
A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

at the

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

A Security Architecture

for Survivability Mechanisms

Chenxi Wang

© Copyright by

All Rights Reserved

Chenxi Wang

October 2000

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy (Computer Science)

Author

This dissertation has been read and approved by the Examining Committee:

John C. Knight (Dissertation Advisor)

James French (Committee Chairman)

George R. Blakley, III.

John McHugh

Peter G. Neumann

William A. Wulf

Yacov Haimes (Minor Representative)

Accepted for the School of Engineering and Applied Science:

Dean Richard W. Miksad, School of Engineering and Applied Science

Acknowledgements

When the dissertation is finally written and sealed, the days of agonizing over half-baked

ideas, struggling through writer’s block, and worrying about when (and if) all this is

going to end all seem rather distant. The many people who helped me in this long and

sometimes frustrating process deserve special thanks, and they are many.

First and foremost, I am indebted to the two advisors in my graduate career: Bill Wulf

and John Knight. Bill had the misfortune of coaching me through the early years of my

graduate study when I was an awkward twenty-year-old who knew nothing. I learned

many things from Bill, whose vision, vast knowledge, and impeccable insights have been

and will continue to be an inspiration to me. John’s invaluable guidance is the driving

force behind this dissertation research. As an advisor and also a friend, John believed in

me and guided me through the most difficult times throughout this work. I thank John for

his superb patience in putting up with me. I shall miss his humor and the many drag-

down and knock-out research meetings with him.

I am grateful to Jonathan Hill for the many hours he devoted in implementing the core of

the One-way Translation compiler. Jonathan is a dream partner without whom this

project would not have been completed as smoothly and successfully as it has been.

Jack Davidson deserves special thanks for his brilliant insights and in-depth knowledge

of programming languages that helped shape this research.

I am also thankful to my thesis committee. In addition to my advisors, the committee

consisted of Bob Blakley, Jim French, Yacov Haimes, John McHugh, and Peter

Neumann. They provided helpful feedback and suggestions on this work.

I am particularly grateful to Peter Neumann who believed in me and encouraged me

throughout the frustrating process of thesis writing. Peter has acted as a mentor to me in

many ways, and I benefited tremendously from his experience, wisdom and guidance.

Special thanks go to Bob Blakley who has been a mentor and a friend to me. Bob’s

empathy and encouragement helped me to persevere through many difficult times.

Gratitude also goes to the many friends in and out of Charlottesville who made my life in

the past a few years a particularly memorable experience: John, for his patience and

understanding. Glenn, Nuts, Anh, and Karine, for keeping me in line and for the many

wonderful dinner parties and get-togethers. Lisa, for indulging my girlish instincts.

Chenyang and XiaoYuan, for putting me up many times as an unexpected dinner guest.

My other friends, Kate Stoddard, Marv Schaefer, Dave Evans, Anil Somayaji, Matt

Elder, Sally McKee, Tongtong Zhang, Jane Prey, Micky Lo and the diva-in-training

Sarah Wells, all enriched my life in their own unique ways, and I thank them for that.

And finally, I thank my parents for their unconditional love, never-ceasing support, and

their artful ways of breeding my independence and free thinking. It is them who instilled

in me the inspiration and drive for excellence, and I shall always be grateful.

Chenxi Wang, October 2000.

Abstract

In survivability management systems, some management entities reside on application

hosts that are not necessarily trustworthy. The integrity of these software entities is

essential to the security of the network management scheme. In this talk, I present a novel

framework to facilitate software security against malicious execution environments.

The approach consists of two fundamental techniques: a) Incorporating diversity in the

deployment and the design of the program such that impersonation or intelligent

tampering attacks require extensive analysis of the program; and b) one important aspect

of program analysis, namely static analysis, is deterred by the incorporation of aliasing

and further degeneration of the program control flow. It is shown that analyzing the

transformed programs statically is an NP-hard problem. Theoretic bounds on

approximate analysis methods are also provided. The transformations are implemented in

a C compiler. Program performance results are presented. Empirical experiments with

existing analysis tools showed that static analysis for the transformed programs are

hindered to a significant degree.

CHAPTER 1..1

INTRODUCTION...1

1.1. MOTIVATION ..1

1.2. THE MALICIOUS HOST PROBLEM ..2

1.2.1. DIFFERENT FACETS OF THE MALICIOUS HOST PROBLEM ... 3

1.2.2. THE INPUT -SPOOFING PROBLEM.. 7

1.3. DESIGN GOALS ..9

1.4. SOLUTION OVERVIEW ..10

1.5. DISSERTATION ORGANIZATION ...12

CHAPTER 2..13

BACKGROUND AND PROBLEM CONTEXT...13

2.1. CRITICAL INFRAS TRUCTURE SYSTEMS ...14

2.1.1. LARGE SCALE... 14

2.1.2. HETEROGENEITY... 15

2.1.3. EXTENSIVE USE OF COTS COMPONENTS... 17

2.2. THE SURVIVABILITY ARCHITECTURE ..18

2.2.1. A CONTROL SYSTEM CONSTRUCT.. 18

2.2.2. THE NETWORK PROBE PROGRAMS... 21

2.3. THE MALICIOUS HOST PROBLEM AND OTHER SECURITY ISSUES22

2.4. THREATS AND ATTACK SCENARIOS ...25

2.4.1. DENIAL-OF-SERVICE ATTACKS.. 25

2.4.2. INTELLIGENT TAMPERING AND IMPERSONATION... 27

2.5. CAPABILITIES OF INTRUDERS ..29

2.5.1. NETWORK INTRUDERS.. 29

2.5.2. MALICIOUS INSIDERS.. 30

2.5.3. PRIVILEGED USERS ... 31

2.6. FUNDAMENTAL CHALLENGES ...33

2.6.1. VERIFICATION OF EXECUTION RESULTS.. 34

2.6.2. FINITE STATE SPACE FACILITATES PROGRAM ANALYSIS... 35

2.7. SUMMARY ..35

CHAPTER 3..36

THE SOLUTION FRAMEWORK...36

3.1. A COMPLEXITY ARGUMENT ...37

3.1.1. INFORMATION DIVERSITY.. 41

3.1.2. INFORMATION COMPLEXITY.. 43

3.1.3. INPUT -TO-OUTPUT STATE INFLATION .. 46

3.2. PUTTING IT ALL TOGETHER ...49

3.3. IMPLEMENTATION STRATEGY...50

CHAPTER 4..52

ONE-WAY TRANSLATION ...52

4.1. A MODEL OF SEMANTICS-PRESERVING TRANSFORMATION...53

4.2. ONE-WAY TRANSLATION PROCESS...55

4.2.1. BEHAVIORAL TRANSFORMATIONS... 56

4.2.2. INTERNAL TRANSFORMATIONS... 60

4.3. INTRA-PROCEDURAL TRANSFORMATIONS ..61

4.3.1. THE FUNDAMENTALS OF INTRA-PROCEDURAL ANALYSIS.. 61

4.3.2. DEGENERATION OF THE STATIC PROGRAM CONTROL-FLOW ... 63

4.3.3. ALIASING AND DATA-FLOW ANALYSIS... 68

4.3.4. OBSTRUCTING INTRA-PROCEDURAL ANALYSIS—PUTTING IT TOGETHER....................................... 75

4.4. INTER-PROCEDURAL CODE TRANSFORMATION...77

4.4.1. FUNCTION-CALL TRANSFORMATIONS.. 79

4.4.2. FUNCTION POINTER ALIASING.. 80

4.4.3. INTER-PROCEDURAL ALIASES... 87

4.5. SUMMARY ..89

CHAPTER 5..90

THEORETICAL EVALUATION ..90

5.1. AN NP-COMPLETE ARGUMENT ..90

5.2. PRACTICAL COMPLEXITY MEASURES ..94

5.3. INTRA-PROCEDURAL ALIAS ANALYSIS ...97

5.3.1. PROCESSING POINTER ASSIGNMENT STATEMENTS.. 98

5.3.2. ANALYZING THE COMBINATORIAL EFFECT ..101

5.4. INTER-PROCEDURAL ALIAS ANALYSIS .. 105

5.5. ITERATIONS OVER THE PCG.. 111

5.5. PUTTING TOGETHER THE COMPLEXITY ARGUMENT .. 113

CHAPTER 6... 115

IMPLEMENTATION ... 115

6.1 DESIGN GOALS ... 116

6.2 THE SUIF COMPILER... 117

6.3 IMPLEMENTATION IN SUIF PASSES .. 118

6.3.1 FUNCTION SIGNATURE UNIFICATION...119

6.3.2 CONTROL-FLOW FLATTENING...124

6.3.3 INTER-PROCEDURAL ALIAS INSERTION...125

6.4 PREPROCESSING... 129

6.4.1 VARIABLE DECLARATION MOTION..130

6.4.2 FUNCTION SIGNATURE PREPROCESSING..130

6.5 CORRECTNESS DISCUSSION ... 131

6.6 IMPLICATION ON DEBUGGING ... 132

CHAPTER 7... 133

EMPIRICAL EVALUATION .. 133

7.1. EVALUATION CRITERIA.. 133

7.2. PERFORMANCE OVERHEAD ... 135

7.2.1. IMPACT OF BRANCH TRANSFORMATIONS ON PERFORMANCE ..136

7.2.2. IMPACT OF PERVASIVE ALIASING...141

7.2.3. IMPACT OF FUNCTION CALL STRUCTURE MODIFICATIONS..144

7.3. PERFORMANCE AND PRECISION OF STATIC ANALYSIS TOOLS 146

7.3.1. EXPERIENCE WITH NPIC..147

7.3.2. EXPERIENCE WITH PAF..148

7.4. SUMMARY ... 149

CHAPTER 8... 151

TRANSFORMATIONS AND DYNAMIC ANALYSIS ... 151

8.1. THE FUNDAMENTALS OF DYNAMIC ANALYSIS ... 152

8.2. THE EFFICIENCY OF PROFILING AND TRACING.. 154

8.3. EXECUTION PROFILING.. 160

8.4. PROGRAM TRACING ... 162

8.4.1 STATE INFLATION..163

8.5. BLACKBOX ANALYS IS AND STATE INFLATION ... 165

8.6. SUMMARY ... 166

CHAPTER 9... 167

REVISIT THE BIG PICTURE.. 167

9.1. RECAPPING THE PROBLEM: EXTENDING THE TRUST BOUNDARY OF THE

NETWORK SURVIVABILITY ARCHITECTURE.. 167

9.2. A SYSTEM-LEVEL SOLUTION FOR A SYSTEM PROBLEM ... 169

9.3. THE OTHER PIECES IN THE PUZZLE.. 172

9.4. SUMMARY ... 177

CHAPTER 10 .. 178

RELATED WORK .. 178

10.1. CODE OBFUSCATION WORK ... 178

10.2. SECURITY OF MOBILE AGENTS ... 181

10.2.1. MOBILE CRYPTOGRAPHY...181

10.2.2. TIME-LIMITED BLACKBOX SECURITY..182

10.2.3. SERVER REPLICATION ..182

10.3. TAMPER RESISTANT SOFTWARE.. 183

10.4. OTHER RELATED WORK... 184

10.5. SUMMARY.. 185

CHAPTER 11 .. 186

CONTRIBUTIONS AND CONCLUSION .. 186

11.1. CONTRIBUTIONS .. 186

11.2. WHERE DO WE GO FROM HERE? .. 188

11.3. THE FINAL CONCLUSION.. 189

REFERENCES .. 190

FIGURE 2.1. THE BANKING INFRASTRUCTURE ... 16

FIGURE 2.2. A CONTROL SYSTEM FOR THE BANKING INFRASTRUCTURE 20

FIGURE 2.3. A CLOSE LOOK AT THE CONTROL SYSTEM ... 21

FIGURE 3.1. EFFORT SPACE OF PROGRAM ANALYSIS ... 38

FIGURE 4.1. CREATION OF A ONE-WAY TRANSLATED PROGRAM... 55

FIGURE 4.2. AN EXAMPLE WHILE LOOP AND ITS CFG... 63

FIGURE 4.3. INDIRECT BRANCHING EXAMPLE.. 65

FIGURE 4.4. DISMANTLING HIGH-LEVEL CONSTRUCTS ... 66

FIGURE 4.5. TRANSFORM TO INDIRECT CONTROL-TRANSFERS... 67

FIGURE 4.6. A FLATTENED CONTROL-FLOW .. 68

FIGURE 4.7. EXAMPLE ILLUSTRATING INDEX COMPUTATION ... 72

FIGURE 4.8. INTRODUCING ALIASES THROUGH POINTERS... 74

FIGURE 4.9. AN EXAMPLE PROGRAM CALL GRAPH ... 78

FIGURE 4.10. FUNCTION CALL VIA FUNCTION POINTERS.. 80

FIGURE 4.11. EXAMPLE ILLUSTRATING UNIFYING FUNCTION SIGNATURES............................... 81

FIGURE 4.12. FUNCTION SIGNATURE MODIFICATION - ORIGINAL CODE SEGMENT 83

FIGURE 4.13. FUNCTION SIGNATURE MODIFICATION – MODIFIED CODE...................................... 84

FIGURE 4.14. A PCG WITH FALSE EDGES .. 86

FIGURE 4.15. ALIASING THROUGH SIDE EFFECTS.. 88

FIGURE 5.1. AN EXAMPLE ALIAS RELATION GRAPH.. 95

FIGURE 5.2. POINTER ASSIGNMENT STATEMENT .. 99

FIGURE 5.3. TRANSFER FUNCTION FOR PI = QJ ..100

FIGURE 5.4. ALGORITHM FOR DEREFERENCING POINTER VARIABLES101

FIGURE 5.5. AN EXAMPLE MEET NODE...103

FIGURE 5.6. THE FORWARD BINDING AND BACKWARD BINDING PROCESS............................106

FIGURE 5.7. A FORWARD BINDING ALGORITHM – F CALLS G AT CALL SITE Q.......................107

FIGURE 5.8. AN EXAMPLE ILLUSTRATING FORWARD AND BACKWARD BINDING...............107

FIGURE 5.9. A BACKWARD BINDING ALGORITHM ..109

FIGURE 5.10. ALGORITHM FOR CONSTRUCTING THE PCG...111

FIGURE 6.1. AN EXAMPLE ILLUSTRATING CUTTING PARAMETERS...122

FIGURE 6.2. AN EXAMPLE ILLUSTRATING ADDING PARAMETERS...123

FIGURE 6.3. AN EXAMPLE ILLUSTRATING GLOBA L-TO-LOCAL ALIASES127

FIGURE 6.4. AN EXAMPLE ILLUSTRATING PARAMETER ALIASES...127

FIGURE 6.5. ALIASING THROUGH FUNCTION CALL SIDE EFFECTS ...129

FIGURE 7.1. EXECUTION TIME WITHOUT OPTIMIZATION ...137

FIGURE 7.2. EXECUTION TIME WITH OPTIMIZATION ...138

FIGURE 7.3. EXECUTION TIME OF THE ORIGINAL PROGRAMS..138

FIGURE 7.4. EXECUTABLE SIZE WITHOUT OPTIMIZATION..139

FIGURE 7.5. EXECUTABLE SIZE WITH OPTIMIZATION...140

FIGURE 8.1. A REGULA R CONTROL-FLOW GRAPH IN AND THE FLATTENED VERION156

FIGURE 8.2. AN EXAMPLE ILLUSTRATING EDGE VS. BLOCK INSTRUMENTATION................157

FIGURE 8.3. EXAMPLE ILLUSTRATING EDGE PROFILING TO IDENTIFY DEAD CODE...........160

FIGURE 8.4. EXAMPLE ILLUSTRATING LOOP UNROLLING TO DETER EXECUTION

PROFILING...161

FIGURE 8.5. EXAMPLE ILLUSTRATING STATE INFLATION..164

FIGURE 9.1. A REVIEW OF THE SURVIVABILITY ARCHITECTURE..169

FIGURE 9.2. A PSEUDO-CODE EXAMPLE ILLUSTRATING POSSBILE VERIFICATIONS OF THE

EXECUTION ENVIRONMENT ...174

Chapter 1

Introduction

This dissertation describes the design, implementation, and analysis of an approach to the

problem of software security in untrustworthy execution environments. This approach is

novel in that it combines the principles of diversity and information complexity to

prevent analysis and tampering of software components. The attractive properties of the

solution approach include platform independence, ease of use, and flexibility with respect

to performance trade-offs. Furthermore, this is the first software protection mechanism

with demonstrable security strength supported by both theoretical and empirical

complexity measures.

1.1. Motivation

The advent of computer networks has given rise to new computational environments and

computational models. Remote execution, distributed computing, and code mobility are

no longer unfamiliar terms. These modern computational models bring great flexibility

and new promises to the world of computing. However, accompanying the expanded

potential comes a set of security implications that were not present when computation

was carried out largely on local, stand-alone machines.

2

First, when programs are executed in a remote environment, assurance must be provided

that the execution environment will be protected from any malicious behavior of the

incoming program. This is commonly known as the malicious code problem [32] [56].

A related problem is the protection of code from malicious execution environments.

Since the environment is responsible for the program’s execution, there appears to be

precious little the program can do to protect itself from disclosure, tampering and

incorrect execution. Protecting code from untrustworthy environments is by far the more

difficult security problem. It is known as the malicious host problem [16][32].

Much research has been devoted to the malicious code problem, including proof-carrying

code [65], policy-directed code safety [31], artificial playgrounds for mobile agents [81]

and many others [10][26][36]. The malicious host problem has not been investigated with

nearly the same rigor and intensity. Despite the existence of partial solutions [74][78] and

the effort of some preliminary investigations [40][41], the present defense techniques

against malicious hosts have remained largely ad hoc and lack a theoretic and algorithmic

underpinning. As new applications such as Legion [25], Parabon [34] and the like

exploiting the potential of distributed computing become more pervasive, the ability to

run trusted code on potentially untrustworthy hosts is more pressing than ever.

1.2. The Malicious Host Problem

This work considers the malicious host problem within the context of a particular

application—network monitoring and management systems. Large computer networks

such as national infrastructure systems are often the carriers of mission-critical

3

applications whose successful operation is of paramount importance. To ensure the

survival of the critical applications, the network is often monitored and managed by the

likes of a network management system [39][75][77].

A network monitoring and management system monitors the state of the entire network,

performs network status analysis, and—if necessary—initiates real-time system

reconfiguration. Such a system is essentially a distributed application. The front end of

the application is composed of probe programs, which execute on network hosts and

collect local information. There is a clear need for running the probes as securely and

reliably as possible. Since the underlying hosts on which these probes execute are not

necessarily trustworthy (hence, in part, the need for monitoring), this problem falls into

the malicious host category.

An in-depth look at the characteristics of these network management schemes is

presented in Chapter 2. In the remaining part of this chapter, I examine the malicious host

problem at an abstract level.

1.2.1. Different Facets of the Malicious Host Problem

There are two distinct classes of applications for which the issue of malicious hosts is

relevant. In the first class, remote execution occurs solely for the purpose of resource

utilization. This class of applications can be described as follows:

Alice (the target program) has an algorithm f, a program P that implements f, and

some data x. Bob (the host) has the resources to execute P. Alice wishes to use Bob’s

4

resources to compute f(x) (or Bob wishes to execute f(x) for Alice). In this case, Alice

wants some assurance that f(x) is correctly executed. Additionally, it may be desirable

to keep the algorithm f and data x secret from Bob.

The second class of applications (the network management application belongs in this

class) can be described as follows:

Alice has an algorithm f and a program P that implements f. Bob has the data x. Alice

wishes Bob to execute P on input x. Alice wants some assurance that f(x) is correctly

executed, and in most cases, Alice wants to keep the algorithm f secret from Bob.

In the second class of applications, a correct execution of f(x) depends on the integrity of

f as well as the input data x. It is clear that handling the malicious host problem is

significantly more difficult for the second class of applications due to the input data

problem—Bob can potentially lie about x. It should also be clear that any solution to the

second class of applications also solves the malicious host problem for the first class of

applications.

This dissertation deals with the malicious host problem in the second category, but has

close associations with the first. For the purpose of discussion, let me put aside the input

data problem for a moment (I revisit this issue in Section 1.2.2), and concentrate on the

protection of code integrity and algorithm privacy.

In order to execute the target program, the host must have access to the program code and

states. (It has been proposed that some limited forms of functions can be executed in an

5

encrypted form [74], but the scheme does not generalize to general-purpose software)

The host, if malicious, can affect the program in the following ways:

• Denial-of-service: Bob can deny Alice’s execution altogether.

• Algorithm-privacy Attack: Bob can analyze Alice’s program and steal algorithm f.

• Execution-integrity Attack: Bob can modify Alice’s code or data in such a way that

the result f(x) is invalid. Note that this attack is different from denial of service. In this

case, the result f(x) falls in the range of acceptable outputs, however, it is not an

acceptable output given x. Ramifications of such attacks may vary depending on the

context of the application. In some cases, an invalid f(x) simply constitutes a

computational error, while in other application domains the consequence may be far

more severe. In the case of network management systems, carefully miscalculated

values of f(x) may have a ripple effect on the decision making of the management

scheme. This class of attacks is identified as intelligent tampering attacks (more on

this subject is discussed in Chapter 2).

This work does not deal with host denial-of-service attacks. The system model, which I

elaborate in the next chapter, assumes ready detection of denial of service. The solution

mechanism described in this dissertation therefore is specially tailored to enforcing

algorithm privacy and execution integrity.

To some extent, the issue of algorithm secrecy and execution integrity can be dealt with

independently of the input x. For example, it is possible to develop a mechanism that,

given a set of x's and f(x)'s, the malicious host cannot easily produce f(y) on y without

6

actually executing the program (algorithm privacy achieved). On the other hand,

execution integrity can be viewed as a function of algorithm privacy; that is, if the

algorithm of computation is not disclosed, tampering with the execution will be

essentially impossible (except in the case of random tampering).

Consider an example of computing the function

f(x) ≡ (ax + c) mod m

where a, c, x, m are all integers. When the values of a, c and m are 2, 9 and 7, respectively,

the output

f(x) ≡ (2x + 9) mod 7 (1)

expands the entire set of positive integers. When a, c and m have the values 4, 10 and 8,

respectively, the set of output integers

f(x) ≡ (4x + 10) mod 8 (2)

include only those integers that are congruent to 2 modulo 7 or 6 modulo 7, regardless of

what x might be. In other words, the value of f(x) can be represented as:

f(x) = {y | y = 7i + 2 or y = 7i + 6 }

where i is a random integer.

Assuming that there is a way to hide the value of a, c and m such that they are not

immediately obvious without extensive code analysis, tampering with the computation in

7

the case of (2) can result in a value that does not fall in the correct output range.

1.2.2. The Input-spoofing problem

The algorithm-secrecy and execution-integrity issues must be considered in conjunction

with the input data when Bob has no interest to supply a genuine x, and when execution

with a spurious x is detrimental to the law-abiding entities involved even when neither the

algorithm secrecy nor execution integrity is compromised. This is called the input-

spoofing problem.

Consider an example where Bob executes a test version of Alice’s software P, and x is

Bob’s local clock reading. Alice has in her best interest to stop the execution of P when

the designated test period expires while Bob may want to supply a spurious x in order to

continue to use the test software for free.

In this scenario, Bob can easily get what he wants by manipulating his local clock value

x. This is not particularly difficult because where x (the clock value) is stored and how it is

retrieved are easily identifiable. Consider for a moment that the checking of the clock

value is not performed as a single, distinguishable operation. Rather, it is part of the

regular algorithm execution. For example, assume the execution of P requires the

following interaction protocol with a trusted server:

Bob → Alice: { Alice, Bob, data field D, timestamp}
Alice: if (mytimestamp - Bob’s timestamp > threshold value)

Do not send anything back
 else

Alice → Bob {Bob, Alice, Computed data D’, mytimestamp}

8

And consider the following steps as part of program P:

S1: v1 = getSystemClockValue ()
v2 = getSystemClockValue ()

S2: v3 = getSystemClockValue ()
...

S3: conduct the above protocols with Alice using timestamp v2
S4: if (v1 > storedDownloadTime + test period)

 stop execution
else continue

In the above pseudo-code example, code blocks S1 and S2 read the system clock value

multiple times. One of these values is used later in the program (in block S3) in the

protocol messages to Alice, and Alice performs a freshness check on Bob’s timestamp.

Another value is used at other points in a comparison operation to check the expiration of

the test period. In order to get his data computed by Alice, Bob must demonstrate the

freshness of messages by supplying a real time stamp. However, in order to continue to

use the test program beyond the expiration period, Bob must supply a stale time stamp for

comparison.

This all boils down to one essential point: Bob must perform a program analysis on P to

determine which variable reads in S1 and S2 will be used for communicating with Alice

and which will be used for staleness comparison (note Bob may not know how many

variable reads there are or how the values are used later). This is almost equivalent to

performing an analysis to deduce the algorithm of P, which I have identified earlier as the

algorithm-secrecy problem. Note how the modified version of program P is much harder

to spoof than a simple check of the local system clock.

The point of this example is that if spoofing input x requires solving the algorithm-

9

secrecy or execution-integrity problem, then techniques to ensure the latter can be used to

counteract input spoofing. However, there are applications where this is not possible. For

those applications, protection of only algorithm secrecy and execution integrity will not

be effective since the malicious host can bypass the protection by supplying a spurious

input x. This thesis deals with the first type of applications, for which it is possible to

construct algorithms in such a way that input spoofing hinges on breaking the algorithm

privacy or execution integrity.

1.3. Design Goals

Based on the discussion of the malicious host problem, the following design goals are

identified for the solution.

• Host architecture independence. The solution mechanism must not depend on any

architecture-specific features. In other words, the solution must be appropriate for use

with a wide variety of common host architectures. However, in some cases the

program we seek to protect might make use of platform-specific functionality, in

which case the protection mechanism may be inherently platform-dependent.

• High-level language independence. The basic principles of the mechanism must not

rely on language-specific attributes. When appropriate, language-specific techniques

can be exploited to implement an underlying concept that is source-independent.

• Efficiency. The mechanism must not result in an unacceptable performance slow-

down on the part of the target program. What is considered acceptable and what is

unacceptable may vary from application to application.

10

• Ease of Use. Ideally, the solution mechanism should be fully transparent to

application programmers and users of the system. However, in some cases, the

programmer’s input helps to identify the appropriate level of trade-off between

performance and protection. The mechanism should provide the flexibility for

programmers to customize the set of code transformations that are appropriate for

their applications. Beyond that, it should be fully automatic.

1.4. Solution Overview

The solution described in this document is comprised of several techniques that

collectively contribute to the goal of software protection. The premise is that software

tampering requires program-specific information. To acquire this information, some form

of program analysis is needed. The solution techniques, therefore, aim to increase the

complexity of the program analysis.

The core approach is comprised of two principles: information diversity and complexity.

Information diversity is achieved by the use of specific forms of design diversity while

information complexity is realized with functionality-preserving code transformations to

make the program less analyzable and therefore more difficult to manipulate. The code

transformations are implemented in a One-way Translation compiler that produces

diverse and obfuscated programs.

The compiler’s most basic code modifications aim to degenerate the target program’s

static control-flow. This is accomplished by changing the statically determinable control

transfers into dynamic branching statements. The purpose of these transformations is to

11

hinder the most basic form of program analysis—building the static control-flow graph of

the program. Nearly all forms of static analysis rely on the program control flow being

statically determinable [35][59]. Taking this basic assumption away cripples the

fundamental premise of many static analysis techniques.

Furthermore, difficulties in data-flow analysis are introduced by the creation of pervasive

aliasing throughout the program. Alias resolution is known to affect many data-flow

problems, and precise alias resolution has been shown to be inherently difficult.

These program modifications introduce two fundamentally interdependent difficulties.

First, program control-flow is made data-dependent. Resolution of control-flow in such a

form requires data-flow analysis. Second, data-flow analysis is made difficult by

withholding the static control-flow information, and by the introduction of pervasive

aliasing.

Each of these transforms is performed automatically by the One-way Translation

compiler, implemented as a source-code translating extension of a traditional compiler.

Experiments are conducted to evaluate the efficacy of such a scheme. In addition, a

theoretical argument is supplied to attest to the security strength and benefits of the said

transforms.

The thesis of this dissertation is that static analysis of programs can be deterred, under a

certain set of assumptions, with acceptable cost and demonstrable strength. Additionally,

some of the techniques designed to deter static analysis extend nicely to constructing

potential countermeasures for dynamic analysis.

