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Abstract—Floating-point arithmetic is essential for many em-
bedded and safety-critical systems, such as in the avionics
industry. Inaccuracies in floating-point calculations can cause
subtle changes of the control flow, potentially leading to disastrous
errors. In this paper, we present a simple and general, yet
powerful framework for building abstractions from formulas,
and instantiate this framework to a bit-accurate, sound and
complete decision procedure for IEEE-compliant binary floating-
point arithmetic. Our procedure benefits in practice from its
ability to flexibly harness both over- and underapproximations
in the abstraction process. We demonstrate the potency of the
procedure for the formal analysis of floating-point software.

I. INTRODUCTION

Embedded systems are typically controlled by software that
conceptually manipulates real-valued quantities, for instance
measurements of environment data. Such quantities are stored
in a computer as floating-point numbers. As only few real
numbers can be encoded in this format, values must generally
be rounded to some nearby floating-point number.

Compared to a computation with infinite precision, rounding
can influence program behavior in multiple ways. The devia-
tion caused by rounding can lead to unintuitive results, such as
in a non-associative addition operation. Worse, the deviation
can accumulate and eventually change the control flow of the
program. Implementations of floating-point algorithms can be
sensitive to very small variations in input. Bugs caused by
such rounding errors are therefore often hard to reproduce
and to test for, and have been referred to as “Heisenbugs” [1].
If undetected, they can have tragic consequences, as embedded
devices are used in many mobile and ubiquitous computing
environments. A prominent example is the Ariane 5 disaster,
caused by an out-of-bounds 64-bit floating-point conversion.
The indisputable need for reliability in embedded applications
calls for precise and rigorous formal analysis methods.

Programs with floating-point arithmetic have been addressed
in the past in various ways. In abstract interpretation [2],
the program is (partially) executed on an abstract domain,
such as real intervals. The generated transformations may,
however, turn out too coarse for definite decisions on the given
properties. Proof assistants are tools that prove theorems about
programs (involving floating-point arithmetic) under human
guidance. This guide, unfortunately, must be highly skilled
to direct the tool towards a proof. Both abstract interpreta-
tion and theorem proving often lack the ability to generate
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counterexamples for invalid properties, which is essential for
debugging and for the high-impact field of automated test-
vector generation.

In this paper, we present a precise and sound decision pro-
cedure for (binary) floating-point arithmetic for the automatic
analysis of software. A principal way of achieving this is to
encode floating-point operations as functions on bit-vectors,
and relying on efficient solvers for bit-vector logic, for instance
those based on “bit-flattening” and subsequent SAT-solving.
Unfortunately, this approach has proven to be intractable in
practice, simply because it results in very large and hard-to-
solve SAT instances, as we will illustrate.

A common solution to address this problem is to use ap-
proximations of formulas. Particularly, an overapproximation
¢ simplifies the formula ¢ in a way that preserves all satisfying
assignments; thus, unsatisfiability of ¢ implies unsatisfiability
of ¢. Analogously, an underapproximation ¢ simplifies ¢ in a
way that removes satisfying assignments; thus, any satisfying
assignment to ¢ can be adjusted to one for ¢.

Classical counterexample-guided abstraction refinement
(CEGAR) [3] relies on overapproximations, which are refined
if spurious counterexamples (in the form of spurious satisfying
assignments) are encountered. In [4], a decision procedure for
bit-vector arithmetic is presented that employs both types of
approximations, although in a fixed alternation schedule. Such
approaches are too rigid for floating-point arithmetic, as some
formulas do not permit effective overapproximations, while
others do not permit effective underapproximations.

In this paper, we propose a new abstraction method for
checking the satisfiability of a floating-point formula ¢. Our
algorithm permits a mixed sequence S of both over- and
underapproximating transformations. The formula 1) resulting
from applying S to ¢ is in general neither an over- nor
an underapproximation of ¢. Our algorithm stops whenever
(1) the simplified formula ) permits a satisfying assignment
that satisfies ¢, too, or (ii) ¢ is unsatisfiable and permits a
resolution proof that is also a valid proof for ¢. If neither of
the opportunities (i) and (ii) applies, S needs to be refined. If ¢
was found to be spuriously satisfiable, the algorithm removes
an overapproximating transformation from S, otherwise an
underapproximating transformation.

