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Abstract

We present a novel algorithm to reconstruct the geometry
and photometry of a scene with occlusions from a collection
of defocused images. The presence of a finite lens aperture
allows us to recover portions of the scene that would be oc-
cluded in a pin-hole projection, thus “uncovering” the oc-
clusion. We estimate the shape of each object (a surface,
including the occluding boundaries), and its radiance (a
positive function defined on the surface, including portions
that are occluded by other objects).

1. Introduction
In computer vision, we often try to suppress the fact that
real cameras have a lens, and try to model images as if they
were taken through a pin-hole1. However, lenses can do
marvels. Images generated with a finite aperture contain
spatial information that is lost in the ideal perspective pro-
jection. For instance, a lens on a finite aperture allows us
to “see behind” occluding boundaries (Fig. 1) and can gen-
erate images that contain unequivocal information on the
three-dimensional structure of the scene, given certain as-
sumptions on the radiance and the shape in the scene that
are discussed in detail in [8]. Such an effect depends on the
aperture, the focal length, the size of the occluding object
and its relative distance to the background, as will be seen
in the Experiments section.

In this paper we introduce a model of the imaging pro-
cess for an occlusion seen from an idealized thin lens. The
measured images depend upon both the shape of the scene
(which is unknown and non-smooth because of occlusions)
and its radiance (which is also unknown and non-smooth).
We present a novel algorithm that allows us to recover

1For some recent work on imaging models beyond the pin-hole approx-
imation, see [1]

both the shape of the scene, the location of the occluding
boundary, and its radiance, including portions of it which
are occluded when imaged through a pin-hole. Since the
unknowns (shape and radiance) are functions that live in
infinite-dimensional spaces, our algorithm entails the solu-
tion of partial differential equations. Work in this area is,
to the best of our knowledge, novel. We test our algorithm
on both real and synthetic image sequences, the latter with
ground truth.

Figure 1: The “pinhole prison”: occluded portions of the
background scene are not visible using a pinhole camera
(left). Using a finite aperture and a lens, however, allows
one to see past the occlusion (right). A similar effect can be
seen in the scene in Figure 8.

1.1. Relation to previous work and main con-
tributions

The human eye comes equipped with a very sophisticated
lens that can be actuated to change shape and aperture; such
a sophistication comes at a cost, as everyone wearing eye-
glasses knows (about 60% of the population in industrial-
ized countries). However, it also comes with a consider-
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able benefit, since the variation of measured images under
changing lens geometry conveys spatial information about
the environment, as it has been shown in engineering prac-
tice [6, 7, 9, 14, 16, 17, 18, 20, 21] and theory [8]. How-
ever, of the visual field of the eye only a small portion is
actually suited to processing variations associated with lens
geometry, corresponding to about six degrees of visual field
(the “fovea”). Therefore, it is evident that the human lens
system is particularly suited to detecting large variations in
depth that project in neighboring portions of the visual field
[10]; this occurs at occluding boundaries (or “silhouettes”),
as we show in Figure 1.

Despite the fact that occluding boundaries are particu-
larly important, most of the research in this area of Com-
puter Vision has so far concentrated to processing visual
data away from occluding boundaries. Typically, a surface
is approximated locally byequifocalplanes2. This approx-
imation results in a shift-invariant imaging model, which is
violated at occluding boundaries. Therefore, most “shape
from focus” (SFF) and “shape from defocus” (SFD) algo-
rithms convey no spatial information exactly where it mat-
ters the most: at the occluding boundary.

To our knowledge, very little work has been done along
this direction. [12] proposes to model occlusions by the
multicomponent blurring model, where the image is a linear
combination of the contributions from each surface. Unfor-
tunately, this model holds only when the surfaces are per-
fectly transparent, i.e. when the energy they emit (reflect)
adds linearly on the image plane. [19] only considers the
problem of detection of a boundary. [3] analyzes the spe-
cific case of self-occlusions of a scene made of a single sur-
face and a single radiance, and proposes an algorithm to
improve the estimation of the depth of the scene. Both the
surface and the radiance of a scene are modeled as Markov
random fields and both of these fields are recovered using a
maximum a-priori estimator. The algorithm is divided into
two parts. First, the depth map of the scene is obtained with-
out explicitly taking into account for occlusions. Second,
occlusions are detected by locating discontinuities on the
estimated depth map. At those discontinuities, the occlu-
sion effect is compensated by modifying the imaging kernel
so that the occluded area does not contribute to the image.

