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Abstract: Recently, Adaboost has been widely used to improve the accuracy of any given learning algorithm. In this 
paper we focus on designing an algorithm to employ combination of Adaboost with Support Vector 
Machine (SVM) as weak component classifiers to be used in Face Detection Task. To obtain a set of 
effective SVM-weaklearner Classifier, this algorithm adaptively adjusts the kernel parameter in SVM 
instead of using a fixed one. Proposed combination outperforms in generalization in comparison with SVM 
on imbalanced classification problem. The proposed here method is compared, in terms of classification 
accuracy, to other commonly used Adaboost methods, such as Decision Trees and Neural Networks, on 
CMU+MIT face database. Results indicate that the performance of the proposed method is overall superior 
to previous Adaboost approaches. 

1 INTRODUCTION 

Nonlinear classification of data is always of special 
attention. Face Detection is a problem dealing with 
such data, due to large amount of variation and 
complexity brought about by changes in facial 
appearance, lighting and expression. Feature 
selection is needed beside appropriate classifier 
design to solve this problem, like many other pattern 
recognition tasks. 
One of the major developments in machine learning 
in the past decade is the Ensemble method, which 
finds a highly accurate classifier by combining many 
moderately accurate component classifiers. Two of 
the commonly used techniques for constructing 
Ensemble classifiers are Boosting [schaphire, 2002] 
and Bagging [Breiman, 1996]. In Comparison with 
Bagging, Boosting outperforms when the data do not 
have much noise [Opitz, 1999] [Bauer, 1999] 
.Among popular Boosting methods, AdaBoost 
[Freund, 1997] establishes a collection of weak 

component classifiers by maintaining a set of 
weights over training samples and adjusting them 
adaptively after each Boosting iteration: the weights 
of the misclassified samples by current component 
classifier will be increased while the weights of the 
correctly classified samples will be decreased. To 
implement the weight updates in Adaboost, several 
algorithms have been proposed [Kuncheva, 2002]. 
The success of AdaBoost can be attributed to its 
ability to enlarge the margin [schapire, 1998], which 
could enhance AdaBoost’s generalization capability. 
Decision Trees [Dietterich, 2000] or Neural 
Networks [Schwenk, 2000] [Ratsch, 2001] have 
already been employed as component classifiers for 
AdaBoost. These studies showed good 
generalization performance of these AdaBoost. 
However, determining the suitable tree size is a 
question when Decision Trees are used as 
component classifiers. Also, controlling the 
complexity in order to avoid over fitting will remain 
a question, when Radial Basis Function (RBF) 
Neural Networks are used as component classifiers. 



 

Moreover, we have to decide on the optimum 
number of centers and also on setting the width 
values of the RBFs. All these factors have to be 
carefully tuned in practical use of AdaBoost. 
Furthermore, diversity is known to be an important 
factor which affects the generalization accuracy of 
Ensemble classifiers [Melville, 2005][Kuncheva, 
2002]. In order to quantify the diversity, some 
methods are proposed [Kuncheva, 2003] [Windeatt, 
2005]. It is also known that in AdaBoost exists an 
accuracy/diversity dilemma [Dietterich, 2000], 
which means that the more accurate two component 
classifiers become, the less they can disagree with 
each other. Only when the accuracy and diversity are 
well balanced, can the AdaBoost demonstrate 
excellent generalization performance. However, the 
existing AdaBoost algorithms do not yet explicitly 
taken sufficient measurement to deal with this 
problem. Support Vector Machine [Vapnick, 1998] 
was developed based on the theory of Structural 
Risk Minimization. By using a kernel trick to map 
the training samples from an input space to a high 
dimensional feature space, SVM finds an optimal 
separating hyper plane in the feature space and uses 
a regularization parameter, C, to control its model 
complexity and training error. One of the popular 
kernels used by SVM is the RBF kernel, including a 
parameter known as Gaussian width, σ. In contrast 
to the RBF networks, SVM with the RBF kernel 
(RBFSVM in short) can automatically determine the 
number and location of the centers and the weight 
values [Scholkopf, 1997]. Also, it can effectively 
avoid over fitting by selecting proper values of C 
and σ. From the performance analysis of RBFSVM 
[Valentini, 2004], we know that σ is a more 
important parameter compared to C: although 
RBFSVM cannot learn well when a very low value 
of C is used, its performance largely depends on the 
σ value if a roughly suitable C is given. This means 
that, over a range of suitable C, the performance of 
RBFSVM can be conveniently changed by simply 
adjusting the value of σ. 
The proposed here method is compared, in terms of 
classification accuracy, to other commonly used 
Adaboost methods, such as Decision Trees and 
Neural Networks, on CMU+MIT face database. 
Results indicate that the performance of the 
proposed method is overall superior to those of 
traditional adaboost approaches. 