12

1.5. Dissertation Organization

This dissertation is structured as follows: In Chapter 2, I discuss background material and

the problem context. Chapter 3 describes the underlying philosophy and the solution

framework. In Chapter 4, I describe the One-way Translation techniques to deter static

analysis. In Chapter 5, I discuss the theoretical evaluation of the proposed techniques. A

set of empirical evaluations on the techniques is presented in Chapter 6. In Chapter 7, I

describe an implementation of the One-way Translation scheme in an ANSI C compiler.

Chapter 8 switches gears and presents a preliminary investigation into the issue of

defending against dynamic analysis. Chapter 9 examines the individual techniques within

the system context and explains how they collectively form a system solution to the

software protection problem. Chapter 10 discusses related work. Finally, in Chapter 11, I

conclude the dissertation with a discussion of future research directions.

13

Chapter 2

Background and Problem Context

In this chapter, I establish the problem context and architectural environment for the

dissertation.

This research is initially inspired by the need to secure a survivability architecture for

critical infrastructure systems. Survivability architectures represent a class of network

management schemes retrofitted onto an underlying system to ensure its continuing

services in the event of errors, failures, and malicious attacks. It is of extreme importance

that the architecture itself be adequately protected. For the type of infrastructure system

that is of concern, threats are likely to be many and the stakes of security breaches are

likely to be high. Malicious-host problems, for example, represent a significant class of

security threats against the survival of the management architecture itself.

The characteristics of the survivability architecture and the underlying system shape the

specifics of this research and the solution mechanism. This chapter describes those

characteristics and investigates the types of security threats and intruder capabilities with

respect to the malicious-host problem. Finally, I conclude this chapter with a discussion

of the fundamental challenges toward achieving secure execution of trusted programs in

14

potentially hostile environments.

2.1. Critical Infrastructure Systems

Today's critical infrastructure systems are large, complex information systems. Often

distributed across wide geographic regions, these systems are different from the fully-

connected, open nature of the Internet: they are typically large-scale private networks,

and they are typically connected in a point-to-point fashion. For clarity of illustration, the

discussions in this chapter are framed in the banking and finance infrastructure, although

many of the characteristics are general and are common for other infrastructure systems.

The following sections describe the essential characteristics of a national infrastructure

system and the ways in which they impact the design of a survivability mechanism as

well as the protection of the mechanism itself.

2.1.1. Large scale

Figure 2.1 depicts a high-level view of the banking and finance infrastructure with

respect to the check-clearing functionality. The internal network within an organization is

represented by solid lines and interconnections between different financial institutions are

depicted in dashed lines.

Assume a check is deposited at a Citibank branch where the beneficiary customer banks,

and the account where the check intends to draw funds resides with Chase Manhattan.

From the moment the check is deposited to the final settling of the accounts, the entire

15

operation involves the Citibank branch office, the internal system within Citibank

(including the Citibank processing center), the extranet between Citibank and the Federal

Reserve Check-clearing center, the Federal Reserve internal System, extranet between

Federal Reserve and Chase (where the writer of the check banks) and the Chase internal

system.

This scaled-down picture of the banking infrastructure in Figure 2.1 consists of a large

number of geographically dispersed computing nodes that belong to different authority

domains and organizational structures. The entire banking infrastructure minimally

contains tens of thousands of computing hosts connected via a large network. These hosts

and their interconnections provide the computation, data storage, and communication that

are needed to provide services, as in the case of the check-clearing function.

The exact topology of the infrastructure network is not important, although such networks

are often not fully connected. For example, there is usually no need for every teller’s

desktop to be connected to the central bank processing center—they might be connected to

a branch server which serves as the gateway to the backend processing center. Similarly,

interconnections between different organizations may be sparse (as in the case between

Citibank and Chase).

2.1.2. Heterogeneity

Another defining characteristic of critical infrastructure systems is the degree of

heterogeneity. First, the system itself is typically composed of subsystems with diverse

operational environments and policies. For example, Citibank’s internal system is sure to

16

have a different layout and be managed differently than the one in Chase or the Federal

Reserve. From a security standpoint, this degree of heterogeneity implies incongruity in

the policies and mechanisms employed; some sites will be more easily penetrated than

others. A universal protection mechanism across the board is clearly impractical and

perhaps infeasible.

Second, critical applications usually do not consist of only similar programs performing

similar functions. Rather, the programs running on different hosts often serve distinct

purposes, and they must cooperate in some form of sequential processing in order to

Figure 2.1. The banking infrastructure

CitiBank

Chase Manhattan

Federal Reserve Clearing Center

Teller

�������������
�������������
�������������

�������������
�������������

Banking Network

17

provide desired services.

Consider again the example of check clearing in Figure 2.1, the bank teller’s desktop

initiates a deposit request with the destination bank’s routing number and account

number. This request is then processed and queued at the Citibank processing center. A

bundled request is sent from the Citibank processing center to the Federal Reserve

clearing house, where it settles the accounts between two banks by transferring funds in

the Federal Reserve account database. The final results are sent back to individual banks

before they settle their member accounts. In this example it is clear that the software

running on the teller’s desktop, the program executing at the bank’s processing center and

the software the Federal Reserve system employs perform very different functions, but

they all have to operate in order for the check-clearing process to operate smoothly.

A direct consequence of this phenomenon is that functionality is not uniformly

distributed across the system; some computing nodes provide services that are more

important than the services provided by others. Since system survivability is concerned

with the survival of critical functionality on the system-level rather than the survival of

individual hosts or subsystems, it is therefore necessary to correlate and integrate

information from many different sources to obtain system-level knowledge. This implies

complexity in enforcing network-wide management policies as well as inherent

difficulties in securing the management architecture itself.

2.1.3. Extensive use of COTS components

The software employed in infrastructure systems tends to be large and to make extensive

18

use of both legacy and Commercial-Off-The-Shelf (COTS) components. This

characteristic means that any mechanism retrofitted to the management of the system must

consider the impact of COTS and legacy software, especially the uncertainty factor they

bring in in terms of security and reliability.

The extensive use of COTS and legacy software also implies that the characteristics of the

operational environment will be determined largely by the applications—retrofitting such

systems with survivability mechanisms is particularly difficult, for it is not practical to

mandate drastic changes to existing system architectures (such as demanding changes to

the network topology) or software (such as demanding that the applications be rewritten).

2.2. The Survivability Architecture

It is in the context just described that survivability mechanisms have been proposed

[45][62][77]. In this section I describe a survivability architecture developed at the

University of Virginia. My work henceforth is carried out in the context of this

architecture.

2.2.1. A Control System Construct

A critical component in the survivability architecture is the control system construct.

Introduced as an external entity to manage the infrastructure system, the control system

operates in parallel with the infrastructure system. Figure 2.2 depicts a simple control

system for the banking infrastructure. In this picture, the control system is composed of

three groups of computing nodes (A, B and C) in the upper left corner.

19

The control system’s primary function is real-time monitoring and management of the

system operation. Because of the scale and the complexity of the underlying system, each

control server is responsible for managing a portion of the network. In Figure 2.2, the

control server A manages two network points in the Federal Reserve System, B manages

the Citibank system and C manages both Citibank and Chase Manhattan.

In addition to the control servers, the control system also includes a set of monitoring and

actuating programs (hereafter referred to as probes) that are responsible for collecting

local information and carrying out reconfiguration commands. Figure 2.3 shows a more

detailed monitor-and-control architecture.

In Figure 2.2, each control server has a set of probes under its control. The control servers

execute analysis algorithms based on the information gathered by the probes. If necessary,

the servers issue reconfiguration commands to the probes, which then carry out the

necessary local actions. An example is illustrated in Figure 2.3. In this example, control

server A communicates with the probe program (represented by the red dot) on a Federal

Reserve host. If the probe reports that this particular clearing center is experiencing delays

or other capacity errors, A forwards this information to B and C, which in turn instruct

probes under their control to reroute requests to a different site.

20

Note that the control hosts are interconnected—they do not need to be fully connected,

although sparse connections will complicate data sharing. Also note that the control

servers are physically separate from the infrastructure system. There are several

advantages to such a design. First, executing control algorithms locally on application

hosts can be a significant resource drain—running them exclusively on the control servers

is beneficial for efficiency reasons. Second, there tend to be fewer numbers of control

Figure 2.2. A control system for the banking infrastructure

Citibank
Processing

Center

CitiBank

Chase Manhattan

Federal Reserve Clearing Center

Teller

�������������
�������������
�������������

������������
������������

Banking Network

A
 C

B

21

servers than application hosts, therefore it is possible to have dedicated control servers,

and to secure and configure them independently of the remainder of the system. This

allows rigorously controlled execution environments for the control servers, and

consequently, enhanced server security and assurance.

2.2.2. The Network Probe Programs

In this architecture, the probe programs reside on the infrastructure hosts. They perform

two primary functions.

- Collect raw system state information and generate status reports that are forwarded to

the control servers for processing.

- Process reconfiguration commands and initiate appropriate local actions. Examples of

dynamic reconfigurations include shutting down network connections, dynamic

Figure 2.3. A close look at the control system

Contro l Server A

Federal Reserve

Probe

Control Server B

Contro l Server C

reroute command

reroute command

22

process migration, active load balancing, etc. A more detailed discussion on dynamic

reconfiguration can be found in Elder et al [27].

 The probe programs are initially dispatched from the trusted control servers. While

executing remotely, they keep a high level of interaction with the control servers.

Communications between the probes and the control servers follow prescribed protocols

that may include timing mechanisms (e.g. timeouts), predetermined data formats, and

designated hand-shaking sequences. It is important to note that adhering to the interfacing

protocol is considered expected behavior of the probe program.

2.3. The Malicious Host Problem and Other Security Issues

The survivability architecture, as described above, gives rise to a series of security

concerns. These security concerns can be grouped into three loosely-defined categories.

• Protection of the control servers. The control servers execute the control analysis

algorithms, and therefore are at the heart of the whole control mechanism. The

servers and the control software must be protected from malicious attacks.

• Protection of communication. Monitoring and control communications occur over

the network. This network traffic needs to be authenticated, and protected against

tampering, eavesdropping, traffic insertion and deletion attacks.

• Protection of the probes. The probe process needs to be protected so that the data

gathering and the actuating part of the mechanism can be trusted.

23

These protection issues are closely related; that is, techniques used to secure one part of

the mechanism may impact the protection of other parts. For example, cryptographic

methods are often used to protect network communication. However, cryptography is not

sufficient if the cryptographic keys stored on the communicating hosts are not adequately

protected.

Because of the multitude and the complexity of the security issues, the following four

simplifying assumptions are made to help focus the task of this research:

• Trustworthy control servers. The control servers, physically separated from the rest

of the system, are dedicated to performing the algorithmic part of the control

mechanism. Securing the control servers requires careful system administration (e.g.,

exercising strict control on what software is allowed to execute on the servers) and

good physical security (e.g., restricted access). For the purpose of this discussion, I

assume that the control servers are secure and trustworthy.

• Secure communications. I assume that all network communications occur over

authenticated channels equipped with cryptographic protections, and that the

cryptographic techniques are sufficient, in this context, to protect the freshness,

integrity and privacy of the communication1. It should be noted that the use of

1 This only assumes communication security. It does not assume that the cryptographic keys are necessarily

secure at both ends.

24

cryptography does not necessarily prevent denial-of-service attacks—network traffic

can be deleted and communication channels can be jammed.

• Trusted survivability software. Many real-world security problems arise not

because of flaws or oversight in the design of the security mechanism, but rather

because of errors in the software implementation. It is not my objective, in this work,

to address security flaws of the latter kind. Throughout this work, I assume that the

survivability software is trusted in such a way that it operates as expected (if not

compromised), and it does not contain any malicious flaws that will lead to a

compromise of the survivability mechanism. This assumption allows my work to

focus on security threats from the environment as well as general protection issues

that are not implementation specific.

• Un-enhanced application hosts. The infrastructure system is a network enterprise

with tens of thousands of computing hosts. It is virtually impossible to enhance the

security of every application host. In the context of this work, I assume that

application hosts are running in their normal operational mode—no special

enhancement other than the security mechanisms that are already in place for the

applications. This assumption has many implications. In particular, it implies that the

application software and the infrastructure hosts might contain security flaws, and

that they might be vulnerable to a variety of security attacks.

The assumption of secure control servers and secure network communications brings

focus to the protection of the probe programs running on untrustworthy application

hosts. The task of probing and actuating constitute the basis of analysis and system

25

management. Therefore it is of paramount importance that the execution of these

operations be reliable and trustworthy. Since the probes (or some essential parts of them)

must reside on the monitored host to perform their functions, and since the monitored

hosts are assumed vulnerable to security attacks, direct corruption of the probe programs

is a distinct possibility. Note that this falls under the malicious-host category identified in

Chapter 1.

Like any other security mechanisms, solutions to this problem must be considered in

terms of the threats and attack scenarios that are likely to be present. In the following

sections, I elaborate in depth the types of security threats and attacker capabilities that I

will consider in this work. The series of solutions, presented in later chapters, represent

targeted responses to those threats.

2.4. Threats and Attack Scenarios

The discussion in this section is framed within the context of the survivability

architecture. However, many issues are of general concern, and therefore are applicable

in other contexts where there is a need to protect software components from malicious

hosts. I should stress that the discussion here is concerned with protection of the

survivability mechanism. General security threats aimed at the underlying infrastructure

system itself are not considered in this discussion.

2.4.1. Denial-of-service attacks

By denial-of-service, I mean the termination or obstruction of the probe execution on an

26

application host. This attack is possible if the perpetrator has the appropriate privileges to

stop the execution, or if they are able to monopolize system resources. If successful,

denial-of-service attacks would disable the monitoring and management capability on the

target host.

A similar effect can be achieved by obstructing communications between the probes and

the control servers. For this the perpetrator might flood the network with unwanted traffic

or simply delete communication packets if they have access to routers or gateway

machines.

Denial-of-service attacks in general are impossible to prevent. Detection, however, is

often easier. In this system, the probe program maintains a high level of interaction with

the trusted server. A non-action for an extended period of time, or messages not

following the prescribed protocols, signifies abnormal behavior.

In practice, it might not always be possible to discern whether a detected non-action is

due to a host-based denial-of-service or disruption on the communication line. For the

present discussion, it is sufficient to note that while a widespread denial-of-service attack

would defeat the survivability mechanism and render the entire system unmanageable,

isolated local occurrences of such attacks are within the class of errors the survivability

mechanism is designed to manage (consider the case of a host crash). It is therefore the

designer’s responsibility to choose whatever mechanisms deemed necessary to react to

such a situation. For this reason, I do not consider denial-of-service attacks in this work.

27

2.4.2. Intelligent Tampering and Impersonation

This category refers to attacks for which an intruder attempts to spoof the trusted servers

by impersonating or tampering with the legitimate probe program.

Intelligent Tampering. Intelligent tampering refers to scenarios in which the intruder

modifies the program or data in some specific way that allows the program to continue to

operate in a seemingly unaffected manner, but on corrupted data or state. For example,

overwriting data buffers with data of the correct format but different values is an example

of intelligent tampering. Using this definition, tampering with the software in a random

way (e.g. overwriting random bits in the memory) does not constitute an intelligent

tampering attack. It may result in denial-of-service however, since the tampered program

or data can cause execution to fail.

Impersonation. An impersonation attack is similar to intelligent tampering in that the

attacker seeks to establish a rogue version of the legitimate program. Impersonation,

however, is primarily concerned with emulating the observable behavior of the original

program, while intelligent tampering often involve direct modifications of the internal

specifics of the program such as its code or data.

This dissertation is primarily interested in defending against intelligent tampering and

impersonation attacks, because of the following reasons.

- These attacks are the most difficult to detect. Unlike denial-of-service attacks, the

result of an intelligent tampering or impersonation attack is not always obvious; if the

attacker has detailed knowledge of what the software is supposed to do and the

28

appropriate privileges to instantiate a malicious copy, he or she can replace the

original program and make the replacement virtually undetectable.

- Such attacks have the potential to inflict substantial damage. For example, a carefully

coordinated attack on a selected set of monitors would cause the control mechanism

to reach an inaccurate view of the state of the network and arrive at an erroneous

reactive decision that may lead to deterioration of services. In this case, the intruder

can manipulate the control mechanism to perform malicious tasks on a network-wide

scale. This is far more dangerous than a typical network intrusion whereby an

adversary may be able to compromise a node (albeit possibly an important one) but

further compromise beyond that usually requires additional effort or resources.

The discussion on malicious hosts in Chapter 1 identifies three facets to the problem:

Algorithm secrecy, execution integrity and input spoofing. All of these are relevant in

this context. Note that intelligent tampering is an attack against the execution integrity of

the target program. Both intelligent tampering and impersonation require knowledge

about the target program—either about the external behavior or the internal specifics of

the program. Acquiring this knowledge constitutes a compromise (or at least partial

compromise) of the algorithm privacy of the target program. For example, consider a

scenario in which the intruder’s objective is to forge probe messages to the control server.

Assume all messages are signed with the probe program's private key. The knowledge the

intruder must acquire, among others, is the private key of the probe program. In order to

discover the location or the content of the key, the intruder might need to learn, for

example, what cryptographic algorithm is in use and how the key is used in the

implementation.

29

The discussion in Chapter 1 also argued that the input-data problem is solvable only if

feeding malicious input data to the program requires breaking the algorithm privacy or

the execution integrity first. This becomes one of the solution criteria that is discussed in

the next chapter.

The important point here is that in order to launch an intelligent tampering and

impersonation attack, the intruder must obtain the knowledge necessary to do so. The

ways in which this knowledge can be acquired depend heavily on the intruder’s

capability, and this is the topic of discussion for Section 2.5.

2.5. Capabilities of Intruders

Three categories of intruders, classified by their respective capabilities, are likely to be

present in the context of the survivability architecture. Listed in the order of increasing

level of capability, they are: Network Intruders, Malicious Insiders, and Privileged Users.

This classification is similar to the one used by Aucsmith in his Integrity Verification

Kernel (IVK) work [4]. This section discusses each category within the context of the

survivability architecture described earlier.

2.5.1. Network Intruders

This category refers to intruders who do not have direct access to the host where the

monitor program executes. These intruders access the system through network entry

points, and can eavesdrop on the communication line and insert and delete network

traffic.

30

A typical network intruder is bound by communications protocols and other network-

based security mechanisms (e.g., firewalls, network access control, etc.). Their mission is

to either breach the host security perimeter (i.e., getting in from outside) or interpose

between communicating parties by forging or replaying communication messages. This

class of intruder can be dealt with by the use of correctly designed and implemented

security protocols and proper host administration. This work does not consider network

intruders, for they cannot affect host software directly.

It should be noted that network intruders can gain further access by exploiting flaws in

communication protocols or network security mechanisms. For example, a successful

buffer overrun attack may render more privileges to the intruder as a result. In doing so, a

network intruder may become a malicious insider or a privileged user who possesses

significantly more powerful capabilities than a typical network intruder.

2.5.2. Malicious Insiders

This category refers to intruders who have control of some program running on the

targeted host. These intruders could be legitimate users, or an outsider who has gained

illegal access to the host system.

Malicious insiders have access to some system resources, and they can manipulate the

programs under their control or introduce Trojan-horse programs to inflict damage to

other applications or the underlying host. An example of a malicious insider is someone

who has obtained the password of other users and is now able to read and write the private

data and programs in the compromised accounts.

31

Malicious insiders are intruders without the “root privilege”. Actions of a malicious

insider can be greatly limited by the use of properly designed access control mechanisms,

competent intrusion detection tools and careful administration. At worst, intruders in this

category can cause denials of service or instantiate malicious software such as virus or

Trojan-horse programs to effect damage to the host or other programs.

However, actions of malicious insiders do not directly undermine the security of the host

system (e.g. they generally do not compromise the operating system). For the purpose of

this discussion, I assume that malicious insiders are still bound by the operating system

and its security mechanisms. To defeat malicious insiders, this work adopts the principle

of diversity to reduce software uniformity, which is often the cause of successful virus or

Trojan-horse attacks [33]. More on software diversity is discussed in chapter 3.

2.5.3. Privileged Users

Adversaries in this category have direct access to the host on which the target program is

running. Specifically, they may possess the following privileges:

• Access to private memory of other user or system processes

• Access to source code of the target program

• The ability to introduce and execute random software on the host

• The ability to manipulate and replace system software

Read access to the host memory implies that the adversary can obtain the binary image of

32

a loaded executable. That includes code as well as data associated with it. Write access

gives the perpetrator the ability to modify raw memory bits.

Out-of-bound avenues exist for a determined intruder to acquire a copy of the program

source code. This suggests that software protection should not, and cannot, rely on the

obscurity of the source program. However, I posit that knowledge of the source program

does not necessarily imply a direct compromise or immediate knowledge of the running

binary program. That is, an executable generated from a known source, aside from being

functionally equivalent to the source, could contain extensive syntactic or semantic

differences from the source such that impersonation or intelligent tampering of the

running program would still require analysis of the executable. This premise is the

cornerstone of much of the dissertation, and I elaborate in Chapter 3 on why the premise

stands and how it can be exploited as a basis to devise software protection mechanisms.

The ability to introduce and execute random software implies that the intruder may have

access to specialized software analysis tools such as debuggers, decompilers, and system

diagnostic utilities. They can perform analysis online such as system diagnostics, or

offline such as blackbox testing, execution emulation, and break-point-based debugging.

The ability to manipulate and replace system software suggests that the host security

mechanisms such as those provided by the operating system can be compromised

potentially. This suggests that any mechanism deployed to protect the software should not

depend solely on the authenticity or security of the host operating system. This assumption

is of course the most troublesome—once an intruder has compromised the operating

system, he or she may have near complete control of the platform, and their actions are

33

therefore limited only by available resources.

There is, however, one restriction on the intruder capabilities—he or she may not

substitute or install hardware on the host system. Altering hardware configurations

requires physical access to the host system. It is reasonable to assume that such access is

difficult to obtain. This assumption discourages online hardware-aided analysis and allows

the possibility of special hardware-based security solutions.

At this level of sophistication, the adversary has access to ample system resources and a

great deal of knowledge of how the system works. Security attacks from these adversaries

are the most powerful and also the most difficult to defeat. In fact, no security mechanism

exists and none could be developed that will provide protection against such adversaries

in the absolute sense—there is no solution against perpetrators with unbounded resources.

What I aim to do in this work is to:

- Increase the technical difficulty to deter security attacks by malicious insiders and

privileged users

- Understand and provide a theoretical basis to determine what benefits each protection

mechanism affords in order to make informed decisions.

2.6. Fundamental Challenges

Many difficulties exist in dealing with the malicious-host problem in the context just

described. In this section, I outline two fundamental challenges that I believe are key

obstacles to software protection. The solution framework detailed in the next chapter

34

presents a suite of approaches that collectively constitute a comprehensive solution to

these challenges.

2.6.1. Verification of Execution Results

Ensuring execution integrity of programs requires that there exist some means to verify

the result of the execution. However, the means through which the verification can be

performed may not be readily available.

Consider a program whose purpose is to factor a large number. This program is

dispatched to execute on a remote machine. In this case, the result of the computation can

be easily verified. Hence any tampering of the program can be detected with a high-

degree of confidence.

The same is not necessarily true when execution of the program depends on local states,

in which case the program execution integrity and input from the local state are both

factors that need to be considered2. It is clear that results of the execution are not

verifiable if local input is required and the input cannot be authenticated in some way.

In the context of the survivability architecture, the probe program reports sensing values

to the control server. Verifying whether the sensing value indeed represents the system

status is a fundamental challenge. Whilst an unencrypted heartbeat message can be easily

2 This is the input-data problem identified in Chapter 1.

35

faked, a more sophisticated reporting mechanism would require the ability to hide a

secret in the software from its hosting system, a task that is extremely difficult.

2.6.2. Finite State Space Facilitates Program Analysis

In theory, programs can have an unbounded number of states. However, the reality is that

normal programs spend most of their time in a limited state space. This implies that given

enough time and resources, an intruder will be able to learn, through program analysis,

enough relevant information to understand the program behavior.

The second challenge arises because of finite state spaces. In other words, how can a

finite amount of information withstand analysis with bountiful resources?

2.7. Summary

The discussion in this chapter recasts the malicious-host problem in the survivability

architecture context. The fundamental challenges and the threat scenarios are the topic of

discussion of the ensuing chapters, which detail a solution framework to tackle the

software security problem in malicious environments.

36

Chapter 3

The Solution Framework

This chapter presents an overview of a solution to the problem of software protection in

malicious environments. The discussion in Chapter 2 posited that program-specific

information is needed for intelligent tampering or impersonation. This information

represents the key to compromising the algorithm secrecy or the execution integrity of

the target program.

In order to acquire this program-specific information, I further postulate that some form

of program analysis is required. The solution framework described in this chapter builds

on the notion that program analysis can be made expensive if the information that an

intruder seeks is difficult to procure. This is not a new idea; previously proposed code

obfuscation work is based on the same principles [19][20][40][41]. The differences

between my work and the code obfuscation studies are as follows:

- This work aims to protect the network application as a whole instead of considering

only individual programs.

- This work is supported by both theoretical and empirical complexity measures.

37

3.1. A Complexity Argument

Program analysis is an operation, and as an operation it has a certain level of complexity

associated with it. As discussed in Section 2.5, absolute protection of software in

untrustworthy environments is impossible. The objective of this work, therefore, is to

devise mechanisms to increase the computational complexity of program analysis, and to

measure and understand at a theoretical level the effectiveness of each mechanism.

It should be noted that the notion of computational complexity is used in a slightly

unconventional sense here. Traditionally, computational complexity is dominated by the

order of growth of the algorithm—an operation that is of the order O(n) is considered

more efficient and less complex than one that is of)(2nO . The traditional model

trivializes the lower order terms of the running-time formula and the constant coefficient

of the leading term. In my work, it is not the order of growth alone that is of interest.

Instead, this work is concerned with the input size of the problem, the constant

coefficients in the running-time formula and the order of growth—any parameter that

may potentially affect the operational complexity of the analysis procedure. For instance,

supposing the time complexity of a program analysis algorithm can be expressed as:

cbnan xx +++ − ...1 ,

where n is the input size, a practical defense mechanism might aim to raise the order x,

the input size n, or the most significant coefficient a.

In the spirit of this operational complexity model, the effort space of program analysis

38

can be described in a multi-dimensional composition shown in Figure 3.1. Assuming the

program-specific information the intruder seeks to acquire can be represented as a set of

data items, and further assuming that the effort to analyze each data item is independent

of the others, the dimensions in this complexity space are:

• Number of data items: Intuitively, the more data items there are, the more complex

it is to collect the information. For example, compromising the network-wide

survivability architecture may require the control of a collection of probe programs at

different locations. If the probes are diverse programs, independent analysis efforts

will have to be expended to analyze each program. This is an example of increased

complexity by increasing the amount of information the intruder must procure.

• The complexity of analyzing a data item: There is a cost in complexity in analyzing

each information item. It is also intuitive that this complexity constitutes a significant

factor in the overall difficulty of program analysis.

Figure 3.1. Effort space of program analysis

Number of data i tems

Lifet ime of a data i tem
Complexi ty of analyzing

a data i tem

39

• Lifetime of a data item: Operational complexity, when rated against available

resources, can be measured in terms of time. Increasing the amount of information

and the complexity of analyzing each information item can be viewed as efforts to

increase the time required for an attack, while limiting the lifetime of the information

serves as a complementary tactic—it imposes a time bound within which the attack

must consummate. In other words, the shorter the information lifetime, the more

resources are required for the analysis, and hence the more difficult the attack is.

These different dimensions determine the complexity of program analysis. Using this

model, techniques accentuating one or more of the dimensions yield increased difficulties

for the analysis. The basic concepts of the solution framework are based on this

complexity model. They are:

• Information Diversity: On a network-wide scale, probe programs employ different

algorithms, communication protocols, and identification secrets, at different locations

and different times. In other words, information diversity is manifested in two

forms—spatial and temporal diversity—in the deployment of the probe programs.

Spatial diversity across the network increases the amount of information an intruder

must acquire if their goal is to compromise the network-wide survivability

mechanism. Temporal diversity serves as a means to limit the information lifetime

and consequently induce greater analysis complexity.

• Information Complexity: Each probe program undergoes unique code

transformations to obscure its critical information. These transformations aim to

increase the complexity of information analysis and thus make the program more

40

difficult to manipulate. From an information theory perspective, these transformations

increase the entropy of the target program. Therefore the process of deducing useful

information from the program is made more complex. When combined with temporal

diversity, this mechanism provides a powerful way to obstruct program analysis.

