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PREFACE

This dissertation was produced in accordance with guidelines which permit the inclusion as

part of the dissertation the text of an original paper or papers submitted for publication.

The dissertation must still conform to all other requirements explained in the Guide for the

Preparation of Masters Theses and Doctoral Dissertations at The University of Texas at

Dallas. It must include a comprehensive abstract, a full introduction and literature review

and a final overall conclusion. Additional material (procedural and design data as well as

descriptions of equipment) must be provided in sufficient detail to allow a clear and precise

judgment to be made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin and legibility requirements. In such cases,

connecting texts which provide logical bridges between difference manuscripts are manda-

tory. Where the student is not the sole author of a manuscript, the student is required

to make an explicit statement in the introductory material to that manuscript describing

the students contribution to the work and acknowledging the contribution of the other au-

thor(s). The signatures of the Supervising Committee which precede all other material in

the dissertation attest to the accuracy of this statement.
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The astronomical growth of the World Wide Web resulted in the emergence of data repre-

sentation methodologies and standards such as the Resource Description Framework (RDF)

that aim to enable rapid and automated access to data. The widespread deployment of

RDF resulted in the emergence of a new data model paradigm, the RDF Graph Model.

This, in turn, spawned an associated demand for RDF graph data modeling and visual-

ization tools that ease the burden of data management off the administrators. However,

while there is a large selection of such tools available for more established data models such

as the relational data model, the assortment of tools for RDF stores are fewer in compar-

ison as the RDF paradigm is a more recent development. This dissertation presents R2D

(RDF-to-Database), a relational wrapper for RDF Data Stores, which aims to transform, at

run-time, semi-structured RDF data into an equivalent, domain-specific, virtual relational

schema, thereby bridging the gap between RDF and RDBMS concepts and making exist-

ing relational tools available to RDF Stores. R2D’s transformation process involves two

components - a schema mapping component that uses a declarative mapping language to
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achieve its objective, and a query transformation component that translates SQL queries

into equivalent SPARQL queries. A semantics-preserving transformation methodology for

R2D’s components is presented with proofs that establish the fact that an SQL query, ŝql,

run over the translated relational schema, R, obtained from an RDF Graph, G, through

R2D’s schema mapping process, returns the same result that an equivalent SPARQL query,

˙spq, obtained by translating ŝql using R2D’s query translation process, would when run on

the original RDF graph, G. Additionally the dissertation also presents D2RQ++, an en-

hancement over an existing read-only relational schema-to-RDF mapping tool, D2RQ, that

presents legacy data stored in relational databases as virtual RDF graphs. D2RQ++ en-

ables bi-directional data flow by providing data manipulation facilities that permit triples

to be inserted, updated, and/or deleted into appropriate tables in the underlying relational

database. The primary R2D and D2RQ++ functionalities, high-level system architectures,

performance graphs, and screen-shots that serve as evidence of the feasibility of our work are

presented along with a semantic-preserving version of R2D’s components and the relevant

proofs of semantics-preservation.

ix



TABLE OF CONTENTS

PREFACE v

ACKNOWLEDGMENTS vi

ABSTRACT viii

LIST OF TABLES xv

LIST OF FIGURES xvi

LIST OF ALGORITHMS xx

CHAPTER 1 INTRODUCTION 1

1.1 Current Trend in the Internet Community The Semantic Web and RDF . . 1

1.2 Challenges due to the Current Trend . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Challenge 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Challenge 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Addressing the Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Addressing Challenge 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Addressing Challenge 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Contributions towards Challenge 1 . . . . . . . . . . . . . . . . . . . 8

1.4.2 Contributions towards Challenge 2 . . . . . . . . . . . . . . . . . . . 9

1.5 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 10

x



CHAPTER 2 LITERATURE REVIEW 11

2.1 RDF-to-Relational Translation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Relational-to-RDF Translation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Bi-directional Relational-to-RDF Translation . . . . . . . . . . . . . . . . . . 18

2.4 SPARQL-to-SQL Translation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

CHAPTER 3 R2D ARCHITECTURE and MAPPING PRELIMINARIES 22

3.1 Mapping Constructs used for Regular RDF Triples . . . . . . . . . . . . . . 23

3.2 Mapping Constructs used for RDF Reification Data . . . . . . . . . . . . . . 29

3.3 Types of Relationships addressed in R2D . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 4 R2D SYSTEM DESIGN FOR REGULAR RDF TRIPLES 36

4.1 RDFMapFileGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 DBSchemaGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 SQL-to-SPARQL Translation . . . . . . . . . . . . . . . . . . . . . . . . . . 44

CHAPTER 5 R2D IMPLEMENTATION DETAILS FOR REGULAR RDF TRIPLES 50

5.1 Experimental Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

CHAPTER 6 R2D SYSTEM DESIGN FOR RDF REIFICATION DATA 60

6.1 Mapping Reification Nodes – RDFMapFileGenerator . . . . . . . . . . . . . 60

6.2 Relationalizing Reification Data – DBSchemaGenerator . . . . . . . . . . . . 66

6.3 Querying Reification Data – SQL-to-SPARQL Translation . . . . . . . . . . 72

CHAPTER 7 R2D EXPERIMENTAL RESULTS FOR RDF REIFICATION DATA 80

7.1 Experimental Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xi



CHAPTER 8 SEMANTICS-PRESERVING TRANSLATION 91

8.1 Core Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.1 RDF Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.1.2 SQL Core Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2.1 Relational Schema Semantics . . . . . . . . . . . . . . . . . . . . . . 102

8.2.2 SQL Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2.3 SPARQL Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.3 Translation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.3.1 Schema Mapping/Transformation Function, f . . . . . . . . . . . . . 116

8.3.2 Query Transformation Function, h . . . . . . . . . . . . . . . . . . . 118

8.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.4.1 Semantic Preservation of Schema Translation . . . . . . . . . . . . . 121

8.4.2 Semantic Preservation of Query Translation . . . . . . . . . . . . . . 126

CHAPTER 9 UPDATE-ENABLED TRIPLIFICATION OF RELATIONAL DATA 133

9.1 D2RQ++ - Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.1.1 Persistence of Unmapped and/or Duplicate Information . . . . . . . . 136

9.1.2 Mapping and Persistence of RDF Blank Nodes . . . . . . . . . . . . 138

9.1.3 Mapping and Persistence of RDF Reification Nodes . . . . . . . . . . 140

9.1.4 Maintenance of Open-World Assumption through Periodic Consolidation140

9.2 D2RQ++ Algorithms for Regular Triples and Blank Nodes . . . . . . . . . . 141

9.2.1 Insert/Update Operations on Regular Triples . . . . . . . . . . . . . 141

9.2.2 Insert/Update Operations on Blank Node Triples . . . . . . . . . . . 142

9.2.3 Consolidation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.2.4 Delete Operations on RDF Triples and Blank Nodes . . . . . . . . . . 148

xii



9.3 Bi-directional Translation of RDF Reification Nodes . . . . . . . . . . . . . . 152

9.3.1 Reification Node Categories and their Relationalization . . . . . . . . 154

9.3.2 Mapping Language Extensions for Reification Support . . . . . . . . 157

9.3.3 D2RQ++ Algorithms for Reification Nodes . . . . . . . . . . . . . . 160

9.4 Implementation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.4.1 Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.4.2 Experimental Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

CHAPTER 10 FUTURE WORK AND CONCLUSION 186

10.1 Future Directions for R2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.1.1 Entity Alignment/Matching in RDFMapFileGenerator . . . . . . . . 186

10.1.2 Semantics-Preserving Schema Translation Augmentation . . . . . . . 190

10.1.3 Semantics-Preserving Query Translation Augmentation . . . . . . . . 190

10.2 Future Directions For D2RQ++ . . . . . . . . . . . . . . . . . . . . . . . . . 190

10.2.1 Provision of SPARQL/Update End Point and Query Translation Al-

gorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.2.2 Relational-to-RDF Transformation and Update of Nested & Mixed

Blank Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.3 Multi-Platform Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

APPENDIX A 195

APPENDIX B 212

APPENDIX C 239

xiii



REFERENCES 267

VITA

xiv



LIST OF TABLES

4.1 SQL-to-SPARQL Translation Algorithm - Supporting Procedures . . . . . . 46

6.1 Excerpts from the R2D Map File depicting mapping entries corresponding to
reification Blank Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Excerpts from the R2D Map File depicting mapping entries corresponding to
reification Blank Node predicates . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Conditions under which a new r2d:TableMap is created for reification data . 69

8.1 Canonical Form of RDF Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2 Unsupported SQL Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.1 Extensions To D2RQ’s Mapping Constructs . . . . . . . . . . . . . . . . . . 138

9.2 RDF Reification Extentions To D2RQ’s Mapping Constructs . . . . . . . . . 158

A.1 Theorem 1 - Supporting Functions . . . . . . . . . . . . . . . . . . . . . . . 195

A.2 Theorem 1 - Temporary Triples Manipulation Functions . . . . . . . . . . . 197

A.3 Theorem 2 - Supporting Functions . . . . . . . . . . . . . . . . . . . . . . . 200

xv



LIST OF FIGURES

3.1 (a) R2D System Architecture; and (b) Deployment Sequence . . . . . . . . . 22

3.2 Sample Scenario Based on LUBM Schema . . . . . . . . . . . . . . . . . . . 24

3.3 Equivalent Virtual Relational Schema generated by R2D for Figure 3.2 . . . 29

3.4 Sample Scenario involving Crime Data . . . . . . . . . . . . . . . . . . . . . 30

3.5 Equivalent Relational Schema corresponding to Figure 3.4’s Sample Scenario 33

5.1 Map File Generation Times with and without Sampling . . . . . . . . . . . . 52

5.2 Map File Excerpt and a Portion of the Equivalent Relational Schema as seen
by Datavision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 DataVision Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 SQL-to-SPARQL Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Tabular Results as seen through DataVision . . . . . . . . . . . . . . . . . . 57

5.6 Response Times for Selected LUBM Queries . . . . . . . . . . . . . . . . . . 59

7.1 Map File Generation Times with/without Sampling for Reified/Un-reified Data 82

7.2 Equivalent Relational Schema as seen through DataVision . . . . . . . . . . 84

7.3 DataVision’s Report Designer and Query Processing . . . . . . . . . . . . . . 85

7.4 SQL Query generated by DataVision and its equivalent SPARQL query as
generated by R2D’s SQL-to-SPARQL Translation Module . . . . . . . . . . 86

7.5 RDF Triples presented to DataVision in a Relational Tabular Format . . . . 87

7.6 SQL-to-SPARQL Translation and Tabular Results for Query involving Reifi-
cation CLBN NQP (Victim Phone) . . . . . . . . . . . . . . . . . . . . . . . 88

xvi



7.7 SQL-to-SPARQL Translation and Tabular Results for Query involving a Sim-
ple Reification NQP (Officer Name) and a Reification SLBN NQP (Offi-
cer Address) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.8 Response times for the chosen Queries . . . . . . . . . . . . . . . . . . . . . 90

8.1 R2D Commutative Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.2 Mathematical Model of an RDF Graph . . . . . . . . . . . . . . . . . . . . . 94

8.3 SQL Core Language Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.4 Mathematical Model of SQL Core Language . . . . . . . . . . . . . . . . . . 101

8.5 Mathematical Model of a Relational Schema . . . . . . . . . . . . . . . . . . 103

8.6 Relational Schema Denotational Semantics - Non-Temporary Tables . . . . . 105

8.7 Relational Schema Denotational Semantics - Temporary Tables . . . . . . . . 106

8.8 Denotation of a SELECT element that is an Arithmetic Addition Expression 108

8.9 SQL-to-SPARQL Translation function - h, and hw . . . . . . . . . . . . . . . 119

8.10 SQL-to-SPARQL Translation function - hs . . . . . . . . . . . . . . . . . . . 120

9.1 Relational Schema used to illustrate D2RQ++ . . . . . . . . . . . . . . . . . 137

9.2 Sample RBNPB Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.3 Sample RDF Scenario with Reification Nodes . . . . . . . . . . . . . . . . . 153

9.4 Employee Table Data prior to DML Operations . . . . . . . . . . . . . . . . 166

9.5 Addition of a Second Employee Record . . . . . . . . . . . . . . . . . . . . . 167

9.6 D2R++Server Screen illustrating Second Employee Name Addition . . . . . 168

9.7 MySQL database after Second Employee Name Addition . . . . . . . . . . . 169

9.8 D2R++Server Screen after Second Employee Name Addition . . . . . . . . . 170

9.9 D2R++Server Screen illustrating Removal of Second Employee Name (“Doe”) 172

9.10 MySQL database after Deletion of both Names for Employee 1 . . . . . . . 173

xvii



9.11 D2R++Server Screen after Deletion of both Names for Employee 1 . . . . . 174

9.12 D2R++Server Screen illustrating Removal of Second Employee (Employee 2) 175

9.13 MySQL database after Deletion of Employee 2 . . . . . . . . . . . . . . . . . 176

9.14 Initial Data in employee Table . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.15 D2R++Server Screen illustrating Addition of First Address SLBN . . . . . . 178

9.16 MySQL Database after Addition of First Address SLBN . . . . . . . . . . . 179

9.17 D2R++Server Screen illustrating Addition of Second Address SLBN . . . . . 180

9.18 MySQL Database after Addition of Second Address SLBN . . . . . . . . . . 181

9.19 MySQL Database after Addition of inspectionDate Reification Information to
Department 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.20 SPARQL Query Extracting RDBMS Data in RDF Form . . . . . . . . . . . 183

9.21 SPARQL Query Output Including inspectionDate Reification Information . . 184

9.22 Performance of DML Operations . . . . . . . . . . . . . . . . . . . . . . . . 185

10.1 Sample RDF Graphs A and B . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10.2 (a) Columns in the Ideal Table corresponding to Graphs A and B in Fig-
ure 10.1; (b) Columns generated by RDFMapFileGenerator in the absence of
ontology alignment techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 188

10.3 Sample RDF Graphs A and B . . . . . . . . . . . . . . . . . . . . . . . . . . 188

10.4 (a) Columns in the Ideal Table corresponding to Graphs A and B in Fig-
ure 10.3; (b) Columns generated by RDFMapFileGenerator in the absence of
ontology alignment techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.1 Theorem 1 - Supporting Functions (a) . . . . . . . . . . . . . . . . . . . . . 204

A.2 Theorem 1 - Supporting Functions (b) . . . . . . . . . . . . . . . . . . . . . 205

A.3 Theorem 1 - Temporary Literal and Resource Triples Manipulation Functions 206

A.4 Theorem 1 - Temporary N:M and MVA Triples Manipulation Functions . . . 207

xviii



A.5 Theorem 2 Supporting Functions - ExtColEdges . . . . . . . . . . . . . . . . 208

A.6 Theorem 2 Supporting Functions - AttachEdge . . . . . . . . . . . . . . . . 208

A.7 Theorem 2 Supporting Functions - IsTable . . . . . . . . . . . . . . . . . . 209

A.8 Theorem 2 Supporting Functions - GetSubQueryAlias . . . . . . . . . . . . 209

A.9 Theorem 2 - Other Support Functions (a) . . . . . . . . . . . . . . . . . . . 210

A.10 Theorem 2 - Other Support Functions (b) . . . . . . . . . . . . . . . . . . . 211

B.1 Relational Schema Denotational Semantics - Non-Temporary Tables . . . . . 213

B.2 Relational Schema Denotational Semantics - Temporary Tables . . . . . . . . 214

B.3 Translation of Instance Triples and Non-MVA Literal Triples . . . . . . . . . 215

B.4 Translation of Non-N:M Resource Triples . . . . . . . . . . . . . . . . . . . . 216

B.5 Multi-Valued (MVA) Literal Triples Translation (a) . . . . . . . . . . . . . . 217

B.6 Multi-Valued (MVA) Literal Triples Translation (b) . . . . . . . . . . . . . . 218

B.7 Translation of Resource Triples sharing a Many-to-Many (N:M) Relationship 219

C.1 S - Base and Character Element with Table . . . . . . . . . . . . . . . . . . 240

C.2 S - Character Element with SubQuery . . . . . . . . . . . . . . . . . . . . . 241

C.3 S - Column Element With Table . . . . . . . . . . . . . . . . . . . . . . . . 242

C.4 S - Column Element With Sub Query . . . . . . . . . . . . . . . . . . . . . . 243

C.5 SQL-to-SPARQL Translation function - h, and hw . . . . . . . . . . . . . . . 244

C.6 SQL-to-SPARQL Translation function - hs . . . . . . . . . . . . . . . . . . . 245

C.7 Q - Base and Character Element with Type Where . . . . . . . . . . . . . . 246

C.8 Q - Character Element with SubQuery . . . . . . . . . . . . . . . . . . . . . 247

C.9 Q - Variable Element With Type Where . . . . . . . . . . . . . . . . . . . . 248

C.10 Q - Variable Element With SubQuery . . . . . . . . . . . . . . . . . . . . . . 249

xix



LIST OF ALGORITHMS

4.1 RDFMapFileGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 SQL-to-SPARQL Translation . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 RDFMapFileGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 ProcessBlankNodeNQP . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 DBSchemaGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 GetReifTblForMVCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 GetReifTblForNonMVCB . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6 GetReifTblForRBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.1 Insert/UpdateRegularTriple . . . . . . . . . . . . . . . . . . . . . . . 142

9.2 Insert/UpdateLiteralBlankNodeTriple . . . . . . . . . . . . . . . . 143

9.3 Insert/UpdateResourceBlankNodeTriple . . . . . . . . . . . . . . . 145

9.4 Flush (for Referential Integrity Constraints) . . . . . . . . . . . 147

9.5 DeleteRegularTriple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.6 DeleteLiteralBlankNodeTriple . . . . . . . . . . . . . . . . . . . . . 150

9.7 DeleteResourceBlankNodeTriple . . . . . . . . . . . . . . . . . . . . 151

9.8 Insert/UpdateL/R/SLBNReificationNode . . . . . . . . . . . . . . . 161

9.9 DeleteL/R/SLBNReificationNode . . . . . . . . . . . . . . . . . . . . 162

xx



CHAPTER 1

INTRODUCTION

The unleashing of the Internet has resulted in a plethora of information sources becoming

available (Imai and Yukita 2003), making today’s world increasingly networked and progres-

sively more reliant on electronic sources of data. The need to augment human reasoning

and decision making abilities has resulted in the emergence of an evolutionary stage of the

World Wide Web, namely, the Semantic Web.

1.1 Current Trend in the Internet Community The Semantic Web and RDF

The Semantic Web is envisioned to facilitate the automated storage, exchange, and usage

of machine-readable information interspersed throughout the web (Singh, Iyer, and Salam

2005). Conceived by Tim Berners-Lee, the Semantic Web is essentially a Web of Data that

extends existing Web documents by adding meta-data to them, thereby presenting web data

in a manner that is understood by computers. The goal of the Semantic Web initiative is to

address the deficiencies of HTML documents which are unable to separate the presentation

details from the information contained in the HTML pages, thus making it impossible for

software agents to identify, isolate, extract, and process relevant information. The Semantic

Web initiative attempts to eliminate these deficiencies by including machine-interpretable

descriptions of the data and concepts interspersed throughout the web thereby enabling

software agents to establish links between data and integrate data from disparate sources.

In other words, Semantic Web technologies are to data what HTML is to documents; i.e.,

just as HTML enables online documents to generate the illusion of one voluminous book,

Semantic Web technologies help create the illusion of one huge database from all the disparate

1
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data sources in the world (Berners-Lee 1999). The core components of the Semantic Web

are:

• A data model - Resource Description Framework (Manola and Miller 2004; Klyne and

Carroll 2004; Hayes 2004; Grant Clark 2005)

• Data interchange formats - RDF/XML, N-Triples, N3 (Beckett 2004)

• Notations for formal description of ontologies or vocabularies - RDF Schema (Brickley

and Guha 2004), Web Ontology Language (McGuinness and Harmelen 2004)

Semantic Web technologies would be extremely useful in areas where concepts have multiple

names in different countries. One example of such an area is the life sciences where medicines

and illnesses are known by various names depending on the geographical location where they

are found. Semantic web technologies could see past the different nomenclatures and aggre-

gate relevant information appropriately without ambiguities due to naming differences.

In order to realize the semantic web initiative various standards, specifications, and nota-

tions are being developed to provide a formal description of concepts, terms, and relationships

within a given knowledge domain. Some of these include the Resource Description Frame-

work (Manola and Miller 2004), the RDF Vocabulary Description Language (Brickley and

Guha 2004), and the Web Ontology Language (Lacy 2005; McGuinness and Harmelen 2004)

notations. RDF, which is the current buzzword in the Semantic Web Community, is the

foundation for the Semantic Web and the focus of the research presented in this dissertation.

The RDF standard is proposed by the World Wide Web consortium for encoding knowl-

edge with the express purpose of changing the web from being a platform for distributed

presentations to one for distributed knowledge (Tauberer 2006). There are two types of

entities in RDF - resources and literals. RDF provides the ability to attach properties to a

resource and associate values (which can, in turn, be resources or literals themselves) with

these properties. RDF does not limit its applicability to web resources alone; it can also

be used to encode information and relations between real-world entities/resources such as

people, places of interest, abstract concepts, etc. RDF records information in the form of
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triples, each consisting of a subject, a predicate, and an object. The subject is the resource

that is of interest. The object is a resource or a literal whose interpretation depends on the

predicate. The predicate is typically a verb and denotes the relationship that exists between

the subject and the object. RDF’s suitability to unstructured and semi-structured data that

is typically available on the web, and the simplicity and flexibility offered by RDF data

models have resulted in increasing demand for data stores that use the RDF Graph model

and offer the ability to store and query RDF data (Muys 2007).

1.2 Challenges due to the Current Trend

1.2.1 Challenge 1

The Semantic Web initiative and its associated technologies brought to the fore-front two

distinct challenges. On the one hand, the growing number of RDF stores have, as with

any data store with massive amounts of information, spawned an associated requirement for

tools and technologies for the management and visualization of this data. However, most of

the current data modeling, data visualization, data management, and business intelligence

tools that are available in the market today are still based on the more mature and effi-

cient models such as relational and tabular models (Teswanich and Chittayasothorn 2007).

The tools available for RDF data are fewer and less mature than the selection for relational

database management systems (RDBMS). While efforts are ongoing to develop new tools

for this purpose, alternate research efforts are underway that focus on integrating benefits

and features available in existing methodologies with the advantages offered by newer tech-

nologies. These alternative efforts, which involve establishing a mapping from RDF data

into equivalent relational schemas, will be particularly beneficial to small and medium-sized

organizations that are typically resource constrained and that may not have the ability or

inclination to take risks associated with investing in fledgling technologies such as RDF and

the tools for the same (Hendler 2006). Further, relational databases have been around for

several decades more than semantic web technologies, giving them the advantage of time to
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improve their efficiency, reliability, and performance (Borodaenko 2009), to refine their tools

and methodologies, and of being widely accepted and supported by a variety of applications

(Korotkiy and Top 2004; Krishna 2006). For the same reasons, skilled personnel experienced

in relational methodologies are available in greater numbers than RDF experts. In order to

avoid the learning curves associated with new tools and continue to leverage the advantages

offered by the traditionally-oriented tools without losing out on the benefits offered by the

newer web technologies and standards, the gap between the two needs to be bridged by

establishing a means to represent RDF data as relational schema.

1.2.2 Challenge 2

On the other hand, as a direct consequence of relational technologies being around for decades

and being the primary backend support system of Information Technology (Borodaenko 2009;

Choi, Moon, Baik, Wie, and Park 2010), enormous amounts of enterprise data that are used

in all walks of life exist in relational database management systems (Lv and Ma 2008; Zhou,

Chen, Zhang, and Zhou 2008; Zhou 2010). However, despite the extensive adoption of

relational databases, there do exist contexts where the relational model is not as good a

fit as other models. For example, to derive customer-centered marketing strategies aimed

at increasing profit margins and improving market shares out of relational data, extensive

data mining operations involving large amounts of resources are required. Having additional

data analysis abilities such as inferencing would help increase the value of enterprise data.

At the same time, in order to make the vision of a ubiquitous Semantic Web a reality,

and for the Semantic Web Initiative to be truly successful and widely adopted, there has

to be a way for Semantic Web technologies to access the vast amounts of relational data

(Zhou 2009). These requirements bring us to the second challenge - representing relational

database content as equivalent RDF graphs. There are several research efforts currently in

existence that do achieve this translation from relational database schemas to equivalent

RDF graphs; however, almost all efforts are read-only in nature. In other words, while
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the data from underlying relational databases can be queried from the corresponding RDF

interfaces, other Data Manipulation Language (DML) operations such as inserts, updates,

and deletes cannot be performed on the relational databases through the RDF interfaces. In

order for the relational-to-RDF translation to be truly effective it is important for the data

flow to be bi-directional, i.e., to have data not only leave the relational database in the form

of SELECT queries, but to also have data enter the relational database in the form of DML

operations. The current body of work in the bi-directional arena is minimal and hence needs

to be addressed to maximize the usefulness of the translation and make the time, effort, and

resources expended on the translation process worthwhile.

1.3 Addressing the Challenges

1.3.1 Addressing Challenge 1

The motivation behind our research, with regards to the first challenge, is to arrive at a

solution to the bridging problem without the need to create an actual physical relational

schema and duplicate data and we propose one such solution. Our approach, called R2D

(RDF-to-Database) (Ramanujam, Gupta, Khan, Seida, and Thuraisingham 2009e; Ramanu-

jam, Gupta, Khan, Seida, and Thuraisingham 2009c; Ramanujam, Gupta, Khan, Seida, and

Thuraisingham 2009a; Ramanujam, Gupta, Khan, Seida, and Thuraisingham 2009b), is a

bridge that hopes to enable existing traditional tools to work seamlessly with RDF Stores

without having to make extensive modifications or waste valuable resources by replicating

data unnecessarily. Two approaches are adopted in the realization of R2D’s objectives. The

first approach is a formal, semantics-preserving approach to R2D’s translation mechanism

that includes two components as listed below.

1. Schema Mapping: RDF-to-Relational Schema mapping that preserves the meaning of

schemas and produces an equivalent, domain-specific relational schema corresponding

to a given RDF store.
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2. Query Translation: SQL-to-SPARQL query translation that preserves the meaning of

queries and produces an equivalent SPARQL query for every input SQL query.

R2D’s semantics-preserving translation ensures that an SQL query, ŝql, run over the trans-

lated relational schema, R, obtained from an RDF Graph, G, through R2D’s schema mapping

process, returns the same result that an equivalent SPARQL query, ˙spq, obtained by trans-

lating ŝql using R2D’s query translation process, would when run on the original RDF graph,

G.

The second approach to realizing R2D’s objective is a practical, implementation oriented

approach where R2D is designed as a JDBC wrapper around RDF stores that provides a

relational interface to data stored in the form of RDF triples. In this approach, the RDF Store

is explored and mapped to a relational schema at run-time and end-users of visualization

tools are presented with the normalized relational version of the store on which they can

perform query operations as they would on an actual physical relational database schema.

In a nutshell, the implementation of R2D consists of three modules the details of which are

summarized below.

1. RDFMapFileGenerator: Automatic RDF-to-Relational Schema mapping file generator

utility.

2. DBSchemaGenerator: Parser that takes the above map file as input and generates a

domain-specific, virtual relational schema for the corresponding RDF store.

3. SQL-to-SPARQL Translation: Utility that takes an SQL statement as input, parses

and converts it to a corresponding SPARQL statement, executes the same, and returns

the results in a tabular format.

R2D also includes support for the relationalization of provenance information stored in

RDF stores using the concept of reification (Ramanujam, Gupta, Khan, Seida, and Thurais-

ingham 2009d; Ramanujam, Gupta, Khan, Seida, and Thuraisingham 2010). Reification is

an important RDF concept that provides the ability to make assertions about statements
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represented by RDF triples. With the increasing number of online resources and sources of

information that become available each day, the need to authenticate the available sources

becomes essential in order to be able to judge the validity, reliability, and trustworthiness of

the information (Almendra and Schwabe 2006). This authentication is facilitated by aug-

menting the sources with provenance information, i.e., information describing the origin,

derivation, history, custody, or context of a physical or electronic object (Buneman, Chap-

man, and Cheney 2006). RDF Reification, a means of validating a statement/triple based

on the trust level of another statement (Powers 2003), is the solution offered by the WWW

consortium for users of RDF stores to record provenance information. Thus, RDF reification

is a key component of any application requiring stringent records of the basis/foundation

behind every piece of information in the data store. In particular, reification plays a critical

role in security-intensive applications where it is imperative to maintain the privacy and

ownership of sensitive data. The provenance information captured using reification can be

used, in such applications, to monitor and control data access.

1.3.2 Addressing Challenge 2

As a means to address the second challenge, we present D2RQ++ (Ramanujam, Khadilkar,

Khan, Seida, Kantarcioglu, and Thuraisingham 2010; Ramanujam, Khadilkar, Khan, Kantar-

cioglu, Thuraisingham, and Seida 2010) , an enhancement to an existing, extensively adopted

relational-to-RDF read-only translation tool called D2RQ. D2RQ++ includes the ability to

propagate data changes specified in the form of RDF triples back to the underlying relational

database.

When triples cannot explicitly be translated into equivalent concepts within the underlying

relational database schema, D2RQ++ continues to adhere to the Open-World Assumption

by permitting those triples to be housed in a separate native RDF store. When information

on a particular entity is requested, the output returned is a union of the data pertaining

to the entity from the relational database as well as any triples that have the entity as
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the subject and that may exist in the native RDF store. Thus, RDF triples submitted for

insertion/update/ deletion are never rejected due to mismatches with the underlying rela-

tional schema, thereby maintaining the Open-World Assumption of the Semantic Web world

while still being able to work with technologies such as RDBMSs which are based on the

Closed-World Assumption.

1.4 Research Contributions

1.4.1 Contributions towards Challenge 1

The objectives and contributions of the portion of our research that addresses the first

challenge described in Section 1.2 are as follows.

• We present a semantics-preserving translation mechanism for R2D that preserves the

meanings of schemas and queries and rigorously proves the validity of R2D’s schema

mapping and query transformation process through appropriate theorems and lemmas.

• We propose a mapping scheme for the translation of RDF Graph structures to an equiv-

alent normalized relational schema. The proposed mapping schema includes several

constructs and rules to handle a variety of blank nodes (Ramanujam, Gupta, Khan,

Seida, and Thuraisingham 2009a; Ramanujam, Gupta, Khan, Seida, and Thuraising-

ham 2009b) as well as constructs to handle provenance data stored using the RDF

concept of reification (Ramanujam, Gupta, Khan, Seida, and Thuraisingham 2009d;

Ramanujam, Gupta, Khan, Seida, and Thuraisingham 2010).

• Based on the RDF-to-RDBMS map file created, we propose a transformation process

that presents a non-generic, domain-specific, virtual relational schema view of the given

RDF store and any reification information included in the same.

• We propose a mechanism to transform any relational SQL queries issued against the

virtual relational schema into the SPARQL equivalent, and return the triples data to
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the end-user in a relational format. The proposed mechanism includes string matching

procedures and aggregation facilities.

• The proposed framework imposes no restrictions on the nature of RDF triples or their

storage mechanisms as it is a purely virtual layer that does not involve duplication

of the RDF data. Hence, data updates are immediately visible through R2D without

explicit synchronization activities.

• We provide all of the above in the form of a JDBC interface that can be plugged into

existing visualization tools and we present the feasibility of our algorithms and pro-

cesses through experiments conducted using the LUBM Benchmark (Guo, Pan, and

Heflin 2005) data set as well as a real-life crime dataset, and an open source visualiza-

tion tool, RDF store, and relational database.

1.4.2 Contributions towards Challenge 2

The contributions of the part of our research that addresses, and proposes a solution to, the

second challenge discussed in Section 1.2 are as follows:

• We present algorithms to translate RDF update triples into equivalent relational at-

tributes/tuples thereby enabling DML operations on the underlying relational database

schema.

• We propose extensions to the existing D2RQ Mapping Language in order to support

translation of blank node and reification node structures into equivalent relational

tuples.

• With every DML operation we ensure preservation of the Open-World Assumption

by maintaining a separate native RDF store to house triples that violate integrity

constraints or that are mismatched with the underlying relational database schema.
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• We incorporate the above algorithms and extensions into D2RQ++, an enhanced ver-

sion of the highly popular D2RQ open-source relational-to-RDF mapping tool, thereby

enabling bi-directional data flow between an RDF interface and its underlying relational

database.

• We also provide D2R++-Server, an enhanced version of the Graphical User Interface

D2R-Server, through which end-users can now specify DML requests that need to be

propagated back into the underlying relational database.

1.5 Organization of the Dissertation

The organization of the dissertation is as follows. A brief overview of other related research

efforts currently underway in the data interoperability arena, in either direction (RDF-to-

Relational-Database and Relational-Database-to-RDF), is provided in the following chapter

while R2D mapping preliminaries in terms of the modus operandi, mapping constructs,

and types of relationships handled are given in chapter 3. Chapter 4 presents detailed

descriptions of the various algorithms involved in the mapping process for regular RDF

triples and is supported by chapter 5 which details the implementation specifics of the

proposed system with sample visualization screenshots and performance graphs for the map

file generation process with and without various sampling methods and for a diverse range of

queries on databases of various sizes. Chapters 6 and 7 discuss the algorithmic extensions and

implementation specifics, respectively, that facilitate the relationalization of provenance data,

i.e., RDF reification data. A semantics-preserving approach to R2D’s translation mechanism

is discussed in Chapter 8 with the associated mathematical definitions and proofs included in

Appendices A, B, and C. Bi-directional data transfer between relational databases and RDF

stores is presented in the form of D2RQ++ and its associated GUI tool, D2R++-Server, in

Chapter 9. Lastly, chapter 10 discusses the future directions for our research and concludes

the dissertation.



CHAPTER 2

LITERATURE REVIEW

With RDF being the current buzzword in the Semantic Web community, research efforts are

underway in various aspects of RDF such as RDF-ising relational and legacy database sys-

tems, and spreadsheet data, transforming traditional SQL queries into RDF query languages

such as RDQL (Seaborne 2004), SPARQL (Prud’hommeaux and Seaborne 2008; Harris and

Seaborne 2011), and SPARQ2L (Anyanwu, Maduko, and Sheth 2007), and optimizing per-

formance of queries issued against RDF data sources. However, the overall concept and

objectives of R2D are unique since almost all research efforts attempt to integrate relational

database concepts and Semantic Web concepts from a perspective that is opposite to that

considered in our work. Relevant research efforts from both perspectives (Relational-to-RDF

and vice versa) are presented in the next few subsections.

2.1 RDF-to-Relational Translation

The RDF vocabulary description language (Brickley and Guha 2004) is often compared to

the object oriented system as both paradigms include concepts of classes and properties

or attributes. However, while OO systems define classes in terms of the attributes that

instances of the classes may have, the RDF vocabulary is property-centric and defines prop-

erties in terms of the resource classes to which they apply. Using this property-centric

approach additional properties can be defined for existing classes without having to redefine

the class definitions (Brickley and Guha 2004). Due to the similarities between the RDF

and OO paradigms it is natural to assume that the techniques used to tranform OO models

into relational database schema elements (Blaha, Premerlani, and Shen 1994; Orenstein and

D.N.Kamber 1995; Narasimhan, Navathe, and Jayaraman 1994) can be applied to the prob-

11
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lem of transforming RDF graphs into relational database schemas. However, this is not the

case in reality because the RDF graph model does not comprise only of classes and properties

like its OO counterpart. RDF graphs also contain more complex structures such as blank

nodes and reification node structures for which an appropriate relational transformation

process cannot be adapted from existing OO-to-RDF mapping efforts since such a process

does not exist. Object Oriented technology is not constrained by normalization concepts

such as multi-valued attributes or many-to-many relationships (Narasimhan, Navathe, and

Jayaraman 1994) and, hence, transformation of OO models into relational schemas does not

have to consider these concepts. However, RDF graphs, on the other had, can, and in most

scenarios, do contain complex relationships that have to be tranformed into appropriate nor-

malized tables in an underlying relational database schema. For all these reasons, adapting

existing OO-to-relational schema translation techniques for RDF-to-relational-schema trans-

formation is not sufficient.

While the inadequacy of applying OO-to relational-schema transformation techniques re-

sulted in new research efforts aimed at studying and achieving transformations from RDF

graphs to relational database schemas and vice versa, the amount of work in this (RDF-

to-Relational) direction (Xu, Lee, and Kim 2010; Teswanich and Chittayasothorn 2007;

Pan and Heflin 2003; Borodaenko 2009) is far more limited when compared to the other

(Relational-to-RDF) direction. In (Xu, Lee, and Kim 2010) the authors extract and trans-

form the schema elements of an RDF graph into an equivalent Entity-Relationship diagram

from which an actual physical relational database schema is then derived. The motivation

behind the work in (Xu, Lee, and Kim 2010) is to provide a domain-specific RDFS storage

strategy and the reason for the authors’ choice of relational databases to achieve this goal

is to capitalize on the sophisticated query processing capabilities, optimization techniques,

and other facilities such as concurrency control and data recovery options that are offered

by RDBMSs. By adopting this method, the authors in (Xu, Lee, and Kim 2010) are able to

by-pass the need to query RDF data using the less mature SPARQL query language. An-

other research whose objectives are very closely aligned with R2D is the RDF2RDB project
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(Teswanich and Chittayasothorn 2007). Like in R2D, the authors in (Xu, Lee, and Kim 2010;

Teswanich and Chittayasothorn 2007) attempt to arrive at a domain-specific, meaningful re-

lational schema equivalent for an RDF store but the similarity ends there. RDF2RDB, like

(Xu, Lee, and Kim 2010) and most of the other transformation efforts described below,

involves data replication with the triples data being dumped into a relational schema, and

therefore is subject to synchronization and space issues (Jiang, Ju, and Xu 2009). Moreover,

in order to successfully map the RDF data into an equivalent relational schema, (Xu, Lee,

and Kim 2010) and RDF2RDB requires the presence of ontological information in the form

of schema definitions such as rdfs:class and rdf:property. R2D, on the other hand, can arrive

at mapping information with or without explicit ontology information. In the absence of

RDF Schema definitions, R2D discovers the mapping through extensive examination of the

triple patterns and the relationships between resources.

Furthermore, the relational mapping in (Teswanich and Chittayasothorn 2007) involves the

creation of a table for each property in the RDF graph regardless of the cardinality of the

relationship represented by the property. As a result, the resulting schema may not be truly

normalized and may contain more tables than necessary due to the presence of properties

representing 1:N or N:1 types of relationships. R2D avoids these unnecessary tables by taking

such conditions into consideration. The authors in (Teswanich and Chittayasothorn 2007;

Xu, Lee, and Kim 2010) also do not discuss the details of how blank nodes are handled by

their research, if at all, while R2D is capable of wading through a variety of blank nodes and

arriving at meaningful transformations of the same.

The Hybrid model presented in (Pan and Heflin 2003) is another mapping methodology that

is similar to (Teswanich and Chittayasothorn 2007) in terms of relational schema generation.

This methodology generates a table for every property in the ontology, and, hence, results

in unnecessary tables in the case of 1:N relationships between subject and object resources.

This is avoided in R2D where 1:N relationships are handled through the addition of a foreign

key column to the table on the N-side of the relationship. The hybrid model also fails on

RDF graphs which do not include schema/structure information while R2D is able to glean
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structural information even in the absence of these ontological constructs (by examination

of instance data).

The Samizdat RDF Store (Borodaenko 2009) is yet another effort that attempts to translate

RDF data into an equivalent domain-specific relational schema. For those RDF triples that

are not translatable into an equivalent relational entity, Samizdat provides the commonly

adopted Triples table to house such triples. Samizdat uses database triggers to reduce the

impact of RDFS/OWL inference on query performance and access to the RDF data in the

relational schema is provided in the form of a user interface through which SQUISH (Miller,

Seaborne, and Reggiori 2002) queries can be issued. Samizdat involves actual physical data

loading into the relational database and, hence, is also plagued by data duplication and syn-

chronizations issues discussed above. Further, Samizdat does not provide any support for

the SPARQL query language that is now considered at the de-facto language for Semantic

Web applications.

2.2 Relational-to-RDF Translation

The D2RQ project (Bizer, Cyganiak, Garbers, and Maresch ; Bizer and Cyganiak 2007; Bizer

and Seaborne 2004; Bizer 2003), an extensively adopted open source project, and one that

our work in addressing the first challenge described in Section 1.2 is very closely modeled on

in terms of mapping language constructs, is another significant player in the RDBMS-RDF

mapping arena. D2RQ facilitates the querying of a non-RDF database using SPARQL, en-

ables access of information in a non-RDF database using Jena (McBride 2002) or Sesame

(Broekstra, Kampman, and Harmelen 2002) APIs, and enables non-RDF database content

access as Linked Data (Berners-Lee 2006; Heath and Bizer 2011) over the Web. Three main

components comprise the D2RQ platform the D2RQ mapping language, the D2RQ En-

gine, and the D2R Server (Bizer and Cyganiak 2006). The D2RQ mapping language is a

declarative language that expresses mappings between an RDF schemata and a relational

schema. The D2RQ Engine is the component that uses the mappings, generated using the
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D2RQ mapping language, to translate semantic web toolkits API calls to SQL queries is-

sued against the underlying relational database and return the obtained results to the higher

layers in the D2RQ architecture. The D2R Server is an HTTP server that publishes the con-

tents of a relational database as linked data on the Web. The goals of D2RQ are the exact

reverse of the goals of our research pertaining to challenge 1 in Section 1.2. While they at-

tempt to create a mapping from a relational database to an RDF Graph, and transform RDF

queries into corresponding SQL queries, thereby making relational data accessible through

RDF applications, our Challenge 1 goal is to enable RDF triples to be accessed through

relational applications. Hence, despite the concept of mapping files and query conversions

being common between D2RQ and R2D, each of the two researches addresses very different

needs.

The work in (Erling and Mikhailov 2009; Blakeley 2007), Virtuoso RDF Views, is yet an-

other effort that, like D2RQ, also uses a declarative meta schema consisting of quad map

patterns that define the mapping of SQL data to RDF ontologies. Like D2RQ, the objective

of the Virtuoso RDF Views project is to present existing relational data, without any actual

physical data duplication, as virtual RDF graphs that can be queried directly using RDF

query languages such as SPARQL. Two key technologies comprise the heart of Virtuoso RDF

Views - RDF Meta-Schema and a declarative Meta-Schema Language for mapping SQL data

into RDF concepts. The most significant components of the RDF Meta-Schema are quad

map patterns, IRI classes, and literal classes. Quad map patterns are used to define the

transformation of relational columns into triples in a SPARQL graph pattern and each quad

map pattern consists of four quad map values (corresponding to graph, subject, predicate,

object). IRI classes are used to construct subject IRIs for each primary key column value

(and, indirectly, for each foreign key column value as well) in the relational database - they

define how key values are combined into an IRI string and vice versa. Literal classes define

how one or more non-primary-key-and-non-foreign-key columns get converted into a literal

object. RDF views are defined by combining the above elements to declare a collection of

quad patterns through which the relational database is mapped.
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RDF123 (Han, Finin, Parr, Sachs, and Joshi 2008), an open source translation tool, also uses

a mapping concept, however its domain is spreadsheet data and it attempts to overcome the

limitations of current spreadsheet-to-RDF mapping tools that typically map every spread-

sheet row to an instance and every column to a property thereby leading to a star-shaped

RDF graph. RDF123 aims to achieve richer spreadsheet-to-RDF translation by allowing the

users to define mappings between the spreadsheet semantics and RDF graphs. The RDF123

Architecture consists of two key components - the RDF123 Application and the RDF123

Web Service. The RDF123 Application provides the users with an interactive graphical in-

terface for creating a map graph that expresses the relationships between the rows and fields

in their excel worksheets and for storing the created map graph in an RDF syntax. The

RDF123 Web Service translates online spreadsheets to RDF and hosts the URIs of the RDF

documents that arise from these online spreadsheets.

Light-weight efforts at publishing RDF triples as linked data from relational databases are

discussed in (Auer, Dietzold, Lehmann, Hellmann, and Aumueller 2009; Chen and Yao

2010). Triplify (Auer, Dietzold, Lehmann, Hellmann, and Aumueller 2009) achieves this

by extending SQL and using the extended version as a mapping language. The objective

behind the Triplify initiative is to eliminate the high entrance barrier for publishing database

content as RDF by neither defining nor requiring the usage of new extensive mapping lan-

guages. Triplify’s primary domain of applicability is web applications that are built using

the scripting language PHP, and MySQL and it is based on mapping HTTP-URI requests

onto relational database queries. The data resulting from the relational queries are trans-

formed into RDF statements by Triplify and the transformed data is published on the Web

as Linked Data (or using other RDF serializations such as N3, N-Triples, etc.). The View-

Based Triplify method in (Chen and Yao 2010) achieves the RDBMS-to-RDF transformation

using a set of simple mapping rules based on which traditional relational views, each of which

describes a distinct RDF class (and includes all the corresponding properties), are created.

Users can then issue SPARQL queries against the resulting linked data. These SPARQL

queries are converted into equivalent SQL queries using a translation algorithm proposed by
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the authors and the appropriate data is returned to the users in linked data format. (Ling

and Zhou 2010) is another mapping effort that uses a set of well-defined rules, like (Chen

and Yao 2010), to map relational schema metadata into an equivalent RDFS ontology which

is then written into an RDF/XML file. Instance data is generated on demand from the

underlying relational database based on the mapping correspondences established.

Several endeavors (Ismail, Yaacob, and Kareem 2008; Wang, Miao, Zhang, and Zhou 2009;

Cheong, Chatwin, and Young 2009; Myroshnichenko and Murphy 2009; Wang, Lu, Zhang,

Miao, and Zhou 2009) are underway in the data integration arena as well that aim to

present a semantically unified RDF model derived from multiple underlying heterogeneous

databases. (Ismail, Yaacob, and Kareem 2008) is a research effort that uses the mapping

technique to integrate heterogeneous databases with the objective of providing a homoge-

neous read-only view of data in the underlying databases. A data-source describing method

using SPARQL graph patterns is proposed by the authors in (Wang, Miao, Zhang, and Zhou

2009; Wang, Lu, Zhang, Miao, and Zhou 2009) to specify the semantic mapping between the

required RDF ontology and the underlying relational schema. They also address the prob-

lem of query reformulation from the domain ontology to the underlying relational databases

by including a query rewriting algorithm that generates semantically correct SQL query

execution plans corresponding to the issued SPARQL queries. In (Cheong, Chatwin, and

Young 2009) the authors present an RDF-based Semantic Schema Transformation System

(RSSMTS) where they adopt a Localized Data Integration approach to combining infor-

mation from multiple heterogeneous databases. The RSSMTS framework consists of five

components RDF Mapping Files, which map the database schema metadata to correspond-

ing concepts in WordNet; WordNet database, which is used to identify semantic relations

such as hypernyms, synonyms, etc. of a concept; Translator Module, which, by using the

mapping files and the WordNet database, is responsible for identifying semantically related

information from the various underlying databases; Query Engine, which takes care of query

reformulation and execution; and Staging Area, where the results from the various underly-

ing databases are stored, consolidated, and returned to the end-user. In (Myroshnichenko
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and Murphy 2009), the authors present a set of mapping rules that enable a well-formed

Entity-Relationship schema to be semantically mapped to an equivalent OWL-Lite schema.

The reason for the authors choice of OWL-Lite over OWL-DL and OWL-Full is the fact that

OWL-Lite is computationally guaranteed. Through their mapping methodology, the authors

in (Myroshnichenko and Murphy 2009) hope to simplify and speed up the data integration

process in heterogeneous databases.

Other mapping efforts in the reverse direction include the work presented in (de Laborda and

Conrad 2006; An, Borgida, and Mylopoulos 2004; An, Borgida, and Mylopoulos 2006). In

(de Laborda and Conrad 2006) the authors use relational.OWL to extract the semantics of a

relational database, automatically transform them into a machine-readable and understand-

able RDF or OWL ontology, and use RDQuery (de Laborda, M.Zloch, and Conrad 2006) to

translate SPARQL queries to SQL. The authors in (An, Borgida, and Mylopoulos 2004; An,

Borgida, and Mylopoulos 2006) also essentially perform a relational-to-ontology mapping

but here, they expect to be given some target ontology and some simple correspondences

between the atomic relational schema elements and the concepts in the ontology to begin the

mapping process with. 3Store (Harris 2005) is an implementation where the model includes

non-application-specific tables such as triples, symbols, datatypes, etc. Using this model, it

would be impossible for the user to determine the problem domain addressed by the model

or to infer the schema by identifying the entities, the attributes, and any relationships that

exists between any of them. R2D offers the users the ability to do just this and enables them

to actually arrive at a complete Entity-Relationship Diagram using the RDF-to-Relational

Schema transformation process.

2.3 Bi-directional Relational-to-RDF Translation

Each of the efforts presented in the previous sub-section is uni-directional as all of them just

allow a read-only view of the relational database with nothing coming back into the same.

ONTOACCESS (Hert, Reif, and Gall 2010) is the only effort we have been able to iden-

tify that attempts bi-directionality. In ONTOACCESS, the authors define a new mapping
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language called R3M which is very similar to the D2RQ mapping language (Bizer 2003),

and they include support for the SPARQL/Update language (Seaborne et al. 2008) for data

manipulation. D2RQ++ (Ramanujam, Khadilkar, Khan, Seida, Kantarcioglu, and Thu-

raisingham 2010; Ramanujam, Khadilkar, Khan, Kantarcioglu, Thuraisingham, and Seida

2010), on the other hand, avoids learning curves associated with new languages by reusing,

and extending when required, D2RQ’s mapping language. By reusing D2RQ’s mapping lan-

guage, D2RQ++ also eliminates the effort and resources associated with creation of new

languages. Another primary difference between ONTOACCESS and our approach, i.e.,

D2RQ++, is support for the Open-World Assumption. While ONTOACCESS accepts only

those updates/inserts that have an equivalent relational concept in the underlying database,

D2RQ++ can work with mismatched data as well (as described in the previous section),

which is a key requirement of RDF’s Open-World Assumption, thus proving itself to be an

authentic Semantic Web application.

Yet another difference between ONTOACCESS and D2RQ++ is the ability to accommo-

date updates/deletes of blank node structures. Blank Nodes are used to represent complex

relationships between entities and are an integral component of the RDF specification. ON-

TOACCESS makes no mention of how incoming blank node structures are handled while

D2RQ++ is capable, as can be seen from Chapter 9, of translating a variety of blank nodes,

into equivalent relational structures thereby enabling the blank node contents to be trans-

mitted to the underlying relational schema.

As can be seen from the discussions, none of the existing research efforts, except one, address

the issue of enabling bi-directional data transfer between relational and RDF applications.

ONTOACCESS is the only research that comes close to the objectives of D2RQ++ but it,

too, has certain drawbacks as described above.

2.4 SPARQL-to-SQL Translation

The query processing component of R2D which comprises the SQL-to-SPARQL transforma-

tion process, once again, has no comparable counterpart while many efforts are underway
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in the other direction. In (Chebotko, Lu, Jamil, and Fotouhi 2006), the authors propose

an algorithm to translate SPARQL queries with arbitrary complex optional patterns to an

equivalent SQL statement to be fired against a single relational table called Triples(subject,

predicate, object) that stores the RDF triples. The authors achieve their objective using

two algorithms. The first algorithm is BGPtoSQL that translates a basic graph pattern into

an equivalent SQL pattern in a way that ensures that the SQL query retrieves, from the

triples store, the RDF sub-graph matching the basic graph pattern. The second algorithm

is SPARQLtoSQL which uses BGPtoSQL to translate each basic graph pattern in the query

to an equivalent SQL query and join the resulting relations from each SQL query into one

relation under SPARQL semantics.

The authors in (Chen, Wu, Wang, and Mao 2006) discuss a methodology that supports inte-

gration of heterogeneous relational databases using the RDF model. Given a set of semantic

mappings between relational schemas and RDF ontology, the goal in (Chen, Wu, Wang, and

Mao 2006) is to effectively answer RDF queries by rewriting them into a set of equivalent

source SQL queries. They include this idea in their extended work, DartGrid (Wu, Chen,

Wang, Wang, Mao, Tang, and Zhou 2006), which uses a visual mapping tool to manually

align an existing relational database to an existing ontology. In (Yan, Wang, Zhou, Qian,

Ma, and Pan 2008), the authors partition the RDF graph data by adding an extra column

to the triples table to store sub-graph information with the objective of reducing join costs

and improving query performance. An SQL-based RDF Querying Scheme is presented in

(Chong, Das, Eadon, and Srinivasan 2005) where the RDF querying capability is made a

part of the SQL, however, the RDF data is, once again, stored as a collection of triples

in a single database table. The motivations behind the research in (Chong, Das, Eadon,

and Srinivasan 2005) were to eliminate the shortcomings in current approaches for efficient

and scalable querying of RDF data which include inefficiency and difficulty in integrating

with SQL queries used in database applications. The authors attempt to avoid these prob-

lems through the introduction of RDF MATCH table function which provides the ability to

search for an arbitrary graph pattern against the RDF data, the ability to perform inferenc-
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ing based on RDFS rules, and the ability to include a collection of user-defined rules as an

optional data source. The RDF MATCH function takes four arguments - the graph pattern

to be matched, specified by a collection of one or more triple patterns; a list of RDF models;

rulebases, if any (optional); and namespace aliases. The result returned by RDF MATCH

is a table of rows which contain values for the variables used in the graph patterns.

As can be seen from the discussions above, none of the research efforts address the issue of

enabling relational applications to access RDF data without data replication and, hence, to

the best of our knowledge, R2D is the first endeavor to address this issue.



CHAPTER 3

R2D ARCHITECTURE and MAPPING PRELIMINARIES

In this chapter, we describe the system architecture and mapping language comprising the

R2D framework. This work was published in International Journal of Semantic Com-

puting 2009 and Electronic Commerce Research Journal 2010, both of which were

co-authored by Anubha Gupta, Latifur Khan, and Bhavani Thuraisingham from University

of Texas at Dallas (UTD) and Steven Seida from Raytheon Company. As stated earlier, the

principal goal of this research is to ensure seamless availability of RDF data to existing tools,

in particular, data visualization tools, that are equipped to work with relational or tabular

data. The architecture of the proposed system and the deployment sequence are illustrated

in Figure 3.1.