We consider a more general model for the occlusions,
where the scene is composed of two distinct smooth sur-
faces, and where one is occluding the other. On the two sur-
faces, we define two radiance distributions. In addition, we
consider that the occluding surface lies on a support that can
be a single compact set or a collection of compact sets (in
the next section we will give more details about the model
here described). As analyzed in [2], these kind of occlu-
sions cannot be modeled by a single convolutional equation
(neither shift-invariant nor shift-variant) or by a linear com-

2An equifocal plane is a plane parallel to the focal plane.

bination of shift-invariant convolutional equations (as in the
multicomponent blurring model of [12]). [2] proposes the
reversed projection blurringmodel to describe the effect of
occlusions when real aperture cameras are used. This model
has been shown to be a good approximation of the physical
image formation process, but no attempt has been done to
estimate the parameters of the scene. In our solution, we
adopt a model derived from the reversed projection blurring
model and use it to infer all the geometric and radiometric
parameters of the scene in a variational framework. We es-
timate the parameters by minimizing an energy functional
composed of a discrepancy term between the measured im-
ages and the estimated images, and a number of regulariza-
tion terms for the estimated parameters. The minimization
is performed by evolving a set of partial differential equa-
tions. These minimization methods have been often used
in the field of image processing for image restoration, or,
more specifically, image deblurring [23, 22]. Our numeri-
cal implementation uses level set methods [13]. Since our
work entails energy functional minimization evolving sur-
faces, our work relates also to [5, 4].

2. Modeling occlusions
We consider the scene as being composed of two surfaces:
Object 1 and Object 2 (see Figure 2), represented by the
functionss1 : Ω1 ⊂ R2 7→ R+ ands2 : Ω2 ⊂ Ω1 7→ R+

respectively. The radiancer1 : Ω1 7→ R+ is defined on
s1, and the radiancer2 : Ω2 7→ R+ is defined ons2. We
assume, without loss of generality, that Object 2 is closer to
the lens than Object 1, i.e. thats1(x) > s2(x) ∀x ∈ Ω2

(surfaces do not intersect). The intensity at a pixely ∈
Γ ⊂ Z2 on the image plane is obtained by integrating the
contribution from the two radiances over specific areas. The
size and shape of these areas are determined by the mutual
position of Object 1 and Object 2, as illustrated in Figure 2.
Before introducing the imaging model, we need to define
some functions that will be used in our notation. We denote
with H the Heaviside function

H(z) =
{

1, if z ≥ 0
0, if z < 0 (1)

and withH̄ the complement ofH, i.e.

H̄(z) =
{

0, if z ≥ 0
1, if z < 0.

(2)

Since we will collect images of the scene by changing the
geometry of the lens, we will use the symbolp as an index
that indicates the camera parameters setting.πp is the pro-
jection ofs2 ontos1 through the point in focus(−yup

v , up)
(in Figure 2 it is depicted as the point in space where all rays
converge). The variablew2 : Ω1 7→ R, that we will call the
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Figure 2: Object 2 occludes Object 1. The irradiance col-
lected at a pointy on the image plane is made of contri-
butions from both Object 1 and Object 2. The radiance of
Object 1 is integrated over the blurring circle except for the
region occluded by Object 2. This region depends on the
projection of Object 2 through the intercept at depthu (the
point in space where all rays converge). The parameterv
denotes the distance between the image plane and the lens
plane, and it is related to the focal positionu via the thin
lens law: 1

v + 1
u = 1

f , wheref is the focal of the lens.

support function, defines the supportΩ2 of r2 ands2 via

Ω2 = {x ∈ Ω1 : w2(x) ≥ 0} (3)

in a similar way as it is done in Chan and Vese [5]. An
alternative to Eq. (3) is

Ω2 = {x ∈ Ω1 : H
(
w2(x)

)
= 1} (4)

which we will use later in the integral expressions of the
image formation model. Since we do not have anya-priori
information aboutΩ2, we need to reconstruct it from the
data. The supportΩ2 might be a single connected set, or
a collection of connected sets. Hence, we also need to be
able to handle topological changes during the estimation of
Ω2. As we will see later, the above definition ofΩ2 via the
support functionw2 allows for those changes (notice that
w2 can be seen as a level set function). We are now ready
to introduce the image model for blurring in presence of oc-
clusions. From the reversed projection blurring model [2],
we have that the irradiance measured on the image plane

