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Abstract

A robotic chauffeur should reason about spatial information
with a variety of scales, dimensions, and ontologies. Rich
representations of both the quantitative and qualitative char-
acteristics of space not only enable robust navigation behav-
ior, but also permit natural communication with a human pas-
senger. We apply a hierarchical framework of spatial knowl-
edge inspired by human cognitive abilities, the Hybrid Spatial
Semantic Hierarchy, to common navigation tasks: safe mo-
tion, localization, map-building, and route planning. We also
discuss the straightforward mapping between the variety of
ways in which people communicate with a chauffeur and the
framework’s heterogeneous concepts of spatial knowledge.
We present pilot experiments with a virtual chauffeur.

Introduction
How to represent knowledge is one of the most impor-
tant questions for any research domain. The way an agent
represents its world influences how it learns, how knowl-
edge is transfered across tasks, and how knowledge is
communicated—either between agents or to a human. In
this paper, we present a hierarchical framework of spatial
knowledge, the Hybrid Spatial Semantic Hierarchy (HSSH),
and discuss how it provides a rich, natural, and effective in-
terface for human interaction with a mobile robot.

Specifically, we focus on a chauffeur robot, e.g. a smart
wheelchair (Simpson 2005), that transports a human pas-
senger. The chauffeur’s spatial knowledge must be rich and
accessible, so the passenger can direct the robot through nat-
ural language route instruction, can trust the robot to move
autonomously in routine situations, can answer requests for
additional information made by the robot, and can query the
robot about its behavior.

We believe a monolithic representation for spatial knowl-
edge is inadequate for such challenging domains. For ex-
ample, the most prevalent representations of spatial knowl-
edge for mobile robots are global metrical maps of envi-
ronments, e.g. occupancy grids or landmark maps (Thrun
2002). Though these large metrical maps are useful for au-
tonomous mapping and navigation using range sensors, they
are insufficient for human-robot interaction (Bos, Klein, &
Oka 2003).

Humans represent space across a variety of complex ab-
stractions (Siegel & White 1975; Golledge 1999; Kuipers

2000), yet communication is successful because people
share similar categories and concepts about the world. To
communicate, a chauffeur robot needs multiple abstractions
of space, with concepts that correspond to the ontologies the
passenger uses in thought and communication.

The HSSH allows a robot to describe the world using
qualitatively different representations, each with its own on-
tology. The hierarchy of connected representations is use-
ful for the many tasks of navigation: safe motion, localiza-
tion, map-building, and route planning. Equally important,
since the multiple representations are motivated by human
cognitive abilities, they provide a “natural” way for a chauf-
feur robot to interact with a passenger. We show natural
language, joystick, and GUI interactions with the chauffeur,
using HSSH representations.

HSSH Overview
The Spatial Semantic Hierarchy (SSH) provides a hierar-
chy of abstractions for reasoning about large-scale space
(Kuipers 2000). Large-scale spaces are environments that
cannot be seen from any one location. The large-scale envi-
ronments an SSH agent inhabits must have a certain struc-
ture. Specifically, the environments must be describable as
sets of places connected by paths—the SSH is not applicable
in a trackless desert.

The Hybrid Spatial Semantic Hierarchy is a more specific
framework of spatial knowledge that differs from the SSH in
several key ways. Most importantly, the HSSH incorporates
knowledge of small-scale space. A small-scale space is the
area visible within the agent’s sensory horizon. The HSSH
factors spatial reasoning about the environment into reason-
ing at four levels: local metrical, local symbolic, global sym-
bolic, and global metrical (see Figure 1).

The next four sections detail these heterogeneous repre-
sentations of the HSSH framework, focusing on the concepts
needed for a mobile robot to have spatial reasoning for effec-
tive human-robot interaction. A working map-building im-
plementation of the HSSH provides concrete examples. We
then discuss how the current HSSH implementation handles
specific human-robot interactions.