Figure 3.1: (a) R2D System Architecture; and (b) Deployment Sequence

22
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The RDF Store at the bottom of Figure 3.1(a) is examined by the RDFMapFileGener-

ator Algorithm (Item A in Figure 3.1(a)) and an RDF-to-RelationalSchema mapping file is

generated, if it does not already exist, by the algorithm using the constructs discussed in

Section 3.1. The DBSchemaGenerator Algorithm (Item B in Figure 3.1(a)) takes this map-

ping file as input and presents to the relational visualization tool a domain-specific, virtual

relational schema corresponding to the RDF store. Users of the visualization tool can choose

to issue SQL queries against the virtual relational schema to access the RDF data. At this

point R2D’s SQL-to-SPARQL Translation Algorithm (Item C in Figure 3.1(a)) performs the

necessary query translations, invokes the SPARQL query engine, and returns the results to

the visualization tool in a tabular format.

At the heart of the transformation of RDF Graphs to virtual relational database schemas is

the R2D mapping language which is a declarative language that expresses the mappings be-

tween RDF constructs and relational database schema constructs. The constructs of the R2D

mapping language used for the relationalization of regular RDF data and RDF reification

data are presented in the next two subsections.

3.1 Mapping Constructs used for Regular RDF Triples

In order to better explain the constructs comprising the R2D mapping language, examples

from the sample scenario in Figure 3.2, based on the LUBM dataset (Guo, Pan, and Heflin

2005), are included where applicable.

r2d:TableMap: The r2d:TableMap construct refers to a table in a relational

database. In most cases, each rdfs:class object will map to a distinct r2d:TableMap, and,

in the absence of rdfs:class objects, the r2d:TableMaps are inferred from the instance data

in the RDF Store. Example: The RDF Graph in Figure 3.2 results in the creation of a

TableMap called “Student.

The mapping constructs specific to an r2d:TableMap are as follows.
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Figure 3.2: Sample Scenario Based on LUBM Schema

r2d:keyField: The r2d:keyField construct specifies the primary key attribute for

the r2d:TableMap to which the field is attached. The data value associated with the field

specified by r2d:keyField is the object of the“rdf:type” predicate belonging to the rdfs:class

subject corresponding to its r2d:TableMap. Example: An r2d:keyField (primary key) called

“Student PK” field is attached to the “Student” TableMap and one of its values, correspond-

ing to the sample scenario in Figure 3.2, is “URI/StudentA”.

r2d:ColumnBridge: r2d:ColumnBridges relate single-valued RDF Graph predi-

cates/properties to relational database columns. Each rdf:Property object maps to a dis-

tinct column attached to the table specified in the rdfs:domain predicate. In the absence

of rdf:property/domain information, they are discovered by exploration of the RDF Store

data. Example: The “Nickname” and “Member Of” predicates in Figure 3.2 become

r2d:ColumnBridges belonging to the “Student” r2d:TableMap.
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r2d:MultiValuedColumnBridge(MVCB): Those RDF Graph predicates that

have multiple object values for the same subject are mapped using the MVCB construct.

MVCBs typically correspond to RDF constructs such as RDF containers (rdf:Bag, rdf:Alt,

rdf:Seq) and RDF collections and are used to indicate 1:N/N:1 and N:M relationships between

the virtual relational schema tables. Example: The “Works On” predicate in Figure 3.2 is

an example of an MVCB mapping.

r2d:SimpleLiteralBlankNode (SLBN): SLBNs help relate RDF Graph blank

nodes that consist purely of distinct simple literal objects to relational database columns.

Example: The object of the “Name” predicate in Figure 3.2 is an example of an SLBN

which has distinct literal predicates of “First”, “Middle”, and “Last”, which are, in turn,

translated into columns of the same names in the “Student” r2d:TableMap.

r2d:MultiValuedSimpleLiteralBlankNode (MVSLBN): This construct maps

duplicate SLBNs and, while the processing of the predicates is identical to the (SingleValued)

SLBN, this construct results in the generation of a separate r2d:TableMap with a foreign

key relationships to the table representing the subject resource of the blank node. In the

event the predicates leading to the blank nodes are distinct, an r2d:MultiValuedPredicate

(MVP) is created and a “TYPE” column corresponding to the MVP is included in the

r2d:TableMap. Example: The objects of the “HomeAddress” and the “WorkAddress” pred-

icates in Figure 3.2 together form a MVSLBN.

r2d:ComplexLiteralBlankNode (CLBN): This construct refers to blank nodes

in the RDF Graph that have multiple literal object values for the same subject and the

predicate concept associated with the blank node. An r2d:ComplexLiteralBlankNode typ-

ically results in the generation of a separate r2d:TableMap with a foreign key relationship

to the table representing the subject resource of the blank node. Example: The object

of the “Phone” predicate in Figure 3.2 is an example of a CLBN that has multiple object

(〈Cell〉) values for the subject (URI/StudentA) and a predicate (Cell) concept associated

with the blank node. The relational transformation for “Phone” involves the generation of

an r2d:TableMap of the same name. This “Phone” r2d:TableMap includes as columns a
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“Type” field that holds the values of the predicates off of the MVBN (in our sample scenario,

the “Type” field will hold a value of “Cell” and “Work”), and a “Value” field that holds

the object values of the predicates off of the MVBN. Additionally, the r2d:TableMap also

includes, as foreign key, the “Student PK” column which references the primary key of the

“Student” r2d:TableMap.

r2d:MultiValuedComplexLiteralBlankNode (MVCLBN): This construct maps

duplicate complex literal blank nodes and the processing of the predicates is identical to the

(SingleValued) CLBN case except in the event the predicates leading to the blank nodes

are distinct, in which case an r2d:MultiValuedPredicate (MVP) is created and a “TYPE”

column corresponding to the MVP is included in the r2d:TableMap. Example: Consider a

scenario where the “Phone” predicate in Figure 3.2 is replaced with two similar predicates,

“PastPhNums” and “CurrentPhNums”, each of which are CLBNs. The objects of these two

predicates together form an MVCLBN.

r2d:SimpleResourceBlankNode (SRBN): This construct helps map blank nodes

that have multiple predicates leading to resource objects belonging to the same object class.

SRBNs typically identify 1:N/N:1 or N:M relationships between the subject resource and

the object resource classes. RDF containers that represent collections of similar resource

objects are represented using the SRBN construct. Example: The object of the “Courses”

predicate in Figure 3.2 is an example of a SRBN that has multiple resource objects that are

instances of the“Course” class/r2d:TableMap.

r2d:ComplexResourceBlankNode (CRBN): CRBNs represent blank nodes that

have distinct or non-distinct predicates leading to objects belonging to different object

classes. This construct also identifies 1:N/N:1 or N:M relationships between the subject

resource class and each of the object classes and typically result in the creation of as many

join tables as the number of distinct object classes leading off of the CRBN. RDF containers

that represent collections of different types of object resources are represented using CRBNs.

Example: The object of the “OtherActivities” predicate is an example of a CRBN that has
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multiple resource objects each of which is an instance of a different (one “Sports” and one

“Training”) class.

r2d:MultiValuedSimple/ComplexResourceBlankNode (MVSRBN and

MVCRBN): Duplicate simple/complex resource blank nodes are represented using the

MVSRBN and MVCRBN constructs respectively. Like other MultiValued constructs, the

processing for these is also identical to their SingleValued counterparts except in the event

the predicates leading to the blank nodes are distinct, in which case an r2d:MultiValued-

Predicate (MVP) is created and a “TYPE” column corresponding to the MVP is included

in the r2d:TableMap. Example: Consider a scenario where the “Courses” predicate in

Figure 3.2 is replaced with multiple predicates each representing the courses taken in a par-

ticular year, such as “2007Courses”, “2008Courses”, and “2009Courses”, each of which are

SRBNs. The objects of these predicates together form an MVSRBN.

r2d:MixedBlankNode: Blank Nodes consisting of a mixture of literal, resource,

and other blank node objects are mapped using the r2d:MixedBlankNode construct. This

construct results in the creation of a r2d:TableMap which contains as fields every literal or

resource leaf node object that is an element of the tree rooted at the r2d:MixedBlankNode.

The mapping constructs specific to single-valued and multi-valued column bridges and

blank nodes are described below.

r2d:belongsToTableMap(BTTM): This construct connects a r2d:ColumnBridge

or MVCB to an r2d:TableMap. Every r2d:ColumnBridge must specify a value for either this

construct or the r2d:belongsToBlankNode construct. Example: The “Nickname” predicate

in Figure 3.2 is associated with the resource “URI/StudentA”, an instance of the “Student”

r2d:TableMap. Hence, the BTTM construct corresponding to “Nickname” r2d:ColumnBridge

is set to a value of “Student”, thereby connecting the ColumnBridge to a table.

r2d:belongsToBlankNode (BTBN): This construct ties a r2d:ColumnBridge or

MVCB to a blank node. Example: The “FirstName” r2d:ColumnBridge corresponding

to the “First” predicate in Figure 3.2 is associated with the “Name” SVBN. Hence, for the
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“FirstName” r2d:ColumnBridge the BTBN construct is used to associate it to the “Name”

blank node.

r2d:refersToTableMap (RTTM): This construct is optional for column bridges

and is only used for those triples that contain a resource object for a predicate. This

construct is used to generate primary key-foreign key relationships within the virtual re-

lational schema. Example: The object of the “Member Of” predicate in Figure 3.2 is a

resource that translates to another r2d:TableMap called “Department”. Hence the “Mem-

berOf” r2d:ColumnBridge includes the RTTM construct with a value of “Department”.

r2d:predicate: The r2d:predicate construct is used to store the fully qualified prop-

erty name of the predicate which corresponds to the column bridge. This information is used

during the SQL-to-SPARQL translation to generate the SPARQL WHERE clauses required

to obtain the value of the r2d:ColumnBridge

r2d:MultiValuedPredicate (MVP): The MVP construct is used in scenarios

where there are multiple predicate names that refer to the same overall object type despite

each individual object having a different value. r2d:MultiValuedPredicates are also used to

keep track of the predicates associated with RDF containers and RDF collections. MVPs

typically result in the creation of a “TYPE” column in the r2d:TableMap corresponding

to the resource associated with the MVP. Example: The predicates off of the “Phone”

CLBN in Figure 3.2 are examples of a MVP called “Phone Type” that represents the fact

that multiple predicates (〈Cell〉, 〈Work〉) refer to the same overall object type (i.e., a string

representing phone number).

r2d:datatype: This construct specifies the datatype of its column bridge and is

derived from the rdfs:range predicate or, in its absence, by examination of the object values

of the predicate.

The virtual relational schema generated by R2D for the sample scenario in Figure 3.2

is illustrated in Figure 3.3 and the schema generation details (for regular RDF triples) are

elaborated on in Chapter 4.
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Figure 3.3: Equivalent Virtual Relational Schema generated by R2D for Figure 3.2

3.2 Mapping Constructs used for RDF Reification Data

In order to better understand the constructs comprising the reification component of the

R2D mapping language, let us consider the sample scenario illustrated in Figure 3.4. In

Figure 3.4’s graph, every solid node with outgoing edges, such as OffenceURI, represents

a subject/resource. Edges, such as Address, Description, and Victim, represent predicates

and the solid nodes at the end of the edges, such as 〈Street〉, 〈Description〉, and 〈Victim〉,

represent objects. Empty solid nodes, such as the nodes at which the Address and Reportin-

gOfficer predicates terminate represent blank nodes. The nodes in dashed lines with the “s”,

“p”, “o”, and “t” predicates, amongst others, represent reified nodes. “s”, “p”, “o”, and “t”

represent the “rdf:subject”, “rdf:predicate”, “rdf:object”, and the “rdf:type” predicates of

the reification quad.

Other predicates of the reification nodes (other than “s”, “p”, “o”, and “t” predicates)

represent non-quad predicates (NQPs). The rest of the empty nodes in dashed lines (other

than the reified nodes) that are the objects of non-quad reification predicates, such as the

objects of the Phone, Dependents, and OfficerAddress predicates, represent reification blank
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Figure 3.4: Sample Scenario involving Crime Data
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nodes. The non-quad reification properties chosen in this example may not represent actual

provenance information. They were primarily chosen to illustrate proof of concept. Ele-

ments of Figure 3.4 are used, wherever applicable, to facilitate better comprehension of the

reification-specific mapping constructs which are discussed in the remainder of the section.

r2d:ReificationNode: The r2d:ReificationNode construct is used to map blank

nodes associated with “reification quads”. Under certain scenarios an r2d:ReificationNode

results in the generation of a new “reification” r2d:TableMap. These scenarios are discussed

in detail in Chapter 6. Example: The non-solid nodes corresponding to the Address-Street

predicate, the Victim predicate, and the ReportingOfficers-Badge predicate in Figure 3.4 are

examples of r2d:ReificationNodes named Address Street Reif, Victim Reif, and ReportingOf-

ficers Badge Reif respectively.

The mapping constructs specific to r2d:ReificationNodes are discussed next.

r2d:BelongsToTableMap: This constructs connects an r2d:ReificationNode to

the r2d:TableMap corresponding to the resource associated with “rdf:subject” of the r2d:-

ReificationNode. This information is recorded in the R2D Map File for use during the SQL-

to-SPARQL translation. Example: OffenceURI is the value of the rdf:subject predicate of

the Victim Reif r2d:ReificationNode. The r2d:TableMap corresponding to OffenceURI is

Offence. Hence, the r2d:BelongsToTableMap construct corresponding to Victim Reif is set

to a value of Offence, thereby connecting the reification node to a relational table.

r2d:BelongsToBlankNode: This construct connects an r2d:ReificationNode to

the r2d:[Simple/Complex][Literal/Resource]BlankNode corresponding to the blank node as-

sociated with the “rdf:subject” of the r2d:ReificationNode. Example: The rdf:subject of

the Address Street Reif reification node in Figure 3.4 consists of a blank node resource

called Address, which is an r2d:SimpleLiteralBlankNode. Hence, for this reification node

the r2d:BelongsToBlankNode construct is used to associate Address Street Reif to the Ad-

dress blank node.
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NOTE: Since the rdf:subject of a reification node can either refer to a proper resource

or a blank node, the r2d:BelongsToTableMap and r2d:BelongsToBlankNode constructs are

mutually exclusive. These are primarily required to enable the generation of appropriate

SPARQL WHERE clauses during SQL-to-SPARQL translation.

r2d:ReifiedPredicate: This construct is used to record the predicate correspond-

ing to the “rdf:predicate” property of the reification quad mapped by the r2d:ReificationNode

construct. This information is, again, required for appropriate SPARQL query generation.

Example: The complete URI of the Victim predicate of OffenceURI is recorded under the

Victim Reif reification node using the r2d:ReifiedPredicate construct.

Predicates of r2d:ReificationNodes are mapped using the r2d:ColumnBridge construct

described earlier in this section. Some of the important mapping constructs specific to

r2d:ColumnBridges include:

r2d:BelongsToReificationNode: This construct connects an r2d:ColumnBridge

to an r2d:ReificationNode entity and is a mandatory component of r2d:ColumnBridges be-

longing to reification nodes. Example: The r2d:BelongsToReificationNode associated with

the Victim Phone r2d:ComplexLiteralBlankNode is assigned a value of Victim Reif, thereby

linking the Victim Phone column with its reification node.

r2d:DataType: This construct specifies the datatype of the r2d:ColumnBridge

to which it is associated and comes into play when the structure of the virtual relational

database schema objects is examined. Example: The Address Block column bridge may

have an r2d:DataType of Integer while the Victim Gender column bridge has an r2d:DataType

of String.

r2d:Predicate: This construct is used to store the fully qualified property name of

the predicate which is associated with the reification r2d:ColumnBridge. This information

is used during the SQL-to-SPARQL translation to generate the SPARQL WHERE clauses

required to obtain the value of the r2d:ColumnBridge. Example: The complete URI of
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Figure 3.5: Equivalent Relational Schema corresponding to Figure 3.4’s Sample Scenario

the Victim Gender predicate of the Victim Reif reification node is recorded using the r2d:

Predicate construct.

Figure 3.5 illustrates the equivalent relational schema that corresponds to the Offence

sample scenario depicted in Figure 3.4. The exact modus operandi of the map-file-to-

relational-schema translation process is detailed in Chapter 6.

3.3 Types of Relationships addressed in R2D

The predicates and various types of blank nodes in Figure 3.2 and the relationships they

represent in the corresponding virtual relational schemata are discussed below. The simple

predicates typically map to a column in a relational schema. Blank nodes with multiple

distinct or non-distinct predicates such as “Courses”, “Phone”, and “Other Activities” typi-

cally highlight 1:N/N:1 or N:M relationships, while blank nodes such as “Name”, with literal

predicates, are typically equivalent to columns.

(a) r2d:ColumnBridge Relationships (1:1 Relationships without Blank Nodes)

In this kind of a relationship, most often one side of the relationship translates into a col-
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umn/attribute in the table represented by the other side of the relationship. An example

of a 1:1 relationship without blank nodes in Figure 3.2 is the triple (〈URI/StudentA〉

〈Nick〉 〈Nickname〉) referring to the relationship between an instance (〈URI/StudentA〉)

of the Student class and his/her Nickname.

(b) r2d:SimpleLiteralBlankNode Relationships (1:1 Relationships with Blank Nodes)

These kinds of relationships are processed, for the purposes of transformation into a

relational schema equivalent, by ignoring the blank node and treating the predicates of

the blank nodes as multiple 1:1 relationships-without-blank-nodes to the subject of the

blank node. Each predicate of the blank node essentially becomes an attribute of the

table representing the subject instance. An example of a 1:1 relationship with blank

nodes in Figure 3.2 is the triple (〈URI/StudentA〉 〈Name〉 〈blankNode〉).

(c) r2d:ColumnBridge Relationships with r2d:refersToTableMap construct (N:1 Relation-

ships without Blank Nodes)

In N:1 relationships without Blank Nodes, the primary key of the table representing

the instance on the “1” side of the relationship is included as a foreign key in the

table representing the instance on the “N” side of the relationship. An example of

a N:1 relationship without blank nodes in Figure 3.2 is the triple (〈URI/StudentA〉

〈MemberOf〉 〈Link to DepartmentID〉) referring to the relationship between an instance

(〈URI/StudentA〉) of the Student class and an instance of the Department class.

(d) r2d:MultiValuedColumnBridge (MVCB) Relationships with/without r2d:refersToTable-

Map construct (N:1 or N:M Relationships without Blank Nodes)

r2d:MultiValuedColumnBridges with literal objects (i.e., without r2d:refersToTableMap

construct) are equivalent to multi-valued attributes in relational terminology and, hence,

result are considered to represent 1:N relationship between the subject and the object of

the predicate corresponding to the MVCB. Thus, for MVCBs, a new table is generated

with a foreign key that references the table corresponding to the class to which the sub-

ject belongs. MVCBs with resource objects (i.e. with r2d:referstoTableMap construct)
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typically represent N:M relationships and hence, the processing of such MVCBs is similar

to the processing discussed in category (f) below. An example of an MVCB with resource

objects in Figure 3.2 is the triple (〈URI/StudentA〉 〈WorksOn〉 〈Link to Research〉) re-

ferring to the relationship between an instance (〈URI/StudentA〉) of the Student class

and instances of the Research class.

(e) r2d:ComplexLiteralBlankNodes and r2d:MultiValuedSimpleLiteralBlankNodes (N:1 Rela-

tionships with Blank Nodes)

These relationships typically result in the generation of a separate table with a foreign

key that references the table corresponding to the class to which the subject of this blank

node object belongs. An example of a r2d:ComplexLiteralBlankNode in Figure 3.2 is

(〈URI/StudentA〉 〈Phone〉 〈blankNode〉) and an example of an r2d:MultiValuedSimple-

LiteralBlankNode is (〈URI/StudentA〉 〈Home/Work Address〉 〈blankNode〉). Both these

examples result in the generation of r2d:MultiValuedPredicates due to the presence of

distinct predicates for the phone number and address nodes.

(f) r2d:SimpleResourceBlankNodes and r2d:ComplexResourceBlankNodes (N:M Relationships

with Blank Nodes)

N:M relationships with or without blank nodes result in the generation of a new join

table that has, as foreign keys, the primary keys of the tables corresponding to the

classes to which the subject and the resource object belong. An example of an N:M re-

lationship with a blank node leading to similar object resources (i.e., a blank node of type

r2d:SimpleResourceBlankNode) in the scenario in Figure 3.2 is the triple (〈URI/StudentA〉

〈Projects〉〈blankNode〉) and an example of one with different object resources (r2d:Complex-

ResourceBlankNode) is the triple (〈URI/StudentA〉 〈OtherActivities〉 〈blankNode〉).

This background on R2D fundamentals provides the foundation behind R2D functional-

ities, the details of which, along with the details of the algorithms that comprise the R2D

framework, are presented in a comprehensive manner in the next chapter.



CHAPTER 4

R2D SYSTEM DESIGN FOR REGULAR RDF TRIPLES

In keeping with the objectives of this research, several RDF-to-RDBMS bridging algorithms

were designed and developed in addition to the design of the RDF-to-Relational mapping

language discussed in the previous chapter. These include A) an algorithm that would, given

an RDF Data Store, derive the mapping file automatically, B) an algorithm to parse the

generated mapping file and generate, for the RDF Store, a list of relational tables, columns,

and the relationships between them, and C) an algorithm to transparently transform any

SQL statements issued against the virtual relational schema into its SPARQL equivalent, and

return the results from the RDF Store in a relational/tabular format. The various modules

highlighted in Figure 3.1 (a) and the corresponding algorithms are described at length in the

following subsections.

4.1 RDFMapFileGenerator

The first step in the R2D Framework is the map file generator process accomplished using

the RDFMapFileGenerator algorithm that takes an RDF store as input and automatically

generates an RDF-to-Relational mapping file as output. Notional mappings between some

key OWL/RDFS Ontology terminologies and R2D constructs to relational concepts can be

found in (Ramanujam, Gupta, Khan, Seida, and Thuraisingham 2009a; Ramanujam, Gupta,

Khan, Seida, and Thuraisingham 2009b).

However, the transformation process is not always as straightforward and as well-defined as

the notional mappings suggest. As mentioned earlier, there are currently many RDF Graphs

in existence that either do not have any, or have incomplete structural information included

36
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along with the data. RDFMapFileGenerator works on RDF Stores with or without such

structural information and the details are listed below.

The RDFMapFileGenerator algorithm generates mappings for RDF Stores with and

without ontological information in the form of RDF Schema definitions such as rdfs:class,

rdf:property, etc. This algorithm arrives at an RDF-to-Relational mapping file through ex-

tensive exploration of the triples data in the RDF Store and, consequently, is a bottleneck

in the transformation process in terms of the response times. As a result, a number of

sampling methods have been incorporated in the algorithm as can be seen in line 1 of the

RDFMapFileGenerator Algorithm.

For RDF Stores without ontological information, two types of data sampling have been

implemented, namely, Convenience/Haphazard Sampling, and Systematic sampling. In the

case of stores containing ontological information, two variations of Stratified Sampling have

been implemented; one where the sample size for each class is proportional to the class size,

and the other where the sample size is independent of the class size, i.e., the sample size

is the same for each class. These sampling methods have resulted in large reductions in

response times as can be seen in Chapter 5.

The data structure discovery process as illustrated in Algorithm 4.1 is as follows. When

structural information about the triples database is present, lines 2-11 of RDFMapFileGen-

erator discover the schema definitions and create appropriate Table and Column mappings

based on the schema information.

Lines 12-35 process instance data to identify and account for those predicates that may

not have been defined through explicit rdf:property definitions. This is done using three pro-

cedures, ProcessLiteralPredicate (Line 16), ProcessResourcePredicate (Line 22), and Pro-

cessBlankNodePredicate (Line 19). The ProcessLiteralPredicate procedure, as the name

suggests, is used to process predicates that have literal objects (such as Nickname predicate).

For every literal predicate that does not have a column corresponding to itself, a new column

is added to the TableMap corresponding to the resource to which the predicate belongs. If

the resource contains more than one such predicate (i.e. the resource contains multiple literal
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Algorithm 4.1 RDFMapFileGenerator

Input: RDF: The RDF Store of Interest
Output: RDF-to-Relational Schema Mapping File

1: Get sampling type, get/calculate sample size, calculate sample period (if systematic
sampling)

2: if exists(RDFSchema Information) then
3: for every resource that is an instance of rdfs:class do
4: TableMaps←− resourcename {add}
5: end for
6: for every resource that is an instance of rdf:property do
7: Get/Create TableMap, tblMap, corresponding to rdf:domain value of resource
8: tblMap.ColumnBridges←− PropertyResource name {add}
9: tblMap.ColumnBridges.datatype←− PropertyResourcesrdf : rangevalue

10: end for
11: end if
12: for every unprocessed (data) resource in the RDF store do
13: Create a TableMap, tblMap, for this resource
14: for every predicate of the resource do
15: if object of predicate is literal then
16: literalColumns += ProcessLiteralPredicate(resource, tblMap, predicate)
17: end if
18: if Object of predicate is a blank node then
19: Call ProcessBlankNodePredicate(resource, tblMap, predicate)
20: end if
21: if Object of predicate is a resource then
22: resourceColumns += ProcessResourcePredicate(resource, tblMap, predicate)
23: ConsolidateResourcePredicates(resourceColumns)
24: tblMap.setColumns(literalColumns); tblMap.setColumns(resourceColumns)
25: end if
26: end for
27: if NOT(similarTableExists(tblMap)) then
28: TableMaps += tblMap
29: else
30: discard tblMap
31: end if
32: if sampleSize reached then
33: return
34: end if
35: end for
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object values for the same predicate), then the column type of the corresponding column is

set to r2d:MultiValuedColumnBridge, otherwise it is a simple r2d:ColumnBridge.

The ProcessResourcePredicate procedure handles predicates that have resource ob-

jects. A new potential column is added for every resource predicate that belongs to the

subject resource. After all resource predicates are processed the duplicate predicates (i.e.,

predicates that have objects belonging to the same object class) are examined and elim-

inated and this is done through the ConsolidateResourcePredicates procedure (Line

23). During the consolidation process, any (duplicate) potential columns that refer to

the same object resource class (such as the WorksOn predicate) are combined and set to

r2d:MultiValuedColumnBridges while columns referring to distinct object resource classes

are set to r2d:ColumnBridge. This consolidation is mandatory in order to arrive at a normal-

ized and logically sound relational schema. In cases where the objects belong to the same

object class but the predicates have distinct values (such as the predicates off the Phone

blank node), a MultiValuedPredicate object is created which reflects this fact. These Mul-

tiValuedPredicates typically become “TYPE” fields in the corresponding relational schema.

Predicates leading to blank nodes are handled through the ProcessBlankNode pro-

cedure. In this procedure, for every blank node encountered an object of type BlankNode

is created. If every predicate off of the blank node contains a literal object (such as the

Name and Phone blank nodes) then, for each predicate off of the blank Node, the Pro-

cessLiteralPredicate procedure is called which works as described above. If every column

generated through the ProcessLiteralPredicate procedure is a simple r2d: ColumnBridge

(such as the Name blank node) then the BlankNode is set to r2d:SimpleLiteralBlankNode.

If any of the columns are r2d:MultiValuedColumnBridges (such as the Phone blank node)

then the BlankNode is set to r2d:ComplexLiteralBlankNode. If no such blank node has

been previously encountered, this blank node is added to the set of blank nodes. If a sim-

ilar blank node is already an element of the set of blank nodes, the blank node type is set

to r2d:MultiValuedSimpleLiteralBlankNode (such as the blank nodes corresponding to the
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HomeAddress and WorkAddress predicates) or r2d:MultiValuedComplexLiteralBlankNode

respectively.

In case of blank nodes that contain only resource objects, every predicate off of such blank

nodes is processed using the ProcessResourcePredicate procedure, also discussed above. As

before, the consolidation process is carried out after all predicates off of the blank nodes are

processed. If the number of consolidated columns is equal to 1 (such as in the case of the

Courses blank node), the blank node type is set to r2d:SimpleResourceBlankNode, otherwise

(as in the case of the OtherActivities blank node) it is set to r2d:ComplexResourceBlankNode.

As in the previous case, if a similar blank node exists, the node type is set to r2d:MultiValued-

SimpleResourceBlanknode or r2d:MultiValuedComplexResourceBlankNode respectively; oth-

erwise, the blank node is added to the set.

Blank nodes that contain a mixture of literal objects, resource objects, and other blank

nodes, are considered to be of type r2d:MixedBlankNodes and they are processed using the

Depth-First-Search tree algorithm. The topmost blank node is considered the root of the

tree and the procedure is as follows. For every literal or resource predicate off of a blank

node, a column is created and added to the blank node entity. Additionally, for every blank

node predicate off of a blank node, a new Blank Node entity is created and added to the

set of blank nodes and is also added as a column to the original blank node. This way,

the hierarchy of the tree rooted at the topmost blank node is maintained. This hierarchy

is required during the SQL-to-SPARQL conversion to retrieve data associated with blank

nodes appropriately.

Further, every resource object encountered and processed is stored in memory in order to

avoid duplicate processing of the same in the event of multiple triples containing the same re-

source object. This information serves to improve the performance of the algorithm. When

these “similar” resources are encountered during instance data processing, the algorithm

skips the potential TableMap creation process and the time-consuming duplicate-TableMap

detection process, thereby resulting in better efficiency.
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Handling of Predicates with Object Resources belonging to multiple r2d:Table-

Maps (i.e., a Foreign Key that has multiple tables that it needs to reference):

RDF Graphs consists of many examples where the relational transformation creates a

situation where an attribute AFK in Entity EFK could hold values corresponding to multiple

entities, say E1 to EN (Let the set of attributes of each of these Eis be A1, A2, . . . AN). This

situation is handled as follows.

The attribute list of EFK , AEFK is modified to include fields that reference the key field

attributes of each of the entities, E1 to EN , which AFK references. Thus,

AEFK = AEFK ∪ AReferencingE1PK ∪ AReferencingE2PK . . . ∪ AReferencingENPKAFK

Lastly, each attribute AReferencingEiPK in Entity EFK is set to reference the key attribute

of Ei (EiPK). For every row in EFK , one or more of the attributes {AReferencingE1PK ,

AReferencingE2PK , . . . , AReferencingENPK} will have a value while the others will be null. Since

the relational schema corresponding to the given RDF graph generated by R2D is virtual

involving no physical space/resource utilization, having multiple columns, many of which

could be null, to represent the above scenario (foreign key referencing multiple tables) does

not result in any resource wastage and is a simple solution to this requirement. An example

of such a scenario would be the triple

〈StudentURI (Subject), Advisor(Predicate), AdvisorURI (Object)〉.

The Advisor object of a student resource could contain an instance from any one of

the classes in the set {Full Professor, Associate Professor, Assistant Professor}. Again, the

relational transformation of the above scenario would consist of four tables, namely, Student,

FullProfessor (FP), AssistantProfessor (ASP), and AssociateProfessor (ACP). The Student

table contains an Advisor column which is a foreign key. This foreign key needs to reference

all three professor tables. As described above, this situation is handled by adding three

separate columns to the Student table, Advisor1 referencing the primary key of FP, namely

FPPK, Advisor2 referencing ASP, and Advisor3 referencing ACP. Further, for every row

in the Student table only one of the three Advisor columns contains a value while the other

two are null.
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As another example, let us consider the following triple

〈PublicationURI (Subject) Author (Predicate) AuthorURI(Object)〉,

The Author object of a publication resource could contain instances from any of the

classes in the set Full Professor (FP), Associate Professor (ACP), Assistant Professor (ASP),

Graduate Student (GS), Undergraduate Student (UGS). Applying the consolidate method

described above (in the Advisor example) results in the addition of five separate columns

to the Publication table, Author1 through Author5, referencing the primary keys of FP,

ACP, ASP, GS, and UGS tables respectively. In this example, the 5 fields are not mutually

exclusive, unlike in the Student-Advisor scenario, and, thus, any or all of the 5 Author fields

could contain values for each publication record.

4.2 DBSchemaGenerator

The map file generation process is followed by the actual relational schema generation process

which is the next stage in the R2D process and is achieved using the DBSchemaGenerator

algorithm. This algorithm takes the RDF-to-Relational Schema mapping file generated

by the RDFMapFileGenerator algorithm in Chapter 4, section 4.1 and returns a virtual,

appropriately normalized relational database schema consisting of entities/tables and the

relationships between them.

The DBSchemaGenerator Algorithm modus operandi is as follows. For each entry of type

r2d:TableMap in the map file, a relational table, RelTable, is created in the virtual relational

database schema. Entries of type r2d:ColumnBridge and r2d:MultiValuedColumnBridge

whose r2d:belongsToTableMap value corresponds to the Table-Map, RelTable, are processed

as follows. Every entry of r2d:ColumnBridge simply becomes a column in RelTable. If the

r2d:ColumnBridge refers to another resource (as indicated by the r2d:refersToTableMap con-

struct), a foreign key relationship is established between RelTable and the referred-to table.

For every entry of type r2d:MultiValuedColumnBridge, which is comparable to multi-valued

attributes in relational database terminology, a new table, NormTable, is created and the
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r2d:MultiValuedColumnBridge as well as the primary key of RelTable are added as columns

to NormTable. Further, if the predicate corresponding to the r2d:MultiValuedColumnBridge

is a r2d:MultiValuedPredicate, an additional “TYPE” column is created and added to

NormTable. If the r2d:MultiValuedColumnBridge is a literal the NormTable type is set

to “LiteralMVCBTable”; otherwise it is set to “ResourceMVCBTable”.

Non-nested blank nodes of various kinds are handled as follows. For r2d:SimpleLiteral-

BlankNodes ( such as the blank node object of the Name predicate) of the kind illustrated in

Chapter 3, Figure 3.2 every r2d:ColumnBridge entry that belongs to the blank node (as indi-

cated by the r2d:belongsToBlankNode construct) is simply added as a column to the Table to

which the r2d:SimpleLiteralBlankNode belongs (as indicated by the r2d:belongsToTableMap

construct for the blank node). The processing of r2d:ComplexLiteralBlankNodes (such as

the object of the Phone predicate) is very similar to the processing of r2d:MultiValued-

ColumnBridges described above with the difference being the table type of the created ta-

ble, which is set to “CLBNTable”. Entries of type r2d:SimpleResourceBlankNode (object of

the Courses predicate) and r2d:ComplexResourceBlankNodes (object of the OtherActivities

predicate) result in creation of join tables, with the primary keys of tables corresponding to

the subject resource and the object resource included as fields in the join table. Further,

if the predicates corresponding to the column bridges belonging to these blank nodes are

MultiValued, an additional “TYPE” column is created and added to the join table.

The processing of r2d:MultiValuedSimpleLiteralBlankNode, results in the creation of

a new table, contrary to the r2d:SimpleResourceBlankNode scenario. This table has as

columns the primary key of the table corresponding to the blank nodes r2d:belongsTo-

TableMap value, and all the r2d:ColumnBridges that belong to the r2d:MultiValuedSimple-

LiteralBlanknode. The processing of r2d:MultiValuedComplexLiteralBlanknode, r2d:Multi-

ValuedSimpleResourceBlanknode, and r2d:MultiValuedComplexResourceBlankNode is very

similar to their SingleValued counterparts with the only difference being the inclusion of an

additional field in the event the predicate corresponding to the blank node is an “MVP”.

The table type values are set according to the type of blank nodes encountered. The reason



44

for having table types and blank nodes is to maintain knowledge of the RDF graph structure

in order to accurately translate SQL Statements issued against the relational schema into

its appropriate SPARQL equivalent for precise data retrieval.

The final type of blank nodes processed by DBSchemaGenerator is mixed/nested blank

nodes where the predicates off of the blank nodes are any combination of literals, resources,

and other blank nodes. Due to the limitless kinds of such structured combinations that are

possible, it would be impossible to even attempt to arrive at a corresponding normalized

representation of the same. Hence, mixed/nested blank nodes of type r2d:MixedBlankNode

are handled by creating a table, NormTable, which has as columns the primary key column

of the table corresponding to the blank nodes r2d:belongsToTableMap construct, and the

literal and resource objects that are at the leaf nodes of the tree rooted at the topmost

mixed/nested blank node. This is achieved through a recursive procedure that explores the

predicates in a depth-first manner.

4.3 SQL-to-SPARQL Translation

The SQL-to-SPARQL Translation procedure, the last procedure in the deployment sequence

illustrated in Figure 3.1(b), corresponds to the final phase of the R2D transformation process

where SQL statements issued against the virtual relational schema are parsed, translated into

equivalent SPARQL (Prud’hommeaux and Seaborne 2008) queries that are executed against

the RDF Store, and the results are returned in relational format. The SQL-to-SPARQL

Translation algorithm, which takes an SQL Statement as input and returns an appropriate

SPARQL equivalent as output,includes the ability to process queries involving underlying

blank nodes, and to provide pattern matching and data aggregation abilities. The details of

the algorithm are listed below.

The SQL-to-SPARQL Translation algorithm transforms single or multiple table queries

with or without multiple where clauses (connected by AND, OR, or NOT operators) and

Group By clauses. Within each individual where clause, the algorithm handles operators in
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Algorithm 4.2 SQL-to-SPARQL Translation
Input: SQL Query
Output: Tabular results from execution of equivalent SPARQL Query

1: Parse the input SQL query
2: listOfFields ←− Array containing fields in the SELECT clause
3: listOfTables ←− Array containing tables in the FROM clause
4: whereClause ←− portion of the SQL Query after the WHERE keyword
5: if exists(GROUP BY clause) then
6: groupByField ←− Array containing aggregated fields in SELECT clause
7: groupByFunction ←− Array containing aggregation functions on fields in SELECT

clause
8: end if
9: SPARQLQuery ←− ProcessQuery

10: Execute SPARQLQuery
11: for every row in the result set do
12: for every field in the SPARQL SELECT list do
13: if isFieldPK(field) then
14: Replace field with the fields tables ?subject variable
15: end if
16: ResultRow ←− ResultRow ∪ fieldValue of field from line 19’s result set
17: end for
18: if GROUP BY Fields present then
19: for every groupByField and groupByFunction in list do
20: Get the groupByField Value from line 19s result set
21: if (current ResultRow == previous ResultRow) then
22: Perform aggregation per groupByFunction for the groupByField
23: else
24: ResultRow ←− ResultRow ∪ groupByFieldvalue
25: end if
26: end for
27: end if
28: QueryResults←− QueryResults ∪ResultRow
29: end for
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Table 4.1: SQL-to-SPARQL Translation Algorithm - Supporting Procedures

Procedure, its Input,
and its Output

Short Description

ProcessQuery
Input: List of Fields, Tables,
and Where Clause
Output: Equivalent SPARQL
Query.

This procedure takes the list of fields and tables,
and the where clause in the original SQL query
as input and generates a SPARQL equivalent of
the same as output. The SPARQL SELECT
list is generated within this procedure and the
SPARQL WHERE and FILTER clauses are gen-
erated using the ProcessWhereClause and Pro-
cessPredicatesForTables procedures called within
this procedure.

ProcessWhereClause
Input: SQL WHERE clause
Output: SPARQL FILTER
clause constructs.

This procedure examines the SQL WHERE
clause to identify those fields that have been used
in the WHERE clause but are not a part of
the SELECT list. Resolution/conversion of the
LIKE SQL construct into an equivalent REGEX
construct in SPARQL is also performed here.

ProcessPredicatesForTables
Input: List of Tables and Fields
in the SQL statement
Output: SPARQL WHERE
and FILTER clause constructs.

Generation of the SPARQL WHERE clause and
additions to the SPARQL FILTER clause are
performed by this procedure. This is where most
of the complexity of the SQL-to-SPARQL Trans-
lation algorithm lies as predicates corresponding
to every table/column/blank node type are pro-
cessed and transformed here.
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the following set {>,<,=, <=, >=, ! =, LIKE}. Lines 1-8 of the algorithm essentially per-

form parsing of the input query to identify the tables, fields, the where clause, and Group By

clause, if present. The ProcessQuery procedure, called in line 9, transforms the SQL Query

into its SPARQL form while lines 10-29 execute the generated SPARQL query, process the

results, and present the same in a tabular format. Lines 18-27 perform data aggregation

as per the Group By functions specified in the SQL Statement. Aggregation is achieved

by appending an ORDER BY clause to the transformed SPARQL query and the actual

group functions are calculated on the data obtained through the execution of the appended

SPARQL query. In order to better understand the transformation procedure let us consider

the following query based on the sample scenario illustrated in Figure 3.2 in Chapter 3,

Section 3.1.

SELECT Name First, Name Last, Phone Value, Department Name FROM employee, em-

ployee Phone, department WHERE employee.employee PK = employee Phone.employee PK

and employee Phone.Phone Type = ’<http://Phone/Cell>’ and employee.department id =

department.department id AND (name First LIKE ’ABC%’ OR employee pk = ’<http://empl/

123>’);

The SPARQL SELECT is generated by adding a variable for every field (including ag-

gregated fields, and fields in the SQL WHERE clauses) in the SQL SELECT list. After this

step the SPARQL SELECT list for our example is as follows:

SparqlSELECT = SELECT ?Name First ?Name Last, ?Phone Value ?Department Name

The SQL WHERE clauses are added, with minor modifications, to the FILTER clause of

the SPARQL statement. If the field in the SQL WHERE clause is a primary key, the field

name is replaced with the ?subject<Index> variable where Index corresponds to the table,

or the parent table in the case of derived tables (corresponding to blank nodes) to which the

field belongs. WHERE clauses involving non-primary key fields are added directly to the

SPARQL FILTER clause. In the case of the LIKE operator, the value on the right-hand-side
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is converted to an equivalent regular expression construct (by appropriately using the “ˆ”,

“$”, “.”, and “.*” special characters in place of the “%” and “?” characters used in the

LIKE expression) and the regex function is used on this converted expression in the FILTER

clause. Upon completion of the SQL WHERE clause processing, the FILTER clause for our

example is:

SparqlFILTER = FILTER ( ?Phone Type = <http://Phone/Cell> && employee department

id = subject1 && (regex(?Name First, “ˆABC”) ‖ ?subject0 = http://empl/123) }

The WHERE clause corresponding to employee.employee PK = employee Phone.employee

PK is eliminated in the SPARQL equivalent since employee Phone is a derived table cor-

responding to the employee resource itself. Further, since the primary key field refers to the

subject resource, the primary key fields associated with the employee and department tables

are replaced with the corresponding ?subjecti variables where i is the unique tableIndex

associated with the tables to which the primary keys belong.

The SPARQL WHERE clause is generated as follows. For non-derived tables and derived

tables corresponding to multi-valued attributes clauses of the form ?subject<tableIndex>

<Field.Predicate> ?<Field.Name> are added for every field in the table. For derived tables

corresponding to blank nodes and for fields belonging indirectly to non-derived tables (i.e.

SimpleLiteralBlankNode fields), clauses of the form

?subject<tableIndex> <BlankNode.Predicate> ?<BlankNode.Name> and

? <BlankNode.Name> Field.Predicate <Field.Name>

are added to the SPARQL WHERE clause. The SPARQL WHERE clause after the process-

ing of predicates associated with the non-derived table, Department, and the processing of

fields belonging indirectly to the non-derived table, Employee (caused by the SimpleLiteral-

BlankNode corresponding to the multi-valued attribute, Name), is as follows:

SparqlWHERE = WHERE {

?subject0 <http://empl/Name> ?employee name .

?employee Name <http://Name/First> ?Name First .
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?employee Name <http://Name/Last> ? Name Last .

?subject0 <http://empl/deptId> ?employee department id .

?subject1 <http://dept/dept name> ?Department Name .}

Since a field cannot be specified in the FILTER clause without being a part of the SPARQL

WHERE clause, the field employee department id is added to the SPARQL WHERE clause

above despite not being a part of the SPARQL or SQL SELECT list.

For derived tables corresponding to multi-valued attributes or non-mixed blank nodes that

contain multi-valued predicates, such as EmployeePhone, SPARQL where clauses of the form

?subject<tableIndex> ?<MVPColumn.Name> ?<NonMVPColumn.Name> and

?<BlankNode.Name> ?<MVPColumn.Name> ?<NonMVPColumn.Name>

are added, respectively. Further, for every predicate belonging to the multi-valued predi-

cate field, a clause of the form ?MVPColumn.Name = <PredicateName> is added to the

SPARQL FILTER clause. The processing of predicates associated with the derived table,

Employee Phone, containing a multi-valued predicate column called Phone Type results in

the following additions to the SPARQL WHERE clause:

SparqlWHERE = SparqlWHERE +

?subject0 <http://empl/Phone> ?employee Phone .

?employee Phone ?Phone Type ?Phone Value .

Lastly, in the case of mixed blank nodes, for each field belonging to the mixed blank node

table, the sequence of predicates leading from the topmost subject (of the mixed blank node)

to the field are obtained by traversing the tree structure stored during the MapFileGenera-

tion process and a Where clause is added to the SPARQL WHERE for each of the predicates

in the sequence.

The SPARQL WHERE and FILTER clauses are added to the SPARQL Query and the final

query is:

SparqlQUERY = SparqlSELECT + SparqlWHERE + SparqlFILTER

This transformed query is executed by the SQL-to-SPARQL-Translation Algorithm using the

SPARQL Query Engine and the retrieved data is returned in relational format seamlessly.



CHAPTER 5

R2D IMPLEMENTATION DETAILS FOR REGULAR RDF TRIPLES

The hardware used for the Map File creation process and the LUBM queries were executed

was a personal computer running the Windows Vista operating system with 4GB RAM and

2 GHz Intel Dual Core processor. The software platforms and tools used include Jena 2.5.6

(McBride 2002) to store the RDF triples data, MySQL 5.0 (MySQL ) to house the RDF

triples data persistently, Java 1.5 for development of the algorithms and procedures detailed

in Chapter 4, DataVision v1.2.0 (DataVision ) to visualize and generate reports based on

the RDF data, and GRUFF v1.0.19 (Gruff ) to compare the performance of R2D queries

against.

5.1 Experimental Dataset

The LUBM dataset (Guo, Pan, and Heflin 2005), which consists of a university domain ontol-

ogy comprising resources such as Universities, Departments, Professors, Students, Courses,

etc., was used in the experimentation process. In order to illustrate relationalization of blank

nodes, we made certain modifications that involve additions of blank nodes to the LUBM

Schema. These modifications include the addition of an EmailAddress r2d:SimpleLiteralBlank-

Node that involved altering the original simple literal EmailAddress property of resources

into an SLBN consisting of two simple literal predicates, PrimaryEmail and SecondaryE-

mail. The second type of blank node added was an r2d:ComplexLiteralBlankNode called

ContactNo which was created by modifying the original simple literal Phone property be-

longing to all Professor (and its subclasses) resources into a blank node with multiple simple

literal CellPhone predicates and one simple literal HomePhone predicate. Query numbers

1, 4, and 8 in the LUBM test queries include selection of fields corresponding predicates

50
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belonging to the SLBN and CLBN and query performance of the same is illustrated in

Figure 5.6.

5.2 Experimental Results

The relational equivalent of the RDF Graph in Figure 3.2 was generated using the RDFMap-

FileGenerator and DBSchemaGenerator Algorithms detailed in Chapter 3 and the open

source visualization tool DataVision, which expects a relational schema as input, was used

to view the virtual relational schema generated, query the data using SQL statements, and

generate reports off of the data.

The time taken by the map file generation process without any data sampling incorporated

for RDF stores of various sizes, with and without ontological information, was compared

with time taken for the same process when several sampling methods are applied and the re-

sults are illustrated in Figure 5.1. The process is especially time-intensive for large databases

without structural information but this is only to be expected since the RDFMapFileGen-

erator has to explore every resource to ensure that no property is left unprocessed.

The sampling techniques applied improved the performance of the algorithm by a large fac-

tor, as can be seen in Figure 5.1. The processing times resulting from Convenience Sampling

with sample sizes consisting of a fixed number of records are independent of the size of the

data store and are almost constant since this technique only processes the first n rows re-

gardless of the size of the database. Systematic sampling, on the other hand, does not yield

as flat a line as Convenience sampling in the graphs above as it involves selecting samples

periodically from the entire data store and, hence, is not as independent of the size of the

data store as the former. For a similar reason, the Stratified Sampling scenario where the

sample size is equally divided between the number of classes (Type B), regardless of the

number of resources in each class, yields an almost constant response time contrary to its

counterpart where the sample size for each class is proportional to the number of resources

in each class (Type A).
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Figure 5.1: Map File Generation Times with and without Sampling
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Sampling techniques are especially useful in scenarios where the structure of similar re-

sources are quite well defined with only minor variations as, in such situations, the sampling

methods do not run the risk of overlooking structural information that is not evident in the

chosen sample data subset. Further, if a domain expert with knowledge of the structural

information of the RDF store is available, the automatic map file generation process becomes

optional. This step can be bypassed, and the time saved, by providing the map file manually.

Figure 5.2 includes an excerpt from the map file generated by the RDFMapFileGenerator

algorithm along with an inset of a part of the database schema as seen by DataVision. This

schema is populated through the GetDatabaseMetaData Interface in the Connection class of

the JDBC API within which the two algorithms, RDFMapFileGenerator and DBSchemaGen-

erator, are triggered. As can be seen, the various blank nodes that are part of the dataset are

appropriately resolved and normalized into 1:N or N:M tables, or columns in existing tables

using the algorithm described in Chapter 4, Section 4.2. The r2d:SimpleLiteralBlankNode

associated with Professor/Student-EmailAddress is resolved into columns belonging to the

Professor/Student tables and the r2d:ComplexLiteralBlankNode associated with Graduate-

Student-ContactNo is resolved into a 1:N table of the same name.

Note that there are several tables in the virtual relational schema that seem like dupli-

cates (such as AssistantProfessor TeacherOf and AssistantProfessor TeacherOf 9, FullPro-

fessor TeacherOf and FullProfessor TeacherOf 2 ). These tables are not actually duplicates.

The first table in the pair is a join table for the N:M relationship that exists between

<Assistant/Full>Professor and Course classes while the second table in the pair is the

join table for the N:M relationship that exists between the <Assistant/Full>Professor and

GraduateCourse classes. The join table names in R2D’s virtual relational schema are de-

rived from the relevant predicate names. Since the predicate names of the Professor-Course

triples and the Professor-GraduateCourse triples are identical in the LUBM dataset, the

RDFMapFileGenerator algorithm appended a unique identifier (the numbers at the end of

the table names) to the second join table in order to avoid duplicate table names in the

virtual relational schema.
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Figure 5.2: Map File Excerpt and a Portion of the Equivalent Relational Schema as seen by
Datavision
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Figure 5.3 is a screenshot of DataVision’s Report Designer which illustrates DataVision’s

query building process for a sample query involving the SQL LIKE operator and a GROUP

BY clause. Based on the fields chosen (in the “Report Designer” window), the table linkages

(i.e., joins, illustrated in the “Table Linker” inset) specified, and additional record selection

and grouping criteria specified (illustrated in the “Record Selection Criteria” and “Groups”

insets respectively), DataVision generates an appropriate SQL query, as shown in the “SQL

Query” inset in Figure 5.4, to extract the required data. At this juncture, the Statement

Interface, the Prepared Statement Interface, and the ResultSet Interface that are part of

the JDBC interface are invoked. These interfaces trigger the SQL-to-SPARQL Translation

algorithm, which generates a SPARQL equivalent of the given SQL statement as illustrated

in Figure 5.4, and return the obtained results to DataVision in the expected tabular format,

as illustrated in Figure 5.5.

While DataVision, like any other relational reporting/visualization tool, has options to

specify aggregation and grouping conditions and functions, the DataVision support group

has, for various reasons that are not applicable to our academic test environment, disabled

the GROUP BY facility. For the purposes of our research, we have enabled the functionality

and the results are as displayed in Figure 5.5 below.

In order to compare the performance of queries executed through the virtual relational

schema offered by R2D against the query performance achieved through RDF visualization

tools, XML files corresponding to the LUBM dataset were generated for RDF stores of vari-

ous sizes and a selection of four queries were run using R2D and Allegrograph’s Gruff. These

queries were selected at random from the set of LUBM Benchmark SPARQL queries and their

equivalent SQL versions were executed using R2D. Figure 5.6 displays the response times of

each of the queries as the sizes of the databases vary. As can be observed, R2D’s performance

is far superior to the existing direct RDF visualization. This could be because Gruff persists

data on the hard disk in a proprietary manner, requiring additional time/resources for disk

I/O, while R2D utilizes Jena’s in-memory store to house the RDF data. The time taken for

the SQL-to-SPARQL conversion (SQL-to-SPARQL Translation Algorithm) is negligible and
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Figure 5.3: DataVision Query Processing
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Figure 5.4: SQL-to-SPARQL Conversion

Figure 5.5: Tabular Results as seen through DataVision
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nearly constant. Thus, R2D does not add any overheads to the SPARQL query performance.

SQL queries issued against relational databases created by physically duplicating RDF data

may possibly exhibit superior performance than their SPARQL equivalents since refined per-

formance optimization options (such as indexes, mature query optimizers, etc.) have been

at the disposal of relational databases for many decades now.

Further, for each row of the RDBMS with n columns, there are n triple tuples in the cor-

responding RDF Store. Thus, the RDBMS equivalent of the RDF Stores generally has a

fraction of the data in the RDF Stores which could be yet another contributor to better

RDBMS response times than the RDF data store. However, this improved performance

comes at the expense of additional disk space that is required due to duplication of data into

the RDBMS, and additional system resources and human effort required to ensure that the

duplicated data is kept synchronized with the original RDF store. On the other hand, for

possibly a small price in terms of response time, R2D offers an avenue for users to continue

to take advantage of the vast assortment of visualization tools that are readily available

without having to “reinvent the wheel” for RDF stores or duplicate/synchronize RDF data.