Our algorithm can be seen as a framework for a class
of abstraction-based procedures to check the satisfiability of
formulas in some logic: different choices of the transformation
sequence S result in different instances of our framework.
For example, the work presented in [4] is an instance where
S strictly alternates between over- and underapproximations.



CEGAR is an instance where S contains only overapproxima-
tions. Our paper generalizes these methods in a way that per-
mits a choice of approximations based on their effectiveness
to simplify the input formula. Termination of any algorithm
based on our framework is guaranteed as long as the sequence
S can be shown to be depleted eventually.

We demonstrate the utility of the procedure on decision
problems arising in bounded model checking (BMC) [5] of
ANSI-C programs.

II. PRELIMINARIES: FLOATING-POINT ARITHMETIC
A. The IEEE floating-point format

The binary floating-point format is used to represent real
numbers in a computer. Specifically, the triple consisting
of a sign s € {0,1}, an integer-valued exponent e, and
a rational-valued mantissa m represents the floating-point
number (—1)® - m - 2¢. According to the IEEE standard 754,
the three components are encoded using bit-vectors, resulting
in the partitioned representation of a floating-point number
shown in Figure 1.
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Fig. 1. The three fields of an IEEE-754 floating-point number

The sign bit s directly represents the sign of the floating-
point number. The following two bit-vector fields are inter-
preted as follows:

e The bit field € := e,_1...ey encodes the integral
exponent e as a binary number.

o Together with the hidden bit, the bit field m :=
mp—1 ... Mg encodes the fractional value of the mantissa
m; the representation ensures that 0 < m < 2. The
hidden bit is derived from e, and is used to distinguish
normal and denormal numbers.

The widths r and p of the second and third bit fields in Figure 1
are called the range and the precision of the representation.
The IEEE standard 754 defines two types of floating-point
numbers: the single format with (r,p) = (8,23), and the
double format with (r,p) = (11,52).

Unrepresentable real numbers are rounded, as we review in
Section II-B. Numbers that are too large are represented using
the symbols —oo and +oco. The floating-point number NaN
(“Not a Number”) represents results of operations outside of
real arithmetic, such as imaginary values. We call the floating-
point numbers +oo and NaN special; they are represented
using reserved patterns for exponent and mantissa.

In this paper, we manipulate floating-point formulas by
varying the precision parameter p, while parameter r is fixed.
We denote by I, the set consisting of the floating-point num-
bers (—1)®-m-2¢ representable as a bit-vector with precision p,
and the special numbers £oo. With R := R U {00}, we
have —oo < z < +oo for all € R®. Obviously, for p’ < p,
we have I,y C IF, C R*°.

B. Floating-point arithmetic

The result of an operation a o b, for o € {+, —, x, /}, may
not be representable in IF,, even though a and b are in F,.!
In such a case, an appropriate approximation is selected.
For z € R, define the approximations |z |, and [x], as

z]p = max{fel,:f<ux},
[z], = min{felF,:f>z}.

The values |z], and [x], are the two floating-point numbers
in I}, nearest to x. There is no floating-point number strictly
between |z|, and [z],. If  is larger than any non-special
floating-point number in I, then [2], = 4o00; analogously
for |x|,. The approximation values satisfy the following nest-
ing property: for p’ <p, |z|y < |z], <z < [x], < [z]y.

Definition 1: A rounding function is a function rd,: R —
I, such that, for all z € R, rd,(z) € {|z]p, [z]p}-

Specific rounding functions are also known as rounding modes.
Two examples of rounding modes are round-up (rd, = [-]p)
and round-down (rd, = |-|p).

The floating-point operators ® € {®, 0, ®, @} are defined
as the rounded result of the corresponding real operators o €
{+a - %, /}

Definition 2: For a given rounding function rd, and an
arithmetic operation o: R? — R, the corresponding floating-
point operation ©,: IFf) — IF,, is defined by

and

T@py :=rdy(zoy).

The IEEE standard 754 extends this definition to operations
with special operands, e.g. +-00@®,, —o00 := NaN. Note that, due
to the rounding, associativity does not hold for floating-point
operations, i.e., (¢ ®, b) @, ¢ may differ from a ®, (b ®@, c).