Local Metrical Reasoning
Humans have reliable metrical models of their local sur-
round (Golledge 1999). People can navigate through com-
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Figure 1: HSSH description. The HSSH is an integrated frame-
work of multiple, disparate representations of spatial knowledge.
Each level of abstraction uses its own ontology with concepts mo-
tivated by human communication about spatial navigation.

plex small-scale spaces and refer to intricate spatial relation-
ships both verbally and graphically (Skubic et al. 2004).

Similarly, an agent uses the HSSH local metrical level to
reason about the geometry of its immediate perceptual sur-
round. At this level, several important navigation issues ex-
ist: recognizing safely navigable space, mapping the loca-
tions of fixed obstacles and hazards, identifying “non-static”
obstacles (e.g. doors and pedestrians), planning local mo-
tion, and avoiding obstacles.

Local Perceptual Map (LPM)
We represent the geometric structure of an agent’s surround-
ings using a bounded 2D, scrolling metrical grid that re-
mains centered on the robot. Regions on the grid are an-
notated as being obstacles, hazards, areas of caution, safe
areas, and unknown areas. Such a grid, called the local per-
ceptual map (LPM), captures the structural information re-
quired for safe navigation. The LPM is small enough that the
agent can always localize itself within it, but large enough to
model nearby obstacles and structure (e.g. 10 × 10 m).

We build the LPM using both lasers and vision (Murarka,
Modayil, & Kuipers 2006). We use laser range-finders for
incremental localization and mapping of obstacles in the 2D
laser plane (occupancy-grid SLAM). Vision detects hazards

(a) (b)

(a) Laser map: black
obstacles.
(b) Stereo map: black
obstacles & grey ground.
(c) LPM from merging laser
and stereo maps: black
obstacles, dark grey hazards,
light grey unknown areas,
and white safe areas.

(c)
Figure 2: Local metrical modeling.

and other obstacles in the surrounding 3D space of the robot.
Dense stereo vision and visual feature-based methods build
a 3D point cloud model of the surrounding space, used to
identify safe and hazardous regions. The laser metrical map
is fused with a projection of the 3D point cloud into the
robot’s 2D travel plane, creating an LPM that models the
hazards visible in both modalities. Figure 2 demonstrates
building the LPM of a room.

The ability to identify “non-static” obstacles (Modayil &
Kuipers 2004) makes it possible for the robot to identify en-
vironmental elements, such as doors, that can potentially
allow navigation, even when they appear as obstacles in a
vanilla occupancy grid implementation.

Control
Local metrical control is fairly low-level, consisting of plan-
ning safe motion in the LPM. Most commands from the pas-
senger or from the local symbolic level are converted to pose
coordinates in the LPM’s reference frame and a safe motion
path is computed. Our implementation does A* search to
find time-optimal motion paths. The motion path is con-
stantly recomputed to respond to changing circumstances
and to ensure safe progress towards the goal.

The computed motion path is broken into a sequence of
open loop controls and sent to a lower-level control mod-
ule. The control module rejects unsafe commands by quick
analysis of the LPM, e.g. driving over a drop-off or moving
forward into an obstacle. User instructions to slow down or
to halt directly affect these control commands.

Interaction with a Human Passenger
At the local metrical level, the passenger may communi-
cate to the robot through a variety of instructions/queries.
Shared control is important at this level—for instance, the



robot should fine-tune coarse user commands to move safely
through a door or stay on a sidewalk.

Some natural language instructions at this level are low-
level motion commands, e.g. “rotate right,” “go forward five
meters,” “halt.” With a labeled map, other instructions direct
the chauffeur to named locations, to objects, to regions iden-
tified by local spatial relations, e.g. “between the chairs.”

The passenger may also indicate where they want to go
by clicking or drawing on the LPM display. Displaying the
LPM also allows the robot to improve its state of knowledge
by asking the passenger about ambiguous or low informa-
tion situations. For example, the robot can ask the passenger
to provide safety information about uncertain regions or to
verify the hazard annotations on the LPM.

