
  

  

Abstract— We present a methodology for enabling service 

robots to follow natural language commands from non-expert 

users, with and without user-specified constraints, with a 

particular focus on spatial language understanding. As part of 

our approach, we propose a novel extension to the semantic 

field model of spatial prepositions that enables the 

representation of dynamic spatial relations involving paths. The 

design, system modules, and implementation details of our robot 

software architecture are presented and the relevance of the 

proposed methodology to interactive instruction and task 

modification through the addition of constraints is discussed. 

The paper concludes with an evaluation of our robot software 

architecture implemented on a simulated mobile robot 

operating in both a 2D home environment and in real world 

environment maps to demonstrate the generalizability and 

usefulness of our approach in real world applications. 

I. INTRODUCTION 

For autonomous service robots to provide effective 
assistance in real-world environments, they will need to be 
capable of interacting with and learning from non-expert 
users in a manner that is both natural and practical for the 
users.  In particular, these robots will need to be capable of 
understanding natural language instructions for the purposes 
of user task instruction, teaching, modification, and 
feedback.  This capability is especially important in assistive 
domains, where robots are interacting with people with 
disabilities, as the users may not be able to teach new tasks 
and/or provide feedback to the robot by demonstration.  

Spatial language plays an important role in instruction-
based natural language communication. For example, 
consider the following instruction given to a household 
service robot: 

(1) Go to the kitchen 

If the user says (1), the robot should understand, in 
principle, what that means.  That is, it should understand 
which task among those within its task/action repertoire the 
user is referring to.  In this example, the robot may not know 
where the kitchen is located in the user’s specific home 
environment, but it should be able to understand that (1) 
expresses a command to physically move to a desired goal 
location that fits the description “the kitchen”. 
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The path relation in (1) was expressed with the use of the 
preposition “to”. Spatial relations expressed by language are 
often expressed by prepositions [1].  Therefore, the ability 
for robots to understand and differentiate between spatial 
prepositions in spoken language is critical for the 
interpretation of user-guided instructions to be successful. 

Spatial language understanding is also especially relevant 
for interactive robot task learning and task modification.  
Continuing with the household robot example, the user might 
teach the robot the complex task “Clean up the room”, 
through natural language, by specifying the subgoals of that 
task individually, each represented by its own spatial 
language instruction (e.g., “Put the clothes in the laundry 
basket”, “Stack the books on top of the desk in the right-
hand corner”, “Put all toys under the bed”, etc.).  In addition, 
user modification of known robot tasks can also readily be 
accomplished with spatial language.  For example, the user 
might modify the task defined by (1) by providing spatial 
constraints, or rules, for the robot to obey during task 
execution, such as “Don’t go through the hallway,” or “Move 
along the wall.”  These user-defined constraints do not 
change the meaning of the underlying task, but allow the user 
to interactively modify the manner in which the robot 
executes the task in the specific instance.   

Finally, spatial language can be used to provide teacher 
feedback during task execution, to further correct or guide 
robot behavior. In the context of our example, as the robot is 
moving along the wall en route to the kitchen, the user may 
provide additional feedback by saying “Move a little further 
away from the wall,” or “Move close to the wall but stay on 
the paneled floor”.  These examples illustrate the importance 
of spatial language in the instruction and teaching of in-home 
service robots by non-expert users. In this paper, we present 
an approach for enabling autonomous service robots to 
follow natural language commands from non-expert users, 
including under user specified constraints such as those 
mentioned, with a particular focus on spatial language 
understanding. 

II. RELATED WORK 

The use and representation of spatial prepositions, and 
spatial language in general, in human-agent interaction 
scenarios has been investigated by previous work.  Skubic et 
al. [6] developed a mobile robot capable of understanding 
and relaying static spatial relations (e.g., “to the right”, “in 
front of”, etc.) in natural language instruction and production 
tasks. The use of computational field models of static 
relations has also been explored in the context of human-
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robot cooperation tasks [5], and for visually situated 
dialogue systems [11]. These works all incorporated pre-
defined models of spatial relations, however, researchers 
have also examined learning these types of static spatial 
relations both online during interaction and offline from a 
corpus of training data (e.g., [8, 12, 13]).  Our approach 
extends upon this related work by modeling not only static 
spatial relations for natural language instruction 
understanding, but also dynamic spatial relations involving 
paths, as presented in the following section.  

