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Abstract

Many asset pricing anomalies imply the existence of time-varying pre-
dictable excess returns, as well as short-run underreaction and long-run
overreaction to news. The presence of short-sales constraints or of missper-
ception has been often invoked to explain such patterns. In this paper I
present a ‘mixed optimal /robust’ model with rational agents that hold no
missperception and face no borrowing constraints. In equilibrium, agents
do not borrow as much as they could, and filter news in ways that are consis-
tent with the anomalies mentioned above. We use the model to rationalize
the forward premium puzzle.
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1. Introduction

Many asset pricing anomalies imply the existence of time-varying predictable ex-
cess returns, as well as short-run underreaction and long-run overreaction to news.
The presence of short-sales constraints or of missperception has been often in-
voked to explain such patterns. In this paper I present a ‘mixed optimal/robust’
model with rational agents that hold no missperception and face no borrowing
constraints. In equilibrium, agents do not borrow as much as they could, and
filter news in ways that are consistent with the anomalies mentioned above. We
use the model to rationalize the forward premium puzzle.

The idea behind this approach is that agents maximize expected utility as in
standard models. However, they fear misspecification. Thus, they subject their
optimization problem to a robustness constraint (RC'). This constraint imposes
an upper bound on the rate at which returns can deteriorate as the amount of
misspecification increases. The results are that even agents who maximize ex-
pected wealth and who face no short-sales constraints will: (a)choose their port-
folio within a closed set even in the presence of predictable excess returns (i.e.,
‘limits to arbitrage’ arise in equilibrium); and (b)will use robust forecasting for-
mulas that are consistent with the misperception found in the data.

We use this setup to explain two anomalies in international financial markets:
the forward premium puzzle (FPP) and delayed overshooting (DO). According to
the FPP countries with higher than usual interest rates, relative to the US, tend
to experience a subsequent appreciation of their currency relative to the US dollar.
The DO anomaly is less prevalent than the FPP. It implies that the exchange rate
often follows a hump-shape pattern in response to a monetary shock.

The empirical literature has shown that these anomalies cannot be explained
only in terms of time-varying risk premia. Empirical evidence indicates that sys-
tematic forecast errors on the part of market participants play an important role.
Although uncovering this link is an important step, it generates intriguing ques-
tions: why do agents systematically hold misperception? Can these misperception
be arbitraged away by savvier investors? These questions can be addressed by the
mixed optimal /robust setup.

In formulating the RC' and solving the agent’s problem I use ‘robust control’
methods which have been developed during the last decade. The starting point
is the recognition that the models we use are simply approximations to the ‘true
model,” and there is no reason to maintain that the resulting misspecification
patterns can be parametrized by a well specified probability distribution, as is



done in the stochastic approach. A remarkable result is that for a very large
class of true models, one can represent misspecifications via unknown-but-bounded
disturbance sequences. An attractive property of robust control is that one can
obtain closed form solutions, which I use to compute the feasible portfolio set and
the robust forecasts.

In a mixed optimal/robust (O/R) setup investors have a well specified model
of the economy, but they take seriously into account that there might be model
misspecification. As in rational expectations models, investors try to take advan-
tage of all profit opportunities under a well specified probabilistic model of the
economy. However, as in robust models, they choose their portfolios subject to
a robustness constraint that requires that small, bul unknown, misspecifications
don’t lead to large losses; and also requires that the performance of the portfolio
does not deteriorate too fast as the norm of uncertainty increases.!

In this setup, investors who face no short-sales constraints, who use the correct
model to form expectations, and whose objective is to maximize expected profits
may choose not to take infinite positions. We will show that under some parameter
restrictions investors will choose their portfolio within a closed and bounded set
(the Qe-set). That is, ‘limits to arbitrage’ will arise endogenously {rom a desire for
robustness. Thus, when faced with a seemingly profitable opportunity, an investor
will behave conservatively and not choose an overly large position.

The interesting aspect of the model is that, if it exists, the boundary of the
Q-set 1s state-dependent: it is a function of the exchange rate realization, the
history of interest rate differentials, and the degree of required robustness. As a
result, the exchange rate has two functions: it determines the sign of expected
excess returns, as well as the boundary of the Q;-set.

Clearly, in situations in which the representative investor selects his portfolio at
the boundary of the Q;-set, expected excess returns can be positive. Furthermore,
if the degree of required robustness declines over time, there can be a negative
covariance between exchange rate changes and the interest rate differential, and
an unconditional delayed response of the exchange rate to interest rate shocks.
This rationalizes the foreign exchange anomalies alluded to above.

We formalize the preceding ideas by considering a ‘mixed O/R’ economy in
which agents select their portfolios by wearing two hats. They wear a robust hat to

L As we shall see, the problem solved by agents does not require that profits be greater than
a certain level under all circumstances, so it is not a constraint that only considers the worst
case scenario.



construct the Q;-set of admissible portfolios under an ‘uncertain model’ that allows
for misspecification.? They then wear an optimizing hat to select a portfolio within
that set in order to maximize expected profits under a well specified ‘probabilistic
model.” In other words, agents select portfolios in a standard optimizing fashion
within a certain ‘Q-set’. However, they do not consider portfolios outside this
Qq-set.? This setup is similar to the ‘mixed Hy/H.,  approach developed in the
control literature.

Since we are considering a multiperiod asset pricing problem, the probabilistic
model and the uncertain model used by an investor must contain conjectures of
how future exchange rates will be determined, as well as descriptions of the interest
rate differential process. This raises the issue of what is a reasonable equilibrium
concept in a mixed O/R economy? We propose one which is practically identical
to the standard competitive equilibrium of rational expectations. The only differ-
ence is that we impose two, instead of just one, consistency requirement on the
agent’s conjectures.

The existing economics literature has dealt with uncertainty in two contrast-
ing ways. In the rational expectations literature all uncertainty is represented
probabilistically. In contrast, in the robust literature, uncertainty is represented
by sequences of totally unknown disturbances that satisfy certain norm bounds.*
Our methodological contribution is to pose and solve a multiperiod asset pric-
ing problem in which both optimizing and robustness considerations are present.
This approach is a compromise between standard rational expectations models,
which assume away any potential misspecification, and robust models, which force
agents to be overly conservative.

The structure of the paper is as follows. In Section 2 we present a brief outline
of the argument. In Section 3 we present a simple rational expectations model that
will serve as a benchmark. In Section 4 we consider the mixed O/R economy and
solve for the equilibrium. In Section 5 we show how the equilibrium exchange rate
process can rationalize the foreign exchange market anomalies. In Section 6 we
present a review of the literature. Lastly, we present the proofs in the Appendix.

2The main difference between robust models and rational expectations models is that in the
former consider misspecifications that need not be parametrized in a probabilistic way.

3As we shall see, the desire for robustness does not imply that agents are inactive in the
market and simply stay in bed. The problem that agents solve in order to compute the R;-set
does not require that excess returns be greater than a certain level under all circumstances, so
it is not a constraint that considers a simple minded worst case scenario.

4See the next subsection for a review of the literature.



2. Outline

We start in Section 3 with a simple benchmark model in which the exchange rate
is determined by the uncovered interest parity condition. Agents can borrow and
lend freely a domestic bond as well as a foreign bond, and their objective is to
maximize expected profits. In this setup the expected depreciation of domestic
currency must equal the interest rate differential

Et(ft+1) _ft:Tt—T{ (2-1>

where f; is the log exchange rate. Like in rational expectations models, in order to
allow the agent to compute Fy(fi11), it is assumed that the interest rate differential
Ty — th := 1, follows a well specified stochastic process. Thus, agents can use
Bayes law in combination with knowledge of the model to compute Fy(fiy1). The
equilibrium f; is then obtained by solving (2.1) recursively.

It is well known that foreign exchange market anomalies cannot be explained
by standard rational expectation models like the one we have just described. If one
introduces risk aversion, the same holds true unless risk aversion is unreasonable
high. In this paper we take a different route to generate time varying predictable
excess returns.

The mixed O/R economy of Section 4 is meant to capture the fact that real
world investors frequently refrain from taking overly large positions even if ex-
pected excess returns are high. To make the analysis simple and sharp, we consider
practically the same setup as in Section 3: an agent that faces no short-selling
constraints maximizes expected profits subject to a robustness constraint (RC),
that we will describe below.

The basic methodological departure from the existing literature is that we
endow the agent with two models of the economy: a ‘probabilistic model’ under
which he estimates the mathematical expectation of excess returns and chooses
the optimal portfolio, and an ‘uncertain model’ under which he computes what
we call the Q-set of admissible portfolios that satisfies the RC.

The uncertain model resembles the benchmark model of Section 3, except
that it includes dynamic misspecification patterns that are taken to be unknown.
These misspecification sequences are only required to be square summable.

In contrast, the probabilistic model parametrize uncertainty. The interest rate
differential as well as the exchange rate follow well specified stochastic processes.
That is, under the probabilistic model the agent knows how Q) ;-sets will be com-
puted in the future and knows that the ¢ + i’s exchange rates may be determined
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at the boundary or in the interior of the Q;;-set.

The RC' is defined by Problem R. TLoosely speaking, the RC requires that
small misspecification do not lead to large losses, but permits large losses in the
presence of huge misspecification. In other words, the RC requires that as the
norm of uncertainty grows, excess returns deteriorate at a rate no greater than a
number v > 0.

During each period the agent observes the exchange rate f; and past interest
rate differentials 3* and solves the so called Problem O/R: maximize expected
profits under the probabilistic model, subject to the constraint that the portfolio
satisfies the RC' under the uncertain model.

Since we are departing from the traditional rational expectations framework,
we must address the issue of an appropriate equilibrium concept in a mixed O/R
economy. The equilibrium concept we will propose is practically identical to the
standard competitive equilibrium of rational expectations except for one differ-
ence. Typically in rational expectations models there is a consistency requirement
that the conjecture of future prices must be confirmed by the future equilibrium
price function. In a mixed O/R economy there are two consistency requirements,
stemming from the fact that the agent can choose a portfolio in the interior or on
the boundary of the Q;-set, which in turn is derived under the uncertain model.

We ask three questions. First, when will an agent in a mixed O/R economy
choose not to take infinite positions? Second, under which circumstances can
there be predictable excess returns in equilibrium? Finally, can we generate time-
varying patterns of predictable excess returns that rationalize the foreign exchange
market anomalies we listed in the Introduction?

To address these issues we construct Markov equilibria in two steps. First,
we characterize the Qs-set and determine the conditions under which it is closed
and bounded. Then, we construct an equilibrium exchange rate path that ensures
market clearing at all times.

In order for ‘limits to arbitrage’ to arise from a desire for robustness, and the
intuitive story we described above to go through, the Q-set must be non-empty,
closed and bounded. Proposition 4.1 provides necessary and sufficient conditions
on primitive parameters for this to be the case. Furthermore, it characterizes the
boundary of the Qs-set in terms of a quadratic equation. This will turn out to be
key in finding a closed-form solution for the exchange rate.