Most often, we expect local metrical control to receive
commands from passengers using a joystick. Joystick com-
mands, translational and rotational velocity, are compared
against the LPM for safety before sending modified velocity
commands to the physical device.

Local Symbolic Reasoning
Humans also model their local surround symbolically by
recognizing the navigational affordances of a place: the en-
trances and exits. People often refer to intersections by
their shape (e.g. “T” and “corner”), or by how many paths
pass through (e.g. “three-way intersection” and “dead-end”)
(Geldof 2003; MacMahon, Stankiewicz, & Kuipers 2006).

A robot chauffeur should communicate about local space
in the same terms. The chauffeur must recognize the ways
in and out of the local space, both to detect when entering a
place and to leave by the indicated exits. It must also identify
the local topology for commands like “Take a left.”

Gateways
In the HSSH, a gateway is a boundary between the quali-
tatively different regions near the robot and away from the
robot. Each gateway has two directions, inward and out-
ward, termed directed gateways. Our current implementa-
tion uses the gateway finding algorithm defined by Beeson,
Jong, & Kuipers (2005). The algorithm finds constrictions
using the skeleton of free space in the LPM to identify the
gateways as shown in Figures 3(a,b).

Path Fragments
Once gateways are found, the robot determines the local
path fragments: portions of large-scale topological paths in
the LPM. Each gateway is associated with exactly one path
fragment, while each path fragment is associated with either
one or two gateways. A path fragment that terminates in
the LPM has one gateway; a path fragment that continues
through the LPM has two gateways (Figure 3(c)).

The robot must determine whether a path fragment con-
tinues through the local area or terminates at the place. In
our implementation, a path continues if each of two gate-
ways is the clear unique default travel continuation of the
other. This is implemented by checking if a ray normal to
one gateway intersects only the other and vice versa.

(a) (b)

Small-scale star description
from PF1+

((PF1+, (gw1,out) & (gw4,in)),
(PF2+, (gw2,out)),
(PF3+, (gw5,in)),
(PF4+, (gw3,out)),
(PF1-, (gw4,out) & (gw1,in)),
(PF4-, (gw3,in)),
(PF3-, (gw5,out)),
(PF2-, (gw2,in)))

(c) (d)
Figure 3: Identifying Gateways & Local Topology in an LPM.
The robot is shown as a circle in the center of the LPM.
(a) To find gateways, the algorithm computes the skeleton of LPM
free space . The skeleton is examined to find constrictions.
(b) The final gateways are represented as line segments connecting
the skeletal constrictions (circles) with the closest obstacles.
(c) Given gateways, path fragments are identified.
(d) The local topology is described by the small-scale star for the
place: an enumeration of local path fragments in a circular order.

Detecting Places
Using gateways and path fragments, we can formulate a ro-
bust criterion for detecting topological places. By the path
continuity criterion, a robot moving along a path is sur-
rounded by exactly two gateways, one in front and one be-
hind, that define a single path fragment. If the number of
gateways or path fragments changes, the robot has entered
a topological place (Beeson, Jong, & Kuipers 2005). All
intersections have at least two path fragments (even “L” in-
tersections), while a dead-end has only a single gateway.

Because places are grounded in the LPM, the number and
extent of places in an environment depends on the size of the
underlying LPM.

Upon a confirmation of place detection, a snapshot of the
LPM is stored. A pose in the stored snapshot is selected as
the origin of that place’s frame of reference. Upon arriving
at a place, the robot also stores its metrical estimation about
the location of the current place in the frame of reference of
the previous place. This metrical information is an annota-
tion on the global symbolic topological map.

Describing the Local Topology
The local topology of a place is a model of the topologi-
cal relations between the path fragments at that place. The
small-scale star describes the local topology as the circu-
lar ordering of directed gateways and directed path frag-



ments (Figure 3(d)).
The small-scale star is constructed as follows. (1) Cre-

ate a set of tuples 〈PF,GW 〉. PF is a path fragment and
a direction (+ or −). GW is the directed gateway (or pair
of gateways) on PF facing the same direction. (2) Initial-
ize the circular order with those tuples containing outward-
facing gateways, in their clockwise sequence around the
place. Both directed gateways of path fragments that pass
through the place neighborhood, now appear in the order.
(3) Each remaining tuple, containing an inward-facing gate-
way and a path fragment terminating at the place, is inserted
into the order where the path would exit the place, as deter-
mined by the path continuity criterion.