2 FEATURE SELECTION 

In this paper, like Viola and Jones [Viola and 
Jones 2001], we use four types of Haar-like basis 
functions for feature selection which have been used 
by Papageorgiou et al [Papageorgiou et al 1998].  
Like their work, we use four types of haar-like 
feature to build the feature pool. The feature can be 
computed efficiently with integral image. The main 
objective to use these features is that they can be 
rescaled easily which avoids to calculate a pyramid 
of images and yields to fast operation of the system 
on these features. These features can be seen in 
figure1. Given that the base resolution of the 
detector is 32x32, the exhaustive set of rectangle 
features is quite large, over 180,000. Note that 
unlike the Haar basis, the set of rectangle features is 
overcomplete. For each scale level, we rescale the 
features and record the relative coordinate of the 
rescaled features to the top-left of integral image in 
look-up-table (LUT). After looking up the value of 
the rescaled rectangle’s coordinate, we calculate 
features with relative coordinate. Like viola, we use 
image variance σ to correct lighting, which can be 
got using integral images of both original image and 
image squared. Rescaling needs to round rescaled 
coordinates to nearest integer, which would degrade 
the performance of viola’s features [Lienhart 2003]. 
Like R. Lienhart [Lienhart 2003], we normalize the 
features by acreage, and thus reduce the rounding 
error. 
 

 
Figure 1: Example rectangle features shown relative to the 
enclosing detection window. The sum of the pixels which lie 
within the white rectangles is subtracted from the sum of pixels in 
the grey rectangles. Two-rectangle features are shown in (A) and 
(B). Figure (C) shows a three-rectangle feature, and (D) a four-
rectangle feature. 

 
Using the integral image any rectangular sum 

can be computed in four array references (see Figure 
2). Clearly the difference between two rectangular 
sums can be computed in eight references. Since the 
two-rectangle features defined above involve 
adjacent rectangular sums they can be computed in 



 

six array references, eight in the case of the three-
rectangle features, and nine for four-rectangle 
features. 

 
Figure 2: The sum of the pixels within rectangle D can be 
computed with four array references. The value of the integral 
image at location 1 is the sum of the pixels in rectangle A. The 
value at location 2 is A+B, at location 3 is A+C, and at location 4 
is A+B+C+D. The sum within D can be computed as 4+1-(2+3). 

3 STATISTICAL LEARNING 

In this section, we describe boost based learning 
methods to construct face/nonface classifier, and 
propose a new boosting algorithm which improves 
boosting learning. 

3.1 AdaBoost Learning 

Given a set of training samples, AdaBoost 
[Schapire and Singer 1999] maintains a probability 
distribution, W, over these samples. This distribution 
is initially uniform. Then, AdaBoost algorithm calls 
Weak Learn algorithm repeatedly in a series of 
cycles. At cycle T, AdaBoost provides training 
samples with a distribution  tw  to the WeakLearn 
algorithm. 

AdaBoost, constructs a composite classifier by 
sequentially training classifiers while putting more 
and more emphasis on certain patterns. 

For two class problems, we are given a set of N 
labeled training examples ( )11,xy ( )NN xy ,,..., , where 

{ }1,1 −+∈iy  is the class label associated with 

example ix . 

For face detection, ix is an image sub-window of 
a fixed size (for our system 24x24) containing an 
instance of the face ( )1+=iy  or non-face ( )1−=iy  
pattern.  In the notion of AdaBoost see Algorithm 1, 
a stronger classifier is a linear combination of M 
weak classifiers. 

In boosting learning [9, 26, 10], each example 

ix  is associated with a weight iw , and the weights 
are updated dynamically using a multiplicative rule 
according to the errors in previous learning so that 

more emphasis is placed on those examples which 
are erroneously classified by the weak classifiers 
learned previously. 

