (20000000)135 + (00010000)1820 + (10000010)1920

EsD SUs _
248 = (10000001)80 + (00100000)34 + (00000100)34 _ .
3875 = (10000001)80+ (11000000)240 + (00000011)20 + (000100011050 + (10001000)T050 + (010000101215

Eg D SU, X E;
248 = (3, 1)+ (1, 133) + (2, 56)
3875= (1, 1) +(2,56) + (3, 133} + (1, 1539) + (2, 912)

Es D SU; x Eq o
18= (8, 1)+(1,78)+(3, 2+ (3,27 _ _ o
3875 = (1, 1)+ (8, 1)+ (3, 27)+ 3, 27+ (6, 27) + (6, 1)+ (8, 78) + (1, 650) + (3, 351) + (3, 351)

Eg D SUs x SUs o o
248=(1,24)+ (24, 1) + (5, 10) + (5,10} + (10,5) + (10, 5)

113

3875 = (1, 1)+ (1, 24) + (24, 1)+ (5, 10) + (5, 10)+ (10, 5) + (10, 5) + (1, 75) + (75, 1) + (5, 15) + (5, 15) + (15, 3) + (15, 5) + (5, 40) + (5, 40) + (40, 5) + (40, 5)

+(10, 45)+ (10, 45) + (45, 10) + (45, 10) + (24, 24)
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Table 54
Irreps, products and branching rules for SUg

Dynkin (name) Dimension (name)  Octality ! (index) Branching into SQg irreps
(1000000) 8 1 1

(0100000) 28 2 6 28
(2000000) 36 2 10 1+35,
(0010000) 56 3 15 56,
(1000001) 63 0 16 28+ 35,
(0001000) 70 4 20 35+ 35,
(3000000) 120 3 55 8, +112,
(1100000) 168 3 61 8, + 160,
(0100001) 216 1 75 56, + 160,
(2000001) 280 1 115 8, + 112, + 160,
{4000000) 330 4 220 1+35,4 294,
(0200000) 336 4 160 1+35,+300
(1010000) 378 4 156 28+ 350
(0010001) 420 2 170 35+ 35.+ 350
(0001001) 504 3 215 56, + 224, + 224,
(2100000) 630 4 340 28+ 35, + 567,
(0100010) 720 0 320 35,+ 35, + 300 + 350
(0000005) 792 3 715 8, + 112, + 672,
(3000001) 924 2 550 28+ 35, + 294, + 567,
(2000010) 945 0 480 28+ 350 + 567,
(0000110) 1008 3 526 8, + 160, + 840,
(0000200) 1176 2 700 1+ 35, + 300 + 840,

(Note that the projection of 8 to 8, is a convention and may be changed to 8 to & or 8 to &..)

8x 8 =28, +36,
Ex8=1+63

28x 8 =56+ 168
28x8=8+216
28 x 28 = 70, + 336, + 378,
28x28=1+63+720
36x8=120+168
36x 8= 8+ 280
36x 28 = 378+ 630
36x 28 = 63+ 945
36 % 36 = 330, + 336, + 630,
36x36=1+63+1232

56x 8="70+7278
_56x8=28+420
56 x 28 = 56+ 504 + 1008
56X 28 =8+ 216+ 1344
56 % 36 = 504+ 1512
56% 36= 216 + 1800
56x 56 = 28, + 420, + 1176, + 1512,
56% 56 =1+ 63+720+ 2352

63x 8=8+216+280
63x 28 = 28+ 36+ 420 + 1280
63% 36 =28+ 36+924+ 1280
63 % 56 = 56+ 168 + 504 + 2800
63X 63 = 1,+ 63, + 63, + 720, + 945, + 945, + 1232,

Branching rules to SU; x SUs x Uy irreps; U; generator in parentheses:
(1000000) = 8 = (3, 1X-5)+ (1, 5)(3)
(0100000) = 28 = (3, 1~ 10) + (1, 10X6) + (3, 5X-2)
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Table 54 (continued)

(2000000) = 36 = (6, 1)(-10)+ (1, 15X6) + (3. 5X-2)

(0010000) = 56 = (1, 1)(~15)+ (1, TOX9) + (3, SX=7) + (3, 10X1)

(1000001) = 63 = (1, 1)(0) + (8, 1)(0) + (3, 5X-8)+ (3, 5)(®) + (1, 24)(0)

(0001000) = 70 = (1, S)(-12) + (1, 5)(12) + (3, T0)(4) + (3. 10)(=4)

(3000000) = 120 = (10, 1)(~15)+ (6, SY=T) + (3, 15)(1) + (1, 33)9)

(1100000) = 168 = (8, 1)(~15)+ (3, SH=7) + (6, SX=T)+ (3, 10X1) + (1, 40)9) + (3, 15X1)

(0100001) = 216 = (3, 1)(=5)+ (1, S)3) + (6, 1Y=5)+ B, SY~-13) + (3, 10(11)+ (8, 5)3) + (1, 45)(3) + (3. 24X-5)