Whether or not the agent will choose his portfolio in the interior or at the
boundary of the Q-set depends on the sign of the expected excess returns. The
expectation is computed using the equilibrium exchange rate process, which is



characterized by Proposition 4.3.

In order to rationalize the foreign exchange market anomalies it is necessary to
have time-varying predictable excess returns along the equilibrium path. This is
possible because the boundary of the QQ-set is state-dependent. It is determined
by the current exchange rate, the interest rate differential’s history, the robust
forecasts made by agents, and by the required degree of robustness.

Proposition 5.1 identifies sufficient conditions for expected excess returns to be
time varying and strictly positive over a certain time interval. That is, the upper
boundary of the Q;-set equals the supply of the domestic bond (S) and expected
excess returns are positive. One of these restrictions is that the degree of required
robustness declines over time.

In Section 5 we present simulations that show that if agents behave in the
way we have just described, and f; is as characterized in Proposition 5.1, then it
possible for the exchange rate path that clears the market to be consistent with
the foreign exchange market anomalies we alluded to above.

An appealing property of the model is that as the degree of robustness is
reduced, the robust forecasts converge to the rational expectations forecasts and
the boundaries of the Q-set vanish. As a result, in the limit, the equilibrium
exchange rate function converges to the rational expectations one.

3. The Benchmark Economy

In this section we present a simple rational expectations model in which the ex-
change rate is determined by the celebrated uncovered interest parity condition.
Our objective is to have a familiar benchmark. In latter sections we will use
this benchmark to evaluate the effects of introducing model uncertainty and ro-
bustness considerations, as well as to illustrate the issues involved in defining an
equilibrium in a mixed O/R setup. Some readers may wish to skip this section
as the material is standard.

Consider a representative agent who can invest in either a domestic bond or a
foreign bond. A domestic bond purchased at time ¢ pays exp(r;) units of domestic
currency at t 4+ 1, while a foreign bond pays exp(r}) units of foreign currency.
There is a fixed supply of the domestic bond equal to S > 0, while the foreign
bond has a perfectly elastic supply.

Uncertainty originates from the fact that the interest rate differential (y; :=
ry — ;) is random. In this section we will assume that this uncertainty can be
parametrized in terms of the following stochastic process.



yj:a:j—l—avf)j, j:{l,,T} (3 1>
Tjp1 = axj + oW, 20=0, |a]<1 '
The disturbances are independent and identically distributed. For each j, the
disturbance 7, is a realization of a random variable that has a standard normal
distribution. Furthermore, ¥; €R. The same holds true for w;.

According to (3.1) the interest rate differential is hit by transitory as well
as persistent disturbances. However, the agent cannot distinguish one from the
other. At time t he observes only the history {yj}z.zl = y', and additionally
knows that the effect of a persistent disturbance on 7, decays at rate a.’

We will denote the log exchange rate by f;. As usual, an increase in f; cor-
responds to a depreciation of the domestic currency. We close the model by
postulating that there is a final time T" + 1, at which y7;; = 0 and fri1 is ex-
ogenously given by B,,; €R. We assume that F; ; is a realization of a random
variable with a finite first moment.

Like in standard rational expectations models, to ensure that the representa-
tive agent can compute the mathematical expectation of excess returns, in addition
to knowledge about (3.1), we endow him with a model of how future exchange
rates will be determined. We assume that the conjecture has a Markovian form:

Jgtlii(b) = b1 rilirs + borilri(Tigipr) F bseys, THI<T (3.2)

In equilibrium the parameter vector b* must be such that the conjecture is con-
sistent with the equilibrium exchange rate function.
For further reference we state the problem solved by the representative agent.

Problem O. Given the current exchange rate f; and history {yj}z.:l,

portfolio, q € R, in order to mazximize the expected value of next period’s
wealth, under the interest rate differential process (3.1), and the conjectured
next period’s exchange rate function.

choose a

In the benchmark economy an equilibrium consists of a conjecture ﬁﬁl(btﬂ),
an exchange rate function fP(y; JFEH (bty1)), and a portlolio strategy qf(f:, y'),
such that during every period, taking the exchange rate as given ¢ (f;, y") solves
Problem O; the domestic bond market clears; and the conjecture is consistent:

°This state-space representation of the interest rate differential can be interpreted in terms
of the Dornbusch (1976) model.



TR ]‘:Erl(bfﬂ)) = ftB(bz‘) for all ¢ < T. That is, there is a fixed point of the
mapping from the agent’s conjecture to the model that generates exchange rates.
This is simply the definition of equilibrium used in standard rational expectations
models.

The solution to Problem O entails taking infinitely large short or long positions
unless there are no expected excess returns:

Elpyr, fo) = fi — B(feq1) vy =0 (3.3)

That is, in a risk-neutral setup expected devaluation equals the forward premium:
E(fE1) — ft = yr. This is the uncovered interest parity condition.”

In order to compute Ey(f;, 1) the agent uses the fact that y* is generated by
stochastic process (3.1), and that next period’s exchange rate will be given by
fﬁl(btﬂ). Bayes law then implies that E(yey:|y1,...,v:) = @’ 1241 where 2y is
given by the Kalman filter recursion’

i?j+1 = CLQATJ‘ + CLk‘j [yj - i?j], i?l = 0. (34>
The gain and the variance of the estimator are given, respectively, by:

. 2
Z a 2

k= —~2 7. - - 7. = 2
7 Zj_l_o_%? j+1 Z;1+O_;2+O_w, 1 ag

w

We show in the Appendix that the consistency requirement fF(yt; j:tlil) = ftB (y")

is satisfied if and only if 37 = F(8;,,), b, = —1, and b3, = —171“17. Thus, the

equilibrium exchange rate function is

JEW) = =y — e + B, (3.5)

* n
6 A foreign bond purchased at time f pays (1 + %) units of the foreign currency at t+1, while

a domestic bond pays (1 + %)n units of domestic currency. Under continuous compounding the

i n
uncovered interest parity condition is: exp(r;) = %’—1 exp(r;), where lim, (1 + %) =

eXp(T};), and F; is the exchange rate. Fquation (3.3) follows by taking logs and setting y; =
Ty —rf.

"To see this, note that each disturbance w; and U; belongs to the set of all possible realizations
of a random variable z ~ N(0,1), except {—00, co}. Moreover, Pr(z = —00) = Pr(z = +00) = 0.



where,
1 — ant

By = Et(ﬂtJrl) and ¢, =

This function says that the exchange rate appreciates if there is an increase either

1—a

in the current interest rate differential or in the forecast of future differentials (i.e.,
EiT;lt Ei(yiri) = EiT;lt a" Y1 = ¢ey1). Since |al] < 1, (3.5) converges to the
familiar formula fZ = 3, —y; — l%a Zyyq for large T.

As is well known, this exchange rate determination model cannot explain the
most salient foreign exchange anomalies.

4. The ‘Mixed O/R’ Economy

In the rational expectations model of Section 3 agents take an ‘on the average’
approach in selecting portfolios. Given the means and variances of disturbances,
agents make forecasts of future interest rates by setting future shocks equal to their
expected value (zero in our benchmark case). Thus, forecasts are Fy(y; ;) = a’i;.
The underlying assumption is that although future shocks might be very large in
absolute value, they will wash out and are uncorrelated.

The point of departure of the robust approach is that agents recognize the
possibility that there might be model misspecification. This might arise from
modeling errors, parameter variation, etc. In a robust setup agents make forecasts
using a ‘guaranteed relative performance’ approach instead of an on the average
approach. An important method to tackle robustness issues that was developed
during the 1980s is the so called H,-control.

In this paper we consider a hybrid optimal/robust setup in which agents, who
can borrow and lend freely optimally select their portfolio from a set that satisfies
a certain robustness constraint. The idea is that agents want to ensure that small
but unknown misspecifications don’t lead to large losses. Thus, when faced with
a seemingly profitable opportunity, they will behave conservatively and will not
choose an overly large position. As we shall see, the desire for robustness does not
imply that agents are inactive in the market and simply stay in bed.®

We implement this idea by posing a mixed O /R problem in which an agent has
two models of the economy: an ‘uncertain model” under which he computes what

8We would like to emphasize at the outset that the robustness constraint will not require that
realized profits be greater than a certain level under all circumstances, so it is not a constraint
that only considers the worst case scenario.



we will call the Qg-set of admissible portfolios; and a ‘probabilistic model’ under
which he estimates the mathematical expectation of excess returns and chooses
the optimal portfolio. The uncertain model allows for the existence of unknown
misspecifications. In contrast, the probabilistic model parametrizes uncertainty.

4.1. The Uncertain Model

Agents construct the robust portfolio set by using an uncertain model of the
economy that allows for a quite general model uncertainty. In contrast to the
Bayesian approach this model uncertainty is not confined to cases that can be
parametrized in a probabilistic way.

Since we are considering a multiperiod asset pricing problem, the agent’s un-
certain model must include representations of the interest rate differential process,
as well as of future exchange rates under the existence of unknown time-varying
misspecifications.

Consider first the representation of the interest rate differential. The agent
takes the view that (3.1) is simply a linear approximation to the true process,
which might be a high order non-linear dynamic process. Since the true model
is unknown, there is no reason to believe that misspecification patterns can be
represented by sequences of 1.i.d. disturbances {7;,w;} as in (3.1). Instead, the
agent represents the interest rate differential process by adding to (3.1) totally
unknown sequences {A§, AY, Ag}?jol, that allow for a very wide range of time-
varying misspecifications in the disturbances, as well as in the trend component.
That is, instead of (3.1) we now have y; = x; + A% +0,0; and 2541 = a[l+Af|z; +
AY + 0,;. Thus, under the uncertain model”

— . . e 5 v—1
Y; = T; + 005, v 1= 0; + Ao, 1
_ ) ) e T a W —
Tjp1 = aT; + 0,5, wj = Ww; + alfx; + Ao, (4.1)
Tg = 0

Since there is a myriad of potential well-behaved true models, the agent allows
the misspecification sequences to be unknown. The only requirement imposed on

9Throughout this paper we will consider unstructured unceratinty. We assume that the para-
meters (a,0,,,0,) are knownand that the initial value of the unobservable state z; is unknown.
We represent this uncertainty by setting xo = 0, so that z; is given by the first element of the
disturbance sequence: x; = o,wy.
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{AY AY AY };2“01 is that they be square summable:

T+1
1A B = 30 (AP <00, for s = {a,0,w) (4.2)

This is actually a weak requirement and allows for quite a large set of misspecifi-
cations, including those with complicated dynamic patterns. Note that if we set
Ay =AY = AY =0 for all j, then (4.1) reduces to the benchmark model (3.1).1

Let us consider now the representation of future exchange rates. In order to
ensure that it is not ‘anything goes’ under the uncertain model, the conjecture is
restricted to have the same form as the equilibrium exchange rate function of the
benchmark economy (3.5). That is, for ¢t +i < T

Fis™) = =i — beraFrrs(@irir) + v, ]2,y < o0 (4.3)

The first term is equal to the one in (3.5), and the second term simply replaces
the conditional expectation Fpy;(xi1:41) in (3.5) by the robust state forecast
.7'—t+z-(a?t+i+1).11 The agent recognizes that the first two terms in (4.3) are sim-
ply an approximation, or that several events that he does not anticipate might
take place (institutional changes, supply shocks, etc.). Since he is using a robust
method, he does not represent this uncertainty in a probabilistic way. Instead,
he represents this unmodelled uncertainty with an unknown disturbance sequence
u”’, which is only required to be square-summable. Lastly, in order to forecast
next period’s exchange rate, the agent represents next period’s state forecast as
follows

Fi(Fir1(2ey2)) = aF(2ey1) + 0wWisn (4.4)

where wy, 1 i1s an unknown disturbance with finite energy.
Armed with the uncertain model (4.1)-(4.4), the agent determines the robust
portfolio set (Q-set) by solving the following feasibility problem.