With skilled database administrators becoming rarer and more expensive, the importance

of applications such as R2D becomes more pronounced as they offer a means to bypass the

requirement of databases and their management.
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Figure 5.6: Response Times for Selected LUBM Queries



CHAPTER 6

R2D SYSTEM DESIGN FOR RDF REIFICATION DATA

The algorithm aspects associated with translation of simple reification nodes that do not

include blank nodes and reification nodes that contain non-quad predicates leading to blank

nodes are presented in the following subsections.

6.1 Mapping Reification Nodes – RDFMapFileGenerator

The first stage in the R2D transformation framework involves generation of a map file con-

taining the correlations between meta-data obtained from the input RDF store and its re-

lational schema equivalent. The algorithm that carries out this function is the RDFMap-

FileGenerator and the details specific to relationalization of RDF reification are listed in

Algorithm 6.1.

The reification data processing methodology within RDFMapFileGenerator is quite sim-

ilar to that used to map regular resources and blank nodes. Every blank node corresponding

to a reification quad is mapped using the r2d:ReificationNode construct. If the “rdf:subject”

property of the “reification quad” mapped by the r2d:Reification construct is a resource,

the r2d:BelongsToTableMap construct is used to associate the “reification quad” with the

r2d:TableMap corresponding to the resource. If the “rdf:subject” property is a blank node,

the r2d:BelongsToBlankNode construct is used to associate the “reification quad” to the

r2d:[Simple/Complex][Literal/Resource]BlankNode associated with the “rdf:subject” blank

node. Further, if the rdf:object property of the “reification quad” refers to another resource,

then r2d:RefersToTableMap construct is used to store this relationship. This information

is used in the case of 1:N relationships between two TableMap entities during the SQL-to-

60
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Algorithm 6.1 RDFMapFileGenerator

Input: RDF Store: The RDF Store of Interest
Output: RDF-to-Relational Schema Mapping File

1: for every reification quad in the RDF Store do
2: ReificationNodes += Node for reification quad
3: if rdf:subject of reification quad is a resource then
4: ReificationNode.BelongsToTableMap = TableMap corresponding to rdf:subject re-

source
5: else
6: {/* rdf:subject is a blank node*/}
7: ReificationNode.BelongsToBlankNode = [Simple/Complex][Resource/Literal]

Blank Node corresponding to rdf:Subject blank node
8: end if
9: if rdf:object of reification node is a resource then

10: ReificationNode.RefersToTableMap = TableMap corresponding to the rdf:object re-
source

11: end if
12: ReificationNode.ReifiedPredicate = rdf:Predicate of reification quad
13: for every non-quad predicate (NQP) of reification quad do
14: if Object of reification NQP is a blank node = blankNode then
15: ProcessBlankNodeNQP(Triples of tree rooted at blankNode)
16: else
17: ColumnBridge.Name = reification non-quad predicate Name
18: ColumnBridge.Predicate = URI of reification non-quad predicate
19: ColumnBridge.BelongsToReificationNode = ReificationNode
20: ReificationNode.ColumnBridges += ColumnBridge
21: end if
22: end for
23: end for
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Algorithm 6.2 ProcessBlankNodeNQP

Input: RDF Triples in tree rooted at blankNode
Output:Processed blankNode NQP and associated r2d:ColumnBridges

1: if all objects of blankNode are simple literals then
2: if repeating predicates exist then
3: blankNode.Type = ComplexLiteralBlankNode
4: else
5: blankNode.Type = SimpleLiteralBlankNode
6: end if
7: else if all objects of blank node are resources then
8: if all resources belong to same overall object class then
9: blankNode.Type = SimpleResourceBlankNode

10: else
11: blankNode.Type = ComplexResourceBlankNode
12: end if
13: else
14: blankNode.Type = MixedBlankNode
15: end if
16: blankNode.BelongsToReificationNode = ReificationNode
17: blankNodes += blankNode
18: for every predicate of reification blankNode NQP do
19: if object of the predicate is a simple literal or resource then
20: ColumnBridge.Name = predicate Name
21: ColumnBridge.Predicate = URI of predicate
22: ColumnBridge.BelongsToBlankNode = blankNode
23: reification blankNode.ColumnBridges += reification blankNode.ColumnBridges +=

ColumnBridge
24: else
25: {/* object is a blank node */}
26: Repeat lines 1-26
27: end if
28: end for



63

SPARQL transformation.

Every simple (i.e., non-blank-node) non-quad predicate of the reification blank node is

mapped using the r2d:ColumnBridge construct and is associated with its reification node

using the r2d:BelongsToReificationNode construct as shown in of Algorithm 6.1. Further-

more, the datatype of the object corresponding to the non-quad predicate is mapped using

the r2d:Datatype construct and the URI of the non-quad predicate itself is recorded using

the r2d:Predicate construct, for use during the SQL-to-SPARQL transformation. Mapping

file excerpts corresponding to reification nodes and simple non-quad predicates of reification

nodes can be found in (Ramanujam, Gupta, Khan, Seida, and Thuraisingham 2009d; Ra-

manujam, Gupta, Khan, Seida, and Thuraisingham 2010).

Reification nodes that contain blank nodes are mapped using one of the blank node constructs

discussed in Chapter 3, Section 3.2. As can be seen from Algorithm 6.1, when a non-quad

reification predicate with an object that is a blank node is encountered, Algorithm 6.2 is

called where the type of blank node is assessed by examining the objects of the blank node and

the blank node is mapped using the r2d:[MultiValued][Simple/Complex][Literal/Resource]

BlankNode construct as applicable. Further, the reification blank node NQP is associated

with its parent reification node using the r2d:BelongsToReificationNode construct as before.

Predicates belonging to the reification blank node NQP are mapped in the same manner as

simple non-quad reification predicates, i.e., using the r2d:ColumnBridge construct. These

predicates are linked to their parent blank node NQP using the r2d:BelongsToBlankNode

construct thereby keeping the graph structure intact. Tables 6.1 and 6.2 lists map file ex-

cerpts corresponding to the Victim Phone, Victim Dependents, and ReportingOfficer Officer-

Address blank nodes in Figure 3.4 and the predicates belonging to the above blank nodes.

Complex reification blank nodes, such as ones that contain one or more nested blank node

predicates, are processed using the Depth-First-Search tree algorithm (similar to mixed blank

nodes processing in Chapter 4). Every complex reification blank node is mapped using the

r2d:MixedBlankNode construct and is connected to the parent r2d:ReificationNode using

the r2d:BelongsToReificationNode construct.
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Table 6.1: Excerpts from the R2D Map File depicting mapping entries corresponding to
reification Blank Nodes

Map File Excerpt for Reification Blank Nodes

map:Offence Victim Reif a r2d:ReificationNode;
r2d:belongsToTableMap map:Offence;
r2d:datatype xsd:String;
r2d:reifiedPredicate <http://offence/Victim>;
.
map:Offence Victim Phone a r2d:ComplexLiteralBlankNode;
r2d:belongsToReificationNode map:Offence Victim Reif;
r2d:predicate <http://offence victim reif/Phone>;
.
map:Offence Victim VictimDependent a r2d:SimpleResourceBlankNode;
r2d:belongsToReificationNode map:Offence Victim Reif;
r2d:refersToTableMap map:Dependent;
r2d:predicate <http://offence victim reif/VictimDependent>;
.
map:Offence ReportingOfficers Officer Reif a r2d:ReificationNode;
r2d:belongsToBlankNode map:Offence ReportingOfficers;
r2d:datatype xsd:String;
r2d:reifiedPredicate <http://offence/ReportingOfficers/Officer>;
.
map:Offence ReportingOfficers Officer Address a r2d:SimpleLiteralBlankNode;
r2d:belongsToReificationNode map:Offence ReportingOfficers Officer Reif;
r2d:predicate <http://offence/ReportingOfficers/Officer/Address>;
.
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Table 6.2: Excerpts from the R2D Map File depicting mapping entries corresponding to
reification Blank Node predicates

Map File Excerpt for Predicates of Reification Blank Nodes

map:Phone Value a r2d:MultiValuedColumnBridge;
r2d:belongsToBlankNode map:Offence Victim Phone;
r2d:datatype xsd:String;
r2d:MultiValuedPredicate Phone Type;
.
map:Phone Type a r2d:MultiValuedPredicate;
r2d:predicate <http://offence victim reif/VictimCellPhone>;
r2d:predicate <http://offence victim reif/VictimWorkPhone>;
.
map:Offence Victim VictimDependent Dependent a r2d:MultiValuedColumnBridge;
r2d:belongsToBlankNode map:Offence Victim VictimDependent;
r2d:refersToTableMap map:Dependent;
r2d:datatype xsd:String;
r2d:predicate <http://offence victim reif/Dependent>;
.
map:Offence ReportingOfficers Officer Address Block a r2d:ColumnBridge;
r2d:belongsToBlankNode map:Offence ReportingOfficers Officer Address;
r2d:datatype xsd:String;
r2d:predicate <http://offence/ReportingOfficers/Officer/Address/Block>;
.
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6.2 Relationalizing Reification Data – DBSchemaGenerator

The second stage of the R2D transformation framework involves the actual virtual, nor-

malized, relational schema generation for the input RDF store based on information in the

map file created in stage one. The algorithm that provides this functionality is called the

DBSchemaGenerator and the details of the same pertaining to the relational transformation

of reification data are listed in Algorithm 6.3.

The circumstances and conditions under which a new r2d:TableMap is created to house

the reification data in the virtual relational schema corresponding to the given input RDF

store are listed in Table 6.3.

Relational transformation of simple non-quad reification predicates and non-quad reifi-

cation blank nodes is discussed below.

I. Relationalization of Simple Literal/Resource NQPs and Reification SLBN

NQPs:

(a) Simple/SLBN NQP reifies a predicate or blank node belonging to an r2d:Tablemap

or a predicate belonging to an SLBN of the r2d:TableMap: If the reified pred-

icate is a literal MVCB or a resource MVCB representing an N:M relationship

between the {subject, object} resource pair, the reification predicate is added as a

column into the normalized table that results from the relational transformation

of the MVCB. In the case of reification SLBN NQPs, the predicates belonging

to the reification SLBN are each added as columns to the normalized table. If

the reified predicate is a resource MVCB representing a 1:N relationship between

the {subject, object} pair, the simple NQP, or, in the case of reification SLBN

NQPs, every predicate belonging to the reification SLBN, is added as a column

to the TableMap representing the N-side of the relationship. If the reified predi-

cate has a blank node object or if the reified predicate belongs to an SLBN of an

r2d:TableMap, the NQP (or every predicate belonging to the SLBN in the case
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Algorithm 6.3 DBSchemaGenerator

Input: MapFile: RDF-to-Relational Schema Mapping File
Output: A Normalized Relational Schema

1: for every entry of type r2d:ReificationNode do
2: ParentTable = ReificationNode.BelongsToTableMap OR ReificationN-

ode.BelongsToBlankNode
3: if ParentTable.Type = ”Table” or ParentTable.Type = SLBN then
4: if ReificationNode.ReifiedPredicate refers to MultiValuedColumnBridge (MVCB)

then
5: ReificationTable = GetReifTblForMVCB(ParentTable, ReificationNode, ReifiedPredi-

cate, MapFile)

6: else
7: ReificationTable = GetReifTblForNonMVCB(ParentTable, ReificationNode, MapFile)

8: end if
9: else if ParentTable.Type = CLBN then

10: ReificationTable = TableMap corresponding to CLBN
11: else if ParentTable.Type = S/CRBN then
12: ReificationTable = GetReifTblForRBN(ParentTable, ReificationNode, MapFile)

13: else
14: { /* ParentTable.Type = MultiValuedS/CL/RBNs */ }
15: ReificationTable = TableMap corresponding to ParentTable
16: end if
17: for every entry of type r2d:ColumnBridge with r2d:BelongsToReificationNode = Reifi-

cationNode do
18: if column does not exist in ReificationTable then
19: ReificationTable.columns += column
20: end if
21: end for
22: for every reification blankNode (except of type r2d:MixedBlankNode) with

r2d:BelongsToReificationNode= ReificationNode do
23: ReificationTable.columns += blankNode.columns (derived as discussed in Chap-

ter 4)
24: end for
25: for every entry of type r2d:MixedBlankNode (containing nested blank nodes) do
26: for every r2d:ColumnBridge belonging to any blank node in any path of the tree

rooted at the r2d:MixedBlankNode do
27: ReificationTable.columns += column
28: end for
29: end for
30: end for
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Algorithm 6.4 GetReifTblForMVCB

Input: ParentTable, ReificationNode, MVCB, MapFile
Output: Reification Table

1: if MVCB is Literal MVCB or resource MVCB having N:M relationship with another
Table then

2: ReificationTable = Table corresponding to MVCB
3: else
4: if all non-quad predicates (NQPs) of ReificationNode are either ColumnBridges (CB)

or SLBNs or MixedBlankNodes (MBNs) then
5: ReificationTable = Table on N-side of the relationship
6: else
7: { /* NQPs include blank nodes of type [MV]CLBN or [MV]C/SRBN */ }
8: ReificationTable = CreateNewReificationTable() /* if one does not already exist */

9: ReificationTable.Columns += ParentTable.PKField, += ParentTable.ReifiedField

10: Tables += ReificationTable
11: end if
12: end if

Algorithm 6.5 GetReifTblForNonMVCB

Input: ParentTable, ReificationNode, MapFile
Output: Reification Table

1: if all non-quad predicates (NQPs) of ReificationNode are either ColumnBridges (CB) or
SLBNs or MixedBlankNodes (MBNs) then

2: if ParentTable.Type = “Table” then
3: ReificationTable = ParentTable
4: else
5: { /* ParentTable.Type = SLBN */ }
6: ReificationTable = Parent Table to which SLBN belongs
7: end if
8: else
9: { /* NQPs include one or more blank nodes of type [MV]CLBN or [MV]C/SRBN */}

10: ReificationTable = CreateNewReificationTable() /* if one does not already exist */
11: ReificationTable.Columns += ParentTable.PKField, += ParentTable.ReifiedField
12: Tables += ReificationTable
13: end if
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Table 6.3: Conditions under which a new r2d:TableMap is created for reification data

Reified Entity/ At-
tribute

Type of Relationship
Represented (if any)

Non-Quad Pred-
icate (NQP)
Types in Reifi-
cation Node

Is a New
Reifica-
tion Table
Created?

r2d:ColumnBridge or
Predicate leading to a
blank node in
r2d:TableMap

ColumnBridges,
SLBNs, and
MixedBlankNodes

No

[MV]CLBNs,
[MV]{S/C}RBNs

Yes

r2d:MVCB in
r2d:TableMap

MVCB is a resource
MVCB representing 1:N
relationship between
subject, object pair

ColumnBridges,
SLBNs, and
MixedBlankNodes

No

[MV]CLBNs,
[MV]{S/C}RBNs

Yes

MVCB is a resource
MVCB representing N:M
relationship between sub-
ject, object pair or MVCB
is a Literal MVCB

All No

Predicate belonging to
an SLBN of a TableMap

ColumnBridges,
SLBNs, and
MixedBlankNodes

No

[MV]CLBNs,
[MV]{S/C}RBNs

Yes

Predicate belonging to a
CLBN of a TableMap

All No

Predicate belonging to
an SRBN and CRBN of
a TableMap

S/CRBN represents 1:N
relationship between
subject, object pair

ColumnBridges,
SLBNs, and
MixedBlankNodes

No

[MV]CLBNs,
[MV]{S/C}RBNs

Yes

S/CRBN represents N:M
relationship between sub-
ject, object pair

All No

Predicate belonging to an
MultiValuedS/CL/RBN

All No
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Algorithm 6.6 GetReifTblForRBN

Input: ParentTable, ReificationNode, MapFile
Output: Reification Table

1: if S/CRBN represents 1:N relationship between the subject and object resources then
2: if all non-quad predicates (NQPs) of ReificationNode are either ColumnBridges (CB)

or SLBNs or MixedBlankNodes (MBNs) s then
3: ReificationTable = TableMap on the N-side of the relationship
4: else
5: {/* NQPs include one or more blank nodes of type [MV]CLBN or [MV]C/SRBN */

}
6: ReificationTable = CreateNewReificationTable() /* if one does not already exist */

7: ReificationTable.Columns += ParentTable.PKField, += ParentTable.ReifiedField
8: Tables += ReificationTable
9: end if

10: else
11: {/* S/CRBN represents 1:N relationship between the subject, object pair */ }
12: ReificationTable = TableMap corresponding to the S/CRBN
13: end if

of reification SLBN NQPs) is added as a column to the TableMap to which the

blank node or SLBN belongs.

(b) Simple/SLBN NQP reifies a predicate belonging to an CLBN or MultiValued{S/C}

{L/R}BN of an r2d:TableMap: In this case, the simple NQP or, in the case of

reification SLBN NQPs, each predicate belonging to the reification SLBN, is simply

added as a column to the table that results from the relational transformation of

the CLBN or MultiValued{S/C}{L/R}BN. Details on the tables that result from

the relational transformation of these (CLBN, MultiValued{S/C}{L/R}BN) blank

nodes can be found in Chapter 4.

II. Relationalization of Reification CLBN, SRBN, and CRBN NQPs (and their

MultiValued counterparts):

(a) Reification CLBN/C/SRBN NQP reifies a simple predicate or blank node belonging

to an r2d:TableMap: In this case, reification CLBN and {C/S}RBN NQPs always



71

results in the creation of a new reification table with foreign keys fields that refer-

ence the reified predicate as well as the primary key field of the r2d:TableMap to

which the reified predicate belongs. The Phone predicate in Figure 3.4 is one such

reification CLBN NQP that reifies a simple predicate belonging to the Offence

resource and the relationalization of the same results in the creation of another

tablemap, Offence Victim Phone Reification, into which the columns correspond-

ing to the reification CLBN (derived as detailed in Chapter 4) are added. Simi-

larly, the Dependents predicate in Figure 3.4 is an example of a SRBN reification

blank node NQP and its relationalization results in the creation of a new reifica-

tion table called Offence Victim Dependents Reification, into which the columns

corresponding to the reification SRBN are added.

(b) CLBN/C/SRBN reifies a predicate belonging to a blank node or a predicate asso-

ciated with an MVCB representing an N:M relationship: If the reified predicate

belongs to an SLBN or a {S/C}RBN that represents 1:N relationship between

the {subject, object} resource pair then the procedure detailed in (II) (a) above

is followed. If the reified predicate belongs to any other type of blank node, the

predicates belonging to the reification CLBN/{C/S}RBN NQPs are simply added

as columns (columns for these reification blank node NQPs are derived in the

same manner as the columns for non-reification blank nodes and the details of

the same can be found in Chapter 4) to the table that results from the relational

transformation of the blank node to which the reified predicate belongs.

III. Relationalization of Reification MixedBlankNodes:

Reification blank nodes of type r2d:MixedBlankNodes, where the non-quad predicates

include one or more (nested) blank nodes, are handled by flattening their relational

equivalents as, due to the numerous types of such mixed combinations that are possible,

it would be nearly impossible to arrive at an accurate normalized representation of the

same. As a result, predicates of literal and resource objects that are at the leaf nodes

of the tree rooted at the r2d:MixedBlankNode are simply translated into columns in
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the virtual table that results from the relational transformation of the tablemap or the

blank node to which the parent reification node (of which this mixed blank node is an

NQP) belongs as listed in Algorithm 6.3.

6.3 Querying Reification Data – SQL-to-SPARQL Translation

The final stage of the R2D transformation framework involves the translation of SQL state-

ments issued against the virtual relational schema generated by stage 2 into equivalent

SPARQL queries that are executed against the actual RDF store. This is achieved through

the SQL-to-SPARQL translation algorithm, which in addition to performing the SQL-to-

SPARQL translation, also ensures that the triples retrieved from the RDF store are returned

to the relational visualization tool in the expected tabular format. The translation algorithm

presented in this chapter extends the earlier version presented in Chapter 4 by including the

ability to translate queries issued against the virtual tables housing reification data corre-

sponding to reification blank nodes.

The SQL-to-SPARQL translation process transforms single or multiple table queries with

or without multiple where clauses (connected by AND, OR, or NOT operators) and Group

By clauses. Within each individual where clause, the algorithm handles operators in the

following set >,<,=, <=, >=, ! =, LIKE. Due to the length and complexity of the algo-

rithm, only a high level description of the algorithm is discussed below along with examples

to illustrate the translation process.

In order to understand the intricacies of the translation algorithm, let us consider the fol-

lowing SQL query based on the relational schema scenario depicted in Figure 3.5.

SELECT offence victim, victim gender, victim phone type, victim phone value, depen-

dent fullname, reportingOfficers badge, reportingOfficers badge officerName, reportingOffi-

cerAddress Street

FROM Offence, Offence Victim Phone Reification, Offence Victim Dependent Reification,

Dependent, Offence ReportingOfficers



73

WHERE Offence.Offence pk = Offence Victim Phone Reification.Offence pk

AND Offence.Offence victim = Offence Victim Phone Reification.Offence victim

AND Offence.Offence pk = Offence Victim Dependent Reification.Offence pk

AND Offence.Offence victim = Offence Victim Dependent Reification.Offence victim

AND Offence Victim Dependent Reification.Dependent Pk = Dependent.Dependent Pk

AND Offence.Offence Pk = Offence ReportingOfficers.Offence pk

AND Offence.Offence Victim = ’DummyLName, ABC’;

The first step in the translation process involves the generation of the SPARQL SELECT

clause. For every field in the original SQL SELECT list, a variable is added to the SPARQL

SELECT list. The SPARQL SELECT list after fields processing is as follows: SPARQLSelect

= SELECT ?offence victim, ?victim gender, ?victim phone type, ?victim phone value, ?de-

pendent fullname, ?reportingOfficers badge, ?reportingOfficers badge officerName, ?reportin-

gOfficerAddress street

The processing of regular columns for generation of SPARQL WHERE and FILTER clauses

is described in Chapter 4. The resulting SPARQL WHERE clause after processing of regu-

lar, non-reification columns as detailed in Chapter 4 is as follows:

SPARQLWhere = WHERE {

?Offence <http://Offence/Victim> ?offence victim .

?Offence <http://Offence/ReportingOfficers> ?Offence ReportingOfficers .

?Offence ReportingOfficers <http://Offence/ReportingOfficers/Badge> ?reportingOfficers -

badge .

?Dependent <http://Dependent/FullName> ?dependent fullname .

SPARQLFilter = FILTER (?offence victim = “DummyLName, ABC” ) }
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Processing of fields corresponding to simple reification predicates and predicates belong-

ing to reification blank nodes is as follows.

(a) Processing of Simple Reification NQPs when Reification Quad reifies a Re-

source: If the reification quad to which the field corresponding to the simple NQP

belongs reifies a resource, clauses of the form

[OPTIONAL] { ?reificationQuad <rdf:subject> ?resourceTableMap .

?reificationQuad <rdf:predicate> ?reificationQuad.r2d:ReifiedPredicate .

?reificationQuad <rdf:object> ?reifiedObjectField .

?reificationQuad <non-quadPredicate> ?reificationColumn .}

are added to the SPARQL WHERE clause. The reification quad corresponding to the

victim gender column is one such reification. The OPTIONAL keyword is optional and

is only required for queries involving outer joins. Also, if the field corresponding to the

object being reified is not part of the SPARQL WHERE clause, an appropriate selection

clause is added to the same. The SPARQL WHERE clauses resulting from the process-

ing of the victim gender column are:

REIFClause1 = ?Offence <http://Offence/Victim> ?offence victim .

?Victim Reif <rdf:subject> ?Offence .

?Victim Reif <rdf:Predicate> <http://Offence/Victim> .

?Victim Reif <rdf:Object> ?offence victim .

?Victim Reif <http://Offence/Victim/Gender> ?victim gender.

Processing of reification columns belonging to {Literal/Resource}MultiValuedColumn-

Bridge ({L/R}MVCB) tables is similar to the above case with an additional step to

identify the parent table from which the {L/R}MVCB table is derived through normal-
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ization.

In the case of RMVCB tables where the rdf:object of the reification quad is a resource

that maps to another r2d:TableMap (through the r2d:refersToTableMap construct), an

additional clause of the form

?subjectResourceTableMap <reificationQuad.r2d:ReifiedPredicate> ?objectResourceTable-

Map .

is added to the SPARQL WHERE clause.

(b) Processing of Simple Reification NQPs when Reification Quad reifies a Blank

Node: If the reification quad to which the field corresponding to the simple NQP be-

longs reifies a blank node, clauses of the form given below are added to the SPARQL

WHERE clause. Further, if the rdf:object of the reification quad is a resource mapping

to another r2d:TableMap then the following additional clause of the form ?BlankNode

<reificationQuad.r2d:ReifiedPredicate> ?objectResourceTableMap . is appended to the

SPARQL WHERE Clause.

?ParentTableofBlankNode <BlankNodePredicate> ?BlankNode .

[OPTIONAL] {?reificationQuad <rdf:subject> ?BlankNode .

?reificationQuad <rdf:predicate> ?reificationQuad.r2d:ReifiedPredicate .

?reificationQuad <rdf:object> ?reifiedObjectField .

?reificationQuad <non-quadPredicate> ?reificationColumn }

The reportingOfficers officerName reification column belonging to the reification node

that reifies the “ReportingOfficers” CLBN in Figure 3.4 is an example of such a reifica-

tion and the addition to the SPARQL WHERE clause after processing of the same is as

given below.
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REIFClause2 = Offence <http://Offence/ReportingOfficers> ? Offence ReportingOffi-

cers .

?RepOfficers Officer Reif <rdf:subject> ?Offence ReportingOfficers .

?RepOfficers Officer Reif <rdf:Predicate> <http://Offence/ReportingOfficers/Badge> .

?RepOfficers Officer Reif <rdf:Object> ?reportingOfficers badge .

?RepOfficers Officer Reif <http://Offence/ReportingOfficers/Badge/OfficerName> ?re-

portingOfficers badge officerName .

(c) Processing of Reification Blank Node NQPs when Reification Quad reifies a

Resource: If the reification quad to which the reification blank node belongs reifies a

resource (and not a blank node), clauses of the form

[OPTIONAL] { ?reificationQuad <rdf:subject> ?resourceTableMap .

?reificationQuad <rdf:predicate> ?reificationQuad.r2d:ReifiedPredicate .

?reificationQuad <rdf:object> ?reifiedObjectField .

?reificationQuad <reificationBlankNode predicate> ?reificationBlankNode .

?reificationBlankNode <ReificationColumn predicate> ?reificationColumn .}

are added to the SPARQL WHERE clause.

The reification quad that contains the Phone reification CLBN NQP and the Depen-

dents reification SRBN NQP in Figure 3.4 is an example of the scenario described above

and the corresponding SPARQL WHERE clauses generated to facilitate the selection of

the victim phone type, victim phone value, and dependent pk (and, through appropriate

joins, dependent fullname) fields are as follows.

REIFClause3 = ?Victim Reif <rdf:subject> ? Offence .

?Victim Reif <rdf:predicate> <http://Offfence/Victim> .

?Victim Reif <rdf:object> ?offence victim .
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?Victim Reif <http://Offence/Victim/Phone> ?Victim Phone .

?Victim Phone ?victim phone type ?victim phone value .

REIFClause4 = ?Victim Reif <rdf:subject> ?Offence .

?Victim Reif <rdf:predicate> <http://Offfence/Victim> .

?Victim Reif <rdf:object> ?offence victim .

?Victim Reif <http://Offence/Victim/Dependents> ?Victim Dependents .

?Victim Dependents <http://Offence/Victim/Dependents/Dependent> ?victim depend-

ent pk .

The join between the virtual relational tables Dependent and Offence Victim Depend-

ent Reification (required to obtain the dependent fullname field value) is specified as an

additional condition in the SPARQL FILTER clause which now becomes

SPARQLFilter = FILTER (?victim dependent pk = ?Dependent && ?offence victim =

“DummyLName, ABC”)

(d) Processing of Reification Blank Node NQPs when Reification Quad reifies

a Blank Node: If the reification quad to which the reification blank node belongs

reifies a blank node, clauses of the form given below are added to the SPARQL WHERE

clause. Further if the rdf:object of the reification quad to which the reification blank node

belongs is a resource mapping to another r2d:TableMap then the following additional

clause of the form ?BlankNode <reificationQuad.r2d:ReifiedPredicate> ?objectResourc-

eTableMap . is appended to the SPARQL WHERE Clause.

?ParentTableofReifiedBlankNode <ReifiedBlankNodePredicate> ?BlankNode .

[OPTIONAL] {?reificationQuad <rdf:subject> ?BlankNode .

?reificationQuad <rdf:predicate> ?reificationQuad.r2d:ReifiedPredicate .

?reificationQuad <rdf:object> ?reifiedObjectField .
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?reificationQuad <reificationBlankNode predicate> ?reificationBlankNode .

?reificationBlankNode <reificationColumn predicate> ?reificationColumn .}

The reification quad to which the OfficerAddress reification SLBN belongs in Figure 3.4

is an example of one such reification. The SPARQL WHERE clauses resulting from the

processing of the reportingOfficerAddress Street field belonging to the OfficerAddress

reification SLBN are as given below.

REIFClause5 = ?Offence <http://Offence/ReportingOfficers> ? Offence ReportingOffic-

ers .

?RepOfficers Officer Reif <rdf:subject> ?Offence ReportingOfficers .

? RepOfficers Officer Reif <rdf:predicate> <http://Offence/ReportingOfficers/Badge>

.

? RepOfficers Officer Reif <rdf:Object> ?reportingOfficers badge .

? RepOfficers Officer Reif <http://Offence/ReportingOfficers/Address> ?reportingOffi-

cer Address .

?reportingOfficer Address <http:/Offence/ReportingOfficers/Address/Street> ?reportin-

gOfficerAddress Street .

(e) Translation of complex reification blank nodes: : For fields belonging to complex

reification blank nodes (i.e., mixed blank nodes), the sequence of predicates leading from

the complex reification blank node to the (leaf) field are obtained by traversing the tree

structure stored during the map file generation process. A WHERE clause is added to

the SPARQL WHERE for each of the predicates in sequence.

After the translation procedures described above are applied to the given example SQL

statement, the final transformed SPARQL Query is:

SPARQL Statement = SPARQLSelect + SPARQLWhere + REIFClause1 = REIFClause2

+ REIFClause3 + REIFClause4 + REIFClause5 + SPARQLFilter
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The transformed SPARQL Query is executed and the retrieved data is returned in rela-

tional format seamlessly.



CHAPTER 7

R2D EXPERIMENTAL RESULTS FOR RDF REIFICATION DATA

The hardware used for our simulation exercises was a Windows machine with 4GB RAM

and 2 GHz Intel Dual Core processor. The software platforms and tools used include Jena

2.5.6 (McBride 2002) to manipulate the RDF triples data, MySQL 5.0 (MySQL ) to house

the RDF data in a persistent manner, and DataVision v1.2.0 (DataVision ), an open source

relational tool, to visualize, query, and generate reports based on the RDF data. Lastly,

BEA Workshop Studio 1.1 Development Environment along with Java 1.5 was used for the

development of the algorithms and procedures detailed in Chapter 6. The implementation

of R2D and the performance experiments conducted using the same are described below.

7.1 Experimental Datasets

The dataset is used in the experiments below is an augmented version of a subset of crime

data downloaded from a police department website. The data has triples pertaining to cities

and zip codes where crimes were committed, and details of committed crimes as illustrated

in Figure 3.4. The DataVision screenshots include actual, valid crime data in all cases except

for the data corresponding to the reification blank nodes. This reification data is synthetic

and was introduced primarily to illustrate the relationalization process for reification blank

nodes. Further, the voluminous datasets used in the query performance evaluations were

also artificially generated through a data loading program and the structure of this dataset

is a sub-set of the structure illustrated in Figure 3.4. The structure of the simulated data

was kept identical to that of the actual original crime dataset from the police department

in order to facilitate the extrapolation of the obtained results to actual crime data of those

80
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volumes. For query performance experiments, Jena’s in-memory model was used to load and

query the data.

7.2 Simulation Results

The relational equivalent of the crime data was generated using the RDFMapFileGenerator

and DBSchemaGenerator Algorithms detailed in Chapter 6. The time taken by the map

file generation process without any data sampling incorporated for RDF stores of various

sizes, with and without reification information, was compared with time taken for the same

process when several sampling methods (Convenience sampling, Systematic Sampling) were

applied and the results are illustrated in Figure 7.1. Reified versions of the crime dataset

were created by adding reification information to the Address (Address Type) and Victim

(Gender, Race, Age) objects in Figure 3.4. This reification information was created for 50%

of the offence data in the data stores.

The process is especially time-intensive for large databases without structural information

(which is the case with our experimental data set) but this is only to be expected since

the RDFMapFileGenerator has to explore every resource to ensure that no property is left

unprocessed. Furthermore, since even adding reification information for only 50% of the

triples in the RDF store resulted in a 25% increase in the size of the data store, the increase

in map file generation time for databases with reification information is also predictable.

However, the sampling techniques applied improved the performance of the algorithm by a

large factor.

Figure 7.2 is a screenshot of the database schema as seen by DataVision. The r2d:Simple-

LiteralBlankNode associated with Offence-Address is resolved into columns belonging to the

Offence table, and the r2d:ComplexLiteralBlankNode associated with Offence-ReportingOffic-

ers is resolved into a 1:N table of the same name. Further, the simple reification NQPs

(Victim Gender, Victim Race, Victim Age, OffenceAddress AddressType) are resolved into

columns in the parent table (Offence) and the SimpleLiteralBlankNode reification NQP, Of-

fence ReportingOfficers OfficerAddress, is resolved into columns in the Offence ReportingOff-
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Figure 7.1: Map File Generation Times with/without Sampling for Reified/Un-reified Data
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icers CLBN table as discussed in Chapter 6, Section 6.2. The reification ComplexLiteral and

SimpleResource blank nodes corresponding to Offence Victim Phone and Offence Victim -

Dependents predicates are resolved into columns in 1:N (Offence Victim Phone Reification)

and N:M (Offence Victim Dependents Reification) tables respectively.

This schema is populated through the GetDatabaseMetaData Interface in the Connec-

tion class of the JDBC API within which the two algorithms, RDFMapFileGenerator and

DBSchemaGenerator, are triggered.

Figure 7.3 illustrates DataVision’s Report Designer Window and query building process for a

sample query involving the reification columns of offence victim gender and offence victim -

dependent pk (used to derive the Dependent FullName value).

Based on the fields chosen (in the “Report Designer” window), the table linkages (i.e.,

joins, illustrated in the “Table Linker” inset) specified, and additional record selection cri-

teria specified (illustrated in the “Record Selection Criteria” inset respectively), DataVision

generates an appropriate SQL query, as shown in the “SQL Query” inset in Figure 7.4, to

extract the required data. At this juncture, the Statement, the Prepared Statement, and

the ResultSet JDBC Interfaces are invoked. These, in turn, trigger the SQL-to-SPARQL

Translation algorithm, which generates a SPARQL equivalent of the given SQL statement as

also illustrated in Figure 7.4, and return the obtained results to DataVision in the expected

tabular format, as illustrated in Figure 7.5.

Figures 7.6 and 7.7 include screenshots of SQL-to-SPARQL translations and query results

as seen by DataVision resulting from two more SQL queries involving reification CLBN and

SLBN NQPs respectively, executed, through DataVision, on the virtual relational schema

illustrated in Figure 7.2.

In order to study the performance impact incurred by reification, a selection of 4 queries,

each of which consisted of two versions, were executed on simulated crime datasets of various

sizes. The second version of each was created by including one or more reification fields to

the first version. Figure 7.8 displays the response times of each of the queries as the sizes of

the databases vary. As was anticipated, reification adds overheads to query processing times
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Figure 7.2: Equivalent Relational Schema as seen through DataVision
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Figure 7.3: DataVision’s Report Designer and Query Processing
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Figure 7.4: SQL Query generated by DataVision and its equivalent SPARQL query as gen-
erated by R2D’s SQL-to-SPARQL Translation Module
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Figure 7.5: RDF Triples presented to DataVision in a Relational Tabular Format

as adding a reification quad for a triple results in the addition of a minimum of 4 to 5 extra

triples to the data store. However, since the time taken for the SQL-to-SPARQL translation

is negligible and nearly constant, R2D does not add any overheads due to reification to the

SPARQL query performance.

As stated earlier, SQL queries issued against relational databases created by physically

duplicating RDF data may possibly exhibit even better performance, however, this improved

performance comes at the expense of additional disk space due to duplication of data, and

additional system resources and human effort required to synchronize the data. R2D, on the

other hand, circumvents duplication and synchronization issues and huge learning curves

associated with mastering newer technologies by leveraging existing tools, knowledge, and

expertise and skillfully integrating the old and the new in a cost-effective manner and with

minimum overheads.



88

Figure 7.6: SQL-to-SPARQL Translation and Tabular Results for Query involving Reifica-
tion CLBN NQP (Victim Phone)
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Figure 7.7: SQL-to-SPARQL Translation and Tabular Results for Query involving a Simple
Reification NQP (Officer Name) and a Reification SLBN NQP (Officer Address)



90

Figure 7.8: Response times for the chosen Queries



CHAPTER 8

SEMANTICS-PRESERVING TRANSLATION

As stated in earlier chapters, our approach, called R2D (RDF-to-Database), is a bridge

that, without creating an explicit relational schema and duplicating data, enables existing

traditional tools to work seamlessly with RDF Stores without necessitating extensive mod-

ifications or wasting valuable resources by replicating data unnecessarily. R2D is a JDBC

wrapper around RDF stores that provides a relational interface to data stored in the form

of RDF triples. The RDF Store is explored and mapped to a relational schema at run-time,

and end-users of visualization tools are presented with the normalized relational version of

the store on which they can perform operations as they would on an actual physical rela-

tional database schema. In a nutshell, R2D, whose commutative diagram is illustrated in

Figure 8.1, consists of two major functionalities/modules the details of which are summarized

below.

1. Schema Mapping: Automatic RDF-to-Relational Schema mapping utility that gener-

ates a domain-specific, normalized, virtual relational schema corresponding to a given

RDF store.

2. Query Translation: An SQL-to-SPARQL query translation utility that takes an SQL

statement as input, parses and converts it to a corresponding SPARQL statement,

executes the same, and returns the results in a tabular format.

The focus of this chapter is to establish the accuracy of the R2D framework by proving the

semantics-preserving nature of its translation modules. The importance of data integrity and

accuracy and the impact of a lack of the same has been expounded in numerous publications

(Redman 1998; Wang and Strong 1996; Lucas 2010; Cong, Fan, Geerts, Jia, and Ma 2007;

Strong, Lee, and Wang 1997; Even and Shankaranarayanan 2007; Miettinen and Korhonen

91
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Figure 8.1: R2D Commutative Diagram

2008; Duarte, Salazar, Quintas, Santos, Neves, Abelha, and Machado 2010; Welzer, Brumen,

Golob, and Druovec 2002). In general, the mildest effects of the absence of accurate data are

increased operational costs and low customer satisfaction (Redman 1998; Wang and Strong

1996; Lucas 2010). Erroneous data, such as wrong pricing information in retail databases,

cost consumers billions of dollars annually (Cong, Fan, Geerts, Jia, and Ma 2007; Strong,

Lee, and Wang 1997). Further, they can also result in operational inefficiency and capital

losses for organizations (Even and Shankaranarayanan 2007).

The more devastating effects of poor-quality/incorrect data are particularly observed in

medical applications (Miettinen and Korhonen 2008) where impeccably accurate data is

mandatory to ensure timely and effective treatment of patients (Duarte, Salazar, Quintas,

Santos, Neves, Abelha, and Machado 2010). In fact, data accuracy is so vital in healthcare

environments that having no data is preferrable to having inaccurate data (Welzer, Brumen,

Golob, and Druovec 2002). Likewise, other mission critical applications such as Air Traffic

Control, Banking, and Electronic Trading Systems, to name a few, can be catastrophically

affected by inaccurate data resulting in heavy financial losses, loss of privacy, operational

chaos, and, in extreme cases, even in loss of life. Under such scenarios, it becomes imper-

ative to ensure that there is no loss of data integrity or accuracy during R2D’s translation

processes.

Because it is crucial that queries are answered correctly, it is important to have a for-

mal guarantee that R2D’s transformation process is actually semantics-preserving. In other

words, we are required to prove that an SQL query, ŝql, run over the translated relational
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schema, R, obtained from an RDF Graph, G, through R2D’s schema mapping process, re-

turns the same result that an equivalent SPARQL query, ˙spq, obtained by translating ŝql

using R2D’s query translation process, would when run on the original RDF graph, G. For-

mally proving that R2D’s query rewriting process is semantics-preserving is achieved in two

steps, and correspondingly, using the following two theorems.

Theorem 1 E [[f (φ)]] = φ

Theorem 2 S[[ŝql]]φ = Q[[h(ŝql)]]φ

where φ is the canonical form of an RDF graph, G. This is the mathematical equivalent of

Algorithm 4.1 in Chapter 4. E [[R]] represents the denotation of a relational schema, R, and

f (φ) is R2D’s translation from the canonical form φ, of G, to R. Amongst the components

comprising Theorem 2, S[[ŝql]] represents the denotation of an SQL query, ŝql, Q[[ ˙spq]] repre-

sents the denotation of a SPARQL query, ˙spq, and h(ŝql) is R2D’s translation from ŝql to ˙spq.

From Theorems 1 and 2 it can be inferred that S[[ŝql]]E [[f (φ)]] = Q[[h(ŝql)]]φ. In subse-

quent sections we present the various components comprising the two theorems and prove

the theorems for a representative subset of RDF graphs and SQL language thereby estab-

lishing the soundness and completeness of both modules comprising R2D and, consequently,

ensuring data integrity maintenance throughout the translation process.

8.1 Core Languages

In order to accomplish the task of proving that R2D’s translation is semantics-preserving

while, at the same time, keeping the proof reasonably small and readable, we restrict our

attention to the canonical form of RDF graphs, detailed in section 8.1.1, and to a subset

of the SQL-2003 query language (SQL2003 ), called the SQL core language, discussed in

section 8.1.2, that is powerful enough to to express most queries in the language.
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G = EG (RDF Graph)

EG = VGR ∪ VGB × LG × VG

VGR ⊆ I − C, VGB ⊆ B, VGL ⊆ L, VGC ⊆ C

VG ⊆ VGR ∪ VGB ∪ VGL ∪ VGC (Vertices in G)

LG = P ∪ {type} (Edge Labels in G)

EG ⊆ EGc ∪ EGa

ec ∈ EGc = VGR × {type} × VGC (Class Definition Edges)

ea ∈ EGa = VGR ∪ VGB × P − {type} × VGR ∪ VGB ∪ VGL (Property Edges)

I (Internationalized Resource Identifiers)

B (Blank Nodes)

L (Literals)

P (Non-RDFS Predicates)

C ⊆ I (RDFS Classes)

Figure 8.2: Mathematical Model of an RDF Graph

8.1.1 RDF Graphs

Mathematical Model of RDF Graphs

We define an RDF Graph, G, as an unordered set of edges of the form (v1 , l , v2 ) where

v1 , v2 ∈ I ∪B ∪L∪ C represent vertices comprising the resource, literal, and blank nodes in

the graph and l ∈ I is the predicate of the triple associated with the edge. We also restrict

our attention to graphs which do not contain reification information and where each resource

in the graph is an instance of exactly one class. The complete mathematical model of an

RDF Graph is as detailed in Figure 8.2.
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Canonical Form of RDF Graphs

Without loss of generality, for simplicity, an arbitrary total ordering on classes in G is

imposed in order to avoid arbitrary traveral of classes during the canonical form rewriting

procedure and all edges going backwards between classes are reversed. Further, since RDF

Graphs contain sub-trees that can be generalized or transformed into other sub-trees, to

keep the proof tractable, without loss of generality, RDF graphs are restricted to a canonical

form, called φ, which is arrived at by applying the following transformations to the RDF

Graph, G.

1. Blank Nodes: Edges that originate in a blank node are collapsed repeatedly by

removing the edge and appending the edge label of the removed edge to the edge label

of the edge that connects the blank node to its parent node.

2. 1:N Relationship Edges: Edge labels of resource-to-resource edges (i.e., edges of

the form (v1 , l , v2 ) where both v1 and v2 are Internationalized Resource Identifiers

or IRIs) that represent One-to-Many relationships between classes are prefixed with

an indicator in order to ensure that the columns corresponding to the 1:N edges are

added to the tables on the 1-side of the relationship (i.e., to tables corresponding to

the classes to which the second vertices (v2 ) belong).

3. Multi-Valued Attribute (MVA) Edges: Multi-Valued Attribute Edges (resource-

to-literal edges) that have multiple literal object values for the same resource-predicate

pair, i.e., edges that have multiple v2 values for the same v1 − l pair, are removed from

the RDF Graph. For every class-predicate pair (c−p pair), where c is the class of which

v1 in a MVA edge, (v1 , l , v2 ), is an instance, a new class, c ′, that is a concatenation

of c and p is added to the canonical form, φ. Further for every MVA edge, (v1 , l , v2 ),

a new resource, r ′, is added to φ that is a concatenation of v1 and v2 . Lastly, three

new edges are added to φ in lieu the MVA edge, the first of which associates the new

resource, r ′ to the new class, c ′ (as an instance), and the other two edges add the two
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participating entities (v1 and v2 ) of the original MVA edge as attributes of the new

resource r ′.

4. N:M Relationship Edges: Transformation of resource-to-resource edges that repre-

sent Many-to-Many relationships between the classes to which v1 and v2 belong is very

similar to the transformation of MVA edges with the principle difference being that

the new class, c ′, created for each class-class pair (c1, c2 pair), where c1 and c2 are the

classes of which v1 and v2 in a N:M edge, (v1 , l , v2 ), are instances, is a concatenation

of c1 and c2.

Complete details of the RDF Graph canonical form rewriting procedure are enumerated

in Table 8.1.

Table 8.1. Canonical Form of RDF Graphs

Feature Transformation

Blank Nodes RemoveBNodes(G) = G− {(x, l1, y), (y, l2, z) | y ∈ B}

∪{(x, l1 l2, z) | (x, l1, y), (y, l2, z) ∈ G, y ∈ B}

CollapseBNEdges = fix (RemoveBNodes)

Continued on Next Page. . .
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Table 8.1. – Continued

Feature Transformation

1:N Relationship

Edges

ToMany(G) = {(c1, c2, l) | (x, l, y1), (x, l, y2), (x, type, c1),

(y1, type, c2), (y2, type, c2) ∈ G, y1 6= y2}

ManyTo(G) = {(c1, c2, l) | (x1, l, y), (x2, l, y), (x1, type, c1),

(x2, type, c1), (y, type, c2) ∈ G, x1 6= x2}

OnlyToMany(G) = ToMany(G)− ManyTo(G)

OnlyToManyEdges(G) = {(x, l, y) ∈ G | (c1, c2, l) ∈

OnlyToMany(G), (x, type, c1), (y, type, c2) ∈ G}

PrefixToManyEdges(G) = G − OnlyToManyEdges(G)∪

{(x, 1N l, y) | (x, l, y) ∈ OnlyToManyEdges(G),

(x, type, c1), (y, type, c2) ∈ G}

Multi-Valued At-

tribute Edges

MVAEdgeLabels(G) = {(c, l) | (x, l, y1), (x, l, y2),

(x, type, c) ∈ G, y1, y2 ∈ L, y1 6= y2}

MVAEdges(G) = {(x, l, y) ∈ G | (c, l) ∈ MVAEdgeLabels(G),

(x, type, c) ∈ G, y ∈ L}

FixMVAEdges(G) = G − MVAEdges(G) ∪ {(x y, type, c l),

(x y, c type, x), (x y, l, y) | (x, l, y) ∈

MVAEdges(G), (x, type, c) ∈ G}

Continued on Next Page. . .
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Table 8.1. – Continued

Feature Transformation

N:M Relationship

Edges

MToM(G) = ManyTo(G) ∩ ToMany(G)

MToMEdges(G) = {(x, l, y) ∈ G | (c1, c2, l) ∈ MToM(G),

(x, type, c1), (y, type, c2) ∈ G}

FixManyToManyEdges(G) = G − MToMEdges(G)∪

{(x y, type, c1 c2), (x y, c1 type, x), (x y, l, y) |

(x, l, y) ∈ MToMEdges(G), (x, type, c1),

(y, type, c2) ∈ G}

8.1.2 SQL Core Language

The SQL core language consists of two clauses, the SELECT clause and the FROM clause,

and the syntax, in the form of a BNF Grammar, and a mathematical model of the core

language are illustrated in Figures 8.3 and 8.4. Restricting our attention to this core language

incorporates the interesting parts of the proof for the whole language.

WHERE clauses are not expressed in this core language as the translation of the components

of WHERE clauses that have syntactic equivalents in the SPARQL language to equivalent

FILTER clauses is a straightforward syntactic transformation. Further, there are several

features, listed in table 8.2, in the SQL language that are not supported in R2D as there is no

equivalent yet in SPARQL. There may be ways of encoding these features, however, since it is

expected that there might be future revisions to SPARQL that will allow easy incorporation

of these additional unsupported features at some point in the future, preemptive encoding

of these features is deemed unwarranted.
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Table 8.2. Unsupported SQL Features

Feature

Sub-queries in Comparison Predicate

IN Operator

Sub-queries in IN Predicate

CASE Expressions

Sub-queries in SELECT clause

Window Functions such as RANK, DENSE RANK, ROW NUMBER

Spatial Data Functions such as TREAT

Multi-set Operators

Sequence Expression such as NEXTVAL

BNF Grammar of SQL Core Language

Mathematical Model of SQL Core Language
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〈query specification〉 ::= SELECT〈select list〉〈table expression〉 AS 〈table alias〉

〈select list〉〉 ::= 〈asterisk〉|〈select sublist〉[{〈comma〉〈select sublist〉}...]

〈select sublist〉 ::= 〈numeric value expression〉 AS 〈identifier〉

〈numeric value expression〉 ::= 〈term〉|〈numeric value expression〉〈plus sign〉〈term〉

〈term〉 ::= 〈numeric primary〉|〈term〉〈asterisk〉〈numeric primary〉

〈numeric primary〉 ::= 〈parenthesized value expression〉

|〈nonparenthesized value expression primary〉

〈parenthesized value expression〉 ::= 〈left paren〉〈numeric value expression〉〈right paren〉

〈nonparenthesized value

expression primary〉 ::= 〈unsigned integer〉|〈column reference〉

|〈quote〉〈nonquote character string〉〈quote〉

〈column reference〉 ::= 〈identifier〉|〈table name〉〈dot〉〈identifier〉

〈table expression〉 ::= 〈from clause〉

〈from clause〉 ::= FROM〈table reference list〉

〈table reference list〉 ::= 〈table reference〉[{〈comma〉〈table reference〉}...]

〈table reference〉 ::= 〈table name〉|〈derived table〉

〈table name〉 ::= 〈identifier〉

〈derived table〉 ::= 〈query specification〉

〈table alias〉 ::= 〈identifier〉

Figure 8.3: SQL Core Language Grammar
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ŝql ∈ SQL = (SL× TR, t̂al) (SQL Statement)

ŝ ∈ SL = ∗ | SSL (Select List)

ŝl ∈ SSL = ˆnve AS ĉlal (Select Sublist)

ˆnve ∈ NVE = ê | ˆnve+ ê (Numeric Value Expression)

ê ∈ TERM = n̂p | ê ∗ n̂p (Term)

n̂p ∈ NP = n̂ | p̂ (Numeric Primary)

p̂ ∈ PVE = ( ˆnve) (Paranthesized Value Expression)

n̂ ∈ NPVE = ĉ | î | t̂.ĉl (Non-paranthesized Value Expression Primary)

ρTR = t̂r :: . | t̂r :: ρTR (Table Reference List)

t̂r ∈ TR = t̂ | d̂t (Table Reference Element)

d̂t ∈ DT = ŝql (Derived Table Reference)

ĉ ∈ CHAR (Character Element)

î ∈ INT (Integer Element)

ĉl, ĉlal ∈ COLUMN (Column Identifier)

t̂, t̂al ∈ TABLE (Table Identifier)

Figure 8.4: Mathematical Model of SQL Core Language
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Canonical Form of SQL Core Language

There are some syntaxes in the SQL language that are generalizations of other syntaxes.

For example, a SELECT List item with column alias ( ˆnve AS ĉlal) is a generalization of the

scenario where a SELECT List item exists without column alias( ˆnve). Similarly, a sub-query

with query alias (ŝql = (SL×TR, t̂al)) generalizes the case where a query is specified without

a query alias (ŝql = (SL× TR)). Therefore, without loss of generality we assume that SQL

queries are limited to those that incorporate generalized syntaxes wherever applicable and we

assume that a rewriting procedure exists that simply assigns unique alias names to queries

and SELECT list items that do not have an alias name.

8.2 Denotational Semantics

In this section, we describe the denotational semantics of the applicable components com-

prising Theorems 1 and 2.

8.2.1 Relational Schema Semantics

We define a relational schema as a partial function from table cells to data. A table cell

is a triple of the form (τ, κ,w), where τ is a tuple consisting of a τid, representing a table

identifier (or table name), and a τt, representing the table type (Regular, Multi-Valued

Attribute, Many-to-Many Relationship table). κ is a tuple representing a column and it

comprises a κid, representing a column identifier (or column name), and a κt, representing

the type of column (Regular/Non-Key, Primary Key, Foreign Key). Lastly, w represents the

row number of the cell. A complete mathematical model of a relational schema is given in

Figure 8.5.



