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Abstract—Finding corresponding key points in images from
security camera videos is challenging. Images are generally low
quality and acquired in uncontrolled conditions with visual dis-
tortions caused by weather, crowded scenes, emergency lighting
or the high angle of the camera mounting. We describe a
methodology to match features between images that performs
especially well with real-world images. We introduce a novel
blur sensitive feature detection method, a combinatorial feature
descriptor and a distance calculation that efficiently unites texture
and colour attributes to discriminate feature correspondence in
low quality images. Our methods are tested by performing key
point matching on real-world security images such as outdoor
CCTY videos, and we demonstrate an improvement in the ability
to match features between images compared with the standard
feature descriptors extracted from the same set of feature points.
We use key point features from Harris Corners, SIFT, SURF,
BRISK and FAST as well as MSER and MSCR region detectors
to provide a comprehensive analysis of our generic method. We
demonstrate feature matching using a 138-dimensional descriptor
that improves the matching performance of a state-of-the-art
384-dimension colour descriptor with just 40% of the storage
requirements.

Keywords—Feature extraction; Pattern matching

I. INTRODUCTION

Feature descriptors and inter-image feature matching have
been well researched areas in computer vision for many years.
Most works assess the performance of descriptor matching
using high quality images; for example, in the field of video
analysis, popular techniques have used Hollywood movies as
a test dataset [1], [2], [3]. However, security cameras work in
uncontrolled environments and record constantly without con-
tinual adjustment to focus, lighting and position that a feature
film is privileged with. As a result, the low resolution images
generally have poor colour clarity and little discriminative or
representative texture definition (Figure 1).

Fluctuating lighting conditions caused by fire and emer-
gency vehicle lights are commonplace in video that undergoes
forensic analysis. Fast camera pan or zoom, frenzied motion
within a frame, or a combination of both can cause significant
blurring in frame images which results in a lack of texture.
Closed-circuit television (CCTV) cameras are often sited very
high and cover a long field of view where objects in the
distance lack colour definition. Consequently, contemporary
methods are not robust to the challenges of low quality
images that result from these systems. Forensic analysis of
security camera video sequences is a less well studied field
and demands adaptation of contemporary methods to accom-
modate the image quality differences that exist. The quality
of images from each security camera varies considerably, and
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Fig. 1: Typical images from a single CCTV camera, with poor
lighting and long range camera views. When a subject appears
in the distance, the colour and texture definition is poor and
inconsistent with frames when the subject is closer.

this inconsistency can cause difficulties in matching features
between camera images.

Our intent is to match distinctive regions or patterns across
frames, such as a brand logo, a coloured pattern on a scarf
or hat, a tattoo or other distinctive marking on a person,
object or clothing. Texture alone is not sufficient to find
correspondences between frames in security videos, and there-
fore the effectiveness of popular gradient-based descriptors
such as SIFT and SUREF is limited. Our interest is in large-
scale processing of long-running videos which demand fast
processing of a very large number of features. We are therefore
motivated by simple solutions to complex problems with low
computation requirements and minimal storage, intentionally
avoiding some of the complexities of other methods in the
interest of execution speed.

In this paper we establish a method to improve the ro-
bustness of matching features by using image blur metrics
and colour information to increase discriminative properties
of texture feature descriptors. Our contributions are simple
and fast algorithms that combine to provide memory- and
processing-efficient feature matching with which we demon-
strate improvements over current methods that use Euclidean
distance to match intensity- and colour-feature descriptors:

Adaptive blur-sensitive feature detection An adaptive ap-
proach to the detection of features that will correspond between
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two images, guided by the sharpness of the two images.

Combinatorial Texture and Colour feature matching A
novel technique to combine texture and colour features and
measure distance between descriptors for robust feature match-
ing.

The rest of the paper is structured as follows. §II provides
an overview of related literature on colour features descriptors,
the proposed methodology is described in detail in §III and
evaluated in §IV. §V assesses the storage efficiency and
accuracy trade-off that is important in large-scale systems, and
we conclude in §VL

II. RELATED WORK

Popular feature detectors such as SIFT [4], SURF [5] and
the Harris Corner Detector [6] were designed to find texture
in grey scale images, and the feature descriptors of SIFT and
SURF are defined only by pixel intensity variations. There
have been a number of proposals for colour descriptors that
describe colour attributes of an image. These are conveniently
small in dimensionality (30 to 45) and represent the colour
information around a key point using a colour histogram. A
detailed description of histogram based colour descriptors is
provided in [7].