1076 illustrate what we mean by unknown time-varying misspecifications suppose that the
true interest rate differential process has two state variables: ¥y = 1 + @2, where Zy ;41 =
a11%1,¢ + 012%2¢ + W and To g1 = 2181, + @22%2 ¢ + W;. Although this system is linear, the
misspecification sequences {A%, A¥, AY} associated with the univariate representation in (4.1)
are quite complicated and highly correlated with the state.

1We could have also considered a conjecture with undetermined coefficients: fgj_i(yt“) =
K1,tiYees + K2,t+ift+i($t+i+1) + 4, and then determine the vectors x that belong to an
equilibrium. As will become clear latter, doing that does not add any insights and would
comlicate notation.
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Problem R. Find the set of portfolios that satisfy the following ‘robustness con-
straint’ (RC):

m — qlfi — frra(w) + y

[lwlf3

<7t (4.5)
7[07t+1]

for all non-zero disturbance sequences {Wj+1}§:0 € lyjo,e41) that are consis-
tent with observations {y*, f} under the uncertain model (4.1)-(4.4).

The norm of the unknown disturbances is given by'? ||w||> 1= Eiﬁ) [w3+

7[07t+1] T
2 2
Uj] + Uiy

We would like to emphasize that by imposing the RC we are not assuming
the existence of self-imposed short-selling constraints (i.e., limits to arbitrage). In
fact, as we shall see, the Qs-set might be unbounded. Proposition 4.1 characterizes
this set and specifies when is that limits to arbitrage will indeed arise.

It is not transparent what the Q-set is by simple inspection because (4.5)
depends on disturbance sequences {w; }ﬁg) that are not known. Unlike the bench-
mark model, there is no probabilistic characterization of these disturbances. Thus,
we cannot use standard Bayesian filtering. Instead, we will characterize the QQs-set
using H.-control techniques.

Before solving this problem we will provide the economic intuition. Roughly
speaking, the RC requires that small misspecifications don’t lead to large profit
losses, but permits bad portfolio performance in the presence of large misspec-
ifications. In other words, the RC simply requires that the performance of the
portfolio does not deteriorate too fast as the amount of uncertainty increases. This
is much milder than requiring that the portfolio has a guaranteed performance
under all circumstances.

The term ¢ |f: — fir1(w) + yi] = @pyyq(w) can be interpreted as an index of
realized excess returns. For instance, in the event of an exchange rate depreciation
in excess of the interest rate differential ( fiy1— f: > ), realized excess returns will
be positive if the portfolio is short in the domestic bond and long in the foreign
bond (i.e., ¢ < 0 and qtf > 0). The parameter m can be interpreted as an index
of desired excess returns. It can either be negative, positive or zero. Lastly, the
denominator in (4.5) is a measure of the amount of uncertainty. This uncertainty

L2For any finite 7', the unknown disturbance sequence {v;, w; }jT:O defined by (4.1) belongs to
the Iy 10,77 space. This follows from the fact that Iy g ) is a linear space, (0;,%;) € Iy jo,7) and
Aj € l27[07T].
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can reflect misspecification in either the interest rate differential process or in the
exchange rate formation mechanism. Unlike the benchmark model (3.1)-(3.2),
there might exist unknown misspecifications that cannot be parametrized (i.e.,
(4.1)-(4.4)).

It is important to note that the RC does not imply that under all circumstances
the realized excess returns index must exceed the desired level m! Obviously, the
RC holds if ¢p;,,(w) > m. However, the RC requirement is much milder: when
there is very little misspecification (i.e., ||w| ’%,[O,t b 0) the excess returns index
should not be too far below the desired level m. In contrast, when there is a lot of
uncertainty, the excess returns index can indeed be much lower than m. In this
latter case the RC simply requires that the index of realized excess returns should
not deteriorate at a rate greater than 72 as the disturbances’ norm increases. This
is why 7, ! is an index of required robustness. As we shall see, this index will play
a key role. In the limit when v, — oo, the equilibrium exchange rate function will
converge to the benchmark function (3.5).

For illustrative purposes let us interpret Hng,[O,t 41 as an index of market
turmoil or uncertainty faced by all agents in a given market. Under this view
there is a sense in which the RC is consistent with the existence of certain payment
schemes for money managers based on relative performance. When the market is
in turmoil or in a trading range, many money managers will perform badly. In
these circumstances, an individual manager will not be penalized by his principal
if his portfolio does not perform well.

Second, under this view we can see that the RC does not imply that the
investor will ‘stay everyday in bed’ and take no positions whatsoever, fearing that
no matter what he does, he will always lose. In fact, the opposite is true. On the
one hand, if ¢, were set to zero and ||w| ’;,[0,t+1] — 0, then (4.5) would be violated:
a money manager that unilaterally kept out of a ‘clearly good market’ might have
difficulties keeping his job. On the other hand, RC permits realized excess returns
to be quite low, and even negative if there is a lot of turmoil in the market.

Third, the RC is consistent with the notion that investors are unwilling to take
very large positions that might bankrupt them in normal times. As we shall see,
under some restrictions on parameters, the RC will be satisfied exactly when ¢,
belongs to a certain closed and bounded set Q7 (f:,y").
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4.1.1. Differences Between Problem R and Standard H.,—Control

The name H..-control derives from the fact that in the robust control litera-
ture the objective often considered is an H.,—norm.!* Using the notation of our
model, the H.,-norm typically considered in that literature would be: H{°(7y) :=
sup i [ (5,951
wed Hng,[O,tJrl]

link between H[¢ and Problem R, note that if {yj}z‘:l # 0, the robustness con-
straint in Problem R is equivalent to Hf := sup,cq,

< ~2, where h(.) is a C"' function. In order to establish a

m—gepp 1 (Wit1)
T2,

< 47, These

0,t4+1]
two objects, although similar, differ in several respects.

First, in standard H.,—control the cost index h;(.) does not contain forward
looking variables. In contrast, in a portfolio selection problem it is essential to
include future prices. Since prices next period depend on prices during the period
following the next and so on, it is necessary to specify how it is that agents
represent forward looking variables. This is why we had to specify the so called
uncertain model (4.1)-(4.4).

Second, the summation in the numerator H/¢ starts at j = 1, while the numer-
ator in Hf only contains current and future variables. This is because standard
'Ho—control considers the cumulative cost. In contrast, in macroeconomics and
finance typically the past does not enter into the objective function of agents.
Thus, it does not make sense to start the summation in H;’s numerator at j =1
if the problem is being solved at time j = .

Third, the numerator in H{ is not squared like in H/°. We could square it, but
that would not make a lot sense in a portfolio selection context. The idea behind
the RC is to ensure that realized excess returns are not too low in normal times.
Squaring the numerator would imply that the investor would not like profits to
be too high in normal times! In engineering and in some economic problems the
objective is typically to minimize the distance to a certain target, or the effort
used to control a system. Thus it makes sense to square the numerator.

13Tn particular, let Gy be a linear operator that maps an input sequence {w; };H:'}) to a certain
objective under control policy . The Ho, induced norm of the operator G, is then defined as

Gow ||2.10
| Gxw [loo= sup M
welz,[o’t+1],w#0 || W ||27[07t+1]

where || w ||2,10,¢+1] is the la—norm of the sequence w. The ‘optimal Ho, Problem’ is to determine
v = infyco || Gyw ||, and to find the control policy x* that attains -.
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Last, we have posed the problem as a feasibility problem. This is different from
the so called ‘optimal ‘H,, Problem’ which consists of finding the lowest possible
7y (i.e., v = inf H*), and the control policy that attains 1.

4.2. The Probabilistic Model

As we have seen, the uncertain model allows for misspecification in the repre-
sentation of the interest rate differential as well as in the representation of next
period’s exchange rate. In contrast, the probabilistic model we are now going to
describe resembles the rational expectations model of Section 3. It parametrizes
all uncertainty in terms of known probability distributions, and it endows the agent
with knowledge of the process that generates futures exchange rates.'*

Consider an agent who assumes that the interest rate differential is generated
by the benchmark process (i.e., (3.1)), and knows that during each period the
demand for the domestic bond may be set either at the boundary or in the interior
of the Q¢-set. Furthermore, he knows the likelihood of each event. That is, he
knows that with some probability a; the exchange rate at time ¢ will be such that
the boundary of the Q;-set will equal the supply of the domestic bond. Denoting
this exchange rate by f/ (y!), we have that

Q] (f*=, y") =S (4.6)

Meanwhile, with probability 1 — «; the exchange rate at time ¢, f¢(y'), will be
such that expected excess returns are zero:

Fi <pt+17 ff) =0 (4-7>

where F, (ptﬂ, ff) = f¢ — E(fir1) + 9. Like the rational expectations model of
Section 3, in order for the agent to be able to compute this expectation we need
to endow him with a conjecture of how future exchange rates will be determined.
We consider a conjecture that has the same Markovian form as the one in the
benchmark model.

F(p,1) = { 371?(90) = Q14U+ T Porpiliritt + P34 PTGy (4.8)
e ftiz(w) = ¢1,t+z‘yt+i + 1/’2,t+z‘j7t+z‘+1 + 1/’3,t+z‘ pr. 1 —oyy

14Recall that the agent estimates the expectation of excess returns and selects his portfolio
from the robust portfolio set under the probabilistic model.
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In equilibrium, the vectors ¢ and 1 must be such that the consistency requirement
listed below, in the definition of equilibrium, is satisfied.!®

Summing up, under the probabilistic model the interest rate differential process
is given by (3.1) and the representation of future exchange rates is (4.8). Thus,
under the probabilistic model the expectation of £ + 1’s exchange rate using infor-
mation available at ¢ is

Eilfir(0,0)] = aep Bl Fi5 (039 )]+ [ = awpn | Bl fE (9.

4.3. The Agent’s Problem

The problem solved by the representative investor is a combination of the two
auxiliary problems we have defined.

Problem O/R. Given the exchange rate f; and the history of interest rate dif-
ferentials {yj}z.zl , choose a portfolio that solves Problem O under the prob-
abilistic model, subject to the constraint that the portfolio solves Problem R

under the uncertain model (i.e., it belongs to the Q¢-set).