103

R : τ × κ× ω ⇀ DATA

τ = τid × τt
τid = Table Identifier

τt ∈ {τr, τmva, τnm, τtmp, τtmpmva , τtmpnm} (Table Type)

τr = Regular Table

τmva = MVA Table

τnm = Join Table

τtmp = Temporary Table

τtmpmva = Temporary MVA Table

τtmpnm = Temporary N:M Table

κ = κid × κt
κid = Column Identifier

κt ∈ {κpk, κfk, κr} (Column Type)

κpk = Primary Key Column

κfk = Foreign Key Column

κr = Non-key Column

ω = Row Identifier

Figure 8.5: Mathematical Model of a Relational Schema
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Mathematical Model of a Relational Schema

Denotational Semantics of a Relational Schema

Our relational schema model contains tables that can be classified into two broad categories:

regular tables and temporary tables. Denotational semantics of temporary table cells, iden-

tified by (τ, κ,w) and containing data d , are straightforward with each Non-1N cell resulting

in an edge of type (tid, kid, d) and each 1N cell resulting in an edge of type (d , kid, tid), where

tid, kid, and d represent the table identifier, the column identifier, and the data element

in the cell at row w , column kid in table tid. For MVA and NM Tables, each of which is

comprised of two columns, a type column (t ′id type, κpk) and a non-type column (k ′id, κpk),

the Non-Type cells generate no additional edges while the Type cells generate two edges of

the form {(v1 , l , v2 ), (v1
′, l ′, v2

′)}, where vertices v1 and v1
′ of each edge are a concatenation

of the data, d and d ′, in the two columns in row w of the MVA/NM table, the edge labels,

l , of the two edges are the type (t ′id type) and the non-type (k ′id) column identifiers of the

two columns comprising the MVA/NM table, and vertices v2 and v2
′ of the two edges are

the data elements, d and d ′, in the two table cells in row w . In the case of regular tables,

Key Column cells result in an edge of type (d , type, tid), where type represents the primary

key column, Non-Key Non-1N cells result in edges of type (d ′, kid, d), and Non-Key 1N cells

result in edges of type (d , kid, d
′), where d ′ is the value in the Key Column (primary key)

cell of the table identified by tid. The complete set of denotational semantics for a relational

schema is listed in Figures B.1 and B.2.

8.2.2 SQL Semantics

We define our SQL Query as a function from graphs to graphs. Our SQL query model

consists of two sets, the SELECT items (Columns) set and the FROM items (Tables) set.

The Columns set contains character and integer constants, columns from tables or sub-

queries, and arithmetic expressions. The Tables set contains simple tables and derived tables

or sub-queries. SQL queries are modeled as a tuple, one element of which a set of tuples that
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E [[∅]] = ∅
(EmptySchema)

E [[R]] = φ t = (tid, τr) k = (kid, κpk)

E [[R(t , k ,w) 7→ d ]] = {(d , type, tid)} ∪ φ)
(KCRT)

E [[R]] = φ t = (tid, τr) k = (kid, kt) kt 6= κpk
1NPrefixExists(kid) = false R(t , (tid type, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d ′, kid, d)} ∪ φ
(NKCN1NRT)

E [[R]] = φ t = (tid, τr) k = (kid, kt) kt 6= κpk
1NPrefixExists(kid) = true R(t , (tid type, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d , kid, d ′)} ∪ φ
(NKC1NRT)

E [[R]] = φ t = (tid, τmva) tid = t ′id p k = (kid, κpk)

kid = t ′id type R(t , (k ′id, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d d ′, type, tid), (d d ′, kid, d)} ∪ φ
(MVATTC)

E [[R]] = φ t = (tid, τmva) tid = t ′id p

k = (kid, κpk) kid 6= t ′id type R(t , (t ′id type, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d ′ d , kid, d)} ∪ φ
(MVATNTC)

E [[R]] = φ t = (tid, τnm) tid = tid1 tid2 k = (kid, κpk)

kid = tid1 type R(t , (k ′id, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d d ′, type, tid), (d d ′, kid, d)} ∪ φ
(NMTTC)

E [[R]] = φ t = (tid, τnm) tid = tid1 tid2
k = (kid, κpk) kid 6= tid1 type R(t , (tid1 type, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d ′ d , kid, d)} ∪ φ
(NMTNTC)

Figure 8.6: Relational Schema Denotational Semantics - Non-Temporary Tables
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E [[R]] = φ t = (tid, τtmp) k = (kid, kt)

1NPrefixExists(kid) = false

E [[R(t , k ,w) 7→ d ]] = {(tid, kid, d)} ∪ φ
(TmpTN1N)

E [[R]] = φ t = (tid, τtmp) k = (kid, kt)

1NPrefixExists(kid) = true

E [[R(t , k ,w) 7→ d ]] = {(d , kid, tid)} ∪ φ
(TmpT1N)

E [[R]] = φ t = (tid, τtmpmva) k = (kid, kt)

E [[R(t , k ,w) 7→ d ]] = {(tid, kid, d)} ∪ φ
(MVATmpT)

E [[R]] = φ t = (tid, τtmpnm) k = (kid, kt)

E [[R(t , k ,w) 7→ d ]] = {(tid, kid, d)} ∪ φ
(NMTmpT)

Figure 8.7: Relational Schema Denotational Semantics - Temporary Tables
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represent the crossproduct of the elements of the SELECT and FROM sets and the other is

the alias name of the query. Although there were other ways, such as structures, to model

SQL queries, we chose to represent SQL queries as crossproducts of SELECT and FROM set

elements because modeling SQL queries as a structure unnecessarily clutters the proof with

mathematical machinery that only serves to unpack the structure. Thus, modelling the SQL

queries as crossproducts of SELECT and FROM sets alleviates the burden of processing list

structures in the semantics.

Denotational Semantics of an SQL Query

The denotation of a simple table, tid, in an SQL FROM set, on an input graph φ, is a forest

where every tree in the forest has a height of 1. There is one tree in the forest for every

primary key column value in t̂ in φ, i.e., for every v1 of (v1 , l , v2 ) where v2 = t̂ and l = type,

and the root of each tree, which serves as a row identifier, is set to the value of the primary

key, i.e., rid = v1 . The edges of each tree in the forest are attributes of the primary key

column value that forms the root of the tree. In other words every edge, (v1
′, l ′, v2

′), where

v1
′ = rid and l ′ 6= type, is added, with the label, l ′, prefixed with the table name, to the

tree rooted at rid . Lastly, in the case of regular (non-MVA and non-N:M tables) the primary

key column value is also added as an edge to its corresponding tree. Thus, each tree in the

forest represents a row in the table identified by tid.

The denotation of a table’s column (t̂.ĉl AS ĉlal) in an SQL SELECT set is the edges in

the forest comprising the denotation of table t̂ that are labeled with the tag t̂ ĉl, the edge

labels of which are subsequently renamed with the column alias name, ĉlal. The denotation

of a constant (character or integer) SELECT element (ĉ AS ĉlal) from a table in the FROM

set is simply the addition of n edges of the form (v1 , l , v2 ) where n is the number of trees in

the forest comprising the denotation of the table from which the constant is to be selected.

Thus, a constant SELECT element results in the addition of one edge, (v1 , l , v2 ), per tree

where v1 , the row identifier, is the root of the tree, i.e., v1 = rid , and l = ĉlal, and v2 = ĉ/̂i.
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T ⊆ TR

i : T→ N
ŝql = {ŝ1 + ŝ2} × T

∀t̂ ∈ T, φi(t̂) = S[[{(ŝ1, t̂), (ŝ2, t̂)}]]

φ = {
∑
j∈i→

π3xj | (x1, x2, . . . , x|T|) ∈ φ1 × φ2 × . . .× φ|T|}

Figure 8.8: Denotation of a SELECT element that is an Arithmetic Addition Expression

The denotation of the result of an SQL query is a graph with a height of 2 where the root

node is a string comprising the FROM set elements, the children of the root node are row

identifiers and the children of the row identifiers are leaves containing the data pertaining to

the SELECT list elements which, when prefixed with the SQL query alias, t̂al , serve as the

labels of the edges between row identifier nodes and leaf nodes.

Since the denotation of integer and character constants are similar and since arithmatic

expressions, the semantics of which are well-known and have the usual meaning, are sim-

ply mathematical operations on constants and/or column, the denotations of which are as

illustrated in the addition example in Figure 8.8, we do not consider integer constants and

arithmetic expressions separately in our denotational semantics. In the final line of Fig-

ure 8.8, π3 is the projection operator that projects out the third component of triple xj.

The crossproduct of a SELECT set consisting of character constants and columns from

simple/derived tables, and a FROM set consisting of simple tables and derived tables yields

4 combinations - (character constant, simple table), (character constant, derived table/sub-

query), (column, simple table), and (column, derived table/sub-query). In an SQL query

containing one or more of these (SELECT element ŝ and FROM element t̂r) combinations,

there are various scenarios that are possible with each of the 4 combinations and the cases

corresponding to the simple table FROM element are discussed below. Please note that in

the case of derived table/sub-query in the FROM clause, the procedures remain similar to
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the ones described below with the only difference being that the denotation of the simple

table FROM element is replaced by the denotation of the sub-query. The subquery cases

can be found in Appendix C, Figures C.2 and C.4.

1. t̂r Not previously processed:

a. ŝ = Constant, Previously Processed (Appendix C, Figure C.1, Case ChChEx):

This scenario represents the case where the current constant SELECT element was

added in combination with another FROM element in a recursive step, while the

current FROM element t̂r was not encountered in any previous step. This case rep-

resents a cartesian product (cross join) of the sets of rows from the two participating

tables. In our denotational semantics, the two participating entities are the graph

that results from the recursive step and the graph that represents the denotation of

the current FROM element. Since the current constant SELECT element has al-

ready been added in a recursive step, no actual data, other than the row identifiers,

is required from the current FROM element. Thus the cross join of the two graphs

is achieved by the JoinGraphs function which takes the graph from recursive step

and the row identifiers of the graph representing the FROM element t̂r denotation

as input and returns a graph that represents a cartesian product of the two input

graphs.

b. ŝ = Constant, Not Previously Processed (Appendix C, Figure C.1, Case

ChNoneEx): In this scenario where neither the SELECT element nor the FROM

element were previously encountered in any recursive step, the result is a cartesian

product of the two tables, one of which is represented by the recursive step graph

φ′S , and the other is represented by the graph that results from addition of a new

edge, created using the CreateEdges function, for every row identifier in the graph,

φ′S resulting from the recursive step. CreateEdges function generates an edge,

(v1
′, l ′, v2

′), for every row identifier node, v1 , in φ′S , such that v1
′ = v1 , l = t̂al Tid ĉlal

(the query and Constant SELECT element aliases), and v2 =Constant SELECT
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element. The cartesian product of the two graphs is achieved using the JoinGraphs

function as described in item 1a above.

c. ŝ = Table.Column, Table = t̂r (Appendix C, Figure C.3, Case ClTMchNoEx):

When the SELECT element is a column in the same simple/derived table as the

current FROM element, the edges corresponding to the column SELECT element

are extracted from the graph representing the denotation of the current FROM

element t̂r, using ExtColEdges. ExtColEdges returns a forest of single-edged trees

where each edge is labeled with the column SELECT element. Further, there is

with one edge per row identifier in t̂r’s graph. If a particular row identifier does not

have an edge corresponding to the current column SELECT element, a null edge,

i.e., an edge with v1 =row identifier, l = ĉlal, and v2 = dnull , is added for that row

identifier. Lastly, the edge labels of extracted edges are replaced with the query and

column alias names, i.e., with t̂al Tid ĉlal, and the extracted edges are cross joined

with the graph φ′S from the recursive step using the JoinGraphs functon.

d. ŝ = Table.Column, Table 6= t̂r (Appendix C, Figure C.3, Case ClTNoMch-

NoEx): When the SELECT element is a column that does not belong to the sim-

ple/derived table that is the current FROM element, and when the FROM element

table was not previously encountered, the scenario represents a limited cartesian

product, achieved using JoinGraphs, between two graphs, the first of which is the

recursive step graph, φ′S , and the other is the denotation of the current FROM ele-

ment where no actual data, other than the row identifiers, is used in the cartesian

product since the column SELECT element does not belong to the FROM table

element.

2. t̂r Previously processed:

a. ŝ = Constant, Previously Processed (Appendix C, Figure C.1, Case ChAllEx):

Since an SQL query is a cross-product of the SELECT and FROM sets, it is pos-

sible that the current SELECT element was added in combination with another
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FROM element in a recursive step. Further, the FROM element could also have

been encountered in combination with some other SELECT element. Under such

a scenario no further action is required and the result obtained from the recursive

step remains unchanged.

b. ŝ = Constant, Not Previously Processed (Appendix C, Figure C.1, Case

ChTblEx): This scenario represents the case where the current FROM element was

added in combination with another FROM element in a recursive step, while the

current Constant SELECT element was not encountered in any previous step. This

case is straightforward and involves the addition of a new edge, created using the

CreateEdges function, for every row identifier in the graph φ′S resulting from the

recursive step. For every row identifier node, v1 , in φ′S , an edge (v1
′, l ′, v2

′) is added

where v1
′ = v1 , l = t̂al Tid ĉlal (the query and Constant SELECT element aliases),

and v2 =Constant SELECT element.

c. ŝ = Table.Column, Table = t̂r (Appendix C, Figure C.3, Case ClTMchEx):

Since the FROM element, t̂r, was processed in a recursive step, the row identifiers

of t̂r are present in φ′S , the graph resulting from the recursive step. Therefore,

this scenario does not result in any new row identifiers in φ′S and only results in

addition of edges to existing row identifiers in φ′S . Thus, in this scenario, the

edges corresponding to the column SELECT element are extracted from the graph

representing the denotation of t̂r, replaced with the aliased name as described in item

1b, and added to the appropriate row identifiers in φ′S (i.e., each edge, (v1 , l , v2 )

obtained through ExtColEdges, with a row identifier v1 , is added to those row

identifiers, v1
′, in φ′S which have v1 as a substring) using the function AttachEdge.

d. ŝ = Table.Column, Table 6= t̂r (Appendix C, Figure C.3, Case ClTNoMchEx):

In this scenario where the FROM table element was previously encountered in com-

bination with another SELECT element in a recursive step and the column SELECT

element does not belong to the current FROM table element, no further action is

required and the result obtaind from the recursive step remains unchanged.
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8.2.3 SPARQL Semantics

Similar to our SQL Semantics, we define a SPARQL Query as a function from graphs to

graphs. SPARQL queries generated by R2D’s semantics-preserving query translation process

is based on the SPARQL 1.1 language (Harris and Seaborne 2011). Our SPARQL query

model also consists of two sets, the SELECT items (Variables) set and the WHERE items

(BGP) set. The Variables set contains character and integer constants, variables from sub-

queries or instances belonging to a particular class, and arithmetic expressions. The BGP

set contains basic graph pattern matching expressions or sub-queries. Basic Graph Patterns

(or BGPs) can be of two kinds: type patterns where the predicate of the pattern is always

type and the object is an element of the rdfs:class set, and non-type patterns where the

predicate is not type and the object is not an element of the rdfs:class set. SPARQL

queries are modeled as a crossproduct of the elements of the Variables and BGP sets.

Denotational Semantics of a SPARQL Query

The denotation of a Type BGP element, of the form (s type c), where c = rdfs:class, in

a SPARQL WHERE set, on an input graph φ, like its SQL simple table counterpart, is a

forest where every tree in the forest has a height of 1. There is one tree in the forest for

every s of type c in φ, i.e., for every v1 of (v1 , l , v2 ) where v2 = c and l = type, and the

root of each tree, which serves as a row identifier, is set to the value of the instance element,

i.e., rid = v1 = s . The edges of each tree in the forest are attributes of the instance element

that forms the root of the tree. In other words every edge, (v1
′, l ′, v2

′), where v1
′ = rid = s ,

is added, with the label, l ′ 6= type, prefixed with the class name, to the tree rooted at rid .

Lastly, in the case of class elements (c) that are not of the concatenated type, c1 c2 or c l ,

representing one-to-many (1:N) or many-to-many (N:M) relationships, the instance value, s ,

is also added as an edge to its corresponding tree. Thus, each tree in the forest represents

an instance of the class identified by c.
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The denotation of a SPARQL variable, v̇ AS v̇al , that represents an instance’s attribute, p

obtained using the BGP pair ((s , type, c), (s , p, v̇)), in a SPARQL SELECT set is simply

the edges in the forest comprising the denotation of the class c that are labeled with the tag

c p, the edge labels of which are subsequently renamed with the variable alias name, v̇al . The

denotation of a constant (character or integer) SELECT element (ĉ AS v̇al) in conjunction

with a Type BGP in the WHERE set is simply the addition of ’n’ edges of the form (v1 , l , v2 )

where ’n’ is the number of trees in the forest comprising the denotation of the class, c, in

the Type BGP, from which the constant is to be selected. Thus there is one edge per tree

where v1 , the row identifier, is the root of the tree, i.e., v1 = rid , l = v̇al , and v2 = ĉ.

The denotation of the result of a SPARQL query is a graph of with a height of 2 where

the root node is a string comprising the class elements, cs, and sub-query alias elements in

the WHERE set, the children of the root node are row identifiers and the children of the

row identifiers are leaves containing the data pertaining to the SELECT list elements whose

aliases serve as the labels of the edges between row identifier nodes and leaf nodes.

The crossproduct of a SELECT set consisting of character constants and variables from

sub-queries or variables corresponding to predicates belonging to instances of classes (since

the denotation of constants are similar and since arithmatic expressions are simply math-

ematical operations on constants and/or column we do not consider integer constants and

arithmetic expressions separately in our denotational semantics), and a WHERE set consist-

ing of BGP expressions or sub-queries yields, as in the SQL case, 4 combinations: (character

constant, Type BGP), (character constant, sub-query), (variable, Type and Non-Type BGP

pair), and (variable, sub-query). The various scenarios that are possible with each of the

above 4 combinations in a SPARQL query containing one or more of these (SELECT ele-

ment, ˙spsl, and WHERE element(s)) combinations, are very similar to the scenarios possible

in SQL queries and are discussed below.

1. ẇ = Type BGP or Type and Non-Type BGP Pair - c in Type BGP not

previously processed:
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a. ˙spsl = Constant, Previously Processed (Appendix C, Figure C.7, Case ChChEx):

This case is similar to item 1a in section 8.2.2 with t̂r replaced with the classelem

c in the Type BGP.

b. ˙spsl = Constant, Not Previously Processed (Appendix C, Figure C.7, Case

ChNoneEx): This case is similar to item 1b in section 8.2.2 with t̂r replaced with

the classelem c in the Type BGP.

c. ˙spsl =v̇ AS v̇al , Object in Non-Type BGP = v̇ and Subject in Type BGP

= Subject in Non-Type BGP (Appendix C, Figure C.9, Case ClTwMchNoEx):

This scenario signifies the fact that the required variable corresponds to an attribute

of instances belonging to the class element c in the Type BGP and is handled in a

manner similar to item 1c in section 8.2.2 with t̂r replaced with c.

d. ˙spsl =v̇ AS v̇al , Object in Non-Type BGP = v̇ and Subject in Type BGP 6=

Subject in Non-Type BGP (Appendix C, Figure C.9, Case ClTwNoMchNoEx):

This scenario signifies the fact that the required variable corresponds to an attribute

of instances that do not belong to the class element c in the Type BGP and is

handled in a manner similar to item 1d in section 8.2.2 with t̂r replaced with c.

2. ẇ = ˙spq sq - Not previously processed (Appendix C, Figures C.8 and C.10): This

scenario for either SELECT element, Constant or v̇, is similar to the corresponding

scenarios in items 1a/1b and 1c/1d, respectively, (depending on whether (1a) or not

(1b) the SELECT element has been previously encountered in the case of a Constant

SELECT element), in section 8.2.2. In the case of v̇ SELECT element, further pro-

cessing happens (in a manner similar to item 1c in section 8.2.2) if v̇ is an element of

the SELECT set of the SPARQL sub-query ˙spq sq , and 1d if not.

3. ẇ = Type BGP or Type and Non-Type BGP Pair - c in Type BGP previ-

ously processed:

a. ˙spsl = Constant- Previously processed (Appendix C, Figure C.7, Case ChAllEx):

When the Constant SELECT element as well as the class element c in the Type
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BGP have been previously encountered, and, thus, processed, in combination with

other SELECT and WHERE elements in some recursive step, no further action is

required and the result obtained from the recursive step remains unchanged, similar

to item 2a in section 8.2.2.

b. ˙spsl = Constant- Not previously processed (Appendix C, Figure C.7, Case

ChTblEx): This scenario for a Constant SELECT element is similar to the corre-

sponding scenario in item 2b in section 8.2.2, with t̂r replaced with the class element

c in the Type BGP, and ĉlal replaced with RemoveFirstChar(v̇al).

c. ˙spsl =v̇ AS v̇al , Object in Non-Type BGP = v̇ and Subject in Type BGP =

Subject in Non-Type BGP (Appendix C, Figure C.9, Case ClTwMchEx): : This

scenario is similar to the one detailed in item 2c in section 8.2.2, with t̂r replaced with

the class element c in the Type BGP, and ĉlal replaced with RemoveFirstChar(v̇al)

and is processed in the same manner.

d. ˙spsl =v̇ AS v̇al , Object in Non-Type BGP = v̇ and Subject in Type BGP

6= Subject in Non-Type BGP (Appendix C, Figure C.9, Case ClTwNoMchEx):

This scenario signifies the fact that the required variable corresponds to an attribute

of instances that do not belong to the class element, c, in the Type BGP and is

handled in a manner similar to item 1d in section 8.2.2 with t̂r replaced with c.

4. ẇ = ˙spq sq - Previously processed (Appendix C, Figures C.8 and C.10): This

scenario for either SELECT element, Constant or v̇, is similar to the corresponding

scenarios in items 2a/2b and 2c/2d respectively, (depending on whether (2a) or not

(2b) the SELECT element has been previously encountered in the case of a Constant

SELECT element), in section 8.2.2. In the case of v̇ SELECT element, further pro-

cessing happens (in a manner similar to item 2c in section 8.2.2) if v̇ is an element of

the SELECT set of the SPARQL sub-query ˙spq sq , and 2d if not.
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8.3 Translation Functions

As stated earlier, R2D’s objective of semantics-preserving translation is achieved through

two components, the Schema Mapping component and the Query Transformation compo-

nent, each of which consists a transformation function that enables the realization of R2D’s

objectives. The schema mapping component, responsible for translating the canonical form

of any given RDF graph into an equivalent relational schema, is accomplished using a trans-

formation function, f , from RDF graphs in canonical form, φ, to relational schemas, R. The

SQL-to-SPARQL Query transformation component is realized using a function, h, from ŝql

to ˙spq.

8.3.1 Schema Mapping/Transformation Function, f

The schema transformation function, f , which takes the canonical form of an RDF graph

as input and returns an equivalent relational schema as output, encodes the RDFMapFile-

Generator and DBSchemaGenerator Algorithms that were discussed at length in Chapter 4.

However, since RDFMapFileGenerator algorithm caters to RDF graphs with and without

RDF Schema (ontological) information and is data-agnostic, there are several differences

between the algorithm and f . Although the RDF specification does not prevent the creation

of graphs without RDF Schema information, such graphs constitute only a small minority of

universe of RDF graphs in existence. Thus, f focuses only on those graphs that constitute

the majority, i.e., RDF Graphs with RDFS Class information.

Another difference between the RDFMapFileGenerator Algorithm and f is in the way

blank nodes are handled. f operates on the canonical form of the input RDF graph where no

blank nodes exist due to the fact that each blank node chain is collapsed into a single edge.

Collapsing blank nodes has two advantages: Firstly, it keeps the complexity of f independent

of the number of blank nodes in the graph as well as the length of blank node chains in the

graph, and, secondly, it greatly simplifies the number of cases that need to be addressed

during the schema mapping process. However, the collapsing of blank nodes causes, in some
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cases, grouping information to be split across several entities during the transformation into a

relational schema. This scenario can be better understood through the “Phone” blank node

in Chapter 3, Figure 3.2. Collapsing of blank nodes will result in “Work Phone” being

a column in the “Student” table while the “Cell Phone” values, by virtue of being multi-

valued, get translated into a separate MVA table called, for example, “Student PhoneCell”.

The RDFMapFileGenerator algorithm operates directly on RDF Graphs and thus encoun-

ters, and classifies, blank nodes into various categories as detailed in Chapter 3. Thus,

the “Phone” blank node in Figure 3.2, classified as a r2d:ComplexLiteralBlankNode, is

transformed into a more intuitive, separate table called “Phone”, which has “Student PK”,

“Phone Type”, and “Phone Value” as columns. However, classification of blank nodes into

categories is limited to non-nested blank nodes as the process becomes quickly intractable

for nested blank nodes. Therefore, RDFMapFileGenerator, and, consequently, DBSchema-

Generator, consider nested blank nodes as MixedBlankNodes the transformation of which is

as detailed in Chapters 3 and 4.

Lastly, since f is not data agnostic, in addition to non-temporary tables, under cer-

tain scenarios it generates temporary tables unlike RDFMapFileGenerator and DBSchema-

Generator which generates only non-temporary tables at all times. Temporary table cells

are created when f encounters resource/instance-attribute edges before encountering class-

resource/instance edges. Under such a circumstance, since the class to which the resource

belongs (and therefore the table into which the attribute and object/data value are to be

added as a column and row data respectively) is unknown, a temporary table, named after

the resource, is created and the attribute and object/data is added to the temporary table.

When the class-resource/instance edge is encountered by f at some point in the future, the

cells from the appropriate temporary tables are copied over to the table corresponding to the

class element and the temporary tables are removed from the schema. RDFMapFileGenera-

tor and DBSchemaGenerator, on the other hand, have been implemented in a manner where

class-resource/instance edges are always processed prior to resource/instance-attribute edges

and, thus, do not require the use of temporary tables.
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8.3.2 Query Transformation Function, h

The query tranformation function, h, illustrated in Figures 8.9 and 8.10, takes the canonical

form of an SQL statement as input and produces an equivalent SPARQL query as output and

encodes the third algorithm comprising the R2D framework, the SQL-to-SPARQL transla-

tion algorithm in Chapter 4. As mentioned earlier, in order to keep the semantics-preserving

query transformation proofs tractable and readable, a representative sub-set of the SQL

language was chosen as the core language that is supported by R2D. Consequently, the

mathematically defined function, h, is a simplification of the implemented SQL-to-SPARQL

translation algorithm and models the transformation of SQL queries with a SELECT set

consisting of constants, columns from simple/derived tables, and arithmetic expressions and

a FROM set consisting of simple tables and derived tables or sub-queries. The query trans-

lation algorithm implemented in Chapter 4, on the other hand, handles, in addition to

everything that h does, WHERE clauses, aggregrate functions, and pattern matching func-

tions such as the LIKE operator. However, a correctness proof that encompasses all of these

features would be too large to be easily comprehensible and, as a result, we chose not to

encode these features in h. It can be seen that encoding these features is a straightforward

process as, in most cases, the features translate directly into appropriate FILTER, REGEX,

and aggregate functions within the SPARQL grammar, and, therefore, is an prospect for

future work.

8.4 Proofs

R2D’s transformation framework is semantics-preserving and therefore S[[ŝql]]E [[f (φ)]] =

Q[[h(ŝql)]]φ. This (semantics-preserving) characteristic of R2D’s translation framework is, to

recapitulate, established using two theorems, Theorem 1 and Theorem 2 described below.
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hw(·, t̂al) = ·
(hw SQL FROM List Base)

t̂r = d̂t d̂t = (ŝql, t̂al) ŝql = (ρSL, ρTR) (ρSpSL, ρSpWt) = h(ŝql = (ρSL, ρTR), t̂al)

˙spq = (ρSpSL, ρSpWt)

hw(t̂r, t̂al) = ˙spq
(hw SQL From - SubQuery)

t̂r = t̂ ẇ = (?t̂ type type t̂)

hw(t̂r, t̂al) = ẇ
(hw SQL From - Table)

ẇ = hw(t̂r, t̂al) ρSpW = hw(ρTR, t̂al)

hw(t̂r :: ρTR, t̂al) = ẇ :: ρSpW
(hw SQL From Clause)

hs(ρSL, ρTR, t̂al) = (ρSpSL, ρSpWs) hw(ρTR, t̂al) = ρSpW
˙spq = (ρSpSL, ρSpWs@ρSpW)

h(ŝql = (ρSL, ρTR), t̂al) = ˙spq
(h SQL Query Translation)

Figure 8.9: SQL-to-SPARQL Translation function - h, and hw
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hs(·, ρTR, t̂al) = (·, ·)
(hs SQL SELECT List Base)

ˆnvea = t̂.ĉl AS ĉlal IsTable(ρTR, t̂) = true ˙spsl =?t̂ Tid ĉl AS ?̂tal Tid ĉlal

ẇs = (?t̂ Tidtype ĉl ?t̂ Tid ĉl)

hs( ˆnvea, ρTR, t̂al) = ( ˙spsl, ẇs)
(hs TColumn AlSQ)

ˆnvea = t̂.ĉl AS ĉlal IsTable(ρTR, t̂) = false

˙spsl =?t̂ Tid ĉl AS ?̂tal Tid ĉlal

hs( ˆnvea, ρTR, t̂al) = ( ˙spsl, ·)
(hs DTColumn AlSQ)

ˆnvea = î AS ĉlal ˙spsl = î AS ?̂tal Tid ĉlal

hs( ˆnvea, ρTR, t̂al) = ( ˙spsl, ·)
(hs Int AlSQ)

ˆnvea = ĉ AS ĉlal ˙spsl = ĉ AS ?̂tal Tid ĉlal

hs( ˆnvea, ρTR, t̂al) = ( ˙spsl, ·)
(hs Char AlSQ)

( ˙spsl, ẇs) = hs( ˆnvea, t̂al) hs(ρSL, t̂al) = (ρSpSL, ρSpWs)

hs( ˆnvea :: ρSL, ρTR, t̂al) = ( ˙spsl :: ρSpSL, ẇs :: ρSpWs)
(hs SQL Select Clause)

Figure 8.10: SQL-to-SPARQL Translation function - hs
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8.4.1 Semantic Preservation of Schema Translation

Theorem 1, given below, proves the semantics-preserving transformation performed by the

schema mapping module.

Theorem 1: E [[f (φ)]] = φ

where φ is the canonical form of an RDF graph, G, E [[R]] represents the denotational seman-

tics of a relational schema, R, and f (φ) is Schema mapping/transformation function that

transforms the canonical form of G to R

f transforms φ into R one edge at a time and the transformation of an edge depends on

the type of edge encountered. The following are the types of edges that comprise any given

φ.

1. Instance Triple (IT) Edges

2. Literal Triple (LT) Edges

3. Resource Triple With One-to-One Relationship (RT-Non1N) Edges

4. Resource Triple With One-to-Many Relationship (RT-1N) Edges

5. MultiValuedAttribute Instance (MVAI) Edges

6. MultiValueAttribute Resource (MVART) Edges

7. MultiValueAttribute Attribute (MVALT) Edges

8. Many-to-Many Relationship Instance (NMI) Edges

9. Many-to-Many Relationship Resource (NMRT) Edges

Since there are several scenarios possible with each of the above edge types, the number

of cases that comprise the proof of Theorem 1 are large enough to prohibit their coverage in
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this section. Therefore, the discussion in the remainder of this section is retricted to a few

of the more interesting cases while the complete proof is included to Appendix B.

Case (NMRT AllOK), given below, corresponds to Many-to-Many Relationship re-

source edges of the type (r r ′, p, r ′′) where (r r ′) is an instance of class, c.

f (φ′) = R′ e = (r r ′, p, r ′′) GetRegTblID(R, r ′′) 6= {}

GetTmpNMColCnt(R′, r r ′) = 2
GetClassForTmpNMTblCells(R′, r r ′) 6= {}

f (φ = φ′ ] e) = R′ − GetTmpTblRow(R′, (r r ′, τtmpnm))
(NMRT AllOK)

] AddNMTblRowRP(r r ′, p, r ′′)

NMRT Edge details are translated into (Non-Temporary) NM Tables if and only if all

three edges that participate in the NM Relationship (i.e., one NMI edge and two NMRT

Edges) are available (identified using the function GetTmpNMColCnt(R′, r r ′)), and infor-

mation regarding the classes to which the two resources (r and r ′) participating in the

NM relationship belong is available (identified using the functions GetRegTblID(R′, r ′′) and

GetClassForTmpNMTblCells(R′, r r ′) 6= {}). If any of these required details are not avail-

able, the rest of the NMI/NMRT Edges information is stored in temporary tables named

after the NM resource (r r ′). When an NM edge arrives that, together with other related in-

formation in a temporary NM table, makes available all required information about the NM

relationship that exists between the pair of resources in the arriving edge, information from

the appropriate temporary table is obtained, using the GetTmpTblRow(R′, (r r ′, τtmpnm)),

and removed from the relational schema, R, and added as a new row into the appropriate

non-temporary NM table using the function, AddNMTblRowRP(R′, r r ′, p, r ′′). Thus, this case

results in movement of applicable cells from temporary NM tables into non-temporary NM

Tables and the addition of the value r ′′ into the column corresponding to p in r ’s row in

the non-temporary NM Table that corresponds to the class to which the resource r r ′ of the

arriving NMRT edge belongs. The complete proof for Case (NMRT AllOK) is presented

below.
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Case (NMRT AllOK) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r r ′, p, r ′′), GetRegTblID

(R′, r ′′) 6= {}, GetTmpNMColCnt(R′, r r ′) = 2, and GetClassForTmpNMTblCells(R′, r r ′)

6= {}. By Rule (NMRT AllOK),

f (φ) = R′ − GetTmpTblRow(R′, (r r ′, τtmpnm)) ] AddNMTblRowRP(R′, r r ′, p, r ′′)

By definition of GetTmpTblRow and AddNMTblRowRP, f (φ) = R′ − {d} ] {e} where

d = {(((r r ′, τtmpnm), (type, κpk), 1), c), (((r r ′, τtmpnm), (kid, κfk), 1), r ′′′)}

, and

e = {(((c, τnm), (kid, κfk), w), r ′′′), (((c, τnm), (p, κfk), w), r ′′)}

for some unoccupied row, w . By Rule (NMTmpT), (NMTTC), and (NMTNTC),

E [[f (φ)]] = E [[R′−{d}]{e}]] = E [[R′]]−{(r r ′, type, c), (r r ′, kid, r
′′′)}∪{(r r ′, type, c),

(r r ′, kid, r
′′′), (r r ′, p, r ′′)} = E [[R′]] ] {(r r ′, p, r ′′)} = E [[f (φ′)]] ] {e}.

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = φ′ ] {e} = φ.

Another case, Case (IT), given below, is one of the more interesting cases in f (φ) as its

proof follows from a composite of several lemmas.

f (φ′) = R′ e = (r , type, c) w = GetNewRegTblRow(c) + 1

f (φ = φ′ ] e) = (((((R′ − GetTmpTblLitCols(R′, r))
(IT )

− GetTmpRColsWithP(R′, r))− GetTmpRTblsWithrObj(R′, r))

− GetValidTmpMVATbls(R′, r)− GetValidTmpNMTbls(R′, r))

] AddTmpLColstoRegTbl(R′, c, r ,w) ] AddTmpMVATblRowstoMVATbl(R′, r , c,w)

] AddTmpRColsWithPtoRegTbl(R′, c, r ,w) ] UpdRRegTblsWithrObj(R′, r , c,w)

] AddTmpNMTblRowstoNMTbl(R′, r , classelem,w)

Instance Triple (IT) edges, of the form (r , type, c), are the edges that result in the

creation of a new table corresponding to the class, c, if one does not already exist in the

relational schema, R, and addition of a new row in the table with the primary key cell in the
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row set of r . Prior to the availablity of a resource’s (r ’s) class information (i.e. a resource’s

IT edge), all attribute edges (LT, RT-Non1N, RT-1N) pertaining to the resource are stored

in temporary tables named, in the case of LT and Non-RT edges, after the resource, r , and

in the case of RT-1N, named after the object resource (r ′). The arrival of an IT edge results

in the following transformations in the relational schema, R.

• Literal value cells populated by LT edges corresponding to r are removed, using the

function GetTmpTblLitCols(R′, r) from r ’s temporary table, if one exists, and added

into appropriate cells, using the function AddTmpLColstoRegTbl(R′, c, r ,w), in r ’s row

in the table corresponding to c.

• Non-1N resource value cells, populated by RT-Non1N edges, with object resources

whose class information is available, that are housed in r ’s temporary table are re-

moved, using the function GetTmpRColsWithP(R′, r), and added into the appropriate

cells, using AddTmpRColsWithPtoRegTbl(R′, c, r ,w)

• 1N resource value cells, populated by RT-1N edges, with object resources whose class

information is available, that are housed in the object resource’s (r ′’s) temporary ta-

ble are removed, using the function GetTmpRTblsWithrObj(R′, r), and added into the

appropriate cells, using UpdRRegTblsWithrObj(R′, r , c,w)

• Data from temporary MVA tables that have r as an element in one of their cells and

that have all information pertaining to all three edges (MVAI, MVART, and MVALT)

available in the temporary MVA table, is removed from the temporary table using

the function GetValidTmpMVATbls(R′, r) and added as a new row into the appropriate

non-temporary MVA Table using AddTmpMVATblRowstoMVATbl(R′, r , c,w)

• Data from temporary NM tables that have r as an element in one of their cells, and that

have all information pertaining to all three edges (NMLInstance, two NMRT edges)

available in the temporary NM table along with the class information of the other re-

source (r ′) participating in the NM relationship with r , is removed from the temporary
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table using the function GetValidTmpNMTbls(R′, r) and added as a new row into the

appropriate non-temporary NM Table using AddTmpNMTblRowstoNMTbl(R′, r , c,w)

Each of the above transformations consists of function pairs that, as can be seen from

the respective function definitions, together, effectively cause the addition of a new row

corresponding to r in the table corresponding to c and the movement of applicable cells

from temporary tables to non-temporary tables. As a result, proof of Case (IT) follows

from the proof that the denotation of the transformations effected by each function pair

consolidates into a single edge, (r , type, c). Thus there is one proof for each of the 5 function

pairs ennumerated above. As an illustration of the transformations effected by the function

pairs, the proof of lemma 1, which illustrates the transformations resulting from the first

function pair, GetTmpTblLitCols(R′, r) and AddTmpLColstoRegTbl(R′, c, r ,w), is included

below while lemmas corresponding to the rest of the function pairs can be found in Appendix

B.

Lemma 1 For every instance edge e of type (r , type, c), and an unoccupied row, w, in the

table corresponding to c in R,

E [[AddTmpLColstoRegTbl(R, c, r ,w)− GetTmpTblLitCols(R, r)]] = {e}

[ =⇒]: Let ((((c, τr), (c type, κpk),w), r), (((c, τr), (kid, κr),w),R((r , τtmp), (kid, κr),w
′))) be

an element in the set AddTmpLColstoRegTbl(R, c, r ,w). Let R((r , τtmp), (kid, κr),w
′)

= d . From the definition of AddTmpLColstoRegTbl(R, c, r ,w), it can be observed that

((r , τtmp), (kid, κr),w
′) ∈ R← and d ∈ L. However, from the definition of

GetTmpTblLitCols(R, r), it can be observed that, whenever ((r , τtmp), (kid, κr),w
′) ∈

R← and d ∈ L,

(((r , τtmp), (kid, κr),w
′), d) is an element of the set GetTmpTblLitCols(R, r).

Thus, for every element e′ = ((((c, τr), (c type, κpk),w), r), (((c, τr), (kid, κr),w), d)) ∈

AddTmpLColstoRegTbl(R, c, r ,w), there exists an element e′′ = (((r , τtmp), (kid, κr),w
′),

d) ∈ GetTmpTblLitCols(R, r).



126

[⇐=]: Let R((r , τtmp), (kid, κr),w
′) = d (where d ∈ L) be an element in the set

GetTmpTblLitCols(R, r). As can be observed from the definition of

AddTmpLColstoRegTbl(R, c, r ,w), the values r and R((r , τtmp), (kid, κr),w
′) are added

to columns type and kid, respectively, in row w of table, c, i.e. R((c, τr), (c type, κpk),

w) = r and R((c, τr), (kid, κr),w) = d .

Thus, for every element e′′ = (((r , τtmp), (kid, κr),w
′), d) ∈ GetTmpTblLitCols(R, r),

there exists an element e′ = ((((c, τr), (c type, κpk),w), r), (((c, τr), (kid, κr),w), d)) ∈

AddTmpLColstoRegTbl(R, c, r ,w).

For any corresponding pair e′ and e′′, we have

AddTmpLColstoRegTbl(R, c, r ,w)− GetTmpTblLitCols(R, r) = {π1e′, π2e′} − {e′′} =

{(((c, τr), (c type, κpk),w), r), (((c, τr), (kid, κr),w), d)} − {(((r , τtmp), (kid, κr),w
′), d)}.

From Rule (TmpTN1N), it can be observed that E [[R((r , τtmp), (kid, κr),w
′) 7→ d ]] =

{(r , kid, d)}. From Rule (KCRT), it can be observed that E [[R((c, τr), (c type, κpk),w) 7→

r ]] = {(r , type, c)} and from Rule (NKCN1NRT), it can be seen that E [[R((c, τr), (kid, κr),w)

7→ d ]] = {(r , kid, d)}.

Thus, E [[AddTmpLColstoRegTbl(R, c, r ,w)−GetTmpTblLitCols(R, r)]] = E [[{π1e′, π2e′}−

{e′′}]] =

{(r , type, c), (r , kid, d)} − {(r , kid, d)} = {(r , type, c)} = {e}.

8.4.2 Semantic Preservation of Query Translation

Theorem 2, given below, is used to prove that R2D’s SQL-to-SPARQL Query Transformation

process is semantics-preserving.

Theorem 2: S[[ŝql]]φ = Q[[h(ŝql)]]φ
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where S[[ŝql]] represents the denotational semantics of an SQL query, ŝql, Q[[ ˙spq]] represents

the denotational semantics of a SPARQL Query, ˙spq, and h(ŝql) is R2D’s translation from

ŝql to ˙spq.

As stated earlier, we chose to model SQL queries as a cross-product of the SELECT and

FROM sets comprising the query. Thus an SQL query is a tuple the first element of which

is a set of tuples where each element of the set is a tuple that consists of one SELECT set

element and one FROM set element and the second element of which is the query alias.

For the SQL core language that we have considered for the purposes of proving semantics-

preserving query translation, the cross-product results in the following tuple combinations.

• (ŝ=Constant, t̂r=Simple Table(t̂))

• (ŝ=Constant, t̂r=Sub-Query (d̂t))

• (ŝ=Table.Column, t̂r=Simple Table(t̂))

• (ŝ=Table.Column, t̂r=Sub-Query (d̂t))

Each of the above combinations has 4 possibilities as discussed in Section 8.2.2 and there

exists one case in the proof of Theorem 2 for each of these possibilities. Inclusion of the entire

proof in this section would be too verbose and, therefore, only a few cases are presented here.

The complete proof including all cases is presented in Appendix C.

The case, Case (S ChNoneEx), given below, addresses the scenario where neither the

SELECT set element, ŝ, which is a character constant, nor the FROM set element, t̂r, which

is a simple table, t̂, have been encountered or processed in previous recursive steps (as evi-

denced by the functions ElementExists(̂tal Tid ĉlal, φ
′
S) = false and TableExists(rS

′, t̂) =

false respectively.

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = ĉ AS ĉlal ElementExists(̂tal Tid ĉlal, φ

′
S) = false

rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂) = false
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φ′Sr = RemoveRoot(φ′S , rS
′) rS = AddTable(rS

′, t̂)

S[[({(ŝ, t̂)} ] ŝql
′
, t̂al)]]φ = AddRoot(JoinGraphs(CreateEdges(ĉ, t̂al Tid ĉlal,

(S ChNoneEx)

AddTableLabel(GetRootNodes(ST [[t̂]]φ), t̂)), φ′Sr), rS)

In this case, character constant edges of the form (v1 , l , v2 ), where v1 = Row identifiers

from ST [[t̂r]], l = t̂al Tid ĉlal, v2 = ĉ, are created using the function, CreateEdges, and a

cartesian product of the resultant graph with the graph from the recursive step, φ′S , is

produced as the final result of the given SQL query using the JoinGraphs function.

The SQL-to-SPARQL transformation of the SQL query (ŝql, t̂al) = ({ŝ, t̂r)} ] ŝql
′
, t̂al),

obtained using the function, h(ŝql, t̂al), is {(ĉ AS ?̂tal Tid ĉlal, (t̂ type type t̂))} ∪ ˙spq′.

By inductive hypothesis, we assume that S[[(ŝql
′
, t̂al)]]φ = Q[[h(ŝql

′
, t̂al)]]φ. Further, if

we consider a variable, c, such that c = t̂, since t̂ was not previously encountered in φ′S ,

it follows that c was not previously encountered in φ′Q, where φ′Q = Q[[h(ŝql
′
, t̂al)]]φ. Thus,

as can be seen from the SPARQL Denotations in Appendix C, the above transformation

matches the case Case (Q ChNoneEx) given below.

Q[[ ˙spq′]]φ = φ′Q
˙spsl = ĉ AS ĉlal ẇ = (s type c) v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) ElementExists(v̇alrf , φ
′
Q) = false

TableExists(rQ
′, c) = false rQ

′ = GetRoot(φ′Q)
φ′Qr = RemoveRoot(φ′Q, rQ

′) rQ = AddTable(rQ
′, c)

Q[[{( ˙spsl, ẇ)} ] ˙spq′]]φ = AddRoot(JoinGraphs(CreateEdges(ĉ, v̇alrf ,
(Q ChNoneEx)

AddTableLabel(GetRootNodes(ST [[c]]φ), c)), φ′Qr), rQ)

Since c = t̂, ŝ = ĉ, φ′Sr = φ′Qr, v̇alrf = t̂al Tid ĉlal, and rS = rQ, from the two cases above,

Case (S ChNoneEx) and Case (Q ChNoneEx), S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ. The more

formal proof for this case is given below.

Case (S ChNoneEx) : Assume ŝql = {(ŝ, t̂)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null,

ŝ = ĉ AS ĉlal, ElementExists(̂tal Tid ĉlal, φ
′
S) = false, TableExists(GetRoot(φ′S), t̂) =

false, φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)), and rS = AddTable(GetRoot(φ′S), t̂). By
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Rule (S ChNoneEx),

S[[ŝql, t̂al ]]φ =AddRoot(JoinGraphs(CreateEdges(ĉ, t̂al Tid ĉlal,

AddTableLabel(GetRootNodes(ST [[t̂]]φ), t̂)), φ′Sr), rS)
(8.1)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((ĉ AS ĉlal, t̂), t̂al) =

(hs(ĉ AS ĉlal, t̂, t̂al), hw(t̂, t̂al)). By Rule (hs Char AlSQ), hs(ĉ AS ĉlal, t̂, t̂al) = (ĉ AS

?̂tal Tid ĉlal, ·), and by Rule (hw SQL From - Table), hw(t̂, t̂al) = (?t̂ type type t̂).

Thus, h((ĉ AS ĉlal, t̂), t̂al) = (ĉ AS ?̂tal Tid ĉlal, (t̂ type type t̂))

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Observe that when

c = t̂, ˙spsl = ĉ AS ĉlal, v̇al =?̂tal Tid ĉlal, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal

we have ElementExists(v̇alrf , φ
′
Q) = false and TableExists(GetRoot(φ′Q), c) =

false from our previous assumption (since φ′S = φ′Q from Inductive Hypothesis) ,

and v̇al = c ′′ Tid v̇alsuffix , where c ′′ = t̂al and v̇alsuffix = ĉlal. Further, since φ′S = φQ’

(by Inductive Hypothesis), φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)) = φ′Qr and rS = rQ.

Thus, by Rule (Q ChNoneEx),

Q[[h(ŝql, t̂al)]]φ =AddRoot(JoinGraphs(CreateEdges(ĉ, v̇alrf ,

AddTableLabel(GetRootNodes(ST [[c]]φ), c)), φ′Qr), rQ)
(8.2)

.

Since c = t̂, ŝ = ĉ, φ′Sr = φ′Qr, and rS = rQ, from equations (8.1) and (8.2),

S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ

A case that involves a column SELECT set element and a derived table (sub-query), is

Case (S ClDTMchEx), given below.

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = t̂.ĉl AS ĉlal d̂t = (ŝql sq , t̂al sqŝql) t̂ = t̂al sqŝql

φ′′S = S[[(ŝql sq , t̂al sqŝql)]]φ rS
′ = GetRoot(φ′S)
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TableExists(rS
′, t̂al sqŝql) = true rSdt = GetRoot(φ′′S)

S[[({(ŝ, d̂t)} ] ŝql
′
, t̂al)]]φ = AttachEdge(ReplaceLabel(ExtColEdges

(S ClDTMchEx)

(t̂ Tid ĉl, GetRootNodes(RemoveRoot(φ′′S , rSdt )), φ
′′
S), t̂ Tid ĉl, t̂al Tid ĉlal)×

GetRootNodes(RemoveRoot(φ′S , rS
′))) ∪ φ′S

Here, the SELECT set element, ŝ, is a column element of the form t̂.ĉl AS ĉlal, and

the FROM set element, d̂t = (ŝql sq , t̂al sqŝql), is a derived table (sub-query) with a query

alias, t̂al sqŝql. This particular case addresses the scenario where the FROM set subquery

element, d̂t = (ŝql sq , t̂al sqŝql) has been previously encountered, as identified by the function

TableExists(rS
′, t̂al sqŝql) = true, in a recursive step and the SELECT set column element

is a column that belongs to the derived table, t̂al sqŝql, that results from the subquery, ŝql sq ,

i.e., t̂ = t̂al sqŝql.

In this case, edges corresponding to the SELECT set column element, i.e. edges with

an edge label of t̂ Tid ĉl, are extracted from the graph that represents the denotation of the

derived table, i.e. from φ′′S = S[[(ŝql sq , t̂al sqŝql)]]φ and are added to the appropriate row

identifier nodes of the graph from the recursive step, φ′S , using the AttachEdge function to

arrive at the final result of the given SQL query. AttachEdge attaches an extracted edge,

(v1 , l , v2 ), to those row identifier vertices, v1
′, in φ′S where v1 is present as a substring.

The SQL-to-SPARQL transformation of the SQL query (ŝql, t̂al) = ({ŝ, t̂r)} ] ŝql
′
, t̂al),

obtained using the function, h(ŝql, t̂al), is {(?t̂ Tid ĉl AS ?̂tal Tid ĉlal, ˙spq sq)} ∪ ˙spq′.

By inductive hypothesis, we assume that S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ and S[[(ŝql sq ,

t̂al sqŝql)]]φ = Q[[h(ŝql sq , t̂al sqŝql)]]φ. Also, the SELECT item translation rule for columns from

derived tables (or sub-queries) prefixes the sub-query alias, t̂al sqŝql, to the alias of every cor-

responding SPARQL Query SELECT element. Thus t̂al sq ˙spq = GetSubQueryAlias(h(ŝql sq ,

t̂al sqŝql) = ˙spq sq) = t̂al sqŝql. Since t̂al sqŝql was previously encountered in φ′S , it follows that

t̂al sq ˙spq was also previously encountered in φ′Q, where φ′Q = Q[[h(ŝql
′
)]]φ. Thus, as can be

seen from the SPARQL Denotations in Appendix C, the above transformation matches the

case Case (Q ClSQMchEx) given below.
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Q[[ ˙spq′]]φ = φ′Q
˙spsl = v̇ =?c Tidp AS v̇al v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) t̂al sq ˙spq = GetSubQueryAlias( ˙spq sq)

t̂al sq ˙spq = c rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, t̂al sq ˙spq) = true
Q[[ ˙spq sq ]]φ = φ′′Q rQdt

= GetRoot(φ′′Q)

Q[[{( ˙spsl, ˙spq sq)} ] ˙spq′]]φ = AttachEdge(ReplaceLabel(ExtColEdges
(Q ClSQMchEx)

(c Tidp, GetRootNodes(RemoveRoot(φ′′Q, rQdt
)), φ′′Q), c Tidp, v̇alrf )×

GetRootNodes(RemoveRoot(φ′Q, rQ
′))) ∪ φ′Q

Since c = t̂, ṗ = ĉl, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal, and φ′S = φ′Q and

φ′′S = φ′′Q by inductive hypothesis, from the two cases above, Case (S ClDTMchEx) and

Case (Q ClSQMchEx), S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ. The more formal proof for this case

is given below.

Case (S ClDTMchEx) : Assume ŝql = {(ŝ, d̂t)}] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null, ŝ =

t̂.ĉl AS ĉlal, d̂t = (ŝql sq , t̂al sqŝql), t̂ = t̂al sqŝql, φ
′′
S = S[[(ŝql sq , t̂al sqŝql)]]φ, and TableExists(

GetRoot(φ′S), t̂al sqŝql) = true. By Rule (S ClDTMchEx),

S[[ŝql, t̂al ]]φ =AttachEdge(ReplaceLabel(ExtColEdges(t̂ Tid ĉl,

GetRootNodes(RemoveRoot(φ′′S , GetRoot(φ′′S))), φ′′S), t̂ Tid ĉl, t̂al Tid ĉlal)×

GetRootNodes(RemoveRoot(φ′S , GetRoot(φ′S)))) ∪ φ′S
(8.3)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((t̂.ĉl AS ĉlal, d̂t), t̂al)

= (hs(t̂.ĉl AS ĉlal, d̂t , t̂al), hw(d̂t , t̂al)). Since d̂t is not a table, i.e., IsTable(d̂t) = false

and t̂al 6= null, by Rule (hs DTColumn AlSQ), hs(t̂.ĉl AS ĉlal, d̂t , t̂al) = (?t̂ Tid ĉl AS

?̂tal Tid ĉlal, ·), and by Rule (hw SQL From - SubQuery), hw(d̂t , t̂al) = h(ŝql sq , t̂al sqŝql)

= ˙spq sq . Thus, h((t̂.ĉl AS ĉlal, d̂t), t̂al) = (?t̂ Tid ĉl AS ?̂tal Tid ĉlal, ˙spq sq). Also, observe

that, in the case of sub-queries, where t̂al sqŝql 6= null, the SELECT item translation

rules, (hs Char/Int/{T/DT}Column AlSQ), always prefix the sub-query alias,
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t̂al sqŝql, to the alias of every corresponding SPARQL Query SELECT item. Thus

t̂al sq ˙spq = GetSubQueryAlias(h(ŝql sq , t̂al sqŝql) = ˙spq sq) = t̂al sqŝql.