Floating-point arithmetic (FPA) (with precision p) is the
logic defined by the structure (F,,=,<,®). A ferm is an
expression over arithmetic operations involving variables or
constants over If,,. We also allow conversions between terms
with different precision. Given terms %1, to, atoms in FPA
are of the form ¢; > to with 1 € {=,<}. The Boolean
connectives A, V, — are used to construct formulas. We
consider the combination of FPA with integer bit-vector arith-
metic (BVA) and allow both semantic and bit-wise conversions
between integer bit-vectors and floating-point bit-vectors. The
goal of this work is a decision procedure that determines the
satisfiability of FPA+BVA formulas.

IIT. PROPOSITIONAL ENCODINGS OF FPA FORMULAS

Given a circuit implementation of an IEEE-754 compliant
floating-point unit (FPU), each floating-point operation can be
modeled as a formula in propositional logic, as we illustrate
below. This way, a formula in FPA can — in principle — be
translated to an equisatisfiable formula in propositional logic
and passed to a SAT-solver to check for satisfiability. This
suggests a sound and complete decision procedure for FPA.

Ifor instance, the addition of the binary numbers 1.1 - 20 ¢ F; and
1.0 - 29 € 1 (1 bit fractional precision) results in 10.1 - 29, which is not
representable with 1 bit fractional precision and a mantissa m < 2.



The bottleneck is of course the complexity of the resulting
propositional formulas, as we demonstrate in the following.
Our analysis also hints at sources for approximating these
formulas in meaningful ways.

A. Addition and Subtraction

Figure 2 shows a high-level description of a floating-point
adder/subtracter as implemented in most FPUs. An adder/sub-
tracter is composed of three modules.
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Fig. 2. High-level overview of a floating-point adder/subtracter.

e ALIGN. The mantissa of the smaller operand is shifted
by |eq — ep| bits to the right, rendering the two exponents
equal.

o ADD/SUB. The two resulting mantissas are then added,
resp. subtracted, with a standard integer adder.

o ROUND. If the new mantissa has more than p bits, the
result is rounded to obtain a number in IF},. The rounding
is implemented as a function on the least significant bits
of the mantissa.

If e, = e, = es = e,, the ALIGN module is not needed,
since the shift distance is 0. The ROUND module can also
be simplified, since the mantissa is not shifted. In this case,
the circuit implements fixed-point arithmetic: the operation is
reduced to the ADD/SUB module. The existence of efficient
SAT-encodings for fixed-point arithmetic formulas therefore
suggests that reducing the cost of the ALIGN and ROUND
modules may improve the performance of a floating-point
decision procedure via a SAT-encoding.

Table I shows the number of propositional variables needed
for a floating-point adder/subtracter (optimized for proposi-
tional SAT, not area or depth), depending on the width p of the
mantissa. These numbers confirm that alignment and rounding

[ Precision [[ ALIGN [ AbD/SuB [ ROUND [[ Total |
p=>5 295 168 572 1035
p=11 418 252 853 1523
p=17 561 336 1153 2050
p=23 687 420 1447 2554
p=29 813 504 1744 3061
p=235 996 588 2050 3634
p=41 1140 672 2362 4174
p =47 1284 756 2665 4705
p =52 1404 826 2923 5153

TABLE 1

NUMBER OF VARIABLES FOR AN FP-ADDER DEPENDING ON p

cause the propositional formula to blow up in size. One way to
curb this blow-up is to approximate floating-point operations
by reducing the precision p, as we shall do in Section IV.

B. Multiplication and division

A high-level description of a floating-point multi-
plier/divider is given in Figure 3. Besides the rounder as
described above, an FPU implements the following modules
for a multiplier/divider:

o ADD/SUB. The exponents of the two operands are first

added, for multiplication, resp. subtracted, for division.

e« MUL/D1v. The two mantissa are then multiplied, resp.

divided.
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Fig. 3. High-level overview of a floating-point multiplier/divider

Table II shows the number of propositional variables needed
for a floating-point multiplier/divider, depending on the width
p of the mantissa. As one would expect, the multiplier/divider

[ Precision [[ MUL/DIvV [ ADD/SUB [ ROUND [[ Total |
p=>5 280 94 674 1048
p=11 982 94 1287 2363
p=17 2188 94 1910 4192
p=23 3898 94 2258 6550
p=29 6112 94 3200 9406
p=35 8830 94 3855 12779
p=41 12052 94 4521 16667
p =47 15778 94 5193 21065
p =52 19268 94 5742 25104

TABLE II

NUMBER OF VARIABLES FOR AN FP-MULTIPLIER DEPENDING ON p

yields a propositional formula that is expensive to decide. One
possibility to curb these costs is to reduce the precision p,
as this reduces the width of the multiplier. We now discuss
how formulas are approximated when p is reduced.