Colour alone is not robust for achieving good correspon-
dences between images. There have been many descriptors
proposed that use texture descriptors with various colour chan-
nel combinations, combining the texture from each channel.
Many of these are based on the SIFT descriptor resulting
in a 128 x 3 = 384 dimension descriptor. HSV-SIFT [§]
calculates a SIFT descriptor on each of the three channels in
HSV colour space and RGB-SIFT [9] is a similar algorithm
using RGB channels, with values equal to the Transformed
Colour SIFT method [9]. rgSIFT [7] builds descriptors on the
r and g chromacity components of the normalised RGB colour
model and C-SIFT [10] uses a normalised opponent colour
space, dividing the first two channels by the intensity channel
O3, to make it invariant with respect to light intensity [7].
OpponentSIFT identifies features in opponent colour channels,
red-green (RG) and yellow-blue (YB) [11] by computing SIFT
descriptors in each of them. OpponentSURF uses the same
technique with SURF features. The interested reader is referred
to [9] for a comprehensive review of colour descriptors.

In each of these, colour information is used in detecting
features and extracted descriptors are implicitly discriminative
by virtue of their construction. However, the colour detail of
the image area around the feature is not encoded into the
descriptor and is not used to discriminate between similar fea-
tures. HueSIFT [12] describes a concatenation of a quantised
Hue Histogram of 37 dimensions with the SIFT descriptor,
concentrating on the effective detection of features without
consideration for the descriptor encoding. Our method takes
a similar approach in descriptor concatenation, but we do not
limit our focus on SIFT descriptors and we describe a robust
approach to feature distance calculations.

Colour descriptors that use three colour channels for feature
descriptions typically increase the dimensionality three times,
compared with their intensity based counterparts, and the size
of each descriptor becomes problematic for efficient com-
putation and storage. Principal Component Analysis (PCA)
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has been used to reduce the dimensionality in PCA-SIFT
[13], but is computationally expensive. A method of fast PCA
calculation has been suggested [14], which finds the desired
number of leading eigenvectors using less computation, but
with a slightly larger mean-squared error.

III. PROPOSED METHODOLOGY
A. Blur sensitive feature detection

Image blur is a very significant hindrance to matching
features between frames in low quality images. We use this
observation to adapt feature detection to maximise correspon-
dence accuracy in a technique we call blur sensitive feature
detection.

1) Measuring image blur: Accurate models for calculating
the motion blur of an image have been described, from
estimating the parameters of a Point Spread Function [15] to
using machine learning [16]. Our intent is not to accurately
calculate the blur parameters such that the blurred image can be
restored to a sharp image, but to quickly be able to estimate the
degree to which an image, or part of an image, is blurred. We
therefore use a straightforward method that is fast to calculate
and is shown to give a reasonable estimation of blurriness for
our purposes.

We derive an efficient technique from the intuition that
a blurred image will contain fewer sharp edges than a non-
blurred image. The number of edges in an image can therefore
be used as an expression of image blurriness (or, conversely,
image sharpness). We use a Canny edge detector [17] with
a 3 x 3 Gaussian kernel, a lower threshold of 175 and an
upper threshold of 225. The small Gaussian kernel balances
execution time with sensitivity salt-and-pepper noise that can
be caused by analog-to-digital converter errors or bit errors in
transmission. The threshold values have been chosen empiri-
cally to avoid breaking noisy edges (if the lower threshold is
too high) and reducing fragmentation if the upper threshold is
too low.