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ and S[[(ŝql sq , t̂al sqŝql)]]φ

= Q[[h(ŝql sq , t̂al sqŝql)]]φ. Substituting c for t̂, and t̂al sq ˙spq for t̂al sqŝql, we have, c = t̂al sq ˙spq.

Further, by inductive hypothesis, φ′S = φ′Q and φ′′S = φ′′Q, and therefore, TableExists(

GetRoot(φ′Q), t̂al sq ˙spq) = true. Thus, since t̂al 6= null and v̇alrf =

RemoveFirstChar(v̇al) = t̂al Tid ĉlal, substituting ṗ for ĉl, we have, by Rule (Q ClSQM-

chEx),

Q[[h(ŝql, t̂al)]]φ =AttachEdge(ReplaceLabel(ExtColEdges(c Tid ṗ,

GetRootNodes(RemoveRoot(φ′′Q, GetRoot(φ′′Q))), φ′′Q), c Tid ṗ, v̇alrf )×

GetRootNodes(RemoveRoot(φ′Q, GetRoot(φ′Q)))) ∪ φ′Q
(8.4)

.

Since c = t̂, ṗ = ĉl, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal, and φ′S = φ′Q

and φ′′S = φ′′Q by inductive hypothesis, from equations (8.3) and (8.4), S[[ŝql, t̂al ]]φ =

Q[[h(ŝql, t̂al)]]φ

Readers are referred to Appendices B and C for a complete listing of all the cases com-

prising Theorems 1 and 2 and their proofs respectively.



CHAPTER 9

UPDATE-ENABLED TRIPLIFICATION OF RELATIONAL DATA

The idea of a semantically annotated Web that would bestow upon machines enhanced in-

terpretative abilities and enable a perception of the Web as one large database, thereby

facilitating large scale data integration and reuse is rapidly gaining popularity. Endeavors to

find a way to translate this idea into tangible reality resulted in the Semantic Web initiative

which advocates resource description through the use of meta-data rather than keywords

thereby enhancing computer understandability and reusability of information in web pages.

In order to enable the definition and description of data (or resources) on the Web and the

relations between them, several Semantic Web technologies such as Resource Description

Framework (RDF), which is considered as one of the fundamental building blocks of the

Semantic Web, RDF/S, and Web Ontology Language (OWL) have been proposed by the

W3C. These technologies provide a means to integrate disparate data sources and reuse data

across applications through the use of ontologies, and their flexibility and ease of adoption

have resulted in their pervasive acceptance.

However, given the fact that approximately 70% of the websites that were available in 2007

were backed by relational databases (He, Patel, Zhang, and Chang 2007), and the percent-

age can only have increased further till date, it follows that the success and longevity of

adoption of the Semantic Web depends heavily on enabling access of data within these rela-

tional databases to the Semantic Web. Moreover, relational databases, by virtue of having

been in existence for several decades now, have the advantage of being equipped with sound,

refined, and efficient query optimization, transaction support, data concurrency and security

techniques. Thus, in order to reap the benefits offered by Semantic Web technologies while

continuing to exploit the advantages of well-established and scalable relational database

technologies, a means to enable the integration of the two technologies so as to create a best
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of both worlds scenario needs to be established. The need to address and provide a solution

to this integration problem has prompted the initiation of the RDB2RDF incubator group

(Malhotra 2009) whose primary objective is to establish mapping standards that facilitate

relational database and RDF interoperability.

The problem of bridging Relational Database Management System (RDBMS) and RDF con-

cepts has been the focus of several research efforts (Bizer and Seaborne 2004; Erling and

Mikhailov 2009; Auer, Dietzold, Lehmann, Hellmann, and Aumueller 2009; Cerbah 2008)

currently underway, each of which attempt to transform/propagate existing as well as newly

added/modified data housed in relational databases into virtual RDF stores. However, al-

most all current solutions offer merely a read-only view of data from one domain into another.

Thus, while one can view the relational data in RDF graph form and can query the resul-

tant RDF triples using SPARQL (Prud’hommeaux and Seaborne 2008), RDF’s native query

language, data in the underlying relational database cannot be added to, deleted from, or

altered in any way through the virtual RDF graph corresponding to the relational database.

In this chapter, we propose a solution that eliminates this data modification restriction and

allows data flow in either direction. Towards this end, we present D2RQ++ (Ramanujam,

Khadilkar, Khan, Seida, Kantarcioglu, and Thuraisingham 2010; Ramanujam, Khadilkar,

Khan, Kantarcioglu, Thuraisingham, and Seida 2010), a bi-directional data flow facilitating

enhancement to an existing, extensively adopted relational-to-RDF read-only translation tool

called D2RQ. This work was published in International Journal of Semantic Comput-

ing 2010, and was co-authored by Vaibhav Khadilkar, Latifur Khan, Murat Kantarcioglu,

and Bhavani Thuraisingham from University of Texas at Dallas (UTD) and Steven Seida

from Raytheon Company. In addition to translating regular RDF triples, D2RQ++ includes

the ability to propagate data changes specified in the form of RDF triples containing blank

nodes and RDF reification nodes back to the underlying relational database.

Blank nodes, an important component of RDF graphs, are used to represent complex data.

They are neither URI references nor literals and they enable association of a set of related

properties with a resource, thereby creating a composite relationship.
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RDF reification is a means of validating an RDF triple based on the trust level of another

statement (Powers 2003) and is an important facility provided by RDF that enables users

to make assertions about statements and record provenance data, thereby facilitating ap-

propriate authentication of RDF data. No application or tool that works with RDF data

is complete without RDF reification support and, hence, the original version of D2RQ++

(Ramanujam, Khadilkar, Khan, Seida, Kantarcioglu, and Thuraisingham 2010) has been

augmented with algorithms that permit insert/update/delete of reification data. As before,

when triples cannot explicitly be translated into equivalent concepts within the underlying

relational database schema, D2RQ++ continues to adhere to the Open-World Assumption

by permitting those triples to be housed in a separate native RDF store. When information

on a particular entity is requested, the output returned is a union of the data pertaining

to the entity from the relational database as well as any triples that have the entity as

the subject and that may exist in the native RDF store. Thus, RDF triples submitted for

insertion/update/deletion are never rejected due to mismatches with the underlying rela-

tional schema, thereby maintaining the Open-World Assumption of the Semantic Web world

while still being able to work with technologies such as RDBMSs which are based on the

Closed-World Assumption. To reiterate, the contributions of the D2RQ++ initiative include:

• Algorithms to translate RDF update triples into equivalent relational attributes/tuples

thereby enabling DML operations on the underlying relational database schema.

• D2RQ Mapping language extensions and algorithms to support translation of a wide

variety of blank node structures to equivalent relational tuples.

• Algorithms to support and permit triples that represent the concept of RDF reification

to be propagated back into the underlying relational database schema through DML

operations.
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• Preservation of the Open-World Assumption by maintaining a separate native RDF

store to house triples that are mismatched with the underlying relational database

schema.

• Incorporation of the above algorithms and extensions into D2RQ++, an enhanced

version of the highly popular D2RQ open-source relational-to-RDF mapping tool, and

into D2R++-Server, the update-aware front-end graphical user interface (GUI) through

which users can now issue DML requests using RDF data.

9.1 D2RQ++ - Our Approach

As stated earlier, the goal of our enhancement is to make the translation between RDF

and RDBMS data stores bi-directional, thereby permitting update activities that can be

propagated back to either the underlying RDBMS itself or to a native RDF store. We use

the oldest and most recognized Employee-Department-Project relational schema depicted

in Figure 9.1 to reinforce concepts wherever applicable in subsequent sections. Figure 9.1’s

scenario was chosen purely for elucidation purposes. D2RQ++, however, can be used on

any relational schema and is not just restricted to the scenario depicted in Figure 9.1

There were several issues that needed to be addressed in order to achieve bi-directional

translation and these are discussed in the following sub-sections.

9.1.1 Persistence of Unmapped and/or Duplicate Information

The first issue involved trying to preserve the Open-World assumption expected by Semantic

Web applications and standards such as RDF, OWL, etc. during DML operations. In order

to address this issue, we chose to maintain a separate native RDF store which would house all

those triples that did not have an equivalent entity/attribute mapping within the underlying

relational database schema. Even when an equivalent mapping exists, duplicate triples (such

as a second name attribute value for a given employee) are housed in the native RDF store,



137

Figure 9.1: Relational Schema used to illustrate D2RQ++
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Table 9.1: Extensions To D2RQ’s Mapping Constructs

Construct Description

d2rq:SimpleLiteralBlankNode-
Property Bridge (SLBNPB)

Blank Nodes that have only literal objects,
each with a unique predicate

d2rq:ComplexLiteralBlankNode-
Property Bridge (CLBNPB)

Blank Nodes that have only literal objects;
however, the predicates are not unique and
include repetitions

d2rq:ResourceBlankNode-
PropertyBridge (RBNPB)

Blank Nodes that have only resource ob-
jects with predicates that may or may not
be unique

d2rq:BelongsToBlankNode Construct that helps link a relational at-
tribute to the parent blank node

instead of overwriting the existing value within the relational database schema and, thereby,

losing the earlier information. Subsequent querying of the relevant employee information

would return both name values (from the RDBMS and the RDF store) to the end user.

9.1.2 Mapping and Persistence of RDF Blank Nodes

The second issue involved arriving at a translation process for RDF blank nodes while con-

tinuing to re-use existing mapping languages such as D2RQ since this concept does not have

an equivalent relational database mapping. In order to facilitate DML operations involving

blank nodes we added several new mapping constructs to D2RQ’s mapping language. These

constructs are listed in Table 9.1.

The first three constructs essentially identify a specific concept in the relational database

schema as a blank node and include information, specified through the “d2rq:pattern” con-

struct, on the format in which object values should be specified for the blank node. These

blank node classifications are similar to, and based on, the scenarios and examples discussed

in Chapter 4 and more details can be found in the same. The last construct is used to

identify those attributes within the relational database schema that together make up the
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d2rq:{SL/CL/R}BlankNodeProperty-Bridge. This (last) construct is used to associate the

attributes comprising a blank node with their parent blank node. In order to better un-

derstand how blank nodes are mapped in D2RQ++, let us consider the address attributes

in the employee entity, viz., street, city, and state. If the end user prefers to view (or

update) these address attributes in the form of a blank node that contains these attributes

as objects, the following are the mapping statements the user would add to D2RQ’s map file.

map:employee_address a

d2rqrw:SimpleLiteralBlankNodePropertyBridge;

d2rq:belongsToClassMap map:employee;

d2rq:property vocab:employee_address;

d2rq:propertyDefinitionLabel "employee address";

d2rq:pattern "@@employee.address_street@@/

@@employee.address_city@@/

@@employee.address_state@@";

.

map:employee_address_street a d2rq:PropertyBridge;

d2rqrw:belongsToBlankNode map:employee_address;

d2rq:belongsToClassMap map:employee;

d2rq:property vocab:employee_address_street;

d2rq:propertyDefinitionLabel "employee address_street";

d2rq:column "employee.address_street";

For readability reasons, the entry corresponding to only one of the address attributes

(street) is shown above. Similar entries will have to be included for the other two attributes

(city, state) as well. The employee address blank node is characterized as a SLBNPB since

every object belonging to the blank node (i.e., street, city, state) is a simple literal and each

of these objects has a unique predicate. More details on updating blank nodes are presented

in section 9.2 along with the appropriate algorithms.
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9.1.3 Mapping and Persistence of RDF Reification Nodes

The third issue, similar to the second issue above, involved arriving at a translation process

for RDF reification nodes while continuing to re-use D2RQ’s existing mapping language since

this concept does not have an equivalent relational database mapping. RDF reification is a

feature through which a triple can be encapsulated as a resource in order to enable additional

statements about that resource to be made that help establish the degree of confidence and

trustworthiness of the triple. This issue was resolved by extending D2RQ’s mapping language

with new constructs that are capable of handling reification data, and providing two ways

in which reification information can be persisted using D2RQ++. The first alternative is

trivial and involves storing all reification information directly into the native RDF store.

This method is adopted by D2RQ++ when appropriate tables/columns to house reification

information do not exist in the underlying relational database or when mapping information

pertaining to reification nodes is not available in D2RQ++’s mapping file. The second option

involves storing the data within the underlying relational database schema and is available

if the schema includes appropriate tables and columns within which reification data can be

stored. In-depth details on the mapping and persistence of reification nodes are provided in

section 9.3.

9.1.4 Maintenance of Open-World Assumption through Periodic Consolidation

The fourth issue was concerned with establishing the order of update activities (in the case

of batch updates) in order to ensure that referential integrity constraints do not force an

update rejection due to incorrect update sequences such as an employee triple of the form

{<empURI> <DeptID> <DepartmentID>} arriving before the actual department triple

{<deptURI> <ID> <DepartmentID>}. This issue was resolved by blindly accommodating

triples that violate referential integrity constraints in the native RDF store and introducing a

periodic consolidation/flush algorithm. This consolidation/flush algorithm periodically vali-

dates the RDF store contents against the underlying relational database schema to identify
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those triples that now have parent key values in the relational schema corresponding to their

object values, i.e., to identify those triples that earlier violated foreign key constraints but

now no longer do because the parent key is now present in the relational schema. Once

these triples are identified, the flush algorithm transfers them into the relational schema by

following Algorithm 9.1 and removes them from the native RDF store. The flush algorithm

also consolidates duplicate triples in the event the underlying relational database column

corresponding to the triples predicate is updated to a null value. These duplicate triples

were originally accommodated in the native RDF store because the corresponding column

in the underlying relational database had a non-null value. Whenever these columns are

updated to null values, the flush algorithm consolidates duplicate triples back into the un-

derlying database and deletes the same from the native RDF store.

The next section presents the various algorithms that were developed to address and resolve

the issues presented above.

9.2 D2RQ++ Algorithms for Regular Triples and Blank Nodes

9.2.1 Insert/Update Operations on Regular Triples

Insert/Update operations on regular RDF triples are fairly straightforward and are applicable

to simple triples that involve a literal or resource object and that do NOT involve any blank

nodes. The only time an INSERT statement is executed against the underlying relational

schema is when the predicate exists as a column in the table to which the subject of the

triple belongs and the subject value itself does not exist as a primary key value in the same

table. When the predicate exists as a column in the table and the subject exists as a primary

key value in the same table, the object value is updated (using an SQL UPDATE statement)

only if the corresponding cell in the relational schema is empty. If not, under the Open-

World Assumption, the object in the input triple is considered to be a duplicate value for

the corresponding column and is preserved by housing the triple in the native RDF store.

Subsequent querying of that column will return both values, i.e., the cell value stored in



142

the relational database as well as the object value for the corresponding predicate stored in

the native RDF store. In the event the predicate of the input triple does not map to an

equivalent column in the underlying relational schema as specified in the mapping file, the

input triple is always added into the native RDF store. Algorithm 9.1 lists the details of

insert/update operations on regular RDF triples.

Algorithm 9.1 Insert/UpdateRegularTriple

Input: An RDF Triple
Output: A successful RDBMS/RDF Store update

1: Identify table assoicated with triple’s subject
2: if triple is a Blank Node then
3: Call Insert/UpdateLiteral/ResourceBlankNodeTriple - Algorithms 9.2 and 9.3
4: else
5: if subject does not exist in RDBMS then
6: if predicate exists in subject’s table in RDBMS then
7: Insert triple as new tuple in RDBMS and Return
8: else
9: Add triple to native RDF Store and Return

10: end if
11: else
12: if predicate exists in subject’s table in RDBMS then
13: if (object.isLiteral()) or (object.isResource() and exists( object as PK in another

table)) then
14: if RDBMS table cell value is NULL then
15: Update triples obj value in column and Return
16: end if
17: end if
18: end if
19: Add triple to native RDF Store and Return
20: end if
21: end if

9.2.2 Insert/Update Operations on Blank Node Triples

Triples that contain blank node objects are handled using the procedures illustrated in

Algorithms 9.2 and 9.3. Algorithm 9.2 illustrates the procedure for simple or complex literal

blank nodes while Algorithm 9.3 deals with resource blank nodes.
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Algorithm 9.2 Insert/UpdateLiteralBlankNodeTriple

Input: An RDF Triple with Blank Node Object
Output: A successful RDBMS/RDF Store update

1: if BlankNode definition not found in Map File then
2: Add Blank Node structure to native RDF Store and Return
3: end if
4: if BlankNode.Type = SLBNPB then
5: for every predicate off of the blank node do
6: if predicate exists as column in subject table in RDBMS then
7: if corresponding column value is NOT NULL then
8: Add entire blank node structure to the native RDF Store and Return
9: end if

10: else
11: Add triple to native RDF Store and Return
12: end if
13: end for
14: if subject of SLBNPB does not exist in RDBMS then
15: Insert subject and objects of SLBNPB as a new tuple in RDBMS and Return
16: else
17: Update the object values of SLBNPB in corresponding columns against subject

tuple and Return
18: end if
19: else if BlankNode.Type = CLBNPB then
20: if subject of CLBNPB does not exist in RDBMS then
21: Add CLBNPB to native RDF Store and Return
22: else
23: Get RDBMS table corresponding to object of CLBNPB
24: for every predicate belonging to CLBNPB do
25: Insert subject, predicates off of CLBNPB, and objects of CLBNPB into RDBMS

table in the Foreign Key, Type, and Value fields respectively and Return
26: end for
27: end if
28: end if
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SLBNPBs translate into a collection of simple attributes that belong to the same table in

the underlying relational schema. An example of an SLBNPB has been discussed in the pre-

vious sub-section. SLBNPBs are inserted/updated into the underlying relational database

only when every attribute value comprising the SLBNPB is empty. Even if one attribute

value comprising the SLBNPB has a non-null value in the relational schema (for example,

if the employee table has, for a particular employee, a non-null value for the state column

while the street and the city columns are null), or if the input SLBNPB has a structure that

is different from the specification included in the map file (i.e., it has less/more constituent

attributes than the map file specification) the entire SLBNPB structure is housed in the

native RDF store instead. However, this condition (of requiring all constituent attributes to

be null in order to achieve a successful insert or update activity) is a design choice adopted

by us and can be changed into other suitable choices as required by the end-user of the

system.

CLBNPBs represent 1:N relationships between a subject and an object concept within the

underlying relational database. An example of such a relationship is the employee-phone

relationship where an employee has 1 or more phone numbers while a phone number be-

longs to one and only one employee. CLBNPBs map to normalized tables (such as an

employee phone table with possible attributes of EmpID, PhoneType, PhoneNumber, all of

which form a combined primary key with the EmpID being a foreign key that references the

parent employee table) that result from such 1:N relationships. CLBNPBs are inserted into

the underlying relational table iff the subject of the CLBNPB exists in the parent table (In

our employee-phone example, phone details are inserted into the employee phone table iff

the corresponding employee URI exists in the parent employee table). For every predicate

belonging to the CLBNPB a new tuple is inserted into the underlying relational table with

the CLBNPB subject, the predicate of the CLBNPB, and the object forming the values of

the foreign key, the type, and the value columns of the relational table. In the event the

subject of the CLBNPB does not exist in the parent table, the entire CLBNPB structure

is housed in the native RDF store and is consolidated into the relational database by the
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periodic flush algorithm when the CLBNPB’s subject is added into the parent table.

ResourceBlankNodePropertyBridges are blank nodes that comprise only of resource ob-

jects that may or may not belong to the same object class. In the case of RBNPBs the

objects of the blank node are inserted into the underlying relational database tables iff the

RBNPB subject and every one of the RBNPB object values exist as primary key values in

their corresponding tables in the underlying relational schema; otherwise the entire RBNPB

structure is added into the native RDF store as illustrated in Algorithm 9.3.

Algorithm 9.3 Insert/UpdateResourceBlankNodeTriple

Input: An RDF Triple with Blank Node Object
Output: A successful RDBMS/RDF Store update

1: if BlankNode definition not found in Map File then
2: Add Blank Node structure to native RDF Store & Return
3: end if
4: if subject of RBNPB does not exist in RDBMS then
5: Add RBNPB structure to native RDF store & Return
6: end if
7: for every predicate belonging to RBNPB do
8: Get table corresponding to resource object class in RDBMS
9: if object value does not exist in RDBMS table then

10: Add RBNPB structure to native RDF store & Return
11: end if
12: if RBNPB’s subject and current object class relationship is I:N then
13: Get 1-side table’s field in N-side table
14: if field value is not NULL then
15: Add RBNPB structure to native RDF store & Return
16: end if
17: end if
18: end for
19: for every predicate belonging to RBNPB do
20: if RBNPB subject and predicate object relationship = 1:N then
21: Update 1-side field in N-side table with subject value
22: else
23: Insert subject and object values as new tuple in N:M (join) table
24: end if
25: end for
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Figure 9.2: Sample RBNPB Scenarios

Two example RBNPBs are illustrated in Figure 9.2.

If the RBNPB subject and object share a 1:N relationship as illustrated in Figure 9.2(a)

between employee and department entities, for every predicate of the RBNPB, the tuple

with the object value is located in the object table (i.e., the employee table) and the subject

value (i.e., departmentID) is updated into the appropriate field (deptId in employee table)

in the N-side table (i.e., in the Employee table) . If they share an N:M relationship like

the one between the employee and project entities illustrated in Figure 9.2(b), a new tuple

is inserted with the subject and object URIs as values in the respective columns (i.e., in

empID and projID columns) in the join table (i.e. employee project table) representing the

N:M relationship.
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9.2.3 Consolidation Procedure

As stated earlier, the order of insert/update activities may result in certain triples being

rejected from the RDBMS and being housed temporarily in the native RDF store instead

due to the violation of referential integrity constraints. Periodically, the triples in the native

RDF store are validated against the underlying relational database and any triple that no

longer violates referential integrity constraints is transmitted back to the relational database

and deleted from the native RDF store using the Flush Algorithm, Algorithm 9.4.

Algorithm 9.4 Flush (for Referential Integrity Constraints)

Input: Triples in native RDF Store
Output: Possible insert/update in RDBMS and associated delete from RDF Store

1: for every triple in RDF Store do
2: if Object.type = Resource then
3: if Exists(Predicate in Subject table) then
4: if Exists(Object value in Object table) then
5: if Exists(Subject value in Subject table) then
6: if column corresponding to Object == NULL in Subject table then
7: Update object value in column in Subject table
8: Delete triple from native RDF Store and Return
9: end if

10: else
11: Insert subject and object values in appropriate columns in Subject table
12: Delete triple from native RDF Store and Return
13: end if
14: end if
15: end if
16: end if
17: end for

This algorithm, run periodically, is also quite straightforward and applies to any triple in

the native RDF store with a resource object. Whenever the object value of such a triple is

found to exist as a primary key in the table corresponding to the Object Resource class, and

the predicate of the triple exists as a column in the table corresponding to the subject of the

triple, if the subject does not already exist in the subject table in the RDBMS, a new tuple

is inserted with the subject and object values of the triple being updated in the appropriate
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relational columns. If the subject exists as a primary key in the underlying RDBMS table

and the current predicate column value is null, it is updated and set to the object value

of the triple; otherwise no update happens and the triple continues to remain in the native

RDF store. In the event a successful insert/update of the triple was accomplished in the

underlying relational schema, the triple is then deleted from the native RDF store. In this

manner, referential integrity violations are given opportunities to return to the underlying

relational schema periodically. Similar flush procedures exist for SLBNPBs, CLBNPBs, and

RBNPBs as well, however, as they are intuitive and repetitive, they are not presented here.

9.2.4 Delete Operations on RDF Triples and Blank Nodes

Algorithm 9.5 highlights the process to delete a regular triple from either the RDBMS or the

native RDF store as applicable. The only scenario in which a regular triple deletion fails is

if the subject value of the triple is referenced as a foreign key by another relational database

table. If either the subject or the predicate of the triple do not exist as a primary key value

or column, respectively, in the underlying relational database, the triple is assumed to be

housed in the native RDF store and is deleted from that store. If the column corresponding

to the triple predicate has a value that differs from the triple’s object value, this implies that

the triples object value is a secondary value for that column. In this case as well the triple

is housed in the native RDF store and, hence, is deleted from the RDF store. If the column

value matches the triple’s object value and the column corresponding to the triple’s predicate

is not the primary key column, the tuple corresponding to the subject row is updated with

a null value for the column; otherwise the tuple corresponding to the subject row is deleted

completely from the underlying table.

Delete procedures for SL/CL/RBNPBs are illustrated in Algorithms 9.6 and 9.7 and are

self-explanatory.

The next section discusses the mapping language extensions and algorithms that enable

inserts, updates, and deletes of reification information to be either propagated back to the

relational database schema or stored in a native RDF store as applicable.
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Algorithm 9.5 DeleteRegularTriple

Input: An RDF Triple
Output: Possible successful RDBMS/RDF Store delete

1: if !Exists(Subject) in subject table in RDBMS then
2: Find and Delete triple from native RDF Store and Return
3: else
4: if !Exists(Predicate in subject table in RDBMS) then
5: Find and Delete triple from native RDF Store and Return
6: else
7: if subject referenced by another RDBMS table then
8: Deny Delete and Return
9: else

10: if object value exists in predicate column in subject table then
11: if predicate column = Primary Key Column (PK) then
12: Delete from subject table where PK = subject and Return
13: else
14: Update subject table set predicate column = NULL Where PK = subject

and Return
15: end if
16: else
17: Find and Delete triple from native RDF Store and Return
18: end if
19: end if
20: end if
21: end if
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Algorithm 9.6 DeleteLiteralBlankNodeTriple

Input: An RDF Triple with Literal Blank Node object
Output: A successful RDBMS/RDF delete

1: if BlankNode definition not found in Map File then
2: Delete BlankNode structure from native RDF Store and Return
3: end if
4: if BlankNode structure does not match Map File definition then
5: Delete BlankNode structure from native RDF Store and Return
6: end if
7: if subject of BlankNode does not exist in RDBMS then
8: Delete BlankNode structure from native RDF Store and Return
9: end if

10: if BlankNode.Type = SLBNPB then
11: for every predicate off of the BlankNode do
12: if value in column (of subject table in row where PK = SLBNPB’s subject) corre-

sponding to predicate != predicate’s object then
13: Delete BlankNode structure from native RDF Store and Return
14: end if
15: end for
16: UPDATE subject table set values of columns corresponding to SLBNPB’s predicates

to NULL in subject table WHERE PK = SLBNPB’s subject
17: else if BlankNode.Type = CLBNPB then
18: Get RDBMS table corresponding to object of CLBNPB
19: for every predicate belonging to CLBNPB do
20: DELETE subject, predicate, and object of CLBNPB FROM RDBMS table from

the Foreign Key, Type, and Value fields respectively and Return
21: end for
22: end if
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Algorithm 9.7 DeleteResourceBlankNodeTriple

Input: An RDF Triple with Resource Blank Node object
Output: A successful RDBMS/RDF delete

1: if BlankNode definition not found in Map File then
2: Delete BlankNode structure from native RDF Store and Return
3: end if
4: if BlankNode structure does not match Map File definition then
5: Delete BlankNode structure from native RDF Store and Return
6: end if
7: if subject of BlankNode does not exist in RDBMS then
8: Delete BlankNode structure from native RDF Store and Return
9: end if

10: for every predicate belonging to RBNPB do
11: Get tables corresponding to resource subject and object classes in RDBMS
12: if object value does not exist in object RDBMS table then
13: Delete RBNPB structure from native RDF store and Return
14: end if
15: if RBNPB’s subject and current object class relationship is I:N then
16: Get object table’s field corresponding to subject
17: if field value != subject value WHERE table PK = object value then
18: Delete RBNPB structure from native RDF store and Return
19: end if
20: end if
21: end for
22: for every predicate belonging to RBNPB do
23: if RBNPB subject and predicate object relationship = 1:N then
24: UPDATE object table SET field corresponding to subject to NULL WHERE object

table PK = object value of predicate
25: else
26: DELETE subject and object values FROM N:M (join) table
27: end if
28: end for
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9.3 Bi-directional Translation of RDF Reification Nodes

RDF reification, as described in section 9.1.3, is an important feature that enables the estab-

lishment of the degree of confidence and trustworthiness of a triple. RDF reification nodes

consist of four mandatory properties: rdf:subject, which identifies the subject in the original

triple being reified, rdf:predicate, which identifies the property in the statement being reified,

rdf:object, which identifies the object of the statement being reified, and, lastly, rdf:type,

which is always rdf:statement since all reified statements are instances of rdf:Statement.

These four properties are called the reification quad and these can be accompanied by one

or more non-quad properties that detail the actual provenance information. These non-quad

predicates can have one or more literal, resource, or blank node objects as illustrated in the

sample scenario in Figure 9.3 below.

In the graph, every solid node with outgoing edges, such as URI/Emp1 and URI/Dept1,

represents a subject/resource. Solid edges, such as Street, City, State, and Phone, represent

predicates and the solid nodes at the end of the edges, such as <Street>, <City>, <State>,

and <Phone>, represent objects. Empty solid nodes, such as the node at which the Projects

predicate terminates represent blank nodes. The nodes in dashed lines with the “s”, “p”,

“o”, and “t” predicates, amongst others, represent reified nodes. “s”, “p”, “o”, and “t”

represent the “rdf:subject”, “rdf:predicate”, “rdf:object”, and the “rdf:type” predicates of

the reification quad. Other predicates of the reification nodes (other than “s”, “p”, “o”,

and “t” predicates) represent non-quad predicates (NQPs). Empty nodes in dashed lines

(other than the reified nodes) that are the objects of non-quad reification predicates, such

as the object of the ManagedBy, and NameDetails predicates, represent reification blank

nodes. The non-quad reification properties chosen in this example may not represent actual

provenance information. They were primarily chosen to illustrate proof of concept. Ele-

ments of Figure 9.3 are used, wherever applicable, to facilitate better comprehension of the

information presented in subsequent sections.

Reification information can be persisted using D2RQ++ in two ways as detailed in sec-
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Figure 9.3: Sample RDF Scenario with Reification Nodes
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tion 9.1.3. As can be seen in Figure 9.3, reification nodes comprise different types of non-

quad predicates. We have classified reification nodes into five broad categories based on the

type of non-quad predicates they contain and these categories are described in the following

sub-section.

9.3.1 Reification Node Categories and their Relationalization

a) Reification Nodes (RNs) with non-repeating literal/resource NQPs

As the category implies, these RNs contain one or more predicates, each of which is

unique, and each of which leads to a literal or resource object. An example of these kinds

of RNs is the RN with the InspectionDate NQP, leading to a literal object, in Figure 9.3.

i. Relational Storage of RNs with literal rdf:objects: Storage of this kind of reification

information when the RN reifies a literal object (i.e. rdf:object is a literal) within a

relational database requires columns for each of the non-repeating NQPs in the table

corresponding to the rdf:subject of the RN, and storing the NQP objects in those

columns. Thus, the object of the InspectionDate NQP in Figure 9.3 is stored within

the inspectionDate column in the department table (corresponding to the URI/Dept1

rdf:subject).

ii. Relational Storage of RNs with resource rdf:objects: In the case of resource reifica-

tion objects (i.e. resource rdf:objects), if the relationship between rdf:subject and

rdf:object of the RN is 1:N the NQPs correspond to columns in the table on the N-

side of the relationship; if the relationship is N:M the NQPs correspond to columns

in the join table that results from the translation of this N:M relationship.

b) RNs with single or multiple groups of repeating literal/resource NQPs

These RNs also have NQPs leading to literal or resource objects; however, the RN’s

NQPs need not be unique and can repeat for multiple object values. For example, if

a department location has been inspected multiple times, the corresponding reification



155

information in Figure 9.3 will include multiple NQPs, with a repeating predicate of In-

spectionDate, each of which has a unique inspection date object. This is an example of

a single group of repeating literal NQPs (since only one predicate is repeated. Multiple

groups of repeating predicates are scenarios where more than one predicate, each of which

are repeated a number of times, exist.)

i. Relational Storage of RNs with literal rdf:objects: RNs in this category with lit-

eral rdf:objects are stored within a relational database in a table with the following

columns (rdf:subject Table PK, rdf:predicate column, type, value) with the primary

key comprising all four columns. The first column is a foreign key that references

the primary key of the table corresponding to the RN’s rdf:subject (the department

table in our example), the second column is the one in the rdf:subject’s table that

corresponds to the RNs rdf:predicate (the value stored in this field is the rdf:object

value), the third column (type) stores the name of each NQP belonging to the RN,

and the fourth column (value) stores the object value of each of the NQPs.

ii. Relational Storage of RNs with resource rdf:objects: To store RNs containing resource

rdf:objects in a relational schema, the repeating NQPs and their objects are stored

within the type and value fields in the join table (which also contains the (rdf:subject

table PK, rdf:objectTablePK ) foreign key fields) for the rdf:subject, rdf:object pair.

c) RNs with Simple Literal Blank Nodes (SLBNs)

These are RNs whose non-quad predicates comprise simple literal blank nodes and an

example of one such RN is the one with the NameDetails NQP in Figure 9.3.

i. Relational Storage of RNs with literal rdf:objects: Relational storage of RNs in this

category with literal rdf:objects involves translating each of the predicates comprising

the SLBN non-quad predicate into appropriate columns in the table corresponding

to the RN’s rdf:subject (similar to the relationalization process in category (a) (i)

above). Thus, information pertaining to the NameDetails literal SLBN NQP in
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Figure 9.3 is stored within the columns nameGivenBy and nameGivenOn belonging

to the employee (rdf:subject) table in the relational schema in Figure 9.1.

ii. Relational Storage of RNs with resource rdf:objects: The procedure for storing RNs

with resource rdf:objects in this category within a relational database is identical to

the process detailed in category (a) (ii).

d) RNs with Complex Literal Blank Nodes (CLBNs)

RNs whose NQPs comprise of CLBNs fall into this category. A scenario where the

NameDetails reification SLBN NQP in Figure 9.3 consists of two, instead of one, GivenBy

predicates and one GivenOn predicate is an example of a CLBN NQP since there are

multiple non-unique (repeating) predicates belonging to the NameDetails blank node.

Relational Storage: Relational storage of predicates belonging to CLBN NQPs of RNs

with literal and resource rdf:objects in this category requires the same procedures as

detailed in category (b) (i) and (ii) respectively.

e) RNs with Resource Blank Nodes (RBNs)

This category comprises RNs whose NQPs consist of resource blank nodes. An example

of such an RN in Figure 9.3 is the RN with the ManagedBy NQP which is an RBN

consisting of multiple Manager entities which are resources, possibly of type employee.

i. Relational Storage of RNs with literal rdf:objects: These RNs are stored within a

relational database in a table with the following columns: (rdf:subject Table PK,

rdf:predicate column, predicate of RNs RBN NQP) where the third column is a for-

eign key referencing the table corresponding to the objects of the RBN. Thus, the

relational translation of the RN with the ManagedBy RBN NQP results in the addi-

tion of a new tuple in the project manager table with the fields (projId, projName,

managedBy) where projId is a foreign key referencing the primary key of the project

table and managedBy is a foreign key referencing the employee table.

ii. Relational Storage of RNs with resource rdf:objects: Relationalization of RBN RNs

with resource rdf:objects involves identifying the join table (containing the (rdf:subject
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table PK, rdf:objectTablePK ) foreign key fields) representing the relationship between

the rdf:subject and rdf:object classes, identifying the column that is a foreign key

referencing the table corresponding to the resource objects of the RBN NQP, and

adding the objects of the RBN NQP as new tuples in the identified table and column.

There are several other categories of reification nodes such as RNs that contain multiple

object classes, with or without unique predicates, RNs that contain nested blank nodes,

and RNs that contain a mixture of literals, resources, and blank nodes. Further, several

other scenarios where reification can be applied also exist such as reification of multivalued

attributes, reification of triples where the subject or object is a blank node. However, the

scope of the current version of D2RQ++ is restricted to the five categories described above

and the incorporation of these extended scenarios is planned in subsequent enhancements to

D2RQ++.

9.3.2 Mapping Language Extensions for Reification Support

For SPARQL queries and other tools that work with the virtual RDF store generated by

D2RQ++ to distinguish between regular tables/columns and tables/columns that cater ex-

clusively to reification data a mapping scheme that permits differentiation between the two

kinds of tables/columns needs to be established. In order to achieve this requirement, we fur-

ther extended D2RQ’s mapping language by adding several mapping constructs specifically

for reification support. These constructs are listed in Table 9.2.

The first two constructs are used to identify provenance data stored within the relational

database schema and map the same as reification nodes to ensure that the appropriate

reification quads are generated in the virtual RDF graph generated through the translation

of the relational schema. The last construct is used to identify those columns in the re-

lational schema that correspond to a reification node’s non-quad predicates and associate

those columns with the parent reification node.

In order to better understand the mapping details pertaining to reification information, let us
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Table 9.2: RDF Reification Extentions To D2RQ’s Mapping Constructs

Construct Description

d2rqrw:ReificationNode
(RN)

Construct used to map reification
nodes

d2rqrw:ReifiedPropertyBridge Construct used to associate relational
attribute corresponding to the predi-
cate of the triple that is being reified
(by the reification node) to the reifi-
cation node

d2rqrw:belongsToReification-
Node

Construct that helps associate a rela-
tional attribute corresponding to the
reification nodes non-quad predicate
to the reification node

consider the attributes employee.nameGivenBy, employee.nameGivenOn, department.inspect-

ionDate, and project manager.managedBy in Figure 9.1 that correspond to NQPs in reifi-

cation nodes. The first two attributes are examples of an RN with an SLBN NQP, the

third attribute is an example of an RN with a simple literal NQP, and the last attribute is

an example of an RN with an RBN NQP. These attributes are translated into appropriate

reification node predicates in the equivalent virtual RDF store using the following mapping

statements in D2RQ++’s mapping file.

map:employee_name_reif a d2rqrw:ReificationNode;

d2rq:belongsToClassMap map:employee;

d2rqrw:reifiedPropertyBridge map:employee.name;

map:employee_name_nameDetails a d2rqrw:SimpleLiteralBlankNodePropertyBridge;

d2rqrw:belongsToReificationNode map:employee_name_reif;

d2rq:property vocab:employee_name_nameDetails;

d2rq:propertyDefinitionLabel "employee Name NameDetails";

d2rq:pattern "@@employee.nameGivenBy@@/
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@@employee.nameGivenOn@@";

.

map:employee_nameGivenBy a d2rq:PropertyBridge;

d2rqrw:belongsToBlankNode map:employee_name_nameDetails;

d2rq:belongsToClassMap map:employee;

d2rq:property vocab:employee_nameGivenBy;

d2rq:propertyDefinitionLabel "employee nameGivenBy";

d2rq:column "employee.nameGivenBy";

Since the entry corresponding to nameGivenOn is similar to the nameGivenBy entry

above, it is omitted from the chapter. The mapping entry for department.inspectionDate is

very similar to the mapping for employee.nameGivenBy entry above except that the SLBNPB

entry is excluded here since the inspectionDate NQP is a direct predicate to its RN without

any intermediate blank nodes. The mapping entries for RNs with RBN NQPs such as the

one corresponding to the project manager.managedBy attribute are given below.

map:project_manager_projName_reif a d2rqrw:ReificationNode;

d2rq:belongsToClassMap map:project_manager;

d2rq:refersToClassMap map:employee;

d2rqrw:reifiedPropertyBridge map:project_manager.name;

map:project_manager_name_managedBy a d2rqrw:ResourceBlankNodePropertyBridge;

d2rqrw:belongsToReificationNode map:project_manager_projName_reif;

d2rq:property vocab:project_manager_name_managedBy;

d2rq:propertyDefinitionLabel "project_manager name managedBy";

d2rq:pattern "@@project_manager.manager@@/

@@ project_manager.manager @@";

.

map:project_manager_manager a d2rq:PropertyBridge;

d2rqrw:belongsToBlankNode map: project_manager_name_managedBy;

d2rq:belongsToClassMap map:project_manager;
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d2rq:refersToClassMap map:employee;

d2rq:property vocab:project_manager_manager;

d2rq:propertyDefinitionLabel "Project_Manager manager";

d2rq:column "project_manager.manager";

The above mappings enable reification information stored in relational database schemas

to be mapped to appropriate reification nodes with all intermediate edges (such as blank

node NQP edges) maintained, thus enabling accurate RDF graph transformations of rela-

tional reification attributes . Algorithms to insert, update, and delete information in RDF

reification nodes within the underlying relational database schema are presented in the fol-

lowing sub-section.

9.3.3 D2RQ++ Algorithms for Reification Nodes

Insert and Update operations on RNs belonging to categories (a) and (c) in section 9.3.1

are detailed in Algorithm 9.8. As can be seen in the algorithm, if the incoming reification

node is not mapped appropriately in D2RQ++’s mapping file or if there is a mismatch in

the map file definition and the actual node structure, the reification node is stored in the

native RDF store instead of in the relational database schema. This is also the case when

the rdf:predicate of the RN does not exist as a column in the table corresponding to the

rdf:subject, when the rdf:object value does not exist in the column corresponding to the

RN’s rdf:predicate, when any one of the NQP predicates (in case (a)) or predicates of the

SLBN NQP (in case ( b)) do not exist as columns in the rdf:subject’s table, or when any of

the NQP predicates or predicates of the SLBN NQP have non-null values.

When none of the above conditions exist and if the rdf:subject value of the RN does not exist

as a value in the rdf:subject’s table, an INSERT statement is issued as illustrated in line 5

of Algorithm 9.8. If the rdf:subject value exists in the appropriate table then an UPDATE

statement is issued as illustrated in line 11 of Algorithm 9.8.

Algorithm 9.9 highlights the process to delete reification nodes belonging to categories

(a) and (c) from either the RDBMS or the native RDF store as applicable.
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Algorithm 9.8 Insert/UpdateL/R/SLBNReificationNode

Input: An RDF Reification Node with literal/resource or SLBN NQPs
Output: A successful RDBMS/RDF Insert/Update

1: if ReificationNode (RN) definition not found in Map File OR
RN structure does not match Map File definition OR
RN’s rdf:predicate column not present in table corresponding to RN’s rdf:subject OR
One or more fields corresponding to RN’s NQPs or SLBN NQP’s predicates not present
in table then

2: Add RN to native RDF Store and Return
3: end if
4: if RN’s rdf:subject value does not exist in table corresponding to RN’s rdf:subject then
5: INSERT rdf:subject value, rdf:object value, and values of all NQP objects or objects

of SLBN NQPs into rdf:subject Table PK, column corresponding to RNs rdf:predicate,
and columns corresponding to non-quad predicates of RN and Return

6: end if
7: if RN’s rdf:subject value exists but rdf:object value does not exist in rdf:predicate column

of table then
8: Add RN to native RDF Store and Return
9: end if

10: if every column corresponding to RN’s NQP or SLBN NQP’s predicates is NULL then
11: UPDATE NQP columns SET values = objects of NQPs in rdf:subject table WHERE

PK = rdf:subject value and Return
12: else
13: Add RN to native RDF and Return
14: end if
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Algorithm 9.9 DeleteL/R/SLBNReificationNode

Input: An RDF Reification Node with literal/resource or SLBN NQPs
Output: A successful RDBMS/RDF Update/Removal

1: if ReificationNode (RN) definition not found in Map File OR
RN structure does not match Map File definition OR
RN’s rdf:predicate column not present in table corresponding to RN’s rdf:subject OR
One or more fields corresponding to RN’s NQPs or SLBN NQP’s predicates not present
in table then

2: Remove RN from native RDF Store and Return
3: end if
4: if RN’s rdf:subject value does not exist in table corresponding to RN’s rdf:subject then
5: Remove RN from native RDF Store and Return
6: end if
7: if RN’s rdf:subject value exists but rdf:object value does not exist in rdf:predicate column

of table then
8: Remove RN from native RDF Store and Return
9: end if

10: if every column corresponding to RN’s NQP or SLBN NQP’s predicates has value =
corresponding NQP’s object value then

11: UPDATE NQP columns SET values = NULL in rdf:subject table WHERE PK =
rdf:subject value and Return

12: else
13: Remove RN from native RDF Store and Return
14: end if
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The only situation when reification data is removed from the underlying relational database

is when every column value in columns corresponding to the RN’s NQPs or SLBN NQP’s

predicates is equal to the object values of the corresponding predicates in the reification

node. Under such a scenario, the appropriate columns in the table corresponding to the

RN’s rdf:subject are updated to NULL. In every other situation, the RN is stored in the na-

tive RDF store and hence, is deleted there. The DELETE DML operation is never executed

for reification nodes belonging to categories (a) and (c) since the RNs represent additional

information about a triple and deleting reification information does not delete the triple

which was reified. Thus, the triple, whose subject is stored as the primary key value in the

appropriate table continues to exist and, consequently, the corresponding tuple in the rela-

tional table continues to exist as well. Thus, though the algorithm implements the DELETE

operations, deletion never occurs in the relational database schema.

Insert/Update and Delete procedures can be inferred along similar lines as Algorithms 9.8

and 9.9 for RNs belonging to the other categories described in section 9.3.1 as well. Since

each of the algorithms presented in Sections 9.2 and 9.3 operate on individual triples, the

time complexity of algorithms pertaining to regular triples is a constant, a, as the algorithms

do not involve looping processes. Algorithms pertaining to blank nodes are dependent on

the number of predicates that belong to the blank nodes and, hence, have a time complexity

that is slightly higher and can be represented as a + bn, where n is the number of predicates

belonging to the blank node of interest, and b is the time taken to insert or update or delete

the information in each predicate of the blank node into the appropriate database (i.e., either

the RDBMS or the RDF store).

Each of the algorithms described in the previous sections have been implemented as a wrap-

per around the original D2RQ application in order to make the relational-to-RDF transfor-

mation bi-directional. Screenshots of D2R++-Server, an enhanced version of D2R-Server

(Bizer and Cyganiak 2006), which includes the ability to receive insert/update/delete re-

quests from the end users are presented in the next section as evidence of the bi-directionality

of the transformation process.
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9.4 Implementation Results

The hardware and software platforms used in the implementation of the various algorithms

discussed in the previous sections, and the performance experiments conducted using the

same, are described below.

9.4.1 Experimental Platform

Ubuntu 10.04 with 3 GB RAM and 2.00 GHz Intel Processor was used as the operating

system for our experiments. The translation and database tools used include D2RQ 0.7

to perform the uni-directional translation of a relational database schema to an equivalent

virtual RDF store, MySQL 5.1.37 to store the relational database schema to be translated

into an equivalent RDF store, and Jena 2.6.3 to house the native RDF store that stores

the RDBMS-rejected insert/update triples. Software development platforms used include

the Eclipse 3.4.0 IDE and Java 1.6 for the development of the algorithms and procedures

detailed in sections 9.2 and 9.3.

9.4.2 Experimental Dataset

The performance experiments conducted and the D2R++-Server GUI outputs presented

below are based on a subset of the Employee-Department-Project scenario illustrated in

Figure 9.1. Synthetic RDF triple datasets of various sizes corresponding to the relational

schema as defined by D2RQ’s mapping file were created through a data loading program

and populated using a Semantic Web Toolkit, Jena, in order to evaluate performance of the

insert/update operations performed by our bi-directional algorithms.

9.4.3 Experimental Results

For the purposes of our experimentation and proof of viability, we used Jena’s RDB Model as

the native RDF store that houses the RDBMS-rejected insert/update triples. Further, in our

experiments, the RDB Model is housed in the same MySQL database that houses the actual
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relational schema. However, in a production environment, the native RDF store will, in all

probability, be housed in a completely separate MySQL database. Additionally, the system

administrator may also prefer to use an in-memory model rather than a persistent model

for the native RDF store. These are design decisions that are left at the administrator’s

discretion.

In addition to extending the D2RQ application by including our insert/update algorithms, we

also extended the D2R-Server front-end GUI application to D2R++-Server which includes

provisions to add/remove RDF triples. Figures 9.4 through 9.13 illustrate the enhanced

D2R++-Server’s add/remove extensions and D2RQ++’s ability to propagate RDF triples,

as new tuples or updates to existing tuples, back to the underlying relational database or

native RDF store, as applicable.

Figure 9.4 illustrates the data in the Employee table prior to any new insert/update activities.

Figure 9.5 illustrates the enhanced D2R++-Server’s Add option and data in the same table

after a triple (with a brand new EmployeeID of 2) is added to the equivalent RDF model.

As can be seen, per the algorithms described in Section 9.2, this triple is inserted as a new

row in the underlying relational database.

Figures 9.6- 9.8 illustrate a scenario when a duplicate value (a second empName for empID

= 1) is specified for an existing column in the relational database. Under the Closed-World

Assumption, this value is either rejected or replaces the original value thereby resulting in loss

of information. In D2RQ++, which adheres to the Open-World Assumption, this duplicate

value is housed in the native RDF store instead, thereby preserving both the original value

as well as the new value as can be seen in the front-end screenshot illustrated in Figure 9.8.

Figures 9.9- 9.11 illustrate the remove operation which translates, wherever applicable,

to either a simple remove operation in the native RDF store (as in the scenario where the

second empName value of “Doe” is removed from empID = 1) or to an update (as in the

scenario where the original empName value of “John” is removed from empID = 1). In

the first case, since the triple to be removed exists in the RDF store, it is simply removed

from the store; in the second case, the triple translates into a specific row and column in
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Figure 9.4: Employee Table Data prior to DML Operations
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Figure 9.5: Addition of a Second Employee Record
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Figure 9.6: D2R++Server Screen illustrating Second Employee Name Addition
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Figure 9.7: MySQL database after Second Employee Name Addition
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Figure 9.8: D2R++Server Screen after Second Employee Name Addition
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the underlying relational database and, hence, the remove operation is propagated to the

database as an update operation that sets the appropriate column value to null.

Figures 9.12 and 9.13 illustrate the remove operation that translates to a delete operation

in the underlying relational database schema where the employee with EmployeeID = 2 is

removed.

Figures 9.14 through 9.21 illustrate the enhanced D2R++-Server’s add/remove extensions

and D2RQ++’s ability to propagate RDF blank nodes and reification nodes, as new tuples

or updates to existing tuples, back to the underlying relational database or native RDF

store, as applicable. Data in the employee table prior to any new insert/update activities

pertaining to blank/reification nodes included a single record for an employee named “John”

with no address information as can be seen in Figure 9.14.

Figures 9.15 and 9.16 illustrate the addition of the first address information in the form

of an SLBN through the D2R++-Server application, along with the corresponding updates

within the appropriate RDBMS schema or native RDF Store as applicable. Since the columns

corresponding to the predicates of the SLBN are all null initially, the objects of the SLBN

are updated against the “John” tuple within the relational database schema table, employee,

as illustrated in the MySQL Window in Figure 9.16.

Figures 9.17 and 9.18 illustrates the addition of a second address for “John” (through

the D2R++-Server application). As can be seen from the appropriate backend database

queries in the MySQL window, since the relational table employee has an address for “John”

already, the new address is added to the native RDF store.

Figures 9.19 - 9.21 illustrates D2RQ++’s reification support through the output from a

simple SPARQL query to list all triples. Since the relational schema used in our experimen-

tation did not include a column to store the reification data, and, consequently, there was

no mapping in the D2RQ++ map file that corresponds to inspectionDate, this reification

information is stored in the native RDF store instead of in the relational database schema

as illustrated in Figure 9.19. As shown in Figures 9.20 and 9.21, the output includes data

from the relational database schema (triplified) as well as from the native RDF store.



172

Figure 9.9: D2R++Server Screen illustrating Removal of Second Employee Name (“Doe”)
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Figure 9.10: MySQL database after Deletion of both Names for Employee 1
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Figure 9.11: D2R++Server Screen after Deletion of both Names for Employee 1
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Figure 9.12: D2R++Server Screen illustrating Removal of Second Employee (Employee 2)
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Figure 9.13: MySQL database after Deletion of Employee 2
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Figure 9.14: Initial Data in employee Table

The time taken for the insert/update/delete algorithms for regular RDF triples is il-

lustrated in Figure 9.22. For each operation (i.e., insert, update, and delete) performance

statistics for three different scenarios were generated. In the first scenario, the operation

under consideration only affects data in the underlying relational database; in the second

scenario, the only affected data are the ones that exist in the native RDF store; and the

third scenario is one in which 50% of the affected data are housed in the underlying rela-

tional database while the other 50% is housed in the native RDF store. Since the concept

of update in RDF stores is implemented through a delete-insert combination, performance

statistics for the second scenario (affected data existing only in the native RDF store) in

the second graph (performance statistics for update operations) are obtained by adding the

second scenario statistics from graphs 1 (insert) and 3 (delete)

As can be seen from Figure 9.22, the algorithms perform well for small datasets but are

somewhat time intensive for larger number of records. Further, while the performance of

Insert and Delete operations are similar for smaller datasets, the performance of the Insert
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Figure 9.15: D2R++Server Screen illustrating Addition of First Address SLBN
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Figure 9.16: MySQL Database after Addition of First Address SLBN

operation degrades faster than that of the Delete operation. This difference in time arises

because the Insert and Update algorithms need to check more conditions per triple than the

Delete algorithm. Further, as the database size grows, the time taken to identify whether a

particular subject or predicate exists in the RDBMS or the RDF store increases due to the

increased number of records. In the case of the Delete operation, as the triples are deleted

the database size decreases and, therefore, the subject and predicate searches operate on

fewer triples which, in turn, reduces the search time. Thus, the performance degradation is

not as severe as in the Insert scenario. In either case however, since the main purpose of

D2RQ++ is to provide insert/update/delete functionality in OnLine Transaction Process-

ing (OLTP) kind of applications with few insert/update/delete operations per transaction

and not to provide bulk data loading functionality, this performance degradation with in-

creasing data volumes is of no consequence. For the same reason, generating performance

statistics for DML operations on larger datasets is also considered unnecessary and beyond

D2RQ++’s objectives. It is expected that for bulk data loading, performance-optimized
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Figure 9.17: D2R++Server Screen illustrating Addition of Second Address SLBN
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Figure 9.18: MySQL Database after Addition of Second Address SLBN
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Figure 9.19: MySQL Database after Addition of inspectionDate Reification Information to
Department 10
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Figure 9.20: SPARQL Query Extracting RDBMS Data in RDF Form

data loader utilities provided with the underlying relational databases will be used rather

than D2RQ++.
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Figure 9.21: SPARQL Query Output Including inspectionDate Reification Information
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Figure 9.22: Performance of DML Operations



CHAPTER 10

FUTURE WORK AND CONCLUSION

The following subsections discuss future directions that include enhancements to R2D that

incorporate entity alignment techniques to enable Duplicate Table Detection (DTD), ex-

tending R2D’s semantics-preserving schema translation to a wider variety of RDF graphs

that include resources belonging to multiple classes and reification information, and extend-

ing R2D’s semantics-preserving query translation to encompass more features from the SQL

language, including ones that do not have a syntactic equivalent in the SPARQL language.

