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Abstract
Algebraic reconstruction technique (ART) is one of the popular image
reconstruction techniques used in diffuse optical tomography (DOT). We
investigate in this note the influence of the order in which data are accessed
in ART. Simulations mimicking breast tissues in transmission geometry with
contrast agent tumour enhancement were used to evaluate the image quality
of the diverse projection access investigated. We show that by selecting
proper projection access order, the convergence speed can be significantly
improved when ART is used to perform DOT. Moreover, low-contrast detection
is improved.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffuse optical tomography (DOT) is a new biomedical imaging modality that uses near
infrared (NIR) light (Arridge 1999, Yodh and Chance 1995). In this spectral window,
tissues exhibit low light absorption and the light propagation is governed predominantly
by scattering. Thus, large volumes of tissues can be probed. Moreover, tissue-intrinsic
absorption is principally due to oxy-haemoglobin and deoxy-haemoglobin. By retrieving the
distributions of these two chromophores one is able to image tissue functional characteristics.
Potential applications range from brain functional imaging (Villringer and Chance 1997) to
cancer detection (Ntziachristos and Chance 2001, Hawrys and Sevick-Muraca 2000).

0031-9155/02/010001+10$30.00 © 2002 IOP Publishing Ltd Printed in the UK N1

http://stacks.iop.org/pb/47/N1


N2 X Intes et al

DOT employs measurements recorded from tissue using multiple optical source–detector
pairs and retrieves (reconstructs) the targeted chromophore distribution by synthesizing
the measurements through solution of an inverse problem. Similar to other tomographic
approaches, such as x-ray computed tomography (CT), positron emission tomography (PET)
or single photon emission computed tomography (SPECT), DOT first constructs the forward
problem, which predicts the photon propagation for a known medium and then it inverts it.

A popular technique among the linear inversion techniques to resolve the inverse problem
in this case is the algebraic reconstruction technique (ART) (Kak and Slaney 1987). This
method is best suited for projections that are sparse, noisy or non-uniformly distributed and
it has been successfully applied to DOT (O’Leary et al 1995, Ntziachristos et al 2000).
Furthermore, it allows efficient processing of large inversion problems since it has minimum
storage requirements and can be easily implemented with constraints such as object shape or
non-negativity.

In this paper, we investigated three projection access-ordering schemes for DOT. In
section 2, we discuss our methods including the choice of the algebraic technique, the model
used for the forward operator, the generation of the dataset and finally the way we create the
different access order. Section 3 presents reconstructions in slab geometry for the three access
orders considered herein and the definition of the mathematical estimators used to assess the
quality of the reconstructions. In section 4 we perform a discussion of the impact of the access
order and the utility to consider a specific access order.

2. Methods

2.1. Forward model

The propagation of NIR light in tissue is well modelled by the diffusion equation. In the case
of heterogeneity, the diffusion equation can be solved by a perturbative approach (O’Leary
1996). In this paper, we have used the Rytov approximation approach. In the case of DOT,
multiple source–detector pairs are used. The media under consideration is sampled in voxels
and the problem can be written as a matrix equation, i.e.
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where �sc(rsi , rdi ) is the diffuse perturbative phase for the ith source–detector pair, Wij

(O’Leary 1996) is the weight for the jth voxel and the ith source–detector pair and δµa(rj ) is
the differential absorption coefficient of the jth voxel. We limited our problem to image the
absorption coefficient. Boundary conditions for semi-infinite geometries and slab geometries
are derived using the extrapolated boundary condition and the image source technique (Haskell
et al 1994).

2.2. Inversion using ART

Algebraic techniques are well known and broadly used in the biomedical community (Gordon
et al 1970). ART solves a system of linear equations (b = Ax) by sequentially projecting a
solution estimate onto the hyperplanes defined by each row of the linear system. The technique
is used in an iterative scheme and the projection at the end of the kth iteration becomes the
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Figure 1. Model used for the simulations. The two objects have a contrast of 10 (object A) and 5
(object B) relative to the absorption background.

estimate for the (k + 1)th iteration. This projection process can be expressed mathematically
as (Kak and Slaney 1987)
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(k)

j + λ
bi − ∑

i aij x
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i aijaij

∑
i
aij (2)

where x
(k)
j is the kth estimate of jth element of the object function, bi the ith measurement, aij

the ijth element of the weight matrix A and λ the relaxation parameter.
The relaxation parameter adjusts the projection step for each iteration. The selection of λ

is most of the time done empirically (Ros et al 1996, Herman and Meyer 1993, Gaudette et al
2000, van der Sluis and van der Vorst 1990). We have set λ = 0.1 based on previous studies
with experimental data (Ntziachristos et al 2000).

2.3. Measurement generation

Measurements where obtained by solving the frequency-domain diffusion equation with a
finite difference approach. We restricted our simulations to a two-dimensional (2D) geometry
for computational efficiency.

The configuration we simulated in this study was a transmittance one which is a typical
experimental configuration for NIR breast imaging (Ntziachristos et al 2000, Matson and Liu
2000, Culver et al 2000) as shown in figure 1.