Recent work has, however, explored the use of dynamic 
spatial relations in the context of natural language robot 
instruction. Tellex et al. [3] constructed a probabilistic 
graphical model to infer spatial task/actions commanded 
through natural language for execution by a forklift robot.  
Kollar et al. [4] presented a Bayesian approach for the 
interpretation of route directions on a mobile robot, using 
learned models of dynamic spatial relations (e.g., “past”, 
“through”) from a set of positive and negative schematic 
training examples.  In both of these works the representations 
of the spatial relations used, static or otherwise, were not 
pre-specified and instead were derived from labeled training 
data.  However, these approaches typically require the 
system designer to provide an extensive corpus of labeled 
natural language input for each new application context, 
without taking advantage of the domain-independent nature 
of spatial prepositions.  In contrast, our approach develops 
novel, pre-defined templates for spatial relations, static and 
dynamic, that facilitate use and understanding across 
domains, and whose computational representations enable 
guided robot execution planning. 

Methods for mapping natural language instructions onto 
a formal robot control language have also been developed by 
researchers using a variety of types of parsers, including 
those that were manually constructed [9, 10], learned from 
training data [17], and learned iteratively through interaction 
[18]. Among these examples, the work of Rybski et al. [9] 
and Matuszek et al. [17] relied on pre-defined robot 
behaviors as primitives, as opposed to spatial relations, 
which limits, if not restricts, the user’s ability to introduce 
feedback modifications and/or constraints on robot execution 
of a specific primitive behavior. The work of Kress-Gazit et 
al. [10] and Cantrell et al. [18] leave the definition of 
primitives up to the system designer, however, the parsers 
utilized in their systems mapped words to meanings based on 
dictionary-based rules. Our methodology employs domain-
generalizable spatial relations as primitives, and probabilistic 
reasoning for the grounding and semantic interpretation of 
phrases, thereby enabling context-based instruction 
understanding and user-feedback modifiable robot execution 
paths. 

III. APPROACH AND METHODOLOGY 

In this section we present our methodology for 
autonomous service robots to receive and interpret natural 
language instructions involving spatial relations from non-
expert users.  Our approach is motivated by related research 
in linguistics, cognitive science, neuroscience, and computer 
science, and proposes the encoding of spatial language 

within the robot a priori as primitives, with particular focus 
on the representation of prepositions. Specifically, our 
approach extends the semantic field model of spatial 
prepositions, proposed by O’Keefe [2], to include dynamic 
spatial relations and provides a computational framework for 
human-robot interaction which integrates the proposed 
model.  

A.  Semantic Fields 

The semantic field of a spatial preposition is analogous to 
a probability density function (pdf), parameterized by 
schematic figure and reference objects, that assigns weight 
values to points in the environment depending on how 
accurately they capture the meaning of the preposition (e.g., 
points closer to an object have higher weight for the 
preposition ‘near’). This field representation for the 
semantics of spatial prepositions, while based on insights 
gathered from neuroscience research in rats, was shown by 
O’Keefe [2] to closely resemble the form and continuous 
nature of spatial preposition representations demonstrated by 
humans [20]. These types of continuous spatial field 
functions have also been shown to transfer seamlessly into 
higher dimensions [16], thus enabling similar relational 
comparisons in 2D and 3D space. Example semantic fields 
are shown in Fig. 1 for the static prepositions “near”, “away 
from”, and “between” for illustration purposes.  The 
semantic field for near was produced by calculating the 
weights (ℝ[0,1]) for each point in the environment using the 
following equation:  

fnear(dist) = exp[−(dist
2
)/2σ

2
]     (2) 

Where dist is the minimum distance to the reference 
object; σ is the width of the field (dropoff parameter) which 
is context-dependent. The equation in (2) utilizes a Gaussian 
for the computation of the field, however other exponential 
or linear functions could instead be applied depending on the 
domain requirements. For further information regarding 
static field computation, we refer the reader to [2]. 

B. Modeling Dynamic Spatial Relations 

While appropriate for static relations, the semantic field 
model, by itself, is not sufficient for representing dynamic 
spatial relations that involve paths.  Paths are comprised of a 
set of points connected by direction vectors that define 
sequence ordering.  Path prepositions include, among others: 
to, from, along, across, through, toward, past, into, onto, out 
of, and via. To account for paths in the spatial representation 
of prepositions, our approach employs multiple methods. 
The primary method modifies the traditional semantic field 
model with the addition of a weighted vector field at each 
point in the environment. As an example, the preposition 
“along” denotes not only proximity, but also a path parallel 
to the border of a reference object.  Thus, in our proposed 
model, the semantic field for along contains not only weights 
for each point in the environment to encapsulate proximity, 
but also weighted direction vectors at each point to 
encapsulate optimal path direction.  Among these direction 
vectors, those that coincide with the meaning of the relation 
are favored (in this example, those more parallel to the 
reference object have higher weight).  By multiplying the 



  

weights of these two subfields together (proximity and path 
direction) at each point in the environment, we are able to 
produce the semantic field for the dynamic spatial relation 
along (see Fig. 2). 