Future directions for D2RQ++ include enhancements that enable improvisation of the map-

ping and bi-directional translation process for mixed blank nodes, which consist of both

literal as well as resource objects, and support for SPARQL/Update, an update language

for RDF graphs, along with efficient, correct, and complete translation procedures from

SPARQL/Update statements into equivalent SQL DML statements. The chapter ends with

a brief discussion on R2D and some concluding remarks.

10.1 Future Directions for R2D

10.1.1 Entity Alignment/Matching in RDFMapFileGenerator

In the case of RDF graphs without RDFS/Ontological information, determination of table

similarity and duplicate table detection (DTD) is a crucial component of the RDFMapFile-

Generator algorithm. In the absence of the DTD component, the algorithm would effectively

generate one tablemap for each resource in the RDF graph, thereby resulting in an enormous

number of tables, most of which would be duplicates of each other. Further, trivial similarity

detection algorithms that identify similarity between a pair of tables only if the two tables

186
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are identical do not scale well and do not result in a meaningful equivalent relational schema

for a given RDF graph/store. In order to better understand how trivial/rigid similarity

detection algorithms fail, let us consider the two graphs, Graph A and Graph B, illustrated

in Figure 10.1.

Figure 10.1: Sample RDF Graphs A and B

We, as human experts, realize that, despite minor differences in the nomenclature of

predicates and in the way certain data (such as Address information) is represented, both

of the above graphs represent the same concept, namely, STUDENT, and, therefore, there

should only be one table for both of the graphs. The ideal table, per human intuition would

be as shown in Figure 10.2 (a). However, in the absence of any ontology alignment/schema

matching techniques, the RDFMapFileGenerator algorithm is not equipped with enough

information to arrive at the same conclusions as those of human experts. Thus, there are

two equivalent relational r2d:TableMaps, instead of one, generated for the two graphs by the

RDFMapFileGenerator with columns as shown in Figure 10.2 (b).

The graphs in Figure 10.3 illustrate examples of 1:N matching between attribute pairs.

In this scenario, the Phone predicate in Graph B semantically corresponds to both Phone1

and Phone2 predicates in Graph A. Further, the Address predicate in Graph B is simply a

concatenation of the Street, City, and State.

Thus, intuitively, the ideal table for this scenario should be as shown in Figure 10.4 (a)

with the Phone predicate of Graph B mapping to either the Phone1 or the Phone2 column in
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Figure 10.2: (a) Columns in the Ideal Table corresponding to Graphs A and B in Figure 10.1;
(b) Columns generated by RDFMapFileGenerator in the absence of ontology alignment
techniques

Figure 10.3: Sample RDF Graphs A and B

the ideal table and the Street, City, and State predicates of Graph A being concatenated to

form the values of the Address column in the ideal table. However, the actual tables generated

by RDFMapFileGenerator without the DTD component are as shown in Figure 10.4 (b).

For large RDF graphs with millions of triples, the number of r2d:TableMaps generated

by RDFMapFileGenerator would be massive and meaningless. Therefore, determination

and elimination of duplicate tablemaps is essential in order to arrive at a manageable and

meaningful relational equivalent of the given RDF graph. Consequently, it is imperative

that some form of ontology alignment/schema matching technique is included within the

RDFMapFileGenerator algorithm.



189

Figure 10.4: (a) Columns in the Ideal Table corresponding to Graphs A and B in Figure 10.3;
(b) Columns generated by RDFMapFileGenerator in the absence of ontology alignment
techniques

Fortunately, the problem of information integration, necessitated by the pervasiveness of se-

mantic heterogeneity across data sources, has been, and still is, the topic of numerous research

efforts (Dai, Koudas, Ooi, Srivastava, and Venkatasubramanian 2006; Bohannon, Elnahrawy,

Fan, and Flaster 2006; Warren and Tompa 2006; Wang, Englebienne, and Schlobach 2008;

Wartena and Brussee 2008) aimed at discovering innovative strategies for the same. These

strategies include application of name similarity, instance similarity, and relationship simi-

larity techniques in order to semantically align tables from various data sources. Thus our

DTD problem can be rephrased and rewritten as a schema matching problem as follows:

Duplicate Table Detection Problem Statement: Given two potential r2d:Table-

Maps, T1 and T2, each of which is composed of a set of attributes (columns) where {A11, A12,

A13, . . . , A1M} = Attributes(T1) and {A21, A22, A23, . . . , A2N} = Attributes(T2), the goal

is to determine the semantic similarity between T1 and T2.

As mentioned earlier, there are several techniques proposed by various researchers that

attempt to address the above problem statement. Some of these include instance-based
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schema matching techniques based on comparison of distributions of N-grams among in-

stances of compared attributes (Dai, Koudas, Srivastava, Tung, and Venkatasubramanian

2008), semantic techniques (Partyka, Khan, and Thuraisingham 2009a; Partyka, Khan, and

Thuraisingham 2009b) that are free from the syntactic requirements of N-Grams, and tech-

niques such as MultipleMatch (Partyka, Alipanah, Khan, Thuraisingham, and Shekhar 2008)

that cater to the 1:N attribute matching scenarios illustrated in Figure 10.3. The next phase

with regards to R2D will involve evaluating and, possibly, incorporating one or more of these

techniques to address and resolve the DTD problem described above.

10.1.2 Semantics-Preserving Schema Translation Augmentation

At the current time, R2D’s semantics-preserving schema translation is restricted to a sub-set

of RDF graphs that does not include reification information and the resources of which are

assumed to be instances of one and only one RDFS class. Future work includes extending

the semantics-preserving framework to include a wider variety of RDF graphs that do not

place any of the current restrictions on the resources comprising the graphs.

10.1.3 Semantics-Preserving Query Translation Augmentation

Future directions for R2D’s semantics-preserving query translation include expanding the

feature set of the SQL core language to include aggregate functions, pattern matching op-

erations, WHERE clauses, and outer join operations that are equivalent to optional graph

patterns in SPARQL. Additionally, the feasibility of translating features that, at the current

time, do not have syntactic equivalents in the SPARQL language, such as the ones listed in

Table 8.2, will be assessed and incorporated in the SQL core language where possible.

10.2 Future Directions For D2RQ++

As mentioned earlier, D2RQ++ was motivated by a need to enable DML operations to be

propagated back to the underlying relational database whenever possible and to continue to
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maintain the Open-World Assumption during the propagation process. One of the require-

ments of our bi-directional translation work was to reuse and extend existing uni-directional

solutions in the translational arena in order to avoid reinventing the wheel wherever pos-

sible. The requirements and objectives behind D2RQ++ were achieved by eliminating the

read-only restriction on the widely adopted uni-directional translation tool, D2RQ, thereby

enabling two-way interaction between the base RDBMS and the virtual RDF layer wrapping

the RDBMS. D2RQ++ is, thus, essentially a wrapper around D2RQ that transforms the

latter from a read-only application to a read-write application.

The D2RQ++ initiative can be realized by adopting one of two available paths. The first

path is one that does not place any restrictions on structural changes to the underlying

RDBMS and permits D2RQ++ to make any required changes. This method was considered

and rejected as it is believed that structural modifications to a relational schema should

be under the complete control of a responsible Database Administrator and should not be

initiated through any unsupervised, automated software program. The second alternative,

and the one adopted in the current version of D2RQ++, is one that does not permit any

structural changes to the underlying database. Some of the enhancements that are currently

being researched into with regards to D2RQ++ are as follows.

10.2.1 Provision of SPARQL/Update End Point and Query Translation Algo-

rithms

SPARQL/Update, a companion to the original (query-only) SPARQL Query Language for

RDF Stores, is a data manipulation language that enables insert, update, and delete opera-

tions on RDF graphs. The SPARQL/Update specification is currently under review with the

World Wide Web Consortium and is expected to become a recommendation in due course.

As a result, providing support for SPARQL/Update statements in subsequent versions of

D2RQ++ is a priority. Further, while there exists a large body of work in syntactically and

semantically correct transformation of SPARQL queries into equivalent SQL queries (Wang,

Zhang, Miao, and Lu 2010; Elliott, Cheng, Thomas-Ogbuji, and Ozsoyoglu 2009; Chebotko,
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Lu, and Fotouhi 2009; Wu, Chen, Wang, Wang, Mao, Tang, and Zhou 2006), and while

the semantics and complexity of SPARQL have been studied (Pérez, Arenas, and Gutierrez

2006b; Pérez, Arenas, and Gutierrez 2006a), there is no equivalent foundational work done in

translation of SPARQL/Update into SQL DML operations. In order to ensure the soundness

(correctness and completeness) of the D2RQ++ DML statements translation process, similar

rigorous mathematical foundations have to be derived and proved for SPARQL/Update.

10.2.2 Relational-to-RDF Transformation and Update of Nested & Mixed Blank

Nodes

At the current time, neither D2RQ’s nor D2RQ++’s mapping languages support the trans-

lation of relational data into mixed/nested blank nodes. However, since D2RQ is a read-only

application, the lack of support for translations into nested/mixed blank nodes is perfectly

acceptable. On the other hand, D2RQ++ is an application that accepts triples for update

into the corresponding underlying relational database. Therefore, it becomes necessary to

arrive at an appropriate translation and update process for such mixed/nested blank nodes.

Mapping constructs need to be designed to map, translate, and update such incoming nodes

into the underlying relational database.

10.3 Multi-Platform Support

From an implementation perspective, the present version of R2D is tightly integrated with

the opensource reporting tool, DataVision. Future efforts will include extending R2D to work

with other reporting tools such as Crystal Reports (Reports ), SQLMaestro (SQLMaestro ),

etc. D2RQ++ also has the same shortcoming of being dependent on Jena and its associated

API for RDF triples manipulation, and MySQL for housing the RDF triples data within

the underlying relational database. Therefore, future directions for D2RQ++ also include

providing support for various other platforms such as Sesame (Broekstra, Kampman, and
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Harmelen 2002), for RDF manipulation/storage and Oracle, DB2, Sybase, MS SQL Server,

etc. for storage of RDF data in the underlying relational database.

10.4 Discussion and Conclusion

The R2D framework presented in this dissertation is an attempt at integrating relational

concepts with the new semantic web concepts with the objective of permitting reusability

of tools that are based on a relational model. Since current storage methods for RDF stores

involve housing the triples in a relational database, some factions may consider R2D to be a

“double-wrapping” application that provides a relational wrapper around RDF stores that

are, in turn, stored in a relational database. However, almost every storage mechanism in-

volves the creation of a generic, non-application-specific < s, p, o > table that would make

the determination of the problem domain addressed by the model difficult without examining

the actual data. Further, querying data, using SQL, from such a generic table, to arrive at

meaningful information is not a trivial task. It would involve umpteen self-joins on the same

table and would require the presence of a domain expert with detailed knowledge of the data.

This is because, using these models, it would be impossible for a user to infer the schema and

the entities, the attributes, and relationship comprising the same. R2D offers the users the

ability to do just this and enables them to actually arrive at a complete Entity-Relationship

Diagram using the RDF-to-Relational Schema transformation process and fire SQL queries

against the same for information.

Further, R2D, unlike other mapping efforts, can generate an equivalent relational schema

even for “sloppy” data (in which ontological constructs/schema definitions are absent) through

extensive examination of the data to identify groups of instances that have mostly the same

properties associated with them. The degree of accuracy of the generated schema in the

absence of structural information may not be as high as when such information is available

due to uncertainties regarding similarity of the tables generated in the relational schema.

Decisions such as “how similar should two tables be before they are considered to be the same

and consolidated” depends, in the absence of structural information, on similarity thresh-
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olds set within the algorithm and the accuracy varies depending on the thresholds. Ontology

alignment and entity homogeneity/schema matching techniques such as (Dai, Koudas, Sri-

vastava, Tung, and Venkatasubramanian 2008) can be incorporated to improve the accuracy

in such scenarios, but are out of the scope of our research.

The R2D framework presented in this dissertation was motivated by a dearth in the num-

ber and variety of data modeling, management, and visualization tools for RDF graph data.

Though there are a several ongoing research efforts that attempt to address these deficiencies,

most of the efforts involve either the painstaking process of creating new tools or the uneco-

nomical alternative of duplicating data into existing relational stores raising a fresh crop of

concerns such as resource wastage and synchronization issues (Jiang, Ju, and Xu 2009). The

chief goal of R2D is to bridge the gap between RDF data sources and the relational model

in order to continue to leverage the benefits offered by existing traditional tools without

any customization for RDF. A JDBC interface aimed at accomplishing this goal through a

mapping between RDF Graph constructs and their equivalent relational counterparts was

presented. A detailed description of the mapping constructs, the system architecture, and

the modus operandi of the proposed system was discussed along with in depth discussion

on the algorithms comprising the R2D framework. An analogous set of mapping constructs

and transformation procedures to enable bi-directional data flow between virtual RDF stores

and their corresponding underlying physical relational databases were presented in the form

of D2RQ++.

The semantics preservation of R2D’s translation framework was presented through the proofs

of two theorems, one each for R2D’s schema transformation and query transformation pro-

cesses, and the feasibility of the both proposed frameworks was demonstrated through a

variety of experimental results in the form of screenshots and performance graphs.



APPENDIX A

SUPPORTING FUNCTIONS USED IN SEMANTICS-PRESERVATION

PROOFS

The various functions used in the proofs of R2D’s semantics-preserving characteristic are

detailed in this appendix. Tables A.1 through A.3 give a brief description of the functions

while the mathematical definitions of the same are highlighted in Figures A.1 through A.10

following the tables.

Table A.1. Theorem 1 - Supporting Functions

Function Description

GetRegTblID(R, r) Function that returns the name of the table in which

r exists as a value in the table’s primary key column.

GetNewRegTblRow(R,

(tid, tt))

Function that returns the greatest non-empty row

number in a regular table with name = tid and table

type = tt.

GetNewNonRegTblRow(R,

(tid, tt), t
′
id)

Function that returns the greatest non-empty row

number in a MVA/N:M (non-regular) table with name

= tid and table type = tt.

GetTmpNMColCnt(R, tid) Function that returns number of non-empty columns

in a temporary N:M table with name = tid.

GetTmpMVAColCnt(R, tid) Function that returns number of non-empty columns

in a temporary MVA table with name = tid.

Continued on Next Page. . .
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Table A.1. – Continued

Function Description

GetTmpTblRow(R, (tid, tt)) Function that returns the complete first row of a tem-

porary table with name = tid and table type = tt.

UpdateCell(R, r , p, kt, d) Function that updates the cell identified by row w of

the (p, kt) column in the regular table where r is a

primary key column value in row w , and sets the cell

value to d .

UpdateTmpCell(R, t , k , d) Function that updates the cell in an empty row in col-

umn k of table t and sets the cell value to d .

AddNMTblRowIP(R, tid, c) Function that moves data from a temporary N:M ta-

ble to an empty row in the appropriate non-temporary

N:M table upon the arrival of an NMI Edge that com-

pletes all required information corresponding to the

temporary N:M table row.

AddNMTblRowRP(R, tid, p, r) Function that moves data from a temporary N:M ta-

ble to an empty row in the appropriate non-temporary

N:M table upon the arrival of an NM Resource

(NMRT) Edge that completes all required information

corresponding to the temporary N:M table row.

AddMVATblRowIP(R, tid, c) Function that moves data from a temporary MVA ta-

ble to an empty row in the appropriate non-temporary

MVA table upon the arrival of an MVAI Edge that

completes all required information corresponding to

the temporary N:M table row.

Continued on Next Page. . .
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Table A.1. – Continued

Function Description

AddMVATblRowLP(R, tid, p, l) Function that moves data from a temporary MVA ta-

ble to an empty row in the appropriate non-temporary

MVA table upon the arrival of an MVA Attribute (Lit-

eral) (MVALT) Edge that completes all required in-

formation corresponding to the temporary MVA table

row.

AddMVATblRowRP(R, tid, p, r) Function that moves data from a temporary MVA ta-

ble to an empty row in the appropriate non-temporary

MVA table upon the arrival of an MVA Resource

(MVART) Edge that completes all required informa-

tion corresponding to the temporary MVA table row.

Table A.2. Theorem 1 - Temporary Triples Manipulation Functions

Function Description

GetTmpTblLitCols(R, r) Function that returns all literal-valued cells in the

temporary table named r .

AddTmpLColstoRegTbl(R, tid,

r ,w)

Function that moves all literal-valued cells in the

temporary table named r to the regular table, tid,

where r is added as a primary key value.

Continued on Next Page. . .
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Table A.2. – Continued

Function Description

GetTmpRColsWithP(R, r) Function that returns those resource-valued cells

in the temporary table named r , where the re-

source values in the temporary table exist as pri-

mary key values in some regular (non-temporary)

table.

AddTmpRColsWithPtoRegTbl(R,

tid, r ,w)

Function that moves those resource-valued cells

in the temporary table named r , where the re-

source values exists as primary key values in some

regular table, to the regular table, tid, where r is

added as a primary key value.

GetTmpRTblsWithrObj(R, r) Function that returns those resource cells that

have r as cell values from those temporary tables

where the resource after which the temporary ta-

ble is named exists as a primary key value in some

regular, non-temporary table.

UpdRRegTblsWithrObj(R, r ,

c,w)

Function that moves those resource cells that

have r as cell values from temporary tables into

corresponding regular tables which have, as pri-

mary key values, the resources after which the

temporary tables are named..

Continued on Next Page. . .
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Table A.2. – Continued

Function Description

GetValidTmpNMTbls(R, r) Function that returns the complete row from

those N:M temporary tables that have r as a cell

value and that have all other required informa-

tion (one NMI edge and two NMRT edges with

the second resource, r ′ existing as primary key

in some regular table) corresponding to the N:M

row available.

GetClassForTmpNMTblCells(R,

tid)

Function that returns the names of the tables in

which the resource values in row 1 of table tid

exist as primary key values.

AddTmpNMTblRowstoNMTbl(R,

r , c,w)

Function that adds r as a primary key column

value into a new row in table c and moves the

complete row from those temporary N:M tables

that have r as a cell value, and that have all other

required information corresponding to the N:M

row available, to an empty row in the appropriate

non-temporary N:M table.

GetValidTmpMVATbls(R, r) Function that returns the complete row from

those MVA temporary tables that have r as a

cell value and that have all other required infor-

mation (one MVAI edge, one MVALT edge, and

the MVART edge that has r as the object value)

corresponding to the MVA row available.

Continued on Next Page. . .
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Table A.2. – Continued

Function Description

AddTmpMVATblRowstoMVATbl(R,

r , c,w)

Function that adds r as a primary key column

value into a new row in table c and moves the

complete row from those temporary MVA tables

that have r as a cell value, and that have all other

required information corresponding to the MVA

row available, to an empty row in the appropriate

non-temporary MVA table.

Table A.3. Theorem 2 - Supporting Functions

Function Description

ST [[t̂]]φ Denotation of a relational table, t̂, that returns a forest

from an input graph, φ, with one tree per primary key

value in the table.

SFpk [[t̂]]φ Denotation of a primary key column value which re-

turns a tree, rooted at the primary key value, whose

edges are the attributes of the primary key value ex-

tracted from the input graph φ.

Continued on Next Page. . .
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Table A.3. – Continued

Function Description

JoinGraphs(φ1, φ2) Function that denotes the cartesian product of two ta-

bles. It takes as input the cross-product of the edges

of the two graphs representing the two tables, and for

each edge-pair in the set φ1 φ2, it replaces the root of

each edge with a vertex that is a concatenation of the

two original vertices v1 and v1
′.

CreateEdges(d , SrφS
) Function that creates an edge, (v1 , l , v2 ), for every el-

ement, rφS , in the set SrφS
such that v1 = rφS , and

l = v2 = d .

ExtColEdges(t̂ Tid ĉl, rφS ∪

SrφS
, φF )

Function that extracts the edge labeled t̂ Tid ĉl for every

element, rφS , in the set SrφS
from the graph φF . It

corresponds to selecting a column from a table in an

SQL query.

AttachEdge(erφS s) Function that takes set of tuples with each tuple con-

sisting of an edge, (v1 , l , v2 ), and a root node, rφS , and,

if v1 is contained in v1
′, creates a new edge, edgeb, such

v1
′ = rφS , l ′ = l , and v2

′ = v2 , thereby attaching the

edge, (v1 , l , v2 ), to the rootnode, rφS .

1NPrefixExists(l) Function that determines whether the given edge label,

l , corresponds to an edge representing a 1:N relation-

ship between the vertices connected by the edge label.

contains(t̂, s) Function that determines if a pattern, s , is contained

within the first argument, t̂.

GetRootNodes(φ) Function that returns all the root nodes in the forest

φ.

Continued on Next Page. . .
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Table A.3. – Continued

Function Description

GetColEdge(t̂ Tid ĉl, rφS , φ) Function that returns, from the graph φ, the edge

rooted at rφS and labeled t̂ Tid ĉl.

TableExists(r , t̂) Function that determines if the given table, t̂, is con-

tained in the root node, r . It is used to determine if t̂

has previously been encountered in some recursive step

during an SQL query processing.

ElementExists(l ′, v2
′, φ) Function that determines if an edge, (v1 , l , v2 ), such

that l = l ′ and v2 = v2
′ exists in the given graph φ.

AddTableLabel(φ, t̂) Function that, for every edge, (v1 , l , v2 ), in φ, prefixes

and suffixes the first vertex, v1 with the given table

name, t̂.

RemoveTableLabels(φ) Function that removes the concatenation character

used by AddTableLabel when prefixing and suffixing

the first vertex, v1 , of every edge, (v1 , l , v2 ), with a

table name, t̂.

GetRoot(φ) Function that returns the root of the given graph φ.

RemoveRoot(φ, r) Function that returns a graph that is obtained by re-

moving the root element, r , from the given graph φ.

AddRoot(φ, r) Function that adds the given root, r , to the given

graph, φ, through the addition of edges of the form

(r , rowlabel, v2 ) for every edge, (v1
′, l ′, v2

′), in φ

where v2 = v1
′.

AddTable(r , t̂) Function that adds the given table name, t̂, to the root

vertex, r .

Continued on Next Page. . .
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Table A.3. – Continued

Function Description

AddEdge(ŝ, l , φ) Function that, for every edge, (v1 , l , v2 ), in φ where v1

is not the root of the graph, φ, adds an edge of the

form (v1 , l , ŝ).

RemoveFirstChar(v̇) Function that returns v̇ with the first character re-

moved.

GetSubQueryAlias( ˙spq sq) Function that returns the alias name of the given sub-

query, ˙spq sq , by extracting the prefix of the alias name

of the first SELECT element in the sub-query.

IsTable(ρTR, t̂) Function that returns true if the given table name, t̂,

is a simple table or false if it is a derived table (or

sub-query).
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GetRegTblID(R, r) = {tid | R((tid, τr), (tid type, κpk),w) = r}

GetNewRegTblRow(R, (tid, tt)) = max{0,w |((tid, tt), (tid type, κpk),w) ∈ R←}

GetNewNonRegTblRow(R, (tid, tt), t
′
id) = max{0,w |((tid, tt), (t ′id type, κpk),w) ∈ R←}

GetTmpNMColCnt(R, tid) = | ((tid, τtmpnm), k , 1) ∈ R← |

GetTmpMVAColCnt(R, tid) = | ((tid, τtmpmva), k , 1) ∈ R← |

GetTmpTblRow(R, (tid, tt)) = {(((tid, tt), k , 1), d) | (((tid, tt), k , 1), d) ∈ R}

UpdateCell(R, r , p, kt, d) = {(((tid, τr), (p, kt),w), d) | R((tid, τr), (tid type, κpk),

w) = r}

UpdateTmpCell(R, t , k , d) = {((t , k ,w + 1), d) | w = max{0,w ′|(t , k ,w ′) ∈ R←}

AddNMTblRowIP(R, tid, c) = {(((c, τnm), (kid, κpk),w),R((tid, τtmpnm), (kid, κfk), 1))

| c = tid1 tid2,

w = GetNewNonRegTblRow(R, (c, τnm), tid1),

((tid, τtmpnm), (kid, κfk), 1) ∈ R←}

AddNMTblRowRP(R, tid, p, r) = {(((tidnm, τnm), (kid, κpk),w),R((tid, τtmpnm),

(kid, κfk), 1)), (((tidnm, τnm), (p, κfk),w), r)

| tidnm = R((tid, τtmpnm), (type, κpk), 1) = tid1 tid2,

w = GetNewNonRegTblRow(R, (tidnm, τnm), tid1),

((tid, τtmpnm), (kid, κfk), 1) ∈ R←,

((tid, τtmpnm), (type, κpk), 1) ∈ R←}

Figure A.1: Theorem 1 - Supporting Functions (a)
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AddMVATblRowIP(R, tid, c) = {(((c, τmva), (kid, κpk),w),R((tid, τtmpmva), (kid, κpk), 1)),

| c = t ′id p, kid 6= type,

w = GetNewNonRegTblRow(R, (c, τmva), t
′
id),

((tid, τtmpmva), (kid, κpk), 1) ∈ R←}

AddMVATblRowLP(R, tid, p, l) = {(((tidmva, τmva), (kid, κpk),w),R((tid, τtmpmva), (kid, κpk), 1)),

(((tidmva, τmva), (p, κpk),w), l)

| tidmva = R((tid, τtmpmva), (type, κpk), 1) = t ′id p, kid 6= type,

w = GetNewNonRegTblRow(R, (tidmva, τmva), t
′
id),

((tid, τtmpmva), (kid, κpk), 1) ∈ R←,

((tid, τtmpmva), (type, κpk), 1) ∈ R←}

AddMVATblRowRP(R, tid, p, r) = {(((tidmva, τmva), (kid, κpk),w),R((tid, τtmpmva), (kid, κpk), 1)),

(((tidmva, τmva), (p, κpk),w), r)

| tidmva = R((tid, τtmpmva), (type, κpk), 1) = t ′id p, kid 6= type,

w = GetNewNonRegTblRow(R, (tidmva, τmva), t
′
id),

((tid, τtmpmva), (kid, κpk), 1) ∈ R←,

((tid, τtmpmva), (type, κpk), 1) ∈ R←}

Figure A.2: Theorem 1 - Supporting Functions (b)
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GetTmpTblLitCols(R, r) = {(((r , τtmp), (kid, κr),w), d) |

(((r , τtmp), (kid, κr),w), d) ∈ R, d ∈ L}

AddTmpLColstoRegTbl(R, tid, r ,w) = {(((tid, τr), (tid type, κpk),w), r),

(((tid, τr), (kid, κr),w),R((r , τtmp), (kid, κr),w
′)) |

((r , τtmp), (kid, κr),w
′) ∈ R←,

R((r , τtmp), (kid, κr),w
′) ∈ L}

GetTmpRColsWithP(R, r) = {(((r , τtmp), (kid, κfk),w), d) |

(((r , τtmp), (kid, κr),w), d) ∈ R,

GetRegTblID(R, d) 6= {}}

AddTmpRColsWithPtoRegTbl(R, tid, r ,w) = {(((tid, τr), (tid type, κpk),w), r),

(((tid, τr), (kid, κfk),w), d) |

d = R((r , τtmp), (kid, κfk),w
′),

((r , τtmp), (kid, κfk),w
′) ∈ R←,

GetRegTblID(R, d) 6= {}}

GetTmpRTblsWithrObj(R, r) = {(((tid, τtmp), (kid, κfk),w), r) |

(((tid, τtmp), (kid, κfk),w), r) ∈ R,

GetRegTblID(R, tid) 6= {}}

UpdRRegTblsWithrObj(R, r , c,w) = {(((c, τr), (type, κpk),w), r),

(((tid, τr), (kid, κfk),w
′), r) |

R((t ′id, τtmp), (kid, κfk),w
′′) = r ,

R((tid, τr), (tid type, κpk),w
′) = t ′id}

Figure A.3: Theorem 1 - Temporary Literal and Resource Triples Manipulation Functions
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GetValidTmpNMTbls(R, r) = {(((tid, τtmpnm), k , 1), d) |

(((tid, τtmpnm), k ′, 1), r) ∈ R,

| GetClassForTmpNMTblCells(R, tid) |= 1,

GetTmpNMColCnt(R, tid) = 3}

GetClassForTmpNMTblCells(R, tid) = {GetRegTblID(R, r) | (((tid, τtmpnm), (kid, κfk), 1),

r) ∈ R}

AddTmpNMTblRowstoNMTbl(R, r , c,w) = {(((c, τr), (type, κpk),w), r),

(((tidnm, τnm), (kid, κpk),w),

R((tid, τtmpnm), (kid, κfk), 1)) |

((tidnm, τnm), k ,w) /∈ R,

tidnm = R((tid, τtmpnm), (type, κpk), 1),

(((tid, τtmpnm), k ′, 1), r) ∈ R,

| GetClassForTmpNMTblCells(R, tid) |= 1,

GetTmpNMColCnt(R, tid) = 3}

GetValidTmpMVATbls(R, r) = {(((tid, τtmpmva), k , 1), d) | R((tid, τtmpmva), k
′, 1)

= r , GetTmpMVAColCnt(R, tid) = 3}

AddTmpMVATblRowstoMVATbl(R, r , c,w) = {(((c, τr), (type, κpk),w), r),

(((tidmva, τmva), (kid, κpk),w),

R((tid, τtmpmva), (kid, κpk), 1)) |

kid 6= type, ((tidmva, τmva), k ,w) /∈ R←,

((tid, τtmpmva), (kid, κpk), 1) ∈ R←,

tidmva = R((tid, τtmpmva), (type, κpk), 1),

(((tid, τtmpmva), k
′, 1), r) ∈ R,

GetTmpMVAColCnt(R, tid) = 3}

Figure A.4: Theorem 1 - Temporary N:M and MVA Triples Manipulation Functions
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ExtColEdges(t̂ Tid ĉl, ∅, φF ) = ∅
(Base)

φe = ExtColEdges(t̂ Tid ĉl, SrφS
, φF )

GetColEdge(t̂ Tid ĉl, rφS , φF ) = {}
ExtColEdges(t̂ Tid ĉl, {rφS} ∪ SrφS

, φF ) =
(ρrφS IC - NoMatch)

{AddTableLabel(RemoveTableLabels(rφS ), t̂), t̂ Tid ĉl, dnull)} ∪ φe

φe = ExtColEdges(t̂ Tid ĉl, SrφS
, φF )

GetColEdge(t̂ Tid ĉl, rφS , φF ) = (v1 , l , v2 )

ExtColEdges(t̂ Tid ĉl, {rφS} ∪ SrφS
, φF ) =

(ρrφS IC - Match)

{(AddTableLabel(RemoveTableLabels(rφS ), t̂), l , v2 )} ∪ φe

Figure A.5: Theorem 2 Supporting Functions - ExtColEdges

AttachEdge(∅) = ∅
(Base)

φe = AttachEdge(erφS s) e = (v1 , l , v2 )

contains(rφS , v1 ) = false

AttachEdge({(e, rφS )} ∪ erφS s) = φe
(IC - NoContains)

φe = AttachEdge(erφS s) e = (v1 , l , v2 ) contains(rφS , v1 ) = true

AttachEdge({(e, rφS )} ∪ erφS s) = {(rφS , l , v2 )} ∪ φe
(IC - Contains)

Figure A.6: Theorem 2 Supporting Functions - AttachEdge
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IsTable(·, t̂) = false
(IsTable Base)

IsTable(ρTR, t̂) = TruthValue TR = d̂t t̂ = t̂al

IsTable(TR :: ρTR, t̂) = false
(IsTable SQMatch)

IsTable(ρTR, t̂) = TruthValue TR = d̂t t̂ 6= t̂al

IsTable(TR :: ρTR, t̂) = TruthValue
(IsTable SQNoMatch)

IsTable(ρTR, t̂) = TruthValue TR = t̂′ t̂ = t̂′

IsTable(TR :: ρTR, t̂) = true
(IsTable TMatch)

IsTable(ρTR, t̂) = TruthValue TR = t̂′ t̂ 6= t̂′

IsTable(TR :: ρTR, t̂) = TruthValue
(IsTable TNoMatch)

Figure A.7: Theorem 2 Supporting Functions - IsTable

˙spsl =?v̇ AS v̇al t̂al sq ˙spq = v̇al .substring(0, indexOf( Tid)− 1)

GetSubQueryAlias( ˙spq sq = ( ˙spsl :: ρSpSL, ρSpW)) = t̂al sq ˙spq

Figure A.8: Theorem 2 Supporting Functions - GetSubQueryAlias
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SFpk [[t̂]]φ = {v1 | (v1 , l , v2 ) ∈ φ, l = type, v2 = t̂}

ST [[t̂]]φ = {(v1 , t̂ Tid l , v2 ) | (v1 , l , v2 ) ∈ φ, v1 ∈ SFpk [[t̂]]φ,

l 6= type, 1NPrefixExists(l) = false}

∪ {(v2 , t̂ Tid l , v1 ) | (v1 , l , v2 ) ∈ φ, v2 ∈ SFpk [[t̂]]φ,

l 6= type, 1NPrefixExists(l) = true}

∪ {(v1 , t̂ Tid l , v1 ) | v1 ∈ SFpk [[t̂]]φ,

contains(t̂, Tid) = false}

JoinGraphs(φ1, φ2) = {(v1 v1
′, l , v2 ), (v1 v1

′, l ′, v2
′) | (v1 , l , v2 ) ∈ φ1,

(v1
′, l ′, v2

′) ∈ φ2}

CreateEdges(d , SrφS
) = {(rφS , d , d | rφS ∈ SrφS

}

1NPrefixExists(l) = {l .substring(0, 3) == 1N }

contains(t̂, s) = {t̂.indexOf(s) 6= −1}

ReplaceLabel(φ, lold, lnew) = {(v1 , lnew, v2 ) | (v1 , l , v2 ) ∈ φ, l = lold}

∪ {(v1 , l , v2 ) | (v1 , l , v2 ) ∈ φ, l 6= lold}

GetRootNodes(φ) = {v1 | (v1 , l , v2 ) ∈ φ}

GetColEdge(t̂ Tid ĉl, rφS , φ) = {(v1 , l , v2 ) | (v1 , l , v2 ) ∈ φ, v1 = rφS , l = t̂ Tid ĉl}

TableExists(r , t̂) = {r .indexOf( Tid t̂ Tid) 6= −1}

ElementExists(l ′, v2
′, φ) = {{(v1 , l , v2 ) | (v1 , l , v2 ) ∈ φ, l = l ′, v2 = v2

′} 6= {}}

Figure A.9: Theorem 2 - Other Support Functions (a)
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AddTableLabel(φ, t̂) = {t̂ Tidv1 Tid t̂ | v1 ∈ φ}

RemoveTableLabels(φ) = {v1 .replaceAll( Tid , “”) | (v1 , l , v2 ) ∈ φ}

GetRoot(φ, r) = {v1 | (v1 , l , v2 ) ∈ φ, {(v1
′′, l ′, v1 ) ∈ φ} = ∅}

RemoveRoot(φ, r) = {(v1 , l , v2 ) | (v1 , l , v2 ) ∈ φ, v1 6= r}

AddRoot(φ, r) = {(r , rowlabel, v2 ) | (v2 , l , v2
′) ∈ φ} ∪ φ

AddTable(r , t̂) = {r .concat( Tid t̂ Tid}

AddEdge(ŝ, l , φ) = {(v1 , l , ŝ) | (v1 , l
′, v2 ) ∈ φ, v1 6= GetRoot(φ)} ∪ φ

RemoveFirstChar(v̇) = {v̇.substring(1)}

Figure A.10: Theorem 2 - Other Support Functions (b)



APPENDIX B

SEMANTICS-PRESERVING SCHEMA MAPPING PROOFS

The denotational semantics of a relational schema and the proof rules comprising the

transformation of the canonical form of an RDF Graph into an equivalent relational schema

are listed in this appendix along with proofs of Theorem 1 and its five associated lemmas.
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E [[∅]] = ∅
(EmptySchema)

E [[R]] = φ t = (tid, τr) k = (kid, κpk)

E [[R(t , k ,w) 7→ d ]] = {(d , type, tid)} ∪ φ)
(KCRT)

E [[R]] = φ t = (tid, τr) k = (kid, kt) kt 6= κpk
1NPrefixExists(kid) = false R(t , (tid type, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d ′, kid, d)} ∪ φ
(NKCN1NRT)

E [[R]] = φ t = (tid, τr) k = (kid, kt) kt 6= κpk
1NPrefixExists(kid) = true R(t , (tid type, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d , kid, d ′)} ∪ φ
(NKC1NRT)

E [[R]] = φ t = (tid, τmva) tid = t ′id p k = (kid, κpk)

kid = t ′id type R(t , (k ′id, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d d ′, type, tid), (d d ′, kid, d)} ∪ φ
(MVATTC)

E [[R]] = φ t = (tid, τmva) tid = t ′id p

k = (kid, κpk) kid 6= t ′id type R(t , (t ′id type, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d ′ d , kid, d)} ∪ φ
(MVATNTC)

E [[R]] = φ t = (tid, τnm) tid = tid1 tid2 k = (kid, κpk)

kid = tid1 type R(t , (k ′id, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d d ′, type, tid), (d d ′, kid, d)} ∪ φ
(NMTTC)

E [[R]] = φ t = (tid, τnm) tid = tid1 tid2
k = (kid, κpk) kid 6= tid1 type R(t , (tid1 type, κpk),w) = d ′

E [[R(t , k ,w) 7→ d ]] = {(d ′ d , kid, d)} ∪ φ
(NMTNTC)

Figure B.1: Relational Schema Denotational Semantics - Non-Temporary Tables
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E [[R]] = φ t = (tid, τtmp) k = (kid, kt)

1NPrefixExists(kid) = false

E [[R(t , k ,w) 7→ d ]] = {(tid, kid, d)} ∪ φ
(TmpTN1N)

E [[R]] = φ t = (tid, τtmp) k = (kid, kt)

1NPrefixExists(kid) = true

E [[R(t , k ,w) 7→ d ]] = {(d , kid, tid)} ∪ φ
(TmpT1N)

E [[R]] = φ t = (tid, τtmpmva) k = (kid, kt)

E [[R(t , k ,w) 7→ d ]] = {(tid, kid, d)} ∪ φ
(MVATmpT)

E [[R]] = φ t = (tid, τtmpnm) k = (kid, kt)

E [[R(t , k ,w) 7→ d ]] = {(tid, kid, d)} ∪ φ
(NMTmpT)

Figure B.2: Relational Schema Denotational Semantics - Temporary Tables
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f (φ = ·) = ·
(BaseEmpty)

f (φ′) = R′ e = (r , type, c) w = GetNewRegTblRow(c) + 1

f (φ = φ′ ] e) = (((((R′ − GetTmpTblLitCols(R′, r))− GetTmpRColsWithP(R′, r))
(IT )

−GetTmpRTblsWithrObj(R′, r))− GetValidTmpMVATbls(R′, r)− GetValidTmpNMTbls(R′, r))

]AddTmpLColstoRegTbl(R′, c, r) ] AddTmpMVATblRowstoMVATbl(R′, r)

]AddTmpRColsWithPtoRegTbl(R′, c, r) ] UpdRRegTblsWithrObj(R′, r)

]AddTmpNMTblRowstoNMTbl(R′, r)

f (φ′) = R′ e = (r , p, l) GetRegTblID(R′, r) = {}
f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R′, (r , τtmp), (p, κr), l)

(LT NoClass)

f (φ′) = R′ e = (r , p, l) GetRegTblID(R′, r) 6= {}
1NPrefixExists(p) = false

f (φ = φ′ ] e) = R′ ] UpdateCell(R′, r , p, κr, l)
(LT WithClass)

Figure B.3: Translation of Instance Triples and Non-MVA Literal Triples
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f (φ′) = R′ e = (r , p, r ′) GetRegTblID(R′, r) = {}
1NPrefixExists(p) = false

f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R′, (r , τtmp), (p, κfk), r ′)
(RTNoCls(a)N1N)

f (φ′) = R′ e = (r , p, r ′) GetRegTblID(R′, r) = {}
1NPrefixExists(p) = true

f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R′, (r ′, τtmp), (p, κfk), r)
(RTNoCls(a)1N)

f (φ′) = R′ e = (r , p, r ′) GetRegTblID(R′, r) 6= {}
GetRegTblID(R′, r ′) = {} 1NPrefixExists(p) = false

f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R′, (r , τtmp), (p, κfk), r ′)
(RTNoCls(b)N1N)

f (φ′) = R′ e = (r , p, r ′) GetRegTblID(R′, r) 6= {}
GetRegTblID(R′, r ′) = {} 1NPrefixExists(p) = true

f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R′, (r ′, τtmp), (p, κfk), r)
(RTNoCls(b)1N)

f (φ′) = R′ e = (r , p, r ′) GetRegTblID(R′, r) 6= {}
GetRegTblID(R′, r ′) 6= {} 1NPrefixExists(p) = false

f (φ = φ′ ] e) = R′ ] UpdateCell(R′, r , p, κfk, r ′)
(RTClsN1N)

f (φ′) = R′ e = (r , p, r ′) GetRegTblID(R′, r) 6= {}
GetRegTblID(R′, r ′) 6= {} 1NPrefixExists(p) = true

f (φ = φ′ ] e) = R′ ] UpdateCell(R′, r ′, p, κfk, r)
(RTCls1N)

Figure B.4: Translation of Non-N:M Resource Triples
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f (φ′) = R′ e = (r l , type, c) GetTmpMVAColCnt(R′, r l) < 2

f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r l , τtmpmva), (type, κpk), c)
(MVAI CC<2)

f (φ′) = R′ e = (r l , type, c) GetTmpMVAColCnt(R′, r l) = 2

GetRegTblID(R′, r) = {}
f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r l , τtmpmva), (type, κpk), c)

(MVAI NoRC)

f (φ′) = R′ e = (r l , type, c) GetTmpMVAColCnt(R′, r l) = 2

GetRegTblID(R′, r) 6= {}
f (φ = φ′ ] e) = R′ − GetTmpTblRow(R′, (r l , τtmpmva))

(MVAI AllOK)

]AddMVATblRowIP(R′, r l , c)

f (φ′) = R′ e = (r l , p, l) GetTmpMVAColCnt(R′, r l) < 2

f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r l , τtmpmva), (p, κpk), l)
(MVALT CC<2)

f (φ′) = R′ e = (r l , p, l) GetTmpMVAColCnt(R′, r l) = 2

GetRegTblID(R, r) = {}
f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r l , τtmpmva), (p, κpk), l)

(MVALT NoRC)

f (φ′) = R′ e = (r l , p, l) GetRegTblID(R, r) 6= {}
GetTmpMVAColCnt(R′, r l) = 2

f (φ = φ′ ] e) = R′ − GetTmpTblRow(R′, (r l , τtmpmva))
(MVALT AllOK)

]AddMVATblRowLP(R′, r l , p, l)

Figure B.5: Multi-Valued (MVA) Literal Triples Translation (a)
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f (φ′) = R′ e = (r l , p, r) GetTmpMVAColCnt(R′, r l) < 2

f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r l , τtmpmva), (p, κpk), r)
(MVART CC<2)

f (φ′) = R′ e = (r l , p, r) GetTmpMVAColCnt(R′, r l) = 2

GetRegTblID(R, r) = {}
f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r l , τtmpmva), (p, κpk), r)

(MVART NoRC)

f (φ′) = R′ e = (r l , p, r) GetRegTblID(R, r) 6= {}
GetTmpMVAColCnt(R′, r l) = 2

f (φ = φ′ ] e) = R′ − GetTmpTblRow(R′, (r l , τtmpmva))
(MVART AllOK)

]AddMVATblRowRP(R′, r l , p, r)

Figure B.6: Multi-Valued (MVA) Literal Triples Translation (b)

Theorem 1 E [[f (φ) = φ]]

Proof.

Proof is by induction on the edge set of graph φ. Please note that πi, used in some of the

proofs that follow, is the project operator that is used to extract the ith component from

the tuple element.

Base Case: Assume φ = ∅. By Rule BaseEmpty, f (φ) = ∅ and by Rule EmptySchema,

E [[∅]] = ∅. Therefore, E [[f (φ)]] = φ.

Inductive Hypothesis: Assume that for every graph φ′ that has strictly fewer edges than

φ, E [[f (φ′)]] = φ′.

There is one inductive proof case for each case in the recursive definition of f :

Case (IT) : Assume φ = φ′]{e}, f (φ′) = R′, e = (r , type, c), and w = GetNewRegTblRow(

c) + 1.

Proof follows from Lemmas 1-5.
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f (φ′) = R′ e = (r r ′, type, c) GetTmpNMColCnt(R′, r r ′) < 2

f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r r ′, τtmpnm), (type, κpk), c)
(NMI CC<2)

f (φ′) = R′ e = (r r ′, type, c) GetTmpNMColCnt(R′, r r ′) = 2

| GetClassForTmpNMTblCells(R′, r r ′) |6= 2

f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r r ′, τtmpnm), (type, κpk), c)
(NMI NoRC)

f (φ′) = R′ e = (r r ′, type, c) GetTmpNMColCnt(R′, r r ′) = 2

| GetClassForTmpNMTblCells(R′, r r ′) |= 2

f (φ = φ′ ] e) = R′ − GetTmpTblRow(R′, (r r ′, τtmpnm))
(NMI AllOK)

]AddNMTblRowIP(R′, r r ′, c)

f (φ′) = R′ e = (r r ′, p, r ′′) GetRegTblID(R, r ′′) = {}
f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r r ′, τtmpnm), (p, κfk), r ′′)

(NMRT NoOC)

f (φ′) = R′ e = (r r ′, p, r ′′) GetRegTblID(R, r ′′) 6= {}
GetTmpNMColCnt(R′, r r ′) < 2

f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r r ′, τtmpnm), (p, κfk), r ′′)
(NMRT CC<2)

f (φ′) = R′ e = (r r ′, p, r ′′) GetRegTblID(R, r ′′) 6= {} GetTmpNMColCnt(R′, r r ′) = 2

GetClassForTmpNMTblCells(R′, r r ′) = {}
f (φ = φ′ ] e) = R′ ] UpdateTmpCell(R, (r r ′, τtmpnm), (p, κfk), r ′′)

(NMRT NoSOC)

f (φ′) = R′ e = (r r ′, p, r ′′) GetRegTblID(R, r ′′) 6= {}

GetTmpNMColCnt(R′, r r ′) = 2

GetClassForTmpNMTblCells(R′, r r ′) 6= {}
f (φ = φ′ ] e) = R′ − GetTmpTblRow(R′, (r r ′, τtmpnm))

(NMRT AllOK)

]AddNMTblRowRP(r r ′, p, r ′′)

Figure B.7: Translation of Resource Triples sharing a Many-to-Many (N:M) Relationship
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Case (LT NoClass) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r , p, l), and GetRegTblID(

R′, r) = {}. By Rule (LT NoClass), f (φ) = R′]UpdateTmpCell(R′, (r , τtmp), (p, κr), l).

By definition of UpdateTmpCell, f (φ) = R′]{e} where e = (((r , τtmp), (p, κr),w +1), l)

for some unoccupied row w + 1. From the Canonical Form of RDF Graphs, it can be

observed that 1NPrefixExists(p) = false for all literal triples. Therefore, by Rule

(TmpTN1N), E [[f (φ)]] = E [[R′ ] {e}]] = {(r , p, l)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (LT WithClass) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r , p, l), GetRegTblID(R′,

r) 6= {}, and 1NPrefixExists(p) = false. By Rule (LT WithClass), f (φ) =

R′ ] UpdateCell(R′, r , p, κr, l). By definition of UpdateCell, f (φ) = R′ ] {e} where

e = (((tid, τr), (p, κr),w), l) for tid and w such that R′((tid, τr), (tid type, κpk),w) = r .

By Rule (NKCN1NRT), E [[f (φ)]] = E [[R′]{e}]] = {(r , p, l)}]E [[R′]] = {e}]E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (RTNoCls(a)N1N) : Assume φ = φ′]{e}, f (φ′) = R′, e = (r , p, r ′), GetRegTblID(

R′, r) = {}, and 1NPrefixExists(p) = false. By Rule (RTNoCls(a)N1N), f (φ) =

R′] UpdateTmpCell(R, (r , τtmp), (p, κfk), r
′). By definition of UpdateTmpCell, f (φ) =

R′ ]{e} where e = (((r , τtmp), (p, κfk),w + 1), r ′) for some uncoocupied row w + 1. By

Rule (TmpTN1N), E [[f (φ)]] = E [[R′ ] {e}]] = {(r , p, r ′)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (RTNoCls(a)1N) : Assume φ = φ′]{e}, f (φ′) = R′, e = (r , p, r ′), GetRegTblID(R′,

r) = {}, and 1NPrefixExists(p) = true. By Rule (RTNoCls(a)1N), f (φ) = R′]

UpdateTmpCell(R, (r ′, τtmp), (p, κfk), r). By definition of UpdateTmpCell, f (φ) = R′ ]

{e} where e = (((r ′, τtmp), (p, κfk),w +1), r) for some uncoocupied row w +1. By Rule

(TmpT1N), E [[f (φ)]] = E [[R′ ] {e}]] = {(r , p, r ′)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.
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Case (RTNoCls(b)N1N) : Assume φ = φ′]{e}, f (φ′) = R′, e = (r , p, r ′), GetRegTblID(

R′, r) 6= {}, GetRegTblID( R′, r ′) = {}, and 1NPrefixExists(p) = false. By Rule

(RTNoCls(b)N1N), f (φ) = R′ ] UpdateTmpCell(R, (r , τtmp), (p, κfk), r
′). By defi-

nition of UpdateTmpCell, f (φ) = R′ ] {e} where e = (((r , τtmp), (p, κfk),w + 1), r ′)

for some uncoocupied row w + 1. By Rule (TmpTN1N), E [[f (φ)]] = E [[R′ ] {e}]] =

{(r , p, r ′)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (RTNoCls(b)1N) : Assume φ = φ′]{e}, f (φ′) = R′, e = (r , p, r ′), GetRegTblID(R′,

r) 6= {}, GetRegTblID(R′, r ′) = {}, and 1NPrefixExists(p) = true. By Rule

(RTNoCls(b)1N), f (φ) = R′] UpdateTmpCell(R, (r ′, τtmp), (p, κfk), r). By defini-

tion of UpdateTmpCell, f (φ) = R′ ] {e} where e = (((r ′, τtmp), (p, κfk),w + 1), r)

for some uncoocupied row w + 1. By Rule (TmpT1N), E [[f (φ)]] = E [[R′ ] {e}]] =

{(r , p, r ′)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (RTClsN1N) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r , p, r ′), GetRegTblID(R′, r ′)

6= {}, GetRegTblID(R′, r ′) = {}, and 1NPrefixExists(p) = false. By Rule (RTCls-

N1N), f (φ) = R′] UpdateCell(R′, r , p, κfk, r ′). By definition of UpdateCell, f (φ) =

R′]{e} where e = (((tid, τr), (p, κfk),w), r ′) for tid and w such that R′((tid, τr), (tid type,

κpk),w) = r . By Rule (NKCN1NRT), E [[f (φ)]] = E [[R′ ] {e}]] = {(r , p, r ′)} ] E [[R′]] =

{e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (RTCls1N) : Assume φ = φ′ ]{e}, f (φ′) = R′, e = (r , p, r ′), GetRegTblID(R′, r ′) 6=

{}, GetRegTblID(R′, r ′) = {}, and 1NPrefixExists(p) = true. By Rule (RTCls1N),

f (φ) = R′] UpdateCell(R′, r ′, p, κfk, r). By definition of UpdateCell, f (φ) = R′]{e}

where e = (((tid, τr), (p, κfk),w), r) for tid and w such that R′((tid, τr), (tid type, κpk),

w) = r ′. By Rule (NKC1NRT), E [[f (φ)]] = E [[R′ ] {e}]] = {(r , p, r ′)} ] E [[R′]] =

{e} ] E [[f (φ′)]].
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By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (MVAI CC<2) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r l , type, c), and

GetTmpMVAColCnt(R′, r l) < 2. By Rule (MVAI CC<2), f (φ) = R′] UpdateTmpCell(

R, (r l , τtmpmva), (type, κpk), c). By definition of UpdateTmpCell, f (φ) = R′]{e} where

e = (((r l , τtmpmva), (type, κpk), 1), c). By Rule (MVATmpT), E [[f (φ)]] = E [[R′]{e}]] =

{(r l , type, c)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (MVAI NoRC) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r l , type, c), and

GetTmpMVAColCnt(R′, r l) = 2, and GetRegTblID(R′, r) = {}. By Rule (MVAI

NoRC), f (φ) = R′ ] UpdateTmpCell(R, (r l , τtmpmva), (type, κpk), c). By definition

of UpdateTmpCell, f (φ) = R′ ] {e} where e = (((r l , τtmpmva), (type, κpk), 1), c). By

Rule (MVATmpT), E [[f (φ)]] = E [[R′]{e}]] = {(r l , type, c)}]E [[R′]] = {e}]E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (MVAI AllOK) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r l , type, c),

GetTmpMVAColCnt(R′, r l) = 2, and GetRegTblID(R′, r) 6= {}. By Rule (MVAI Al-

lOK), f (φ) = R′ − GetTmpTblRow(R′, (r l , τtmpmva))] AddMVATblRowIP(R′, r l , c). By

definition of GetTmpTblRow and AddMVATblRowIP, f (φ) = R′ − {d} ] {e} where d =

{(((r l , τtmpmva), (kid, κpk), 1), r), (((r l , τtmpmva), (k ′id, κpk), 1), l)}, and e = {(((c, τmva),

(kid, κpk), w), r), (((c, τmva), (k ′id, κpk), w), l) for some unoccupied row, w . By Rule

(MVATmpT), (MVATTC), and (MVATNTC), E [[f (φ)]] = E [[R′ − {d} ] {e}]] =

E [[R′]] − {(r l , kid, r), (r l , k ′id, l)} ∪ {(r l , type, c), (r l , kid, r), (r l , k ′id, l)} = E [[R′]] ∪

{(r l , type, c)} = E [[f (φ′)]] ∪ {e}.