(2000001) = 280 = (3, 1)(=5) + (1, S)3)+ (15, 1)(=5) + (6, SX(-13) + (&, )3) + (3, 24)(=5) + B, 15)(11) + (1, 70)(3)

(4000000) = 330 = (15', 1)(~20) + (10, SY~12) + (1, TOK12) + (6, 15)~4) + (3, 35X4)

(0200000) = 336 = (6, 1)(~20)+ (3, 10)(~4) + (8, SY~12)+ (1, 50)(12) + (3, 40)(4) + (6, 15)(~4)

(1010000) = 378 = (3, 1)(=20) + (1, 5K~12)+ (3, T0)4) + (3, 10(-4) + (8, 5)(-12)+ (1, 45)(12) + (3, 15)~4) + (6, 10)(~4)+ (3. 20)(4)
(0010001) = 420 = (3, 1)(~10)+ (1, 5X~18)+ (1, 10)(6) + (3, SK~2)+ (6, 5)=2) + (3. 10)(14) + (1, 40)(6) + (3, 24)(~ 10) + (8, 10)(6) + (3, 45)(~2)
(0001001) = 504 = (1, T0)9) + G, 5KX-7)+ B3, SYAT)+ (1, ISX9) + (1, 24X=15)+ (3, 10X1) + (6, 10)(1) + (8, 10)(9) + (3, 40)(1) + (3, 45~7)

Table 55
Irreps, products and branching rules for SOy4

Irreps and SO14 O SU; X SU; X SOy branching rules:

(1000000) = 14 = (2,2, 1)+ (1,1, 10)

(0100000) =91 = (3, 1, )+ (1,3, 1) +(1, 1,45) + (2, 2, 10)

(0010000) = 364 = (2,2, 1)+ (3, 1, 10) + (1,3, 10} + (1, 1, 120) + (2, 2, 45)

(0001000) = 1001 = (1, 1,1)+(2,2,10)+ 3, 1, 45) + (1, 3, 45)+(1,1,210)+ (2,2, 120)

(0000100) = 2002 = (1, 1, 10y + (1, 1,126) + (1, 1, 126)+ (2,2,45)+ (3,1,120)+ (1, 3, 120)+ (2, 2, 210)
(0000011) = 3003 = (1, 1,45)+ (1, 1,120)+ (2, 2, 120) + (3, 1, 210) + (1, 3, 210)+ (2,2, 126) + (2, 2, 126)
(0000002) = 1716 = (1,1,120)+ (3, 1, 126)+ (1, 3, 126)+ (2, 2, 210)

(0000001) = 64 = (2, 1, 16) + (1, 2, 16)

Products of spinors:
64 x 64 = 14, + 364, + 1716, + 2002,
64X 64 =1+91+ 1001+ 3003

Table 56
Irreps, products and branching rules for SOy

Irreps and SOy D SOz X SOy branching rules:

(100000000) = 18 = (8, 1) + (1, 10)

(010000000) = 153 = (28, 1)+ (1, 45) + (8., 10)

(010000000) = 816 = (56,, 1)+ (1, 120) + (28, 10) + (8,, 45)

(000100000) = 3060 = (35,, 1) + (35, 1)+ (1, 210) + (56, 10) + (28, 45) + (8., 120)

(000010000) = 8568 = (56y, 1)+ (1, 126) + (1, 126) + (35,, 10) + (35, 10) + (56., 45) + (28, 120) + (8., 210)

(000001000) = 18564 = (28, 1)+ (1, 210) + (56, 10) + (8,, 126) + (8, 126) + (354, 45) + (35, 45) + (28, 210) + (56, 120)
(000000100) = 31824 = (8,, 1)+ (1, 120) + (28, 10) + (8, 210) + (28, 126) + (28, 126) + (56, 45) + (564, 210) + (35,, 120} + (35, 120)
(000000011) = 43758 = (1, 1)+ (1, 45) + (8., 10) + (8., 120) + (28, 45) + (28, 210) + (56, 120} + (56, 126) + (56, 126) + (35, 210) + (35, 210)
(000000002) = 24310 = (1, 10) + (8,, 45) + (28, 120) + (56, 210) + (35;, 126) + (35, 126)

(000000001) = 256 = (8;, 16) + (8., 16)

Products of spinors:
256 x 256 = 18, + 816, + 8568, + 31824, + 24310,
256 x 256 = 1+ 153 + 3060 + 18564 + 43758
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Table 57
Irreps, products and branching rules for SO

Irreps and SOy, D SOy, X SOyo branching rules:

(10000000000) = 22 = (1, 10) + (12, 1)

(01000000000) = 231 = (1, 45) + (66, 1)+ (12, 10)

{00100000000) = 1540 = (1, 210) + (220, 1) + (66, 10) + (12, 45)