Here H..-control is used to characterize the set of feasible portfolios, while
classical optimal control is used to select the ‘optimal portfolio.” We consider
that this problem captures the way in which real world money managers make
decisions. They exploit profit opportunities as long as the portfolio is contained
within reasonable bounds. However, they will not contemplate taking overly large
positions, even though there are positive expected excess returns under some
baseline model. This is specially true in new markets where expected returns
can be very high, but they are unknown territory. Problem O/R allows the
investor to choose his portfolio in order to maximize his expected utility as long
as the portfolio he chooses is contained within the Q¢-set. However, any portfolio
outside this set is not admissible to the investor even though it might have a higher
expected return under the probabilistic model. Note that Problem O /R implicitly
defines a class of lexicographic preferences for the representative investor.

4.4. Equilibrium Concept

We will consider an equilibrium concept that is practically identical to the stan-
dard competitive equilibrium of rational expectations models, like the one in Sec-

15 As we shall see, in general it is not possible for the equilibrium exchange rate function to
equal ftH‘X’ (y?) for all ¢, or equal ff(y?) for all ¢.
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tion 3, except for an additional consistency requirement.

Definition An equilibrium of the O/R economy is an exchange rate function

[2(5"), two conjectures: T4 (4,457, and (s, 61,.), @ sequence of
with «; € [0,1], and a portfolio strategy q;(ft,y"), such that for all t € [1,T)]:

1. Taking the exchange rate as given, q;(f;,y") solves Problem O/R.
2. There is market clearing: q;(fF(y"),y") = S.
3. The exchange rate function f}(y') salisfies

*( oty th(yt) pr. oy
= B0 (19

pr. I — oy

where a; € [0,1], f;**(y") is defined by (4.6) and f£ (y*) by (4.7).

4. The following conszstency requirements are satisfied: A6

(‘70 Yy ) (y ft+1) and ft (WY ) ft (y ft+1 7ft+1)

The new element in this definition is point (4). It says that exchange rate
realizations must confirm the conjectures under which E(p, 4, f¢) is computed.
Since the exchange rate function will equal either f/* or f¢, two consistency
requirements are needed.

For illustrative purposes note that if, for all £, the robustness constraint were
totally relaxed (v, = o0), then o, = 0 for all . Consequently, the consistency
requirement would simply be f/(?, ft‘il): ftg (y*,97). Clearly, in this case f7 (y')
would equal the benchmark fZ(y?) in (3.5).

4.5. The Robust Portfolio Set

In this subsection we solve Problem R. This entails estimating the set that contains
the unknown disturbance sequence w' := (w' v*). We do this by making use of

18 In order to make explicit the fact that the agent constructs the R;-set under the uncertain
model, and computes F; (,oH_l,ft) under the probabilistic model, we will wrile fH (¥l as

ft *(y"; ft+1) and ft (y H_l) as ft (v ft—H 7ft+1)
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the fact that if {y;}, |, # 0, the RC is satisfied if and only if

t
J

J (g, yt) o= sup {m - qtpt+1(wt+1> - 7?”w”§,[o,t+1]} <0
{wj};‘i%)GZQ[O,tJrl]
{w; Yt A0
subject to : ri+ov; =y, j=1.,1 (4.10)

Note that if the supremum in (4.10) is bounded and the maximizing sequence
{%‘};3) is unique, then we can generate an H,, estimate of the unobservable
state x¢y1. This will allow us characterize the Qs-set in terms of only the current
exchange rate and past y;’s. As it stands, Problem (4.10) seems quite complicated
because disturbance sequences are not restricted to follow any specific process, and
can be highly correlated. We solve this problem in the Appendix by breaking it
into three simple sub-problems as in Tornell (2000), and Basar and Bernhard
(1991).

The basic idea behind the solution method is to assume temporarily that the
value of the state at t 4+ 1 (z441) equals a certain value x. The first sub-problem is
to find the maximally malevolent sequence of past disturbances (from the perspec-
tive of objective (4.10)) that are consistent with history {yj}z-:l and that bring
the unobservable state from x¢ = 0 to the certain value z at time ¢ + 1. The sec-
ond sub-problem determines the disturbance w;; under the assumption that the
unobservable state x;,1 takes the value z. Lastly, the third sub-problem generates
the estimate of next period’s state Fi(z:11) and exchange rate Fy(fi;1). This
decomposition can be carried out because the dynamic system we are considering
is Markovian.

The solution to problem (4.10) is given by the following two propositions. The
first characterizes the Q¢-set for a given forecast of the state. Proposition 4.2
provides the robust forecast of the state.

Proposition 4.1 (R;-set). Given the exchange rate realization f;, and the inter-
est rate differential observations y¢, a portfolio satisfies the robustness constraint
under the uncertain model, if and only if q; belongs to the Qs-set, defined by'"

1
4

QZ(ft,yt) = {Qt eR ’ J(Qtuft) = Pt+1qt2 — Nge + My < 0} )

1" The function l;+, (y') is given by equation (7.9). It is part of the forward dynamic programing
value function that determines the Hoo estimates of {wﬂ_l};;é Wi () = —ke[r — 24)% — Loy
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Mt+1 = m — lt+1(yt) (411>
Lyr = ’7;31 [1 + ‘712; + ¢?O_12,U - ¢?Zt+1}
1—att

At = ft+yt+¢tﬂ(a’)t+1;qt)7 ¢tE 1_a

where Zy, 1 Is given by recursion (3.4).

e The Qs-set is non-empty if and only if A? > Ty, 1 My, 1.

e The Q-set is closed and bounded if and only if I'yy1 > 0.

This Proposition will prove to be quite useful because it has converted the RC
in Problem R into a simple condition that ¢; must satisfy. Namely, the Q-set
consists of all ¢;’s such that the parabola J(q;, f¢) is non-positive, as illustrated in
Figure A.

Two points are worth highlighting. First, Proposition 4.1 makes clear that
imposing the RC is not the same as assuming that there are limits to arbitrage.
In fact, when parameters are such that I't;; < 0, the agent can take infinite
positions and still satisfy the RC (panel (b) of Figure A). Second, staying in bed
(i.e., having a zero position) is, in general, not compatible with the RC. Clearly,
whenever Myyq > 0, the Qg-set does not contain ¢, = 0 (panel (a) of Figure A).

The quadratic equation J(q;, f;) has very attractive properties. First, whether
it is convex in ¢; only depends on parameters, through I';,;. Second, the current
exchange rate only enters through A;. This implies that, if it exists, the boundary
of the Qs-set is a monotonic function of f;. This property will allow us to pin down
uniquely the equilibrium exchange rate.

Note that A; also contains the robust forecast of the unobservable state Fy(z¢y1; ).
This is because in order to solve Problem (4.10), the agent must have a robust
estimate of next period’s exchange rate F;(fi;1). Recall that under the uncertain
model, Fi(fi11) = —Yer1 — ady 1 Fe(2e41) + uey1, where ugyq is an unknown dis-
turbance. Thus, to fully characterize the Q¢-set the agent needs to have a robust
estimate of next period’s state. The next proposition provides such an estimate.

Proposition 4.2. The agent’s robust forecast of the unobservable component of
the interest rate differential is

. 1 _
Fi(Te115Gt) = Bey1 — §%+21¢t+1Zt+1Qt (4.12)
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where %1 and Z;,1 are given by recursion (3.4).

Interestingly, Fi(x441;q¢) contains &1 and Z;y1 which also appear in the up-
dating formulas of the benchmark economy. Recall that under the benchmark
model, 241 is the conditional expectation of the interest rate differential Fy(y41),
and Z;, 1s the variance of this estimate. The formal similarity of the two fore-
casting formulas is noteworthy, given the diametrically different specifications of
uncertainty.

In contrast to standard rational expectations estimates of latent variables,
robust estimates are functions of the portfolio chosen by the investor. Equation
(4.12) says that if the agent is long in the domestic bond (g, > 0), his H,,, forecast
about the forward premium is more pessimistic than the rational expectations
forecast. In contrast, his H,, forecast would be more bullish if he were short
(g <0)."%

An attractive property of the model is that if the agent does not care about
robustness, the H., and rational expectations forecasts are equal: if welet v, ; —

00, (4.12) equals the Kalman filter (3.4).

4.6. Solution to Problem O/R

Proposition 4.1 has defined the Qs-set in terms of a quadratic equation that de-
pends only on observable variables. The solution to Problem O /R is now straight-
forward. Namely, if expected excess returns are positive, the agent buys as much
domestic bonds as allowed by the Q;-set. If they are negative, he goes as short as
possible. That is,

. (fi,v") it I Ept+13 ft; >0
g (f,y") = q(fe,9") if By (pea; fe) <0 (4.13)
qeQi(fey') if I (Pt+13ft> =0

where @/ (f;,y") and QZ( ft,y") are the upper and lower boundaries of the Q-set
Qz(ftu yt) :

Expectations are formed under the probabilistic model. That is, agents com-
pute Ey(py, 4, f:) under the view that the interest rate differential is generated by

1¥Note that in any equilibrium ¢; = S. Thus, along any equilibrium path the robust forecast
is ft(xt—}-l; S) = ﬁ($t+1).
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the benchmark process (3.1) with known probability distribution. Moreover, they
know the model that generates future exchange rates (4.8).

Note that if the RC were totally relaxed for all periods, the QQu-set would
always be unbounded and the expectations operator would be the same as in the
benchmark economy. Thus, the solution of Problem O/R would coincide with
that of problem O in the benchmark economy.

4.7. Markov Equilibria

In a ‘Markov equilibrium’ the exchange rate depends only on the current value of ¥,
and the current estimate of the state (Fy(z¢,1) or Fy(z¢11)). The next Proposition
identifies conditions on parameters under which a Markov equilibrium exists and it
exhibits the exchange rate function in closed form. The proof is in the Appendix.

Proposition 4.3 (Markov Equilibria). Consider a mixed O /R economy.

e There exist ME along which expected excess returns can be different from
zero if the Qp-set is bounded (I'yyy; > 0) and the domestic bond’s supply
satisfies |S| > |S,(y")| for some t. The exchange rate function is fr(y’) =
J5(yT) and fort < T

. flee(yty if { By (Pt+1;ft:°°> >0, I'tyq > 0 and gt(ftnoo> _ g
Jity) = tg 2 <pt+17ft m) <0, T'y1>0andg(fi™)=S
fi (") otherwise
(4.14)

where f]*(yt), f£(y!) and the threshold S, are given by (4.15), (4.16) and
(7.13a), respectively. The conjectures that support this equilibrium are (4.3)

. * * * * faT7 *
and (4-8) with 1/’1,t = P = -1, 1/’2,t = Por = —1 1 a t; and Y3t = Mfgﬂ +
Cﬂ;fls-

o If T,y > 0and|S| <|S,(y")| for all t, a Markov equilibrium need not exist.

o If T'y11 < 0 for allt, there are zero excess returns in all ME and the exchange
rate is given by (3.5).