Greater weights are given to weak learners with 
lower errors. The important theoretical property of 
AdaBoost is that if the weak learners consistently 
have accuracy only slightly better than half, then the 
error of the final hypothesis drops to zero 
exponentially fast. This means that the weak learners 
need be only slightly better than random. 

Furthermore, since proposed AdaBoost with 
SVM invents a convenient way to control the 
classification accuracy of each weak learner, it also 
provides an opportunity to deal with the well-known 
accuracy/diversity dilemma in Boosting methods. 
This is a happy accident from the investigation of 
AdaBoost based on SVM weak learners. 

 
Algorithm 1. The AdaBoosAlgorithm [Schapire and Singer] . 
1. Input: Training sample  
Input: a set of training samples with labels ( ) ( )NN xyxy ,,...,, 11

 , 

ComponentLearn algorithm, the number of cycles T. 
 
2. Initialize: the weights of training samples: Nwi /11 = , for all 

Ni ,...,1=  
 
3. Do for Tt ,...,1=  

(1)Use ComponentLearn algorithm to train the component 

classifier th  on the weighted training sample set. 

(2)Calculate the training error of th : 
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(4)Update the weights of training samples: 
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3.2 SVM Based Approach for 
Classification           

The principle of Support Vector Machine (SVM) 
relies on a linear separation in a high dimension 
feature space where the data have been previously 



 

mapped, in order to take into account the eventual 
non-linearities of the problem. 

If we assume that, the training set 
Rl

iixX R)( 1 ⊂= =  where l  is the number of 
training vectors, R stands for the real line and R is 
the number of modalities, is labelled with two class 
targets l

iiyY 1)( == , where : 
 

{ } Fy R
i →Φ+−∈ R:1,1  

(1) 

 
Maps the data into a feature space F. Vapnik has 

proved that maximizing the minimum distance in 
space F between )(XΦ  and the separating hyper 
plane ),( bwH  is a good means of reducing the 
generalization risk.  

Where: 
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(2) 

Vapnik also proved that the optimal hyper plane 
can be obtained solving the convex quadratic 
programming (QP) problem: 
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Where constant C and slack variables x are 

introduced to take into account the eventual non-
separability of )(XΦ  into F. 

In practice this criterion is softened to the 
minimization of a cost factor involving both the 
complexity of the classifier and the degree to which 
marginal points are misclassified, and the tradeoff 
between these factors is managed through a margin 
of error parameter (usually designated C) which is 
tuned through cross-validation procedures. 

Although the SVM is based upon a linear 
discriminator, it is not restricted to making linear 
hypotheses. Non-linear decisions are made possible 
by a non-linear mapping of the data to a higher 
dimensional space. The phenomenon is analogous to 
folding a flat sheet of paper into any three-
dimensional shape and then cutting it into two 
halves, the resultant non-linear boundary in the two-
dimensional space is revealed by unfolding the 
pieces. 

The SVM’s non-parametric mathematical 
formulation allows these transformations to be 

applied efficiently and implicitly: the SVM’s 
objective is a function of the dot product between 
pairs of vectors; the substitution of the original dot 
products with those computed in another space 
eliminates the need to transform the original data 
points explicitly to the higher space. The 
computation of dot products between vectors 
without explicitly mapping to another space is 
performed by a kernel function. 

The nonlinear projection of the data is performed 
by this kernel functions. There are several common 
kernel functions that are used such as the linear, 
polynomial kernel d

RRyxyxK )1,(),(( +><=  
and the sigmoidal kernel 

)),tanh(),(( ayxyxK RR
+><= , where x and 

y are feature vectors in the input space. 
The other popular kernel is the Gaussian (or 

"radial basis function") kernel, defined as: 
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Where σ  is a scale parameter, and x and y are 

feature-vectors in the input space. The Gaussian 
kernel has two hyper parameters to control 
performance C and the scale parameterσ . In this 
paper we used radial basis function (RBF). 

3.3 AdaBoosted SVM-Based Component 
Classifier        

We combine SVM with AdaBoost to improve its 
capability in classification. When applying Boosting 
method to strong component classifiers, these 
classifiers must be appropriately weakened in order 
to benefit from Boosting [Dietterich 2000]. 