The Canny edge detector [17] is used to construct a binary
edge map F from image I of size m X n,

e; € {0,1} ey

The sharpness of image I is then determined by a function
S(I) that calculates the fraction of non-zero pixels in the edge
map F, which is the fraction of pixels representing edges in

the image I.
1
S(I) = ;
N=—— > = @
T, €ET

Er ={e1,e2,€3,...mxn},

The determination of a blurred image is then to find a suitable
threshold below which S(I) must fall to represent an image
that is blurred. Our definition of a blurred image is therefore;
if S(I) < A
otherwise

true

false )

image I is blurred = {

2) Adaptive feature extraction: A relationship map M; is
established to correspond the properties of a 2D Gaussian
kernel Gy of size k with the sharpness measure of the
query image I after a convolution with G. The map holds
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Fig. 2: Relationship between the size of a Gaussian kernel (z-
axis) used to artificially blur example query images (curves)
and the sharpness of the resulting image (y-axis). The kernel
size steadily increases while the decline in sharpness (increase
in image blur) varies with different query image regions. The
relationship map M, therefore needs to calculated for each
query region used for correspondence matching.

sharpness values for the query image after convolution with
2D Gaussian filters of kernel size p. Let

F={peNp=2g—1AqeN} )

The sharpness is calculated for each kernel size and stored in
an associative map k — S(I)

Ms(k)=S(Grx1Ig) YkeTANk<aeN (5)

where

M;(+) represents an entry in an associative map
S(I) image sharpness, from Equation (2)
G, Gaussian filter of kernel size k
% represents 2D convolution
« an upper bound on the Guassian kernel size

Figure 2 shows some examples of the relationships between
the size of a Gaussian kernel used to artificially blur example
query images and the sharpness of the resulting image in M.
This demonstrates the variance in the correlation between the
steepness in the decline in sharpness (increase in image blur)
with steadily increasing kernel sizes for different query image
regions, and therefore the need to calculate M, for each query
region used for correspondence matching.

A sharpness adjustment S, is calculated as the difference
between the sharpness of the original (unconvolved) query im-
age region Iy and the target image I7 to which correspondence
is to be established.

Sa = S(Ig) — S(Ir) (6)

The value of S, is used to find the corresponding Gaussian
kernel size k in M, which, when convolved with I will
produce an image Iég with sharpness that will most closely
match S(Ir)

m:argmgx{SQ—S(Gk*IQ)} m>0 @)

Ih=GrxIg ®)

Features are detected in, and extracted from Ié and I and
correspondences are found between these feature sets.
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Matching performance is considerably improved by align-
ing sharpness of the images before feature detection. However,
blurring an image reduces texture structure, which reduces
the effectiveness of feature detectors, especially corner-based
detectors such as FAST and BRISK. If no features are found
in I, ’Q, we repeat the process with I as the entire query image,
not bounded to the query region of interest. We do this with
the understanding that the bounded region of interest contains
little texture so retrying with greater kernel sizes would offer
only minor improvements, whereas the sharpness of the query
image as a whole provides more information with respect to
camera movement induced blur. In the unlikely event that no
features are found in the revised I/, we fall back features
found in I. In all of our experiments, this fall back position
is never required as the unbounded /g image always produces
a usable feature set.

B. Combinatorial Texture and Colour feature matching

We create a new combinatorial feature descriptor represent-
ing local key point features with colour information from the
surrounding region. First, any local feature detector is used to
find feature locations and both a key point and a region are
defined for each. In the case of a key point detector such as
SIFT, a circular region is created with its center at the key
point co-ordinates. For region based feature detectors such
as Maximally Stable Extremal Regions (MSER), the region
is approximated using an ellipse fitting algorithm through the
region boundary points and a key point is defined at the center
of the ellipse.

With the resulting set of key point locations and region
definitions, we extract a texture descriptor at each key point.
The texture descriptor is a standard feature descriptor that
will be extended by our method to improve its discriminative
capability in colour images. We then build a local histogram
colour model of each region to create an extension descriptor.
Using the region shape as a mask over the colour image,
pixels falling within the shape are quantised into a local
colour histogram representing the region. This histogram is
transformed into a feature descriptor using the histogram bins
to form the descriptor values. Finally, the texture descriptor and
colour descriptor are concatenated into a composite descriptor.

The RGB colour space is known to be a poor represen-
tation for colour segmentation as there is no straightforward
correlation between the RGB channel values and the intensity
of a particular colour that lends itself to simple thresholding.
We therefore transform the RGB image to the HSV colour
space for our algorithm. The Hue (H) channel determines the
colour, the Saturation (S) is the intensity of the colour and the
brightness or luminance (V) can be used to find non-colour
white, grey and black.