This Proposition demonstrates the existence of equilibria along which there
can be some periods during which there are non-zero predictable excess returns.
In the next section we will impose further parameter restrictions that will ensure
the existence of either negative or positive predictable excess returns on a given
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time interval. This will allow us to rationalize the forward premium puzzle and
delayed overshooting.

In the remainder of this subsection we provide an heuristic derivation of Propo-
sition 4.3. In equilibrium, taking the exchange rate f; as given, agents choose
q; (fi, y") according to (4.13), and the market for domestic bonds clears. The key
point is that the exchange rate has two functions: it determines the boundary
of the Q¢-set as well as the sign of expected excess returns. In order to ensure
market clearing at time ¢, f; must adjust so that one of three events occurs: (i)
@ (f.y") = S and Ei(py,q, f7) > 0; (i) QZ(ft*ayt) = S and Ei(pyyq, ff) < 0; or
Ei(per, [7) =0 and S € QI (f7, ).

It follows that a necessary condition for expected excess returns to be different
from zero is that the Q-set is non-empty and either its lower or upper boundary
is finite. Since the Q-set is defined by a quadratic equation (i.e., (4.11)), this
condition holds only if T';yy > 0. Otherwise, §(f:,y") = oo and gt(ft,yt) = —0
for all f;.

Figure A, drawn for the case I';;; > 0 and S > 0, helps understand the
intuition. The Q-set is composed of all g;s such that the parabola J(g, fi) = 0
is non-positive. When I'y;; > 0, this parabola is strictly convex. Thus, the the
Q¢-set is connected and its two boundaries are finite. They are equal to the real
roots of J(qq, f;) = 0.1 Note that by varying f; we generate a family of parabolas
that intersect only once: at the vertical axis. Since an increase in f; makes the
parabola rotate clockwise, there is a unique exchange rate (call it f;“°(y")) for
which a boundary of the Q;-set equals S.

The fact that there is a function f;"°(y") that equalizes a boundary of the
Qq-set to S does not mean that f;/**(y") belongs to an equilibrium. In addition
we need to ensure that when the upper(lower) boundary is equal to S, the agent is
willing to demand as much(little) as possible of the domestic bond (i.e., expected
excess returns must be non-negative(non-positive) if f; = f tH"O). Can we determine
which boundary of the Q-set will equal S? The answer is yes. It is evident from
Figure A that at each point in time only one of the boundaries of the Q;-set can
be equal to S. In fact, there is a threshold S,(y*), such that if S > S,(y"), then
@/ (f¢™,y") = S. In contrast, if S < S,(y"), then ¢/ (f,",y") = S.

It follows that when I';y; > 0 the exchange rate function f,**(y") belongs to
an equilibrium if either (1)S > S,(y") and Et(ptﬂ,ftﬁ"o) > 0; or (i)S < S,(y")

L9This equation has real roots if and only if A;(f;)* > M; 1 T;.;. If this condition is violated,
the R;-set is empty.
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and E(p, 4, ftH"o) < 0. Unfortunately, there is no guarantee that either of these
conditions will be satisfied. In principle, there may be some histories y* for which
the sign of expected excess returns might be the opposite of what is required in
(1) or (ii). To ensure market clearing at all times, it is necessary (although not
sufficient) to introduce a second auxiliary exchange rate function, f¢(y*), with the
property that expected excess returns under the probabilistic model are zero (i.e.,
Ey(piir, [7) = 0). This is why Proposition 4.3 allows the equilibrium exchange
rate be equal to either f;*(y') or f¢(yt).

Proposition 4.3 requires that |S| > |S,(y")| when I';{1 > 0 to ensure that the
supply of the domestic bond S belongs to the Qs-set. This, in turn, ensures that
exchange rate function (4.14) induces market clearing at all times. To see why
this is so consider the case S > S,(y") > 0 illustrated in panel (a) of Figure B,
and denote by f; the exchange rate associated with the parabola that crosses the
horizontal axis at S. If F, (pt 1 ff) >0, f2is part of an equilibrium because the
agent sets his demand for the domestic bond equal to the upper boundary of the
Qq-set, which is equal to the supply: ¢f = ¢/ (f%, v") = S. If instead E, (ptﬂ, ff) <
0, let the equilibrium exchange rate be fP, defined by Ei(p, 1, ff) = 0. Since
fL > f& the fl-parabola is obtained by rotating the fi-parabola clockwise, and
S is in the interior of the set Q7 (v, f?). Combining this with the fact that the
agent is indifferent about the value of ¢ if expected excess returns are zero, we
conclude that f? belongs to an equilibrium. That is, any S > S,(y") > 0 belongs
to the Q-set whenever F (ptﬂ, fﬁ“) < 0 and f7(y") = fE(y"). The reader can
verify that the same argument can be made for the case S < S,(y") < 0.

To see why a Markov equilibrium may not exist if |S| < |S,(y)| for some t,
consider panel (b) of Figure B. Now f{* is the exchange rate that makes the lower
bound of the Q;-set equal to S (i.e., g;’(ft“, y')=29).If K, (ptﬂ, ff) > 0, we cannot
set the exchange rate at a more appreciated level (i.e., f} < f) to ensure zero
expected excess returns and still clear the market. This is because the relevant
portion of the f!-parabola would lay above the f{-parabola. Thus, S would not
belong to the set Q] (v, f7).

It is straightforward to derive the functions f/**(y") and f¢(y'). Since the
conjecture of future exchange rates that the representative agent uses to generate
the Qg-set is given by (4.3)-(4.4), it can be verified that for ¢t < T', /™ (y*) is given
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1 M,
=) = =y — o Fu(wer) + ZPtJrlS + ‘;H (4.15)
A _ M,
= _yt - ¢ta”.t+1 + Ct’ytfls + ‘;+1
1-aT?
where ¢, := =5*— and

1
Cp = 1 [1 +oo+ ¢?+10_121) + ¢?+1Zt+1} >0

The second line in (4.15) follows by replacing Fi(ziy1) by (4.12). It is impor-
tant that we can represent f;"(y") in two equivalent ways in order to show that
the two consistency requirements are satisfied. To determine f¢(y') recall that
since expectations are computed under the probabilistic model, (4.9) implies that
1) = ag1 By gfr"f) +[1 - oth]Et(ftil) — 9. Using conjecture (4.8) and im-
posing the consistency requirement we have that in any Markov equilibrium

FEWS F o) = —ve — ders + 0%, (4.16)

1/};, _ By (Oét+1 [S’Y;flgt + Mfgﬂ + [1 - Oét+1]1/’§,t+1) t<T

As a closing remark, note that when constructing the Qs-set the representative
agent knows that ff, ,(y**!) will be given by either (4.15) or (4.16). However,
he is not sure which function will realize at ¢ 4+ 1 and about the process that
generates ;1. Since he is using a robust method, he does not represent this
uncertainty in a probabilistic way (i.e., using the sequence o and (3.1)). Instead,
he considers process (4.1) for ¥4, and his forecast about next period’s forecast of
the unobservable state is given by (4.4). He then represents t + 1’s exchange rate
with fi | (y*1) defined in (4.3).

Figure 1 illustrates the performance of a portfolio under the benchmark ra-
tional expectations economy of Section 3 and the mixed economy of this section.
The graphs in Figure 1 summarize the results of the simulations we describe in

the appendix. For each period, panel (a) depicts the worst performance, across

m—S[ft—fe+1+ys
S Colwh 7]

terion, at all times the normalized excess returns are greater under the mixed

all simulations, of Hf,, = . As we can see, according to this cri-
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economy than in the rational expectations economy. That is, for all ¢ the index
H{ | corresponding to the mixed economy lays below the corresponding index for
the rational expectations economy. The same pattern is observed in panel (b),
which depicts the worst performance, across simulations, of the difference between
the indexes of desired returns and realized returns m — S[f; — fii1 + v

5. Rationalizing Foreign Exchange Market Anomalies

In this section we will show that if there is a time interval in which the exchange
rate is determined by the upper boundary of the Q-set (i.e., fif = f; ™), then it
is possible to rationalize the anomalies mentioned in the Introduction. When this
occurs positive expected excess returns exist in equilibrium, and it is possible to
generate a negative Fama regression coefficient, as well as unconditional delayed
overshooting.

Although Proposition 4.3 characterizes an equilibrium along which expected
excess returns can be non-zero, it does not specify the conditions under which
there is a given time interval during which expected excess returns will actually
be either positive or negative. In this section we provide sufficient conditions
for expected excess returns to be strictly positive or negative on a given time
interval. The sufficient condition is that S be large and that required robustness
(v; 1) decreases over time:

Yer1 = 9V g>1 (5.1)

We can think of a market where agents are initially very uncertain about what
is the ‘true model,” and they try to be very robust against ‘unknown misspecifi-
cations’. Over time, required robustness is reduced and eventually converges to
zero. As aresult, ceteris paribus, the size of the Q;-set increases allowing agents to
better exploit the profit opportunities that their benchmark model indicates exist.
This view is consistent with the notion that investors tend to be very cautious
when investing in new markets. Over time the degree of conservatism declines.

There is a deeper issue: what determines the level of 7,7 This we leave for
future research.

The following Proposition exhibits an equilibrium along which there is a time
interval in which the RC binds (so f; = f,*°) and expected excess returns are
guaranteed to be strictly positive.
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Proposition 5.1 (Switching Equilibrium). If the degree of robustness (v, ')
decreases fast enough and the bond’s supply S > 0 is large enough, there exists
a switching time 7 > 0 such that, for allt < 7 < T the equilibrium exchange
rate is determined by the (Q;-set’s upper boundary and expected excess returns
are positive

tr1

* N M, _
FEW) = =y = b + =5 + 701G (5.2)

Meanwhile, for t > 7, the exchange rate is given by (4.14). The upper bound on
the switching time is

T =inf {t <T-1 ‘ S <S8, v t5+%< W or By (peyr, [\ S0 = Zi?) < 0}

This Proposition is a special case of Proposition 4.3. It says that as long as
none of the events listed in 7’s definition has occurred, f;(y*) is determined by the
Q:-set’s upper boundary. However, once one of these events occurs f/(y") reverts
to the function defined in Proposition 4.3, where expected excess returns can have
any sign.

The intuition for why expected excess returns will be positive during a long
time interval is as follows. An increasing path for v, means that required robust-
ness falls over time. This implies that, ceteris paribus, the upper boundary of the
Q¢-set will increase. As a result, the £ + 1 demand for domestic bonds will be
greater than the demand at time ¢. Since the supply of the domestic bond is fixed,
the t + 1 exchange rate will have to appreciate (i.e., fi;1 < fi). If this expected
appreciation is big enough, expected excess returns at time ¢ will be positive.
Agents at time ¢t know that at ¢t + 1 the demand for the domestic bond will be
set at the upper boundary of the Q:i-set because they know that v, ., > v,
Equation (5.3) below makes precise the conditions on g and S under which this
arguments holds.