Control
At the local symbolic level of the HSSH framework, nav-
igation is abstracted to travels and turns. Turn and travel
actions are abstractions of continuous motion through the
LPM between directed gateways. To travel along a path, the
robot decides which of the two gateways faces the desired
direction and sends the coordinates of the gateway to the lo-
cal metrical control. During a travel action, the gateways
are constantly being recomputed, with new goal coordinates
sent to the lower control. To turn at a place, the robot de-
cides which outward-facing gateway is the correct exit, then
sends its coordinates to the local metrical controller.

Interaction with a Human Passenger
A chauffeur needs to be able to categorize a place symbol-
ically to handle several common spatial instructions. Some
instructions rely on recognizing the topological position of
gateways at places, for instance, “Take the second left.” Oth-
ers rely on the entire local topology: “At the four-way inter-
section, turn right.” Finally, more complex local topologies
require understanding the relationships in the small-scale
star, such as the distinction between “veer right” and “take
the sharp right” in a five-way intersection.

Global Symbolic Reasoning
Humans think about their global environment symbolically
(Siegel & White 1975; Golledge 1999). For instance, in
complex environments, people plan, carry out, and describe
travel using symbolic places and paths (Geldof 2003). A
chauffeur should recognize paths as coherent collections of
ordered places and identify a familiar place upon returning
from another direction.

By keeping a history of travel and turn actions, a robot can
replicate routes it has traveled in the past. However, if the
robot can recognize the same place seen at different times
when traveling different routes, it can simplify its model
of the world, creating more efficient routes between places.
This problem in robotics is termed loop closing. Perceptual
aliasing can create multiple loop closing hypotheses, caus-
ing structural ambiguity.

Topological Map-Building
Within the HSSH, the topological map-builder maintains a
tree whose nodes are pairs 〈M,x〉, whereM is a topological

After performing action a, arriving at directed gateway gw, and
observing the resulting view v = 〈LPM, ψ, gw〉, for each map M
and “you-are-here” pointer x on the fringe of the tree:

If M includes 〈x, a, x′〉 and view(x′, v′),
• if 〈ψ′, gw′〉 = 〈ψ, gw〉, 〈M,x′〉 is the successor to 〈M,x〉;
• if 〈ψ′, gw′〉 6= 〈ψ, gw〉, mark 〈M,x〉 as inconsistent.

Otherwise
• M does not include 〈x, a, x′〉. Let M ′ be M extended with

a new distinctive state symbol x′ and the assertions
view(x′, v) and 〈x, a, x′〉

• If a is a travel action, consider the k ≥ 0 dstates xj in M
such that the local topology of view(xj) matches the local
topology of view(x′). 〈M,x〉 has k + 1 successors:

– 〈M ′ ∪ {x′ = xj}, x′〉 for 1 ≤ j ≤ k, plus
– 〈M ′ ∪ {∀j x′ 6= xj}, x′〉.
• If any one of the new successor maps violates any

topological assumptions, mark it inconsistent.

Figure 4: Building the tree of topological maps. Each node in
the tree 〈M,x〉 is a hypothesis of a topological map M and the
current pose x (place location and orientation along a path). ψ
represents the small-scale star model of the local topology for x.

map and x is a distinctive state (dstate) within M represent-
ing the robot’s current location. Each dstate corresponds to
a particular place, path, and direction on that path; dstates in
a place are connected by turn actions.

A view of a dstate is represented by the structure v =
〈LPM, ψ, gw〉, where ψ is the small-scale star description of
its local topology and gw is the directed gateway at which
the last action terminated. Views can be matched by test-
ing whether the local topologies are isomorphic. Since view
matching considers the entire local topology, ambiguity can
only arise after travel actions.