• State Inflation: This concept aims specifically to address the finite state space

challenge raised in Chapter 2. State inflation includes a set of mechanisms to expand

the program state space, particularly where the program input-to-output relationship

is concerned. Black-box analysis, for example, can be thwarted since it relies on the

target program having a relatively simple input-to-output behavior.

The concept of information diversity is made possible by incorporating some very

specific forms of design diversity in the probe programs. This, along with information

complexity and state inflation, is implemented in a One-way Translation compiler. The

One-way Translation process is capable of transforming a single source program into any

number of functionally-equivalent but structurally-varied versions of binary programs.

More on the One-way Translation compiler is discussed in Chapter 4.

The general approach is outlined as follows:

- The trusted control servers generate the probe programs, each a product of the One-

way Translation process.

- The (diverse) probes are installed at various points throughout the network.

- Each probe program is periodically refreshed with a functionally equivalent version.

41

Precisely how this happens is detailed in the following sections and the ensuing chapters.

3.1.1. Information Diversity

Diversity is an important engineering principle in building dependable systems. For

example, in the design of an aircraft, geographic diversity is often used in the layout of

hydraulic lines—each of the redundant lines feeding control surfaces pass through

different parts of the fuselage and wings. This design helps to ensure dependable

operation by tolerating certain perturbations in the environment.

Incorporating diversity into the design of secure systems helps to reduce vulnerabilities

that arise from uniform designs that are often the source of replicated flaws and class

attacks [33]. Two forms of diversity–spatial and temporal diversity–are particularly

useful in software protection.

Spatial Diversity: By spatial diversity, I mean the deployment of diverse software

versions (e.g., probe programs) at different locations throughout the network. Spatial

diversity can be particularly effective in thwarting class attacks—a type of attack that is

based on exploitation of the same software and/or configuration flaws [4][33]. For

example, most script-driven attacks capitalize on a particular set of known flaws, and the

same attack may be replicated successfully on thousands of computing nodes. This is

particularly problematic in a COTS-heavy environment—one flaw in a COTS software

program may affect tens of thousands of machines on which the software is deployed.

When diverse copies of the software are deployed in a networked system as in the context

42

of the network-probing architecture, if one program is compromised the same attack may

not work on others. The intruder must invest significantly more effort if the goal is to

corrupt the network-wide survivability mechanism. Viewed in the context of the solution

space described earlier, spatial diversity increases the amount of information an intruder

must analyze for an attack.

Temporal Diversity: Temporal diversity refers to periodic variations of the software

characteristics over time. Temporal diversity serves as a means to limit the lifetime of

information, and thus the time window for a particular attack.

As an example, suppose that after obtaining the binary image of an executable program P,

an intruder attempts to perform a systematic state-space search to reverse engineer the

program. If this effort completes after time period T∆ , the result might lead to a

successful tampering or impersonation attack against P . However, if the properties of P

change within T∆ ; that is, if P is replaced with 'P , the information obtained at the end of

T∆ might prove to be ineffective if used against 'P .

Temporal diversity implies dynamic changes—a property or a data element may only be

valid or have security-related consequences for a limited time. This is not a new concept;

password and key aging are rooted in the same principle. They are based on the

assumption that a certain amount of time is needed for brute force methods to break a

static password or key, and these methods attempt to defeat such attacks by updating the

password or key periodically. Applying the idea of temporal diversity to software

protection, however, is a novel approach. In this work, temporal diversity is realized with

43

periodic replacement and reorganization of the binary program and its properties.

To facilitate spatial and temporal diversity, this work employs some specific forms of

design diversity in the development of the probe program. Design diversity, in a

traditional sense, is the use of different designs within several programs that implement

the same specification. It has been employed in various forms of fault-tolerant software

including recovery blocks and N-version programming [76].

The types of design diversity employed in this work are different from general design

diversity in that this work is interested in specific, algorithmic changes of program

characteristics to promote diversity. In this sense, the differences between the different

versions can be measured and reasoned about. The same does not hold for general design

diversity since it allows unrestricted forms of variations.

3.1.2. Information Complexity

The purpose of program analysis is to deduce certain information from the target

program. The complexity of this process depends on the form of the program (e.g.,

whether it lends itself well to analysis) and what the target information might be.

Program analysis comes in many forms. For example, analysis of the program can take

place on a static copy of the code or dynamically during an execution. Static analyses can

reveal a great deal about the structure, the algorithm, and also the dynamic behavior of a

program, and they are more efficient than dynamic analyses for which interpretation on-

the-fly is often required. Dynamic analyses, of course, reveal the ultimate run-time

44

information about a program. However, conducting program analysis at run-time is

expensive, and it often relies on some form of static information to guide its analysis

[6][59]. For these reasons, my work is primarily focused on defending against static

analysis of programs. One form of dynamic analysis—black-box testing—is considered

in Chapter 9.

A comprehensive static analysis on a program requires, as a minimum, the following

information [35]:

• Control-flow information (this includes intra-procedural control flow and inter-

procedural function calls)

• Relevant data-flow information

Control-flow information provides knowledge on the program execution flow, which is

often used as the basis of further analyses. Data-flow information provides knowledge

about the possible “modification, preservation and usage” of certain data quantities [35].

Examples of target data quantities include variables, instructions and memory locations.

The complexity of static analysis depends on the complexity of acquiring the control flow

and data flow information. A goal of the one-way translation, therefore, is to incorporate

techniques to obstruct control-flow and data-flow analysis. Some of the techniques

discussed in this research are:

• Masking control flow: The control flow of the program can be masked by insertion

and restructuring of control constructs. By adding nonfunctional code and breaking

45

and reorganizing existing control constructs, the program control flow can become

arbitrarily complex.

• Masking code or data content: Data representations, as well as code constructs, can

be restructured in such a way that it will be difficult to recover its original content or

even its intent. For example, variables can be divided into subparts, and computations

on the variable can be replaced with corresponding computations on the subparts and

an operation to construct the correct result. Similar techniques can be applied to

arrays, statements and subroutines.

• Masking code and data location: Some flow analysis techniques rely on code

generation conventions such as the placement of local variables, etc. This is

particularly useful when a version of the source code is available and the intruder

seeks to match the binary program with the initial source. This type of analysis can be

thwarted by breaking code generation conventions and employing randomization in

code or data allocation. Furthermore, certain types of semantics-preserving

transformations such as function inlining and parameter restructuring can be used to

obfuscate function signatures and locations.

• Masking data usage: One of the primary functions of data flow analysis is to

determine the usage of data—where and how they are used in the program. Data

usage provides critical information to facilitate program tampering. Data aliases, for

example, can complicate the analysis of data usage. Similarly, indirect addressing and

pointer manipulation can be used to mask information on data usage.

These techniques aim to obscure information contained in the program. The premise is

46

that by obfuscating, the resulting program will be more difficult to analyze, thus more

difficult to manipulate and impersonate.

It is important to raise the question of the different objectives between conventional

program analysis and what is being discussed in this work. The former has the goal of

code improvement, thus a more aggressive, global analysis tactic is desirable. The latter,

however, intends to gain specific knowledge to allow targeted program manipulation, and

therefore does not necessarily require as ambitious or as comprehensive an analysis

strategy. While that may prove to be true in some cases, the ultimate objective of this

work is to make the task of program analysis as difficult as possible. In other words, the

techniques employed here must include an effort to force the use of the most advanced

analysis techniques possible. For example, distributing critical information throughout

the entire body of the program requires a global analysis to gather the necessary

information. In so doing, static analysis will be ineffective if not used in its most

aggressive form, or not applied to the entirety of the program.

3.1.3. Input-to-output State Inflation – Increasing the Complexity of Blackbox

Analysis

A blackbox analysis analyzes the program input-to-output behavior without delving into

the internal specifics of the program. The goal of blackbox analysis is to gain insights

into the program's input-to-output behavior in order to emulate its behavior.

If the state space of the program regarding input and output is simple, with relatively low

effort the intruder can deduce the input-to-output mapping and impersonate the behavior

47

of the legitimate program. For example, consider a probe program for which there are

three basic input states: UP, DOWN, and DEGRADED, and the program outputs an

integer 0, 1, and 2, respectively, for each of the input states. In this case, a simple

blackbox testing would suffice in revealing the entire input-output state space.

To protect against blackbox analysis, the technique of input-to-output state inflation can

be used. The purpose of state inflation is to increase the complexity in the program's

input-to-output mapping such that the exact mapping cannot be easily deduced. Again,

the effectiveness of the scheme should be measured in terms of the amount of

information an intruder might be able to gather within a prescribed time frame. Strictly

speaking, state inflation is another way to promote information complexity. It is singled

out as a separate technique partially due to its application against blackbox analysis and

partially for convenience in discussion.

The benefit of input-to-output state inflation is perhaps best illustrated with an example.

Consider again the example of the probe program that operates on three basic input

states: UP, DOWN, and DEGRADED. The program generates output integers 0, 1, and 2,

respectively, based on the input state. Now instead of generating one of the three integers,

the probe applies the following algorithm to generate three series of numbers x1, x2, and x3

such that:

x1 = { x | x ∈ integer, and E (k, x) mod 3 = 0 }

x2 = { x | x ∈ integer, and E (k, x) mod 3 = 1 }

x3 = { x | x ∈ integer, and E (k, x) mod 3 = 2 }

E (k, x) is a one-way function, and k represents a key that the probe shares with the

48

trusted server. Instead of transmitting 0, 1, or 2 across the network, the probe transmits a

randomly chosen x from the appropriate series of numbers (e.g. x1 for UP, x2 for DOWN,

and x3 for DEGRADED). The receiver of the x’s can then compute:

Status = E(k, x) mod 3

to obtain the status information. An observer, not knowing k, will not be able to

determine which x’s correspond to which state simply by observing the input and output

relationship.

While this example is reminiscent of encryption, what is important here is that the one-to-

one mapping between the input and the output is replaced with a one-to-many mapping.

Note that there are an arbitrarily large number of output values for each input state, which

will appear essentially random to an outside observer.

Dynamic analysis such as blackbox analysis is based on information obtained by

observing program execution. Each state transition during the program execution

disseminates a certain amount of information into its environment. Over time the

aggregate of this information may be sufficient for an observer to determine the entire

state space of the program. This particular state inflation technique attempts to expand the

complexity of the input-to-output relationship of the program. Consequently, the average

amount of information provided by each observable mapping will decrease, and more

effort must be expended to gather an equivalent amount of information.

49

3.2. Putting It All Together

The previous sections present a brief overview of a suite of techniques, each contributing

to a specific dimension in the solution space. It is important to note that no single

technique will suffice in defending against the very capable adversary described in

Chapter 2. For example, the state inflation example in Section 3.1.3 will be ineffective if

someone can simply read the key k out of memory. Ultimately, it is the combination and

interactions of the various techniques that provide the necessary apparatus to ensure the

secure execution of software in untrustworthy environments.

Here I review briefly one of the assumptions stated in section 2.5.3, namely making

allowances for possible knowledge of the original source program. The implication is that

protection mechanisms should not rely on the obscurity of the source program. In that

discussion, I posited that knowledge of the source program does not necessarily imply

immediate knowledge of the running executable. Note how this premise starts to become

clear with the solution techniques described above; the one-way translation process

implements code transformations that embody the concept of information diversity and

complexity. These transformations introduce structural and even semantic differences in

the resulting binary programs. Therefore knowledge of the source does not necessarily

imply direct knowledge of the binary program unless the exact transforms the program

underwent are learned.

In essence, my solution mechanism employs a specialized translation process during

which an input source program is transformed according to a set of strategies that

incorporate design diversity and information complexity. The result of the translation

50

process is a set of functionally-equivalent but structurally-varied binary versions. These

different versions are then put to use in a network setting. Collectively, they form a

resilient defense frontier to protect a network application from malicious underlying

hosts. The specifics of this translation process, along with the various transformation

techniques, are described in Chapter 4.

An integral piece of this work is the security strength of the solution techniques. In other

words, what assurance can you get if you employ these techniques to protect your

programs? Without provable assurance, the latest and greatest software protection

mechanisms may be only one step away from being outwitted by new countermeasures.

In Chapter 5, I present proofs and complexity arguments to reason about the security

strength of each of these techniques. The security analysis draws inspiration from the rich

body of work in the field of programming languages, and serves as the theoretical

foundation of this research.

3.3. Implementation Strategy

The method of transforming programs to incorporate design diversity and information

complexity is a task that could potentially be performed on the source program directly

by a programmer. The problem with such an approach is that it is a complex, error-prone

task. Furthermore, programmers should not be burdened with extra programming tasks

that do not contribute directly to the essential goal of the program. For these reasons, I

choose to implement the code transformations automatically by means of compiler

extensions. This strategy allows perhaps the most efficient and least intrusive integration

51

into the regular program development cycle.

The extended compiler is designated to perform the following tasks:

• A random set of built-in transformations driven by a random seed.

• Programmer-specified code transformations.

As a result, a source program is translated into an array of different binary programs,

each with a different set of behavior and internal representations. The code

transformations are implemented as source-to-source modifications. The resulting source

program can be compiled subsequently into any low-level machine representation that is

desired. A detailed-look at the compiler implementation is presented in Chapter 6.

52

Chapter 4

One-way Translation

This chapter presents the design of the One-way Translation process—a compiler-based

approach to achieve design diversity and information complexity. The core of One-way

Translation is the semantics-preserving transformation of programs in such a way that the

reverse transform cannot be determined without the expenditure of tremendous resources.

Formally, One-way Translation can be described as follows:

Let TR be the translation process, such that BP TR→ translates a source program P

into a binary program B. TR is a one-way process if the time taken to reconstruct P

from B is greater than a specific constant T.

Note that there exists a loose analogy between One-way Translation and cryptography:

Cryptographic schemes operate under the premise that encryption is easy to perform but

the reverse process is computationally expensive (without the key).

One of the objectives of this research is to develop software protection just as one would

53

with cryptographic methods—much in the same way that the strength of a cryptographic

algorithm depends on the key length, the strength of a software protection mechanism

should be easily deduced based on some well-defined characteristics.

To achieve One-way Translation, program transformations promoting information

complexity are employed. Throughout this chapter, I describe a suite of these

transformations. The key idea behind the transformations is to make the two essential

forms of program analysis—control-flow and data-flow analysis—strongly and

ubiquitously co-dependent. The result of this co-dependence is increased analysis

complexity, hence the One-wayness of the translation.

4.1. A Model of Semantics-preserving Transformation

Before delving into the details of the One-way Translation process, I first present a model

of semantics-preserving transformations used in this work, as its meaning departs slightly

from the traditional definition of functional equivalence.

In traditional compiler parlance, semantics-preserving transformations preserve the input-

output behavior of the program. In other words, the program, before and after the

transformation, must produce the exact same results if given the same input [59].

Semantics-preserving transformations yield programs that are considered functionally

equivalent.

It should be noted that this definition of functional equivalence is often violated in the

actual practice of compilation. For example, the result of commutative operations such as

54

addition should not depend on the order of the operands. However, reversing the order of

the operands in an addition operation sometimes can lead to different results due to

possible rounding errors [1].

This work employs a slightly relaxed notion of functional equivalence. Function is not

defined in terms of input-output relations. Instead, it is defined as a set of high-level

specifications, defining the tasks to be performed. Different implementations, if they

fulfill the tasks specified, are considered functionally-equivalent irrespective of their

input-output behavior. For example, if a program’s functionality is to report the

temperature of the day, two different programs—one reporting the temperature in

Fahrenheit and the other in Celsius—both accomplish the specified task, and are

considered functionally equivalent despite the fact that their input-output behavior is

quite different.

Under this definition of functional equivalence, code transformations may affect the

internal structure of a program, as well as its external behavior. Transforms affecting the

external behavior of the program may alter the program signature. Also note that the

traditional definition of functional equivalence is subsumed by the new definition; that is,

program transforms that are considered semantics-preserving in the traditional sense are

clearly semantics-preserving under the new definition.

The new notion of functional equivalence is application specific—the set of semantics-

preserving transformations for one application may or may not preserve functionality for

others. For example, replacing a DES encryption algorithm with an implementation of

RC4 could be a functionally equivalent transformation for the purpose of encryption, but

55

would be meaningless where encryption is not concerned. The specification of tasks will

have to be derived from the domain knowledge of the application. Exactly how that can

be achieved is beyond the scope of this dissertation. For the purpose of this discussion, I

simply assume that there exists a set of different implementations for a specification that

are considered functionally equivalent.

The notion that there exists an equivalence class of programs that differ not only in terms

of internal representation but also in external behavior is fundamental to the One-way

Translation idea. This equivalence class embodies the idea of software design diversity,

and how the diversity is achieved is detailed in the next sections.

4.2. One-way Translation Process

The One-way translation process transforms a high-level representation of a program to

one of the many versions of programs that are in the same equivalence class. The

transformations are performed by a source-code translator as part of the compilation

Orig inal
Source Code

Fron t End
Intermediate

code
O n e - w a y

Trans lat ion

Trans fo rmed
Intermediate

code

Trans fo rmed
Source Code

Back End
Low- leve l
Mach ine

Code

SUIF Ut i l i ty

Figure 4.1. Creation of a one-way translated program

56

process. Figure 4.1 depicts the creation of a one-way translated program.

The goal of the transformations is to promote design diversity and analysis complexity.

Two general forms of transformations are employed for this purpose: Behavioral

transformations, and Internal transformations.

4.2.1. Behavioral Transformations

Behavioral transformations alter the observable behavior of a program. As discussed in

section 4.1, some forms of behavioral transformations are considered semantics-

preserving in this context. Specifically, the following categories of transformations are

applied to the target program in order to provide design diversity.

Change of algorithms (functions): Algorithms for implementing a specific task can be

transformed to an alternative algorithm fulfilling the same task. This transformation is

based inevitably on user specifications—the programmer specifies a pool of

interchangeable implementations, and the compiler simply chooses one at random during

compilation.

To simplify the implementation, I consider alternative algorithms in the context of

functions; that is, the algorithm to be replaced should be contained in a set of well-

defined local functions. Cases such as parallel algorithms are not considered.

A complication arises in handling the implementation of function calls. For example,

when function func1(a, b) is replaced with func2(x, y, z), the call site should change

accordingly to ensure the correct parameter passing. To that end, a simple algorithm is

57

used. In this algorithm, programmers are required to specify the name of each function

that is in an interchangeable set to include the prefix "choosei_", where i is an integer

indicating which set these functions belong. For instance, supposing func1(a, b) and

func2(x, y, z) are in the same interchangeable list, and func3(m, n) and func4(p, q) are in

another list, the four functions would end up in these forms:

Func1(a, b) → choose1_func1(a, b)

Func2(x, y, z) → choose1_func2(x, y, z)

Func3(m, n) → choose2_func3(m, n)

Func4(p, q) → choose2_func4(p, q)

Additionally, at the call site the programmer is required to change the function call to the

name "choosei" followed by a union set of all the possible parameters, with the use of an

"_" separating the parameter sets for different functions3. For example, the call to

func1(a, b) is changed to

choose1(a, b, _, x, y, z)

One other simplification is made—only functions with the same return type and no side

effects can be used interchangeably. This restriction can be lifted, with more efforts

required on the programmer's part.

The intermediate form of the program retains most of the variable and function names. It

is then a simple process to match up the call sites with the appropriate, randomly chosen

3 Let's hope no programmer makes a habit of using "_" as variable names.

58

functions.

This is by far the most labor-intensive task for the programmer, because it requires the

programming of alternative implementations for the same functionality, and placing the

hooks for modifying function calls. However, the extra labor incurs no more cost than a

typical N-version programming4 [76]. In addition, because the interchangeable

implementations are used in a very limited sense—only well-defined functions can have

alternatives, the average programming cost should be lower than general N-version

programming.

Change of interfacing protocol: The probe program interfaces with the trusted servers

via a predetermined protocol. This protocol can also change, in an installation-unique

fashion. To facilitate this, the compiler chooses at random a protocol (or a unique

instance of the protocol) from an available pool of protocols supplied by the programmer.

The challenge in changing protocols as opposed to changing local functions is that the

former involves multiple entities. This implies appropriate changes must be made in both

communicating parties. In practice, coding protocol changes in multiple parties can be

accomplished by bundling up the programs of the communicating parties in a single

module and implement code transformation passes to operate on both parties the same

time.

4 This cost is possibly less than N-version programming, because different versions of implementation are

59

Consider the example of replacing a DES secret key-sharing scheme with an IDEA

implementation. In this case, the encryption and decryption facilities on both sides need

to be updated accordingly. First of all, the programmer must rewrite the affected

functions much in the same way as described above. For example, on the probe side,

DES_encryption (parameter_list) , and

IDEA_encryption(parameter_list)

are replaced by

export0_choose1_DES_encryption (parameter_list), and

export0_choose1_IDEA_encryption(parameter_list)

The "export" prefix indicates that this is an interfacing function. The integer following

"export" ("0" in this example) identifies the particular pair of operation (e.g.,

encryption/decryption). Accordingly, on the server side, there are two decryption

functions in the following form,

export0_choose3_DES_decryption (parameter_list), and

export0_choose3_IDEA_decryption(parameter_list)

The compiler first performs a preprocessing step in which the different modules in the

programs are examined and the export functions with the same integer are found. This

step builds an external data structure, which contains references to the function signatures

needed for only portions of the program.

60

and information on which operation the different signatures belong.

During the transformation stage, the compiler walks through the intermediate

representation of the different modules, consulting with the external data structure in

making selections. For example, if the compiler chooses IDEA encryption on the probe

side, it knows to choose the decryption function with the same name ("IDEA") and the

same export number ("0").

Protocol changes also require effort on the programmer's part to supply the

implementation of the different protocol steps and to line up the protocol steps so the

resulting program can function correctly.

Change of input-output behavior: The program's input-to-output behavior can be

encoded in an arbitrarily complex mapping. More on this subject is discussed in Chapter

8.

4.2.2. Internal Transformations

This type of transformation affects the internal representation of the program. It does not

necessarily change the program’s external behavior. For example, changing the order of

non-interfering instructions alters the binary program’s internal code structure, but leaves

the result of execution unaffected. The following transformations are applied to the

program in order to induce difficulties in control-flow and data-flow analysis:

• Intra-procedural Transformation: This type of transformation affects the intra-

procedural program analysis. Specifically, two main strategies are employed: a) the

61

degeneration of the program control-flow via transformations of static branches to

register-based dynamic branching statements, and b) the liberal introduction of data

aliases.

• Inter-procedural Transformation: Inter-procedural program analysis entails

investigation of the program call structure and reasoning about the effect of function

calls on specific data quantities. The inter-procedural transformations employed in

this work include three aspects: a) function calls are transformed to indirect calls via

function pointers, b) aliases to function pointers are created so as to further obscure

the program call structure, and c) inter-procedural aliases—aliases created due to

function calls—are introduced to consequential data items. Collectively, these

techniques ensure that analysis on these data items would require a full-up inter-

procedural analysis on a heavily degenerate call structure.

The remainder of this chapter focuses on the intra- and the inter-procedural part of the

code transformations. The subject of behavioral transformation are revisited in Chapter 8.

4.3. Intra-procedural Transformations

In this section, I first describe the fundamentals of intra-procedural analysis in order to

set the context. From there, I go on to describe the code transformations that are

conceived specifically to deter intra-procedural analysis.

4.3.1. The Fundamentals of Intra-procedural Analysis

Intra-procedural analysis can be classified into two categories: flow-sensitive and flow-

62

insensitive [38][59]. Flow-sensitive algorithms consider program control-flow

information and, in general, yield more precise results than flow-insensitive algorithms.

Flow-insensitive algorithms, without control-flow information, must settle with a solution

that summarizes over all possible control-flow paths. For this reason, flow-insensitive

analysis is generally more efficient, but less precise.

Precision of program analysis is defined as how far the reported analysis results are from

actuality. Static analysis cannot always determine the realizable paths of the program,

hence the analysis is only an approximation [35].

When program analysis is performed with the goal of acquiring knowledge for software

manipulation, flow-insensitive analysis is too imprecise to be useful [38]. The discussion

hereafter is based on flow-sensitive analysis. A typical flow-sensitive analysis entails two

essential steps:

• Build the Control-Flow Graph (CFG) of the program (a step that is commonly

referred to as control-flow analysis). A CFG consists of nodes (which are basic

blocks) and edges (which indicate control transfers between blocks). A CFG provides

control-transfer information of the procedure.

• Perform data-flow analysis on the target data quantities over the CFG.

Typically, control-flow analysis constitutes the first stage of analysis—it provides control

transfer information that is essential for subsequent data-flow analysis. Without this

information, data-flow analysis is restricted to the basic-block level only and is

fundamentally ineffective for programs where data usage is dependent on program

63

control-flow.

The central strategy of the intra-procedural code transformations is to conceal the explicit

program control-flow and thereby hinder both control-flow and data-flow analysis. This

strategy is realized in two sets of code transformations made to the program:

- Degeneration of the static program control flow

- Introduction of pervasive aliasing

4.3.2. Degeneration of the Static Program Control-flow

Control-flow analysis encodes and makes explicit the flow of control in a program. Intra-

p = 0 ?

x < 5 ?

Next Block

p := p -1
x := x -1

print x

Yes No

Yes No

while (p) {
if (x < 5) {
 print (x);
 break;

 }
else {
 p = p - 1;
 x = x - 1;
}

}

Figure 4.2. An example while loop and its CFG

64

procedural control-flow analysis constructs the CFG for each procedure as follows:

consecutive statements within the procedure are partitioned into basic blocks such that

once the first statement of the block is executed, all statements in the block are executed

sequentially. Program control is transferred to another block once every statement in the

current block has been executed.

Formally, a CFG is a triple G = (N, A, s), such that N is a set of vertices representing

basic blocks, A is a set of arcs between blocks, and s is the starting vertex in the graph.

An arc(x, y) from node x to node y indicates that program control can potentially transfer

from block x to block y. There exists at least one path from the starting node to every

other node in the graph. Figure 4.2 shows an example CFG for a while loop segment.

Real-world programs tend to have control-flows that can be easily discerned, as this is

encouraged for program clarity and enforced by high-level language constructs. In such a

program, branch instructions and targets are easily identifiable. Thus constructing the

CFG is a straightforward operation of complexity O(N), where N is the number of basic

blocks in the procedure.

Now consider the code segment in Figure 4.3 in which branch instructions are indirect

jumps whose target addresses are not known statically. In this example, the instruction at

S12 is an indirect branching statement whose branch target is contained in register 1. In

order to determine to which location this instruction will branch, a static analyzer must

examine the code to deduce where the content of register 1 is defined last (instruction S1

in this case). What just happened here is a use-and-def analysis in which a use of a

variable (whose content is held in register 1) is identified and its latest definition (at S1) is

65

found [59]. The dashed line in Figure 4.3 illustrates the use to def information chain.

When control-transfers in the program are organized in a data-dependent fashion (such as

in the indirect branching example), construction of the CFG is no longer a simple O(N)

operation on the order of basic blocks; data-flow analysis such as finding the use-and-def

chains for certain data quantities must be conducted to determine the precise program

flow.

It is widely known that many data-flow problems do not have efficient solutions in the

presence of certain program characteristics such as general aliasing [59]. Some problems

have been proven to be NP-complete [49][61]. This difficulty in data-flow analysis

suggests that if the program control-flow is data-dependent, and that if the data-flow

problem in resolving the control-flow can be made difficult, it is then straightforward that

determining the precise program control-flow is a difficult process, and that the program

control-flow is effectively degenerate.

To make the program control-flow data dependent, I employ a technique called control-

flow flattening. This technique is performed in two steps. In the first step, high-level

control structures are decomposed into an equivalent if-then-goto construct. This

transform is illustrated in Figure 4.4 in which the sample program in Figure 4.4(a) is

Figure 4.3. Indirect branching example

S0: load r1, 5
S1: add r1, r2, r3

 ...
S12: jump r1

66

transformed into the structure in Figure 4.4(b).

Once all high-level control constructs are converted into this uniform if-then-goto

structure, the second step is to modify the goto statements such that the targets of the

goto’s are determined dynamically. This is accomplished by loading from the content of

data variables instead of using direct jump labels. In C, I model this by replacing each

goto statement with an entry to a switch statement, and assign the switch control variable

dynamically in each code block to determine which block is to be executed next. This

transform (on the same sample program shown in Figure 4.4) is depicted in Figure 4.5.

With these transformations, direct branches are replaced with data-dependent

instructions. As a result, the flow graph that can be obtained from static branch targets

degenerates to a common form shown in Figure 4.6. I will refer to such a degenerate flow

Figure 4.4. Dismantling high-level constructs

a=1
b=2

L1: i f (! (a < 10))
 goto L4

b= a + b
if (! (b > 10))
 goto L2

L4: use (b)

L2: a++
 goto L1

b - -

(b)

int a, b;
a=1;
b=2;
whi le(a<10){
 b=a+b;
 i f(b>10)
 b--;
 a++;
}
use(b);

(a)

67

graph informally as flattened.