In counting colours, we use a standard quantisation of
pixel values to their closest histogram bin by calculating a
partial distance in HSV colour space. For colour entries in the
histogram, the distance is determined by the Euclidean distance
of the Hue and Saturation components, d = +/H? + S2.
Distance to the additional three non-colour entries in the
histogram — white, black and grey — are calculated using the
Euclidean distance of the Saturation and Value (luminance)
components, d = /52 + V2. Measuring colour distances in
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the HSV colour space in this way maintains robustness against
affine illumination changes in the image.

1) Texture descriptor distance: Two features are considered
equal if they are close to each other in their high-dimensional
feature space. Popular feature descriptors are designed as
Euclidean space vectors such that « and ¥ represent features

g}:i(ulaUQ?"'vun) (9)

(1}1,’[}2,...,’[}”)

and the distance between them is given by the length of the
line segment v connecting them, i.e. the Euclidean norm.

n

> (ui = vi)? (10)

i=1

[avlly =l = all, =

A pre-defined or dynamically calculated threshold value is
typically used to determine whether features are close enough
to be considered a reasonable match.

2) Colour histogram distance: Colour histogram feature
space is also multi-dimensional, but the distance between
points in most colour spaces are more accurately calculated
using methods such as x2 [191, Bhattacharyya distance [20] or
the Earth Mover’s Distance [21]. Our histograms have identical
palettes and we want a fast calculation of distance between
two histograms. We therefore elect to use the Normalised
Histogram Intersection (NHI) [22], which is a light-weight
calculation of similarity, and subtract the result from 1 to give
a dissimilarity, or a distance measure between two histograms.

7 min(a. b,) -
Z?:l aj

H(a,b)=1-

3) Designing a combinatorial descriptor: In designing an
algorithm to extend an existing feature descriptor, consider-
ation is made to the potential of falsely matching dissimilar
features of similar colour, or moving vectors in feature space
closer together where neither their feature descriptor nor colour
are similar. Our goal is to produce a generic extension that can
be used with any underlying texture feature descriptor. We
therefore focus on a method to combine an ni-dimensional
texture feature descriptor with an ng-dimensional colour his-
togram in such a way as to discriminate similar features of
different colours without these pitfalls.

Consider a naive implementation that concatenates an ns-
dimensional colour-histogram onto a ni-dimensional texture
descriptor to form an (n; +ns)-dimensional feature descriptor,
and compares the combined descriptors as single vectors. Ex-
tending the vector dimensionality to include colour information
is intuitive, but flawed. This method will treat the colour
histogram as an integral part of the feature, and apply Equa-
tion (10) to the vector as a whole. The unique properties of the
colour histogram will be lost. Figure 3 shows the correlation
between using Euclidean distance and histogram similarity
to measure the closeness of features from our dataset. The
low positive correlation value of 0.49 shows that a Euclidean
distance will generally give a reasonable indicative result but
is less accurate than the histogram similarity (1—NHI).
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Fig. 3: Correlation of the distance between colour histograms
using the Euclidean distance (left axis) and a similarity based
on Normalised Histogram Intersection (right axis). Correlation
~ 0.49 indicates a low positive correlation between the two
measures.

4) Distance between descriptors: A feature can be said to
correspond to its closest match in a set of candidate features,
where the descriptor with the smallest distance is selected,
irrespective of the value of the distance or its relationship to
its neighbors. Lowe [4] refined this method using a distance
ratio to determine if the closest match was a good match. The
distance ratio method finds the closest two features f. and
fe+1 and divides the nearest distance by the second closest
distance,

If — fello

| f = fer1lly

This ratio helps to determine how reliable the match is. If
the nearest feature has another feature close to it, then there
is a lesser likelihood that the match is correct. Tests in the
original paper suggest that 0.8 is a reasonable threshold for this
ratio, based on analysis of 40, 000 key points, and that matches
with a distance ratio greater than 0.8 should be considered less
reliable, thus,

distance ratio = (12)

e f—fell
it Hf—fmﬁg S08 (13)

otherwise

true
false

match =

We follow this understanding in our method and use the
colour information of both features to scale the distance be-
tween their descriptors. In doing this, a metric of the difference
in the colour histograms logically moves the features apart,
extending the line segment uv.