(00010000000 = 7315 = (1, 210) + (495, 1)+ (12, 120) + (220, 10) + (66, 45)

(00001000000) = 26334 = (1, 126) + (1, 126) + (792, 1) + (12, 210) + (495, 10) + (66, 120) + (220, 45)

(00000100000) = 74613 = (1, 210) + (462, 1) + (462, 1) + (12, 126) + (12, 126)+ (792, 10) + (66, 210) + (495, 45) + (220, 120)

(00000010000) = 170544 = (1, 120) + (792, 1) + (12, 210) + (462, 10) + (462', 10) + (66, 126) + (66, 126)+ (792, 45) + (220, 210)+ (495, 120)

(00000001000) = 319770 = (1, 45) + (495, 1) + (12, 120) + (792, 10) + (66, 210) + (462, 45) + (462, 45) + (220, 126) + (220, 126) + (792, 120) + (495, 210)

(00000000100) = 497420 = (1, 10)+ (220, 1) + (12, 45) + (495, 10)+ (66, 120) + (792, 45) + (220, 210) + (462, 120)+ (462", 120)+ (495, 126) + (495, 126)
+(792,210)

(00000000011) = 646646 = (1, 1)+ (12, 10) + (66, 1)+ (66, 45) + (220, 10} + (220, 120) + (495, 45) + (495, 210) + (792, 120) + (792, 126) + (792, 126)
+ (462, 210) + (462, 210)

(00000000002) = 352716 = (12, 1)+ (66, 10)+ (220, 45) + (495, 120) + (792, 210) + (462, 126) + (462", 126)

(00000000001) = 1024 = (32, 16) + (32', 16)

Products of spinors:
1024 x 1024 = 22, + 1540, + 26334, + 170544, + 352716, + 497420,
1024 x 1024 = 1+ 231 + 7315 + 74613 + 319770 + 646646

Table 58
~ Branching rules to all maximal subgroups

This table is designed to facilitate analyses such as the search for maximal little groups, and also it represents a summary of the group theory
aspects of the review. The branching rules of a few low-lying irreps to the irreps of every maximal subgroup are listed for simple groups up to rank 6.
Many results repeat those in tables 14, 15, and the branching rule tables, but here there is no restriction to subgroups that can contain flavor and
color. When this table or the preceding ones are insufficient, the reader should refer to the much longer tables of ref. [57}, although in many practical
cases a quick calculation based on the results of this table will fill in the missing information. The format is to give both the Dynkin designation and
the dimensionality (name) as (Dynkin)r, except when the subgroup is SU;, SU,XxSU,, or more products of SU,’s, in which case only the
dimensionality is listed. The eigenvalues of the U, generator, when relevant, are given in parentheses after the irrep names, and are normalized to be

integers.

Rank 2: SU; D SU, x U, (R)
(103 = 1(-2)+ 21)
(206 = 1(-4)+ 2(- 1)+ 3(2)
(11)8= 1(0)+ 2(3) + 2(-3) + 3(0)

SU; 2 SU; (S)
(10)3=3
(20)6=1+5
(11)8=3+5

Sp4 D SU, xSU, (R)
ao4=2,1+(1,2)
onNs=(1.1H+@2,2)

Q0)10=(3,1)+(1,3)+(2,2)

SpsD SU x Uy (R)
(10)4 = 21+ 2(- 1)
OS5 = 12) + 1(=2)+ 3(0)
(20)10 = 1(0) + 3(0) + 3(2) + 3(-2)
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Sp«2SU; (S)
(104=4
©15=5

010=3+7

G;D8Us (R)
01)7 = (00)1 + (10)3 + (01)3
(10)14 = (103 + (O3 + (11)8

G, 28U, xSU, (R)
01)7=(1,3)+(2,2)
(1014 =(1,3)+ (3, 1)+ (2,4)

G2 SU; (5)
©1)7=17
10)14=3+11

Rank 3: SU,; 2 SU;x U; (R)
(1004 = (00)1(3) + (10)3(- 1)
(010)6 = (10)3(2) + (01)3(-2)
(101)15 = (00)1(0) + (10)3(-4) + (01)3(4) + (11)8(0)

SU, D SU, % SU; x U, (R)
(10014 = (2, (1) + (1, 2(-1)
(010)6 = (1, 1)2)+ (1, 1)(-2)+ (2, 2)(0)
(101)15 = (1, 1)(0)+ (3, 1M0) + (1, 3)0) + (2, (D) + (2, 2(-2)

SU, 2 Sp« (5)
(100)4 = (104
(010)6 = (00)1 + (01)S
(101)15 = (01)5 + (20)10

SU, D SU,x SU; (S)
(1004 =(2,2)
010 =(1,3)+(3,1)
aon15s=(1,3)+(3,1)+(3,3)