Ip : Γ ⊂ Z2 7→ R+ can be expressed as:

Ip(y) =
∫

Ω2

hp(y,x, s2(x))r2(x)dx+

+
∫

Ω1

hp(y,x, s1(x))H̄
(
w2(πp(x))

)
r1(x)dx

(5)
or, equivalently, by

Ip(y) =
∫

Ω1

hp(y,x, s2(x))H
(
w2(x)

)
r2(x)dx+

+
∫

Ω1

hp(y,x, s1(x))H̄
(
w2(πp(x))

)
r1(x)dx

(6)
and bothr2 ands2 are extended over the domainΩ1 at will,
sinceH(w2(x)) is an indicator function that restricts the
integral to the domainΩ2. The kernelhp : Γ×R2×R+ 7→
R+ depends on the focal lengthf and the focal settingup,
as well as on the surface of the scene (third argument ofhp).
If we defineJp : Z2 7→ R+ to be the measured image cor-
responding to the image modelIp, for p = [p1...pN ], where
N is the total number of images, we can formulate the prob-
lem of recovering the unknown radiances, the surfaces and
the support function, as the minimization of the following
energy functionalE(r1, r2, s1, s2, w2):

E =
N∑

i=1

∑
y

φ (Ipi , Jpi) +
∫

Ω1

α1 (‖∇r1(x)‖) dx+

+
∫

Ω2

α2 (‖∇r2(x)‖) dx +
∫

Ω1

β1 (‖∇s1(x)‖) dx+

+
∫

Ω2

β2 (‖∇s2(x)‖) dx +
∫

Ω1

γ2 (‖∇H(w2(x))‖) dx

(7)
whereφ : R×R 7→ R+, andα1, α2, β1, β2, γ2 are functions
R 7→ R+. The first term accounts for the matching between
the model image and the observed image. The remaining
terms impose regularization on the five unknowns. In par-
ticular, the last term minimizes the length of the boundary
of the support functionw2. Energy functionals like the one
in Eq. 7 have been used in blind image restoration by You
and Kaveh [23, 22].
The five unknownsr1, r2, s1, s2 andw2 are inferred us-
ing a technique similar to gradient descent. Due to the it-
erative nature of gradient descent, our estimated functions
will also be dependent on time. For example, the estimate
of r2 will be a functionr̂2 : Ω2 × R+ 7→ R+, such that,
if the solution is unique and convergence is guaranteed,
limt→∞ r̂2(x, t) = r2(x) ∀x ∈ Ω2. We call evolution
of r2 the change of̂r2 in time. Now, letξ : R2 × R+ 7→ R
represent one of the estimated unknowns as it evolves in
time, then, to minimize the energy functional (7), we use
the following iteration scheme

dξ

dt
= −∇ξE (8)
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where∇ξE is the Euler-Lagrange equation of the energy
functional3 with respect toξ. The initialization procedure
will be discussed in the implementation sections, and for
now we assume thatξ is initialized with an “admissible”
function.

3. Detecting occlusions

The amount of computations required by the algorithm
described in the previous section is considerable, due to
the infinite-dimensional formulation of the minimization
scheme. One can reduce the time required to estimate the
geometry and radiometry of the scene by first detecting oc-
cluding regions and then applying the minimization scheme
to the detected regions. Rather than locating sharp disconti-
nuities of the depth map, we detect occluding regions by ex-
amining the residual of the cost function when a single sur-
face and a single radiance are assumed. Occluding bound-
aries result in a high residual, while smooth variations in
depth do not elicit large residuals. Therefore, given a set of
blurred images (see Figure 3), we first compute the residual
with a single-surface/single-radiance model (see Figure 4);
then, we select regions whose corresponding residuals are
above a fixed threshold (see Figure 4), and restrict the oc-
clusion model to operate within those regions. This step is
conceptually not necessary, and it is only inserted to speed
up the algorithm described below.

Figure 3:Synthetic scene with occlusions. Top: setup. Bot-
tom: data. From left to right the focal position moves away
from the camera, thus, first focusing on the foreground ob-
ject and then moving the focus towards the background ob-
ject.