5) Distance Definition: The composite feature descriptor f
is conveniently represented as a single n-dimensional vector,
where n the sum of the lengths of the texture ¢, and histogram
h.

f=(&h) (14)

In calculating the distance D between two composite
descriptors, we first consider a distance measure between
each of the two parts independently, d; and d3, and combine
the results. The texture descriptor distance d; is a standard
calculation of the Euclidean distance between the two vectors
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and do is the distance between the two colour histogram
descriptors, H(-) from Equation (11).

4= i ] a3
dy = H(hy,hy) (16)

The individual distance measures d; and do, are then
combined to yield a representative distance between the two
composite descriptors. A simple sum D = d; + da does not
account for the difference in scale within each of the descrip-
tors, which itself will be different depending on the choice
of texture descriptor. The product D = d; x ds down-scales
the texture distance based on the colour histogram distance,
effectively moving similar texture descriptors closer together.
This reduces the discrimination of similar textual descriptors,
increasing the number of mis-matches and reducing the overall
accuracy. We derive a composition applying a multiplier to the
normalised histogram distance and summing with the texture
distance. In general form,

D =dy + \da A7)

The selection of a suitable value for A has been the subject
of many experiments. Any empirically chosen constant value
is not robust for the variety of challenging images from
surveillance video images, and we therefore look to a dynamic
value for A\ which represents the conditions within which the
feature appears.

Using ds as a value for A reduces the impact of the colour
histogram distance because d, is a normalised value, which
when multiplied by itself becomes smaller, and overall less
discriminative. However, d; is a good candidate. With A = d;,
the colour distance is used to scale the distance measure of
the texture descriptor so that it discriminates between similar
descriptors of different colours.

D =d; +dids

— dy(1+ d) (1%
We see from Equation (18) that with A = d; we apply the
colour distance measure as a scalar to the distance between
two texture feature descriptors. Increasing the normalised value
of dy from the range 0...1 into 1...2, thus upscaling the
distance of a texture feature by multiplication. The overall
distance between two composite descriptors is therefore

D =dy(1+dy)

e 2 j—1min(a;, b;) (19)
= |1t — 2|, x (2 B v

The use of a scalar applied to the texture descriptor
distance ensures that attributes of the texture descriptor such
as invariance to affine scale and rotation transformations, are
preserved. The calculation of the colour histogram in Hue and
Saturation channels maintains invariance in affine illumination
transformations.

To find the closest descriptor D, to a given descriptor D; it
is customary to use an algorithm based on Euclidean distance,
such as k-Nearest Neighbour. We perform a nearest descriptor
calculation in two parts. First, the k-nearest neighbours of the
texture descriptor ¢ are found using the standard algorithm
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with k = 5, giving {v1, 3,03, 94,05 }. For each of the five
closest descriptors, we perform the scaling multiplication of
Equation (19) and determine the descriptor with the smallest
resulting distance to be the closest, D,

D, = arg min {Dm } (20)

This is not guaranteed to be optimal, but in our tests increasing
k to 10 does not improve the result. The Approximate Nearest
Neighbour algorithm (ANN) is commonly used to reduce
computational complexity in a k-Nearest Neighbour search.
ANN uses a randomised indexing method making the result
non-deterministic, but is widely accepted for many matching
tasks. Our calculation has not shown to produce a worse
approximation in our tests, and in deterministic in its result.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of the proposed descriptor
by measuring the accuracy of matching features between pairs
of images. The definition of a feature match depends on the
matching strategy that is applied [23]. Our intention is to
measure the accuracy of our new composite feature descriptor
and distance calculation. We therefore compare our results with
a nearest neighbour matching algorithm without any threshold
filtering, such as Nearest Neighbour Distance Ratio to discard
poor matches.

We use seven feature detectors to find initial regions of
interest. Five popular intensity based key point detectors;
Harris Corners detector (HARRIS), SIFT, SURF, BRISK and
FAST, and two region detectors; MSER on grey scale represen-
tations and maximally stable colour regions (MSCR) on colour
images. For each of these sets of features, we compare feature
matching performance of descriptors extracted using SIFT and
SUREF, with and without our combinatorial descriptor, and later
using OpponentSIFT and OpponentSURF 3-channel descrip-
tors, again with and without our combinatorial descriptor.