IV. APPROXIMATING FLOATING-POINT ARITHMETIC

Reducing the precision of floating-point operations approx-
imates the input formula: a satisfiable formula may become
unsatisfiable, or vice versa. In order for the results returned
by a SAT solver to still be useful, we need to be aware
of the “direction” of the approximation. In this section, we
discuss methods for over- and underapproximating floating-
point formulas by reducing their precision.



A. Overapproximation

Reducing the precision p of a floating-point operation to p’
causes the bits needed for the correct rounding decision to be
lost, and the rounding to be based on higher-order bits. It turns
out that by making the reduced-precision rounding decision
nondeterministic, the reduced-precision formula overapproxi-
mates the original.

Definition 3: The open rounding operation mp,p/

P(R) — P(IF,) is defined as
rdpp (X) = [[X]p, [X]p] N Ey,
where | X |, := mingex|z|, and [X ], := maxzex 2]y

The set rd,, (X) can be seen as the smallest precision-
p floating-point “interval” Y such that for all x € X, the
reduced-precision values |z],, [x], are in Y. We use the
operator Hp,p/ to define corresponding open floating-point
operations.

Definition 4: For an arithmetic operation o : R? — R,
the corresponding open floating-point operation ©y
(P(Fp))? — P(IF,) is defined as:

X©ppY 5:mp7p'({zoy|17 eX,yeY}).

The new floating-point operation ©,, ,; overapproximates the
original operation @, in the sense that ©,, yields more
results than ©y, i.e., @,y € {2} ©, , {y}, for any reduced
precision p’ < p, as the following lemma shows.
Lemma 1: For p, p’ withp’ <p, 20,y € {2} ®p, {y}.
Proof: By the definitions of ®), and rd,, @,y = rd,(xzo
y) € {lzoylp, [z oy],}. We estimate this set as follows:

[lzroylp,[xoyl,] N T, [closed intervall
[lzoyly,[zoyly] N T, [nesting prop.]
rdyy ({2 0y}) Def. 3 with X = {z 0 y}]
{z}opp{y}- [Def. 4]

1NN

|

One can use the open operations to generate a formula ¢ that

overapproximates the original ¢. Each floating-point operation

©y is replaced by an open version ©, ,/, for some reduced

precision p’. The reduced precision can be chosen separately
for each occurrence of a floating-point operation.

B. Underapproximation

To generate an underapproximation, we devise floating-
point operations with fewer results than the original operations.
Observe that if a floating-point operation with reduced preci-
sion p’ yields an exact result, then the same result is obtained
with the original precision p. Our new floating-point operations
are restricted to exact precision p’ results. To formalize this
idea, we define a modified rounding operator rd,

Definition 5: The no-rounding operator rd, ,, : P(R) —
P(F),) is defined as

rd, ,(X) = XNTFy

The quantity rd,, ,,({x}) equals {z} if no rounding is required
to represent x with precision p’, i.e., x € F,/, and the empty

set otherwise, independently of p. Floating-point operations

@, that yield exact results only are defined in analogy to

Def. 4, with rd replaced by rd. These operations yield fewer
results than their original counterparts ®,. That is, if {z} is
the result of the new exact operation {z}@  ,{y}, then z is
also the result of original operation = @), y:

Lemma 2: For p, p’ with p’ < p, {z}e, {y} = {z}
implies z @, y = 2.

Proof: We have {z}©, {y} = {zoy}NEFy = {z}, thus
z=wxo0y € Fyp C Ty, From xoy € IF,, we can conclude
[zoyly = [zoyl,=roy=rdy(zoy) =z0,y =2 m

One can use ©® to generate an underapproximation of a
formula ¢, by replacing each floating-point operation with a
version that is exact for some reduced precision p’.

In case the constructed underapproximation is shown to be
unsatisfiable, nothing can be concluded on the satisfiability
of ¢. One way to resolve the dichotomy between over- and
underapproximations is to integrate both into an abstraction-
refinement framework.