3Because of the parallel to gradient descent, the symbol∇ξE has been
chosen to represent the Euler-Lagrange equation of the energy functional
with respect toξ.

Figure 4:Left: residual of the cost function when assuming
a single-surface/single-radiance model (white denotes high
residuals). High residuals correspond to occluding bound-
aries. Right: a pinhole image of the scene in Figure 3
with detected occlusions. Smooth variations in depth do
not elicit large residuals.

4. Implementation of the algorithm
In this section we will explain more in detail the minimiza-
tion of the energy functional (7).
To simplify the notation that we are going to introduce, we
will make use of the following change of coordinates

ŷ = y
s2(ŷ)

v
. (9)

Notice that this change of coordinates is in implicit form.
However, since there is a one-to-one correspondence be-
tweeny and ŷ, we will not need to solve it explicitly, as
variables originally defined iny, will be defined with re-
spect to the new coordinateŝy. This will be the case, for
example, for the imagesIpi . Then, the operation of defining
Ipi with respect tôy corresponds to projecting the imageIpi

onto the surfaces2.
We are now interested in computing the projection func-

tion πp:

πp(x) .= x̄ = y
up

v

s1(x)− s2(x̄)
s1(x)− up

+ x
s2(x̄)− up

s1(x)− up
. (10)

Sinces2 appears as a function of̄x, this formula is also
defined implicitly, and it can not be used directly in the en-
ergy functional. In order to obtain an explicit formula, it is
necessary to use approximations ofs2. The simplest is to
assume thats2 is constant for each̄x in a neighborhood of
ŷ, and therefore:

πp(x) ' y
up

v

s1(x)− s2(ŷ)
s1(x)− up

+ x
s2(ŷ)− up

s1(x)− up
. (11)

In addition to this approximation, we will also need a sec-
ond one, due to the computation of the Euler-Lagrange
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equations. Later, we will see that some of these equations
require a change of coordinates that is implicit. To make the
change of coordinate explicit, we impose thats1 is constant
for x in a neighborhood of̂y, and therefore:

πp(x) ' ŷ
up

s2(ŷ)
s1(ŷ)− s2(ŷ)
s1(ŷ)− up

+ x
s2(ŷ)− up

s1(ŷ)− up
. (12)

We find experimentally that the current formulation is suf-
ficiently accurate to infer the unknowns of the scene.

Now, we re-define the imaging model (6) under the
change of coordinates (9) and the assumptions above, to
yield

Ip(ŷ) =
∫
Ω1

hp(ŷ,x, s2(ŷ))H
(
w2(x)

)
r2(x)dx+

+
∫
Ω1

hp

(
ŷ s1(ŷ)

s2(ŷ) ,x, s1(ŷ)
)

H̄
(
w2(πp(x))

)
r1

(
x s2(ŷ)

s1(ŷ)

)
dx.

(13)
Notice that in this formulation we defined the radiancer1

on the surfaces2, rather than on the surfaces1, to have the
same resolution of radiancer2. Hence, when integrating in
Ω1 we have to re-project onto the surfaces2 the coordinates
x defined on surfaces1.
Since our formulation of the problem requires the computa-
tion of gradients, which are not well-defined for the Heavi-
side function4 in the context of regular functions, we define
the following regularized version of the Heaviside function

Hε(z) .=
1
2

(
1 +

2
π

arctan
(z

ε

))
(14)

whereε is a tuning parameter and determines the degree
of regularization ofHε. In a similar fashion we define the
derivative ofHε(z) as the regularized Dirac delta function

δε(z) .=
∂Hε(z)

∂z
=

1
πε

1

1 +
(

z
ε

)2 . (15)

In the literature for depth from defocus, the kernel function
hp is typically chosen to be either a Gaussian or a pillbox
function (see [6]). In our current implementation we use a
Gaussian kernel, but the algorithm is not restricted to this
choice. Hence, we have

hp(y,x, s) =
1

2πσ2
s

e
− |y−x|2

2σ2
s (16)

whereσs = λD
∣∣∣ s
up
− 1

∣∣∣, λ is a scale factor, andD is the

diameter of the lens.
Defineφ to be thè 2 norm, i.e.