Note that once the program control-flow has been flattened, the static scoping

information is absent from the program. It is no longer possible to perform a simple

textual pass through the program and determine its scoping (e.g., from examining the

stack frame pointers, etc.). Furthermore, flattening the control-flow implies that basic

blocks do not need to appear in memory in the general order of execution—they can be

organized randomly.

Recall the notions of flow-sensitive and flow-insensitive analysis described earlier in this

chapter. A flow-insensitive analysis does not rely on control-flow information to conduct

its analysis. In other words, flow-insensitive analyses perceive the program as a

collection of basic blocks and ignore the inter-relations among the blocks. Hind et al. [37]

Figure 4.5. Transform to indirect control-transfers

swVar = 1

swi tch (swVar)

L1: a=1;
 b=2;
swVar=2;

L2:
 i f(!(a < 10))
 swVar = 6;
 else
 swVar = 3;

L3:
 b=b+a;
 i f (! (b>10))
 swVar=5;
 else
 swVar=4;

L4:
 b--;
 swVar=5;

L5:
 a++;
 swVar=2;

L6:
 use(b);

goto switch;

S1 S2 S3 S4 S5 S6

68

showed in their work that a flattened control-flow form much like the one shown in

Figure 4.6 is equivalent to the control-flow perceived by a flow-insensitive analysis.

With a flattened control-flow, a flow-sensitive analysis cannot provide any increased

precision than a flow-insensitive analysis unless semantics information from the program

(such as the branch targets) is available. To obtain this semantics information, the

attacker must conduct data-flow analysis on the data quantities that are referenced in

computing the branch targets. The next section explores yet another set of code

transformations with the objective of impeding these data-flow analyses.

4.3.3. Aliasing and Data-flow Analysis

After flattening of the program control flow, constructing the CFG becomes a data-flow

problem on the modification and usage of the data quantities that lead to the definitions

of the branch targets.

Entry

S 1 S 2 S 3 S 4 S 5 S 6

Figure 4.6. A flattened control-flow

69

In the example shown in Figure 4.5, the values of the switch control variable swVar are

assigned dynamically with a constant assignment statement in each block. A constant

propagation analysis [59] combined with a use-and-def analysis on the value of swVar

would quickly reveal, for each block, what the branch target is for the next block, and

consequently reveal the entire control-flow graph.

This suggests that flattening of the static control-flow alone is not sufficient—further

hindrance of the data-flow analysis is essential. To achieve this, I enlist two additional

modifications to the program; index computation, and aliasing.

Index Computation: Consider the code segment in Figure 4.7(a). A use-def analysis on

the value of swVar (contains branch target information) is straightforward (the dashed

line indicates the use-def information chain). Now consider the code segment in Figure

4.7(b) in which a global array “g[]” is introduced and the value of swVar is computed

through the elements of the array. Replacing the constant assignments in Figure 4.7(a)

with complex expressions involving array elements implies that the static analyzer must

first deduce the array values before the value of swVar can be determined.

Index computation involving elements of aggregates, such as arrays or complex data

structures, is difficult to analyze statically [35][59], especially when the values of the

aggregate elements do not remain constant throughout the execution. Most static

analyzers simply assume that a reference to any element of the aggregate is a reference to

the entire structure, and that potentially all elements can be changed if an assignment is

made to any element of the aggregate.

70

The following four transformations are applied to the program in order to take advantage

of index computation:

• A global array—g[]—is introduced. The elements of this array are used by the

program in data computation, including the computation of branch targets. A certain

subset of the array is initialized according to the following rules:

- Every nth element in the array contains a data value x such that x ≡ c mod j

("≡" represents a congruence relationship). These elements are called the

black elements since they contain useful information.

- The constant values of c, n and j are contained in three randomly-selected

array elements.

- The other elements of the array are called the white elements, and they contain

random values.

• Computation of the branch targets (essentially an integer in this case) is performed

through the use of black elements. For example, supposing the branch target in

question is integer "2", and assuming that the constant c is 1—every black element is

thus congruent to 1 modulo the constant j, integer 2 can be calculated as:

(black element #1 + black element #2) mod j

It should be clear that the values of the black elements can compose arbitrarily

complex expressions to compute any arbitrary integer values.

71

• After each computation of the branch target, a random set of black elements are

overwritten with values in the same congruence class. For example, supposing every

tenth element of the array contains a data value x such that x ≡ 1 mod 47, further

assuming that the twentieth element of the array g[20] has the value 95, g[20] can be

overwritten with the value 246, which is in the same congruence class as 95 modulo

47.

• After each computation of the branch target, a random set of white elements are

overwritten with random values.

• A new subroutine called Redistribute is added to the program. The purpose of

Redistribute is to reorganize the black and white elements, and it is called periodically

throughout the execution. Redistribute overwrites the value of n and computes a new

set of black values which are then stored in the new locations of black elements.

With these modifications, the program can calculate branch targets dynamically using

arbitrarily complex expressions involving index computations—consider calculating

subscripts of black elements using black elements themselves. In particular, since the

array elements do not remain constant throughout the execution, a naive static analyzer

that does not perform value interpretation is all but hopeless in deducing any useful

information in this case.

Even a more aggressive analysis algorithm that is specially tuned to analyze arrays or

aggregate data structures, or even one that incorporates a limited form of interpretation

(such as constant propagation), must deal with yet another difficult feature of programs—

72

the existence of aliases. Aliases, a primary complexity factor in data-flow analysis, is the

focus of the next set of code transformations.

Aliasing: Aliases happen when two or more names refer to the same memory location.

Alias detection is essential to data-flow analysis. For example, consider the following

code segment,

S0: i = 0;
S1: *p = 1;
S2: while (i < 5)

{
*p = *p + i;
i = i + 1;

}
S3: f1(i);

If *p is an alias of i at S0, the while loop would only execute twice, and the value of i

switch (swVar)

L3:
b=b+a;
if (! (b > 10))

swVar = 5
else

swVar = 4;

goto switch;

defined as 5

defined as 4
switch (swVar)

L3:
b=b+a;
if (! (b > 10))

swVar = g[g[5]+g[g[23]]]
else

swVar = g[11+ g[23+g[2]]];

goto switch;

defined as ?

defined as ?

int g[] ;

...

Figure 4.7. Example illustrating index computation

73

would be 7 at S3. If *p is not aliased to i at S0, the while loop would execute 5 times, and

i’s value would be 5 at S3. Without the alias information, it is impossible to determine the

precise value of i statically at program point S3.

Many classical data-flow problems are known to be difficult to solve precisely because of

aliases [49][61]. Accurate alias detection, in the presence of general pointers and

recursive data structures, is known to be undecidable [49], and that is the key reason why

any data-flow problem influenced by aliasing is fundamentally difficult.

The code transformations described below introduce non-trivial aliasing in order to

influence the analysis of data quantities (in this case, the data quantities of interest

include the ones relevant to the computation of the branch targets).

• A random number of pointer variables to common data types (such as int, char, etc)

are introduced as both global and local variables5.

• Assignments to these pointer variables are made such that the pointer variables are

aliased to existing data variables as well as elements of aggregate structures (e.g., the

global array elements).

• Computations on certain data quantities are replaced with references through the

aliased pointers. For example, if variable *p is aliased to data variable a, the operation

5 Exactly how many pointer variables are introduced can be specified by the programmer

74

c = a + b can be replaced with c = *p + b. Furthermore, if a pointer variable is

aliased to an array element, references to other elements in the array can be replaced

with references through the pointer variable and the appropriate pointer arithmetic

operations. For example, if variable *p is aliased to array element g[10], a reference

to g[35] can be substituted with *(p + 25).

• Artificial basic blocks are created such that they contain spurious computations on

any relevant data quantities through the aliased pointers. As much as possible, uses of

the pointers and their definitions are placed in different basic blocks.

Some of these basic blocks will execute in all traces of the program, and others are

simply dead code. Since the static analyzer does not know which blocks actually execute,

and since definition of the pointers and their uses are placed in different code blocks, the

analyzer will not be able to deduce which definition is in use at each use of the pointer—

all pointer assignments will appear live.

p = &a;
a = a +b;

p = &b
b = 3;

L1: p = &a;
a = a+b;

swVar = f1();

L2: p = &b;
b = 3;

swVar = f2();
. . .

A A
<*p, b> <*p, a> < *p, b>

(a) (b)

Figure 4.8. Introducing aliases through pointers

75

For example, consider the code segment in Figure 4.8(a). It can be seen that in Figure

4.8(a) the second definition of the variable p carries to point A in the program. However,

if the code segment in Figure 4.8(a) is decomposed into two blocks in Figure 4.8(b) and

the transition between blocks is obfuscated using the flatten-and-jump technique

described earlier (f1 and f2 denote complex expressions), the static analyzer, not knowing

which block executes first, will report both alias relations <*p, a> and <*p, b> holding at

point A.

Intra-procedural aliases, when introduced in combination with the degeneration of static

control-flow, induces difficulties in the precise determination of alias relations. As a

result, a static analyzer will report imprecise alias relations. With a sufficient number of

aliases, the analysis will resolve an array element to a large set of possible values

(because of imprecise aliasing). This in turn implies that, at each use, the switch variable

can take on a large set of values.

4.3.4. Obstructing Intra-procedural Analysis—Putting It Together

The above sections detailed a strategy to alter intra-procedural control-flow and ways to

deter the static determination of control-flow targets. This strategy flattens the program

control-flow to a ubiquitous data-dependent flow structure, and at the same time,

introduces data aliases to further complicate the control-flow analysis.

The end results of the transformations are:

• Flow-sensitive analysis can never be more precise than flow-insensitive analysis

76

(since the required static control-flow information is missing).

• Flow-insensitive analysis is made ineffective by the introduction of data quantities

whose usage is flow dependent (e.g., aliasing).

It can be argued that if an adversary can capture the initial value of swVar, he can then

find the first block to be executed, and from there the next block can be identified, and so

forth. Doing so might recover some of the original control-flow. While this requires

interpretation and simulation of the code in order to identify the next block, the

interpretation needs to be done only once for each block. As a result, the complexity of

this analysis lies somewhere between static analysis and a full execution trace, with

analysis time being proportional to the number of blocks in the program.

One way to counteract the above technique is by unrolling loops and introducing

semantically equivalent blocks that will be chosen randomly during execution. This will

make the cost of recovering the program control-flow comparable to a full simulation.

Additionally, the initial computation of swVar can be erased from memory once it is used

to avoid unnecessary exposure of information.

A side effect of these transformations is that the basic blocks no longer need to appear in

the general order of execution—they can be organized in any random order. This serves

as a cheap obfuscation technique that can be used to deter naive pattern matching

analysis.

77

4.4. Inter-procedural Code Transformation

Function invocations can affect the usage of data quantities. To study program behavior,

analysis must be performed at the intra- as well as the inter-procedural level.

An inter-procedural data-flow analysis relies on the function invocation relationships to

determine, among other things, the static information propagation paths among

procedures, which are necessary in reasoning about inter-procedural data references.

The function invocation relations of a program can be encoded in a graph called the

Program Call Graph (PCG). Formally, a PCG is a triple (N, e, p) where; N is the set of

functions in the program such that },...,{ 21 npppN = , p is the function that contains the

program entry point; and e is a set of directed edges such that if),(ji pp is an element of

e, there exists at least one call from function ip to jp . Figure 4.9(a) shows a program

skeleton in which function f calls g, g calls h and i, and i calls j and g. The PCG for this

program is shown in Figure 4.9(b). The entry function f is marked by the bold circle.

Construction of the PCG is a straightforward process when all function calls are

explicit—a simple textual pass over the program will suffice. In the presence of function

pointers (or function parameters and function variables), however, a call-site may not be

bound statically to a unique function. Thus the process of constructing the PCG is more

complex.

Several approaches to building the PCG in the presence of function pointers exist, with

varying degrees of complexity and precision [30][54]. An approach that simply assumes

78

that an invocation through a function pointer may invoke any function in the program

requires a single pass over the program, and thus is the least costly with the least

precision. An approach that takes into account only the functions that have been

instantiated requires a flow-insensitive traversal of the program, and it generally provides

a better precision than the previous approach.

A more precise PCG can be obtained by conducting pointer alias analysis prior to

building the final PCG. The alias analysis helps to restrict the number of functions

invocable from a call site to the set of functions that are aliased to the function pointer at

that particular point. In other words, construction of a precise PCG hinges on no other

than alias analysis of the function pointers.

It should be clear by now that if function pointers are treated in the same manner as other

Figure 4.9. An example program call graph

f

g

h i

j

f() {
...

 g();
...

 }

g(){
...

h();
...

i();
...

}

i(){
...

 j();
...

 g():
}

(a)
(b)

79

pointers, the techniques described in section 4.3.3 can be applied to create aliases for

function pointers. Doing so would reduce the precision of the PCG representation, and

ultimately impede the process of inter-procedural data analysis.

This section describes a set of code transformations based on the above observation. The

basic strategy behind these transformations is as follows:

- Function calls are modified to calls-through-function-pointers

- Aliases to function pointers are created and function signatures are unified to allow

pervasive aliasing

- Alias-inducing techniques are applied to generate inter-procedural aliases

4.4.1. Function-call Transformations

To see why the presence of function pointers complicates the task of PCG constructions,

consider the two code segments in Figure 4.10 that implement equivalent functionality. In

Figure 4.10(b), ptr, fptr1, and fptr2 are function pointers. To determine the target of the

indirect call on line S6 in Figure 4.10(b), the analysis must determine the set of functions

to which fptr1 and fptr2 are aliased at S6. This requires knowledge of the alias relations

that hold on entry to func1. Without this information, the function pointer ptr on line S6

cannot be bound to any particular function at analysis time.

Transforming function calls to calls-through-function-pointers is straightforward. It

requires creation and initialization of the function pointer variable, and the corresponding

changes at the call site. This step does not require any changes to the function signature.

80

4.4.2. Function Pointer Aliasing

To further complicate inter-procedural data-flow analysis, function pointer aliases are

introduced to the program.

There is a twist to the creation of function pointer aliases. Unlike data variables, functions

tend to have distinct signatures. Thus each function pointer of a certain type can only be

bound to one function. This in itself is not sufficient to fool a static analyzer of any

intelligence, for it is a trivial task to match up invocations (the number and the types of

parameters) with function signatures. For this reason, the compiler, prior to creating

function pointer aliases, performs an operation to unify function signatures so that all

functions in the program conform to only a small number of distinct signatures. The

following paragraphs discuss function signature unification first, and then the

introduction of function pointer aliases.

Unifying function signatures: Consider the code segment in Figure 4.11(a). There are

two function invocations in func1. Both destination functions p and q return an integer.

However, p has just one integer parameter while q takes two parameters, one integer and

Figure 4.10. Function call via function pointers

S1: func1() {
S2: if (x > 4)
S3: func2();
S4: else
S5: func3()
S6: }

(a)

S1: func1(fprt1, fptr){
S2: if (x > 4)
S3: ptr = fptr1;
S4: else
S5: ptr = fptr2;
S6: ptr;}

(b)

81

one float. One way to unify the two signatures is to modify p’s signature to add a float

parameter as depicted in Figure 4.11(b). The bold letters indicate the added variable and

parameter.

Requiring all functions to conform to the superset of all parameter lists, as shown in

Figure 4.11, is the simplest and most intuitive way to unify function signatures. However,

it has a few drawbacks. For example, it is possible for such a scheme to result in

unreasonably long function signatures; consider n one-parameter functions, each with a

distinct parameter type, the resulting signature would have n parameters. Long function

signatures incur unnecessary cost, and are best avoided. Optimization is clearly possible.

In Chapter 6 where implementation of the One-way Translation compiler is discussed, I

will describe in detail some of the optimization techniques I have developed to facilitate

Figure 4.11. Example illustrating unifying function signatures

func1() {
 int x, y, z;
 float f;
 y = p(x);
 z = q (x, f);
}

int p(int para1) {
...
}

int Q(int para1, f loat para2) {
...
}

func1() {
 int x, y, z;
 float f1, f2 ;
 y = p(x, f2);
 z = q (x, f1);
}

int p(int para1, float para2) {
...
}

int Q(int para1, f loat para2) {
...
}

(a) original (b) t ransformed

82

efficient unification of function signatures.

A number of other issues need to be considered when modifying function signatures and

the corresponding invocations. Some of those are discussed below:

• Return type: In order to unify functions with different return types, a void type is used

in the transformed function signatures. An explicit cast back to the original type at the

function invocation and another cast before the function returns complete the

transform.

• Complex parameters: Complex parameters such as structures, arrays or functions are

replaced with void pointers. Consequently, function invocations and references to the

original parameters inside the function are modified as follows:

- A direct reference to the original parameter inside the called function is

replaced with an indirect reference via the void pointer parameter, following

an explicit cast to allow the void pointer to point to the original parameter

type.

- At the function invocation, the original actual parameter is replaced with the

void pointer variable which holds the addresses of the original parameter.

Figure 4.12 and Figure 4.13 illustrate an example of function signature modification. The

original program code is shown in Figure 4.12, and the transformed code is in Figure

4.13.

83

The bold letters in Figure 4.13. indicate modified or inserted variables or statements.

Note that the signature of func1 in line S5 in Figure 4.12 is modified such that instead of

taking a structure variable, the transformed func1 takes a void pointer as shown by line

S5 in Figure 4.13. Also note that within the calling function, the original structure

variable r1, declared on line S15 in Figure 4.12, is replaced with a void pointer void *r1.

The bold letters in Figure 4.13 indicate modified or inserted variables or statements. Note

that the signature of func1 in line S5 in Figure 4.12 is modified such that instead of taking

a structure variable, the transformed func1 takes a void pointer as shown by line S5 in

Figure 4.12. Function signature modification - original code segment

S1: structure {
S2: int f ield1;
S3: char f i led2;
S4: } records;

S5: int func1 (int x, records r, char *ch) {
S6: int y;
S7: y = r.f ield1;
S8: }

S9: char func2 (int x, char *c) {
S10: ...
S11: }

S12: int cal l ing_fun () {
S13: int x, y, z;
S14: char *m, *n;
S15: records r1;
S16: z = func1 (x, r1, m);
S17: func2 (y, n);

}

84

Figure 4.13. Also note that within the calling function, the original structure variable r1,

declared on line S15 in Figure 4.12, is replaced with a void pointer void *r1. r1 is

initialized on line S16 in Figure 4.12, and then passed to func1 as a parameter. Inside

func1, the reference to r1.field1 on line S7 in Figure 4.12 is replaced with (record *) r1

→ field1 on line S6 in Figure 4.13.

The operation of unifying function signatures results in a large number of functions

inside the program with an identical signature. Observe that with these transformations, a

function pointer can refer to a large number of otherwise distinct functions.

Figure 4.13. Function signature modification – modified code

S1: structure {
S2: int f ield1;
S3: char f i led2;
S4: } records;

S5: int func1 (int x, void *r , char * ch) {
S6: int y;
S7: y = (records *)r -> f ield1;
S8: }

S9: char func2 (int x, void *r , char *c) {
S10: ...
S11: }

S12: int cal l ing_fun () {
S13: int x, y, z;
S14: char *m, *n;
S15: void *r1, *r2;
S16: r1 = (void *)new (records);
S17: r2 = (void *)new (records);
S18: z = (int) func1 (x, r1 , m);
S19: func2 (y, r2 , n);

 S20: }

85

The number of distinct function signatures in a program is an application specific choice.

As an extreme, every function could be transformed to a single signature, in which case

only one type of function pointer is required. Alternatively, functions can be grouped into

a small number of groups, each with a distinct signature. The advantage of the latter

scheme is efficiency. In general, a large portion of the functions in a program contains a

similar list of parameters with common types (e.g., integers or floats). It is then more

economical to group these functions together to form a new signature. Since the new

signature has a significant overlap with any of the original ones, it has less an impact on

the run-time space and time complexity than a full signature unification.

Function-pointer aliasing: When function pointers are treated in the same manner as

other pointers, the aliasing inducing techniques described in section 4.3.3 can be applied

to introduce aliases for function pointers.

Specifically, function pointer aliases are created using the following methods:

• A number of function-pointer variables are declared—they have the same type since

function signatures are unified.

• Assignments to the function pointers are made such that some of the assignments are

located in spurious blocks (these assignments will never be executed).

Since the function signatures are unified, a function pointer can point potentially to any

function in the program. At an extreme when there is only one function signature in the

program, there will be an edge in PCG from a function that contains a call site to all

functions in the program. Of course, some of the PCG edges are real and some are simply

86

spurious.

Spurious edges in the PCG increase the complexity and reduce the precision of the inter-

procedural analysis. (Information propagation in between functions must be analyzed

between function pairs for which there exists no information propagation path from one

to the other.) Figure 4.14 illustrates such an example. Figure 4.14(a) is the original call

structure whose corresponding PCG is depicted in Figure 4.14(b). The post-transform

PCG, as perceived by a static analyzer, is illustrated in Figure 4.14(c) where the dashed

P

g

f

q

P () {
f();
g();

}
f() {

g();
}
g()
{

q();
g();

}

P

g

f

q

(a) (b)

(c)

Figure 4.14. A PCG with false edges

87

lines represent artificial edges added due to function pointer aliasing.

4.4.3. Inter-procedural Aliases

Under the conjecture that the PCG of the program is degenerate and that precise

information propagation paths among functions are not retrievable statically, I describe a

set of techniques to further thwart static analysis by introducing inter-procedural

aliases—aliases whose meaningful resolution requires none other than inter-procedural

data-flow analysis.

Inter-procedural aliases generally happen by parameter passing and the accessibility of

non-local stack locations. More precisely, the One-way Translation compiler introduces

inter-procedural aliases in the following ways:

• Global and local reference aliases: Addresses of global variables are passed to

functions as parameters. Inside the function, the global variables and the

corresponding formal parameters become aliases.

• Parameter aliases: Aliases between formal parameters are created by binding the

same address to two or more pointer parameters.

• Aliasing through return values: If the called function returns the address of a variable

visible in the calling function, and the return value is assigned to a different pointer

variable, the two variables become aliases upon return from the invoked function.

• Alias through side effects: When the address of a pointer variable is bound to a

88

parameter, this variable can be altered inside the called function. If, inside the called

function, the variable is assigned the address of another pointer variable that is also

visible in the calling function, the two pointer variables become aliases upon return

from the called function. Such an example is shown in Figure 4.15.

As the above discussions illustrate, function invocation can result in aliases in both the

called and calling functions. This is due to inter-procedural information propagation

between function calls—there is a forward parameter binding process in which

information propagates from the calling function to the called function, and this

information results in new aliases in the latter. Similarly, there is a backward binding

process in which information propagating from the called function back to its caller

prompts new alias relations in the calling function.

The presence of inter-procedural aliases requires inter-procedural analysis. Analysis at

the inter-procedural level requires the program call structure information in order to

propagate static information among functions. However, the indirect function calls and

the function unification transformation obscure the true information propagation paths

Figure 4.15. Aliasing through side effects

f() {
int *i, *j;
g (&i, &j);
… ----------// *i and * j become al iases here

}
g (int **a, int **b) {

a = b;
}

89

among functions. Thus the information needed to bind arguments and parameters

properly is not readily available.

4.5. Summary

In this chapter I present a suit of code transformations at the intra- and inter-procedural

level to deter static analysis. These transformations are based on two strategies:

- Degeneration of the static program control-flow

- Pervasive aliasing

On one hand, degenerate control-flow arises from transforming direct control-transfers to

data-dependent branches and subsequently flattens the static control-flow. Consequently,

control-flow analysis is converted to a ubiquitous data-flow problem (the problem of

determining the branch targets). On the other hand, data-flow analysis is made more

difficult by the introduction of pervasive aliasing throughout the program.

Note that transformations such as the ones described in this chapter are essentially one

way (with respect to time period T)—undoing the transforms requires minimally the

resolution of aliasing and restoring the static control flow, both are difficult problems.

Through these transformations, the two facets of static analysis--control-flow and data-

flow analysis—become strongly and ubiquitously co-dependent. The result of this co-

dependence is increased analysis complexity. Exactly to what degree analysis complexity

is affected is the topic of discussion for the next chapter—theoretical evaluation.

90

Chapter 5

Theoretical Evaluation

In this chapter, I present the theoretical evaluation of the efficacy of the code

transformations described in chapter 4. An NP-complete proof is presented to show that

in a general case, determining indirect branch targets statically for a transformed program

is an NP-complete problem. I follow the NP-completeness proof with a discussion of the

practical complexity in program analysis, given the said transforms. In particular, I

investigate the complexity of alias approximation methods since aliasing is the basis for

the claim of analysis difficulty.

5.1. An NP-complete Argument

I have thus far conjectured that the difficulty of discerning indirect branch target

addresses is influenced by aliases in the program. In this section, I support this claim by

presenting a proof to show that determining precise indirect branch addresses statically is

an NP-complete problem in the presence of general pointers.

Theorem 1: In the presence of general pointers, the problem of determining precise

indirect branch target addresses is NP-complete.

91

Proof: To prove a problem NP-complete, it suffices to show a polynomial-time reduction

from a known NP-complete problem to the target problem. In this case, I choose the 3

SATisfiability (3SAT) problem as the known NP-complete problem [21], and show a

reduction from 3SAT to that of determining precise indirect branch targets.

This proof is a variation of the proof originally proposed by Myers in which he proved

that various data-flow problems are NP-complete in the presence of aliases [61]. Landi

later proposed a similar proof to prove that alias detection is NP-complete in the presence

of general pointers [50].

Consider the 3-SAT problem such that

)(3211 iii
n
i VVV ∨∨∧ = ,

where },...{ 1 mij vvV ∈ , and mvv ,...1 are propositional variables whose values can be either

true or false. The 3-SAT problem states it is NP-complete to determine whether an

arbitrary 3 satisfiability formula is satisfiable.

The reduction is shown in the code below. The branch target address is located in the

array element A[*true]. The if conditionals are not specified—the assumption is that all

paths are potentially executable.

L1: int *true, *false, mvvv **,...*,*** 21 , *A[];

L2: A[*true] = &f1();

L3: if (-)

falsevtruev &;& 11 ==

92

else

falsevtruev &;& 11 ==
if (-)

falsevtruev &;& 22 ==
else

falsevtruev &;& 22 ==
…
if (-)

falsevtruev nn &;& ==
else

falsevtruev nn &;& ==

L4: if (-)

 ()2&]*[* 11 fvA =
else if (-)

()2&]*[* 12 fvA =
else

()2&]*[* 13 fvA =

if (-)

()2&]*[* 21 fvA =
else if (-)

()2&]*[* 22 fvA =
else

()2&]*[* 23 fvA =
. . .
. . .
if (-)

()2&]*[* 1 fvA n =
else if (-)

()2&]*[* 2 fvA n =
else

()2&]*[* 3 fvA n =
L5:

Code segment L1 declares the variables and an array A[] . mvvv ,..., 21 are doubly

dereferenced pointer variables. L2 assigns A[*true] to the address of f1.

A path from L3 to L4 represents a truth assignment to the propositional variables for the

3-SAT formula. Here the assignment to true is represented as an alias relationship

93

< truevi ,* >, and the alias < >falsevi ,* represents assigning false to variable iv .

If the truth assignment for the particular path from L3 to L4 satisfies the 3-SAT formula,

then every clause contains at least one literal that is true. This means that there exists at

least one path between L4 and L5 on which the value of A[*true] is never reassigned.

Consider choosing the path that goes through the true literal in every clause. In every

clause it assigns A[*false] to &f2 since every variable ijv* on that path is aliased to false.

If the truth assignment renders the formula not satisfiable, then there exists at least one

clause, (321 iii VVV ∨∨), for which every literal is false (i.e., all the literals in the clause

are aliased to false). This implies that * ijv is aliased to true for this clause. Because every

path from L3 to L4 must go through the following statement

If (-) ()2&]*[* 1 fvA i =

 else if (-) ()2&]*[* 2 fvA i =

else ()2&]*[* 3 fvA i =

Therefore, at program point L5, A[*true] must point to the address of f2.

The above code segment shows that 3-SAT is satisfiable if and only if the branch target

address contained in A[*true] is the address of f1. This proves that 3-SAT is reducible in

a polynomial time to the problem of finding precise indirect branch target addresses.