The slab thickness was 5 cm. We placed 17 sources on one side of the slab and
257 detectors on the other side, both evenly stretched along 8 cm. The optical properties
were chosen to mimic the average properties of the human breast (Durduran et al 2000):
µ

background
a = 0.05 cm−1, µ

background
s = 10 cm−1. Two rectangular absorptive objects of 1 cm2

were placed 3 cm apart in the centre of the slab. Those objects had a contrast of 10 (object A)
and 5 (object B) relative to the absorption background.

The finite difference simulations used a 0.25 × 0.25 mm2 grid size. All the simulations
performed herein were realized at a 50 MHz frequency. A 1% random noise on amplitude and
a 0.1◦ random noise on phase were added for all the simulations unless stated otherwise.
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2.4. Access order

Different access orders have been proposed in the past. They all considered the classical case
of a fan-beam configuration in CT to be assessed. The idea of these different access orders
is to minimize the correlation between measurements bi that are successively accessed by the
iterative projection inversion method.

The goal is to prearrange the measurements in such a scheme that the projections are
closest to perpendicularity. The different access order schemes proposed are the prime number
decomposition (PND, Ros et al 1996), the random access scheme (RAS, van Dijke 1992), the
multi-level scheme (MLS, Guan and Gordon 1994) and the weighted distance scheme (WDS,
Mueller et al 1997). Those access orders are able to speed up the convergence rate of the ART
and give better results in the first iteration relative to the sequential access scheme, which is
the natural access order, i.e. access the projections in the order of the acquired experimental
data. Moreover, they lead to better low-contrast detection (Guan et al 1998). They have
demonstrated significant conversion improvement in CT, PET and SPECT.

In DOT, light undergoes many elastic scattering events and a ‘banana’ shape (Feng
et al 1995) characterizes the projections. This results in high correlation between the
measurements and also is responsible for the low-resolution of DOT and a slow convergence
of the algebraic inversion technique. Here, we investigated three different access orders. We
will refer to them as systematic, sequential and random.

The systematic access scheme orders the measurement according to the order in which they
are collected experimentally, namely by stepping the illumination source at adjacent spatial
positions. This access order can be defined as

{
S1D1, S1D2, . . . , S1DNd , S2D1, . . . , SNs

DNd

}
.

The sequential access is used in a fan-beam configuration in CT without optimization.
The projections are classified by groups of parallel beams and accessed group by group. In
our case, we used the first data projection (S1D1) as the reference and all the other projections
will be referenced by the angle between the line connecting the source–detector pair to the
line connecting S1D1.

Finally, the random access is a randomization of all the measurements. This access is
considered as the most efficient by van Dijke (van Dijke 1992).

2.5. Image quality evaluators

In order to evaluate the image quality achieved with each access order, we used common
quantitative image evaluators. Four different evaluators were used in this study.

The first two evaluators are the correlation coefficient
(
ε

(k)

1

)
and the root mean square

error (Euclidian distance—ε
(k)

2 ) between the reconstruction and the model. The mathematical
expressions of these coefficients are
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where ti (t̄) and xi
(k)

(
x̄(k)

)
each represents the pixel value (average value) in the original and kth

reconstructed images, respectively. The correlation coefficient is more related to the accurate
retrieval of the spatial distribution of the object function as the root mean square error is more
related to the quantitative retrieval of the object function.
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Another way to estimate the quality of the reconstruction is to compute the projection
error

(
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)
and the convergence rate
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The projection error measures the discrepancy between the data and their estimated values.
The projection error is an indicator of the speed of the algorithm to recover the images.
The convergence compares the difference between the measurements and the estimated
measurements for two iterations. The convergence is often used as a criterion to stop the
reconstruction. In other words, the convergence criterion, which controls the number of
iterations used for the reconstruction, is the regularization parameter. In this perspective, the
faster the numerical convergence criterion is reached, the better the reconstruction algorithm
will be considered. In clinical applications where no a priori information are available, this
parameter is used as the criterion of termination of the iterative process.

3. Results

The results of the reconstructions for the three access orders considered are shown in figure 2.
For reconstruction purposes, the volume of interest was divided into 40 × 20 voxels. Only
positive estimates were allowed in the iterative process.

Each frame of the sequence corresponds to a different iteration step that is shown in
the title of each picture. The colour scale of the picture is normalized to the maximum of
the random reconstruction at each iteration. The scale of the z-axis was fixed close to the
maximum value of the model

(
�µa = 0.45 cm−1

)
. Figure 3 presents the value of different

mathematical evaluators applied to the reconstructions of figure 2.

4. Discussion

As one can see from the sequence of figure 2, the use of different access orders leads to
different reconstruction results for DOT. The differences are significant in the early iterations.
The sequential and random accesses are showing two objects at the first iteration, however,
the systematic access is giving a poor view of the spatial distribution of the object function.
Moreover, the systematic access reconstructs large artefacts close to the boundaries. These
artefacts correspond to the input order of the projections. Comparatively random and sequential
access orders do not exhibit those artefacts. As the number of iterations increase, the three
access orders are able to retrieve the two objects. They all become less sensitive to the
boundary artefacts and give a good localization of the objects. Nonetheless, differences still
exist between the three access orders. These differences are on the quantitative evaluation of
the differential absorption. Random and sequential access orders estimate quantitatively the
object function at the same pace. The main difference arises on the second object evaluation.
On the other hand, at the same iteration number, the sequential access order always gives a
lower estimation of the object function. This fact indicates that the random and the sequential
access orders are faster to estimate properly the object function.