The advantage of modeling spatial relations as pdfs, as 
opposed to using classification-based methods (e.g., [4]), is 
that generating robot action plans for instruction following is 
as simple as sampling the pdf, which can be used to find 
solution paths incrementally (one path segment at a time).  In 
other words, there is no need to search the action space 
(randomly or exhaustively) to find appropriate solutions by 
classifying candidate paths as a whole, which may be 
prohibitive in time-complexity.  Furthermore, user teaching, 
feedback, and refinement of the robot task execution plan 
can easily be incorporated as an alteration of the pdf.  For 
example, the feedback statement “Move a little away from 
the wall” could alter the semantic field of the task by 
attributing higher weight to points further from the wall from 
the robot’s current location; for example, by shifting the 
entire field over, or by simply shifting the mean of the field.  
Fig. 3 illustrates these two forms of field alterations for the 
task “Walk along the wall”. 

While it is true that some dynamic spatial relations can 
be modeled by specialized semantic fields that capture 
optimal path direction at a local level (e.g., along, toward, 
up, down, etc.), many path prepositions require the existence 
of certain characteristics achieved at a global level in order 
to satisfy their meaning. To represent these more complex 
prepositions, our approach identifies four classical AI 
conditions that each path preposition may subscribe to, they 
are: 1) pre-condition, 2) post-condition, 3) continuing-
condition, and 4) intermediate-condition. A unique 
characteristic of our model is that each condition is 
represented by either a semantic field, or by another path 
preposition (which is in turn represented by semantic fields). 
In addition, each path preposition may contain none, one, or 
many of each of the four conditions, but must have at least 
one identifiable condition in its representation. For example, 
“to” has a single post-condition containing the semantic field 
for at, signifying that the path denoted by to terminates at the 
region in question; here the reference object for the field is 
passed in as a parameter to the preposition.  “From” is the 
reverse of “to”, with the at field as a pre-condition. The 
paths “into” and “onto” are both special cases of “to”, 
wherein the at field post-condition is replaced by the fields 
for in and on, respectively. One example of a path with 
intermediate conditions is “through”, which contains into, 
along, and out of, as ordered conditions. “Across” is the 
same as “through”, but with movement along the minor axis 
of the reference object as opposed to the major axis. 

These condition-based representations were incorporated 
into our model of dynamic spatial relations in light of 
findings from linguistics and cognitive science research into 
the meanings of path prepositions, which suggest the 
existence of such constraints [1, 19]. For more information 
regarding our approach to modeling dynamic spatial 
relations with global properties, we refer the reader to [7]. 

IV. ROBOT SYSTEM MODULES AND ARCHITECTURE 

Our robot software architecture contains five system 
modules that enable the interpretation of natural language 
instructions, from speech or text-based input, and translation 
into agent execution. They include: the syntactic parser, noun 
phrase (NP) grounding, semantic interpretation, planning, 
and action modules. The following sections discuss the 
primary modules in detail. 

A. Syntactic Parser 

Natural language instructions are received by the 
syntactic parser as textual input. The text string may be 
provided by a speech recognizer (e.g., [21]) or keyboard-
based input. While both methods have been implemented 
with our system, we focus this discussion on well-formed 
English sentences provided via keyboard input.  

The first step of the syntactic parser is to extract the part-
of-speech (POS) tags from the natural language text string; 
these tags identify words in the input as nouns (‘N’), verbs 
(‘V’), adjectives (‘A’), determiners (‘Det’), etc.  Our system 
uses the Stanford NLP Parser [15] for extracting the POS 
tags for all words, except for the prepositions (‘P’), which 
are instead identified using a lexicon for single and multi-
word prepositions (e.g., “to”, “away from”, “in line with”).  

Our system does not attempt to provide a solution for 
natural language processing in the general case, but instead 
focuses on directives, and more specifically, on natural 
language English instructions involving spatial language.  

 
(a) 

 
(b) 

 
(c) 

Figure 1.  Semantic fields for static prepositions (a) near;  

(b) away from; (c) between. 

 
(a) 

 
(b) 

 
(c) 

Figure 2.  Semantic field for “along” (a) near subfield; (b) direction 

subfield (90°= red, 0°= blue); (c) combined field. 

  

Figure 3.  Two example alterations to semantic field due to user 

feedback statement “Move a little away from the wall” 



  

TABLE I.  SEMANTIC FIELD VALUES OF CANDIDATE 

GROUNDINGS FOR NP “THE TABLE” 

Candidate Ground log(Semantic Field Value) 

1 -13.60 

2 -46.77 

3 -27.67 

4 -5.92 

5 -28.51 

Note. Log semantic field values are reported. Optimal grounding highlighted in bold. 