The key point detectors HARRIS, SIFT and SURF are
chosen because of their popularity and widespread adoption
in many tasks including object classification and image re-
trieval, and BRISK and FAST for their high performance and
relevance for real-time processing. We are keen to demonstrate
the universal improvements of our method and therefore also
include region based detectors in our comparisons, MSER and
MSCR.

A. Blur sensitive feature detection

We evaluate the blur sensitive feature detection technique
independently using our seven selected feature detectors with
state-of-the-art descriptors and Euclidean distance measure-
ments. In our experiments, we use an empirical value \ := 3%
in Equation (3), so if edges are present in 3.125% of the image
or less, then the image is deemed to be blurred. Our sharpness
map contains convolutions with Gaussian kernels up to 11 x 11,

thus « := 11 in Equation (5).

Figure 4 shows the percentage improvements in matching
quality achieved by applying the blur sensitive feature detec-
tion algorithm to our test database. The matching accuracy
improvement is subject to the choice of feature detector, which
is expected because the artificial blurring of the image will
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Fig. 4: Matching accuracy blur sensitive feature detection.
Matching accuracy improvement is subject to the choice of
feature detector and performance is broadly consistent across
all extractors for each detector. However, Harris Corner fea-
tures vary considerably for each descriptor type, and decreases
matching performance in two cases.

effect each detector differently, and the matching performance
is broadly consistent across all extractors for each detector. The
exception are Harris Corner features which vary considerably
for each descriptor type, and decreases matching performance
in two cases; rootSIFT and OpponentSIFT descriptors. BRISK
features yielded consistently low improvements, and matching
SURF features was generally more improved, with rootSIFT
descriptors extracted from SURF key points being improved
the most, by 92.8%.

B. Combinatorial descriptor assessment

We use a fixed colour histogram for all images. In ex-
periments, the 10-bin palette of Park er al. [18] has proven
to work well; seven colours and three special considerations
for intensities (Table I). This palette has been used for the
experiments presented in this paper. The descriptor extension
is therefore 10 dimensions in size.

1) Query by example: A rectangular area of an image is
specified as a query region containing features that are to be
matched in subsequent frames of the video sequence. In our
first test the query region represents a distinctive two-colour
back-pack being worn by a person (Figure 6 and Figure 7).
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Colour H S \%
Red 0° 100% 100%
Brown 15.1° 74.5% 64.7%
Yellow 60° 100% 100%
Green 120° 100% 100%
Blue 240° 100% 100%
Violet 300° 45.4% 93.3%
Pink 349.5° 24.7% 100%
White 0° 0% 100%
Black 0° 0% 0%
Grey 0° 0 60%

TABLE I: Colour palette from [18] used in our experiments

This region is matched against 250 video frames, each of which
has ground truth information defining the boundaries of the
back-pack within it.

Descriptors are created for the query image region and
each image under consideration (candidate images) using the
method described above. The positions of the features within
the candidate image that match with the query region are then
assessed relative to the ground truth and determined to be a
true or false positive result or a negative result. A true positive
result is a feature that matched with the query region (a guery
match) lies within the ground truth region. If a query match
falls outside the ground truth then the region is labeled as
false negative result. A feature matched between the images
from outside the query region that falls within the ground truth
region is counted as a false positive result. A match between
the images from outside the query region to outside the ground
truth region is not used directly within our analysis but are
implicitly relative to other metrics.

Results for each feature are tallied for each image, and
these are then summed across all of the images in the sequence.
The true positive tp, false positive fp and false negative fn
totals for the images are then used to calculate the recall
and precision measures of performance of each of the four
descriptors with and without our extension;

t
recall = _P 21)
tp+itn
. tp
precision = ———— (22)
tp+ fp

In reporting our results we use the F'-measure, the weighted
harmonic mean of recall and precision, to measure and com-
pare the accuracy of our combinatorial descriptor and distance
measure with well-known descriptors. We favour neither pre-
cision nor recall over the other, and therefore use the F} score,
defined as

2 x recall X precision)

By = ( (23)

(recall + precision)

2) Intensity descriptors: It is important to compare the fea-
ture matching performance with popular intensity descriptors
because these have the smallest dimensionality. In a large-
scale processing system, size of descriptors is important for
minimizing memory and disk storage and data processing time.