We would like to note that since v, grows over time, if terminal time 7" is large
enough, the equilibrium exchange rate function will converge to the standard
rational expectations formula (3.5). This is an attractive property of the model.

Proposition 5.1 follows directly from Proposition 4.3. Suppose that at any
t < 7 the exchange rate is f; " (y") as given by (4.15). Since S > S,, the represen-
tative agents sets his demand for domestic bonds equal to the upper boundary of
the Q-set if expected excess returns are non-negative (i.e., E; (ptﬂ, fﬁ“) > 0).
It is straightforward to compute this expectation because along the equilibrium
characterized by Proposition 5.1, ay41 = 1. That is, at ¢ + 1 the exchange rate
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will also be determined by the upper boundary of the Q;;1-set. Consequently,
By (pey1s [1) = fI*= — E(f]55 (p},1) + ye Using (4.8) and (5.2) we have that

Ey(leva) — e
S

Note that (5.3) has been derived under the probabilistic model. That is, agents
set a1 = 1, and compute the mathematical expectation Fy( ftﬁ’fr"f (¢741)) under
the benchmark model for the interest rate differential (3.1). Then, using Bayes’
updating equation (3.4), agents set Ey(yyy1) = Zey1 and Fy(Zyy0) = aliyyq.

In order for agents’ conjecture to be confirmed in equilibrium (i.e., ff; =

gf’f), it 1s necessary that expected excess returns at ¢+ 1 be non-negative. Here is

By (pt+17ftHoo | Jti = J‘i’i‘? (‘70:+1)) = '7;2[@ - 972Ct+1]5 + (5.3)

where the decreasing robustness requirement kicks in: if g is high enough, the term
in brackets is positive for all ¢. This term can be negative only if Z;,1 < g 2Z;,9.
Recall that Z; is given by the Kalman filter and it converges at a decreasing rate
to some positive number / = Z*ltiaﬁ +02. Thus, it is sufficient to set g* > % to
ensure that [(, —¢ ?C,, ] 1s positive for all ¢ > 0. Furthermore, since the first term
in (5.3) is increasing in S, while the second is decreasing in S, there is a positive
switching time 7 such that (5.3) is positive if t < 7 — 1 and S is large enough.

Consider now period ¢ = 7 — 1. Since the exchange rate will be given by

(4.14) for all t > 7, expected excess returns at time 7 — 1 are: ;4 (pT, f;’f"f) =
% + 77 2¢, 1S — 105, From the definition of 7, it follows that this expression is
non-negative.

5.1. The Forward Premium Puzzle

The typical ‘Fama regression’ regresses the exchange rate depreciation on the
forward premium

Jer1 — fo = Bo + Brama¥t + &t (5.4)

Since the uncovered interest parity condition (3.3) holds in standard rational ex-
pectations models, like that of Section 3, the estimate of 3;,,, should not be

statistically different from one (B fama = 1).%°

The forward premium puzzle is that in almost all data sets the estimates of
B fama are less than one, and in many cases they are negative. A negative B Fama
implies that there is a negative covariance between exchange rate changes and the

20The estimate of 3, might be different from zero if agents are risk averse.
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forward premium (i.e., cov(fiy1 — fi,y:) < 0). This is puzzling because it means,
for instance, that when the U.S. interest rate is above the German one, the Dollar
tends to appreciate relative to the Mark.

In this subsection we investigate whether the exchange rate process (5.2) can
generate negative coefficients in the Fama regression.

In the simulations shown in Figures 1 and 2 artificial forward premium se-
quences (y;) are generated using the benchmark process (3.1). For each of the
hundred forward premium sequences we compute two exchange rate sequences
(ft): one corresponding to the rational expectations model (3.5) and the other
corresponding to the mixed economy (3.5). In both cases the agent uses the para-
meters of the data generating process (a, 0,0, ) to make forecasts. That is, there
s no missperception in either the benchmark model or the probabilistic model.

Figure 1 graphs fi11 — fi against 3. Panel (a) corresponds to the benchmark
model in which uncovered interest parity holds and the exchange rate is given by
(3.5). As expected, one can see a positive correlation between the two variables.
Panel (b) corresponds to the exchange rate characterized in Proposition 5.1, in
which required robustness falls over time. Here we can see a negative correlation
between f;11 — f: and .

Figure 2 plots the estimates of 3;,,, that correspond to each of the 100 sim-
ulations. In Panel (a), which corresponds to the rational expectations model, a

majority of ﬁ;ima’s are in a neighborhood of one (the average estimate is +0.843).

.. ~mized . . .
In contrast, a majority of 3,,,,,’s corresponding to our mixed model are negative

(the average estimate is —0.301!).

The exchange rate process (3.5) in Proposition 5.1 can generate positive ex-
pected excess returns and a negative (., because agents set their demand for
the domestic bond at the upper boundary of the Q-set at all times, and this
boundary is increasing (on average) over time. This is because the degree of
required robustness is declining (i.e., 7y, is increasing).

We would like to note that an increasing 7y, is not necessary for positive and
time-varying expected excess returns. Recall that Proposition 4.3 tells us that
even when 1y, is constant, there are equilibria in which expected excess returns are
positive if S is sufficiently large. The additional restrictions on S and the growth
of v, imposed in Proposition 5.1 make the simulations simpler because they ensure
that expected excess returns will be strictly positive on a certain time interval.
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5.2. Delayed Overshooting

Another anomaly is the so called delayed overshooting puzzle. Under rational ex-
pectations, an increase in the U.S. interest rate induces an immediate appreciation
of the Dollar. If the interest rate is expected to mean-revert, the exchange rate
must overshoot at impact in order to generate expected depreciation along the
transition path and ensure that the uncovered interest parity condition is satis-
fied. Fichenbaum and Evans (1985) have found that the typical impulse response
of exchange rates to a monetary shock does not follow this path. Instead, after the
initial appreciation the exchange rate continues to appreciate for several months
in response to a contractionary monetary shock that increases the interest rate
differential.

Figure 3 depicts three impulse response functions (IRF) to an interest rate
shock, associated with exchange rate function (3.5). As we can see, the uncon-
ditional IRF has the hump shape found by Eichenbaum and Evans (1985) and
others.

The IRF to a persistent shock of size 6§ ( ff*"") is generated by feeding into
exchange rate function (5.2) the interest rate differential sequence generated by

a persistent shock of size wy = Ui. Similarly, the IRF to a transitory shock

) is generated by setting the transitory shock v, = . Lastly, the IRF to an
t & Y g Yy p Y,
unconditional shock to #; of size ¢ is given by

2
unc g

_ pers 1 — tr — w
t qlfe™"1 + 1 alf'], q o2 + o2

Figure 3 graphs the average across 100 simulations of these functions.

6. Review of the Literature

Robust Control has been a very active area of research since the 1980s. The point
of departure of the robust approach is the recognition that even in physics there
is no such thing as the correct model. Thus, one has to recognize that inevitably
any model has some misspecification, and representing it in a probabilistic way
does not guarantee robustness.

Robust Control was developed in order to tackle control problems in which
attaining some sort of ‘guaranteed performance’ is important. This stands in
contrast to stochastic optimal control that takes an ‘on the average’ approach.
There are several approaches to robust control, like for instance H.-control, risk-
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sensitive control, and minimum entropy.?! While the H., framework is appropriate
to ensure robust stability, it might entail some sacrifice in performance. Therefore,
a continuing research effort has sought to bring an optimality criterion back to
the picture and combine it with robust considerations. Such a framework is the so
called ‘mixed Hy/Ho, control.” The basic problem considered is that of choosing
a control policy in order to minimize an upper bound of the expected loss under
the assumption that the disturbances are Gaussian (the Hp-norm), subject to
the constraint that the controlled system satisfies a robustness constraint under
the assumption that the disturbances are square summable (the Ho.-norm). See
Bernstein and Haddad (1989), Khargonekar and Rotea (1991), and Zhou, Glover,
Bodenheimer, and Doyle (1994).

The approach of this paper is similar to the mixed Hy/Ho approach. We
use Hso-control techniques to characterize the admissible portfolio set, not to
determine the optimal portfolio policy. We then allow agents to choose a portfolio
to maximize their expected utility under a probabilistic model, subject to the
portfolio belonging to the admissible set. The advantage of this mixed approach
is that it does not force agents to be overly conservative.

In economics, the notion that not all uncertainty can be parametrized in a
probabilistic way goes back to Knight (1921), who distinguished between quan-
tifiable ‘risks’ and unknown ‘uncertainties’. Gilboa and Schmeidler (1989) present
an axiomatic decision making framework where this distinction is made. FEp-
stein and Schneider (2001) extend this framework to a dynamic setup. Dow and
Ribeiro (1992), Epstein and Wang (1994), and Epstein and Zin (1989) have used
this framework to analyze investment decisions and asset pricing. Recently, Lars
Hansen and Tom Sargent have considered the robust control approach in eco-
nomics. See for instance Hansen, Sargent and Tallarini (1999) and Hansen, Sar-
gent and Wang (2000). The latter paper, as well as Tornell (2000) share with
the present paper the fact that there is a latent variable that determines agents’
payoffs, and agents must estimate it using available information.

The forward premium puzzle has been documented for many data sets over
different countries and time periods. Surveys are provided by Lewis (1995) and
Engel (199X).

The delayed overshooting puzzle was documented by Eichenbaum and Evans
(1985). Gourinchas and Tornell (2000) have shown that this puzzle can be ra-
tionalized by invoking another puzzle present in the data: there is a systematic

21 Basar and Bernhard (1995) and Zhou, Doyle and Glover (1996) are excellent references.

30



missperception in the forecasts of interest rate differentials. The forecasts implic-
itly assume that shocks are more transitory than what they actually are. The
results in this paper suggest that there is a sense in which this missperception can
be rationalized in a setup where agents try to be robust against misspecification.

7. Appendix

Derivation of (3.5).
For t =T, (3.2) and (3.3) imply that fZ(y") = B; — yr. Thus, the consistency

requirement is satisfied if and only if b3 7 = By, byr = —1, and b5 7 = 0. For ¢ =
T —1, we have that f5  (y' 1) = Er_(f5(b%)) —yr 1. Thus, bir 1 = Er1(Br),
bir = -1 and b5, | = —1. Since Ey(yiy1) = Ze11 and By 1(Zey) = aZgy,

(33> implies that for any ¢ < T — 1, ftls(yt3f£k1(b:+1)> = Et(b;,,tJrl) + [bitﬂ +
aby ;1 1]&11 — yi. It follows that the consistency requirement [ (y'; ftlil(bz‘ 1) =
FE(b?) holds for all t < T if and only if by, = Ee(b5,1), 01, = -1, b5, =ab3,,,—1
and b}, = 0. This implies 0, = 5“1

Proof of Proposition 4.1.