$0O,28U4 (R)
(100)7 = (000)1 + (010)6
(001)8 = (100)4 + (001)4
(010)21 = (010)6 + (101)15

$0,2 SU, % SU; x SU; (R)
(100)7 = (1,1,3)+ (2,2, 1)
0018 = (1,2,2)+(2,1,2)
01021 = (1, 1,3)+ (1,3, )+ 3, 1, )+ (2, 2,3)

SO,D Sp4 x Uy (R)
(200)7 = (00)1(2) + V0)1(-2) + (01)5(0)
(001)8 = (10)4(1) + (10}4(- 1)
(010)21 = (00)1(0) + (01)5(2) + (01)5(—2) + (20)10(0)

$0,0G;, (5)
(100)7 = (O1)7
001)8 = (00)1 + (01)7
01021 = (01)7 + (10)14
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Sps D SUsx U (R)
(100)6 = (10)3(1) + (01)3(~ 1)
(010)14 = (10)3(-2) + (01)3(2) + (11)8(0)
(001)14' = (00)1(3) + (00)1(-3) + (20)6(~ 1) + (02)6(1)
(200)21 = (00)1(0) + (20)6(2) + (02)6(-2) + (11)8(0)

Spe D SU2 % Spa(R)
{100)6 = (1)(00)(2, 1)+ (0)(10)(1, 4)
(010)14 = (0XO0X1, 1) + (OXO1)(1, S)+ (1)(10)(2, 4)
(001)14' = (O)10)1, 4) + (1XO1)2, 5)
(200)21 = (2)(0)(3, 1) + (0)20)(1, 10) + (1)(10)(2, 4)

Sps > SU, (S)
(100)6=6
©010)14=5+9
(001)14'= 4+ 10
(20021 =3+ 7+ 11

Spe D SU, x SU; (S)
(100)6 = (2,3)
010)14=(1,5)+(3,3)
0014 = (4, 1)+ (2,5)
(20021 =(1,3)+ (3, 1)+ (3,5)

Rank 4: SUsD SU,x U, (R)
(1000)5 = (000)1(4) + (100)4(- 1)
(0100)10 = (100)4(3) + (010)6(-2)
(1001)24 = (000)1(0) + (100)4(- 5)+ (D01)4(5) + (101)15(0)

SUs D SU, xSU;x U; (R)
(1000)5 = (1}00)(2, 1)(3) + (0X10X1, 3)(-2)
(0100)10 = (OX00X(1, 1)(6) + (OXO1X. 3)(-4) + (1)(10X2, 3)(1) i
(1001)24 = (OY00)(1, 1)(0) + (2)(00X3, 1)) + (1)(10)(2, 3)(- 5) + (1)(O1)(2. 3)(5) + (OX11)(1, 8)(0)

SUsD Spa (S)
(1000)S = (O1)5
(0100)10 = (20)10
(1001)24 = (20)10 + (02)14

S04 SOs(R)
(1000)9 = (0000)1 + (1000)3,
(0001)16 = (0010)8. + (00018,

(0100)36 = (1000)8, + (0100)28

SOy D SU,; x SU, x Sp4 (R)
(16009 = (1)(1)(00)(2, 2, 1)+ (O)(O0XO01X(1, 1, 5)
(0001)16 = (OX1)(10)(1, 2, 4)+ (1)ON10)2, 1, 4)
(0100)36 = (2)0)(00)(3, 1, 1) + (OX2)(OOX1, 3, 1) + (OXO)20XL, 1, 10)+ (11)O1)2. 2. 5)

$032 SU, x SUs (R)
(1000)9 = (2)(000)(3, 1) + (0)(010)(1. 6)
(0001)16 = (1)(100)(2, 4) + (1)(001)(2, 3)

(0100)36 = (2)(000)(3, 1)+ (0X101)(1, 15)+ 2)010)(3, 6)
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$0,280;%x U, (R)
(10009 = (000)1(2) + (000)1(- 2) + (100)7(0}
(0001)16 = (001)8(1) + (001)8(~ 1)
(0100)36 = (000)1(0) + (100)7(2) + (100)7(~ 2) + (010)21(0)

$0,2 SU; ()
(10009 =9
(0001)16= 5+ 11
0100)36=3+7+11+15

80,2 SU,x SU; (S)
(10009 = (3,3)
0001)16 = (2,4)+ (4,2)
010036 = (1,3)+ 3. )+ (3,5)+(5.3)

Sps D SUsx Uy (R)
(1000)8 = (100)4(1) + (001)4(- 1) _
(2000)36 = (000)1(0) + (200)10(2) + (002)10(~2) + (101)15(0)
(0001)42 = (000)1(4) + (000)1(~4) + (200)10(- 2) + (002)T0(2) + (020)20°(0)

Sps 2 SU2 X Sps (R)
(1000)8 = (1)(000)(2, 1) + (0)(100)(1, 6)
(200036 = (2)(000)3, 1)+ (0)200)(1, 21)+ (1)(100)(2, 6)
(0001)42 = (O)010)(1, 14) + (1)(O01)(2, 14"