94

5.2. Practical Complexity Measures

The NP-completeness proof above presents a theoretical measure for the analysis of

general case programs. However, such a proof does not guarantee the average case

complexity—for any given program, the complexity of analysis could be well within the

grasp of a static analyzer (because of its size, characteristics, etc.)

In the remaining sections of this chapter, I examine the complexity measures for practical

program analysis within the context of the code transforms described in Chapter 4. In

particular, I concentrate on the complexity of alias approximation methods since alias

analysis influences the complexity of other data-flow problems.

In practice, alias analysis is conducted in an approximation manner—the results reported

by the alias analyzer may not be precisely the same as the actual alias relations, but

usually contain a conservative estimate of the reality(a superset of the actual alias

relations). How far the reported results are from the actual alias set is called the precision

of alias analysis.

The discussion here is concerned with the efficiency of the alias analysis as well as its

precision. Note that an analysis algorithm may be able to reach a conclusion quickly if

precision is not of a major concern. A clear example is to trivially report that every

variable is aliased to every other variable—such an analysis would take very little time

but would report with the least precision.

The complexity of alias analysis has been examined at a great length in various studies

95

[37][49][50]. In the discussion here, I distill from the previous research the essential

parameters that affect alias analysis and explore the effect of the code transformations

with respect to these parameters.

Before delving into the details of analysis, I introduce a number of conventions and

terminology that are used in the subsequent discussions.

The “Points-to” representation: The discussion hereafter is based on the points-to

abstraction of alias information [30]. Using this representation, x points-to y if x contains

the address of y. The “Points-to” representation is commonly regarded as more compact

and efficient than the explicit alias pair representation [37]. For example, the alias

relations shown in Figure 5.1 can be represented with two points-to tuples <*a, b> and

<*b, c>, while in the explicit representation, this alias graph is represented by <*a, b>,

<**a, c>, <*b, c>, and <**a, *b> 6.

Complexity Variables: Listed below are the variables used throughout the complexity

6 The relationship <**a, c> and <**a, *b> can be inferred from <*a, b> and <*b, c> of the points-to

representation

a b c

Figure 5.1. An example alias relation graph

96

analysis discussion.

1. NL(p) is the set of non-local variables that are visible in function p. In C, NL(p) is the

set of global variables.

2. LOCAL(p) is the set of local variables of function p.

3. avLOCAL is the number of average local variables of all functions.

4. PARAM(p) is the set of formal parameters of function p.

5. PPARAM(p) is the set of formal parameters of function p that are pointers.

6. PPARAM(p, i) is the ith formal parameter of function p that is a pointer.

7. ARGU(q, p) is the set of arguments of call site q that calls p.

8. ARGU(q, i, p) is the ith argument of function call site q that calls p.

9. PARGU(q, p) is the set of pointer arguments of call site q that calls p.

10. avPARGU is the average number of pointer arguments of all function calls.

11. ALIASE(a, d) is the set of aliases of object a after d levels of dereference.

12. AR is the number of alias relations currently holding. maxAR and avAR denote the

maximum and the average number of alias relations holding at any time, respectively.

13. ARsg is the number of alias relations holding for an object due to a single level of

dereference.

14. mulAR is the number of alias relations holding for an object due to an arbitrary level of

dereference

97

15. F is the number of functions in the program.

16. S is the average number of pointer assignment statements in a function.

17. B is the average number of blocks in a function.

18. FC is the number of function calls in the program. In the presence of function

pointers

19. FCE is the number of edges in the PCG. FCE can be larger than FC when function

pointer calls are allowed.

20. FAR is the average number of alias relations for a function pointer object, FAR < F

In section 5.3, I investigate the complexity of intra-procedural alias approximation

methods. The discussion extends to the inter-procedural level in section 5.4. In section

5.5, I summarize the practical complexity discussion.

5.3. Intra-procedural Alias Analysis

Determining the range of possible aliases in a program is essential to decipher the

behavior of the program statically—where and how a variable might be accessed carries

information about the algorithm the program employs, and therefore is important to

intelligent tampering or impersonation attacks. This section examines the complexity of

intra-procedural alias analysis.

Intra-procedural analysis requires the examination of the statements within a function and

the subsequent combinatorial analysis (if any) over their effect on aliasing. To be more

specific, the intra-procedural phase entails the following operations:

98

- Process each pointer assignment statement to determine the effect of this particular

statement on the alias relations.

- Analyze the combinatorial effects of the individual statements (either in a flow-

sensitive or insensitive manner)

The above two steps may be repeated multiple times, for the inter-procedural analysis

could result in new information that needs to be processed before the alias set converges.

The discussion in this section is initially focused on intra-procedural analysis only,

assuming the information propagated from other functions remains static. The effect of

function calls will be examined in the inter-procedural alias analysis discussion.

5.3.1. Processing Pointer Assignment Statements

The only kind of statements where alias information might be modified is pointer

assignments of the form:

Ptr = Expression(Q)

where the evaluation of Expression(Q) returns an address of a memory location (either

static or dynamically allocated), which is subsequently placed in pointer object Ptr.

Assuming p and p’ are the program points immediately before and after the pointer

assignment statement, and AR is the set of alias relations holding at p, processing the

assignment statement produces the set of alias relations AR’ holding at p’ (see Figure

5.2).

99

A transfer function '
)(

: AR
QStmt

ARf  → maps the pre-statement alias relations AR to

the post-statement AR’. There exists a set of well-known transfer functions that handles

different statements. Some are more complex than others [59]. These transfer functions

specify a set of rules via which alias relations are modified. For example, the transfer

function for the statement p = q where p and q are both pointers is such that,

AR’ = AR – (any alias of *p) + (*p, deref(q, 1))

This transfer function kills the alias relations of *p (since p is reassigned) and adds the

alias relations between *p and anything that q points to (since p is now pointing to

whatever q points to). In Figure 5.2, if AR = {<*p, a> <*p, b> <*q, c>}, after the

statement “p = q”, AR’ is {<*p, c> <*q, c> } , and the alias relations <*p, a> <*p, b> are

killed by the statement.

More generally, for a statement of the form

Pi = Qj (1)

where Pi denotes a pointer object i levels of dereferences away from P, and Qj is a

p = q

p

p'

A R

AR'

Figure 5.2. Pointer Assignment Statement

100

pointer object j levels of dereferences away from object Q, the transfer function can be

computed as shown in Figure 5.3.

The deref(p, i) function in Figure 5.3 returns the set of objects that are i levels away from

object P (for the alias relations shown in Figure 5.1, deref(a, 2) will return c). The

algorithm of deref(p, i) is based on the points-to representation, and it is described in

Figure 5.4.

The derefencing algorithm is similar to the alias query algorithm presented in Hind et al.

[37]. The average and worst case time complexity of such an algorithm is respectively,

O (derefLevel
avARsg), and O (derefLevelARsgmax)

where avARsg and maxARsg denote the average and the maximum number of alias

relations for an object due to a single level of dereference.

Figure 5.3. Transfer function for Pi = Qj

Transfer function f {
if (deref(p, i) must alias to pointer object c)

AR' = AR - (any alias relation of c) + <*c, deref(q, j + 1)>
else

AR' = AR + { <*a, b> | a is in deref(p, i) and b is in deref (q, j + 1)
}

101

Most pointer assignment statements can be decomposed into a linear combination of

statements with the form shown in (1). To process such a statement two calls to deref are

required, as demonstrated by the transfer function in Figure 5.3. The result from calling

deref is an alias set whose size is bound by mulAR , and pairing the results of calling two

deref is O(mulAR * mulAR). Therefore the complexity of applying the transfer function to

process a pointer assignment statement is roughly,

O (derefLevelARsgmax + maxARmul * maxARmul), (2)

for the worst case and

O (derefLevel
avARsg + avARmul * avARmul),

for the average case.

5.3.2. Analyzing the Combinatorial Effect

In a flow-insensitive algorithm, the effect of individual statements on aliasing is simply

Figure 5.4. Algorithm for dereferencing pointer variables

function deref (p, derefLevel)
{

if (derefLevel = 0)
AliasSolution Å AliasSolution + p;

else
for each alias relation (*p, target) or (p, target), do

deref (target, derefLevel –1)
end do

end if
}

102

summarized together to represent the combinatorial effect. Using such an algorithm, the

time complexity of a single intra-procedural analysis phase is,

O (S * F * derefLevelARsgmax + maxARmul * maxARmul),

where S denotes the average number of pointer assignment statements in a function, and

F denotes the number of functions in the program.

In a flow-sensitive analysis, the program control-flow is taken into account when

conducting analysis. Alias relations are killed if assignments to the same destination

occur sequentially, and they are combined at program points called meet nodes [18].

Meet nodes are actual or abstract nodes in the flow graph where different program flows

meet. An example meet node is shown in Figure 5.5—node d is a meet node where the

yes and the no branch of the conditional statement in a meet.

At each meet node, a union operation on the alias relations is performed, and the resulting

alias relations are fed as the input to the meet node. Time complexity of this operation is

bounded by the worst case measure,

O(Number of meet nodes * ARmax),

where ARmax is the largest number of alias relations holding in an alias set at any given

point.

If the flow graph is fully flattened (see the discussion in section 4.3.2), there exists only

one meet node in each function—the switch statement node (see Figure 4.5). Therefore

the worst-case complexity of combining alias relations at the meet nodes is O(F *

103

Armax), where F stands for the number of functions in the program.

If there exists any back edges in the CFG, a flow-sensitive analysis will attempt to iterate

over the graph until the alias set converges. Each iteration consists of two steps:

- Use the alias results of the previous iteration (meet-over-all-path solution for one

iteration) as input to the new iteration.

- For each control-flow path, compute the output alias set using the input and the

transfer functions along the path.

In a fully degenerate flowgraph, alias relations cannot be killed based on flow

information between blocks. Therefor the above steps simply become computing the

meet-over-all-block alias set and disseminating that as input to each block for the next

iteration. In other words, the flow sensitive analysis algorithm is essentially made flow

insensitive (with respect to flow between blocks) during each iteration over the CFG.

The number of times an analysis iterates over the CFG is a function of the structure of the

condit ional?

x = &zx = &y

Y N

...

a

b c

d

<*x. y> <*x, z>

<*x, y>
<*x, z>

Figure 5.5. An example meet node

104

flowgraph. In a fully flattened CFG, the minimum number of iterations required over the

CFG is two—one to compute the alias information for each block, and one to disseminate

the union of this information over each block7. The maximum number of iterations is

bound by O(B * ARmax) where B denotes the average number of blocks in a function,

and ARmax denotes the maximum number of alias relations holding in an alias set. The

worst case measure of O(B * ARmax) assumes each alias relation in ARmax causes each

block to generate new alias information which prompts yet another iteration.

It should be noted that while much of the discussions here focus on algorithm

complexity, the issue of analysis precision remains important. Supposing there are n alias

relations holding at the exit of each block, and further assuming there are m basic blocks

in the function, in a fully degenerate flowgraph, there should be at least n*m alias

relations that hold at the exit of the function. This resulting alias set reflects the effect of

all possible paths on aliasing. Note if the graph is not fully degenerate (i.e., some flow

information is available), the final alias set should be smaller than n*m since some of the

alias relations will be killed in analyzing blocks that execute in sequence.

Finally, the complexity of a single flow-sensitive intra-procedural analysis pass is,

 O (2 * (S * F * derefLevel
avARsg + avARmul * avARmul)+ F * ARav), (3)

7 This is a trivial lower bound

105

as a trivial lower bound, and

O((B * ARmax)* (S * F * derefLevelARsgmax + maxARmul * maxARmul)+ F * ARmax),

for the worst case.

5.4. Inter-procedural Alias Analysis

Inter-procedural alias analysis primarily handles information propagation between

functions. In particular, two information propagation processes are needed for every

function call: forward binding and backward binding. Forward binding maps the set of

aliases holding at a call site in function f into aliases holding on entry into the called

function g. Backward binding maps aliases holding at the exit of the invoked function g

into aliases holding immediately following the execution of g in f. Figure 5.6 depicts this

process.

The forward and backward binding operations, with respect to alias propagation, directly

affect the complexity of the inter-procedural alias analysis. In this section, I investigate

these binding operations and their complexity. The complexity discussion continues in

the context of a C-like language with pass-by-value parameters and pointers.

106

Forward Binding: An algorithm for forward binding is described in Figure 5.7. As

shown in the algorithm, at the entry to function g, actual pointer parameters in the alias

relations are replaced with the corresponding formal parameters. For example, consider

the code segment in Figure 5.8. Alias relations <*x, a> and <*y, a> hold at the call site

where f calls g. At the entry of g, the forward binding process replaces the actual

parameter x and y with m and n; that is, the alias relations <*x, a> and <*y, a> become

{ <* m, a>, < *n, a> }

as a result of the forward binding process.

Figure 5.6. The forward binding and backward binding process

call g ()

statement
immediately after

call ing g

Entry

Return

...

forward
binding

backward
binding

function f
function g

<*a, b> <*a, c> ...

<*x, y> <*x, z> ...

107

This forward binding algorithm in Figure 5.7 is devised based on the points-to alias

abstraction, and it is otherwise general in the sense that the complexity of the algorithm

does not depend on any special implementation of data structures. The algorithm

examines each pointer argument of the call, finds all its alias relations and replaces them

with the corresponding formal parameter.

The average and worst case time complexity for the forward-binding process are,

Figure 5.7. A forward binding algorithm – f calls g at call site q

Figure 5.8. An example illustrating forward and backward binding

forwardBinding (f , g, q) {
for each pointer var iable a in ARGU(q, g)

such that a = ARGU(q, i , g), do
replace <*a, x> in AR with

<*PARAM(g, i) , x> (or <PARAM(p, i) , x>)
end do

end forwardBinding }

int a, b;
f() {

int *x, *y;
x = &a;
y = &a;

----------- <*x, a> < *y, a> hold at this point
g (x, y);

}

g(int *m, int *n) {
int *x;
x = &b;
n = x;

 *m = *x + 1;
}

108

respectively, O(PARGU(q, p) * ARav) , and O(PARGU(q, p) * ARmax), where

PARGU(q, p) is the set of pointer arguments at call sit q that calls p, and ARav, ARmax

denote the average and the maximum number of alias relations holding during execution.

Backward Binding: An algorithm for backward binding, in the presence of pass-by-

value and pointer arguments, is described in Figure 5.9.

The backward binding algorithm discards each alias relation that involves a local variable

or a non-pointer parameter, and replaces the formal parameters in the remaining alias

relations with the corresponding actual parameters. Thus time complexity of the

backward binding process is,

O (ARav * (LOCAL(g) + PPARAM (g) + NL(g)))

for the average case, and

O (ARmax * (LOCAL(g) + PPARAM (g) + NL(g)))

for the worst case.

To see how the backward binding algorithm works, consider again the example in Figure

5.8. The set of alias relations holding at the exit of function g is {<*m, a>, <*n, b>, <*x,

b>}. The backward binding algorithm eliminates the alias relation <*x, b> since x is only

local to g, and replaces m and n with the variable x and y in f’s scope. The alias relations

holding at the return from g are,

{ <* x, a>, <*y, b> }

109

Backward and forward: For each function call, there is a cost of forward and backward

binding which propagate alias information back and forth between the called and calling

function. For a single function call, the cost of the inter-procedural information

propagation procedure is:

O (ARav * (LOCAL(g) + PPARAM (g) + NL(g) + PARGU (q, p)))

for the average case, and

O (ARmax * (LOCAL(g) + PPARAM (g) + NL(g) + PARGU (q, p)))

for the worst case (g is the called function at call site q, and p is the calling function).

Thus the average overall time complexity for the inter-procedural analysis is,

O (FCE * ARav * (LOCAL(g) + PPARAM (g) + NL(g) + PARGU (q, g))) (4)

Where FCE is the number of edges in the PCG.

Figure 5.9. A backward binding algorithm—g returns to f after call site q

BackwardBinding (g, f, q) {
For each(x, y) in current AR, do

If ei ther x or y is in Local(g), or in PARAM (g) but not in PPARAM(g)
discard <x, y> from AR

else
replace <x, y> where x is PPARAM(g, i) with <ARGU(q, i , g), y>

end if
end do

end backwardbinding }

110

An important step in inter-procedural alias analysis is determining the structure of the

PCG. In other words, the analysis must determine between which functions the forward

and backward binding process is to take place. In a normal program, this process is

simple since the PCG is mostly static and can be constructed in constant time as a

preprocessing step8. However, in the presence of function pointers, the exact structure of

the PCG is not known statically. Thus an approximation step is required to build a PCG

on which inter-procedural analysis can progress.

The simplest strategy to follow in this—which I consider as the worst case behavior—is

to assume that the destination of a function call is the set of all functions in the program.

This strategy can be refined by the use of the number and types of parameters passed only

when variable parameter lists are not used.

A more precise strategy is to determine the alias set of the function pointer at the call site

and deem that the invocable set of functions. Such a strategy is detailed in Emami et.

al.[30]. The skeleton of the algorithm is described in Figure 5.10. This algorithm requires

an inter-procedural analysis to determine the alias set of each function pointer when an

indirect call site is encountered. In other words, building of the PCG has just been

converted into a data-flow problem. The time complexity of this process is:

The number of indirect call sites * (the number of aliased function * the cost of
processing each call)

8 The constant time only applies to programs without recursive calls.

111

which translates to,

FC (F * (forward_binding + backward binding + the cost of one intraprocedural pass))

when each function pointer is aliased to the set of all functions, and

FC (FAR * (forward_binding + backward binding + the cost of one intraprocedural
pass))

when the function pointer alias set is FAR, where FAR < F.

5.5. Iterations Over the PCG

Described in section 5.3 and 5.4 are practical complexity measures for intra and inter-

procedural alias analysis. The complexity formulas (1) and (2) represent cost of a single

intra- or inter-procedural analysis pass. However, an aggressive analysis algorithm might

attempt to iterate over the PCG and repeat these analysis passes in an effort to gain more

precision. Such an iterative method might yield more accurate results at the price of being

Figure 5.10. Algorithm for constructing the PCG

S11: }

S1: Building the PCG {
S2: Process_call (null , main) ; }
S3: Process_call (call ing, called) {
S4: forward_binding (call ing, called)
S5: for each indirect call site with fptr, do
S6: conduct an intra-procedural pass to determine the al ias set for fptr
S7: for each function func in fptr ’s alias set, do
S8: Process_call (this function, func)
S9: update the alias set for fptr (and other function pointers)
S10: backward_binding (cal led, cal l ing)

112

more costly in terms of both running time and state space. One of the state-of-the-art alias

analysis algorithms—the NPIC algorithm (by Hind et. al.)—indeed employs an iterative

method which interleaves the inter- and the intra- phase of the analysis [37]. The NPIC

algorithm is generally regarded as one of the most aggressive and more sophisticated

algorithms. It has been reported that NPIC is capable of producing more precise results

than most other algorithms in the same category.

The number of iterations over the PCG is determined by how quickly the alias set reaches

convergence. Unfortunately, it is impossible to conjecture a lower bound for the number

of iterations since that depends on the alias computation within each function.

In the worst case, every alias relation can cause the algorithm to perform an iteration over

the PCG. Since each function may have up to ARmax alias relations holding in their entry

and exit alias set, the maximum number of iterations over the PCG is

O (ARmax * F),

where ARmax is the maximum number of alias relations holding at any time and F is the

number of functions.

During each iteration, the intra-procedural and the inter-procedural phase must be

repeated. Thus the overall complexity of iterating over the PCG and repeating the intra

and inter-procedural analysis is bounded by the worst-case measure,

O ((ARmax * F) * ((FCE * ARmax * (LOCAL + PPARAM + NL + PARGU)

+ (FC (FAR * (ARmax *(LOCAL + PPARAM + NL + PARGU)))

113

+((B * ARmax) *S * F * (
derefLevelARsgmax + maxARmul * maxARmul)

+ F * ARmax))))) (5)

5.5. Putting Together the Complexity Argument

The complexity measures described in section 5.3 and 5.4 represent the time requirement

for a comprehensive alias analysis. The measures showed that the parameters affecting

alias resolution include the following:

- Size of the alias set AR (this includes function pointer aliases)

- Levels of pointer dereferecing

- Size of the parameter list (this also include the size of local variable lists)

- Size of the program (number of blocks, functions, pointer assignment statements,

etc.)

- Number of edges in the PCG (as perceived by the static analyzer)

- Number of function calls (distinct static call sites)

The complexity of alias analysis can be made worse by increasing each of these

parameters, and the effect of increasing the parameters can be easily reasoned about using

complexity measures #1 through #5.

Note that the transformations introduced in Chapter 4 affect several complexity

parameters directly. For example, the parameter FCE in complexity measure #4

114

represents the number of edges in the program call graph as perceived by the static

analyzer. The discussion in Section 4.4.2 demonstrated how false static edges can be

added to the PCG to confuse a static analyzer.

The worst-case measures are rarely accurate indicators of performance. In practice, the

number of times a function is visited and a transfer function is evaluated maybe far from

the worst-case behavior. However, consider a program with a flattened control-flow, a

degenerate call structure and an abundant number of aliases. A function might be visited

each time a function call site is encountered (consider a fully connected program call

graph), and a basic block will be analyzed each time a branch instruction is met (consider

a fully degenerate flow graph). In such a case, the analysis complexity is close to the

worst-case estimate. Such an analysis will eventually converge and report a set of results

that include as many spurious alias relations as it possibly can; in several occasions when

tested against automated analysis algorithms, the analysis algorithm halts with a report

that every pointer variable is aliased to every memory location that appears on the right

hand side of assignment statements [79] (also see Chapter 7).

The complexity studies in this chapter confirm that the degeneration of the program

control flow and call structure render a data-dependent program flow structure that can be

made difficult to analyze. The analysis difficulty arises primarily due to the fact that the

control-flow and data-flow analyses are made strongly co-dependent by the code

transforms. This ubiquitous co-dependence is the source of a) reduced analysis precision,

and b) increased complexity of both control-flow and data-flow analyses.

115

Chapter 6

Implementation

In this chapter I describe the implementation of a prototype of the One-way Translation

mechanism. With the help of my colleague, Jonathan Hill, I have implemented the

prototype in a SUIF C compiler [2]. The code transformations are implemented as SUIF

passes that operate on the SUIF intermediate representation of the program. The

transformed intermediate code is then translated back into a C source code, which can be

compiled independently for any target platform.

At this level of automation, the programmer is required to specify some transformation

parameters such as the level of control-flow flattening and aliasing. Fortunately, this step

does not appear to be terribly burdensome since it involves no more than setting the

values of a few parameters (easy default values are available). In this chapter, I describe

the implementation of this One-way Translation compiler, and the specific design choices

that I have made.

116

6.1 Design Goals

Based on the discussions in the previous chapters, the following design goals are

identified for the One-way Translation compiler.

- Platform-independence

- Modular support for different code transforms

- Easy extension to other high-level languages

For the prototype compiler, I selected ANSI C as the target language and the SUIF2

compiler from Stanford as the infrastructure to implement code transformations [2]. The

compiler takes an input C program, performs code transformations and produces as

output a new ANSI C code. The resulting C code can then be compiled using any ANSI

C compiler. Since the code transforms operate on the SUIF representation which is

largely architecture independent, these choices meet the first requirement, platform-

independence.

The types of code transformation may evolve as new protection techniques surface. It is

important therefore to have modular support for incorporating additional transformations.

SUIF provides a programming environment that allows modular development, easy

integration, and easy interoperation of different compiler passes. These features made

SUIF an ideal candidate for implementing the compiler.

Many source-to-source translation tools exist between ANSI C and other languages such

as C++, Pascal and Fortran. Programs written in those languages can be translated into

117

ANSI C before undergoing the code transforms. Therefore the choice of ANSI C as the

target language allows extensions to other languages. Finally, the SUIF team is designing

a JAVA front-end that, when available, can be incorporated into the One-way Translation

compiler to handle JAVA programs.

It should be noted that while some of the code transformation techniques appear to

depend on specific high-level language features such as C's explicit pointer manipulation,

the fundamental concepts can be duplicated at a lower level that is independent of the

high-level language. For example, pointer manipulations can be achieved at the assembly

level even when the high-level language does not provide language support for such

manipulations. I choose to implement the prototype in C, at the source level, for two

reasons: platform independence and ease in implementation. The choice of my target

language does not preclude the application of the fundamental techniques to programs

written in other high-level languages.

6.2 The SUIF Compiler

The SUIF compiler is designed to provide modular support to facilitate research in

compilation techniques [2]. The compiler uses an intermediate representation called SUIF

and a set of well-defined capabilities to manipulate the SUIF representation. The

attractive properties of the SUIF compiler include the provision of useful abstractions and

frameworks for developing compiler passes and a programming environment that allows

different passes to easily inter-operate.

The intermediate representation produced by the SUIF front end is a complete abstract

118

syntax tree of the program. Having a complete syntax tree to work with is essential for

making global modifications of the program. Typically, code manipulations are

implemented as SUIF passes that operate on the syntax tree. The passes are then made

into shared libraries that can be imported dynamically during compilation. Different

passes can be implemented independently of each other and later combined together to

realize a particular functionality.

6.3 Implementation in SUIF passes

In this section, I describe the implementation issues of the fundamental set of

transformations performed by the prototype compiler.

Throughout this section, I make certain assumptions about the input code that help to

simplify the implementation of the transformations. These assumptions are:

• There are no function parameters in function signatures. Although the transforms

make extensive use of function pointers, function parameters in the original program

complicate many of the code transformations and make it difficult to maintain the

original semantics of the program. Therefore the prototype implementation, as it

stands now, does not handle programs with function parameters.

• A limit is placed on the number of parameters a function can have, and that is

typically a small integer (i.e., extra long function signatures are disallowed).

It should be noted that although these assumptions appear to be limitations of the current

119

prototype implementation, they are not fundamental to the principles underlying the code

transforms—they are enlisted for efficiency and simplification reasons only.

6.3.1 Function Signature Unification

One of the fundamental transformations performed by the One-way Translation compiler

is the function-call modification in which direct function calls are converted to function

pointer calls. To facilitate such a transformation, function signatures need to be unified so

that only a small number of distinct signatures exist in a program (see the discussion in

section 4.4).

Unifying function signatures inevitably means creation of new parameters and return

types. Care must be taken so that the unification process does not incur unnecessary run-

time costs. Chapter 4 discussed a simple scheme that unifies function parameter lists to a

superset. Here I present a more sophisticated and less costly scheme to unify function

signatures.

First, a destination signature length is chosen. This specifies the number of parameters

the unified signature will have. The destination signature length can be specified as an

option by the programmer. Alternatively, the compiler chooses a length that is the

average of all signature lengths in the program.

Second, the parameter types are chosen, and this is done using the following algorithm:

- The compiler walks through the program and collects all data types that appear as

120

parameters in function calls. Non-primitive types such as arrays or data structures are

replaced with a void* type. Each data type has a rating associated with it, and each

time a type is encountered, its rating is incremented by “1”. For example, in

examining the following function signatures:

func1 (int, int, char)

func2 (int, char)

func3 (int *)

the type int receives a “3” rating, while char receives a “2”, and int* receives a “1”.

- The compiler chooses n data types with the top ratings as the final parameter types (n

is the destination signature length). If the number of distinct types is less than n, the

compiler adds additional parameters by traversing from the top of the list, adding a

second parameter of the highest-rated type, then the second highest, and so on. This

process continues until the desired signature length is reached. For example, consider a

destination signature with three parameters. If the type collection has rendered the

following information: int(20), char(13), the final signature is then (int, int, char).

Now the function signatures, bodies and the calls are modified as follows:

- For each parameter that is not included in the final function signature, a global

variable of that type is created. At each call site to the function, the value of the

original argument is written to the global variable. Inside the function body,

references to the original parameter are replaced with references to the global variable

(see example in Figure 6.1).

121

- In Figure 6.1, function func2’s signature is changed from (int, int, char) to (int, char). To

facilitate this change, a global variable _para2 of the type int is created. Before calling

func2, _para2 is initialized to contain the value of the original argument, para2. Inside

func2, the original reference to para2 is replaced with a reference to the global variable

_para2.

- For each added parameter, if its type is the same as an original parameter, the same

value is bound to both the original and the new parameter. Figure 6.2 illustrates such

an example. In Figure 6.2, function func2’s signature is changed from (int, char) to (int,

int, char). At the call site in func1, the same value is passed to para1 and the new para2

since they are both integers. Inside func2, one of the references to para1 is replaced

with a reference to para2. The modified code is indicated with bold text.