V. THE MIXED ABSTRACTION FRAMEWORK
A. Overview

In Section IV, we have presented over- and underapproxi-
mation techniques to simplify a given floating-point formula ¢.
Many existing procedures build either over- or underapproxi-
mations, depending on whether the goal is to show satisfiabil-
ity or unsatisfiability. The two types of approximation guaran-
tee a definite decision on the satisfiability of ¢ only in cases
that are orthogonal for the two types. We therefore propose
to combine them in a concerted effort towards analyzing ¢.

To this end, we propose the abstraction framework shown in
Figure 4, which checks the satisfiability of the input formula ¢.
We first identify a set of eligible transformations. A transfor-
mation is a mapping that turns a FPA formula (3 into a new one
that over- or underapproximates (3, for example by replacing
some floating-point operation by its open version, as suggested
in Section IV. The set of transformations is accordingly
partitioned into subsets Over and Under. At the beginning
of the loop indicated in the figure, an implementation selects
some of the eligible transformations and applies them to ¢ in
a particular order. Note that the resulting formula ) in general
neither over- nor underapproximates ¢ (hence called “mixed”).
Exit points of the loop. Formula ¢ is then subject to a
satisfiability check. Depending on the outcome of this check,
the loop can be exited — with a definite answer — if:

(i) % is satisfiable, and the assignment « returned by the
solver (suitably extended) satisfies ¢ as well. In this case,
the overall answer is “SAT”. Or:

(i) v is unsatisfiable, and the resolution proof P returned
by the solver is valid for ¢, too. In this case, the overall
answer is “UNSAT”.

Refinement. If neither case (i) or (ii) applies, the approxi-
mation needs to be refined. This is done by removing some
transformations from QOwver if ¢ was found to be spuriously
satisfiable, otherwise from Under. Which transformations to
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select for removal is an important implementation decision,
which we discuss below in Section VI-B. The loop in Figure 4
is then reentered, and some transformations from the new sets
Over and Under are applied to ¢.

Notice that the procedure can be implemented in a both in-
cremental and backtrackable fashion, provided the underlying
SAT solver is incremental and backtrackable.

Property 1: Given a formula ¢, any algorithm that imple-
ments the framework in Figure 4, starting with finite sets Over
and Under of transformations, terminates and returns “SAT”
if ¢ is satisfiable, “UNSAT” otherwise.

Proof:

(a) Partial correctness: The algorithm outputs “SAT” only
in the case that the assignment o was validated successfully
against the original formula ¢. It outputs “UNSAT” only in
the case that an unsatisfiability proof for ¢ was found to be a
valid proof of unsatisfiability for ¢.

(b) Termination: In each round in which the algorithm does
not exit, at least one element is removed from QOver or from
Under. When both sets are exhausted, 1) and ¢ are equivalent,
and one of the two exit conditions is trivially satisfied. [ |

Note that the correctness property is independent of the
distribution and scheduling of over- and underapproximations,
and of the strategy for selecting elements o or u to remove in
each iteration. Furthermore, it can be shown that finiteness of
the sets Over and Under is not even required if one defines

a suitable well-quasi-order on the set of all approximation
transformations.

The Mixed Abstraction framework generalizes several other
abstraction-refinement approaches to satisfiability-checking
a formula. The classical CEGAR paradigm conservatively
abstract—check—refine can be seen as an instance of Figure 4
where the set Under is empty. Therefore, the test whether an
unsatisfiability proof for ¢ is valid for ¢ can be skipped in fa-
vor of an immediate answer “UNSAT”. The method presented
in [4] has the property that the sequence of approximations
obtained from ¢ strictly alternates between strict over- and
strict underapproximations. As we experimentally compare
this alternating scheme to our own implementation of mixed
abstraction, we sketch first how the method of [4] can be
applied in a floating-point environment.

VI. IMPLEMENTING MIXED ABSTRACTIONS
A. Alternating Abstractions for Floating-Point Arithmetic

The alternating approach by Bryant et al. [4] to integrating
over- and underapproximations was implemented for integer
bit-vector arithmetic formulas. If the SAT-check on an approx-
imated formula is inconclusive, information obtained from the
SAT checker is used to generate a refined approximation of
the opposite type, and the procedure repeats.

We can use the approximation methods presented in Sec-
tion IV to apply the alternating approach to floating-point
arithmetic, as follows. We begin with an overapproximation
¢ of ¢. To obtain ¢, the transformations in Over replace
all floating-point operations ® by ©,,, for some initial
reduced precision p’. Since Under is not applied, ¢ is an
overapproximation.