Sps D Spa % Spa (R)
(1000)8 = (00)(10)(1, 4) + (10)(00)(4, 1)
(2000)36 = (00)(20)(1, 10)+ (20)(00)(10, 1) + (10)(10)(4, 4)
(0001)42 = (00)00)(1, 1)+ (10)(10)(4, 4) + (01)(01)(5, 5)

Sps 3 SU; (S)
(1000)8 =8
(200036 =3+7+11+15
(0001)42=5+9+11+17

Sps D SU, x SU, x SU; (S)
(1000)8 = (2,2, 2)
(2000)36 = (1,1,3)+ (1,3, 1)+ (3,1, 1)+ (3,3,3)
000142 =(1,1,5)+ (1,5, 1)+ (51, 1)+ (3,3,3)

S0g D SU, x SU, x SU, x SU, (R)
(100008, = (2,2, 1, 1)+(1,1,2,2)
©001)8, = (1,2,1,2)+ (2, 1,2, 1)
(0010)8. = (1,2,2, 1)+ (2, 1,1,2)
0100128= (1, 1,1,3)+ (1L, 1,3, D+ (1,3, 1, )+ 3, L, 1, )+ (2,2,2,2)

805D SU,x U; (R)
(1000)8, = (100)4(1) + (001)4(~1)
(0001)8, = (000)1(2) + (000)1(~2) + (010)6(0)
(00108 = (100}4(- 1)+ (001)3(1)
{0100)28 = (000)1(0) + (010)6(2) + (010)6(=2) + (101)15(0)

052 SU; (S)
(1000)8, = (11)8
(0001)8, = (11)8
(00108, = (11)8
{0100)28 = (11)8+ (30)10 + (03)10
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$052 S0 (S)
(1000)8, = (001)8
(0001)8; = (000)1 + (100)7
{0010)8. = (001)8
(010028 = (100)7 + (010)21

SO D SU, X Spy (S)
(1000)8, = (1)(10)(2, 4)
(0010)8. = (1)(10)(2, 4
(0001)8, = (0)01)(1, 5)+ (2)(00)3, 1)
(0100)28 = (2)(00)(3, 1)+ (0)(20)(1, 10)+ (2)(01)(3, 5)

F:J 50, (R)
{0001)26 = (0000)1 + (1000)9 + (0001)16
(1000)52 = (0001)16 + (0100)36

F;D SU;x SU; (R)
(0001)26 = (11)(00)(8, 1) + (10)(10)3, 3) + (01)(01)3, 3)
(1000)52 = (11)(00)(8, 1)+ (00)(11)(1, 8) + (20)(01)(6, 3) + (02)(10)(3, 3)

F4D SU;x Sps (R)
(0001)26 = (1)(100)(2, 6) + (0)(010)(2, 14)
(1000)52 = (2)(000)(3, 1)+ (0)(200)(1, 21) + (1)(001)(2, 14)

F, 25U, (8)
(0001)26 = 9 +17
(1000)52= 3+ 11+ 15+ 23

FsD SUZ X Gz (S)
(0001)26 = (4)(00XS, 1)+ (2X01)(3, 7)
(1000)52 = (2)(00)(3, 1) + (0X10X1, 14) + (4)(01)(5, 7)

Rank 5: SU¢D SUsx Uy (R)
(10000)6 = (0000)1(-5) + (1000)5(1)
(00100)20 = (0100)10(-3) + (0010)10(3)
(10001)35 = (0000)1(0) + (1000)5(6) + (0001)5(—6) + (1001)24(0)

SUs D SU2x SUy x Uy (R)
(10000)6 = (1)(000)(2, 1)(2) + (OX100X1, 4)(~ 1)
(0010020 = (0)(100)(1, 4)(3) + (OX001X1, 4)(—3) + (1)(010X2, 6)(0)
(10001)35 = (0)000)(1, 1)(0) + (2X000)3, 1X0) + (O)(101)(1, 15(0)+ (1)}(100)(2, 4)(-3) + (1X001)(2, 3)(3)

SUs D SUs X SUs x U; (R)
(10000)6 = (00)10)(1, 3)(— 1) + (10)(00)(3, L)1)
(00100)20 = (Q0X00)(1, 1)(3)+ (QOX00X(1, 1)(—3)+ (10)01)(3, 3)(- 1)+ (O1X10)3, 3X1)
(10001)35 = (0OX00)(1, 1X0) + (QO)(11)(1, 8)(0) + (11X00X8, 1X0) + (10Y01)3, 3)(2)+ (01)(10)3X-2)

SUsD SUs (8)
(10000)6= 206
(00100)20 = (30)10 + (03)10
(10001)35 = (11)8+ (22)27

SUs D SU (5)
(10000)6 = (010)6 _
(00100)20 = (200)10 + (002)10
(10001)35 = (101)15 + (020)20'
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SUs D Sps ()
(10000)6 = (100)%
(00100)20 = (100)6+ (001)14'
(10001)35 = (010)14 + (200)21