The topological map-building algorithm, shown in Fig-
ure 4, creates a tree of map hypotheses. For non-trivial en-
vironments, the tree of maps grows too quickly to maintain
in real time, so we build this tree in a best-first fashion.

Several algorithms can facilitate this best-first approach:
apply a prioritized circumscription policy to sort symbolic
map hypotheses (Remolina & Kuipers 2004); apply a con-
straint to remove non-planar topologies (Savelli & Kuipers
2004); compare the stored LPMs along with the local
topologies; sort topological maps based on their maximum
likelihood global layout (see below). We are currently eval-
uating the strengths and weaknesses of these approaches.

Control
Control at the global symbolic level consists of topological
route planning and execution. The robot searchs the pre-
ferred topological map to find a route between places. Exe-
cuting a route consists of providing a sequence of travel and
turn commands to the local symbolic level and replanning
if the robot moves off the route or loses certainty over its
current location in the topological map.

Routes can be optimized based on the situation or the
user’s preferences. Metrical annotations of the distances be-
tween neighboring places can be used to find the shortest
path. Hazards seen recently in the LPM when traveling a



path segment can also be considered during symbolic plan-
ning. In addition to using the best map hypothesis, the robot
can account for structural ambiguity by planning routes that
are applicable in several of the most probable maps. These
routes can be chosen to avoid confusing areas or to resolve
the ambiguity.

Interaction with a Human Passenger
The passenger can command the chauffeur at the global
symbolic level in several ways. First, the passenger may
ask the chauffeur to go to a place and rely on the topological
route planning to determine how to get there. Or the pas-
senger may want to specify a particular plan, such as “Take
the quiet route to my office” where this route is stored from
some previous time. Satisfying locative conditions in some
commands, such as “At the corner, go left” and “Take the
second right,” can be implemented at the global topologi-
cal level, by planning to reach the precondition location, al-
though they can be done at the local symbolic level with re-
active control (MacMahon, Stankiewicz, & Kuipers 2006).

Distance queries are usually answered by using metrical
annotations on the topological map rather than a global met-
rical map: “How far is the goal?” is interpreted as “How
long is the route?” instead of “How far as the crow flies?”

Global Metrical Reasoning
Though humans have a difficult time drawing accurate maps
of large-scale environments (Siegel & White 1975), people
use external global metrical maps effectively to plan navi-
gation, to gauge distances between places, and to commu-
nicate place locations and routes. The robot can create a
usable global, metrical layout using a topological map of an
environment, the stored snapshots of the LPM at each topo-
logical place, and the metrical annotations regarding neigh-
boring places. Modayil, Beeson, & Kuipers (2004) present
a general theory of building a global metrical map from a
metrically annotated topological skeleton. See Figure 5 for
an overview and example of the process.

Global Metrical Map-Building
The implementation used to make Figure 5(d) performed
Metropolis-Hastings sampling over the global layout of
places before integrating the data along the individual path
segments. This ran offline and took some time to determine
the maximum likelihood layout of the places.

If we assume that the uncertainty between neighboring
places is Gaussian, finding the maximum-likelihood global
layout essentially becomes an Extended Kalman Filter map-
ping problem (Smith, Self, & Cheeseman 1990); however,
a place map contains significantly fewer states than a map
with a state for every observation in the robot’s history, mak-
ing global map-building much easier when the topological
structure has been determined.

Control
At the global symbolic level of the HSSH framework, in-
structions are given by the user in global coordinates or
stored names. Planning a path in the global metrical map

(a) (b)

(c) (d)
Figure 5: Building the global metrical map.
(a) Store a snapshot of the LPM at every place detection event.
(b) Find the best topological map consistent with the exploration.
(c) Layout the stored LPMs on the topological map.
(d) Find the layout of places, scale the distance along each path
segment, and plot the observations seen traveling between LPMs.

is inefficient. Instead, this level determines the topological
place closest to the goal state. This place is sent to the global
symbolic controller, which in turn sends travels and turns to
the local symbolic level, which in turn sends local coordi-
nates to the local metrical level. Once the robot arrives at
the place, it aligns the LPM’s frame of reference with the
global map’s frame of reference and sends the goal coordi-
nates directly to the local metrical control.