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = φ′ ∪ {e} = φ.

Case (MVALT CC<2) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r l , p, l), and

GetTmpMVAColCnt(R′, r l) < 2. By Rule (MVALT CC<2), f (φ) = R′]UpdateTmpCell(

R, (r l , τtmpmva), (p, κpk), l). By definition of UpdateTmpCell, f (φ) = R′ ] {e} where
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e = (((r l , τtmpmva), (p, κpk), 1), l). By Rule (MVATmpT), E [[f (φ)]] = E [[R′ ] {e}]] =

{(r l , p, l)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (MVALT NoRC) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r l , p, l), and

GetTmpMVAColCnt(R′, r l) = 2, and GetRegTblID(R′, r) = {}. By Rule (MVALT

NoRC), f (φ) = R′ ] UpdateTmpCell(R, (r l , τtmpmva), (p, κpk), l). By definition of

UpdateTmpCell, f (φ) = R′ ] {e} where e = (((r l , τtmpmva), (p, κpk), 1), l). By Rule

(MVATmpT), E [[f (φ)]] = E [[R′ ] {e}]] = {(r l , p, l)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (MVALT AllOK) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r l , p, l), and

GetTmpMVAColCnt(R′, r l) = 2, and GetRegTblID(R′, r) 6= {}. By Rule (MVALT

AllOK), f (φ) = R′−GetTmpTblRow(R′, (r l , τtmpmva))] AddMVATblRowLP(R′, r l , p, l).

By definition of GetTmpTblRow and AddMVATblRowLP, f (φ) = R′ − {d} ] {e} where

d = {(((r l , τtmpmva), (type, κpk), 1), c), (((r l , τtmpmva), (kid, κpk), 1), r)}, and e = {(((c,

τmva), (kid, κpk), w), r), (((c, τmva), (p, κpk), w), l) for some unoccupied row, w . By Rule

(MVATmpT), (MVATTC), and (MVATNTC), E [[f (φ)]] = E [[R′ − {d} ] {e}]] =

E [[R′]] − {(r l , type, c), (r l , kid, r)} ∪ {(r l , type, c), (r l , kid, r), (r l , p, l)} = E [[R′]] ∪

{(r l , p, l)} = E [[f (φ′)]] ∪ {e}.

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = φ′ ∪ {e} = φ.

Case (MVART CC<2) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r l , p, r), and

GetTmpMVAColCnt(R′, r l) < 2. By Rule (MVART CC<2), f (φ) = R′]UpdateTmpCell(

R, (r l , τtmpmva), (p, κpk), r). By definition of UpdateTmpCell, f (φ) = R′ ] {e} where

e = (((r l , τtmpmva), (p, κpk), 1), r). By Rule (MVATmpT), E [[f (φ)]] = E [[R′ ] {e}]] =

{(r l , p, r)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.
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Case (MVART NoRC) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r l , p, r), and

GetTmpMVAColCnt(R′, r l) = 2, and GetRegTblID(R′, r) = {}. By Rule (MVART

NoRC), f (φ) = R′ ] UpdateTmpCell(R, (r l , τtmpmva), (p, κpk), l). By definition of

UpdateTmpCell, f (φ) = R′ ] {e} where e = (((r l , τtmpmva), (p, κpk), 1), r). By Rule

(MVATmpT), E [[f (φ)]] = E [[R′ ] {e}]] = {(r l , p, r)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (MVART AllOK) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r l , p, l), and

GetTmpMVAColCnt(R′, r l) = 2, and GetRegTblID(R′, r) 6= {}. By Rule (MVART

AllOK), f (φ) = R′−GetTmpTblRow(R′, (r l , τtmpmva))] AddMVATblRowLP(R′, r l , p, r).

By definition of GetTmpTblRow and AddMVATblRowLP, f (φ) = R′−{d} ] {e} where d =

{(((r l , τtmpmva), (type, κpk), 1), c), (((r l , τtmpmva), (kid, κpk), 1), l)}, and e = {(((c, τmva),

(p, κpk), w), r), (((c, τmva), (kid, κpk), w), l) for some unoccupied row, w . By Rule

(MVATmpT), (MVATTC), and (MVATNTC), E [[f (φ)]] = E [[R′ − {d} ] {e}]] =

E [[R′]] − {(r l , type, c), (r l , kid, l)} ∪ {(r l , type, c), (r l , p, r), (r l , kid, l)} = E [[R′]] ∪

{(r l , p, r)} = E [[f (φ′)]] ∪ {e}.

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = φ′ ∪ {e} = φ.

Case (NMI CC<2) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r r ′, type, c), and

GetTmpNMColCnt(R′, r r ′) < 2. By Rule (NMI CC<2), f (φ) = R′] UpdateTmpCell(R,

(r r ′, τtmpnm), (type, κpk), c). By definition of UpdateTmpCell, f (φ) = R′ ] {e} where

e = (((r r ′, τtmpnm), (type, κpk), 1), c). By Rule (NMTmpT), E [[f (φ)]] = E [[R′ ] {e}]] =

{(r r ′, type, c)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (NMI NoRC) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r r ′, type, c),

GetTmpNMColCnt(R′, r l) = 2, and | GetClassForTmpNMTblCells(R′, r r ′) |6= 2. By

Rule (NMI NoRC), f (φ) = R′ ] UpdateTmpCell(R, (r r ′, τtmpnm), (type, κpk), c). By

definition of UpdateTmpCell, f (φ) = R′]{e} where e = (((r r ′, τtmpnm), (type, κpk), 1),
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c). By Rule (NMTmpT), E [[f (φ)]] = E [[R′ ] {e}]] = {(r r ′, type, c)} ] E [[R′]] = {e} ]

E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (NMI AllOK) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r r ′, type, c), and

GetTmpNMColCnt(R′, r l) = 2, and | GetClassForTmpNMTblCells(R′, r r ′) |= 2. By

Rule (NMI AllOK), f (φ) = R′ − GetTmpTblRow(R′, (r r ′, τtmpnm))] AddNMTblRowIP(

R′, r r ′, c). By definition of GetTmpTblRow and AddNMTblRowIP, f (φ) = R′−{d} ] {e}

where d = {(((r r ′, τtmpnm), (kid, κfk), 1), r), (((r r ′, τtmpnm), (k ′id, κfk), 1), r ′)}, and e =

{(((c, τnm), (kid, κpk), w), r), (((c, τnm), (k ′id, κpk), w), r ′)} for some unoccupied row, w .

By Rule (NMTmpT), (NMTTC), and (NMTNTC), E [[f (φ)]] = E [[R′ − {d} ] {e}]] =

E [[R′]]−{(r r ′, kid, r), (r r ′, k ′id, r
′)}∪{(r r ′, type, c), (r r ′, kid, r), (r r ′, k ′id, r

′)} = E [[R′]]

∪{(r r ′, type, c)} = E [[f (φ′)]] ∪ {e}.

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = φ′ ∪ {e} = φ.

Case (NMRT NoOC) : Assume φ = φ′ ] {e}, f (φ′) = R′, e = (r r ′, p, r ′′), and

GetRegTblID(R′, r ′′) = {}. By Rule (NMRT NoOC), f (φ) = R′] UpdateTmpCell(R,

(r r ′, τtmpnm), (p, κfk), r
′′). By definition of UpdateTmpCell, f (φ) = R′ ] {e} where

e = (((r r ′, τtmpnm), (p, κfk), 1), r ′′). By Rule (NMTmpT), E [[f (φ)]] = E [[R′ ] {e}]] =

{(r r ′, p, r ′′)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (NMRT CC<2) : Assume φ = φ′ ]{e}, f (φ′) = R′, e = (r r ′, p, r ′′), GetRegTblID(

R′, r ′′) 6= {}, and GetTmpNMColCnt(R′, r r ′) < 2. By Rule (NMRT CC<2), f (φ) =

R′] UpdateTmpCell(R, (r r ′, τtmpnm), (p, κfk), r
′′). By definition of UpdateTmpCell,

f (φ) = R′ ] {e} where e = (((r r ′, τtmpnm), (p, κfk), 1), r ′′). By Rule (NMTmpT),

E [[f (φ)]] = E [[R′ ] {e}]] = {(r r ′, p, r ′′)} ] E [[R′]] = {e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.
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Case (NMRT NoSOC) : Assume φ = φ′]{e}, f (φ′) = R′, e = (r r ′, p, r ′′), GetRegTblID(

R′, r ′′) 6= {}, and GetTmpNMColCnt(R′, r r ′) = 2, and GetClassForTmpNMTblCells(R′,

r r ′) = {}. By Rule (NMRT NoSOC), f (φ) = R′] UpdateTmpCell(R, (r r ′, τtmpnm),

(p, κfk), r
′′). By definition of UpdateTmpCell, f (φ) = R′]{e} where e = (((r r ′, τtmpnm),

(p, κfk), 1), r ′′). By Rule (NMTmpT), E [[f (φ)]] = E [[R′]{e}]] = {(r r ′, p, r ′′)}]E [[R′]] =

{e} ] E [[f (φ′)]].

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = {e} ] φ′ = φ.

Case (NMRT AllOK) : Assume φ = φ′]{e}, f (φ′) = R′, e = (r r ′, p, r ′′), GetRegTblID(

R′, r ′′) 6= {}, GetTmpNMColCnt(R′, r r ′) = 2, and GetClassForTmpNMTblCells(R′, r r ′)

6= {}. By Rule (NMRT AllOK), f (φ) = R′ − GetTmpTblRow(R′, (r r ′, τtmpnm)) ]

AddNMTblRowRP(R′, r r ′, p, r ′′). By definition of GetTmpTblRow and AddNMTblRowRP,

f (φ) = R′ − {d} ] {e} where d = {(((r r ′, τtmpnm), (type, κpk), 1), c), (((r r ′, τtmpnm),

(kid, κfk), 1), r ′′′)}, and e = {(((c, τnm), (kid, κpk), w), r ′′′), (((c, τnm), (p, κpk), w), r ′′)}

for some unoccupied row, w . By Rule (NMTmpT), (NMTTC), and (NMTNTC),

E [[f (φ)]] = E [[R′−{d}]{e}]] = E [[R′]]−{(r r ′, type, c), (r r ′, kid, r
′′′)}∪{(r r ′, type, c),

(r r ′, kid, r
′′′), (r r ′, p, r ′′)} = E [[R′]] ∪ {(r r ′, p, r ′′)} = E [[f (φ′)]] ∪ {e}.

By inductive hypothesis, E [[f (φ′)]] = φ′. Therefore, E [[f (φ)]] = φ′ ∪ {e} = φ.

�

Lemma 1 For every instance edge e of type (r , type, c), and an unoccupied row, w, in the

table corresponding to c in R,

E [[AddTmpLColstoRegTbl(R, c, r ,w)− GetTmpTblLitCols(R, r)]] = {e}

Proof.

=⇒ : Let ((((c, τr), (c type, κpk),w), r), (((c, τr), (kid, κr),w),R((r , τtmp), (kid, κr),w
′))) be

an element in the set AddTmpLColstoRegTbl(R, c, r ,w). Let R((r , τtmp), (kid, κr),w
′) =
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d . From the definition of AddTmpLColstoRegTbl(R, c, r ,w), it can be observed that

((r , τtmp), (kid, κr),w
′) ∈ R← and d ∈ L. However, from the definition of

GetTmpTblLitCols(R, r), it can be observed that, whenever ((r , τtmp), (kid, κr),w
′) ∈

R← and d ∈ L, (((r , τtmp), (kid, κr),w
′), d) is an element of the set GetTmpTblLitCols(

R, r).

Thus, for every element e′ = ((((c, τr), (c type, κpk),w), r), (((c, τr), (kid, κr),w), d)) ∈

AddTmpLColstoRegTbl(R, c, r ,w), there exists an element e′′ = (((r , τtmp), (kid, κr),w
′),

d) ∈ GetTmpTblLitCols(R, r).

⇐= : Let R((r , τtmp), (kid, κr),w
′) = d (where d ∈ L) be an element in the set

GetTmpTblLitCols(R, r). As can be observed from the definition of

AddTmpLColstoRegTbl(R, c, r ,w), the values r and R((r , τtmp), (kid, κr),w
′) are added

to columns type and kid, respectively, in row w of table, c, i.e. R((c, τr), (c type, κpk),

w) = r and R((c, τr), (kid, κr),w) = d .

Thus, for every element e′′ = (((r , τtmp), (kid, κr),w
′), d) ∈ GetTmpTblLitCols(R, r),

there exists an element e′ = ((((c, τr), (c type, κpk),w), r), (((c, τr), (kid, κr),w), d)) ∈

AddTmpLColstoRegTbl(R, c, r ,w).

For any corresponding pair e′ and e′′, we have AddTmpLColstoRegTbl(R, c, r ,w)−

GetTmpTblLitCols(R, r) = {π1e′, π2e′}−{e′′} = {(((c, τr), (c type, κpk),w), r), (((c, τr), (kid,

κr), w), d)} − {(((r , τtmp), (kid, κr),w
′), d)}.

From Rule (TmpTN1N), it can be observed that E [[R((r , τtmp), (kid, κr),w
′) 7→ d ]] =

{(r , kid, d)}. From Rule (KCRT), it can be observed that E [[R((c, τr), (c type, κpk),w) 7→

r ]] = {(r , type, c)} and from Rule (NKCN1NRT), it can be seen that E [[R((c, τr), (kid, κr),w)

7→ d ]] = {(r , kid, d)}.
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Thus, E [[AddTmpLColstoRegTbl(R, c, r ,w)−GetTmpTblLitCols(R, r)]] = E [[{π1e′, π2e′}−

{e′′}]] =

{(r , type, c), (r , kid, d)} − {(r , kid, d)} = {(r , type, c)} = {e}.

�

Lemma 2 For every instance edge e of type (r , type, c), and an unoccupied row, w, in the

table corresponding to c in R,

E [[AddTmpRColsWithPtoRegTbl(R, c, r ,w)− GetTmpRColsWithP(R, r)]] = {e}

Proof.

=⇒ :

Let ((((c, τr), (c type, κpk),w), r), (((c, τr), (kid, κfk),w), r ′)), (where r ′ ∈ I), be an

element in the set AddTmpRColsWithPtoRegTbl(R, c, r ,w). From the definition of

AddTmpRColsWithPtoRegTbl(R, c, r ,w) it can be observed that r ′ = R((r , τtmp), (kid, κr),

w ′), (((r , τtmp), (kid, κfk),w
′), r ′) ∈ R, and GetRegTblID(R, r ′) 6= {}. However, from

the definition of GetTmpRColsWithP(R, r), it can be observed that, whenever (((r , τtmp),

(kid, κfk),w
′), r ′) ∈ R, and GetRegTblID(R, r ′) 6= {}, (((r , τtmp), (kid, κfk),w

′), r ′) is an

element of the set GetTmpRColsWithP(R, r).

Thus, for every element e′ = ((((c, τr), (c type, κpk),w), r), (((c, τr), (kid, κfk),w), r ′)) ∈

AddTmpRColsWithPtoRegTbl(R, c, r ,w), there exists an element e′′ = (((r , τtmp), (kid,

κfk),w
′), r ′) ∈ GetTmpRColsWithP(R, r).

⇐= :

Let R((r , τtmp), (kid, κfk),w
′) = r ′ (where r ′ ∈ I) be an element in the set

GetTmpRColsWithP(R, r). As can be observed from the definition of

AddTmpRColsWithPtoRegTbl(R, c, r ,w), the values r and R((r , τtmp), (kid, κfk),w
′) are
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added to columns type and kid, respectively, in row w of table, c, i.e. R((c, τr), (c type,

κpk),w) = r and R((c, τr), (kid, κfk),w) = r ′.

Thus, for every element e′′ = (((r , τtmp), (kid, κfk),w
′), r ′) ∈ GetTmpRColsWithP(R, r),

there exists an element e′ = ((((c, τr), (c type, κpk),w), r), (((c, τr), (kid, κfk),w), r ′)) ∈

AddTmpRColsWithPtoRegTbl(R, c, r ,w).

For any corresponding pair e′ and e′′, we have AddTmpRColsWithPtoRegTbl(R, c, r ,w)−

GetTmpRColsWithP(R, r) = {π1e′, π2e′} − e′′ = {(((c, τr), (c type, κpk),w), r), (((c, τr), (kid,

κfk),w), r ′)} − {(((r , τtmp), (kid, κfk),w
′), r ′)}.

Case a: (1NPrefixExists(kid) = false) :

From Rule (TmpTN1N), it can be observed that E [[R((r , τtmp), (kid, κfk),w
′) 7→ r ′]] =

{(r , kid, r
′)}. From Rule (KCRT), it can be observed that E [[R((c, τr), (c type, κpk),w)

7→ r ]] = {(r , type, c)} and from Rule (NKCN1NRT), it can be seen that E [[R((c, τr),

(kid, κfk),w) 7→ r ′]] = {(r , kid, r
′)}.

Thus, E [[AddTmpLColstoRegTbl(R, c, r ,w)−GetTmpTblLitCols(R, r)]] = E [[{π1e′, π2e′}−

{e′′}]] = {(r , type, c), (r , kid, r
′)} − {(r , kid, r

′)} = {(r , type, c)} = {e}.

Case b: (1NPrefixExists(kid) = true) :

From Rule (TmpT1N), it can be observed that E [[R((r , τtmp), (kid, κfk),w
′) 7→ r ′]] =

{(r ′, kid, r)}. From Rule (KCRT), it can be observed that E [[R((c, τr), (c type, κpk),w)

7→ r ]] = {(r , type, c)} and from Rule (NKC1NRT), it can be seen that E [[R((c, τr),

(kid, κfk),w) 7→ r ′]] = {(r ′, kid, r)}.

Thus, E [[AddTmpLColstoRegTbl(R, c, r ,w)−GetTmpTblLitCols(R, r)]] = E [[{π1e′, π2e′}−

{e′′}]] = {(r , type, c), (r ′, kid, r)} − {(r ′, kid, r)} = {(r , type, c)} = {e}.
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�

Lemma 3 For every instance edge e of type (r , type, c), and an unoccupied row, w, in the

table corresponding to c in R,

E [[UpdRRegTblsWithrObj(R, r)− GetTmpRTblsWithrObj(R, r)]] = {e}

Proof.

=⇒ :

Let ((((c, τr), (c type, κpk),w), r), (((tid, τr), (kid, κfk),w
′′), r)) be an element in the set

UpdRRegTblsWithrObj(R, r , c,w). From the definition of UpdRRegTblsWithrObj(R, r ,

c,w), it can be seen that tid = {tid | R((tid, τr), (tid type, κpk),w
′′) = r ′, R((r ′, τtmp),

(kid, κfk),w
′) = r}. However, from the definition of GetTmpRTblsWithrObj(R, r), it

can be observed that, whenever R((r ′, τtmp), (kid, κfk),w
′) = r and R((tid, τr), (tid type,

κpk),w
′′) = r ′ (from the definition of GetRegTblID(R, r ′)), (((r ′, τtmp), (kid, κfk),w

′), r)

is an element of the set GetTmpRTblsWithrObj(R, r).

Thus, for every element e′ = ((((c, τr), (c type, κpk),w), r), (((tid, τr), (kid, κfk),w
′′), r))

∈ UpdRRegTblsWithrObj(R, r , c,w), there exists an element e′′ = (((r ′, τtmp), (kid, κfk),

w ′), r) ∈ GetTmpRTblsWithrObj(R, r).

⇐= :

Let R((r ′, τtmp), (kid, κfk),w
′) = r (where r ∈ I) be an element in the set

GetTmpRTblsWithrObj(R, r). As can be observed from the definition of

UpdRRegTblsWithrObj(R, r , c,w), the values r and R((r ′, τtmp), (kid, κfk),w
′) are added

to column type in row w of table, c, and column kid in row w ′′ of table, tid, such that

R((tid, τr), (tid type, κpk),w
′′) = r ′, i.e. R((c, τr), (c type, κpk),w) = r and R((tid, τr),

(kid, κfk),w
′′) = r , where R((tid, τr), (tid type, κpk),w

′′) = r ′.
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Thus, for every element e′′ = (((r ′, τtmp), (kid, κfk),w
′), r) ∈ GetTmpRTblsWithrObj(R,

r), there exists an element e′ = ((((c, τr), (c type, κpk),w), r), (((tid, τr), (kid, κfk),w
′′),

r)) ∈ UpdRRegTblsWithrObj(R, r , c,w).

For any corresponding pair e′ and e′′, we have UpdRRegTblsWithrObj(R, r , c,w)−

GetTmpRTblsWithrObj(R, r) = {π1e′, π2e′}−{e′′} = {(((c, τr), (c type, κpk),w), r), (((tid, τr),

(kid, κfk),w
′′), r)} − {(((r ′, τtmp), (kid, κfk),w

′), r)}.

Case a: (1NPrefixExists(kid) = false) :

From Rule (TmpTN1N), it can be observed that E [[R((r ′, τtmp), (kid, κfk),w
′) 7→ r ]] =

{(r ′, kid, r)}. From Rule (KCRT), it can be observed that E [[R((c, τr), (c type, κpk),w)

7→ r ]] = {(r , type, c)} and from Rule (NKCN1NRT), it can be seen that E [[R((tid, τr),

(kid, κfk),w
′′) 7→ r ]] = {(r ′, kid, r)}.

Thus, E [[UpdRRegTblsWithrObj(R, r , c,w)− GetTmpRTblsWithrObj(R, r)]] = E [[{π1e′,

π2e
′} − {e′′}]] = {(r , type, c), (r ′, kid, r)} − {(r ′, kid, r)} = {(r , type, c)} = {e}.

Case b: (1NPrefixExists(kid) = true) :

From Rule (TmpT1N), it can be observed that E [[R((r ′, τtmp), (kid, κfk),w
′) 7→ r ]] =

{(r , kid, r
′)}. From Rule (KCRT), it can be observed that E [[R((c, τr), (c type, κpk),w)

7→ r ]] = {(r , type, c)} and from Rule (NKC1NRT), it can be seen that E [[R((tid, τr),

(kid, κfk),w) 7→ r ]] = {(r , kid, r
′)}.

Thus, E [[UpdRRegTblsWithrObj(R, r , c,w)− GetTmpRTblsWithrObj(R, r)]] = E [[{π1e′,

π2e
′} − {e′′}]] = {(r , type, c), (r , kid, r

′)} − {(r , kid, r
′)} = {(r , type, c)} = {e}.

�
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Lemma 4 For every instance edge e of type (r , type, c), and an unoccupied row, w, in the

table corresponding to c in R,

E [[AddTmpMVATblRowstoMVATbl(R, r , c,w)− GetValidTmpMVATbls(R, r)]] = {e}

Proof.

=⇒ :

Let ((((c, τr), (c type, κpk),w), r), π1e
′
1, π2e

′
1), be an element in the set

AddTmpMVATblRowstoMVATbl(R, r , c,w). By definition of an MVA Table and

AddTmpMVATblRowstoMVATbl(R, r , c,w), e′1 = ((((tidmva, τmva), (kid, κpk),w
′), r),

(((tidmva, τmva), (k ′id, κpk),w
′), l)), where kid 6= type, and k ′id 6= type. Also seen from the

definition of AddTmpMVATblRowstoMVATbl(R, r , c,w), tidmva = R((tid, τtmpmva), (type,

κpk), 1), and tid = {tid | (((tid, τtmpmva), k , 1), r) ∈ R, GetTmpMVAColCnt(R, tid) =

3}. However, from the definition of GetValidTmpMVATbls(R, r), it can be observed

that, whenever R((tid, τtmpmva), k , 1) = r , and GetTmpMVAColCnt(R, tid) = 3, e′′ =

(((tid, τtmpmva), k , 1), d) is an element of the set GetValidTmpMVATbls(R, r). By defini-

tion of a Temporary MVA Table, e′′ = {(((tid, τtmpmva), (type, κpk), 1), tidmva),

(((tid, τtmpmva), (kid, κpk), 1), r), (((tid, τtmpmva), (k ′id, κpk), 1), l)}, where kid = t ′id type 6=

type, and k ′id 6= type, and tid = r l

Thus, for every element e′ = ((((c, τr), (c type, κpk),w), r), (((tidmva, τmva), (kid, κpk),w
′),

r), (((tidmva, τmva), (k ′id, κpk),w
′), l)) ∈ AddTmpMVATblRowstoMVATbl(R, r , c,w), there

exists an element e′′ = ((((r l , τtmpmva), (type, κpk), 1), tidmva), (((r l , τtmpmva), (kid, κpk),

1), r), (((r l , τtmpmva), (k ′id, κpk), 1), l)) ∈ GetValidTmpMVATbls(R, r).

⇐= :

Let e′′ be an element in the set GetValidTmpMVATbls(R, r). By definition of a Tempo-

rary MVA Table, e′′ = ((((tid, τtmpmva), (type, κpk), 1), tidmva), (((tid, τtmpmva), (kid, κpk), 1),

r), (((tid, τtmpmva), (k ′id, κpk), 1), l)), where kid = t ′id type 6= type, and k ′id 6= type, and

tid = r d . As can be observed from the definition of AddTmpMVATblRowstoMVATbl(
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R′, r , c,w), the value r is added to column type in row w of table, c, and the values

R((tid, τtmpmva), (kid, κpk), 1) and R((tid, τtmpmva), (k ′id, κpk), 1), where kid 6= type, and

k ′id 6= type, are added to the appropriate columns in an unoccupied row, w ′, in table,

tidmva, where tidmva = R((tid, τtmpmva), (type, κpk), 1).

Thus, for every element e′′ = ((((r l , τtmpmva), (type, κpk), 1), tidmva), (((r l , τtmpmva),

(kid, κpk), 1), r), (((r l , τtmpmva), (k ′id, κpk), 1), l)) ∈ GetValidTmpMVATbls(R, r), there ex-

ists an element e′ = ((((c, τr), (c type, κpk),w), r), (((tidmva, τmva), (kid, κpk),w
′), r), ((

(tidmva, τmva), (k ′id, κpk),w
′), l)) ∈ AddTmpMVATblRowstoMVATbl(R, r , c,w), where kid 6=

type, and k ′id 6= type.

For any corresponding pair e′ and e′′, we have AddTmpMVATblRowstoMVATbl(R, r , c,w)−

GetValidTmpMVATbls(R, r) = {π1e′, π2e′, π3e′}−{π1e′′, π2e′′, π3e′′} = {((c, τr), (c type, κpk),

w), r), (((tidmva, τmva), (kid, κpk),w
′), r), (((tidmva, τmva), (k ′id, κpk),w

′), l)} − {(((r l , τtmpmva),

(type, κpk), 1), tidmva), (((r l , τtmpmva), (kid, κpk), 1), r), (((r l , τtmpmva), (k ′id, κpk), 1), l)}.

From Rule (MVATmpT), it can be observed that E [[R((tid, τtmpmva), (type, κpk), 1) 7→

tidmva]] = {(tid, type, tidmva)}, E [[R((tid, τtmpmva), (kid, κpk), 1) 7→ r ]] = {(tid, kid, r)}, and

E [[R((tid, τtmpmva), (k ′id, κpk), 1) 7→ l ]] = {(tid, k
′
id, l)}, where tid = r l .

From Rule (KCRT), it can be observed that E [[R((c, τr), (c type, κpk),w) 7→ r ]] =

{(r , type, c)} and from Rules (MVATTC) and (MVATNTC), it can be seen that E [[R((tidmva,

τmva), (kid, κpk),w
′) 7→ r ]] = {(r l , type, tidmva), (r l , kid, r)} and E [[R((tidmva, τmva), (k ′id, κpk),

w ′) 7→ l ]] = {(r l , k ′id, l)}.

Thus, E [[AddTmpMVATblRowstoMVATbl(R, r , c,w)−GetValidTmpMVATbls(R, r)]] = E [[{π1e′,

π2e
′, π3e

′} − {π1e′′, π2e′′, π3e′′}]] = {(r , type, c), (r d , type, c ′), (r d , kid, r), (r d , k ′id, d)} −

{(r d , type, c ′), (r d , kid, r), (r d , k ′id, d)} = {(r , type, c)} = {e}.
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Lemma 5 For every instance edge e of type (r , type, c), and an unoccupied row, w, in the

table corresponding to c in R,

E [[AddTmpNMTblRowstoNMTbl(R, r , c,w)− GetValidTmpNMTbls(R, r)]] = {e}

Proof.

=⇒ Case a: (tid1 = c) :

Let e′ = ((((c, τr), (c type, κpk),w), r), π1e
′
1, π2e

′
1), be an element in the set

AddTmpNMTblRowstoNMTbl(R, r , c,w). By definition of an N:M Table and

AddTmpNMTblRowstoNMTbl(R, r , c,w), e′1 = ((((tidnm, τnm), (kid, κpk),w
′), r), (((tidnm,

τnm), (k ′id, κpk),w
′), r ′)), where tidnm = tid1 tid2, and tid1 = c.

Therefore, in Case a, e′ = ((((c, τr), (c type, κpk),w), r), (((tidnm, τnm), (c type, κpk),

w ′), r), (((tidnm, τnm), (k ′id, κpk),w
′), r ′)), where tidnm = tid1 tid2

Also seen from the definition of AddTmpNMTblRowstoNMTbl(R, r , c,w), tidnm = R((tid,

τtmpnm), (type, κpk), 1), and tid = {tid | (((tid, τtmpnm), k , 1), r) ∈ R},

GetClassForTmpNMTblCells(R, tid) = 1, GetTmpNMColCnt(R, tid) = 3}. However, from

the definition of GetValidTmpNMTbls(R, r), it can be observed that, whenever R((tid,

τtmpnm), k , 1) = r , GetClassForTmpNMTblCells(R, tid) = 1, and GetTmpNMColCnt(R,

tid) = 3, e′′ = (((tid, τtmpnm), k , 1), d) is an element of the set GetValidTmpNMTbls(R, r).

By definition of a Temporary N:M Table, e′′ = ((((tid, τtmpnm), (type, κpk), 1), tidnm),

(((tid, τtmpnm), (kid, κfk), 1), r), (((tid, τtmpnm), (k ′id, κfk), 1), r ′)), where kid = tid1 type 6=

type, and k ′id 6= type, and tid = r r ′

Thus, for every element e′ = ((((c, τr), (c type, κpk),w), r), (((tidnm, τnm), (kid, κpk),w
′),

r), (((tidnm, τnm), (k ′id, κpk),w
′), r ′)) ∈ AddTmpNMTblRowstoNMTbl(R, r , c,w), there ex-

ists an element e′′ = ((((r r ′, τtmpnm), (type, κpk), 1), tidnm), (((r r ′, τtmpnm), (kid, κfk), 1),

r), (((r r ′, τtmpnm), (k ′id, κfk), 1), r ′)) ∈ GetValidTmpNMTbls(R, r).
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⇐= Case a: (tid1 = c) :

Let e′′ be an element in the set GetValidTmpNMTbls(R, r). By definition of a Tempo-

rary NM Table, e′′ = ((((tid, τtmpnm), (type, κpk), 1), tidnm), (((tid, τtmpnm), (kid, κfk), 1), r),

(((tid, τtmpnm), (k ′id, κfk), 1), r ′)), where tidnm = tid1 tid2, and tid1 = c.

Therefore, in Case a, e′′ = ((((tid, τtmpnm), (type, κpk), 1), tidnm), (((tid, τtmpnm), (c type,

κfk), 1), r), (((tid, τtmpnm), (k ′id, κfk), 1), r ′)), where tid = r r ′ and tidnm = c tid2.

As can be observed from the definition of AddTmpNMTblRowstoNMTbl(R, r , c,w), the

value r is added to column type in row w of table, c, and the values R((tid, τtmpnm),

(c type, κfk), 1) and R((tid, τtmpnm), (k ′id, κfk), 1), are added to the appropriate columns

in an unoccupied row, w ′, in table, tidnm, where tidnm = R((tid, τtmpnm), (type, κpk), 1) =

c tid2.

Thus, for every element e′′ = ((((r r ′, τtmpnm), (type, κpk), 1), tidnm), (((r r ′, τtmpnm),

(kid, κfk), 1), r), (((r r ′, τtmpnm), (k ′id, κfk), 1), r ′)) ∈ GetValidTmpNMTbls(R, r), there ex-

ists an elements e′ = ((((c, τr), (c type, κpk),w), r), (((tidnm, τnm), (kid, κpk),w
′), r),

(((tidnm, τnm), (k ′id, κpk),w
′), r ′)) ∈ AddTmpNMTblRowstoNMTbl(R, r , c,w), where tidnm =

c tid2, kid 6= type, and k ′id 6= type.

For any corresponding pair e′ and e′′, we have AddTmpNMTblRowstoNMTbl(R, r , c,w) −

GetValidTmpNMTbls(R, r) = {π1e′, π2e′, π3e′}−{π1e′′, π2e′′, π3e′′} = {((c, τr), (c type, κpk),w),

r), (((tidnm, τnm), (kid, κpk),w
′), r), (((tidnm, τnm), (k ′id, κpk),w

′), r ′)}−{(((r r ′, τtmpnm), (type,

κpk), 1), tidnm), (((r r ′, τtmpnm), (kid, κfk), 1), r), (((r r ′, τtmpnm), (k ′id, κfk), 1), r ′)}.

From Rule (NMTmpT), it can be observed that E [[R((tid, τtmpnm), (type, κpk), 1) 7→

tidnm]] = {(tid, type, tidnm)}, E [[R((tid, τtmpnm), (c type, κfk), 1) 7→ r ]] = {(tid, c type, r)},

and E [[R((tid, τtmpnm), (k ′id, κfk), 1) 7→ r ′]] = {(tid, k
′
id, r

′)}, where tid = r r ′ and tidnm = c tid2.

From Rule (KCRT), it can be observed that E [[R((c, τr), (c type, κpk),w) 7→ r ]] =

{(r , type, c)} and from Rules (NMTTC) and (NMTNTC), it can be seen that E [[R((c tid2,
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τnm), (c type, κpk),w
′) 7→ r ]] = {(r r ′, type, c tid2), (r r ′, c type, r)} and E [[R((c tid2, τnm),

(k ′id, κpk),w
′) 7→ r ′]] = {(r r ′, k ′id, r

′)}.

Thus, E [[AddTmpNMTblRowstoNMTbl(R, r , c,w) − GetValidTmpNMTbls(R, r)]] = E [[{π1e′,

π2e
′, π3e

′}−{π1e′′, π2e′′, π3e′′}]] = {(r , type, c), (r r ′, type, c tid2), (r r ′, c type, r), (r r ′, k ′id,

r ′)} − {(r r ′, type, c tid2), (r r ′, c type, r), (r r ′, k ′id, r
′)} = {(r , type, c)} = {e}.

=⇒ Case b: (tid2 = c) :

Let e′ = ((((c, τr), (c type, κpk),w), r), π1e
′
1, π2e

′
1), be elements in the set

AddTmpNMTblRowstoNMTbl(R, r , c,w). By definition of an N:M Table and

AddTmpNMTblRowstoNMTbl(R, r , c,w), e′1 = ((((tidnm, τnm), (kid, κpk),w
′), r), (((tidnm,

τnm), (k ′id, κpk),w
′), r ′)), where tidnm = tid1 tid2, and tid2 = c.

Therefore, in Case b, e′ = ((((c, τr), (c type, κpk),w), r), (((tidnm, τnm), (kid, κpk),w
′), r),

(((tidnm, τnm), (tid1 type, κpk),w
′), r ′)), where tidnm = tid1 c.

Also seen from the definition of AddTmpNMTblRowstoNMTbl(R, r , c,w), tidnm = R((tid,

τtmpnm), (type, κpk), 1), and tid = {tid | (((tid, τtmpnm), k , 1), r) ∈ R},

GetClassForTmpNMTblCells(R, tid) = 1, GetTmpNMColCnt(R, tid) = 3}. However, from

the definition of GetValidTmpNMTbls(R, r), it can be observed that, whenever R((tid,

τtmpnm), k , 1) = r , GetClassForTmpNMTblCells(R, tid) = 1, and GetTmpNMColCnt(R,

tid) = 3, e′′ = (((tid, τtmpnm), k , 1), d) is an element of the set GetValidTmpNMTbls(R, r).

By definition of a Temporary N:M Table, e′′ = ((((tid, τtmpnm), (type, κpk), 1), tidnm), ((

(tid, τtmpnm), (kid, κfk), 1), r), (((tid, τtmpnm), (k ′id, κfk), 1), r ′)), where k ′id = tid1 type 6=

type, and kid 6= type, and tid = r ′ r

Thus, for every element e′ = ((((c, τr), (c type, κpk),w), r), (((tidnm, τnm), (kid, κpk),w
′),

r), (((tidnm, τnm), (k ′id, κpk),w
′), r ′)) ∈ AddTmpNMTblRowstoNMTbl(R, r , c,w), there ex-
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ists an element e′′ = ((((r ′ r , τtmpnm), (type, κpk), 1), tidnm), (((r ′ r , τtmpnm), (kid, κfk), 1),

r), (((r ′ r , τtmpnm), (k ′id, κfk), 1), r ′)) ∈ GetValidTmpNMTbls(R, r).

⇐= Case b: (tid2 = c) :

Let e′′ be an element in the set GetValidTmpNMTbls(R, r). By definition of a Tempo-

rary NM Table, e′′ = ((((tid, τtmpnm), (type, κpk), 1), tidnm), (((tid, τtmpnm), (kid, κfk), 1), r),

(((tid, τtmpnm), (k ′id, κfk), 1), r ′)), where tidnm = tid1 tid2, and tid2 = c.

Therefore, in Case b, e′′ = ((((tid, τtmpnm), (type, κpk), 1), tidnm), (((tid, τtmpnm), (tid1

type, κfk), 1), r ′), (((tid, τtmpnm), (kid, κfk), 1), r)), where tid = r ′ r and tidnm = tid1 c.

As can be observed from the definition of AddTmpNMTblRowstoNMTbl(R, r , c,w), the

value r is added to column type in row w of table, c, and the values R((tid, τtmpnm),

(tid1 type, κfk), 1) and R((tid, τtmpnm), (kid, κfk), 1), are added to the appropriate columns

in an unoccupied row, w ′, in table, tidnm, where tidnm = R((tid, τtmpnm), (type, κpk), 1) =

tid1 c.

Thus, for every element e′′ = ((((r ′ r , τtmpnm), (type, κpk), 1), tidnm), (((r ′ r , τtmpnm),

(kid, κfk), 1), r), (((r ′ r ′, τtmpnm), (tid1 type, κfk), 1), r ′)) ∈ GetValidTmpNMTbls(R, r),

there exists an element e′ = ((((c, τr), (c type, κpk),w), r), (((tidnm, τnm), (kid, κpk),w
′),

r), (((tidnm, τnm), (tid1 type, κpk),w
′), r ′)) ∈ AddTmpNMTblRowstoNMTbl(R, r , c,w),

where tidnm = tid1 c, kid 6= type, and k ′id = tid1 type 6= type.

For any corresponding pair e′ and e′′, we have AddTmpNMTblRowstoNMTbl(R, r , c,w) −

GetValidTmpNMTbls(R, r) = {π1e′, π2e′, π3e′}−{π1e′′, π2e′′, π3e′′} = {((c, τr), (c type, κpk),w),

r), (((tidnm, τnm), (kid, κpk),w
′), r), (((tidnm, τnm), (k ′id, κpk),w

′), r ′)}−{(((r ′ r , τtmpnm), (type,

κpk), 1), tidnm), (((r ′ r , τtmpnm), (kid, κfk), 1), r), (((r ′ r , τtmpnm), (k ′id, κfk), 1), r ′)}, where tidnm =

tid1 c, and k ′id = tid1 type.

From Rule (NMTmpT), it can be observed that E [[R((tid, τtmpnm), (type, κpk), 1) 7→

tidnm]] = {(tid, type, tidnm)}, E [[R((tid, τtmpnm), (tid1 type, κfk), 1) 7→ r ′]] = {(tid, tid1 type, r ′)},
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and E [[R((tid, τtmpnm), (kid, κfk), 1) 7→ r ]] = {(tid, kid, r)}, where tid = r ′ r and tidnm = tid1 c.

From Rule (KCRT), it can be observed that E [[R((c, τr), (c type, κpk),w) 7→ r ]] =

{(r , type, c)} and from Rules (NMTTC) and (NMTNTC), it can be seen that E [[R((tid1 c,

τnm), (tid1 type, κpk),w
′) 7→ r ′]] = {(r ′ r , type, tid1 c), (r ′ r , tid1 type, r ′)} and E [[R((tid1 c,

τnm), (kid, κpk),w
′) 7→ r ]] = {(r ′ r , kid, r)}.

Thus, E [[AddTmpNMTblRowstoNMTbl(R, r , c,w) − GetValidTmpNMTbls(R, r)]] = E [[{π1e′,

π2e
′, π3e

′} − {π1e′′, π2e′′, π3e′′}]] = {(r , type, c), (r ′ r , type, tid1 c), (r ′ r , tid1 type, r ′), (r ′ r ,

kid, r)} − {(r ′ r , type, tid1 c), (r ′ r , tid1 type, r ′), (r ′ r , kid, r)} = {(r , type, c)} = {e}.

�



APPENDIX C

SEMANTICS-PRESERVING QUERY TRANSFORMATION PROOF

The proof rules comprising the denotations of SQL and SPARQL queries and the trans-

formation of SQL queries into equivalent sparql queries are listed in this appendix along with

the proof of Theorem 2.
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S[[(∅, t̂al)]]φ = ∅
(S BaseCase)

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = ĉ AS ĉlal ElementExists(̂tal Tid ĉlal, φ

′
S) = true

rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂) = true

S[[({(ŝ, t̂)} ] ŝql
′
, t̂al)]]φ = φ′S

(S ChAllEx)

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = ĉ AS ĉlal ElementExists(̂tal Tid ĉlal, φ

′
S) = true

rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂) = false

φ′Sr = RemoveRoot(φ′S , rS
′) rS = AddTable(rS

′, t̂)

S[[({(ŝ, t̂)} ] ŝql
′
, t̂al)]]φ = AddRoot(JoinGraphs(AddTableLabel

(S ChChEx)

(GetRootNodes(ST [[t̂]]{φ}), t̂), φ′Sr), rS)

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = ĉ AS ĉlal ElementExists(̂tal Tid ĉlal, φ

′
S) = false

rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂) = true φ′Sr = RemoveRoot(φ′S , rS
′)

S[[({(ŝ, t̂)} ] ŝql
′
, t̂al)]]φ = CreateEdges(ĉ, t̂al Tid ĉlal, GetRootNodes(φ′Sr)) ∪ φ′S

(S ChTblEx)

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = ĉ AS ĉlal ElementExists(̂tal Tid ĉlal, φ

′
S) = false

rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂) = false

φ′Sr = RemoveRoot(φ′S , rS
′) rS = AddTable(rS

′, t̂)

S[[({(ŝ, t̂)} ] ŝql
′
, t̂al)]]φ = AddRoot(JoinGraphs(CreateEdges

(S ChNoneEx)

(ĉ, t̂al Tid ĉlal, AddTableLabel(GetRootNodes(ST [[t̂]]{φ}), t̂)), φ′Sr), rS)

Figure C.1: S - Base and Character Element with Table
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S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = ĉ AS ĉlal d̂t = (ŝql sq , t̂al sqŝql)

ElementExists(̂tal Tid ĉlal, φ
′
S) = true

rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂al sqŝql) = true

S[[({(ŝ, d̂t)} ] ŝql
′
, t̂al)]]φ = φ′S

(S ChAllExDT)

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = ĉ AS ĉlal d̂t = (ŝql sq , t̂al sqŝql)

ElementExists(̂tal Tid ĉlal, φ
′
S) = true rS

′ = GetRoot(φ′S)

TableExists(rS
′, t̂al sqŝql) = false φ′Sr = RemoveRoot(φ′S , rS

′)

rS = AddTable(rS
′, t̂al sqŝql) S[[(ŝql sq , t̂al sqŝql]]φ = φ′′S

rSdt = GetRoot(φ′′S) RemoveTableLabels(RemoveRoot(φ′′S , rSdt )) = φSdt

S[[({(ŝ, d̂t)} ] ŝql
′
, t̂al)]]φ = AddRoot(JoinGraphs(AddTableLabel

(S ChChExDT)

(GetRootNodes(φSdt), t̂al sqŝql), φ
′
Sr), rS)

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = ĉ AS ĉlal d̂t = (ŝql sq , t̂al sqŝql)

ElementExists(̂tal Tid ĉlal, φ
′
S) = false rS

′ = GetRoot(φ′S)

TableExists(rS
′, t̂al sqŝql) = true φ′Sr = RemoveRoot(φ′S , rS

′)

S[[({(ŝ, d̂t)} ] ŝql
′
, t̂al)]]φ = CreateEdges(ĉ, t̂al Tid ĉlal, GetRootNodes(φ′Sr))

(S ChTblExDT)

∪φ′S

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = ĉ AS ĉlal d̂t = (ŝql sq , t̂al sqŝql)

ElementExists(̂tal Tid ĉlal, φ
′
S) = false rS

′ = GetRoot(φ′S)

TableExists(rS
′, t̂al sqŝql) = false φ′Sr = RemoveRoot(φ′S , rS

′)

rS = AddTable(rS
′, t̂al sqŝql) S[[(ŝql sq , t̂al sqŝql)]]φ = φ′′S rSdt = GetRoot(φ′′S)

RemoveTableLabels(RemoveRoot(φ′′S , rSdt )) = φSdt

S[[({(ŝ, d̂t)} ] ŝql
′
, t̂al)]]φ = AddRoot(JoinGraphs(CreateEdges

(S ChNoneExDT)

(ĉ, t̂al Tid ĉlal, AddTableLabel(GetRootNodes(φSdt), t̂al sqŝql)), φ
′
Sr), rS)

Figure C.2: S - Character Element with SubQuery
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S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = t̂′.ĉl AS ĉlal t̂ = t̂′

φST = ST [[t̂]]{φ} rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂) = true

S[[({(ŝ, t̂)} ] ŝql
′
, t̂al)]]φ = AttachEdge(ReplaceLabel(ExtColEdges

(S ClTMchEx)

(t̂ Tid ĉl, GetRootNodes(φST ), φST ), t̂ Tid ĉl, t̂al Tid ĉlal)

×GetRootNodes(RemoveRoot(φ′S , rS
′))) ∪ φ′S

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = t̂′.ĉl AS ĉlal t̂ = t̂′ φST = ST [[t̂]]{φ}

rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂) = false

φ′Sr = RemoveRoot(φ′S , rS
′) rS = AddTable(rS

′, t̂)

S[[({(ŝ, t̂)} ] ŝql
′
, t̂al)]]φ = AddRoot(JoinGraphs(ReplaceLabel

(S ClTMchNoEx)

(ExtColEdges(t̂ Tid ĉl, GetRootNodes(φST ), φST ), t̂ Tid ĉl, t̂al Tid ĉlal), φ
′
Sr), rS)

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = t̂′.ĉl AS ĉlal t̂ 6= t̂′

rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂) = true

S[[({(ŝ, t̂)} ] ŝql
′
, t̂al)]]φ = φ′S

(S ClTNoMchEx)

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = t̂′.ĉl AS ĉlal t̂ 6= t̂′ rS

′ = GetRoot(φ′S)

TableExists(rS
′, t̂) = false φ′Sr = RemoveRoot(φ′S , rS

′)

rS = AddTable(rS
′, t̂) φST = ST [[t̂]]{φ}

S[[({(ŝ, t̂)} ] ŝql
′
, t̂al)]]φ = AddRoot(JoinGraphs(AddTableLabel

(S ClTNoMchNoEx)

(GetRootNodes(φST ), t̂), φ′Sr), rS)

Figure C.3: S - Column Element With Table
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S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = t̂.ĉl AS ĉlal d̂t = (ŝql sq , t̂al sqŝql) t̂ = t̂al sqŝql

φ′′S = S[[(ŝql sq , t̂al sqŝql)]]φ rS
′ = GetRoot(φ′S)

TableExists(rS
′, t̂al sqŝql) = true rSdt = GetRoot(φ′′S)

S[[({(ŝ, d̂t)} ] ŝql
′
, t̂al)]]φ = AttachEdge(ReplaceLabel(ExtColEdges

(S ClDTMchEx)

(t̂ Tid ĉl, GetRootNodes(RemoveRoot(φ′′S , rSdt )), φ
′′
S), t̂ Tid ĉl, t̂al Tid ĉlal)×

GetRootNodes(RemoveRoot(φ′S , rS
′))) ∪ φ′S

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = t̂.ĉl AS ĉlal d̂t = (ŝql sq , t̂al sqŝql) t̂ = t̂al sqŝql

φ′′S = S[[(ŝql sq , t̂al sqŝql)]]φ rS
′ = GetRoot(φ′S)

TableExists(rS
′, t̂al sqŝql) = false φ′Sr = RemoveRoot(φ′S , rS

′)

rS = AddTable(rS
′, t̂) rSdt = GetRoot(φ′′S)

S[[({(ŝ, d̂t)} ] ŝql
′
, t̂al)]]φ = AddRoot(JoinGraphs(ReplaceLabel

(S ClDTMchNoEx)

(ExtColEdges(t̂ Tid ĉl, GetRootNodes(RemoveRoot(φ′′S , rSdt )), φ
′′
S), t̂ Tid ĉl, t̂al Tid ĉlal),

φ′Sr), rS)

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = t̂.ĉl AS ĉlal d̂t = (ŝql sq , t̂al sqŝql) t̂ 6= t̂al sqŝql

rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂al sqŝql) = true

S[[({(ŝ, d̂t)} ] ŝql
′
, t̂al)]]φ = φ′S

(S ClDTNoMchEx)

S[[(ŝql
′
, t̂al)]]φ = φ′S ŝ = t̂.ĉl AS ĉlal d̂t = (ŝql sq , t̂al sqŝql)t̂ 6= t̂al sqŝql

φ′′S = S[[(ŝql sq , t̂al sqŝql)]]φ rS
′ = GetRoot(φ′S) TableExists(rS

′, t̂al sqŝql) = false

φ′Sr = RemoveRoot(φ′S , rS
′) rS = AddTable(rS

′, t̂al sqŝql) rSdt = GetRoot(φ′′S)

RemoveTableLabels(RemoveRoot(φ′′S , rSdt )) = φSdt

S[[({(ŝ, d̂t)} ] ŝql
′
, t̂al)]]φ = AddRoot(JoinGraphs

(S ClDTNoMchNoEx)

(AddTableLabel(GetRootNodes(φSdt), t̂al sqŝql), φ
′
Sr), rS)

Figure C.4: S - Column Element With Sub Query
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hw(·, t̂al) = ·
(hw SQL FROM List Base)

t̂r = d̂t d̂t = (ŝql, t̂al) ŝql = (ρSL, ρTR) (ρSpSL, ρSpWt) = h(ŝql = (ρSL, ρTR), t̂al)

˙spq = (ρSpSL, ρSpWt)

hw(t̂r, t̂al) = ˙spq
(hw SQL From - SubQuery)

t̂r = t̂ ẇ = (?t̂ type type t̂)

hw(t̂r, t̂al) = ẇ
(hw SQL From - Table)

ẇ = hw(t̂r, t̂al) ρSpW = hw(ρTR, t̂al)

hw(t̂r :: ρTR, t̂al) = ẇ :: ρSpW
(hw SQL From Clause)

hs(ρSL, ρTR, t̂al) = (ρSpSL, ρSpWs) hw(ρTR, t̂al) = ρSpW
˙spq = (ρSpSL, ρSpWs@ρSpW)

h(ŝql = (ρSL, ρTR), t̂al) = ˙spq
(h SQL Query Translation)

Figure C.5: SQL-to-SPARQL Translation function - h, and hw
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hs(·, ρTR, t̂al) = (·, ·)
(hs SQL SELECT List Base)

ˆnvea = t̂.ĉl AS ĉlal IsTable(ρTR, t̂) = true ˙spsl =?t̂ Tid ĉl AS ?̂tal Tid ĉlal

ẇs = (?t̂ Tidtype ĉl ?t̂ Tid ĉl)

hs( ˆnvea, ρTR, t̂al) = ( ˙spsl, ẇs)
(hs TColumn AlSQ)

ˆnvea = t̂.ĉl AS ĉlal IsTable(ρTR, t̂) = false

˙spsl =?t̂ Tid ĉl AS ?̂tal Tid ĉlal

hs( ˆnvea, ρTR, t̂al) = ( ˙spsl, ·)
(hs DTColumn AlSQ)

ˆnvea = î AS ĉlal ˙spsl = î AS ?̂tal Tid ĉlal

hs( ˆnvea, ρTR, t̂al) = ( ˙spsl, ·)
(hs Int AlSQ)

ˆnvea = ĉ AS ĉlal ˙spsl = ĉ AS ?̂tal Tid ĉlal

hs( ˆnvea, ρTR, t̂al) = ( ˙spsl, ·)
(hs Char AlSQ)

( ˙spsl, ẇs) = hs( ˆnvea, t̂al) hs(ρSL, t̂al) = (ρSpSL, ρSpWs)

hs( ˆnvea :: ρSL, ρTR, t̂al) = ( ˙spsl :: ρSpSL, ẇs :: ρSpWs)
(hs SQL Select Clause)