When an added parameter also adds a new type to the parameter list, this new parameter

needs to be referenced inside the function. Otherwise it is a trivial task to find the

artificial parameters since they are not used in the function (or the optimizer may decide

to omit this parameter since it is not used). If this new parameter happens to be a pointer

type, and if there happens to be a global variable that is of the type this pointer points to,

the compiler passes the address of the global variable to this new parameter at the call

site. Inside the function, references to the global variable are randomly replaced with

references to the new parameter. Furthermore, if the new parameter is a pointer type that

can be made to point to either a local variable or another formal parameter of the function

inside the function, this parameter is assigned the address of these variables, and

computations are changed accordingly.

122

Figure 6.1. An example illustrating cutting parameters

func1() {
int para1, para2;
char para3;
...
cal l func2(para1, para2, para3)

}

call
func2

func2 (int para1, int para2, char para3) {
x = para1;
y = para2;
z = para3;

}

(a) Original program

int _para2; --- global variable
func1() {

int para1, int para2;
char para3;
...
_para2 = para2; --- initialize global
cal l func1(para1, para3)

}

call
func2

func2 (int para1, char para3) {
x = para1;
y = _para2;
z = para3;

}

(b) Transformed program

123

Figure 6.2. An example illustrating adding parameters

func1() {
int para1;
char para3;
...
cal l func2(para1, para3)

}

call
func2

func2 (int para1, char para3) {
x = para1;
y = para3;
z = para1;

}

(a) Original program

func1() {
int para1;
char para3;
...
call func1(para1, para1 , para3)

}

call
func2

func2 (int para1, int para2 , char para3) {
x = para1;
y = para3;
z = para2;

}

(b) Transformed program

124

If the new parameter is not a pointer type, the compiler checks to see if there exists a

global variable of the same type. If the answer is no, a global variable of the type is

created. If there is no reference to the global variable inside the function, spurious

operations involving the global variable and the new parameter are created. Before the

function returns, the global variable is restored to its original value. In the case where

there already exist legitimate operations involving the global variable, the operation is

replaced with a copy from the global variable to the artificial parameter, the operation

performed on the parameter, and a copy back to the global variable.

6.3.2 Control-flow Flattening

As described in Section 4.3.2, degeneration of the program control-flow is central to the

One-way Translation idea. To support this transform, the compiler first builds the

control-flow graph of every procedure, then it converts it to a universal structure with the

form shown below,

While ()
{

Switch ()
{
}

}

In this structure, the blocks of the switch cases are the basic blocks of the function. The

compiler provides an option for the programmer to specify the extent to which the

function control-flow is to be degenerate. Replacing direct branches with data-dependent

branches has a cost in run-time. Therefore fully flattening the control-flow may not be an

economical choice. (Chapter 7 investigates the cost associated with the control-flow

125

flattening operation.)

When the programmer specifies the percentage of the branches to be transformed, it is a

random choice on the compiler's part to choose which branch statements to transform.

This can obviously be improved by the adoption of a random selection policy of some

intelligence. For example, it is advantageous to transform branches that will not be

heavily executed during the execution. This may require a preprocessing step to identify

loops, an optimization that is not currently considered in the prototype implementation.

Another transform associated with the control-flow flattening is the introduction of

artificial basic blocks. In the current implementation, these blocks contain only pointer

assignment statements in order to confuse the alias analyzer, and they are never executed.

The number of artificial blocks to be inserted can also be specified by the programmer, or

left to the default (50% increase of the number of basic blocks). To implement the

addition of the artificial blocks, the compiler makes a pass through the function and notes

the number of block labels and the jump instructions that utilize them. A new set of labels

is then generated including the ones for the new blocks. The labels are organized in such

a way that labels for the artificial blocks are interleaved with the legitimate ones. The

jump instructions are changed accordingly. Note this step is performed before the

flattening takes place.

6.3.3 Inter-procedural Alias Insertion

One of the major transforms the One-way Translation compiler performs is the creation

of inter-procedural aliases. The discussions in Section 4.4.3 described several different

126

types of inter-procedural aliases and how they might be introduced in the program. In this

section, I revisit this transform with the focus on implementation rather than mechanisms.

Section 4.4.3 identifies four different ways aliases can be created as result of function

calls. They are: global-to-local aliases, parameter aliases, side-effect, and return-value

aliases. The discussion below considers these cases in turn.

Global-to-local aliases: To create global-to-local aliases, the compiler performs the

following steps.

- Perform one pass over the program to find all references to global variables in the

program.

- For each function that contains at least one reference to a global variable, its signature

is modified such that a new pointer parameter is introduced for each reference to a

distinct global variable.

- At the call site, this new pointer parameter is bound to the address of the

corresponding global variable.

- Inside of the called function, the new parameter and the global variable become

aliases. References to the global variable can be replaces with dereferences via the

pointer parameter.

127

Note that more than one parameter can be introduced for each global reference, in which

case there are more than two ways to reference the global variable inside the called

function. The compiler allows the programmer to control the transform by specifying the

percentage of the global references that should be modified and the extent to which

pointers to a global variable are replicated. Figure 6.3 depicts an example transform

Figure 6.3. An example illustrating global-to-local aliases

Figure 6.4. An example illustrating parameter aliases

int i, j;
int f() {
 i = 1;
 j = g ();
}
g () {
 i ++;
 i ++;
}

int i, j;
int f() {
 i = 1;
 j = g (&i);
}
g (int* a) {
 *a = *a + 1;
 i ++;
}

(a) original program (b) transformed program

f () {
int i, j;
g (&i)

}
g (int *a)
{

*a = *a + 1;
return *a;

}

(a) original program

f () {
int i, j;
g (&i, & i);

}
g (int *a, int *b)
{

*a = *b + 1;
return *b ;

}

(b) t ransformed program

128

where a pointer parameter to a global variable is passed to a function, and one reference

to the global variable inside the called function is replaced with a reference through the

pointer parameter. The bold text indicates modified code.

Parameter aliases: When two or more pointer parameters are bound to the same address,

they become aliases inside the called function. In order to create aliases of this type, it

suffices to replicate existing pointer parameters. Figure 6.4 illustrates such an example In

Figure 6.4, function g is called with two identical addresses. Inside g, a and b are aliases

to each other.

To accomplish this transform, the compiler performs a pass over the program, and

identifies all the pointer parameters. The programmer can specify the percentage of the

pointer parameters to be replicated (the default is zero percent), and the extent to which

they are replicated (one or more duplicates). Function signatures are then modified to

include the new parameter(s). Call sites are modified accordingly to bind the same

address to the new parameter(s).

Intra-procedural aliases through inter-procedural means: One of the transforms

described in Section 4.3.3 is the creation of intra-procedural aliases. In addition to

straightforward pointer manipulations (pointer assignments and arithmetic operations),

aliases can be created as a result of function calls (i.e., using inter-procedural mechanisms

to create intra-procedural aliases, this possibility is first discussed in Section 4.4.3).

129

In order to create aliases between two pointer objects inside function f, the compiler

chooses a destination function g, which is called by f. Two additional parameters (both

addresses of pointers) are created in g's signature, one for each of the pointer objects. At

the call site, the addresses of the two pointers are passed as arguments to the newly

created parameters. Inside g, g simply assigns the address contained in one object to

another, thus creating an alias relationship. Such an example is shown in Figure 6.5.

6.4 Preprocessing

Several preprocessing steps are performed before the code transformations take place. In

this section, I examine these preprocessing steps. In theory the preprocessing is not

integral to the fundamental code transformations, its only function is to simplify the

transforms. However in practice the preprocessing operations play an important part in

enforcing the correctness and efficacy of the transforms.

Figure 6.5. Aliasing through function call side effects

f() {
int * i, *j;
g (&i, &j);
… ----------// i and j become al iases here

}
g (int **a, int **b) {

*a = *b;

}

130

6.4.1 Variable Declaration Motion

In ANSI C, scoping rules state that variables defined in an outer scope are visible from

the inner scopes, but not vice versa. When the control-flow is flattened, the scopes

disappear. What this means is that variables defined in outer blocks are no longer visible

to the inner blocks since they have been raised to the same level. To circumvent that,

prior to block flattening, the compiler performs an operation, called variable declaration

motion. This operation makes a pass over all the basic blocks within a function and

moves all the variable definitions to the outermost scope of the function. The variables

are renamed to unique strings to avoid naming conflicts.

6.4.2 Function Signature Preprocessing

In order to simplify the unification of function signatures, the compiler performs a

preprocessing step to replace non-primitive parameters such as structures or arrays with a

void * type. The implementation of this step scans the entire program and locates all

function signatures that contain non-primitive parameters. When such a signature is

encountered, the particular parameter in question is replaced with a new parameter of the

type void *. Inside the function, references to the original parameter are replaced with

dereferencing the new pointer parameter, following a cast to make the pointer point to the

original type. The compiler then performs another pass, and finds all corresponding call

sites. At each function that contains such a call site, a new local variable of the type void

* is created, and it is assigned to the address of the non-primitive data object prior to the

call. At the call site, the physical call is modified such that instead of passing the non-

primitive data object, the code passes the pointer object instead. An example of function

131

signature preprocessing is illustrated in Figure 4.12 and Figure 4.13 in Chapter 4.

6.5 Correctness Discussion

When a program is transformed during compilation, there is always the issue of whether

the transformation is performed correctly—whether the resulting code preserves the

semantics of the original program. Formally proving the correctness of the transforms is

beyond the immediate scope of this dissertation. In fact, the compiler community has not

solved the general correctness question regarding the more traditional code transforms

performed by optimizing compilers.

While the issue of correctness is not dealt with directly, I point to a few research efforts

that address the various aspects of the correctness problem. Translation validation, for

example, is a technique designed to check the result of each compilation against the

source program and to detect errors on-the-fly [68]. Necula proposed a practical

framework for translation validation within which small instances of code transforms

(described as a pass) can be validated [64]. Necula showed that it is possible to

implement a practical translation validation infrastructure with about the effort typically

required to implement one compiler pass. Since in this work the transformations are

implemented as compiler passes, I believe that while it may not be possible to prove that

the compiler is always correct, it is possible to check the correctness of each compilation

using translation validation techniques.

132

6.6 Implication on debugging

Programs that are transformed using the methods described in this work do not follow

traditional program constructs and hence are particularly hard to debug. The transforms

incorporate program features that are generally considered bad programming practice,

such as the liberal use of gotos and pointers. While it is nearly impossible to debug such

programs, the strategy I advocate is to debug the transformer (in this case the compiler)

and ensure that each transform is applied and implemented the way it is intended.

133

Chapter 7

Empirical Evaluation

In this chapter I present the empirical evaluation of the code transforms described in the

previous chapters. The essential functionality of the One-way Translation compiler was

implemented and tested on a variety of applications. The evaluation consists of

performance studies of the transformed applications and experimental results when

measured against existing software analysis tools.

7.1. Evaluation Criteria

Based on the nature of the code transformations and their intended use, the following set

of evaluation criteria was developed:

- Performance overhead of the transformed program

- Performance of analysis tools when tested on the transformed program

- Precision of the automated analysis

134

Performance overhead: The code transformations developed in this work make

significant modifications to the target program. They transform the basic structure of the

program, introduce pointers and aliases, insert artificial blocks and modify the function

call behavior. These transforms will have considerable impact on the program's run-time

performance, and it is important to understand what that impact might be.

The notion of performance overhead considered here includes two facets: execution-time

slow down and code-space expansion. Both are examined in the experiments.

It is important to note that the fundamental reason that a program might want to undergo

such transformations is to protect the program's operation (which translates to knowledge

of its internal algorithm, data structures, etc.) from malicious environments. Therefore the

security strength of the mechanism is of primary concern, not the performance penalty.

Efficiency of static analysis tools: In practice, program analysis will be conducted with

automated tools. It is therefore of interest to see how the transformations measure up

against existing analysis tools. To that end, I choose to experiment with alias analysis

tools for two reasons. First, aliasing is a fundamental technique underlying the One-way

Transforms, so the difficulty in alias analysis constitutes a baseline estimate. Second,

alias analysis is a well-defined form of program analysis—automated tools for other

types of program analysis are less likely to be as mature or as general. By efficiency here,

I mean the running time of the tool before the analysis reaches closure and terminates.

Precision of alias analysis: Precision of alias analysis indicates how accurate the

analysis result is with respect to the true alias relations.

135

Both analysis precision and the efficiency of analysis are important criteria. They

represent the two facets of the analysis quality. An analysis may reach closure quickly,

but if the results are imprecise, it will be of little use. On the other hand, accurate analysis

results, if not reached within a reasonable amount of time, are equally ineffective,

especially with time-varying obfuscations. I consider both analysis efficiency and

precision in the experiments and in analysis of the results.

7.2. Performance Overhead

In considering the performance overhead of the transforms, a related factor is compiler

optimization. Two issues regarding optimization are of interest. First, since the code

transformations are performed at the source-code level, it is essential to understand the

impact of optimization on the transformed program. In particular, the issue of whether the

optimizer will undo the code transformations is a major concern. Second, it is also of

value to examine the impact of the code transformations on the effectiveness of compiler

optimizations.

With these issues in mind, experiments to measure the transformed program performance

were conducted. An ideal target program for the experiment is of course the network

probe program described in Chapter 2. However, the survivability architecture, along

with the probing mechanism, is still in heavy development and therefore is not suited for

this experiment.

The target programs that were used in these experiments included three programs from

the SPEC95 benchmark program suit and STIDE, an intrusion detection program from

136

the University of New Mexico. The three SPEC programs are Compress95, Go and LI.

The choice of the three SPEC programs is based on their respective characteristics: Go is

a program that implements Wei Qi, the Chinese board game. GO is specially branch

intensive. Compress95 is a loop intensive compress algorithm. LI is a LISP interpreter

program with heavy nesting structures. STIDE performs primarily sequential processing

on large input files. These programs embody a wide range of program characteristics, and

are good representatives of real-world programs. Table 7.1 describes the five test

programs and their characteristics.

The platform for the experiments is a 50MHZ, 4-CPU SuperSPARC with 512 MB of

RAM, running Sun OS 5.51. Tests with and without optimizations (with the gcc -O

option) were performed.

Program Description Size(bytes)
Number of static

branches

Compress A compress algorithm 106,440 459

GO Chinese board game 699,172 10,857

LI LISP interpreter 118,980 2728

STIDE Intrusion Detection Program 819,072 1868

Table 7. 1. Test programs (source before transformations)

7.2.1. Impact of Branch Transformations on Performance

The first set of experiments is designed to show the impact of control-flow flattening.

These experiments are performed with no artificial blocks inserted and no changes made

137

to the function call structure. Dynamic computations of the branch targets are performed

through index computation via a global array. Three array accesses, on average, are made

for each branch target computation.

Figure 7.1. shows the (normalized) execution time of the test programs without

optimization. As can be seen in Figure 7.1, the performance slow-down increases

exponentially with the percentage of transformed branches in the program. With a 50%

branch transformation, the average performance slows down by about a factor of 4.

This result is intuitive. In this transform, each direct branching statement is replaced with

one direct branch (to the switch statement) and one indirect branch (through the jump

table). This substitution, along with the array accesses, consists of expensive operations

that cause considerable performance overhead at run-time.

An interesting case is Compress which has the least number of static branches. Due to its

loop-intensive nature, Compress’s branches are executed often at run-time, and this

Figure 7.1. Execution time without optimization –- branch
transformation only, no artificial blocks added, no function unified

�������
�������

��������
��������
��������
��������

������
������
������
������

�������
�������
�������
�������
�������

Execution time (non-optimized)

0

2

4

6

8

10

10% 30% 50% 80%

Percentage of branches transformed

N
or

m
al

iz
ed

ex

ec
ut

io
n

tim
e

STIDE Compress Go
���

li

138

explains why the performance slowdown of Compress is comparable to that of STIDE’s.

Figure 7.2 shows the execution time with optimization. The other parameters remain the

same. Across the board, the performance slowdown is much worse with optimization.

On average, a factor of 4 increase for 50% branch transformation in an non-optimized

version has turned into an increase by a factor of 9.57 when optimized. Again, Compress

is the interesting case. Figure 7.3 shows the execution time of the original programs, with

Figure 7.2. Execution time with optimization

Figure 7.3. Execution time of the original programs, with and
without optimization

�������
����������
����������

��������
��������
��������

������
������
������
������

Execution Time (optimized)

0

5

10

15

20

25

10% 30% 50% 80%

Percentage of branches transformed

N
or

m
al

iz
ed

ex

ec
ut

io
n

tim
e

STIDE Compress Go

������
������ li

0

1

2

3

4

5

6

compress go li stide

non-optimized

optimized

139

and without optimization. Observe how compiler optimization performed best on

Compress among the untransformed programs—a whopping 80% decrease in the

execution time due to optimization. However, optimization performed much worse on the

transformed Compress. As Compress is a loop-intensive program, what we observed was

that the transforms disabled certain forms of loop or loop kernel optimization.

This is encouraging because an optimizer is essentially a program analyzer. Although its

goal is code improvement, it nevertheless follows the general principles of program

analysis. The fact that the transforms were able to obstruct the analysis performed by the

optimizer is another empirical result supporting the thesis that the code transformations

are working.

In the case of STIDE, optimization before and after the transforms had little impact on its

performance. This is mainly due to its sequential processing nature—the program spends

most of its time executing large blocks rather than branching between blocks.

Figure 7.4. Executable size without optimization

����������
����������
����������

�������
�������
�������
�������

���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������

Executable Size (non-optimized)

0

1

2

3

4

1 2 3 4

Percentage of branches transformed

N
or

m
al

iz
ed

pr

og
ra

m
 s

iz
e

STIDE Compress Go
����

li

140

Figure 7.4 and Figure 7.5 depict the code size expansion, with and without optimizations.

As can be seen in Figure 7.4 and Figure 7.5, code size expansion is fairly limited with

branch-only transformations. With an 80% branch transform, the average program size

increased about 84% in the non-optimized version and 50% when optimized. GO, being

the one with the largest number of branches, experienced the largest code expansion; for

an 80% transform of branch instructions, the executable size of GO increased by 200%.

Conversely, Compress experienced the least increase in size since it had the least number

of branch instructions.

At present, a random algorithm is used to choose which branch to transform. An obvious

future improvement is to employ some form of intelligent policy to perform the

following: a) identify the regions of the program that require greater protection from

static analysis, and b) perform transformation on the less-often-executed branches for

better performance results.

Figure 7.5. Executable size with optimization

�������
�������

������
������
������

���������
���������
���������
���������

��������
��������
��������
��������
��������

Executable Size (optimized)

0.9

1.4

1.9

2.4

2.9

1 2 3 4

Percentage of branches transformed

N
or

m
al

iz
ed

 p
ro

gr
am

si

ze

STIDE Compress Go
�����

li

141

7.2.2. Impact of Pervasive Aliasing

As described in Chapter 4 and Chapter 5, aliasing is fundamental to the security strength

of the code transformations. This set of experiments is performed to investigate the

impact of pervasive aliasing on the program performance.

In these experiments, the following four types of alias were introduced:

- For every function that contains references to global variables, the global variable

doubled as a formal parameter. References to the global variable inside the function

were randomly replaced with references to the parameter.

- In every function, a random number of pointer variables were introduced (a number

between 1 and the number of existing local variables). These variables were pointers

to common data types (a preprocessing step was used to determine the most

commonly used data types).

- The compiler randomly assigned these pointers to local variables and global

variables; at least one variable was aliased to the global array that contained data

values to compute branch addresses. A subset of these assignments were performed

inter-procedurally (see the discussion on inter-procedural aliasing in Section 4.4 and

Section 5.4 for details). Subsequently, existing computations were updated with

references through these pointers.

- A small number of basic blocks (a random number between 1 and half of the existing

basic blocks in the function) were introduced. These blocks were never executed, but

they contained spurious assignments to the pointer variables.

142

After the transform, the programs were executed and performance results were collected

for a 15-run average. Table 7.2 and Table 7.3 contain the execution time and code size

for the non-optimized programs.

10% 30% 50% 80%

Before After Before After Before After Before After

Compress 762 802 1365 1611 2153 2839 3292 4501

Go 522 680 1017 1697 1491 3708 2274 6435

LI 1192 1442 2787 4152 3178 6006 4424 9378

STIDE 506 608 765 1215 1328 2354 2122 4398

Table 7.2. Execution time (in seconds) without optimization, with variable
branch transforms, before and after aliasing

10% 30% 50% 80%

Before After Before After Before After Before After

Compress 113 140 121 160 125 177 132 189

Go 1002 1478 1417 2126 1807 2675 2402 3300

LI 223 330 296 412 350 560 448 657

STIDE 983 1232 1253 1786 1449 1876 1679 2314

Table 7.3. Executable size (in Kbytes) without optimization, with variable
branch transforms, before and after aliasing

Aliasing incurred further performance slowdown as shown in Table 7.2. However, the

impact of aliasing was not evenly distributed. In the case of Compress, the presence of

aliases generated a further performance slowdown between 5% and 30%, while aliasing

caused the performance of GO to drop another factor of 2 or 3. As GO had many basic

blocks, and as some of the aliases and alias-related computations were introduced on a

per-block basis, aliasing had the most effect on GO's performance—for a 50% branch

transform, GO's performance overhead increased from a factor of 5 to beyond a factor of

143

10. As expected, Compress and STIDE had comparatively less performance overhead due

to aliasing than the other programs. STIDE spent most of its time in sequential

computations, so the cost of the pointer assignments and indirect addressing was

amortized while Compress has fewer branch computations that were affected by aliasing.

On average, the increases in program size due to aliasing were between 12% and 50%.

This increase was more predictable since the aliasing scheme inserts a known number of

basic blocks and extra instructions.

Table 7.4 and Table 7.5 contain the performance data and code size for the optimized

programs. The performance results in Table 7.4, along with the ones in Table 7.2, show

that optimizations continue to be hindered—the presence of aliasing decreased the

reduction in execution time produced by optimization.

Aliasing appeared to be the most effective in counteracting optimization when the

program control-flow was not completely degenerate (in which case optimization could

perform fairly well without aliasing). As the program control-flow became more

degenerate, significantly less reduction in execution time induced by optimization was

observed.

Applying optimizations here (with full-scale aliasing and control-flow flattening)

produced negligible differences in the program size as demonstrated by the data in Table

7.5. (average 5% decrease in size). This further implied that the artificial blocks that were

placed in the program had evaded the notice of the optimizer—another encouraging piece

of evidence that the aliasing scheme was taking effect, at least to the degree of impeding

144

compiler optimizations.

10% 30% 50% 80%

Before After Before After Before After Before After

Compress 332 648 812 1167 1457 2074 2354 3719

Go 285 428 682 1364 1054 2940 1685 4200

LI 676 1108 1845 3324 2262 4550 3282 7815

STIDE 404 502 648 1104 1300 2073 2040 4311

Table 7.4. Execution time (in seconds) with optimization, with variable branch
transforms, before and after aliasing

10% 30% 50% 80%

Before After Before After Before After Before After

Compress 140 127 160 150 177 170 189 179

GO 1478 1430 2126 2012 2675 2487 3300 3187

LI 330 321 412 389 560 541 657 645

STIDE 1232 1204 1786 1743 1876 1828 2314 2248

Table 7.5. Executable size (in Kbytes) with aliasing, before and after
optimization

7.2.3. Impact of Function Call Structure Modifications

The last set of experiments consisted of applying function signature unification and

function pointer calls to obscure the program’s call structure. The modifications were

applied on top of the already degenerate control-flow and the aliasing structure. For the

purpose of these experiments, a file-specific signature unification scheme (with the

145

exception of the main function) was applied9.

Table 7.6 and Table 7.7 show the code size and execution time of the programs, before

and after the function call modification, with a 50% flattening of the control-flow. As

shown in Table 7.6, the function call transformations did little to affect the code size for

the target programs. In the case of Compress where function signatures were similar to

begin with, the modifications made virtually no difference in terms of code size.

The modifications to the function call structure also had relatively little impact on the

execution time of the programs as shown in Table 7.7. The program on which the

modifications had the most impact was LI, a program with many small data-processing

routines that were called often during execution. Since each one of those calls was now

made through a function pointer, performance took a hit to accommodate the indirect

addressing. STIDE, with its relatively fewer number of function calls, appeared largely

unaffected.

These results are not surprising. To begin with, the test programs were well-suited to

function signature unification—most functions came with a short parameter list (between

one and four parameters) and with parameters of common types (e.g., int, char, char*).

Furthermore, the function call modifications altered the parameter-passing behavior of

the program, but it did not affect the number of functions or the frequency of function

9 Choosing not to unify function signatures across file boundaries is driven only by the need for a speedy

implementation, not by the fundamental techniques.

146

calls at run-time. Lastly, the function-call modifications modified function signatures to a

fixed length (i.e., a fixed number of parameters). Any parameter outside of this length is

made into a global variable that can be accessed by the called function. The SPARC

architecture uses a set of register windows for parameter-passing. As long as the number

of function parameters did not exceed the number of registers in the window, a few extra

parameters imposed a limited run-time cost.

Compress Go LI STIDE

Before 125244 1807962 350500 1449757

After 125386 2381103 490707 1622720

Table 7.6. Executable size (in Kbytes) before and after function call
transformations (non-optimized, 50% branch transform)

Compress Go LI STIDE

Before 2153 1491 3178 1328

After 2325 2326 7023 1726

Table 7.7. Execution time (in seconds) before and after function call
transformations (non-optimized, 50% branch transform)

As most real-world programs are composed of functions with relatively short parameter

lists and common parameter types, the cost of the function call modifications can be

expected to be moderate.

7.3. Performance and precision of static analysis tools

In this set of experiments, I report the results of experimenting with existing alias

analysis tools. The purpose of these experiments was to investigate how well the code

transformations hold up against automated analysis tools. Although a positive outcome

147

(i.e., one that renders analysis tools ineffective) is not in any way conclusive or complete

in arguing for our case, a negative result (i.e., the tools can defeat the code

transformations) would certainly be a definitive piece of evidence that the

transformations have not succeeded.

Alias analysis for the purpose of code optimization has been extensively researched.

However, comprehensive and user-friendly tools are scarce to come by. The notable tools

developed in the research community include IBM’s NPIC tool [37] and Rugter’s PAF

toolkit [66]. The following subsections discuss experience with both.

7.3.1. Experience with NPIC

NPIC employs a sophisticated inter-procedural alias analysis algorithm, and it represents

the state-of-the-art in terms of general alias analysis. Unfortunately, IBM no longer

maintains and distributes the tool. The experience with NPIC was therefore limited to

small, semi-automated experiments conducted with the NPIC algorithm.

NPIC uses an algorithm that performs iterative analysis phases interleaving the inter-and

intra-procedural analysis. Every time new aliasing information is generated by an intra-

procedural phase, it is propagated to its successor functions which then repeat their intra-

procedural analysis, and so on, until the alias set converges.

With the help of my colleagues, I conducted a limited number of experiments with the

NPIC algorithm on small programs. These experiments, to the extent that a semi-

automated analysis would allow, revealed that little accuracy was achieved when the

148

analysis terminates.

In a particular instance where index computation and aliasing were used to compute

branch targets, NPIC started out in an iteration indicating that the elements of the global

array could contain a number of possible values. As the iterations went on, this

information was never refined to be more specific. Furthermore, alias relations identified

in later iterations increased the set of possible values that the array elements were deemed

to have. The algorithm eventually terminated and claimed that the elements of the global

array were changed an arbitrary number of times, therefore they could contain potentially

any value. Computations involving the array elements were deemed unanalyzable. This

in turn implied that any basic block in the program could be the potential predecessor of a

large number of blocks. Alias information propagation among those blocks therefore did

not get easier and alias relations were never refined.

7.3.2. Experience with PAF

PAF implements a flow-sensitive, inter-procedural alias analysis algorithm. In the

experiments we conducted with PAF, the toolkit analyzed small programs successfully

but failed to handle some of the larger ones including the SPEC benchmarks.

We tested PAF on a wide range of small programs that contain either extensive looping

constructs or branching statements. In all of the test cases, PAF terminates quickly

reporting the largest possible number of aliases in the program (the worst possible

precision). In a program with n distinct pointer assignments per block and k basic blocks,

PAF reports n*k alias relations. Because of the size of the test programs, negligible

149

differences in the pre and post-transformation analysis times were observed.

The precise reason for PAF’s failure to process large programs was unclear. It is possible

that the code transformations fundamentally disabled PAF’s analysis strategy, and caused

it to spill over its internal states and stop. It is also possible that the structure of the

programs after the transformations trivially invalidated some assumptions PAF relied on

for its analysis. In either cases, investigating the root of the problem would require

substantial expertise into the development of the PAF tool which we do not currently

have. In at least one test case, PAF failed to process a large, untransformed program,

which lead us to believe that the implementation of the toolkit might be somewhat

flawed.