Interaction with a Human Passenger
The passenger may use the global metrical map as a dynamic
graphical “you-are-here” map and instruct the robot to move
to a location. The chauffeur may be commanded by clicking
a location on a graphical display. Additionally, given anno-
tations, relative positioning commands may be applied at the
global level, such as “Go to the other side of this building.”

Human-Robot Interaction
Human route instructions include a variety of actions and
descriptions. Instructions can steer low-level motion, guide
larger-grained actions, or provide a goal for high-level nav-
igation. Environmental descriptions can provide context or
verification by specifying features of a location. Descrip-
tions may also indirectly guide the robots toward the goal by
providing necessary information in a declarative form. Ad-
ditionally, the robot may ask for assistance with perceiving
the environment. Finally, dialogue should include queries
and feedback about the chauffeur’s knowledge, understand-
ing, and capabilities.



To allow the passenger to communicate using the dis-
parate representations presented here, a chauffeur robot
must be able to communicate across a variety of modes.
In the Simpson (2005) survey of smart wheelchairs, three
communicating methods are common: (1) natural language
interfaces (NLIs), (2) graphical user interfaces (GUIs), and
(3) shared control using a joystick.

Following verbal instructions
We have implemented a natural language understanding and
route-following system. While it has not yet been integrated
with the full HSSH implementation discussed above, it has
been tested using simulated robots and a large corpus of nat-
ural language route instructions (MacMahon, Stankiewicz,
& Kuipers 2006). The instruction-following architecture has
been tested using HSSH representations, such as the small-
scale star, and navigates using local symbolic control: turn
to the next gateway and travel to the next place. The route
modeling and execution systems use knowledge of both lan-
guage and space to infer the intended meaning of an instruc-
tion set. This is done by filling in implied actions and trust-
ing extracted local topologies over mistake-prone turn direc-
tions and path distances.

Inferring topological maps from route instructions
Route instructions often do not specify the complete route,
leaving navigational ambiguity. For instance, a turn di-
rection might be unspecified, leaving topological ambigu-
ity. Interestingly, these linguistic and perceptual ambiguities
while following route instructions are analogous to ambigu-
ity from perceptual aliasing in an exploration trace. There-
fore, we can apply the same consistency filtering and map
ordering algorithms from the HSSH global symbolic level
to reason about topological maps from route instructions.

The HSSH can handle the ambiguous maps derived from
under-specified or linguistically ambiguous route instruc-
tions using the same global symbolic reasoning that handles
the spatial ambiguity in topological map-building. The cur-
rent route instruction modeler forms an imperative model
of instructions as plans consisting of turn and travel actions
to be taken under the described conditions. Since turns
and travels link gateways and places, inferring an under-
specified topological route map from an instruction text is
possible. The partial, ambiguous map of the environment
derived from language understanding, and the partial, am-
biguous map learned from exploration, can be represented
and reasoned about in the same way by the same algorithms.

We believe that the same hierarchy of spatial representa-
tions will be useful in the future to incorporate sketch maps
as a communication medium (Skubic et al. 2004).

Joystick and GUI control: Preliminary Data
In a pilot experiment, we were able to demonstrate a be-
havioral benefit for using both the local metrical and local
symbolic levels of the HSSH implementation when assisting
users with (simulated) degraded vision—low-vision people
are a potential community of users for smart wheelchairs.
Local metrical control was evaluated using a joystick in-
terface, while local symbolic control was evaluated using a

(a) (b)

(c) (d)
Figure 6: Stimuli, Map, and Interface for Pilot Study.
(a) Subject’s environment view in the Normal Vision condition.
(b) Subject’s limited view in Degraded Vision (fog) condition.
(c) Environment layout used. Numbers correspond to goal states.
(d) The local symbolic control GUI. Individual buttons light up
when applicable for the current environmental situation.