Our experiments compared the matching performance of
SIFT and SURF descriptors against our combinatorial descrip-
tor based on SIFT and SURF with our distance measure,
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Fig. 5: Improvement of SIFT and SUREF intensity descriptors
using our combinatorial descriptor and distance measure. Or-
ange bars show percentage improvements of SURF descriptors
using our method, and blue bars show improvements in SIFT.
The baseline uses standard descriptors with Euclidean distance
measures in feature space. The overall average improvement
across all of the feature descriptors in this test was 95.2%.

for features detected using Harris Corners (HARRIS), SIFT,
SURF, BRISK, FAST, MSCR and MSER (Figure 5). Feature
matching is determined by the nearest neighbour feature in
descriptor space. The greatest improvement was achieved with
SIFT descriptors extracted from MSER features where the F
measure increased by 163% using our method (from 0.064 to
0.167) compared to a plain SIFT descriptor on the same MSER
features.

Overall, the average improvement across all of the feature
descriptors in this test was 95.2%.

Figure 6 shows two examples of matching feature de-
scriptors from a region of interest within a query image to a
subsequent frame in a surveillance video, using a SURF feature
detector. The top images show matches of SURF descriptors
extracted from the SURF features within the region of interest
in the query image (left), and a blurred frame (right). There is
a notable increase in the number of features matched into the
bag region in the right hand image. The bottom images show
matches from the same query frame to a sharper subsequent
frame and demonstrates the reduction in false-positive matches
into background features. The less cluttered Figure 7 repeats
the second image pairs from Figure 6 using the distance ratio
filter (Equation (13)) from [4]. There are new positive matches
in both images, matching points within the rucksack that are
not matched in the top row. In addition, the number of false
positives is visibly reduced, with fewer yellow lines matched
to the background in the right-hand images.

3) Colour descriptors: We now assess our algorithm using
two high-dimensional colour descriptors, OpponentSIFT (384-
dimensions) and OpponentSURF (192-dimensions), with the
same features from the previous section.

The F} measure on our test video sequence is improved
using colour descriptors over using the intensity texture de-
scriptors. This is to be expected as the colour information
provides a more discriminative comparison. In our test video
sequence, the best match performance was achieved using
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Fig. 6: Two examples of matching SURF features on a
coloured bag from a query frame (left in each pair) to a
subsequent video frame. Top, matches to a blurred image
perform poorly using Approximate Nearest Neighbour (blue
matches) and a significant increase in matches to the target bag
using our method (yellow matches). Bottom demonstrates the
significantly reduced number of false positive matches to the
background using our method (yellow) compared with ANN
matching (blue).

Fig. 7: Good matches — Equation (13) — are shown for SURF
features (top row) and using our method (bottom row).

the combinatorial OpponentSIFT descriptor with FAST fea-
tures, achieving an improvement of 12% over the original
OpponentSIFT descriptors’ accuracy of 0.415. Matching Op-
ponentSURF descriptors of FAST features was improved the
most of all colour descriptors, by 98.5% but the Fy score is
low, increasing from just 0.149 to 0.296.
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Fig. 8: Improvement of OpponentSIFT and OpponentSURF
colour descriptors using our combinatorial descriptor and dis-
tance measure. Orange bars show percentage improvements
of OpponentSURF descriptors using our method, and blue
bars show improvements in OpponentSIFT. The baseline uses
standard descriptors with Euclidean distance measures in fea-
ture space. The overall average improvement across all of the
feature descriptors in this test was 95.2%.

Overall the average improvement across all of the colour
feature descriptors in this test was 39.8%.

OpponentSIFT uses colour information in the extraction
of the descriptor and can be expected to out-perform those
that do not use colour information in a dataset in which
colour is visually distinctive. In their thorough evaluation of
colour feature descriptors, van de Sande et al. conclude that
OpponentSIFT is generally a better performing descriptor and
is a good choice where there is no prior knowledge of the
images or object/scene categories [9]. In our tests, results show
that our extension method generally improves matching with
this descriptor by up to 47.2% depending on the initial feature
detector (Figure 8).