In all the test cases that we were able to complete with PAF (with small test programs),

PAF terminated rather quickly with a set of very imprecise analysis results. Investigation

into the analysis results indicated that PAF failed to resolve aliases across the flattened

basic blocks. The flow-sensitive analysis algorithm PAF employs essentially conducted a

flow-insensitive analysis and terminated. This was a case of an efficient analysis with

imprecise results.

7.4. Summary

The empirical results discussed in this chapter are admittedly quite limited. Nevertheless,

they offer a glimpse into the fundamental impact of the code transformations. The

essential observations derived from the experiments are summarized below:

150

• Performance of a program can slow down exponentially with the number of indirect

branches and aliases in the program. Therefore the tradeoff between performance and

the protection strength must be considered.

• Function call modifications have a relatively low impact on program performance.

• Compiler optimizations are essentially ineffective when the code transformations are

applied.

• The technique of control-flow flattening and making the control-flow and data-flow

co-dependent present a fundamental difficulty that existing analysis algorithms lack

the sophistication to handle.

As a final note to conclude the empirical evaluation chapter, I want to stress that in the

case of evaluating security mechanisms, empirical measures, although important in their

own right, should be treated with healthy suspicion. Demonstrating protection strength

against hacking tools (or in this case program analysis tools) only speaks for the specific

instances, and in many cases the results do not generalize (as demonstrated by many

years of security protocol design). Theoretical evaluations, on the other hand, are much

more dependable, and should be treated with more importance (see Chapter 5).

151

Chapter 8

Transformations and Dynamic Analysis

This chapter explores the issue of dynamic analysis and the impact of the code

transformations on dynamic analysis. Defending against dynamic analysis is not the main

focus of this dissertation, and so this chapter serves only as an initial investigation into

possible defense strategies and an exploration of future research directions.

In this chapter I first examine the fundamentals of dynamic analysis. In particular, I

explore three different techniques: profiling, tracing and blackbox testing. I then

investigate the ways in which the code transformations described in the previous chapters

affect the nature of dynamic analysis. The major contributions of this chapter are as

follows:

- I show that, with a degenerate static control-flow, optimal algorithms for placing

instrumentation code for profiling and tracing can perform no better than brute-force

placement methods.

- I propose the notion of state inflation and investigate a rudimentary architecture based

on the state inflation to deter tracing and blackbox analysis.

152

- I show, by providing examples, that the one-way transformed program sports a

structure that lends itself well to state-inflation techniques.

The remainder of this chapter is organized as follows: Section 8.1 provides background

material on dynamic analysis. Section 8.2 shows how optimal tracing and profiling

strategies are effectively disabled by the program transformations described in previous

chapters. Section 8.3 examines frequency-based program profiling and potential

countermeasures. Section 8.4 and Section 8.5 investigate the notion of state-inflation and

its application in defending against program tracing and blackbox analysis.

8.1. The Fundamentals of Dynamic Analysis

Dynamic analysis refers to techniques designed to analyze a program during execution.

These techniques include, but are not limited to, profiling, tracing and blackbox analysis.

Profiling and tracing are essentially two different forms of white-box analysis in which

the internals of the program are open for examination. Profiling examines the frequency

of events during execution (e.g., the number of times a basic block is visited) while

tracing is primarily concerned with the ordering of events (e.g., whether instruction i is

executed before instruction j). Blackbox analysis, on the other hand, analyzes the

program’s input-to-output behavior and usually does not consider the internal specifics of

the code.

When dynamic analysis is performed with the purpose of program tampering or

impersonation, the target of the analysis is usually to deduce knowledge of the following

153

subjects:

- The operational semantics of the program (e.g., which routines handle which tasks

and how they interact)

- The manipulation semantics for a particular set of data quantities (e.g., how they are

accessed and manipulated by the program)

- The I/O behavior of the program (e.g., how the program interacts with its

environment and with the home server)

Because dynamic analysis follows an actual execution path rather than hypothesizing

statically how execution might take place, information acquired from dynamic analysis is

more accurate than static analysis. In an ordinary program, and with some information

about the source program known a priori, dynamic analysis can be as easy as finding a

known operation (e.g., the operation of retrieving a cryptographic key from memory) and

the rest is history.

For a one-way transformed program, however, the rules of the game are somewhat

changed; recall the discussion on diversity and the behavioral transformations in Section

4.2.1 and Section 4.2.2. The operational semantics and the I/O behavior of the program

are subject to change for each compilation and subsequent installation. Therefore

knowledge of the original source program and the high-level functionality may or may

not help in slimming down the information the analysis must collect at run-time.

This observation suggests that dynamic analysis of the one-way transformed programs

154

should be performed on the full-scale of the program; short cuts such as looking for

known behavior patterns or operations are presumed ineffective. Discussions hereafter in

this chapter is based on this premise.

Dynamic analysis can be attempted either online, on a legitimate execution, or offline, as

in the case of a simulated execution. As a general rule of thumb, more intrusive and

hence more aggressive forms of analysis (such as specially instrumenting the program

for the purpose of profiling or tracing) are possible only with an analysis conducted

offline.

8.2. The Efficiency of Profiling and Tracing

Program profiling and tracing can help discern the run-time behavior of a program.

Profiling typically counts occurrences of an event (or events) during a program’s

execution while tracing is concerned with the order of dynamic events [5][6][8][47].

Profiling and tracing are often accomplished by instrumenting the target program to

include profiling and tracing instructions. For profiling, the instrumentation code

increments a counter that records how many times an event (e.g., the execution of an

edge or a block) happens during execution. In tracing, the code writes a unique token to a

trace file whenever it is encountered.

Instrumentation has an overhead in terms of both execution time and code size. Therefore

for performance purposes, it is desirable to deploy a minimum amount of

instrumentation, at suitable locations in the program to minimize the overhead.

155

Much research has been performed on finding optimal solutions for placing profiling and

tracing instrumentation [6][47][51][72]. The result is a set of spanning-tree based

algorithms for instrumentation placement. These algorithms compute a spanning tree of

the program's control-flow graph and place the instrumentation code on the graph edges

that are not in the tree. Ball and Larus [6], Ramamoorthy et. al.[72] and Knuth [47] all

showed that instrumenting the program using the spanning tree method results in the

most efficient profiling or tracing mechanism (i.e., the least overhead) for the underlying

control-flow graph. In the following paragraphs, I show that the code transformations

described in previous chapters prohibit the use of these optimal instrumentation

strategies.

The spanning-tree based methods assume a statically determinable control-flow based on

which to compute the optimal instrumentation strategy. These schemes become

expensive when control-flow cannot be determined statically. For example, consider the

flowgraph in Figure 8.1. The graph on the left is the original flowgraph while the one on

the right is the degenerate flowgraph after flattening (no artificial basic blocks inserted).

For the original flowgraph, the most efficient set of edge instrumentation determined by

the spanning tree method can be found on edge ca → , db → , ed → , gf → and

hg → (the instrumented edges are marked with black dots). If profiling, the counts for

uninstrumented edges can be deduced from the measurements obtained from the

instrumented edges. For example, the execution count for edge fa → can be computed

as (gf → - (ca → + db →)). When tracing, execution paths can be derived from the

instrumented traces. For example, the execution (a, c, d, f, g, i) can be regenerated from

156

the trace { ca → , gf → } and the execution (a, f, g, i) is represented by the trace

{ gf → }. In general, Kirchoff’s flow law (e.g., fa → = gf → - (ca → + db →))

can be used to deduce the counts for unmeasured edges and therefore minimize the

amount of instrumentation that is needed.

In the flattened flowgraph shown in Figure 8.1(b), there is no flow information between

basic blocks. The instrumentation therefore must be placed on all edges between the

ENTRY node and the basic blocks. For example, for execution (a, c, d, f, g, i), the

program would have generated the trace {Entry→a, Entry→c, Entry→d, Entry→f,

Entry→g, Entry→I }.

Figure 8.1. A regular control-flow graph in (a) and the flattened verion in (b)

a

b c

d

e f

g

h i

E N T R Y

b c d e f g ha i

EXIT

(a)

(b)

157

Instrumentation can also be placed strictly with blocks instead of edges. In such a

scheme, a counter (or a trace value) is associated with a basic block, and it is incremented

(or written out to a trace file) each time the block is executed. With a structured

flowgraph such as the one in Figure 8.1(a), it is not necessary to instrument every basic

block. For example, a counter associated with basic block g would also indicate the

number of times that block f has been executed. Hence there is no need to use a separate

counter with f. The same is not true when the flowgraph is flattened—the only way to

measure the occurrences of any basic block is to attach a specific counter to it.

An interesting twist to the profiling and tracing problem is that, for structured

flowgraphs, an optimal edge instrumentation never has a higher cost than an optimal

block instrumentation [6]. Consider the example in Figure 8.2 where the figure on the left

is the original flowgraph with each edge marked with its execution frequency. The

optimal block instrumentation for tracing is to instrument blocks a and b. This

instrumentation will result in a cost of 40 since block a will execute 30 times and b 10

a

b c

10 20

10

ENTRY

a b c

30 10 20

(a)

(b)

Figure 8.2. An example illustrating edge vs. block instrumentation

158

times. Note the cost can be reduced if edge instrumentation is used instead. The optimal

solution for edge instrumentation would call for only edge a→b (or b→c) to be

instrumented, resulting in a cost of 10 (a→b executes 10 times).

When the program’s static control-flow is degenerate, edge instrumentation no longer has

any advantage over block instrumentation. Figure 8.2(b) shows the flattened version of

the flowgraph in Figure8.2 (a). For this flowgraph, edge instrumentation needs to occur

on every edge from the entry node to a, b and c. This instrumentation results in a cost of

30 + 20 + 10 = 60, exactly the same as in block instrumentation which would yield a cost

of 60 as well (30 for a, 10 for b, and 20 for c).

Knuth [47] showed that a set of edge instrumentation Einst solves the profiling and tracing

problem if and only if (E - Einst) contains no cycle, where E is the set of edges in the

control-flow graph. Ball and Larus took this result a step further and showed that the

optimal solution to the edge placement problem is one such that the set of uninstrumented

edges—(E - Einst)—constitutes a maximum spanning tree of the graph. Thus, the

minimum number of edges that need to be instrumented for profiling and tracing is

)1(−− VE , where E is the number of edges and V is the number of blocks. In a

flattened graph, it is straightforward that a safe and sufficient solution to profiling and

tracing would call for V edges to be instrumented (one for each block).

A control-flow graph of a normal program usually has almost twice as many edges as

basic blocks, thus the difference in the number of instrumentation instructions between

the brute-force instrumentation method (recording every block) and the optimal

159

placement is not significant. However, the real importance lies in the cost in terms of

execution time caused by instrumentation. Ball and Larus conducted several experiments

in their 1994 paper to investigate optimal profiling and tracing mechanisms [6]. They

measured execution times for the uninstrumented program, the naively instrumented

program (instrumenting every edge or block) and one that is optimally instrumented

using the spanning tree algorithm. Their experimental results showed that, on average,

naive instrumentation produced an overhead of 10-225 percent over the original program,

while the overhead of optimal instrumentation lay somewhere between 5-91 percent. In

other words, for some programs, naive instrumentation can be more than twice as

expensive as optimal placement.

Ball and Larus observed in their experiments that programs with large basic blocks and

fewer conditional branches tend to lend themselves well to profiling and tracing (i.e., less

instrumentation overhead). This is because in those programs large blocks dominated the

execution of the program and the cost of instrumentation was better amortized. In their

experiments, the programs for which naive instrumentation produced an overhead of

more than 150% over the original programs all came with small block sizes and a large

number of conditional branches. This observation is useful since it points out that

profiling and tracing can be made more expensive by increasing the number of

conditional branches and reducing the size of basic blocks. Note how this fits nicely with

the control-flow degeneration technique—basic blocks can be arbitrarily broken up by

adding branches and every branching statement is essentially conditional because the

switch target is set dynamically.

160

In summary, a degenerate static control-flow prohibits the static determination of optimal

tracing and profiling strategies. Consequently, both profiling and tracing must be

performed in the most rudimentary and costly fashion—every edge (or block) must be

instrumented in order to capture enough information for effective profiling or tracing.

8.3. Execution Profiling

This section investigates execution profiling and potential counter measures.

Conventional profiling typically considers the frequency of events only, not the order of

events. Thus information gathered from profiling alone is too coarse to be directly useful

in intelligent tampering and impersonation attacks. However, profiling can help to

identify program portions that are heavily executed (e.g., hot paths), and such information

can be used in deciphering the transformed program by comparing its behavior with the

switch

S1 S2 S3 S4

50
0 120

34

50
0 120

34

194

Figure 8.3. Example illustrating edge profiling to identify dead code

161

original program. Hot path information can also be used to improve the quality of data-

flow analysis as illustrated by Ball and Larus [7].

A direct application of program profiling is to identify and eliminate dead code.

Consider, for example, a flattened control-flow graph in Figure 8.3. Each edge in this

graph is labeled with its frequency from profiling. It is easily seen from the profiled data

that code block S2 is likely to be dead code since its frequency count is zero. Such

information can be used to remove dead code and possibly determine the actual control-

flow of the program. Another potential application of profiling is to identify heavily

executed basic blocks (such as loop bodies). Even in a degenerate form, loop bodies can

be spotted easily with profiling statistics.

Assuming the goal of program profiling is to help determine the program control-flow

using execution counts, one way to defeat such frequency-based profiling is to introduce

a

b

c

d

E N T R Y

40 40 40
40

b b' b'' c c' c''

40
40

a

40

EXIT

(a) (b)

120

120

40

40

d

40

Figure 8.4. Example illustrating loop unrolling to deter execution profiling

162

additional blocks that actually execute. For example, in Figure 8.4, the original flowgraph

in (a) is degenerated to the form in (b) and the loop body b and c in (a) are unrolled into

three different basic blocks each in (b) (in bold lines). Each of these loop-body blocks is a

slightly obfuscated version of the original block (in order to defeat simple pattern

matching). The profiled data in (a) clearly identifies block b and c as the hot block—one

that is heavily executed. As a contrast, the frequency counts in (b) do not convey nearly

as straightforward a story.

Another strategy to thwart frequency-based profiling is changing the original execution

frequency of existing blocks to a form that does not lend itself well to the identification of

hot blocks or hot paths. For example, consider again the flowgraph in Figure 8.4(b).

Instead of having block b and c replicated in three functionally-equivalent blocks, the

program can have block a short-circuit itself and execute 120 times (for example) before

letting the control transfer to other blocks. Such a scheme is easy to implement since the

control transfer is set dynamically by each block. This of course depends on whether the

computation in a can be repeated without affecting the outcome of the program (e.g.,

idempotent operations).

8.4. Program Tracing

Unlike profiling, program tracing records the sequence of executed basic blocks, and

therefore is capable of conveying finer-grain information than profiling. Program tracing

can also be accomplished using program instrumentation [6][51].

The primary challenge of program tracing is to determine what information to record and

163

when enough information has been recorded for the purpose of tracing [6]. The first task

of tracing is the unambiguous identification of the paths traversed. With that, data-

reference tracings on particular data quantities can be performed.

Clearly, the more instrumentation there is in the program, the more information the

tracing mechanism will be able to collect. For a flattened control-flow such as the one

shown in Figure 8.1(b), it is straightforward to show that instrumenting every edge from

the entry node (the switch node) to all of its successors (every block in the procedure)

meets the requirement of unique identification of execution paths.

The aliasing mechanism developed in the earlier chapters to obscure static data

manipulation is not sufficient to obstruct dynamic data-reference tracing. A data-

reference trace records the addresses and values of data accessed, and thus is able to

reveal the true modification, reservation and usage of data quantities at run-time.

In the remainder of this section, I discuss a technique called state-inflation as a potential

countermeasure to deter dynamic code tracing, and I provide a preliminary investigation

into how state-inflation might be achieved within the context of the one-way code

transformations.

8.4.1 State Inflation

The idea of state-inflation is straightforward. Consider for example, the program segment

depicted in Figure 8.5(a). The program execution from point A to point B follows the

path {S1, S2, S3}, and the computation on this particular path is such that {b ←x, a ←b}.

164

Therefore at program point B, the value contained in variable a is x. Now consider the

program segment in Figure 8.5(b). Here a conditional statement is added to S1 and a

series of blocks, each assigning a different value to b, take S2’s place. Which block gets

executed depends on the evaluation of the conditional in S1.

The purpose of this transformation is to replace the state: b ←x with a set of equivalent

states: {b ←x1 , b ←x2, ... b ←xn}. Each time S1 is executed, it selects one of the blocks to

execute randomly. These states are only equivalent from the perspective of the

transformer (subsequent computations using any of the values of b are considered

equivalent). From an analyzer’s stand point, these different blocks represent different

states as they reflect the outcome of the conditional evaluation. Note that in the

transformed code, there are n different paths between point A and B as opposed to the

single one in the original program.

Figure 8.5. Example illustrating state inflation

...

b = x

a = b

B: a = ?

S1:

S2:

S3:

(a)

...
condi t ional?

b = x1 b = x2 b = xn

a = b

...

B: a = ?

(b)

S1:

S2:

S3

A: A:

165

Using program tracing to deduce the operational semantics of code transformed this way

is challenging, for each time the segment is executed potentially a different path is

followed. This results in an explosion of states that the tracing analysis must keep.

Note how this state-inflation transform can be realized easily with the flattened control-

flow: the conditional in S1 can be implemented as setting the branch target to one of the n

values, determining which block to execute and hence which value the variable a will

have at program point B.

State-inflation can be extended to the entire program by identifying a series of execution

steps and applying the inflation technique to each step. For an execution between

program point p1 and p2 which consists of n sequential steps, and assuming each step is

inflated to m different incarnations of the original step, there are then mn different paths

from p1 to p2.

Furthermore, the idea of replicating blocks can be extended to functions such that the

destination of a call site can be one of n functionally equivalent implementations of the

original function.

8.5. Blackbox Analysis and State Inflation

The final dynamic analysis technique I want to examine is blackbox testing. Unlike

profiling or tracing, blackbox analysis does not consider the internal specifics of the

program. Instead, it analyzes the program's input-to-output relations in an attempt to

emulate the program’s run-time observable behavior.

166

It is clear that if the program has a relatively simple state space (i.e., the input-to-output

mapping is easily deducible), a blakbox analysis can lead to successful impersonations of

the legitimate program.

Once more, the notion of state inflation can be useful to impede blackbox analysis. The

techniques discussed in the previous section can be adopted to affect the input-output

behavior of the program. It is not difficult to see how a one-on-one mapping between the

input and the output might be inflated to a one-to-arbitrarily-many mapping using the

inflation techniques, in which case a simple blackbox analysis will not be sufficient to

deduce the program state space and thus emulate its behavior.

8.6. Summary

In this chapter, I offer some preliminary insights into the effect of the One-way

Transformations on performing dynamic analysis of programs. The specifics of program

profiling, tracing and blackbox analysis are discussed. The investigation here show that

the code transformations deter the application of some of the optimal dynamic analysis

strategies. I also propose the concept of state inflation as a potentially fruitful strategy to

deter dynamic analysis, and I argue that the flat structure of the transformed program

fosters the easy incorporation of state inflation techniques. However, to adopt the

principle of state inflation and to assess its implications more accurately, a more

comprehensive and in-depth investigation is required.

167

Chapter 9

Revisit the Big Picture

From Chapter 4 to Chapter 8, I have taken you through detailed descriptions focusing on

various individual techniques. Now is the time to tie these pieces together and revisit the

big picture. In this chapter, you will see how the techniques fit together to form a system-

level solution to protect network management systems, and in particular to defend against

the malicious host problem identified in the introductory chapters.

9.1. Recapping the Problem: extending the trust boundary of the

network survivability architecture

The original motivation for this work arises from the need to protect a survivability

architecture for critical infrastructure systems. The architecture, recapped in a high-level

overview in Figure 9.1, provides means to ensure the survivable operations of the

underlying application system. Details of this architecture and the infrastructure system it

manages are discussed in Chapter 2. It is worth reviewing a number of essential

characteristics of this system, as they inspired the work that became the topics of

discussion for much of this dissertation.

168

The survivability mechanism is vital to the continuing operation of the application

system. Therefore, assurance must be provided that the mechanism itself is protected

from corruption and malicious attack. Investigation into the trustworthiness of the

survivability architecture yielded the trust boundary depicted in Figure 9.1.

In this figure, the control server is trusted, and so is the communications network between

the control server and the application hosts (assumed secure with cryptographic means).

The trust boundary that includes the control server and the network reaches only to the

perimeter of the application hosts (shown in Figure 9.1). The application hosts cannot be

presumed hardened with the same measures as the control server, and thus are vulnerable

to security attacks. This implies that the probe programs, an integral part of the

survivability architecture, execute outside the trust boundary in an untrustworthy

Trusted
Control
Server

probe

Untrusted Infrastructure System

control network

trust boundaries

application network application hosts

probe program

Figure 9.1. A review of the survivability architecture

169

environment.

To ensure the secure operation of the survivability mechanism, the probe programs must

be included inside the trust boundary. The problem therefore becomes how to extend the

trust boundary (as shown by the red dashed circle in Figure 9.1) and ensure the secure

execution of trusted software on untrustworthy platforms.

9.2. A System-level Solution for A System Problem

The general problem of software security in malicious environments is characterized as

the malicious host problem in Section 1.1. Stated in the usual computer security parlance

(Alice represent the home server and Bob is the remote host), the malicious host problem

consists of three facets10:

• Algorithm secrecy: The algorithm privacy problem is stated such that Alice wants to

execute program P on Bob, and that she does not want to disclose to Bob the

algorithm that is implemented by P.

• Execution integrity: The execution integrity problem is such that Alice wants to

execute P on Bob, and she wants to be assured that, given a particular input x, P is

correctly executed,

• Input spoofing: The input spoofing problem states that Alice wants Bob to compute

10 The denial-of-service problem is omitted here for reasons stated in Section 2.4.1.

170

P on some data x that Bob has. Alice wants to ascertain that Bob has not lied about

the input x.

The discussion in Chapter 2 argues that there is no solution to the input-spoofing problem

if input spoofing does not require learning the computational algorithm or compromising

the execution first. In other words, if the effect of computing P on a corrupted x will not

give him away, Bob can make up any x that he wishes. When input spoofing does require

analysis of the computation itself, the input-spoofing problem is subsumed by the

algorithm privacy and execution integrity problems.

The malicious host problem also arises in several other application contexts [25][34].

However, it has thus far been viewed in an isolated context: namely, protection of one

program against its hosting machine. The majority of traditional code obfuscation work is

a manifestation of this school of thought.

In this work, the malicious-host problem is viewed as a system issue. The approach

hereafter derived represents a system-level solution. Consider again the target application

as a set of probe programs in the survivability architecture. These programs are

distributed across the network (i.e., executing on different network hosts) and they

interact together to achieve a collective functional goal. To compromise the collective

system functionality, an intruder must corrupt (or compromise) a designated number of

software components (noted as m out of total n programs). To counteract such an attack,

three inter-related mechanisms are derived:

• One-way Translation: The One-way Translation mechanism described in Chapter 4

171

provides a means to generate diverse and difficult-to-analyze software versions.

Analysis of the resulting program versions requires a certain amount of time as

indicated by the complexity metrics in Chapter 5.

• Temporal Diversity: The probe programs are refreshed periodically. Analysis of a

probe program must be completed within its lifetime or the information acquired

during analysis will be useless.

• Spatial Diversity: Diverse versions of the probe programs are deployed across the

network. Compromising the network-wide probing mechanism requires independent

effort spent on attacking each probe program.

The One-way Translation mechanism facilitates the diversity mechanisms by generating

functionally equivalent but otherwise diverse program versions that are deployed across

the network (spatial diversity) and chronologically along the time line (temporal

diversity).

The above mechanisms have a network-wide effect: Assuming the interval at which a

program is refreshed (with a different version) is T, one can derive a probability p based

on the complexity metrics such that p represents the probability that an analysis of the

program can be completed within T. Further assuming that compromising the network-

wide functionality requires the compromise of m (out of n total) software components

(e.g, the probe programs), it is then straightforward that the probability of a successful

attack is P = p1 ∗ p2 ∗ ... pm, where pi is the probability of completing the analysis of

program i within T. Note that P is smaller than any of the individual pi ’s

172

If identical copies of the program are deployed across the network, the overall probability

of a successful attack is simply pi, since ∀i, j such that i ≠ j, pij , the conditional

probability of a successful attack on program i given a successful attack on program j is

assumed to be 1.

With this network-wide perspective, the collective, system-level security requirement can

be decomposed into very specific complexity goals for each program. Subsequently, code

transformations can be tailored and applied to meet those goals. When the goals are met,

the trust boundaries are extended, in a time-limited fashion, to the trusted software that is

executing on untrustworthy hosts.

9.3. The Other Pieces in the Puzzle

In addition to the core mechanisms, the solution framework relies on a certain number of

assumptions. This section examines some of the assumptions and explores their

implications.

Trusted program deployment: The solution mechanism calls for the trusted server to

update the remote program on-the-fly with a different version of the software. This

requires the trusted dynamic deployment of programs. Trusted deployment means two

things:

- The program is properly instantiated (up and running as intended)

- The program is instantiated at the intended host.

173

Knowing whether the program is instantiated is perhaps easier than knowing where

exactly it is instantiated. Consider that the communications between the remote program

and the home server follows a certain timing mechanism. After the program is

dispatched, the home server expects it to follow through with a particular hand-shake

sequence that indicates to the server that the program has been instantiated (or at least is

executing to the completion of the hand-shake protocol).

Knowing where the program is executing is a much harder problem. Given the possibility

that the program can be hijacked to execute on a different host, what guarantee can one

have if this update-on-the-fly method is employed?

Several ways to alleviate this problem exist with varying degrees of assurance and cost.

One possibility is using hardware-based identification schemes such that a hardware

device on the intended host performs mutual authentication with the arriving program.

This scheme is costly and the issue of possibly spoofing the hardware is still of concern.

Another approach lies in having the program perform some kind of active checking to

verify properties of its execution environment: for example, if the program could be

compiled with knowledge of the invariants in the intended execution environment (e.g.,

memory layout of the operating system kernel) or in the monitored applications. A

checking mechanism similar to the code depicted in Figure 9.2 can be used.

In the program segment in Figure 9.2, a series of checksum operations are performed.

Each checksum operation reads a set of memory locations from the host followed by a

compare-if-equal operation. Some of these checksums are computed on known invariant

174

locations and others are simply spurious computations on random memory locations. It is

readily seen that the checksum operations compose a bit-pattern calculation (e.g., status1,

status3, status6, status n-1) that can potentially be used to indicate the execution paths

followed by the remote program.

Furthermore, a fail-and-stop mechanism can be implemented to stop the program

execution if the checks do not return satisfactory results. For example, the program can

overwrite the black elements of the global data array (see the discussion in Section 4.3.3)

and disable further execution (since branch targets are computed using the black elements

of the array).

For the program in Figure 9.2, a naive attack that simply returns yes (or no) for the

compare-if-equal operation will not work. To circumvent the checking mechanism, the

intruder must understand the invariant behavior of the host system or duplicate the entire

execution environment, is a substantial undertaking.

Of course, this type of checking requires the ability to identify host-unique invariants,

S1: v1 = checksum(memI1, memI2, … memIn);
S2: if (v1 == value1)
S3: send status1
S4: else
S5: send status2
S6: …
S7: v2 = checksum(memJ1, memJ2, …memJm);
S8: if (v2 == value2)
S9: send status3
S10: else
S11: send status4

Figure 9.2. A pseudo-code segment illustrating possible verifications of
the execution environment

175

thus only specific and very limited forms of checks can be performed. Note that if it were

indeed possible for programs to actively verify their execution environments, one form of

dynamic analysis—namely analysis of an offline execution on a separate host—could be

severely discouraged.

Input spoofing: The discussion thus far has argued that solutions for the input spoofing

problem only exist when input spoofing requires learning of the algorithm or tampering

with the program execution. However, the discussion did not identify under what

conditions or characteristics of applications that input spoofing is inherently associated

with (or can be made to associate with) the issue of algorithm privacy or execution

integrity.

There are clearly cases in which input spoofing requires very little analysis (if any). In

those scenarios, both the semantics of the input data and the manners in which it is

collected by the program are easily identifiable (e.g., consider the well-known case of the

program checking to see if its installation CD ROM is currently in the drive). There are

also cases where collection of the input is performed in a manner that is both hard to

identify and difficult to spoof (e.g,, consider a network packet sniffer as the data

collector). The challenge of course lies in identifying whether the former applications can

be modified to resemble the latter kind in terms of data collection. A study on the general

data-collection characteristics will be particularly beneficial in that regard, and it will also

help to determine the class of applications for which the current work is applicable with

respect to the input spoofing problem.