GUI.
We tested the HSSH implementation in an virtual, indoor

environment. The environment consisted of seven hallways
with ten static human avatars placed randomly throughout
the environment (Figure 6). We ran three subjects each in
four conditions, defined by whether the participant’s vision
was obscured from fog (Normal Vision and Degraded Vi-
sion) and by the method of navigation (Manual, Safety and
Command). The four conditions were Normal-Vision: Man-
ual, Degraded-Vision: Manual, Degraded-Vision: Safety
and Degraded-Vision: Command.

In the Manual conditions, participants moved through
the environment using a joystick interface. The output of
the joystick directly controlled the behavior of a virtual
wheelchair.

The Safety condition tested the HSSH local metrical level.
In this condition, participants navigated using a joystick, but
the HSSH local metrical control modified the behavior of the
virtual wheelchair relative to the joystick input. Specifically,
local metrical control uses the LPM to enforce safe motion,
by slowing down when close to obstacles and by refusing
to perform unsafe actions (e.g., running into a pedestrian or
wall).

The Command condition tested the HSSH local symbolic
level. In the Command condition, an image showing the lo-
cal topology of the current intersection was displayed on the
screen. The user selected a command from four options (for-
ward, left, right, backwards; see Figure 6(d)). The virtual
wheelchair would then leave along the selected path segment
and travel to the next intersection. As discussed earlier, lo-
cal symbolic control passes through local metrical control,
so the chauffeur also avoided obstacles in this mode.

We degraded the visual input for the participants by
adding fog to the environment (see Figures 6(a,b)), such



Normal-Vision: Manual Degraded-Vision: Manual

Degraded-Vision: Safety Degraded-Vision: Command

Figure 7: Motion Trajectories. Sample traces of the paths from a
participant in the four conditions. Small squares indicate collisions.

that objects further than three meters from the viewpoint
were not visible. The virtual wheelchair perceived the envi-
ronment via (simulated) laser range-finders that viewed the
world at about the height of the avatars’ shins. Fog did not
affect the distances returned by the simulated lasers.

We ran the participants in five trials per condition. A trial
consisted of five goal locations presented in a random order.
Each trial started by placing a participant at the same starting
position (Position 3 in the map shown in Figure 6(c)). Each
circuit of five places was run in each of the four conditions
to control for the expected distance traveled and for time
to complete a circuit. These twenty trials were randomly
ordered for each subject in order to reduce the influence of
task learning during the experiment.

All participants knew the layout of the environment, but
not the locations of the obstacles (avatars), which were ran-
domly distributed for each trial. At the beginning of a trial, a
participant was told by the computer to go to a particular lo-
cation (e.g., ”Position 3. Go to position 5”). The participant
used the joystick (or the GUI for the Command condition)
to travel to the specified goal. When the participant reached
the specified destination, the computer announced the goal
name (e.g., ”Position 5”), then gave the participant another
goal location (”Go to Position 2”).

Figure 7 shows sample recorded traces from one of the
subjects in each of the four conditions. Figure 8 shows the
mean distance traveled and the mean number of collisions
(with both avatars and walls) on a circuit.

The Pilot Study addresses three primary questions:

Effect of Degraded Vision Does reducing the visual infor-
mation by adding fog make the task more difficult?

Benefit of Assisted Joystick Control Is performance better
with local metrical control (collision avoidance)?

Figure 8: Summary data for the Pilot Study’s four conditions.
White bars show mean distance traveled for a circuit. Black bars
are mean number of collisions. Error bars represent Standard Error.

Benefit of Local Symbolic Navigation Does the system
perform better using local symbolic knowledge (obstacle
avoidance and path planning) in the chauffeur?

Preliminary Results To answer these three questions, we
measured the distance for subjects to reach all five goal
states in a circuit and the number of collisions with either
an avatar or a wall.