SUs 2 SU, x SU; (S)
(10000)6 = (1)(10)(2, 3)
(00100)20 = (3)(00)(4, 1)+ (IX11)(2, 8)
(10001)35 = (2)(00)(3, 1)+ (OX11X1, 8)+ (X113, 8)

§011 280, (R)
(10000)11 = (00000)1 + (10000)10
(00001)32 = (00001)16 + (00010)16
{01000)55 = (1000010 + (01000145

SO D SU, x SOg (R)
(10000)11 = (2)(0000)3, 1) + (0X1000X1, 8,)
(00001)32 = (1X0001)2, 8,) + (1X0010)(2, 8.)
(01000)55 = (2)(0000X3, 1)+ (0)(O100)1, 28) + (2)(1000)(3, 8,)

SO, 2 Sp4 x SU, (R)
(10000)11 = (01Y000)S, 1) + (VOX010X1, 6)
{00001)32 = (10)(100)4, 4) + (10)001)(4, 4)
(01000)55 = (20)(000X(10, 1) + (QOX101)1, 15) + (O1)010XS, 6)

$04; O SU,; x SU, X SO, (R)
(10000)11 = (1)(1X000)2, 2, 1)+ (OXOX100)(1, 1, 7)
(00001)32 = (OXIX001)1, 2, 8) + (1YOXOO1)(2. 1., 8)
(01000)55 = (2}0X000)(3, 1, 1) + (OX2)(000X(1, 3, 1) + (OXOX010X1, 1, 21)+ (IX1)}(100%2, 2, 7)

SO]] o] 509 x U, (R)
(10000)11 = (0000)1(2) + (0000)1(~2) + (1000)9(0)
(00001)32 = (0001)16(1) + (0001)16(~ 1)
(01000)55 = (0000)1(0) + (1000)9(2) + (1000)%(- 2) + (0100)36(0)

S0y, 0SU; ()
(10000)11 = 11
{00001)32 = 6.+ 10+ 16
(0100055 =3+7+ 11+ 15+ 19

Sp10 D SUsx U; (R)
(10000)10 = (1000)5(1) + ((X)Ol)g('— 1) _
(20000)55 = (0000)1(0) + (2000)15(2) + (0002)15(— 2)+ (1001)24(0)

Sp10 D SU2 x Sps (R)
(1000010 = (1)(0000)2, 1) + (OX1000)(1, 8)
(20000)55 = (2)(0000)(3, 1) + (0)(2000)(1, 36) + (1)(1000)(2, 8)

Sp1o D Sps X Sps (R)
(10000)10 = (10)(000)(4, 1) + (00)100X1, 6)
(20000)S5 = (20)(000X(10, 1) + (00)200)(1, 21) + (10)(100)(4, 6)

Sp1o D SU: (8)
(10000)10 = 10
(20000)55=3+7+114+15+19
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Sp10 2 SU; X Sps4 (S)
(10000)10 = (1)(01)(2, 5)
(20000)S5 = (2(00)3, 1) + (0X20)1, 10) + (2)(02)(3, 14)

SO1 D SUs x U; (R)
(1000010 = (1000)5(2) + (0001)5(-2)
(00001)16 = (0000)1(~ 5) + (0001)3(3) + (0100)10(- 1)
(01000145 = (0000)1(0) + (0100)10(4) + (0010)10(~4) + (1001)24(0)

SO0 SU, x SU; x SU, (R)
(1000010 = (1)(1)(000)(2, 2, 1) + (0)0X010X1, 1, 6)
(00001)16 = (1)(0X100)(2, 1, 4)+ (ON1)001X1, 2, Z)
(01000)45 = (2)(0)(000)(3, 1, 1)+ (O)2X000X(1, 3, 1)+ (OX0)(101)(1, 1, 15) + (1)(1)010)2, 2, 6)

80102 80:x U, (R)
(10000)10 = (0000)1(2) + (0000)1(~2) + (1000)8.(0)
(00001)16 = (0010)8(1) + (0001)8,(~ 1)
(01000)45 = (0000)1(0) + (1000)8.(2) + (1000)8,(~2) + (0100)28(0)

S04 2 Sps (S)
(10000)10 = (20)10
(00001)16 = (11)16
(01000)45 = (20)10 + (21)35

§010 D SO(S)
(10000}10 = (0000)1 + (1000)9
(00001)16 = (0001)16
(01000)45 = (1000)9 + (0100)36

$049 2 SU; X SO; ()
(10000)10 = (2)(000)(3, 1) + (0)(100)(1, 7)
(00001)16 = (1)(001)2, 8)
(01000)45 = (2Y000)(3, 1)+ (0)(010)(1, 21) + (2)(100)3, 7)

SOpD Sp4 X Sp; (S)
(10000)10 = (OX01)(1, 5)+ (01)(00)5, 1)
(00001)16 = (10)(10)(4, 4)
(0100045 = (00)(20)(1. 10)+ (20)(00X10, 1) + O1)O1)(S, 5)