φ(Ipi , Jpi) =
∑

ŷ

(Ipi(ŷ)− Jpi(ŷ))2. (17)

4The derivative of the Heaviside is, however, well-defined in a distribu-
tional sense (see [11]).

Define alsoγ2(z) = γ|z| with γ a positive constant, and
similarly for the functionsα1, α2, β1 andβ2. Now that all
the relevant functions have been defined, we can proceed
with computing the Euler-Lagrange equations of the energy
functional with respect to the five unknowns.
The first equation we examine is∇r1E, and it is composed
of two terms:

∇r1E(x) = 2
∑N

i=1

∑
ŷ (Ipi

(ŷ)− Jpi
(ŷ)) s2

1(ŷ)

s2
2(ŷ)

hp

(
ŷ s1(ŷ)

s2(ŷ) ,x
s1(ŷ)
s2(ŷ) , s1(ŷ)

)
H̄ε(w2(πp(x

s1(ŷ)
s2(ŷ) )))−

−∇ ·
(
α′1 (‖∇r1(x)‖) ∇r1(x)

‖∇r1(x)‖
)

(18)
whereα′1 is the first derivative ofα1 with respect to its only
argument.
The first term comes from “matching” the image model and
the measured image, and the other term comes from the reg-
ularization constraint onr1. In particular, the second term
can be interpreted as the anisotropic diffusion (see [15] for
more details) of the reconstructedr1, provided that thedif-

fusion coefficientc is defined asc(x) .= α′1(‖∇r1(x)‖)
‖∇r1(x)‖ . Sim-

ilarly, we obtain the Euler-Lagrange equation∇r2E:

∇r2E(x) = 2
∑N

i=1

∑
ŷ (Ipi(ŷ)− Jpi(ŷ)) hp(ŷ,x, s2(ŷ))

Hε(w2(x))−∇ ·
(
α′2 (‖∇r2(x)‖) ∇r2(x)

‖∇r2(x)‖
)

.

(19)
The Euler-Lagrange equation∇s1E involves a large num-
ber of terms. Rather than finding the explicit formula of
∇s1E, we choose to approximate it pointwise via

∇s1E(ŷ) ' E(s1(ŷ) + ds1(ŷ))− E(s1(ŷ))
ds1(ŷ)

. (20)

In practice, due to the discretization of the functions in the
implementation of the algorithm, it is sufficient to use a
small ds1(ŷ) (between0.001 m and0.01 m for surfaces
around1 m) to compute a reasonable approximation of
∇s1E. Similarly, we approximate∇s2E pointwise by us-
ing

∇s2E(ŷ) ' E(s2(ŷ) + ds2(ŷ))− E(s2(ŷ))
ds2(ŷ)

. (21)

The computation of the last Euler-Lagrange equation∇w2E
returns:

∇w2E(x) = 2
∑N

i=1

∑
ŷ (Ipi(ŷ)− Jpi(ŷ))

hp(ŷ,x, s2(ŷ))δε(w2(x))(
r2(x)− r1

(
ŷ up

s1(ŷ)
s2(ŷ)−s1(ŷ)

s2(ŷ)−up
+ x s2(ŷ)

s1(ŷ)
s2(ŷ)−s1(ŷ)

s2(ŷ)−up

))
−

−γδε(w2(x))∇ ·
(
∇w2(x)
‖∇w2(x)‖

)
.

(22)

5. Experiments
In this section we show some experiments on real and syn-
thetically generated data. We consider scenes where one (or
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a collection of) object(s) in the foreground occludes another
in the background (see Figure 1, Figure 3 or Figure 8 for ex-
ample). For each experiment we use4 images:2 with focal
distance close to the foreground object(s) and the other2
with focal distance close to the background object. The dis-
tances at play are such that the amount of blurring on either
the foreground object or the background object is large.

5.1. Experiments on a synthetic scene
We generate4 images from a scene made of an equifocal
plane in the background, and a collection of surfaces in
the foreground. The surfaces in the foreground all lie on
another equifocal plane, that is closer to the camera (see
Figure 3). We generate the images by changing the image
plane distance from the lens, and then compensate for the
scaling between the different images (see Figure 5). We
estimate the radiance on the background surface (vertical
stripes), and the radiance on the foreground surfaces (hor-
izontal stripes). In Figure 5 we show a few snapshots of
the estimation process of both the radiances, together with
the ground truth (on the right). In Figure 6 we visualize the
evolution of the zero level set of the support functionw as a
contour superimposed to the pinhole image of the scene. In
Figure 7 we show some snapshots from the evolution of the
surfaces estimation. In particular, the foreground surfaces
are shown only on the estimated support, and both surfaces
are texture mapped with the estimated radiances.