In an iterative process, the low-frequency components are recovered first and the high-
frequency components are recovered later. Here the random and the sequential access orders
are able to recover properly the low-frequency components from the first iteration. The
correlation of the measurements in the systematic access order slows the recovery of the
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Figure 2. Reconstructions of the differential absorption at different iteration number for the three different access orders. The numbers of the iteration presented are given in the title of
each sub-figure. The access orders are: (a) systematic, (b) sequential and (c) random.
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Figure 3. Mathematical evaluators for the reconstruction of figure 2. (a) Correlation coefficient,
(b) Euclidian distance, (c ) projection error and (d) convergence.

low-frequency components in the first stage of the ART algorithm. This correlation of the
measurements still impacts on the late iterations.

The mathematical evaluators defined above enforced these findings. From ε1 and ε2 in
figure 3(a) and (b), we notice that the entire image quality is affected by the access order
used. The best reconstruction is obtained for the higher correlation coefficient and the lowest
Euclidian distance. These two coefficients are congruent in figure 3. In the first step, the
random access order is the scheme that leads to the better reconstruction relative to the two
others. As the iterative process continues, the random and the sequential scheme come closer
until the sequential access order outperforms the random access order. However, the best
reconstructions are obtained for the same iteration numbers for the sequential and the random
access orders. After this optimum reconstruction, the object function is overestimated. The
correlation coefficient drops and the Euclidian distance rises. This effect of overestimation
has already been reported by O’Leary (1996). It underlines the difficult problem of the choice
of terminating the reconstruction. The systematic access order is slower to reach its optimum
reconstruction. Moreover, the maximum value of the correlation coefficient and the minimum
of the Euclidian distance are worse than the ones of the random and the sequential scheme
indicating a globally poorer fidelity reconstruction.

From the study of ε1 and ε2, the sequential access order emerges as the best choice.
However, it is not easy to assess the superiority of this scheme with the projection error or the
convergence rate. In the case of ε3, we see that the random access order has the lowest errors
in fitting the measurements. It is also the most stable scheme regarding the convergence rate.
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Figure 4. Fractional absorption errors estimation for (a) object of contrast 10 and (b) object of
contrast 5 in reconstructions of figure 2 versus iterations.

The random and the sequential access orders outperformed the systematic scheme, but from
these estimates, the random access order seems also to outperform the sequential access order
in opposition to the findings using ε1 and ε2. Only the finding that random and sequential
access orders outperformed the systematic order, is validated and these two access orders are
grosso modo two times faster.

To have an idea of the quality of the reconstruction of the two objects, we calculate the
fractional absorption error

ε
(k)

4 =
[

1 − �µ(k)
a

�µmodel
a

]
× 100. (5)

The results obtained from this evaluator are presented in figure 4. This evaluator has the
advantage over ε1 and ε2 to discriminate the two object reconstructions. The best access
order will be the one for which the fractional error is crossing the null-line for the closest
iteration number for the two objects. We see that the sequential access order outperformed
the two others when the second object is involved. In only considering the first object, the
sequential and the random access orders produce similar estimation. The random access order
is outperformed only when the second object is considered. The random access overestimates
the object function of the second object when the first object function is chosen as a criterion
(or ε1 and ε2).

However, we should note that we have considered the maximum of the object function
with ε4. For this reason, the best reconstructions are not found with ε4 at the same iteration
number as when using ε1 and ε2. The latest two are sensitive to the surface of the reconstructed
object as ε4 probes only the maximum of the reconstruction. Although, the conclusions drawn
with ε4 are considered valid and could be extrapolated for the global quality.

We also tested the three access orders with a random noise of 5% in amplitude and 0.5◦

on the measurements. This noise is more important than the noise related in the literature for
existing optical imager. No important changes were recorded and the sequential access order
still leads to the best reconstructions (results not shown here).

5. Conclusion

In this paper we investigated the impact of the projection access order in ART for DOT. The
geometrical case considered was typical slab geometry with human breast optical values.



Projection access order in ART for DOT N9

We have shown that the projection access order (when the number of projection is dense
as when one use a CCD camera) affects both the speed to reach the best reconstructions and
the quality of this reconstruction. Among the three access orders investigated herein, the
sequential access order produced the optimal reconstruction compared to the model.

The differences between the three access orders investigated were important in the first
iteration and for the retrieval of the object function of the lower contrast object. Those
findings are important as ART is the most popular linear technique used to invert huge matrix
in DOT. Thus, by selecting an appropriate access order, one is able to speed up the iterative
reconstruction algorithm but also to reconstruct better image.

Moreover, considering appropriate access orders leads to a good estimation of the low-
frequency components in the first iteration. This first iteration estimate that is fast to obtain
could be used as a priori information for more refined image reconstruction such as zooming
method (Jones et al 1997) for instance.
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