If 5 is unsatisfiable the procedure terminates. Otherwise,
the decision procedure yields an assignment «. If a also
satisfies ¢, the procedure halts and returns o as a witness.
If « is spurious, we extract from it the operands a, b, and
the result r of each occurrence of ©, ,. In case r # ©, we
conclude that r is a spurious result and we refine (increase)
the precision of ®,/; otherwise p’ is left unchanged.

Next, the decision procedure builds a refined underapprox-
imation ¢ as explained in Section IV-B. In this iteration,
the transformations in Under replace all occurrences of ®
by (Ol for the refined precisions p’; no transformation
from QOwver is applied. In case ¢ is satisfiable, the procedure
terminates and returns o as an assignment for ¢. Otherwise,
the decision procedure yields an UNSAT proof P for ¢. If P
is also a proof for ¢, the procedure halts and returns P.
Otherwise, it checks whether the constraint X N I, of an
exact operation © , (Definition 5) is contained in P. If it is,
the precision is increased; otherwise it is left unchanged. The
next iteration constructs a refined overapproximation. Alto-
gether, this yields a sound and complete decision procedure
alternating between over- and underapproximations.

The problem with this approach is that the alternating
schedule of over- and underapproximations often leads to
ineffective approximations, as some formulas are not amenable
to effective overapproximations, while others do not permit



effective underapproximations. As an example, consider the
non-associativity formula (a®b)®c # a®(bDc). This formula
is satisfiable, as floating-point addition @ is not associative.
Satisfiability cannot be proved using an overapproximation. On
the other hand, every strict underapproximation of this formula
turns out to be unsatisfiable. Thus, this formula cannot be
decided using either strict over- or strict underapproximations.
Our experimental results (Section VII) confirm these pre-
dictions for realistic formulas. The lesson is that an imple-
mentation of Mixed Abstraction should not be “forced” to
apply either type of abstraction for pure schedule reasons.
Instead, the structure of the formula itself should dictate how
to approximate it. This leads to our approach of “genuinely
mixed abstractions”, which we present in the following.

B. Genuinely Mixed Abstractions

We now detail our implementation of the mixed abstraction
framework. The selection of abstractions is determined by
the structure of the formula, and which approximations are
most effective on it. We begin with both a very coarse
overapproximation and a strong underapproximation: the result
of the operation is completely nondeterministic and forced
to zero at the same time. Depending on the outcome of the
satisfiability check of ), either one of these approximations
is refined, gradually lifting constraints or gradually increasing
the precision of the operator.

The simulation of « on ¢ in the left branch in Figure 4 can
be preceded by a check whether any transformation in Qver
was applied to ¢. If not, ¢ is guaranteed to be an underap-
proximation of ¢, and “SAT” and « are returned immediately.
Otherwise, « is suitably extended to an assignment for ¢ and
checked for satisfaction of ¢, as suggested by the figure.

A simple and efficient pre-check whether an unsatisfiability
proof P for 1 is extendable to ¢ can be performed by
computing the set Var(P) N Var(Under). This set contains
the variables occurring in (the clauses of) the proof P that are
involved in any of the underapproximation transformations in
Under. If empty, we conclude that the underapproximation
transformations applied to ¢ are not responsible for the un-
satisfiability result for v, which hence applies to ¢, too. The
emptiness test can obviously be optimized by checking first
whether any transformation in Under was applied to ¢.

If none of the exit tests succeeds, the algorithm selects
approximation transformations o or u to remove at the end
of the loop body, in order to refine the approximation. Let us
look first at the case that v was found to be satisfiable, but the
assignment « is spurious (does not satisfy ¢). If there exists
a transformation o € Ower such that o does not satisfy the
formula obtained by simplifying ¢ using all transformations
except o, we can select such an o: its removal guarantees
that the spurious assignment « disappears in the next round.
If there is no such transformation, we select some o that affects
the variables occurring in the spurious assignment c.

If ¢) was found to be unsatisfiable, the algorithm computes
the set Var(P)N Var(Under), as discussed above. If this set
is non-empty, then there exists at least one v € Under such

that Var(u)N Var(Under) is non-empty. The algorithm picks
such an element u for removal from Under.