Figure 5: Experiments on synthetic data. (Top row) 4
patches of 15x15 pixels each from synthetic data are shown.
(Middle row) On the left we show 3 snapshots of the evolu-
tion of r1, while on the right we show the ground truth for
comparison. (Bottom row) On the left we show 3 snapshots
of the evolution ofr2 together with the estimated support,
while on the right we show the ground truth (on the true
support).

Figure 6: Synthetic scene. Evolution of support function.
The zero level set of the support function is showed (red
contour) superimposed to the pinhole image of the scene.

Figure 7:Synthetic scene. From the left,3 snapshots of the
evolution of surfacess1 ands2. Surfaces2 is shown only
on the support estimated viaw2. On the right we show the
true scene geometry.

5.2. Real images
In Figure 8 it is shown the setup of the scene used in our ex-
periments with real images. In the background we put the
“IEEE” sign over a highly textured surface at a distance of
1.10m from the camera. In the foreground we placed a set
of stripes at a distance of.40m, in such away as to com-
pletely cover the “IEEE” sign. However, when the back-
ground is focused, the finite size of the lens allows us to
see “behind” the foreground object as it is evident in fig-
ures 8 and 9. To capture the images we used a Nikon AF
NIKKON 35mm lens and focus at.35m, .45m, 1.05m and
1.15m. Notice that the setup image in Figure 8 has been ob-
tained by putting the camera and the objects closer to each
other so that the stripes and the sign “IEEE” are both clearly
visible.

As in the previous section, we estimate the radiance on
the background surface (the “IEEE” sign), and the radiance
on the foreground surfaces. In Figure 9 we show a few snap-
shots of the estimation process of both the radiances. On
the right we put the “ground truth” for comparison. The
image for the radiance in the background has been taken
by simply removing the occluding object and by focusing
on the background surface. Instead, the ground truth image
for the radiance in the foreground object has been obtained
by manually segmenting a focused image of the foreground
object. In Figure 10 we visualize the evolution of the zero
level set of the support functionw as a contour superim-
posed to the pinhole image of the scene. In Figure 11 we
show some snapshots from the evolution of the surfaces es-
timation. The foreground surfaces is shown only on the es-

6



timated support, and both surfaces are texture mapped with
the estimated radiances.

Figure 8:Left: setup of the scene together with the camera.
Right: two of the images captured for two different focal
settings. As it can be seen, on the top right image the fore-
ground object completely occludes the background object.
By moving the plane in focus to the background, however,
the sign “IEEE” on the background image becomes visible
due to the finite-aperture of the lens (bottom-right image)
similarly to Fig. 1.

6. Summary and Conclusions

We have presented an algorithm to reconstruct the shape
and radiance of a scene that features occlusions. This in-
cludes estimating the occluding boundaries of each object,
its shape, and the radiance of each object, including por-
tions of it that are occluded. To the best of our knowledge,
we are the first to do so.

Our algorithm is a gradient descent on the first-order op-
timality condition of a cost functional that includes a data
fidelity term and regularization terms for each of the un-
known. The latter are necessary since the unknowns (shape
and radiance) live in infinite-dimensional spaces. We have
tested our algorithm on real and synthetic image sequences,
including the uncovering of occlusions.
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Figure 9:Top row: 4 patches of 35x35 pixels from the real
data of Figure 8. Middle row: on the left we show 3 snap-
shots of the evolution ofr1 (the radiance of the background
object), while on the right we show the true radiance cap-
tured after removing the occluding object from the scene.
Bottom row: on the left we show 3 snapshots of the evolu-
tion of r2 together with its support, while on the right we
show the radiance captured as ground truth.

Figure 10:Real scene. Evolution of the support function.
The zero level set of the support function is showed (yellow
contour) superimposed to the pinhole image of the scene.

Figure 11:Real data.4 snapshots of the evolution of sur-
facess1 ands2. Surfaces2 is shown only on the support
estimated viaw2.
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