Rank 6: SU; 2 SUgx U, (R)
(100000)7 = (00000)1(6) + (10000)6(- 1)
(100001)48 = (00000)1(0) + (10001)35(0) + (10000)6(—7) + (00001)5(7)

SU728U; x SUsx Uy (R)
(100000)7 = (10000X2, 1)(5)+ (0X1000)(1, 5)(~2)
(100001)48 = (OX0000)1(0) + (2)0000)3, 1}0) + (0X1001)(1, 24)0) + (1)(1000)2, 5X-7) + (1X0001)2, 5)(7)

SU;D SU3 x SU,4x Uy (R)
(100000)7 = (10)(000)(3, 1X4) + (00)(100)(1, 4)(~3)
(100001)48 = (00X000)(1, 1X0) + (11(000XS, 1)(0) + (0OX101)(1, 15K0) + (10)(001)(3, AX7) + (O1X(100)3, 4)(=7)

SU;2 805 (S)
(100000)7 = (100)7
(100001)48 = (010)21 + (200)27
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§0130 8012 (R)
(100000)13 = (0000001 + (100000)12
(000001)64 = (000001)32 + (000010)32
(010000)78 = (100000)12 + (010000)66

§0132 SU; x SOy (R)
(100000)13 = (2)00000)(3, 1)+ (0X10000X1, 10)
(000001)64 = (1)(00001)(2, 16)+ (1X00010)(2, 16)
(010000)78 = (2)(00000)(3, 1) + (0)(01000)(1, 45) + (2(10000)(3, 10)

80130 Sps x SOs (R)
(100000)13 = (01)0000X5, 1) + (00)(1000)8,, 1)
(000001)64 = (10)0001)(4, 8.) + (10)0010)4, 8c)
(010000)78 = (20)(0000X(10, 1)+ (00)0100X1, 28) + (01)(1000X(5, 8.)

S0130SUxSO7 (R)
(100000)13 = (010X000)6, 1) + (000)(100X1, 7)
(000001)64 = (100)001)4, 8) + (001)(001)(‘—‘, 8)
(010000)78 = (000)010)(1, 21) + (101)(000)(15, 1) + (010)(200X6, 7)

SOB D SU,x SU, x 809 (R)
(100000)13 = (1Y(1)(0000)2, 2, 1)+ (OXOX1000)1, 1, 9)
(000001)64 = (OX1)(0001)(1, 2, 16) + (1)OX0001)2, 1, 16)
(010000)78 = (2)(00000)3, 1, 1)+ (OX2XC000XL, 3, 1) + (OXO0)O100)(1, 1, 36)+ (1)(1)X1000)(2, 2, 9)

8013080, xU; (R)
(100000)13 = (00000)1(2) + (00000)1(~ 2) + (10000)11(0)
(000001)64 = (00001)32(1) + (00001)32(~1)
(010000)78 = (00000)1(0) + (10000)11(2) + (10000)11(~2) + (01000)55(0)

SO;308U; (S)

(100000)13 = 13

(000001)64 =4+ 10+ 12+ 16+ 22
(010000)78 =3+ 7+ 11+15+19+23

Sp12 2 SUs x Uy (R)
(100000)12 = (10000)6(1) + (00001)8(~ 1) _
(200000)78 = (00000)1(0) + (10001)35(0) + (20000)21(2) + (00002)21(~2)

Sp122 SU, X Spye (R)
(100000)12 = (1)(00000)(2, 1) + (OX10000)1, 10)
{200000)78 = (2)00000)(3, 1) + (0)}20000)(1, 55) + (1)(10000)(2, 10)

Sp|23 Sp4 X Spg (R)
(100000)12 = (10)(0000)(4, 1) + (00)(1000)(1, 8)
(200000)78 = (20)(0000)(10, 1) + (00)(2000)(1, 36) + (10)(1000)(4, 8)

Sp123 Sps X Sps (R)
(100000)12 = (100}000X6, 1)+ (000)(100)(1, 6)
(200000)78 = (200)(000)(21, 1)+ (000)(200)(1, 21) + (100)(100)(6, 6)

Spi2 D SU, )
(100000)12 = 12
(200000)78=3+7+11+15+19+23
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Splz D SUZ X SU4 (S)
(100000)12 = (1)(010)(2, 6)
(200000)78 = (2)(000)(3, 1) + (0)(101)(1, 15) + (2)(020)3, 20")

Sp122 SU, % Spy (S)
(100000)12 = (2)(10)(3. 4)
(200000)78 = (2)00)3. 1)+ (0)(20)(1. 10) + (2)(O1)3, 5) + (4)(20)(5, 10}

§01; D SUgx U; (R)
(100000)12 = (10000)6(1) + (00“)1)6(- 1)
(000001)32 = (10000)6(- 2) + (00(”1)6(2) + (00100)20(0)