Like Schapire and Singer, we used resampling to 
train AdaBoost, in this problem we must train weak 
classifiers (SVM classifier) to obtain best Gaussian 
width, σ and the regularization parameter, C, for 
optimizing strong classifier (AdaBoost classifier). 

Hence, SVM with RBF kernel is used as weak 
learner for AdaBoost, a relatively large σ value, 
which corresponds to a SVM with RBF kernel with 
relatively weak learning ability, is preferred. Both 
resampling and reweighting can be used to train 
AdaBoost. The algorithm is shown in the following 
diagram.  

 
 
 
 



 

 
Algorithm 2. The AdaBoost with SVM Algorithm. 
1. Input: Training sample  
Input: a set of training samples with labels ( ) ( )NN xyxy ,,...,, 11

 , 

The initial σ = σini ,σmin ,σstep  

2. Initialize: the weights of training samples: Nwi /11 = , for all 

Ni ,...,1=  
 
3. Do while σ > σmin  

(1)Use RBFSVM to train on the weighted training sample set. 
(2)Calculate the training error of th : 
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(3) if ε > .5t ,decrease σ value by σstep  and goto(1) 
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 (5)Update the weights of training samples: 
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4 EXPERIMENTAL RESUTTS 

4.1 Database 

We tested our system on the MIT+CMU frontal 
face test set [Rowley et al. 1994] and own database. 
There are more than 2,500 faces in total. To train the 
detector, a set of face and nonface training images 
were used. The pairwise recognition framework is 
evaluated on a compound face database with 2000 
face images hand labelled faces scaled and aligned 
to a base resolution 32 by 32 pixels by the centre 
point of the two eyes and the horizontal distance 
between the two eyes. For non-face training set, an 
initial 10,000 non-face samples were selected 
randomly from 15,000 large images which contain 
no face. 

4.2 Face Detection System 

We explain our face detection system and show 
how to construct a AdaBoosted SVM-based 
component classifier for face detection. The learning 
of a detector is done as follows: 

1. A set of simple Haar wavelet features are 
used as candidate features. There are tens of 
thousands of such features for a 32x32 
window. 

2. A subset of them are selected and the 
corresponding weak classifiers are 
constructed, using AdaBoosted SVM-based 
component classifier learning. 

3. A strong classifier is constructed as a linear 
combination of the weak ones. 

4. A detector is composed of one or several 
strong classifiers in cascade. 

The detector pyramid is then built upon the 
learned detectors [Li and Zhang 2004]. 

4.3 Results 

The SVM-based component classifier and 
AdaBoost algorithm are used for the classification of 
each pair of individuals. We compare the detection 
rates to other commonly used Adaboost methods, 
such as Decision Trees and Neural Networks, on  
face database. 

For showing the performance of our AdaBoosted 
svm-based component classifier algorithm, the 
results are shown in Table 1. 
 

False detections 
 

Detector 

 
120 

 
200 

Adaboost  with SVM 5.41 1.85 
Adaboost with Decision Trees 9.81 2.42 
Adaboost with  Neural Networks 14.51 5.41 

Table 1: Comparison of Error rate (%) for some AdaBoost 
methods. 

 
A ROC curve showing the performance of our 

detector on this test set is shown in Figure 3 and 
Some results are shown in Figure 4. 

 



 

 

Figure 3: Comparison of ROC for frontal face detection 
results. 

 
Figure 4: Some frontal face detection results. 

5 CONCLUSIONS 

AdaBoost with properly designed SVM-based 
component classifiers is proposed in this paper, 
which is achieved by adaptively adjusting the kernel 
parameter to get a set of effective component 
classifiers. Experimental results on CMU+MIT 
database for Face Detection demonstrated that 
proposed AdaBoostSVM algorithm performs better 
than other approaches of using component classifiers 
such as Decision Trees and Neural Networks in 
accuracy and speed. Besides these, it is found that 
proposed AdaBoostSVM algorithm demonstrated 
good performance on imbalanced classification 
problems. Based on the AdaBoostSVM, an 
improved version is further developed to deal with 
the accuracy/diversity dilemma in Boosting 
algorithms, giving rising to better generalization 
performance. Experimental results indicate that the 
performance of the cascaded adaboost classifier with 
SVM is overall superior to those obtained by the NN 
and Decision Tree. 
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