Throughout this proof we will denote the state’s and interest rate differential’s
trajectories generated by the disturbance subsequence v* 1= {wy;, v;}5_ as follows:

z, = X (05 1), ys = Ys(v%), s>1 (7.1)

We can then define the following subsets of disturbance sequences

Q, = { {Uz}fitl)

t+1
Z[wf.—l—vﬂ<oo and Y; (v7) = y;, VJSS} (7.2)

=0

That is, Q; is the set of square summable disturbance sequences {v; }ﬁg) that are
compatible with history {y;}i_;.

For any sequence {y;}5_; # 0 the robustness constraint is satisfied if and
only if J(q, f:) < 0, defined by problem (4.10). We will derive J(gy, f:) following
the same procedure as Tornell (2000). First, we will assume temporarily that
the unobservable state x;,; takes a specific value z, and break problem (4.10) in
two parts: the ‘cost-to-come function’ that considers the terms in (4.10) indexed
j =0,...,%; and the ‘cost-to-go function’ that includes the terms with 7 = ¢ + 1.
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Then, we determine the H,, estimate of the state Fi(z¢1).
Cost-to-come value function
Using (7.2) and (4.10) we can express the first sub-problem as

Wia(z) = SUp  —774 E;:O [“62 + UJQ‘ ]
{vitioeu (73>
subject to Tyl =

The only information an agent has about the disturbances {v;}%_q is that they
are square summable sequences, and that they have been generated by a dividend
history {yj}z-:l according to the dynamic system (4.1). The solution to (7.3) is
an intermediate step that allows the agent to estimate x;, ;. It characterizes the
disturbance sequences that make (4.10) less likely to hold, given that they bring
the state from zy = 0 to 2441 = x, and are consistent with history. We will
derive Wiy1(x) by representing (7.3) as a recursive problem. In order to do this
let Q4(z]y®) be the set of admissible disturbance sequences that bring the state to
level - at time s + 1, and that are consistent with history {y;}5_,

Qu(zly®) i ={veQ|z=X,""}, se{l,. t} (7.4)

Analogously to (7.3) we can define the cost-to-come value function, conditional
on information up to time s as

s

Ws+1 (aj) = sup _7?4»1 Z [wf + U‘]2i| ) s € {17 ) t} (75>

v3eQg(x|ys) =0

If (7.5) has a finite solution, it satisfies the following forward dynamic programing
equation

max {Wi(&) — vy [w? + 0%}
W5+1($) = T = af + opw ElS {1, ,t} (76>

bject t
subject to Ve = £+ oy

Wi(z) = — xQ’yfﬂo;Q

Note that (£, w,v) corresponds to (xs,ws, vs) and that x corresponds to xs;1. For-
ward dynamic programing problems are solved in a similar way to standard back-
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ward DP problems. The difference is that they are solved starting at the initial
time, not the terminal time. To solve problem (7.6) we need to find a closed
form solution for the value function Weyq(z). Since Wyi1(z) is the supremum of
a quadratic function subject to an affine constraint, it is quadratic in z. The next
Lemma, which is proved in Tornell (2000), provides the solution.

Lemma 7.1 (Cost-to-Come Value Function). For any v, € (0,00) the so-
lution to (7.6) is

W5+1(a')) = —K5+1[a§' - j75+1]2 — l5+1, § € {1, ,t} (77>

where and (&4 1, Koy1,li41) satisfy the recursion: & = 0, Ky = v2,,0,%, 11 = 0;
and for s € {1,....t}

a’S
Top1l = Qs¥s + ————5—|Ys — Ts
" 1+ ‘72%+1K v ]
a2 -1
Kgp1 = [FS + ’ytflofﬂ] , with P, = ’yt+1072 + K, (7.8)
Lsv1 = ls + As(Vs, Tst1, T, Ys, Zs), where k; = ’ytZ b (7.9)
A2 a s o s CCs s

Vo= g [+ 2 b + 2 - (4 20 - A Gy +

The cost-to-go value function

Here we maintain the assumption that x;,; = 2 and determine the H, forecast
of wip1 = (Ve41, Wey1,Up1). In an Heo setup even if an agent knew the value of
the unobservable state x;,1, he would not forecast that either y;,, will be 2,4, or
that the time ¢ + 1 estimate of x;,9 will be az;, 1. This is because in the presence
of misspecification there is no reason to believe that the disturbance w;,; will be
identically zero. In fact the H,, forecast of w1 is dependent on the portfolio
chosen. This is formalized by the following problem in which the unobservable
state x4, 1 1s again assumed to take the value z.

Vig1(w,qi, fr) = sup {m P14t — ’Y?H[U)Q + 0?4 UQ]}

wEVy

subject to Tiy1 =X (7.10)
Y41 = Tey1 + OV
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The set of admissible strategies for the disturbance (i.e., V) consists of the Markov
strategies wyy1 = w(x,q) with w(:) : R? —— R3.2?? Three observations are in
order. First, a major simplification relative to the original problem (4.10) is
that strategies are functions of (%441, ¢¢), not of the entire history of observations
({%;, 45, f;}5=1)- In this sub-problem agents make forecasts, acting as if the state
Z¢yq takes the specific value x. Second, the disturbance w;;; has access to the

realization of ¢; in order to ensure robustness. Third, no hard bound has been
imposed on the disturbance wey1. As we shall see, if problem (7.10) has a solution,
the disturbance will be bounded in equilibrium.

In order to solve (7.10) we use (4.3) to make the substitution p,.; = fi—
[bo + P1(x + 00) + Py, (ax + o yw) + u| +y¢, where

1 — ant

¢0 ) ¢1 ) ¢2t 1—q

Since the first order conditions are sufficient for a maximum, replacing the opti-
mized value of w in (7.10), it follows that the ‘cost-to-go value function’ is given

by
_ 1
Viri(z, ge, fr) = m — M(z)q + 1%+21[1 R Al (7.11)
where Ay(z) = fi + vy — [¢) + agy)T — by
Determination of Fy(xeyq).

In order to determine the H,, forecast of x;,; and of the interest rate differ-
ential F; (v, 1) we use the following Theorem (see Tornell (2000) for a proof).?

Theorem 7.2. There exists a solution to Problem R if and only if there are
bounded functions Wy 1(z) and Vii1(x), defined by (7.5) and (7.10), which satisfy

sup T(x):= sup {Vip(2) + Wi (o)} < o0 (7.12)

22Markov strategies are also known as feedback strategies. These strategies are closed-loop
strategies in which history matters only through its effect on the current state. See Basar and
Olsder (1995).

23This Theorem implies that one can determine whether an equilibrium exists by considering
only Markov equilibria (i.e., where strategies and exchange rates only depend on the estimate
of the state z;. 1, ¥; and f;). If a Markov equilibrium does not exist, then there exists no other
equilibrium in which portfolio and disturbance strategies are more complicated functions of
history {y; }§‘=1~ Note, however that this Theorem does not say that there is a unique equilibrium.
If a Markov equilibrium exists, there might exist other equilibria in which strategies have the
same open-loop representation as the Markov strategies.
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The feedback estimate of xyy1 is given by Fy(xey1) = argmax Y(x). Furthermore,
if (7.12) holds and Y (x) is strictly concave, Fi(x¢11) is unique.

The expression for Fi(z411) in (4.12) is obtained by replacing (7.7) and (7.11)
in (7.12), by making the change of variable 7, := ’y;fth, and by noting that
Ty = I, where Z; is given by (3.4).** H

Proof of Proposition 4.3.

In equilibrium, taking the exchange rate f; as given, agents choose q;(f:, y")
according to (4.13), and the market for domestic bonds clears: ¢/ (f;,4") = S. We
will construct an equilibrium exchange rate function f;(y") by combining f; = (y")
and f£(y') defined in (4.15) and (4.16), respectively.

Since f]*° is an exchange rate that equalizes a boundary of the Q-set to the
domestic bond’s supply (i.e., Q] (f/*,y") = S), equation (4.11) implies that f,*
must satisfy 0 = J(S, f,"™) = il—‘tHSf — A(f1) St + Myy1. Since only A; depends
on [, it follows that f,"<(y") is given by (4.15).

In order to determine when is it that the function f,*°(y") can be part of an
equilibrium we need to answer the following questions: (i)when will the Q;-set be
non-empty, and its largest (g;) and/or smallest (g t) boundaries be finite? (ii)ls
there a unique f;/*° such that 0Q;(f,™,y") = S? (iii)For a given S € R, can
we determine whether the highest or the lowest boundary of the Q;-set equals S:
q(fi™,y") = S or qi(fi,y") = S? The answer to the last question is important
because f; " (y") can be part of an equilibrium only if either g(f;*;y*) = S and
Ei(pir, [1*=) > 0, or q,(f;";y") = 5 and Ei(pey, 1) <0

To answer these questions it is useful to refer to Figure A. For a given fi, (a)the
Q:-set is non-empty when the roots of J(gy; f;) = 0 are real, and (b) at least one of
the boundaries of the Q;-set is finite when J(gy; f) is a convex function of g;. Since

the roots of J(qq, fi) = 0 are [At(ft) + \/At(ft)Q — Pt+1Mt+1} 21—‘;:1, (a) holds if
and only if Ay(f;)? > Ty 1My 1. Condition (b) holds if and only if T'y,; > 0, in

which case the Q-set is connected and its boundaries are the roots of J(g;, f;) = 0 :

o Ae(fe) + \/At(ft)2 — Dopa Mgy Ao fe) — \/At(ft)2 — Dypa My

G (fi ') = ,q.(foy') =
fiy) ST g,(/sv) 5T

24In general the kernel in (7.10) is an indefinite quadratic form in w;y;. Depending on the
value of v, , it might or might not be concave in w;,;. This is not the case here because the
numerator in the robustness constraint is linear.
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Note that if T';;; < 0, then §(f;,y") = oo and q,(f;,3") = —oo for all f, and y".
As we shall show, the answer to (ii) is in the affirmative if S # 0, and the answer
to (iii) depends on whether S is greater or smaller than a certain threshold S,.
That is, G(f/*,y") = S if S > S,, while q, (fl=,y") = Sif S < S,. In order to
determine S,, we consider four cases.

Case i. (I'yy1 > 0 and Mgy > 0). Since Ay(f/*) = 1T1S + M2 the Q-
set is non-empty if f; = f/*(3*). This is because ming[(Ay(f7*))?] = Try1 My,
and so condition A( ftH"o))2 > T4y 1 My is satisfied for all S. When S > 0, we
have that A,(f/*) > 0 and both g, (f/*;y") and Qt(ft =:y") are positive. Since
A; is increasing in f;, it follows that §; is increasing in f;, while g, 1s decreasing

in f;. Furthermore, ¢ > 2A, +11 and ¢, < 20T, +11 Thus, there is a unique
7t such that g(f]*,y") = S > 0 if and only if § > §, = 21—‘t+1At(ft ).
Similarly, there is a unique f/* such that q(fi*,y") = S > 0 if and only if
0<S<S, = 21—‘;31At( tH"o) When S < 0 we have that Ay tH"o) < 0 and both
g, (f/*;y") and gt(ft =:y') are negative. Since now ¢, is decreasing in f;, while q,
is increasing in f;, the same argument establishes that there is a unique f/* such
that g(f;",y") = S < 0 if and only 1f 0>S5>8, =2 A(f/*). Similarly,
there is a unique f/* such that ¢(f/* y*) = S < 0if and only if S < S, =
2T LA (f]). Lastly, if S = 0, there does not exist an f;**.