After refining the sets Ower and Under as described,
Figure 4 suggests to apply the refined (and smaller) sequence
of approximations to ¢ again. In practice, approximations
selected for removal in the previous step are revoked, so
that only local modifications to v are necessary. This allows
the subsequent satisfiability check to be done incrementally,
without restarts of the SAT solver.

VII. EXPERIMENTAL RESULTS
A. Implementation and Benchmarks

We have implemented the algorithm proposed in this pa-
per in combination with a standard bit-flattening decision
procedure for integer bit-vector arithmetic. The procedure
supports all operators required to model ANSI-C programs.
The procedure is fully incremental: the clauses for those
parts of the encoding that are not modified, and any clauses
learned from those, are retained between iterations. We use
MiniSAT2 [6] as our SAT solver. The performance of the
integer bit-vector decision procedure we use is comparable
to that of a state-of-the-art SMT-BV solver.

The benchmarks we use are derived from a variety of
publicly-available C programs, selected from the SNU real-
time [7] and the Mediabench benchmarks [8]; the programs
we have selected make extensive use of single- or double-
precision floating-point arithmetic. Our encoding is able to
support changes of the rounding mode during the program
execution, as the rounding mode may be set separately for
each individual operator in the formula. However, none of
the benchmark programs makes use of this feature, and we
have used “round to nearest even” uniformly. We have not
observed a significant impact of the specific rounding mode on
the performance of either the full encoding or the abstraction-
refinement procedure.

In order to obtain verification conditions, we have manually
annotated our benchmarks with properties in the form of
arithmetic assertions; a few of the programs already contain
some (light-weight) assertions. The main property we check is
the possibility of arithmetic exceptions, as defined in the IEEE
floating-point arithmetic standard. These properties turn out
to be difficult; an instance of a counterexample is arithmetic
underflowing to zero and a subsequent division of two such
numbers, which results in NaN. Such counterexamples can
only be obtained if encoding artifacts such as denormal
numbers are modelled in a precise manner.

After the annotation, we pass the programs to CBMC [9],
which generates a total of 119 FPA decision problems. A sat-
isfying assignment for such a formula corresponds to a coun-
terexample that demonstrates that an assertion can be violated.
Our experiments were performed on a machine running Linux
on an Intel Xeon CPU with 3 GHz and 4 MB cache.

B. Results

Figure 5 compares the runtime of the mixed abstraction
with the full flattening, for a timeout of 1000 s and a memory
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Fig. 5. Runtime comparison of full flattening and the mixed abstraction

limit of 2GB. The mixed abstraction is not dominating; in
some cases (6 out of 119), the final abstraction contains almost
all operators at full precision, and as a result, the immediate
full flattening is faster. On the other hand, there are 58
large instances for which the abstraction-refinement procedure
terminates within the timeout, whereas the full flattening aborts
due to excessive memory consumption.

Let us look at some benchmarks in more detail. For a
timeout of 7 hours, Table III provides a comparison of the
performance of three methods: the full flattening, an alternat-
ing abstraction as proposed in [4], and the mixed abstraction.
The entries illustrate particular weaknesses and strengths of the
three procedures. First of all, even small programs may result
in decision problems that are simply too large (or too hard)
for a full flattening. Similarly, there are instances in which
the alternating abstraction is unable to proceed beyond the
first iteration, as either the pure under- or overapproximation
is already too hard. The mixed abstraction terminates on a
number of instances that are too hard for the other procedures,
but typically requires a large number of iterations. This is
owed to the extremely coarse initial abstraction, combining
both over- and underapproximations. As long as the interme-
diate abstractions are solvable, the alternating abstraction may
converge quicker to a solution (e.g., consider sqrt.c, claim 2).

VIII. RELATED WORK

A popular approach to verifying software with floating-point
operations is to use proof assistants, i.e., programs that prove
theorems under the guidance of a human expert. A variety
of assistants have been used to prove upper bounds for the
deviation from the real arithmetic result of a calculation.
Examples include proofs using HOL [10], HOL-Light [11]-
[13] and ACL2 [14], [15]. However, in case no proof is found,
proof assistants typically return little evidence as to whether
the proof goal was actually invalid, or whether the proof
strategy was too weak to establish its validity.

An alternative approach is to use abstract interpretation [2]
together with domains that can soundly approximate floating-
point computations for classical static analysis. The static
analyzer ASTREE [16] uses a number of domains which

can soundly abstract floating-point computations, including
intervals, octagons, polyhedra, and ellipsoid domains.