Dynamic Analysis: Chapter 8 considers issues associated with dynamic program

176

analysis. In particular, the application of state inflation as a potential defense strategy was

investigated. The basic principle of state inflation is to decrease the amount of

information contained in each state transition in order to impede dynamic analysis.

Another approach based on the same principle is the use of multi-threaded computational

models. Multi-threaded programs are inherently more difficult to analyze. The

incorporation of multiple threads presents a significant challenge to tampering and

impersonation attacks based on program analysis.

For example, when a program consists of multiple threads executing in parallel, what an

intruder can learn from an offline, simulated execution is fairly limited since the offline

execution is different from the legitimate execution. Furthermore, observing one

legitimate execution reveals little about the next n executions due to the non-deterministic

nature of multi-threaded programs.

A potential drawback of the multi-threaded model is that although the incorporation of

concurrent threads introduces the element of non-determinism, each combination of the

thread executions must be valid. The intruder thus needs to compromise only one

execution to fool the trusted server. For this method to work, there must be a way for the

trusted server to distinguish the current, truly legitimate execution from others. It is not

clear how this could be implemented.

Furthermore, a design to support multiple threads must include a utility to translate

sequential programs into concurrent threads. This is not a trivial undertaking if the

technique is aimed at general applications. Some applications lend themselves well to

implementations in concurrent tasks while others are inherently sequential. Transforming

177

a sequential implementation into concurrent threads requires the identification of tasks

that can be executed in parallel—a job that is beyond the capabilities of the current code

translator.

9.4. Summary

This chapter revisits the problem context that originally motivated this research. The

techniques discussed so far were examined in this context. The key point of this chapter

is that the various techniques introduced in this dissertation are not ad hoc methods, but

rather specific pieces to the solution of a specific system-level problem. The One-way

Translation mechanism and the temporal and spatial diversity techniques were developed

for the collective goal of protecting the network control infrastructure. I examine the

overall network effect of the One-way Translation and the diversity schemes. I point out

the pieces that are not covered currently by this investigation, and identify future research

directions.

178

Chapter 10

Related Work

In this chapter I examine related work in the general area of software protection.

Whenever possible, comparisons between my work and the existing approaches are

offered.

10.1. Code Obfuscation Work

The first category of related work is in the area of copyrights and intellectual rights

management. Managing the rights of intellectual properties sometimes calls upon the

service of code obfuscation techniques to obscure the algorithm or the implementation

details of software components. Code obfuscation work to date [19][20][82] has been

focused on this class of applications to prevent reverse engineering.

Collburg et. el. [19][20] conducted several studies on specific forms of code obfuscation

techniques. They classified obfuscation transformations into four general types: layout,

control, data, and preventive transformations. A key contribution of Collburg’s work is

the concept of opaque predicates. Opaque predicates are program predicates, which have

179

some property known a priori to the obfuscator, but difficult for an analyzer to deduce.

The fundamental problem with Collburg’s work and with other code obfuscation work

[23] is that they are not supported by any quantifiable metrics. In his 1997 paper,

Collburg identified four main criteria that can be used to measure the quality of an

obfuscation transformation: potency, resiliency, stealth, and cost. These criteria are

developed based on software complexity metrics. It is widely known that software

complexity metrics do not reflect the real program complexity. For example, metrics used

by Collburg include the Munson metrics for software [60]. Munson metrics consider

that, for example, a multi-dimensional array is more complex than an array of only one

dimension. This is perhaps true in some cases, but it does not hold in cases where a multi-

dimensional array is a more natural choice for data representation. The main reason that

the use of software complexity metrics has not been satisfactory is that these metrics are

by nature quality metrics, and as such they do not imply quantifiable results. Users are

still left to wonder about the assurance offered by the various schemes and how many of

the transformations one needs to apply to obtain a certain level of security.

Other code obfuscation work has been undertaken primarily with the goal of obfuscating

Java bytecode since bytecode programs carry more source information than native binary

code[23]. The focus of the code obfuscation work has been to obscure information (i.e.,

algorithm privacy), rather than prevention of tampering.

My work differs from the code obfuscation techniques in three significant aspects:

• In my work, a theoretical framework is offered with the code transformations. The

180

complexity metrics in Chapter 5 serve as a concrete means to measure the effect on

complexity for each transformation. Users can reason about the strength of the

transformations using these complexity metrics.

• The fundamental techniques afforded by my work render the entire program data-

dependent (no static control-flow and function calls). Tampering of such a software

component requires analysis of the program behavior. In that regard, my work deals

with prevention of tampering as well as protection of the algorithm privacy.

• Despite the aforementioned studies on various code obfuscation schemes, to the best

of my knowledge, there does not exist a comprehensive implementation of the

obfuscation transformations in the public domain. The One-way Translation compiler

is the first working code translator with publicized transformation techniques with

which empirical studies of the techniques can be performed.

There are also a few commercial companies developing products in the general area of

intellectual rights management and software protection [14][43]. Cloakware’s JAVA

obfuscator is the only other known implementation for which some preliminary

performance data has been published [15]. Their results showed an average increase of

execution time by more than ten-fold beyond the original execution time. My

performance results are significantly better. Commercial companies rarely publish

anything of any significance in the public domain. A sound comparison between my

approach and the commercially available products therefore cannot be readily obtained.

181

10.2. Security of Mobile Agents

Another class of related applications exists in the area of mobile computing and the

protection of mobile agents against potentially hostile hosts. Several research efforts are

noteworthy in this area. The following subsections examine them in turn.

10.2.1. Mobile Cryptography

Sanders et. al. proposed the notion of executing programs in an encrypted form [74]. This

approach, called mobile cryptography, is able to perform limited forms of computation

with encrypted functions using composition.

Sander’s approach is based on homomorphic encryption schemes. In a nutshell, the

mobile cryptography technique can be summarized as follows,

- Homomorphic encryption schemes exist for the evaluation of polynomials. Sanders et

al. identified an additively homomorphic encryption scheme such that evaluation of a

computation can be derived from a homomorphic computation with encrypted

functions.

- Sanders also identified that function composition can be used to prevent the malicious

host from discovering the secret key of the agent, since the decomposition of

multivariate rational functions is a hard problem in general.

The mobile cryptography work has the flavor of achieving true blackbox security with

theoretically provable strength. However, their mechanism as it stands now is only

applicable to polynomial and rational functions. It remains to be seen whether similar

182

techniques can be extended to general software.

10.2.2. Time-limited Blackbox Security

Independently of the temporal diversity idea in this work, Hohl proposed the idea of

time-limited blackbox security [40]. Time-limited Blackbox Security recognizes the fact

that there is no absolute protection—given enough time and resources, any protection

mechanism (including encryption) can be broken. Software protection, therefore, should

be based on a more restricted form of blackbox security such that the blackbox execution

is guaranteed only for a certain time period.

Hohl’s approach is basically obfuscation with a timestamp: programs are first “messed

up” (i.e., obfuscated) such that the executing host cannot “read”, “understand”, or

“modify” the program’s code and data for a certain known time interval. After this

interval, attacks are possible, but they would have no effect since the agent program

would have been expired.

Hohl offered little suggestion as to how this blackbox security (even for a limited time)

can be achieved, let alone evaluated. His illustrative “messing-up” algorithms are simple

obfuscation techniques that, again, are not supported by quantifiable measures.

10.2.3. Server Replication

Yet another approach to mobile-agent security is the use of reference states [41]. This

approach proposes that the use of a trusted, reference host to check the execution results

on an untrusted host. The approach is straightforward, assuming the attack does result in

183

differences in the agent's states. However, such an approach is not always practical—it

relies on the existence of a completely duplicated execution environment.

Other work based on server replication includes the use of fault-tolerant computing.

Minsky et al. proposed an approach in which the execution of a software component is

duplicated on a set of independent, identical servers [58]. Every execution step is

performed in parallel by all hosts, and results are reached by a majority voting

mechanism among the hosts. Results from one step is fed as input to the next step which

starts another round of parallel execution and majority voting. Server replication and

majority voting are applicable only for specific applications (i.e., critical computations

for which tolerance of random faults is the main objective).

10.3. Tamper Resistant Software

Aucsmith’s work on the Integrity Verification Kernel (IVK) [4] at Intel is of direct

interest, because it is a similar attempt to solve the general software protection problem.

Aucsmith also coined the phrase of Tamper Resistant Software. An IVK is a critical code

section consisting of multiple cells (code segments). At run-time, all the cells are

encrypted except the one that is currently executing. The executed cell becomes

encrypted again after execution while the next cell decrypts.

Run-time encryption and decryption requires significant performance overhead. Although

the author did not provide detailed performance data, this method is recommended only

for protection of small portions of code segments.

184

The encryption and decryption processes of IVK are carried out on the host that is not

trusted. Although the key used for encryption and decryption is exposed only for a short

time, it is possible that an adversary could obtain the key and subsequently compromise

the entire execution. Furthermore, building the IVK at the first place requires

considerable user intervention in the identification and isolation of the critical code

segments that may need to be specially armored.

10.4. Other Related Work

In addition to general software protection, a number of other related work has

implications in software security.

Devanbu and Stubblebine proposed a mechanism to protect the integrity of data

structures (e.g., stacks and queues) on hostile platforms [22]. Their method uses a digital

signature chain, starting from an initial signature that is stored on a trusted device, to

verify the integrity of the data and data operations. Each data item is stored alongside a

signature that is computed by the trusted device. A signature checking operation by the

trusted device is required for each retrieval of a data item. This work is designed

primarily for allowing a trusted device to store large amounts of data at a remote host and

have assurance that the data will not be tampered with.

The Immunix project at Oregon Graduate Institute (now with Wirex) includes an effort to

build survivable operating systems through diversity specialization [69]. The focus of

Immunix is to thwart class attacks due to replicated software flaws. The claim is that the

specialization method allows the system to guard the validity of the operating-system

185

software, both statically and dynamically. It is unclear, and the designers of Immunix

provided little hint, how diversity is enforced and whether diversity techniques can be

effective when applied to complex software such as operating systems.

10.5. Summary

Although much of the One-way Translation work is in the general spirit of code

obfuscation, my work arrived at the problem with a different motivation and generated a

solution that is both more general and more quantifiable than the precious approaches.

My work also produced the first working prototype of a software-hardening compiler,

which translates ordinary programs to a difficult-to-analyze version, and the difficulties

are supported by concrete complexity metrics.

186

Chapter 11

Contributions and Conclusion

In this dissertation I have presented an approach to the problem of software security in

untrustworthy execution environments. This chapter reviews the fundamental

contributions of this work. Directions for future research are discussed in Section 11.2.

11.1. Contributions

First and foremost, I identified and proposed an approach to the software security

problem from a system perspective. The software security problem is stated as ensuring

the execution integrity and algorithm privacy of a software in untrustworthy

environments. The various aspects of the approach, diversity schemes and One-way

Translation, are derived from considering the software protection issue within the context

of the application system rather than treating it in isolation. As such, the approach is more

systematic and comprehensive than the previous work in this area.

I have described the underlying principles of the approach, based on a framework of

complexity measures. I have identified a set of fundamental program characteristics that,

when instigated, yield the desired complexity and at the same time, are well suited to the

187

requirement of quantifiable strength.

I described the detailed techniques derived from the framework, and demonstrated their

security strength from a theoretical standpoint and assessed their feasibility with

empirical experiments. A working prototype of the described mechanism—an augmented

C compiler—has been implemented, and tested on representative benchmarks.

The experiments using the prototype implementation provided empirical assessments of

the techniques with encouraging results. For one thing, the experiments demonstrated that

software security measures can be implemented by automated tools such as the one

described in this work, with a relatively low level of user intervention and adjustable

system overhead. Furthermore, the performance results from the experiments

significantly outperformed the only reference point currently available [15].

The prototype implementation is portable and highly extensible. Built-in support for

programmer specified transformations is provided. In addition, the mechanism is general.

The core ideas—control-flow flattening and aliasing—can be applied to any program

irrespective of its programming language and underlying host architecture11.

11 This is true on an abstract level. In practice, some of the mechanisms cannot be implemented at the

source level, however, they can be accommodated at a lower level of program representation.

188

11.2. Where do we go from here?

Other issues: In the final analysis, a few other issues need to be addressed to round out

the overall approach. As discussed in Chapter 9, the issues of secure program upload and

communications between the trusted home server and the remote program should be

considered. In addition, an investigation into the input-spoofing problem could determine

the class of applications for which this problem can be provably subsumed by the

algorithm security and the execution integrity problems. This class of applications is also

the class of applications for which this work will be useful.

Network deployment: There is also merit in assessing the feasibility of the approach in

a real, production network environment. For example, how many probes should be

deployed throughout the network and how often they should be refreshed have impact on

the security mechanism, yet they are network-wide issues and should be considered in

that context. Other issues include scalability due to state management on the part of the

trusted home servers should also be appraised in the network environment.

Other applications: The approach, as stated here, has potential applications in other

environments such as the protection of mobile agents and market-based distributed

computing. A detailed investigation into the application contexts is needed to determine

the feasibility of adopting the approach in those environments.

Language extensions: Support for additional programming languages such as C++ and

JAVA represent useful extensions to the current work. Implementation of language

extensions will be the subject of future work. The basic paradigm should be extensible to

189

other languages, but the implementation strategy might have to be adapted to suit the

other language environments.

11.3. The Final Conclusion

In summary, I note the following about the research documented in this dissertation:

- Software security via code transformations can be accomplished with automated

tools.

- The theoretic and algorithmic underpinning of the code transformations must be

considered in order to provide demonstrable protection.

- Software protection should not be considered in isolation; the mechanisms described

in this work provide a system approach to the problem of software protection. The

various techniques must work in unison to acquire the desired benefit.

190

References

[1] A. Aho, R. Sethi, J. Ullman, “Compilers, Principles, Techniques, and Tools”. Addison-wesley

Publishing Company.

[2] G. Aigner, et al. “The SUIF2 Compiler Infrastructure”. Documentation of the Computer Systems

Laboratory, Stanford University.

[3] G. Ammons, J. Larus. “Improving Data-flow Analysis with Path Profiles”. In the Proceeding of

the 1998 ACM SIGPLAN Conference on Programming Language Design and Implementation,

Montreal Canada, June 17-19, 1998.

[4] D. Aucsmith. “Tamper Resistant Software”. In the Proceedings of the first information hiding

workshop, Cambridge, England, 1996.

[5] T. Ball, J. Larus. “Efficient Path Profiling”, In the proceeding of MICRO-29, December 2-4, 1996,

Paris, France.

[6] T. Ball, J. R. Larus. “Optimally Profiling and Tracing Programs”. ACM Transactions on

Programming Languages and Systems, Vol 16, No. 4, July 1994, pp1319-1360.

[7] T. Ball, J. Larus. "Improving Data Flow Analysis with Path Profiling". In the Proceedings of the

ACM SIGPLAN ’98 Conference on Programming Language Design and Implementation, 1998.

pp 72-84.

[8] T. Ball, P. Mataga, and M. Sagiv. “Edge Profiling versus Path Profiling: The Showdown”, In the

Proceeding of the 1998 ACM Conference on the Principles of Programming Languages, pp134-

148. San Diego. California.

191

[9] J. Banning, “An Efficient Way to find the Side effects of procedure calls and the aliases of

variables”. In the proceeding of the Sixth Annual ACM Symposium on the Principles of

Programming Languages. pp 29-41. January 1979.

[10] S. Berkovits, J. Guttman, V. Swarup. “Authentication for Mobile Agents”, in: Giovanni Vigna

(Ed.): Mobile Agents and Security. pp 114-136. Springer-Verlag, 1998.

[11] C. Cifuentes. “Structuring Decompiled Graphs. Personal Communication. Proceedings of the

International Conference on Compiler Construction (CC'96), Lecture Notes in Computer Science

1060. Linkoping, Sweden. 22-26 April 1996, pp 91-105.

[12] C. Cifuentes and KJ Gough, “Decompilation of Binary Programs”, Software - Practice &

Experience. Vol 25(7), July 1995. Pp 811-829.

[13] C Cifuentes, M Van Emmerik, and N. Ramsey, The Design of a Resourceable and Retargetable

Binary Translator. Proceedings of the Sixth Working Conference on Reverse Engineering,

Atlanta, USA, October 1999, IEEE-CS Press, pp 280-291.

[14] Cloakware Systems. http://www.cloakware.com.

[15] Cloakware Systems. “Building Cloakware”. Five minute presentation at the 2000 IEEE

Symposium of Security and Privacy. May, 2000. Berkeley, California.

[16] D. Chess. “Security issues in mobile code systems”. in: Giovanni Vigna (Ed.): Mobile Agents and

Security. pp 1-14. Springer-Verlag, 1998.

[17] S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, S. Staniford-Chen, R. Yip, D.

Zerkle. GrIDS: “A Graph-Based Intrusion Detection System”. National Information System and

Security Conference, Baltimore, 1997.

[18] J. Choi, R. Cytron, J. Ferrante. “Automatic Construction of Sparse Data Flow Evaluation graphs”.

In 18th Annual ACM Symposium on the Principles of Programming Languages. pp55-66.

[19] C. Collberg, C. Thomborson, D. Low. “Breaking Abstractions And Unstructuring Data

192

Structures”, IEEE International Conference on Computer Languages, Chicago, May 1998.

[20] C. Collberg, C. Thomborson, and D. Low. “A Taxonomy of Obfuscating Transformations”.

Technical Report 148, Department of Computer Science, University of Auckland, July 1997.

[21] T. Cormen, C. E. Leiserson, R. Rivest, “Introduction to Algorithms”. The MIT Press, 1993. Tenth

edition.

[22] P. Devanbu and S. Stubblebine. "Stack And Queue Integrity On Hostile Platforms". Proceedings

of IEEE Symposium on Security and Privacy, Oakland, California, May 1998.

[23] D. Dyer. “Java Decompilers Compared”. http://www.javaworld.com/javaworld/jw-07-1997/jw-

07-decompilers.html, June 1997.

[24] D. M. Dhamdhere, U. Khedker, "Complexity of Bidirectional Data-flow Analysis". In the

proceedings of the 20th ACM's Conference on Principles of Programming Languages (POPL),

pp397-408. Januaray, 1993. South Carolina. USA.

[25] “Divide and Conquer”, Economist, July 29, 2000, pp. 77-78.

[26] G. Edjlali, A. Acharya, V. Chaudhary, “History Based Access Control for Mobile Code”, in: Jan

Vitek; Christian Jensen (Eds.): Secure Internet Programming, LNCS 1603, Springer-Verlag, pp.

413-432, 1999.

[27] M. Elder, J. C. Knight, "Dynamic Reconfigurable Systems". CS Technical Report, CS-00-19.

Department of Computer Science, University of Virginia.

[28] M. Elder, J. Knight, “Security Attacks on Critical Infrastructure Systems”. Computer Science

Technical Report. CS-98-23.

[29] B. Elspas, K. Levitt, R. Waldinger, and A. Waksman, “An assessement of techniques for proving

program correctness”, Computer Surveys, June 1972.

[30] M. Emami, R. Ghiya, L. Hendren. “Context-Sensitive Interprocedural Points-to Analysis in the

Presence of Function Pointers”, SIGPLAN 94, pp242-256. June 1994. Orlando, Florida USA.

193

[31] D. Evans and A. Twyman. “Flexible Policy Directed Code Safety”. In the proceeding of the 1999

IEEE Symposium on Security and Privacy, Oakland, California, May 9-12, 1999.

[32] W. Farmer, J. D. Guttman, and V. Swarup. “Security for Mobile Agents: Issues and

Requirements”. In Proceedings of the 19th National Information System Security Conference,

pp591-597.Baltimore, Maryland.

[33] S. Forrest, A Soma. “Building Diverse Computer Systems”. In the Proceedings of the 1996 Hot

Topics of Operating Systems.

[34] A. Grimshaw, A. Ferrari, F. Knabe, M. Humphrey, “Legion: An Operating System for Wide-Area

Computing”. IEEE Computer, 32:5, May 1999. Pp29-37.

[35] M. Hecht. “Flow Analysis of Computer Programs”. Elsevier North-Holland, New York. 1977.

[36] M. Hennessey, J. Riely, “Type Safe Execution of Mobile Agents in Anonymous Networks”, in:

Jan Vitek; Christian Jensen (Eds.): Secure Internet Programming, LNCS 1603, Springer-Verlag,

pp. 95-116, 1999.

[37] M. Hind, M. Burke, P. Carini and J. Choi. “Inter-procedural Pointer Analysis”. ACM Transactions

on Programming Languages and Systems, Vol. 21, No. 4, July 1999, pp 848-894.

[38] M. Hind, A. Pioli. “Assessing the Effects of Flow-Sensitivity on Pointer Alias Analyses”.

Research Report 21251, IBM T.J. Watson Research Center.

[39] M. A. Hitunen and R. D. Schlichting. “Adaptive Distributed and Fault-Tolerant Systems”

International Journal of Computer Systems Science and Engineering, vol. 11, No. 5, pp. 125-133,

September 1996.

[40] F. Hohl. “Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts”. In

Lecture Notes in Computer Science, vol. 1419, Mobile Agents and Security. Edited by G. Vigna.

Springer-Verlag, 1998.

[41] F. Hohl, “A Framework to Protect Mobile Agents by Using Reference States”. In: Proceedings of

194

the 20th International Conference on Distributed Computing Systems (ICDCS 2000).

[42] F. M. Ingels. “Information and Coding Theory”. Intext Educational Publishers, 1971.

[43] InterTrust. http://www.intertrust.com.

[44] R. Keller, U. Holzle. “Binary Component Adaptation”, Computer Science Technical Report.

Department of Computer Science, University of California at Santa Barbara. TRCS-97-20

[45] J. Knight, K. Sullivan, M. Elder, C. Wang. “Survivability Architectures: Issues and Approaches”

In Proceedings: DARPA Information Survivability Conference and Exposition. IEEE Computer

Society Press. Los Alamitos, CA, January 2000, pp. 157-171.

[46] J. Knight, M. Elder, J. Flynn, P. Marx, “Summary of Three Critical Infrastructure Systems”.

Computer Science Technical Report, CS-97-27, Department of Computer Science, University of

Virginia.

[47] D. Knuth, and F. Stevenson. “Optimal Measurement Points For Program Frequency Counts”. BIT

13, pp313-322, 1973.

[48] W. Landi, B. Ryders. “A Safe Approximate Algorithm for Interprocedural Pointer Analysis”. CS

Technical Report, Rutgers University, 1991.

[49] W. Landi. “Undecidability of Static Analysis”. ACM Letters on Programming Languages and

Systems, Vol. 1, No. 4. December 1992, pp 323-337.

[50] W. Landi. “Interprocedural Aliasing in the Presence of Pointers”. Ph.D. Dissertation, Rugters

University, 1992.

[51] J. R. Larus. “Efficient Program Tracing”. Computer, Vol 26. No. 5. May 1993. Pp52-61.

[52] T. Lunt. “Detecting Intruders in Computer Systems”. In the conference record of the 1993

Conference on Auditing and Computer Technology. 1993.

[53] S. Macrakis. “Protecting source code with ANDF”. OSF public document, 1993

195

[54] T. Marlowe, W. Landi, B. Ryder, J. Choi, M. Burke, and P. Carini. Pointer-induced Aliasing: A

Clarification. ACM SIGPLAN Notices, 28(9), pages 67-70, September 1993.

[55] T. Marlowe, B. Ryder. “An efficient hybrid algorithm for incremental data-flow analysis”. In the

Proceedings of the seventeenth annual ACM Symposium on the Principles of Programming

Languages. 1990. pp 184-196.

[56] G. McGraw, G. Morrisett. “Attacking Malicious Code”. Final Report of the Malicious Code

InfoSec Science and Technology Study Group to the InfoSec Research Council.

[57] C. Meadows. “Detecting Attacks On Mobile Agents”. In Proceedings of the DARPA workshop on

Foundations for secure mobile code, Monterey CA, USA, March 1997.

[58] Y. Minsky, R. van Reness, F. Schneider, S. Stoller. "Cryptographic support for fault-tolerant

computing", In the proceeding of the Seventh ACM SIGOPS European Workshop. Pp109-114.

Connemara, Ireland. September, 1996.

[59] S. Muchnick. “Advanced Compiler Design Implementation”. Morgan Kaufmann Publishers, 1997.

[60] J. C. Munson and T. M. Kohshgoftaar. “Measurement of Data Structure Complexity”. Journal of

Systems Software, 20:217-225, 1993.

[61] E. Myers. “A Precise Inter-procedural Data Flow Algorithm”. In the conference record of the

Eighth Annual ACM Symposium on Principles of Programming Languages. Williamsburg, VA.

January, 1981. pp219-230

[62] P. Neumann, “Practical Architectures for Survivable Systems”, Report for the Army Research

Lab. 2000.

[63] P. Neumann, Computer-Related Risks. ACM Press, New York, and Addison-Wesley, Reading,

MA, 1994.

[64] G. Necula, “Translation Validation for an Optimizing Compiler”, In the proceeding of the 2000

ACM SIGPLAN Conference on Programming Language Design and Implementation. Vol 35, No.

196

5. May 2000, Vancouver, British Columbia, Canada.

[65] G. Necula, “Proof-Carrying Code”. In the Proceedings of the 24th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’97), Paris, France,

January, 1997.

[66] The Prolangs Analysis Framework (PAF). Rutgers University.

http://www.prolangs.rutgers.edu/public

[67] Report of the Defense Science Board Task Force On Information Warfare—Defense (IW-D),

Office of the Secretary of Defense. November 1996. Available at http://www.jya.com/iwd.htm.

[68] A. Pnueli, M. Siegel, and E. Signerman. “Translation validation”. In Bernhard Steffen, editor,

Tools and Algorithms for Construction and Analysis of Systems, 4th Internaionl Conference,

TACAS’98, Vol. LNCS1384, pp151-166. Springer, 1998.

[69] C. Pu, A. Black, C. Cowan, J. Walpole, A Specialization Toolkit to Increase the Diversity in

Operating Systems. Proceedings: 1996 ICMAS Workshop on Immunity-based systems. Nara,

Japan. December 1996.

[70] Report of The Presidential Commission on Critical Infrastructure Protection, 1997.

[71] P. Porras, P. Neumann, “EMERALD: Event Monitoring Enabling Responses to Anomalous Live

Disturbances”. In the proceeding of the 1997 National Information Systems Security Conference.

Baltimore, 1997.

[72] C. V. Ramamoorthy, K. H. Kim, W. T. Chen, “Optimal Placement of Software Monitors Aiding

Systematic Testing”, IEEE Transactions on Software Engineering, Vol. SE-1, No. 4, December,

1975. Pp403-411.

[73] R. Rivest, A. Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems, Communications of the ACM 21,2, February 1978, pp120--126.

[74] T. Sander, C. Tschudin. “Protecting Mobile Agents Against Malicious Hosts”. Lecture Notes of

197

Computer Science, Edited by G. Vigna. Vol. 1419. Mobile Agents. 1998. Springer-Verlag.

[75] D. Schnackenberg. “IDIP Concept Document”. Boeing, Personal Communication.

[76] D. Siewiorek, and R. Swarz. “The Theory and Practice of Reliable System Design”. By Digital

Press, 1982.

[77] K. Sullivan, J. C. Knight, X. Du, and S. Geist, “Information Survivabiity Control Systems”.

Proceedings of the International Conference of Software Engineering, 1998.

[78] G. Vigna, "Cryptographic Traces for Mobile Agents", in Mobile Agents and Security, Lecture

Notes in Computer Science, Springer-Verlag, June 1998. Edited by G. Vigna.

[79] C. Wang, J. Hill, J. Knight, J. Davidson. "Protecting Network Probe Programs Against

Untrustworthy Hosts". Computer Science Department Technical Report, CS-00-12.

[80] C. Wang, J. Knight. "A Framework to Run Trusted Software on Untrustworthy Platforms",

Computer Science Department Technical Report, CS-99-15. March 1999.

[81] B. Yee. “A Sanctuary for Mobile Agents”. Technical Report CS97-537. Computer Science

Department, University of California in San Diego, USA.

[82] T. Murayama, M. Manbo, E. Okamoto. “A Tenative Approach to Constructing Tamper Resistant

Software”. In the Proceedings of the New Security Paradigms Workshop, 1998. Great Landale,

UK. pp. 23-33.