Driving a physical wheelchair with low vision can be dif-
ficult. Our first evaluation is whether degrading vision (by
adding fog) had any effect on the subjects’ performance us-
ing the virtual wheelchair. We can see the effect of de-
grading the visual input by comparing the performances in
Normal-Vision: Manual versus Degraded-Vision: Manual
in Figure 8. There was a 37% increase in the mean dis-
tance traveled (Normal = 136.5 meters; Degraded = 187.6
meters) and a 936% increase in the mean number of colli-
sions (Normal = 1.5; Degraded = 13.7). This suggests that
the degradation of vision made the task significantly more
difficult.

To evaluate the benefit of adding local metrical control,
we compared performances for Degraded-Vision: Manual
versus Degraded-Vision: Safety. Adding safety showed no
benefit for the distance traveled (Manual = 181.3 meters;
Safety = 187.6 meters). However, collisions decreased by
97% (Manual = 13.7; Safety = 0.5).

Note all remaining collisions in Safety mode were with
the hands of the avatars, which stuck out from the body
(see Figure 6(a)) above the height of the wheelchair’s range
scan; thus, the hands were invisible to the chauffeur agent.
This is an inherent problem with planar sensing devices, like
laser range-finders, which motivates using stereo vision to
improve LPMs in real-world scenarios (see Figure 2).

To evaluate the benefit of adding local symbolic control
to the chauffeur, we compared performances for Degraded-
Vision: Manual versus Degraded-Vision: Command. In this
case, adding the local topology navigation aid reduced the
distance traveled by 23% (Command = 144.3 meters; Man-



ual = 187.6 meters). Furthermore, collisions were avoided
entirely (Command = 0.0; Manual = 13.7).

Comparing the performance for Degraded-Vision: Com-
mand versus Normal-Vision: Manual contrasts the au-
tonomous chauffeur system to a vehicle driven by a pas-
senger with full visual abilities. We find virtually no differ-
ence in the distance traveled (Degraded-Vision: Command =
144.3 meters; Normal-Vision: Manual = 136.5 meters), with
a slight benefit with the HSSH local symbolic control in
terms of the number of collisions (Degraded-Vision: Com-
mand = 0.0; Normal-Vision: Manual = 1.5). In this prelim-
inary experiment, the autonomous system drove as well as
the human with full vision.

Conclusion
The Hybrid Spatial Semantic Hierarchy (HSSH) is a frame-
work that integrates multiple representations for spatial rea-
soning. Such a framework is necessary for a chauffeur robot,
which must reason and communicate about the world across
a variety of abstractions.

We have demonstrated an implementation of this frame-
work for map-building. The local metrical level provides
safe local path planning and metrical estimates of local
space. The local symbolic level binds the local metrical
map to symbolic entities such as entrances, exits, places,
and paths. The global symbolic level tackles the problem of
structural ambiguity in order to create a consistent topolog-
ical map of a large-scale environment. The global metrical
level builds a global metrical map on top of the topological
skeleton by using the metrical annotations provided from the
local metrical level.

The concepts used at each level of abstraction are moti-
vated by concepts from studies on human communication
and behavior during navigation tasks. We discuss an imple-
mentation of natural language understanding of human route
instructions that uses the concepts in the local symbolic ab-
straction to control a simulated robot.

A particularly important remaining task is to fully in-
tegrate and rigorously evaluate the system presented here.
We have shown through preliminary experiments that au-
tonomous, hierarchical control can provide benefits over
manual control, even for fully cognizant and physically
abled subjects. Future experiments should compare local
symbolic control and global symbolic control.

Assistive technologies, such as a chauffeur agent on a
smart wheelchair, provide a compelling application for in-
telligent systems. We believe that the complexity of the task
requires the kind of modular knowledge representation and
modular architecture that we have demonstrated here. We
believe that the same structure will be essential to achiev-
ing the robustness of human common-sense knowledge in a
wide range of other applications.
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