Case ii. (I'y;1 > 0 and M1 < 0). For all f; the roots of J(g; f;) = 0 are
real and of opposite sign. Since J(0, f;) < 0 and the largest root is increasing in
[, there is a unique f7* such that g(f/*,4') = S for any S > S, = 0. Similarly,
there is a unique f/* such that q(fi*,y") = S for any S < S, = 0. Lastly, if
S = 0, there does not exist an f;**.

Case iii. (I'yy; > 0 and M;,; = 0). For all f; the roots of J(g; f;) = 0 are
real; one root is zero, and the other 4At(ft)l—‘;+11. Therefore, if S > 0 and f; = f/*,
the boundaries of the Qu-set are q,(f7*; ) = 4A, (/)T o and q, (fi*==;y") = 0.
Since A( tH"o) = —PtHS—I— ”1, we have that At(ft =)', t+1 = 15 Thus, the
market clears: @(f/*;y") = S > 0. Similarly, if S < 0, @(/f; “,y) 0 and
gt( s yt) = 4A( H"O)thl = S. Lastly, if S = 0, any exchange rate clears the
market. In this case the threshold S, equals zero.

Case iv. (I'yy; = 0). In this case J(q, f;) is linear in ¢. Thus, at most
one of the boundaries of the Q-set is finite. Since A(f7*°) = M;,1/S, we have
that J(gq, f/) = —£2g, + Myyr. When S > 0, g(f7™) = S if My < 0, while
q(f;™) = Sif My, > 0. When S <0, q(f,") = Sif My >0, while g(f;™) =S
if Myyq <0. An ftH"o does not exist if either My ; =0 or S = 0.
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Collecting the observations we have just made, it follows that if I,y > 0, the
threshold S, is:

S| = 2\/max {07 Mt+1r;r11} (7.13a)
For case 1 we substitute Ay (f,") = leI‘t+1S + Mfg“ in S, = QP;JrllAt(fth) and

obtain S7 = 4M;1I,}|. In cases ii and iii it is clear that S, = 0.

Now, we derive ff(y'), which is defined by Ei(p, 1, f§) = 0. Expectations are
computed under the probabilistic model: (3.1) and (4.8). In any equilibrium con-
jecture (4.8) must satisfy the consistency requirements: [, (y")= f/"(y"; fi1)
and ff(yt): 15 (o5 fgfr‘f, ft‘il) Since f;**(y") can be represented in two equiva-
lent ways (see (4.15)), the first requirement is satisfied if ¢, , = —1 and @, , =

—p(t) = —171‘12%. For the second requirement note that Proposition 4.3 ex-
hibits an equilibrium where ar = 0. This implies that for ¢ > T — 1 the func-
tions f{ and ftg are equal to those in the benchmark model: (3.5) and (3.2).
That is, ¥1p = =Ly = 0, Y30 = By, i = —LW5p = —1, and
Y301 = Bra(¢3p). For t < T — 1, the uncovered interest parity condition
(3.3) implies f¢ = othEt(fgi"f) + 1 — 1] Ee(fi1) — Y- Using (4.8) and letting

& = left+15 + Mfg“, we have that

5= B [—ye + b Fern (@ee) + ] +
[l — ] B [¢1t+1yt+1 + Yor i1 FBrp1(Teya) + 1/}3t+1} — U

Since (3.4) and (4.12) imply that Fi(z1) = Tepq — %@’y;letHS, Ei(yey1) =
FEuxei1) = T4, and Ey(Bry1(2442)) = adg1, we have that
A A VA ZeS
fi= [_a7t+1 + Priq (aa%ﬂ — W%H) + ft+1} +

[T — auyq) [1/’1t+1j7t+1 + Yo 10T + 1/}3t+1} — Yt
= Y+ Topalapa 1+ ady ] + [ — a1y + athy, 4 ]] +

By (Oét+1 [5’7;31Ct + Mf;l} +[1- Oét+1]1/’§,t+1)

It follows from (4.8) that ff(yt) = ftg(yt;ﬁﬁl, Ngfr"f) forallt < T if ,L/}Tt = —1,
Wiy =}, = —1*1‘22% and 13 , is given by (4.16). We obtain f¢(3") by replacing

the vector ¢* in (4.8).

Now, we construct the equilibrium exchange rate function f;(y*). It follows
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from the agent’s portfolio strategy (4.13) that we can set f(y') equal to /™ (y?) if
cither ¢(f;";y") = S and Et(/)tﬂ;ftﬁm) > 0, Orﬂt(ft ~;y') = Sand Et(thrlufth) <
0. If neither of these conditions is satisfied, we can set f7(y*) equal to f¢(yt), pro-
vided that S € Q) (so that there is market clearing). As we discuss in the text,
S € QU ) HaUfI™y) = S and Bylpy,y, [7) < 0. However, 8 ¢ Q7(/F.4/)
if Qt(ft =:y") = S and Et(ptﬂ,ft%"o) > 0. This is because f& < f/™ and the
J-parabola in Figure B would shift upwards.

Lastly, we verify that under the uncertain model the disturbance sequences
belong to Iy jo,r)- The 'H estimates of the unknown disturbances in (4.1) and (4.3)

are w]™(g1) = —3 557, "owgs, v (@) = —37: "0v@s, and ] (q) = =37, "q
Clearly, for any ﬁmte T these sequences are square summable.ll

Simulations

The simulations corresponding to Iigures 1-4 are done using the following
procedure. First, we draw [ sequences of disturbances {w;,v; };F:O from a standard
normal distribution, where I =T = 100. Then, for each disturbance sequence, we
generate an artificial interest rate differential sequence {y; };le using the following
process: y; = x; + 0V, Ty = (a + AY)x; + oyw;, where 1o = 0, a = 0.9345,
0% = (0.05882 and o2 = 0.50756. For Figure 1 the misspecification A% is drawn
from a normal distribution: N(0.035,0.012?). For Figures 2-4 we set Af =

We generate the interest rate differential forecasts for the benchmark and
mixed models (E;(yi11) and Fi(yi41), respectively), as well as the exchange rate
functions (fF and f/**) using the formulas in the text by setting S = 10, m = 9,
Yo = 1.14, g = 1.7, 2y = 0, a = 0.9345, 02 = 0.05882 and o2, = 0.50756. Since
converge takes place quite fast, we set for all j, Z;, = Z (the converged value).
Similarly, we take terminal time T'(> T') to be large so that a? !
set ¢; =

— 0. Thus, we

1-a”

: m- S - A m=Sle e )
In panel (a) of Figure 1 we plot maz; { ia ) e Jjﬁ] and max; E gemt [wﬁ:ulz?] :

In panel (b) we plot max;{m — S[fZ R f;ﬁE + ]} and max;{m — S[fj —

2™ 4 i), In Figures 2-4 we we compute RE and H using (3.9) and
i+l 7 it

(5 2) respectively In Figure 3 we plot the averages across the 100 simulations of
fRE and — [z
J+1 J+1 i

References
Basar, T. and P. Bernhard, 1995, H..- Optimal Control and Related Minimax
Design Problems, Birkhauser.

3



Bernstein, D., and W. Haddad, 1989, “L.QG Control with an H,, Performance
Bound: A Riccati Equation Approach,” IEEE Transactions on Automatic Con-
trol, 34:293-305.

Daw, J. and S. Ribeiro, 1992, “Uncertainty Aversion, Risk Aversion and the
Optimal Choice of Portfolio,” Econometrica 60(1), 197-204.

Dornbusch, R., 1976, “Expectations and Fxchange Rate Dynamics,” Journal
of Political Economy, 84, 1161-1176.

Epstein, L..G., and T. Wang, 1994, “Intertemporal Asset Pricing Under Knight-
lan Uncertainty,” Econometrica 62(3), 283-322.

Epstein, L. and M. Schneider, 2001, “Recursive Multiple Priors,” mimeo.

Epstein, L. and S. Zin, 1989, “Intertemporal Substitution, Risk Aversion, and
the Temporal Behavior of Asset Returns: A Theoretical Framework, Fconomet-
rica, 57, 937-969.

Eichenbaum, M. and C. Evans, 1985, “Some Empirical Evidence on the Effects
of Monetary Policy Shocks on Exchange Rates,” Quarterly Journal of Economics,
110, 975-1009.

Gilboa, I., and D. Schmeidler, 1989, “Maxmin expected utility with non-unique
prior,” Journal of Mathematical Economics 18, 141-143.

Gourinchas, P., and A. Tornell, 2000, “Exchange Rate Dynamics and Missper-
ception,” mimeo UCLA.

Hansen, L., T. Sargent and T. Tallarini, 1999, “Robust Permanent Income and
Pricing, 7 Review of Fconomic Studies, 66(4), pp.873-907.

Hansen, L., T. Sargent and N.E. Wang, 2000, “Robust Permanent Income and
Pricing with Filtering,” mimeo.

Khargonekar, P. and M. Rotea, 1991, “Mixed Hs/H~ Control: A Convex
Optimization Approach,” IEEE Transactions on Automatic Control, 36:824-837.

Knight, F., 1921, Risk, Uncertainty and Profit.

Lewis, K., 1998, “Puzzles in International Financial Markets,” in Grossman
G., and K. Rogoff eds. Handbook of International Economics, North-Holland.

Tornell, A., 2000, “Asset Pricing Anomalies in a H,,-robust Economy”, NBER
working paper.

Zhou, K., J. Doyle and K. Glover, 1996, Robust and Optimal Control, Prentice
Hall.

Zhou, K., K. Glover, B. Bodenheimer and J. Doyle, 1994, “Mixed Hy and H,
Performance Objectives I: Robust performance analysis,” IEFEE Transactions on
Automatic Control, 39:1564-1574.

39



Figure B: _‘j(_o_‘_",‘\¢t Jearummg

J
" (RN
. TR
2y




La) T-q.-n 20

.

Mot

Q)= -0
7,10

() T,,, <0



Figure 1: Realized Excess Returns Under Misspecification
($j+1 = (a+Af)z; + waj)
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Note: The solid line corresponds to Benchmark Rational Expectations Economy. The
dotted line corresponds to the Mixed O/R Economy.



Figure 2: Exchange Rate Depreciation and the Interest Rate Differential

(a)Benchmark Rational Expectations Economy.
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Figure 3: The Forward Discount Puzzle

For each simulated sequence of interest rate differentials y;'-, we report the point estimate of 3*
in the regressionf;+1 — f; =o'+ Byl + ¢t

(a)Benchmark Rational Expectations Economy.
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Figure 4. Impulse Responses
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Note: The solid line corresponds to Benchmark Rational Expectations Economy. The dotted
line corresponds to the Mixed O/R Economy.