C. Feature matching results

The graphs in Figure 9 summarize the results from our test
database of 251 images. Each graph shows the F}; measure of
one of our seven selected feature detectors and all four of
the feature extractors, comparing the matching performance
of four methods of calculating correspondence. The pale
blue line shows SIFT features extracted from each of the
feature key points or region centers, the orange line shows
rootSIFT features, SURF is in grey, and colour features of
OpponentSIFT and OpponentSURF are in yellow and dark
blue respectively. Each of the four methods are represented
on the x-axis; the original correspondence using Euclidean
distance of unmodified feature descriptors is the baseline
against which we measure performance improvements. Blur
sensitive applies the blur sensitive feature detection algorithm
using unmodified feature descriptors. Combinatorial results
are those achieved in using the combinatorial texture and
colour feature matching descriptor extensions and matching
algorithm, and finally Combinatorial Blur sensitive are results
from the combined methodology described in this paper.

The upward left-to-right trend in each of the graphs
demonstrates the improvement in matching performance that
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TR

0.600

Fig. 10: The correlation between descriptor size and matching
accuracy. Yellow bars show measures for established descrip-
tors and Green bars are accuracy measures using our method.
Using our method with SIFT and rootSIFT 138D combinatorial
descriptors out-perform descriptors of almost 3 times the size.

is achieved with each of our method’s components, and the
combined methodology. The consistent closeness of the orange
and yellow lines in the Combinatorial Blur sensitive result is
particularly striking. The performance of our method using
rootSIFT descriptors (128 + 10 dimensions) closely matches
the performance of the much larger OpponentSIFT 384410 di-
mension descriptor and significantly outperforms state-of-the-
art feature matching using the OpponentSIFT 128D descriptors
with the Euclidean distance measure.

V. STORAGE EFFICIENCY VS. MATCHING PERFORMANCE

The choice of feature detector to use in the initial step of
the processing pipeline significantly affects the ability to match
features across images. The variability of matching accuracy
is observable in the results presented in this paper. Systems
attempting to match features across a high volume of images
are becoming increasingly common, and a key consideration
for such systems is the storage efficiency of the descriptors
used and the trade-off between storage and accuracy.

The accuracy of feature matching using contemporary
techniques generally increases in line with the size of the
descriptor that is determined by a choice of extractor, as in the
yellow bars in Figure 10 where the top of the bar representing
the peak performance on each descriptor is generally higher
moving left-to-right. The green bars show the F} matching
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Fig. 9: Summary of the results of feature matching with each component of our method, and the combined methodology
(right-most). Each graph shows results from a different feature detector, and compares results with each of four intensity and
colour descriptors using four methods; original — using Euclidean distance of unmodified feature descriptors is the baseline against
which we measure performance improvements, Blur sensitive — blur sensitive feature detection algorithm using unmodified feature
descriptors, Combinatorial — combinatorial texture and colour feature matching descriptor extensions and matching algorithm,
Combinatorial Blur sensitive — the combined methodology described in this paper.
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accuracy using our method, where there is a very significant
peak in matching accuracy at dimensionality D = 138 where
our method using SIFT and rootSIFT descriptors outperforms
all other state-of-the-art descriptor matching using Euclidean
distance measures. The saving in storage using our Combinato-
rial rootSIFT over the performance-comparable Combinatorial
OpponentSIFT is 394 — 138 = 256 bytes per descriptor.

VI. CONCLUSION

We have introduced a methodology for improved feature
correspondence in low-quality images, with an emphasis on
storage optimization and execution performance. Our effi-
cient and generic extension for feature descriptors improve
the performance of feature matching and the blur sensitive
feature detection method further enhances feature matching
performance. We have shown the flexibility of the approach
by applying it to five common key point descriptors and
two popular region descriptors and we have compared the
performance of all of them in matching features between
images varying in quality and appearance. Our experiments
have demonstrated that the introduction of colour information
to the feature descriptors, a unique feature distance measure
and compensating for inter-image blur differences can improve
the matching accuracy over the original descriptors in most
combinations that were tested, even where the colour detail is
visually subtle in poor quality images.

Our method provides flexibility as it can be used with any
feature descriptor extracted from any key point or region detec-
tor. Further, evaluation of the method in our problem domain
of frame-to-frame feature tracking in low quality videos has
demonstrated that smaller descriptors that are computationally
lighter can be used to out-perform larger and more intensive
feature descriptors. Our experiments have demonstrated an
accuracy in matching features that out-performs all state-of-
the-art methods using descriptors of less than 40% of size of
the nearest performing colour descriptor.
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