The adaptation of abstract domains for floating-point num-
bers is a non-trivial problem due to issues of rounding,
the possibility of overflows and underflows, and division by
zero errors. Relational abstract domains such as the octagon
domain rely on associativity and distributivity of arithmetic
operations. These properties do not hold for floating-point
numbers. In ASTREE, floating-point expressions are therefore
approximated by linear expressions over the real field with
interval coefficients [17] before they are transformed into their
target abstract domains. In [18], a floating-point polyhedra
abstract domain based on these ideas is presented. Their
linearisation technique is implemented in the APRON library
for static analysis [19], which provides sound handling of
floating-point expressions for a number of abstract domains.

The propagation of floating-point rounding errors has also
been studied extensively in the framework of abstract interpre-
tation [20]-[23]. Such analyses allow to quantify deviations
of floating-point computations from their exact result in arith-
metic over the reals. Verifying floating-point programs using
abstract interpretation shares with our method the advantage
of being fully automatic. However, in case the property does
not hold, it is usually difficult to obtain a counterexample that
can be reproduced on the actual program.

Neither interactive theorem provers nor the use of abstract
domains enjoy the characteristics of a decision procedure,
namely completeness and full automation in deciding floating-
point expressions. There has been some work on decision pro-
cedures for floating-point arithmetic in the field of constraint
satisfaction programming (CSP). Solvers for CSP instances
containing floating-point constraints have been applied to
automated test-vector generation [24], [25]. This approach
combines filtering the possible values of variables using in-
terval techniques with a search procedure for finding actual
floating-point values inside these intervals. Their algorithm is
mainly geared towards test-vector generation, not verification.
The authors state that in some cases where the calculated
intervals overapproximate the concrete variable values too
coarsely, their approach is unable to terminate with an answer
in reasonable time. This includes the case where no such
concrete solutions exist.

In this paper, we are interested in verification of software
using floating-computations. A different, but related field of
research is the verification of floating-point hardware. The
work described in [26] is an example of such an approach
and provides an overview over the relevant literature.

IX. CONCLUSION

We have presented an algorithm for iteratively approxi-
mating a complex formula by mixing both under- and over-
approximations to obtain a formula . In contrast to prior
work, 1 need not be an over- nor an underapproximation and
can therefore be constructed in a way that yields formulas
that are easy to solve. Experimental results indicate improved



Lines Satis- No Abstr. Alternating [4] Mixed
Benchmark of Code | fiable? time (s) | time (s) | #iter. | time (s) | #iter.
qurt.c, claim 1 109 no 25 15 1 2 15
qurt.c, claim 2 109 no 25 15 1 0.6 7
qurt.c, claim 3 109 no 25 15 1 1 13
qurt.c, claim 4 109 no OM OM 1 478 103
qurt.c, claim 5 109 no 25 15 1 1.2 15
qurt.c, claim 6 109 no 25 15 1 0.6 7
qurt.c, claim 7 109 no 6716 oM 1 84 86
sqrt.c, claim 1 51 no 24 TO 3 13589 44
sqrt.c, claim 2 51 yes 9 608 2 TO 107
minver.c, claim 1 156 no 1 1 0.1 1
minver.c, claim 2 156 yes 2 2 2 0.1 1
sin.c, claim 1 46 no 13864 1892 1 281 47
sin.c, claim 2 46 no 13831 1894 1 281 47
sin.c, claim 3 46 no TO TO 3 1074 63
gaussian.c, claim 1 108 no TO TO 1 14437 137

TABLE III

COMPARISON OF FULL FLATTENING TO ALTERNATING AND MIXED ABSTRACTION

robustness compared to a plain flattening and to an abstraction-
refinement scheme based on an alternation of over- and
underapproximations.

The algorithm supports incremental solving, is complete,
and produces witnesses. In particular, the ability to generate
counterexamples for invalid specifications is essential not only
for debugging, but also for the high-impact field of automated
test-vector generation, where counterexamples to carefully
crafted specifications translate into test cases meeting certain
coverage criteria.

One aspect of future work is how to vary the exponent
width r in order to approximate a floating-point operation.
While the operations on the exponent contribute only the
smaller part of the propositional encoding, many programs
exist that only exercise a very small range of exponent values.
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