(000010)32’ = (00000)1(3) + (00000)1(-3) + (01000)_1_5(— 1)+ (O(X)IO)E(I)
(010000)66 = (00000)1(0) + (01000)15(2) + (00010)15(-2) + (10001)35(0)

SO;2 D0 SU, x SU, x SOg (R)
(100000)12 = (1)(1)(0000)(2, 2, 1)+ (0)0)1000)(1, 1, 8,)
(000001)32 = (OX1)0001)(1, 2, 8) + (1)(O)O0010)2, 1, 82)
(000010)32' = (O}(1X0010)(1, 2, 8.) + (1)(0)0001)(2, 1, &)
(010000)66 = (2)OX0000)(3, 1, 1)+ (OX2)0000)(1, 3, 1)+ (OYOXO100)(1, 1, 28) + (1X1)(1000)2, 2, 8,)

50123 SU4 X SU4 (R)
(100000)12 = (010)000)(6, 1)+ (000)(010)(1, 6)
(000001)32 = (100)(100)(4, 4) + (001)(001){4, 4)
(000010)32' = (100)(001)(4, 4) + (001)(100)(4, 4)
(010000)66 = (101)(000)(15, 1)+ (000)(101)1, 15)+ (010)(010)6, 6)

80122804 x U; (R)
(100000)12 = (00000)1(2)+ (00000)1(_—2) + (10000)10(0)
(000001)32 = (00001)16(1) + (00010)16(~1)
(000010)32 = (00001)16(~ 1)+ (00010)16(1)
(010000)66 = (00000)1(0) + (10000)10(2) + (10000)10(~ 2) + (01000)45(0)

S04, D SU, X Spg (S)
(100000)12 = (1)(100)(2, 6)
(000001)32 = (3)(000)(4, 1) + (1)(010)(2, 14)
(000010)32 = (2)(100)(3, 6) + (OX0O1X(1, 14
(01000066 = (2)(000)(3, 1) + MH200X1, 21) + (2X010)3, 14)

SO 2 SU, x SU, X SU; (S)
(100000)12= (3,2, 2)
(000001)32= (1, 4, 1) +(3,2,3)+(5, 2, 1)
(000010)32 = (1, 1, 4)+ (3,3,2)+ (5, 1,2)
(010000066 = (3, 1, 1)+ (1,3, 1)+ (1, 1, 3) + 3,3, 3)+ 65,3, 1)+ (5,1, 3)

$0122 804 (8)

(100000)12 = (00000)1 + (10000)11
(000001)32 = (00001)32

(000010)32' = (00001)32
(010000)66 = (100000)11 + (01000)55

S012 D SU, x SOy (S)
(100000)12 = (2)0000)3, 1)+ (0)(1000X(1, 9)
(000001)32 = (1)(0001)(2, 16)
(000010)32’ = (1(0001)(2, 16)
(010000)66 = (2)0000)3, 1)+ (0X0100)(1, 36)+ (2X1000X3, 9)
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SO|2 o] Spg X SO7 (S)
(100000)12 = (01)(000)(5, 1) + (00)(100)(1, 7)
(000001)32 = (10)(001)(4, 8)
(000010)32' = (10)(001)(4, 8)
(010000)66 = (20Y000)(10, 1) + (QOX010X1, 21) + (O1)(100)(5, 7)

E;D8050x U; (R)
(100000)27 = (00000)1(4) + (10000)10(-2) + (00001)1_6(1)
(000001)78 = (00000)1(0) + (00001)16(-3) + (00010)16(3) + (01000)45(0)

Es D SU, x SUg (R)
(100000)27 = (1{00001)2, §) + (0)01000)(1, 15)
(000001)78 = (2)(00000)3, 1) + (OX(10001)1, 35+ (1)(00100)(2, 20)

E¢D SU; X SU;3 x SUs (R)
(100000)27 = (01X(10)(00)3, 3, 1) + (10)00)(10)(3, 1, 3)+ (QOXO1)01X1, 3, 3)

(000001)78 = (11{00)(00)(8, 1, 1) + (D0)(11)(00)(1, 8, 1)+ (00XCOX11)(1, 1, 8) + (10X10)01)(3, 3, 3) + (01)01)(10)(3, 3, 3)

Ee D SU; (S)
(100000)27 = (22)27 B
(000001)78 = (11)8 + (41)35 + (14)35

EsDG: (S)
(100000)27 = (02)27
(00000178 = (10)14+ (11)64

E¢ D Sps(S)
(100000)27 = (0100)27
(000001)78 = (2000)36 + (0001)42

EsDFi (S)
{100000)27 = (0000)1 + (0001)26
(000001)78 = (0001)26 + (1000)52

EsD SU3x G; (S)
(100000)27 = (02)(00)(6, 1)+ (10)01X3, 7)
(000001)78 = (11)00)8, 1)+ (OX10XL, 14) + (L1)OLX8, 7)
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