Figure C.6: SQL-to-SPARQL Translation function - hs
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Q[[∅]]φ = ∅
(Q BaseCase)

Q[[ ˙spq′]]φ = φ′Q
˙spsl = ĉ AS v̇al ẇ = (s type c) v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) ElementExists(v̇alrf , φ
′
Q) = true

rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, c) = true

Q[[{( ˙spsl, ẇ)} ] ˙spq]]φ = φ′Q
(Q ChAllEx)

Q[[ ˙spq′]]φ = φ′Q
˙spsl = ĉ AS v̇al ẇ = (s type c) v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) ElementExists(v̇alrf , φ
′
Q) = true

rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, c) = false

φ′Qr = RemoveRoot(φ′Q, rQ
′) rQ = AddTable(rQ

′, c)

Q[[{( ˙spsl, ẇ)} ] ˙spq]]φ = AddRoot(JoinGraphs(AddTableLabel
(Q ChChEx)

(GetRootNodes(ST [[c]]{φ}), c), φ′Qr), rQ)

Q[[ ˙spq′]]φ = φ′Q
˙spsl = ĉ AS v̇al ẇ = (s type c) v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) ElementExists(v̇alrf , φ
′
Q) = false rQ

′ = GetRoot(φ′Q)

TableExists(rQ
′, c) = true φ′Qr = RemoveRoot(φ′Q, rQ

′)

Q[[{( ˙spsl, ẇ)} ] ˙spq]]φ = CreateEdges(ĉ, v̇alrf , GetRootNodes(φ′Qr))
(Q ChTblEx)

∪φ′Q

Q[[ ˙spq′]]φ = φ′Q
˙spsl = ĉ AS v̇al ẇ = (s type c) v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) ElementExists(v̇alrf , φ
′
Q) = false

rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, c) = false

φ′Qr = RemoveRoot(φ′Q, rQ
′) rQ = AddTable(rQ

′, c)

Q[[{( ˙spsl, ẇ)} ] ˙spq]]φ = AddRoot(JoinGraphs(CreateEdges
(Q ChNoneEx)

(ĉ, v̇alrf , AddTableLabel(GetRootNodes(ST [[c]]{φ}), c)), φ′Qr), rQ)

Figure C.7: Q - Base and Character Element with Type Where
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Q[[ ˙spq′]]φ = φ′Q
˙spsl = ĉ AS v̇al v̇al = c ′′ Tidp v̇alrf = RemoveFirstChar(v̇al)

t̂al sq ˙spq = GetSubQueryAlias( ˙spq sq) ElementExists(v̇alrf , φ
′
Q) = true

rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, t̂al sq ˙spq)true

Q[[{( ˙spsl, ˙spq sq)} ] ˙spq]]φ = φ′Q
(Q ChAllExSQ)

Q[[ ˙spq′]]φ = φ′Q
˙spsl = ĉ AS v̇al v̇al = c ′′ Tidp v̇alrf = RemoveFirstChar(v̇al)

t̂al sq ˙spq = GetSubQueryAlias( ˙spq sq) ElementExists(v̇alrf , φ
′
Q) = true

rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, t̂al sq ˙spq) = false φ′Qr = RemoveRoot(φ′Q, rQ
′)

rQ = AddTable(rQ
′, t̂al sq ˙spq) Q[[ ˙spq sq ]]φ = φ′′Q

rQdt
= GetRoot(φ′′Q) RemoveTableLabels(RemoveRoot(φ′′Q, rQdt

)) = φQdt

Q[[{( ˙spsl, ˙spq sq)} ] ˙spq]]φ = AddRoot(JoinGraphs(AddTableLabel
(Q ChChExSQ)

(GetRootNodes(φQdt), t̂al sq ˙spq), φ
′
Qr), rQ)

Q[[ ˙spq′]]φ = φ′Q
˙spsl = ĉ AS v̇al v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) t̂al sq ˙spq = GetSubQueryAlias( ˙spq sq)

ElementExists(v̇alrf , φ
′
Q) = false rQ

′ = GetRoot(φ′Q)

TableExists(rQ
′, t̂al sq ˙spq) = true φ′Qr = RemoveRoot(φ′Q, rQ

′)

Q[[{( ˙spsl, ˙spq sq)} ] ˙spq]]φ = CreateEdges(ĉ, v̇alrf , GetRootNodes(φ′Qr)) ∪ φ′Q
(Q ChTblExSQ)

Q[[ ˙spq′]]φ = φ′Q
˙spsl = ĉ AS v̇al v̇al = c ′′ Tidp v̇alrf = RemoveFirstChar(v̇al)

t̂al sq ˙spq = GetSubQueryAlias( ˙spq sq) ElementExists(v̇alrf , φ
′
Q) = false

rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, t̂al sq ˙spq) = false φ′Qr = RemoveRoot(φ′Q, rQ
′)

rQ = AddTable(rQ
′, t̂al sq ˙spq) Q[[ ˙spq sq ]]φ = φ′′Q rQdt

= GetRoot(φ′′Q)

RemoveTableLabels(RemoveRoot(φ′′Q, rQdt
)) = φQdt

Q[[{( ˙spsl, ˙spq sq)} ] ˙spq]]φ = AddRoot(JoinGraphs(CreateEdges
(Q ChNoneExSQ)

(ĉ, v̇alrf , AddTableLabel(GetRootNodes(φQdt), t̂al sq ˙spq)), φ
′
Qr), rQ)

Figure C.8: Q - Character Element with SubQuery
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Q[[ ˙spq′]]φ = φ′Q
˙spsl = v̇ AS v̇al v̇ =?c Tidp v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) ẇ = {(?c Tidtype p v̇), (?c′ Tidtype type c ′)} c = c ′

φQT = ST [[c]]{φ} rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, c) = true

Q[[{( ˙spsl, ẇ)} ] ˙spq]]φ = AttachEdge(ReplaceLabel(ExtColEdges
(Q ClTwMchEx)

(c Tidp, GetRootNodes(φQT ), φQT ), c Tidp, v̇alrf )× GetRootNodes(RemoveRoot(φ′Q, rQ
′))) ∪ φ′Q

Q[[ ˙spq′]]φ = φ′Q
˙spsl = v̇ AS v̇al v̇ =?c Tidp v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) ẇ = {(?c Tidtype p v̇), (?c′ Tidtype type c ′)} c = c ′

φQT = ST [[c]]{φ} rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, c) = false

φ′Qr = RemoveRoot(φ′Q, rQ
′) rQ = AddTable(rQ

′, c)

Q[[{( ˙spsl, ẇ)} ] ˙spq]]φ = AddRoot(JoinGraphs(ReplaceLabel
(Q ClTwMchNoEx)

(ExtColEdges(c Tidp, GetRootNodes(φQT ), φQT ), c Tidp, v̇alrf ),

φ′Qr), rQ)

Q[[ ˙spq′]]φ = φ′Q
˙spsl = v̇ AS v̇al v̇ =?c Tidp

ẇ = {(?c Tidtype p v̇), (?c′ Tidtype type c′)} c 6= c ′

rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, c ′) = true

Q[[{( ˙spsl, ẇ)} ] ˙spq]]φ = φ′Q
(Q ClTwNoMchEx)

Q[[ ˙spq′]]φ = φ′Q
˙spsl = v̇ AS v̇al v̇ =?c Tidp

ẇ = {(?c Tidtype p v̇), (?c′ Tidtype type c ′)} c 6= c ′ rQ
′ = GetRoot(φ′Q)

TableExists(rQ
′, c ′) = false φ′Qr = RemoveRoot(φ′Q, rQ

′)

rQ = AddTable(rQ
′, c ′) φQT = ST [[c ′]]{φ}

Q[[{( ˙spsl, ẇ)} ] ˙spq]]φ = AddRoot(JoinGraphs
(Q ClTwNoMchNoEx)

(AddTableLabel(GetRootNodes(φQT ), c ′), φ′Qr), rQ)

Figure C.9: Q - Variable Element With Type Where
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Q[[ ˙spq′]]φ = φ′Q
˙spsl = v̇ =?c Tidp AS v̇al v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) t̂al sq ˙spq = GetSubQueryAlias( ˙spq sq) t̂al sq ˙spq = c

rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, t̂al sq ˙spq) = true

Q[[ ˙spq sq ]]φ = φ′′Q rQdt
= GetRoot(φ′′Q)

Q[[{( ˙spsl, ˙spq sq)} ] ˙spq]]φ = AttachEdge(ReplaceLabel(ExtColEdges
(Q ClSQMchEx)

(c Tidp, GetRootNodes(RemoveRoot(φ′′Q, rQdt
)), φ′′Q), c Tidp, v̇alrf )×

GetRootNodes(RemoveRoot(φ′Q, rQ
′))) ∪ φ′Q

Q[[ ˙spq′]]φ = φ′Q
˙spsl = v̇ =?c Tidp AS v̇al v̇al = c ′′ Tidp

v̇alrf = RemoveFirstChar(v̇al) t̂al sq ˙spq = GetSubQueryAlias( ˙spq sq) t̂al sq ˙spq = c

rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, t̂al sq ˙spq) = false

φ′Qr = RemoveRoot(φ′Q, rQ
′) rQ = AddTable(rQ

′, t̂al sq ˙spq)l

Q[[ ˙spq sq ]]φ = φ′′Q rQdt
= GetRoot(φ′′Q)

Q[[{( ˙spsl, ˙spq sq)} ] ˙spq]]φ = AddRoot(JoinGraphs(ReplaceLabel
(Q ClSQMchNoEx)

(ExtColEdges(c Tidp, GetRootNodes(RemoveRoot(φ′′Q, rQdt
)), φ′′Q), c Tidp, v̇alrf ),

φ′Qr), rQ)

Q[[ ˙spq′]]φ = φ′Q
˙spsl = v̇ =?c Tidp AS v̇al

t̂al sq ˙spq = GetSubQueryAlias( ˙spq sq) t̂al sq ˙spq 6= c

rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, t̂al sq ˙spq) = true

Q[[{( ˙spsl, ˙spq sq)} ] ˙spq]]φ = φ′Q
(Q ClSQNoMchEx)

Q[[ ˙spq′]]φ = φ′Q
˙spsl = v̇ =?c Tidp AS v̇al t̂al sq ˙spq = GetSubQueryAlias( ˙spq sq)

t̂al sq ˙spq 6= c rQ
′ = GetRoot(φ′Q) TableExists(rQ

′, t̂al sq ˙spq) = false

φ′Qr = RemoveRoot(φ′Q, rQ
′) rQ = AddTable(rQ

′, t̂al sq ˙spq)

Q[[ ˙spq sq ]]φ = φ′′Q rQdt
= GetRoot(φ′′Q)

RemoveTableLabels(RemoveRoot(φ′′Q, rQdt
)) = φQdt

Q[[{( ˙spsl, ˙spq sq)} ] ˙spq]]φ = AddRoot(JoinGraphs
(Q ClSQNoMchNoEx)

(AddTableLabel(GetRootNodes(φQdt), t̂al sq ˙spq), φ
′
Qr), rQ)

Figure C.10: Q - Variable Element With SubQuery
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Theorem 2 S[[ŝqlq = (ŝql, t̂al)]]φ = Q[[h(ŝqlq = (ŝql, t̂al))]]φ

Proof. Proof is by(structural) induction on the structure of SQL query ŝqlq.

Base Case: Assume ŝql = ∅. By Rule S[[]] BaseCase,

S[[(∅, t̂al)]] = ∅ (13.1)

. By Rules h BaseCase and Q[[]] BaseCase we have h(∅) = ∅ and Q[[∅]] = ∅.

Therefore, we have

Q[[h(∅)]] = ∅ (13.2)

From equations (13.1) and (13.2), S[[(∅, t̂al)]]φ = Q[[h(∅)]]φ.

Inductive Hypothesis: Assume that for every sql statement ŝqlq
′ that is structurally

strictly smaller than ŝqlq, S[[ŝqlq
′ = (ŝql

′
, t̂al)]]φ = Q[[h(ŝqlq

′ = (ŝql
′
, t̂al))]]φ.

Case (S[[]] ChAllEx) : Assume ŝql = {(ŝ, t̂)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null, ŝ =

ĉ AS ĉlal, ElementExists(̂tal Tid ĉlal, φ
′
S) = true, and TableExists(GetRoot(φ′S), t̂) =

true. By Rule (S[[]] ChAllEx),

S[[ŝql, t̂al ]]φ = φ′S (13.3)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((ĉ AS ĉlal, t̂), t̂al) =

(hs(ĉ AS ĉlal, t̂, t̂al), hw(t̂, t̂al)). By Rule (hs Char AlSQ), hs(ĉ AS ĉlal, t̂, t̂al) = (ĉ AS

?̂tal Tid ĉlal, ·), and by Rule (hw SQL From - Table), hw(t̂, t̂al) = (?t̂ type type t̂).

Thus, h((ĉ AS ĉlal, t̂), t̂al) = (ĉ AS ?̂tal Tid ĉlal, (t̂ type type t̂))

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Observe that when

c = t̂, ˙spsl = ĉ AS ĉlal, v̇al =?̂tal Tid ĉlal, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal

we have ElementExists(v̇alrf , φ
′
Q) = true from our previous assumption (since φ′S =

φ′Q from Inductive Hypothesis) , and v̇al = c ′′ Tid v̇alsuffix , where c ′′ = t̂al and v̇alsuffix =

ĉlal. Thus, by Rule (Q[[]] ChAllEx),

Q[[h(ŝql, t̂al)]]φ = φ′Q (13.4)
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.

Since φ′S = φ′Q, from equations (13.3) and (13.4), S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ChChEx) : Assume ŝql = {(ŝ, t̂)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null,

ŝ = ĉ AS ĉlal, ElementExists(̂tal Tid ĉlal, φ
′
S) = true, TableExists(GetRoot(φ′S), t̂) =

false, φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)), and rS = AddTable(GetRoot(φ′S), t̂). By

Rule (S[[]] ChChEx),

S[[ŝql, t̂al ]]φ =AddRoot(JoinGraphs(AddTableLabel(GetRootNodes(ST [[t̂]]{φ}), t̂),

φ′Sr), rS)

(13.5)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((ĉ AS ĉlal, t̂), t̂al) =

(hs(ĉ AS ĉlal, t̂, t̂al), hw(t̂, t̂al)). By Rule (hs Char AlSQ), hs(ĉ AS ĉlal, t̂, t̂al) = (ĉ AS

?̂tal Tid ĉlal, ·), and by Rule (hw SQL From - Table), hw(t̂, t̂al) = (?t̂ type type t̂).

Thus, h((ĉ AS ĉlal, t̂), t̂al) = (ĉ AS ?̂tal Tid ĉlal, (t̂ type type t̂))

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Observe that when

c = t̂, ˙spsl = ĉ AS ĉlal, v̇al =?̂tal Tid ĉlal, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal

we have ElementExists(v̇alrf , φ
′
Q) = true and TableExists(GetRoot(φ′Q), c) = false

from our previous assumption (since φ′S = φ′Q from Inductive Hypothesis) , and v̇al =

c ′′ Tid v̇alsuffix , where c ′′ = t̂al and v̇alsuffix = ĉlal. Further, since φ′S = φQ’ (by Inductive

Hypothesis), φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)) = φ′Qr and rS = rQ. Thus, by Rule

(Q[[]] ChChEx),

Q[[h(ŝql, t̂al)]]φ =AddRoot(JoinGraphs(AddTableLabel(GetRootNodes(ST [[c]]{φ}), c),

φ′Qr), rQ)

(13.6)

.



252

Since c = t̂, φ′Sr = φ′Qr, and rS = rQ, from equations (13.5) and (13.6), S[[ŝql, t̂al ]]φ =

Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ChTblEx) : Assume ŝql = {(ŝ, t̂)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null,

ŝ = ĉ AS ĉlal, ElementExists(̂tal Tid ĉlal, φ
′
S) = false, TableExists(GetRoot(φ′S), t̂) =

true, and φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)). By Rule (S[[]] ChTblEx),

S[[ŝql, t̂al ]]φ = CreateEdges(ĉ, t̂al Tid ĉlal, GetRootNodes(φ′Sr)) ∪ φ′S (13.7)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((ĉ AS ĉlal, t̂), t̂al) =

(hs(ĉ AS ĉlal, t̂, t̂al), hw(t̂, t̂al)). By Rule (hs Char AlSQ), hs(ĉ AS ĉlal, t̂, t̂al) = (ĉ AS

?̂tal Tid ĉlal, ·), and by Rule (hw SQL From - Table), hw(t̂, t̂al) = (?t̂ type type t̂).

Thus, h((ĉ AS ĉlal, t̂), t̂al) = (ĉ AS ?̂tal Tid ĉlal, (t̂ type type t̂))

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Observe that when

c = t̂, ˙spsl = ĉ AS ĉlal, v̇al =?̂tal Tid ĉlal, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal

we have ElementExists(v̇alrf , φ
′
Q) = false and TableExists(GetRoot(φ′Q), c) = true

from our previous assumption (since φ′S = φ′Q from Inductive Hypothesis) , and

v̇al = c ′′ Tid v̇alsuffix , where c ′′ = t̂al and v̇alsuffix = ĉlal. Further, since φ′S = φQ’

(by Inductive Hypothesis), φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)) = φ′Qr. Thus, by

Rule (Q[[]] ChTblEx),

Q[[h(ŝql, t̂al)]]φ = CreateEdges(ĉ, v̇alrf , GetRootNodes(φ′Qr)) ∪ φ′Q (13.8)

.

Since c = t̂, ŝ = ĉ, and φ′Sr = φ′Qr, from equations (13.7) and (13.8), S[[ŝql, t̂al ]]φ =

Q[[h(ŝql, t̂al)]]φ
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Case (S[[]] ChNoneEx) : Assume ŝql = {(ŝ, t̂)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null,

ŝ = ĉ AS ĉlal, ElementExists(̂tal Tid ĉlal, φ
′
S) = false, TableExists(GetRoot(φ′S), t̂) =

false, φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)), and rS = AddTable(GetRoot(φ′S), t̂). By

Rule (S[[]] ChNoneEx),

S[[ŝql, t̂al ]]φ =AddRoot(JoinGraphs(CreateEdges(ĉ, t̂al Tid ĉlal, AddTableLabel

(GetRootNodes(ST [[t̂]]{φ}), t̂)), φ′Sr), rS)
(13.9)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((ĉ AS ĉlal, t̂), t̂al) =

(hs(ĉ AS ĉlal, t̂, t̂al), hw(t̂, t̂al)). By Rule (hs Char AlSQ), hs(ĉ AS ĉlal, t̂, t̂al) = (ĉ AS

?̂tal Tid ĉlal, ·), and by Rule (hw SQL From - Table), hw(t̂, t̂al) = (?t̂ type type t̂).

Thus, h((ĉ AS ĉlal, t̂), t̂al) = (ĉ AS ?̂tal Tid ĉlal, (t̂ type type t̂))

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Observe that when

c = t̂, ˙spsl = ĉ AS ĉlal, v̇al =?̂tal Tid ĉlal, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal

we have ElementExists(v̇alrf , φ
′
Q) = false and TableExists(GetRoot(φ′Q), c) =

false from our previous assumption (since φ′S = φ′Q from Inductive Hypothesis) ,

and v̇al = c ′′ Tid v̇alsuffix , where c ′′ = t̂al and v̇alsuffix = ĉlal. Further, since φ′S = φQ’

(by Inductive Hypothesis), φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)) = φ′Qr and rS = rQ.

Thus, by Rule (Q[[]] ChNoneEx),

Q[[h(ŝql, t̂al)]]φ =AddRoot(JoinGraphs(CreateEdges(ĉ, v̇alrf , AddTableLabel

(GetRootNodes(ST [[c]]{φ}), c)), φ′Qr), rQ)
(13.10)

.

Since c = t̂, ŝ = ĉ, φ′Sr = φ′Qr, and rS = rQ, from equations (13.9) and (13.10),

S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ChAllExDT) : Assume ŝql = {(ŝ, d̂t)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null,

ŝ = ĉ AS ĉlal, d̂t = (ŝql sq , t̂al sqŝql), ElementExists(̂tal Tid ĉlal, φ
′
S) = true, and
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TableExists(GetRoot(φ′S), t̂al sqŝql) = true. By Rule (S[[]] ChAllExDT),

S[[ŝql, t̂al ]]φ = φ′S (13.11)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((ĉ AS ĉlal, d̂t), t̂al) =

(hs(ĉ AS ĉlal, d̂t , t̂al), hw(t̂, t̂al)). By Rule (hs Char AlSQ), hs(ĉ AS ĉlal, d̂t , t̂al) = (ĉ AS

?̂tal Tid ĉlal, ·), and by Rule (hw SQL From - SubQuery), hw(d̂t , t̂al) = h(ŝql sq ,

t̂al sqŝql) = ˙spq sq . Thus, h((ĉ AS ĉlal, d̂t), t̂al) = (ĉ AS ?̂tal Tid ĉlal, ˙spq sq). Also, observe

that, in the case of sub-queries, where t̂al sqŝql 6= null, the SELECT item translation

rules, (hs Char/Int/{T/DT}Column AlSQ), always prefix the sub-query alias,

t̂al sqŝql, to the alias of every corresponding SPARQL Query SELECT item. Thus

t̂al sq ˙spq = GetSubQueryAlias(h(ŝql sq , t̂al sqŝql) = ˙spq sq) = t̂al sqŝql.

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Observe that when

t̂al sqŝql = t̂al sq ˙spq, ˙spsl = ĉ AS ĉlal, v̇al =?̂tal Tid ĉlal, and v̇alrf = RemoveFirstChar(v̇al) =

t̂al Tid ĉlal we have ElementExists(v̇alrf , φ
′
Q) = true and TableExists(GetRoot(φ′Q),

t̂al sq ˙spq) = true from our previous assumption (since φ′S = φ′Q from Inductive Hypoth-

esis) , and v̇al = c ′′ Tid v̇alsuffix , where c ′′ = t̂al and v̇alsuffix = ĉlal. Thus, by Rule (Q[[]]

ChAllExSQ),

Q[[h(ŝql, t̂al)]]φ = φ′Q (13.12)

.

Since φ′S = φ′Q, from equations (13.11) and (13.12), S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ChChExDT) : Assume ŝql = {(ŝ, d̂t)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null,

ŝ = ĉ AS ĉlal, d̂t = (ŝql sq , t̂al sqŝql) ElementExists(̂tal Tid ĉlal, φ
′
S) = true, TableExists(

GetRoot(φ′S), t̂al sqŝql) = false, φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)), rS = AddTable(

GetRoot(φ′S), t̂al sqŝql), S[[(ŝql sq , t̂al sqŝql)]]φ = φ′′S , and RemoveTableLabels(RemoveRoot(
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φ′′S , GetRoot(φ′′S))) = φSdt . By Rule (S[[]] ChChExDT),

S[[ŝql, t̂al ]]φ =AddRoot(JoinGraphs(AddTableLabel(GetRootNodes(ST [[φSdt ]]), t̂al sqŝql),

φ′Sr), rS)

(13.13)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((ĉ AS ĉlal, d̂t), t̂al) =

(hs(ĉ AS ĉlal, d̂t , t̂al), hw(t̂, t̂al)). By Rule (hs Char AlSQ), hs(ĉ AS ĉlal, d̂t , t̂al) = (ĉ AS

?̂tal Tid ĉlal, ·), and by Rule (hw SQL From - SubQuery), hw(d̂t , t̂al) = h(ŝql sq ,

t̂al sqŝql) = ˙spq sq . Thus, h((ĉ AS ĉlal, d̂t), t̂al) = (ĉ AS ?̂tal Tid ĉlal, ˙spq sq). Also, observe

that, in the case of sub-queries, where t̂al sqŝql 6= null, the SELECT item translation

rules, (hs Char/Int/{T/DT}Column AlSQ), always prefix the sub-query alias,

t̂al sqŝql, to the alias of every corresponding SPARQL Query SELECT item. Thus

t̂al sq ˙spq = GetSubQueryAlias(h(ŝql sq , t̂al sqŝql) = ˙spq sq) = t̂al sqŝql.

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ and S[[(ŝql sq , t̂al sqŝql)]]φ

= Q[[h(ŝql sq , t̂al sqŝql)]]φ. Observe that when t̂al sqŝql = t̂al sq ˙spq, ˙spsl = ĉ AS ĉlal, v̇al =

?̂tal Tid ĉlal, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal we have ElementExists(

v̇alrf , φ
′
Q) = true and TableExists(GetRoot(φ′Q), t̂al sq ˙spq) = false from our previ-

ous assumption (since φ′S = φ′Q from Inductive Hypothesis) , and v̇al = c ′′ Tid v̇alsuffix ,

where c ′′ = t̂al and v̇alsuffix = ĉlal. Further, since φ′S = φ′Q and φ′′S = φ′′Q (by Inductive

Hypothesis), φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)) = φ′Qr, rS = rQ, and φSdt = φQdt , .

Thus, by Rule (Q[[]] ChChExSQ),

Q[[h(ŝql, t̂al)]]φ =AddRoot(JoinGraphs(AddTableLabel(GetRootNodes(φQdt), t̂al sq ˙spq),

φ′Qr), rQ)

(13.14)

.

Since t̂al sqŝql = t̂al sq ˙spq, φSdt = φQdt , φ
′
Sr = φ′Qr, and rS = rQ, from equations (13.13)

and (13.14), S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ
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Case (S[[]] ChTblExDT) : Assume ŝql = {(ŝ, d̂t)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null,

ŝ = ĉ AS ĉlal, d̂t = (ŝql sq , t̂al sqŝql), ElementExists(̂tal Tid ĉlal, φ
′
S) = false, TableExists(

GetRoot(φ′S), t̂al sqŝql) = true, and φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)). By Rule (S[[]]

ChTblExDT),

S[[ŝql, t̂al ]]φ = CreateEdges(ĉ, t̂al Tid ĉlal, GetRootNodes(φ′Sr)) ∪ φ′S (13.15)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((ĉ AS ĉlal, d̂t), t̂al) =

(hs(ĉ AS ĉlal, d̂t , t̂al), hw(t̂, t̂al)). By Rule (hs Char AlSQ), hs(ĉ AS ĉlal, d̂t , t̂al) = (ĉ AS

?̂tal Tid ĉlal, ·), and by Rule (hw SQL From - SubQuery), hw(d̂t , t̂al) = h(ŝql sq ,

t̂al sqŝql) = ˙spq sq . Thus, h((ĉ AS ĉlal, d̂t), t̂al) = (ĉ AS ?̂tal Tid ĉlal, ˙spq sq). Also, observe

that, in the case of sub-queries, where t̂al sqŝql 6= null, the SELECT item translation

rules, (hs Char/Int/{T/DT}Column AlSQ), always prefix the sub-query alias,

t̂al sqŝql, to the alias of every corresponding SPARQL Query SELECT item. Thus

t̂al sq ˙spq = GetSubQueryAlias(h(ŝql sq , t̂al sqŝql) = ˙spq sq) = t̂al sqŝql.

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Observe that when

t̂al sqŝql = t̂al sq ˙spq, ˙spsl = ĉ AS ĉlal, v̇al =?̂tal Tid ĉlal, and v̇alrf = RemoveFirstChar(v̇al) =

t̂al Tid ĉlal we have ElementExists(v̇alrf , φ
′
Q) = false and TableExists(GetRoot(φ′Q),

t̂al sq ˙spq) = true from our previous assumption (since φ′S = φ′Q from Inductive Hypoth-

esis) , and v̇al = c ′′ Tid v̇alsuffix , where c ′′ = t̂al and v̇alsuffix = ĉ. Further, since φ′S = φQ’

(by Inductive Hypothesis), φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)) = φ′Qr. Thus, by

Rule (Q[[]] ChTblExSQ),

Q[[h(ŝql, t̂al)]]φ = CreateEdges(ĉ, v̇alrf , GetRootNodes(φ′Qr)) ∪ φ′Q (13.16)

.

Since t̂al sqŝql = t̂al sq ˙spq, φ
′
Sr = φ′Qr, and φ′S = φ′Q, from equations (13.15) and (13.16),

S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ
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Case (S[[]] ChNoneExDT) : Assume ŝql = {(ŝ, d̂t)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6=

null, ŝ = ĉ AS ĉlal, d̂t = (ŝql sq , t̂al sqŝql), ElementExists(̂tal Tid ĉlal, φ
′
S) = false,

TableExists(GetRoot(φ′S), t̂al sqŝql) = false, φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)),

and rS = AddTable(GetRoot(φ′S), t̂al sqŝql), S[[(ŝql sq , t̂al sqŝql)]]φ = φ′′S , and

RemoveTableLabels(RemoveRoot(φ′′S , GetRoot(φ′′S))) = φSdt . By Rule (S[[]] ChNone-

ExDT),

S[[ŝql, t̂al ]]φ =AddRoot(JoinGraphs(CreateEdges(ĉ, t̂al Tid ĉlal, AddTableLabel

(GetRootNodes(ST [[φSdt ]]), t̂al sqŝql)), φ
′
Sr), rS)

(13.17)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((ĉ AS ĉlal, d̂t), t̂al) =

(hs(ĉ AS ĉlal, d̂t , t̂al), hw(t̂, t̂al)). By Rule (hs Char AlSQ), hs(ĉ AS ĉlal, d̂t , t̂al) = (ĉ AS

?̂tal Tid ĉlal, ·), and by Rule (hw SQL From - SubQuery), hw(d̂t , t̂al) = h(ŝql sq ,

t̂al sqŝql) = ˙spq sq . Thus, h((ĉ AS ĉlal, d̂t), t̂al) = (ĉ AS ?̂tal Tid ĉlal, ˙spq sq). Also, observe

that, in the case of sub-queries, where t̂al sqŝql 6= null, the SELECT item translation

rules, (hs Char/Int/{T/DT}Column AlSQ), always prefix the sub-query alias,

t̂al sqŝql, to the alias of every corresponding SPARQL Query SELECT item. Thus

t̂al sq ˙spq = GetSubQueryAlias(h(ŝql sq , t̂al sqŝql) = ˙spq sq) = t̂al sqŝql.

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ and S[[(ŝql sq , t̂al sqŝql)]]φ

= Q[[h(ŝql sq , t̂al sqŝql)]]φ. Observe that when t̂al sqŝql = t̂al sq ˙spq, ˙spsl = ĉ AS ĉlal, v̇al =

?̂tal Tid ĉlal, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal we have ElementExists(

v̇alrf , φ
′
Q) = false and TableExists(GetRoot(φ′Q), t̂al sq ˙spq) = false from our previ-

ous assumption (since φ′S = φ′Q from Inductive Hypothesis) , and v̇al = c ′′ Tid v̇alsuffix ,

where c ′′ = t̂al and v̇alsuffix = ĉlal. Further, since φ′S = φ′Q and φ′′S = φ′′Q (by Inductive

Hypothesis), φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)) = φ′Qr, rS = rQ, and φSdt = φQdt , .
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Thus, by Rule (Q[[]] ChNoneExSQ),

Q[[h(ŝql, t̂al)]]φ =AddRoot(JoinGraphs(CreateEdges(ĉ, v̇alrf , AddTableLabel

(GetRootNodes(φQdt), t̂al sq ˙spq)), φ
′
Qr), rQ)

(13.18)

.

Since t̂al sqŝql = t̂al sq ˙spq, φSdt = φQdt , φ
′
Sr = φ′Qr, and rS = rQ, from equations (13.17)

and (13.18), S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ClTMchEx) : Assume ŝql = {(ŝ, t̂)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null,

ŝ = t̂′.ĉl AS ĉlal, t̂ = t̂′, φST = ST [[t̂]]{φ}, and TableExists(GetRoot(φ′S), t̂) = true.

By Rule (S[[]] ColAl TMatchExists),

S[[ŝql, t̂al ]]φ =AttachEdge(ReplaceLabel(ExtColEdges(t̂ Tid ĉl, GetRootNodes(φST ),

φST ), t̂ Tid ĉl, t̂al Tid ĉlal),×GetRootNodes(RemoveRoot(φ′S , GetRoot(φ′S))))

∪ φ′S
(13.19)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((t̂′.ĉl AS ĉlal, t̂), t̂al)

= (hs(t̂
′.ĉl AS ĉlal, t̂, t̂al), hw(t̂, t̂al)). Since t̂ is a table, i.e., IsTable(t̂) = true, by Rule

(hs TColumn AlSQ), hs(t̂
′.ĉl AS ĉlal, t̂, t̂al) = (?t̂′ Tid ĉl AS ?̂tal Tid ĉlal, (?t̂

′
Tidtype ĉl

?t̂′ Tid ĉl)), and by Rule (hw SQL From - Table), hw(t̂, t̂al) = (?t̂ Tidtype type t̂).

Thus, h((t̂′.ĉl AS ĉlal, t̂), t̂al) = (?t̂′ Tid ĉl AS ?̂tal Tid ĉlal, {(?t̂′ Tidtype ĉl ?t̂′ Tid ĉl),

(?t̂ Tidtype type t̂)})

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Substituting c for t̂′,

c ′ for t̂, c ′′ for t̂al , ṗ for ĉl, and v̇alrf = RemoveFirstChar(v̇al) for t̂al Tid ĉlal, we have,

c = c ′, and φQT = ST [[c]]{φ} = φST . Further, by inductive hypothesis, φ′S = φ′Q,

and therefore, TableExists(GetRoot(φ′Q), c) = true. Thus, since t̂al 6= null, by Rule
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(Q[[]] ClTwMchEx),

Q[[h(ŝql, t̂al)]]φ =AttachEdge(ReplaceLabel(ExtColEdges(c Tid ṗ, GetRootNodes(φQT ),

φQT ), c Tid ṗ, v̇alrf )× GetRootNodes(RemoveRoot(φ′Q, GetRoot(φ′Q))))

∪ φ′Q
(13.20)

.

Since c = t̂ and, therefore, φST = φQT , ṗ = ĉl, and v̇alrf = RemoveFirstChar(v̇al) =

t̂al Tid ĉlal, and φ′S = φ′Q by inductive hypothesis, from equations (13.19) and (13.20),

S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ClTMchNoEx) : Assume ŝql = {(ŝ, t̂)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , t̂al 6= null,

ŝ = t̂′.ĉl AS ĉlal, t̂ = t̂′, φST = ST [[t̂]]{φ}, TableExists(GetRoot(φ′S), t̂) = false,

φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)), and rS = AddTable(GetRoot(φ′S), t̂). By Rule

(S[[]] ClTMchNoEx),

S[[ŝql, t̂al ]]φ =AddRoot(JoinGraphs(ReplaceLabel(ExtColEdges(t̂ Tid ĉl,

GetRootNodes(φST ), φST ), t̂ Tid ĉl, t̂al Tid ĉlal), φ
′
Sr), rS)

(13.21)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((t̂′.ĉl AS ĉlal, t̂), t̂al) =

(hs(t̂
′.ĉl AS ĉlal, t̂, t̂al), hw(t̂, t̂al)). Since t̂ is a table, i.e., IsTable(t̂) = true, by Rule

(hs TColumn AlSQ), hs(t̂
′.ĉl AS ĉlal, t̂, t̂al) = (?t̂′ Tid ĉl AS ?̂tal Tid ĉlal, (?t̂

′
Tidtype ĉl

?t̂′ Tid ĉl)), and by Rule (hw SQL From - Table), hw(t̂, t̂al) = (?t̂ Tidtype type t̂).

Thus, h((t̂′.ĉl AS ĉlal, t̂), t̂al) = (?t̂′ Tid ĉl AS ?̂tal Tid ĉlal, {(?t̂′ Tidtype ĉl ?t̂′ Tid ĉl),

(?t̂ Tidtype type t̂)})

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Substituting c for t̂′,

c ′ for t̂, ṗ for ĉl, and v̇alrf = RemoveFirstChar(v̇al) for t̂al Tid ĉlal, we have, c = c ′ and

φQT = ST [[c]]{φ} = φST . Further, by inductive hypothesis, φ′S = φ′Q, and therefore,
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TableExists(GetRoot(φ′Q), c) = false, φ′Qr = RemoveRoot(φ′Q, GetRoot(φ′Q)) = φ′Sr,

and rQ = AddTable(GetRoot(φ′Q), c) = rS . Thus, since t̂al 6= null, by Rule (Q[[]]

ClTwMchNoEx),

Q[[h(ŝql, t̂al)]]φ =AddRoot(JoinGraphs(ReplaceLabel(ExtColEdges(c Tid ṗ,

GetRootNodes(φQT ), φQT ), c Tid ṗ, v̇alrf ), φ
′
Qr), rQ)

(13.22)

.

Since c = t̂ and, therefore, φST = φQT , ṗ = ĉl, and v̇alrf = RemoveFirstChar(v̇al) =

t̂al Tid ĉlal, and φ′S = φ′Q by inductive hypothesis, and therefore, φ′Sr = φ′Qr and rS = rQ,

from equations (13.21) and (13.22), S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ClTNoMchEx) : Assume ŝql = {(ŝ, t̂)}]ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , ŝ = t̂′.ĉl AS ĉlal,

t̂ 6= t̂′, and TableExists(GetRoot(φ′S), t̂) = true. By Rule (S[[]] ClTNoMchEx),

S[[ŝql, t̂al ]]φ = φ′S (13.23)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((t̂′.ĉl AS ĉlal, t̂), t̂al) =

(hs(t̂
′.ĉl AS ĉlal, t̂, t̂al), hw(t̂, t̂al)). Since t̂ is a table, i.e., IsTable(t̂) = true, by Rule

(hs TColumn AlSQ), hs(t̂
′.ĉl AS ĉlal, t̂, t̂al) = (?t̂′ Tid ĉl AS ?̂tal Tid ĉlal, (?t̂

′
Tidtype ĉl

?t̂′ Tid ĉl)), and by Rule (hw SQL From - Table), hw(t̂, t̂al) = (?t̂ Tidtype type t̂).

Thus, h((t̂′.ĉl AS ĉlal, t̂), t̂al) = (?t̂′ Tid ĉl AS ?̂tal Tid ĉlal, {(?t̂′ Tidtype ĉl ?t̂′ Tid ĉl),

(?t̂ Tidtype type t̂)})

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Substituting c for

t̂′, c ′ for t̂, we have, c 6= c ′. Further, by inductive hypothesis, φ′S = φ′Q, and

therefore, TableExists(GetRoot(φ′Q), c) = true. Thus, substituting ṗ for ĉl, and

v̇alrf = RemoveFirstChar(v̇al) for ĉlal, we have, by Rule (Q[[]] ClTwNoMchEx),

Q[[h(ŝql, t̂al)]]φ = φ′Q (13.24)
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.

Since φ′S = φ′Q by inductive hypothesis, from equations (13.23) and (13.24), S[[ŝql, t̂al ]]φ =

Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ClTNoMchNoEx) : Assume ŝql = {(ŝ, t̂)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , ŝ =

t̂.ĉl AS ĉlal, t̂ 6= t̂′, and TableExists(GetRoot(φ′S), t̂) = false, φ′Sr = RemoveRoot(φ′S ,

GetRoot(φ′S)), rS = AddTable(GetRoot(φ′S), t̂), and φST = ST [[t̂]]{φ}. By Rule (S[[]]

ClTNoMchEx),

S[[ŝql, t̂al ]]φ = AddRoot(JoinGraphs(AddTableLabel(GetRootNodes(φST ), t̂), φ′Sr), rS)

(13.25)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((t̂′.ĉl AS ĉlal, t̂), t̂al) =

(hs(t̂
′.ĉl AS ĉlal, t̂, t̂al), hw(t̂, t̂al)). Since t̂ is a table, i.e., IsTable(t̂) = true, by Rule

(hs TColumn AlSQ), hs(t̂
′.ĉl AS ĉlal, t̂, t̂al) = (?t̂′ Tid ĉl AS ?̂tal Tid ĉlal, (?t̂

′
Tidtype ĉl

?t̂′ Tid ĉl)), and by Rule (hw SQL From - Table), hw(t̂, t̂al) = (?t̂ Tidtype type t̂).

Thus, h((t̂′.ĉl AS ĉlal, t̂), t̂al) = (?t̂′ Tid ĉl AS ?̂tal Tid ĉlal, {(?t̂′ Tidtype ĉl ?t̂′ Tid ĉl),

(?t̂ Tidtype type t̂)})

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Substituting c for

t̂′, c ′ for t̂, we have, c 6= c ′ and φQT = ST [[c ′]]{φ} = φST . Further, by inductive

hypothesis, φ′S = φ′Q, and therefore, TableExists(GetRoot(φ′Q), c) = false, φ′Qr =

RemoveRoot(φ′Q, GetRoot(φ′Q)) = φ′Sr, and rQ = AddTable(GetRoot(φ′Q), c) = rS .

Thus, substituting ṗ for ĉl, we have, by Rule (Q[[]] ClTwNoMchNoEx),

Q[[h(ŝql, t̂al)]]φ =AddRoot(JoinGraphs(AddTableLabel(GetRootNodes(φQT ), c ′), φ′Qr),

rQ)

(13.26)

.
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Since c ′ = t̂ and, therefore, φST = φQT , and since φ′S = φ′Q by inductive hypoth-

esis and, therefore, φ′Sr = φ′Qr and rS = rQ, from equations (13.25) and (13.26),

S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ClDTMchEx) : Assume ŝql = {(ŝ, d̂t)}]ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , ŝ = t̂.ĉl AS ĉlal,

d̂t = (ŝql sq , t̂al sqŝql), t̂ = t̂al sqŝql, φ
′′
S = S[[(ŝql sq , t̂al sqŝql)]]φ, and TableExists(GetRoot(φ′S)

, t̂al sqŝql) = true. By Rule (S[[]] ClDTMchEx),

S[[ŝql, t̂al ]]φ =AttachEdge(ReplaceLabel(ExtColEdges(t̂ Tid ĉl, GetRootNodes

(RemoveRoot(φ′′S , GetRoot(φ′′S))), φ′′S), t̂ Tid ĉl, t̂al Tid ĉlal)

× GetRootNodes(RemoveRoot(φ′S , GetRoot(φ′S)))) ∪ φ′S
(13.27)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((t̂.ĉl AS ĉlal, d̂t), t̂al)

= (hs(t̂.ĉl AS ĉlal, d̂t , t̂al), hw(d̂t , t̂al)). Since d̂t is not a table, i.e., IsTable(d̂t) = false,

by Rule (hs DTColumn AlSQ), hs(t̂.ĉl AS ĉlal, d̂t , t̂al) =?t̂ Tid ĉl AS ?̂tal Tid ĉlal, and

by Rule (hw SQL From - SubQuery), hw(d̂t , t̂al) = h(ŝql sq , t̂al sqŝql) = ˙spq sq . Thus,

h((t̂.ĉl AS ĉlal, d̂t), t̂al) = (?t̂ Tid ĉl AS ?̂tal Tid ĉlal, ˙spq sq). Also, observe that, in the case of

sub-queries, where t̂al sqŝql 6= null, the SELECT item translation rules, (hs Char/Int/

{T/DT}Column AlSQ), always prefix the sub-query alias, t̂al sqŝql, to the alias of ev-

ery corresponding SPARQL Query SELECT item. Thus t̂al sq ˙spq = GetSubQueryAlias(

h(ŝql sq , t̂al sqŝql) = ˙spq sq) = t̂al sqŝql.

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ and S[[(ŝql sq , t̂al sqŝql)]]φ

= Q[[h(ŝql sq , t̂al sqŝql)]]φ. Substituting c for t̂, and t̂al sq ˙spq for t̂al sqŝql, we have, c = t̂al sq ˙spq.

Further, by inductive hypothesis, φ′S = φ′Q and φ′′S = φ′′Q, and therefore, TableExists(

GetRoot(φ′Q), t̂al sq ˙spq) = true. Thus, since v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal,
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substituting ṗ for ĉl, we have, by Rule (Q[[]] ClSQMchEx),

Q[[h(ŝql, t̂al)]]φ =AttachEdge(ReplaceLabel(ExtColEdges(c Tid ṗ, GetRootNodes

(RemoveRoot(φ′′Q, GetRoot(φ′′Q))), φ′′Q), c Tid ṗ, v̇alrf )

× GetRootNodes(RemoveRoot(φ′Q, GetRoot(φ′Q)))) ∪ φ′Q
(13.28)

.

Since c = t̂, ṗ = ĉl, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal, and φ′S = φ′Q and

φ′′S = φ′′Q by inductive hypothesis, from equations (13.27) and (13.28), S[[ŝql, t̂al ]]φ =

Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ClDTMchNoEx) : Assume ŝql = {(ŝ, d̂t)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , ŝ =

t̂.ĉl AS ĉlal, d̂t = (ŝql sq , t̂al sqŝql), t̂ = t̂al sqŝql, φ
′′
S = S[[(ŝql sq , t̂al sqŝql)]]φ, TableExists(

GetRoot(φ′S), t̂al sqŝql) = false, φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)), and rS =

AddTable(GetRoot(φ′S), t̂al sqŝql). By Rule (S[[]] ClDTMchNoEx),

S[[ŝql, t̂al ]]φ =AddRoot(JoinGraphs(ReplaceLabel(ExtColEdges(t̂ Tid ĉl,

GetRootNodes(RemoveRoot(φ′′S , GetRoot(φ′′S))), φ′′S), t̂ Tid ĉl, t̂al Tid ĉlal),

φ′Sr), rS)

(13.29)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((t̂.ĉl AS ĉlal, d̂t), t̂al)

= (hs(t̂.ĉl AS ĉlal, d̂t , t̂al), hw(d̂t , t̂al)). Since d̂t is not a table, i.e., IsTable(d̂t) = false,

by Rule (hs DTColumn AlSQ), hs(t̂.ĉl AS ĉlal, d̂t , t̂al) =?t̂ Tid ĉl AS ? t̂al Tid ĉlal, and

by Rule (hw SQL From - SubQuery), hw(d̂t , t̂al) = h(ŝql sq , t̂al sqŝql) = ˙spq sq . Thus,

h((t̂.ĉl AS ĉlal, d̂t), t̂al) = (?t̂ Tid ĉl AS ?̂tal Tid ĉlal, ˙spq sq). Also, observe that, in the case of

sub-queries, where t̂al sqŝql 6= null, the SELECT item translation rules, (hs Char/Int/
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{T/DT}Column AlSQ), always prefix the sub-query alias, t̂al sqŝql, to the alias of ev-

ery corresponding SPARQL Query SELECT item. Thus t̂al sq ˙spq = GetSubQueryAlias(

h(ŝql sq , t̂al sqŝql) = ˙spq sq) = t̂al sqŝql.

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ and S[[(ŝql sq , t̂al sqŝql)]]φ =

Q[[h(ŝql sq , t̂al sqŝql)]]φ. Substituting c for t̂, t̂al sq ˙spq for t̂al sqŝql, we have c = t̂al sq ˙spq. Fur-

ther, by inductive hypothesis, φ′S = φ′Q and φ′′S = φ′′Q, and therefore, TableExists(

GetRoot(φ′Q), t̂al sq ˙spq) = false, φ′Qr = RemoveRoot(φ′Q, GetRoot(φ′Q)) = φ′Sr, and

rQ = AddTable(GetRoot(φ′Q), t̂al sq ˙spq) = rS . Thus, since v̇alrf = RemoveFirstChar(v̇al) =

t̂al Tid ĉlal, substituting ṗ for ĉl, we have, by Rule (Q[[]] ClSQMchNoEx),

Q[[h(ŝql, t̂al)]]φ =AddRoot(JoinGraphs(ReplaceLabel(ExtColEdges(c Tid ṗ,

GetRootNodes(RemoveRoot(φ′′Q, GetRoot(φ′′Q))), φ′′Q), c Tid ṗ, v̇alrf ),

φ′Qr), rQ)

(13.30)

.

Since c = t̂, ṗ = ĉl, and v̇alrf = RemoveFirstChar(v̇al) = t̂al Tid ĉlal, and φ′S = φ′Q

and φ′′S = φ′′Q by inductive hypothesis, and therefore, φ′Sr = φ′Qr and rS = rQ, from

equations (13.29) and (13.30), S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ClDTNoMchEx) : Assume ŝql = {(ŝ, d̂t)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , ŝ =

t̂.ĉl AS ĉlal, d̂t = (ŝql sq , t̂al sqŝql), t̂ 6= t̂al sqŝql, and TableExists(GetRoot(φ′S), t̂al sqŝql) =

true. By Rule (S[[]] ClDTNoMchEx),

S[[ŝql, t̂al ]]φ = φ′S (13.31)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((t̂.ĉl AS ĉlal, d̂t), t̂al)

= (hs(t̂.ĉl AS ĉlal, d̂t , t̂al), hw(d̂t , t̂al)). Since d̂t is not a table, i.e., IsTable(d̂t) = false,

by Rule (hs DTColumn Al/AlSQ), hs(t̂.ĉl AS ĉlal, d̂t , t̂al) =?t̂ Tid ĉl AS ?v̇al , where
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v̇al =?̂tal Tid ĉlal. By Rule (hw SQL From - SubQuery), hw(d̂t , t̂al) = h(ŝql sq , t̂al sqŝql) =

˙spq sq . Thus, h((t̂.ĉl AS ĉlal, d̂t), t̂al) = (?t̂ Tid ĉl AS ?v̇al , ˙spq sq). Also, observe that, in

the case of sub-queries, where t̂al sqŝql 6= null, the SELECT item translation rules,

(hs Char/Int/{T/DT}Column AlSQ), always prefix the sub-query alias, t̂al sqŝql,

to the alias of every corresponding SPARQL Query SELECT item. Thus t̂al sq ˙spq =

GetSubQueryAlias(h(ŝql sq , t̂al sqŝql) = ˙spq sq) = t̂al sqŝql.

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ Substituting c for

t̂, t̂al sq ˙spq for t̂al sqŝql, we have, c 6= t̂al sq ˙spq. Further, by inductive hypothesis, φ′S =

φ′Q, and therefore, TableExists(GetRoot(φ′Q), t̂al sq ˙spq) = true. Thus, by Rule (Q[[]]

ClSQNoMchEx),

Q[[h(ŝql, t̂al)]]φ = φ′Q (13.32)

.

Since φ′S = φ′Q by inductive hypothesis, from equations (13.31) and (13.32), S[[ŝql, t̂al ]]φ =

Q[[h(ŝql, t̂al)]]φ

Case (S[[]] ClDTNoMchNoEx) : Assume ŝql = {(ŝ, d̂t)} ] ŝql
′
, S[[ŝql

′
, t̂al ]]φ = φ′S , ŝ =

t̂.ĉl AS ĉlal, d̂t = (ŝql sq , t̂al sqŝql), t̂ 6= t̂al sqŝql, and TableExists(GetRoot(φ′S), t̂al sqŝql) =

false, φ′Sr = RemoveRoot(φ′S , GetRoot(φ′S)), rS = AddTable(GetRoot(φ′S), t̂al sqŝql),

φ′′S = S[[(ŝql sq , t̂al sqŝql)]]φ, and RemoveTableLabels(RemoveRoot(φ′′S , GetRoot(φ′′S))) =

φSdt . By Rule (S[[]] ClDTNoMchNoEx),

S[[ŝql, t̂al ]]φ =AddRoot(JoinGraphs(AddTableLabel(GetRootNodes(φSdt), t̂al sqŝql),

φ′Sr), rS)

(13.33)

By Rule (h SQL Query Translation), h(ŝql
′
, t̂al) = ˙spq′, and h((t̂.ĉl AS ĉlal, d̂t), t̂al)

= (hs(t̂.ĉl AS ĉlal, d̂t , t̂al), hw(d̂t , t̂al)). Since d̂t is not a table, i.e., IsTable(d̂t) = false,
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by Rule (hs DTColumn Al/AlSQ), hs(t̂.ĉl AS ĉlal, d̂t , t̂al) =?t̂ Tid ĉl AS ?v̇al , where

v̇al =?̂tal Tid ĉlal. By Rule (hw SQL From - SubQuery), hw(d̂t , t̂al) = h(ŝql sq , t̂al sqŝql) =

˙spq sq . Thus, h((t̂.ĉl AS ĉlal, d̂t), t̂al) = (?t̂ Tid ĉl AS ?v̇al , ˙spq sq). Also, observe that, in

the case of sub-queries, where t̂al sqŝql 6= null, the SELECT item translation rules,

(hs Char/Int/{T/DT}Column AlSQ), always prefix the sub-query alias, t̂al sqŝql,

to the alias of every corresponding SPARQL Query SELECT item. Thus t̂al sq ˙spq =

GetSubQueryAlias(h(ŝql sq , t̂al sqŝql) = ˙spq sq) = t̂al sqŝql.

By Inductive Hypothesis, we have S[[ŝql
′
, t̂al ]]φ = Q[[h(ŝql

′
, t̂al)]]φ and S[[(ŝql sq , t̂al sqŝql)]]φ

= Q[[h(ŝql sq , t̂al sqŝql)]]φ. Substituting c for t̂, t̂al sq ˙spq for t̂al sqŝql, we have c 6= t̂al sq ˙spq.

Further, by inductive hypothesis, φ′S = φ′Q and φ′′S = φ′′Q, and therefore, TableExists(

GetRoot(φ′Q), t̂al sq ˙spq) = false, φ′Qr = RemoveRoot(φ′Q, GetRoot(φ′Q)) = φ′Sr, rQ =

AddTable(GetRoot(φ′Q), c) = rS , and φQdt = RemoveTableLabels(RemoveRoot(φ′′Q,

GetRoot(φ′′Q))) = φSdt . Thus, by Rule (Q[[]] ClSQNoMchNoEx),

Q[[h(ŝql, t̂al)]]φ =AddRoot(JoinGraphs(AddTableLabel(GetRootNodes(φQdt), t̂al sq ˙spq),

φ′Qr), rQ)

(13.34)

.

Since φ′S = φ′Q by inductive hypothesis and, therefore, φ′Sr = φ′Qr and rS = rQ, and

φ′′S = φ′Q, also by inductive hypothesis, and, therefore, φSdt = φQdt , from equations

(13.33) and (13.34), S[[ŝql, t̂al ]]φ = Q[[h(ŝql, t̂al)]]φ

�
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