 

To parse these instructions, a phrase structure grammar is 
utilized. Following are the constituency rules: 

S → V P* NP 

N’ → (Det) A* N+ 

NP → N’ 

NP → N’ P+ NP 

NP → NP and NP 

Here, S defines a valid sentence, NP a noun phrase, and 
N’ a terminal noun phrase. It is important to note that the 
grammar presented, although limited, is capable of parsing 
spatial language sentences that do not contain prepositions 
(e.g., “Enter the room”), those with multiple prepositions 
(e.g., “Come up on over here”), as well as partial parses of 
well-formed English sentences (e.g., “PR2, can you please 
wait at the counter by the entryway, thanks”). 

B. Grounding Noun Phrases 

After the noun phrases in the natural language input are 
identified by the syntactic parser, the cognitive system 
attempts to ground the NPs in its representation of the world. 
Due to the hierarchical nature of NPs, the grounding process 
is recursive; it first attempts to ground any child NPs before 
expanding to ground root NPs. To perform this grounding 
procedure, the nouns in the NP are first checked against the 
system’s knowledge base of labels for grounds (e.g., objects, 
rooms, etc.) in the world. These labels are domain-dependent 
and can either be learned online or, as in our system, loaded 
from a file along with additional world details, including: a 
map of the environment, object properties, grounding types, 
and the locations of known objects in the map. 

If the knowledge base is unable to find a matching label, 
the grounding process fails, at which point the system may 
prompt the user for additional information and/or 
clarification. If a single match is found, the NP is 
successfully grounded. Lastly, if multiple matches are found, 
the system relies on higher-level NPs (for a child NP), or the 
user (for a root NP), for disambiguation. 

In our methodology, disambiguation of multiple matches 
for a child NP is accomplished in two steps: 1) the semantic 
field for the prepositional phrase of the child NP’s root NP is 
computed, and 2) each of the candidate grounds are 
evaluated against the computed semantic field to find the 
optimal match for the NP. 

To illustrate this probabilistic, semantic field-based 
grounding procedure, consider the instruction “Go to the 
table by the kitchen”.  First, the syntactic parse of the input is 
obtained (see Fig. 4(a)), yielding a single root NP with two 
children NPs (“the table” and “the kitchen”).  In our example 
world, there is a single ground match for “the kitchen”, but 
there are five possible groundings for “the table”. To 
disambiguate among the five candidate groundings, the 
semantic field for near (determined by the use of the 
preposition “by” in the root NP) is computed for the 
reference object (i.e., the ground match for the NP “the 
kitchen”). The field values at each of the candidate ground 
locations are then evaluated, and the candidate with the 
highest value is returned as the optimal (most likely) ground 
match for the NP “the table”. Fig. 4(b) shows the semantic 
field for near the kitchen in the example world along with 

the candidate groundings for “the table”; Table I lists the 
field values computed for all of the candidates, for reference. 

After all of the NPs in the natural language input have 
been successfully grounded to known items in the world, the 
system proceeds to interpret the semantics of the instruction 
for appropriate robot command execution. 

C. Semantic Interpreter 

Our methodology employs a probabilistic approach to 

interpreting the semantics of the natural language input. 

Specifically, the problem statement for the semantic 

interpretation module is to infer the most likely command 

type, path type, and static spatial relation, given the 

observations. The system considers five observations in total, 

determined by the syntactic parser and grounding modules, 

including: the verb, the number of NP parameters, the figure 

type, the reference object type, and the preposition used, if 

any, in the sentence root. 

The command types are domain-dependent, and may 

include, for example, robot movement, object manipulation, 

speech production, learned tasks, etc. In evaluating the 

feasibility of our methodology, our system focuses on two 

command types: robot movement (translation), and robot 

orientation. In instructing these types of movement 

commands, users often utilize spatial relations as opposed to 

precise quantitative descriptions [14]. Therefore, inference 

of these underlying dynamic and static spatial relations is 

necessary for correct interpretation of the command. This is 

especially evident in instructions where path prepositions are 

not specified (e.g., “Enter the room” vs. “Go into the room”). 

Static relations are inferred as part of the path specification. 

For example, the path for to, as described earlier, relies on a 

 
(a) 
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Figure 4.  (a) Parse tree for “Go to the table by the kitchen”;  

(b) Semantic field for ‘near kitchen’ with candidate tables.  

 



  

TABLE II.  INFERENCE ACCURACY OF SEMANTIC INTERPRETATION 

MODULE  

Inference Variable Inference Accuracy 

Command 99.2% 

Path 87.8% 

Static Relation 80.7% 

Note. Results of two-fold cross validation of entire semantic dataset with 128 entries 

 

static spatial relation to determine the termination condition 

(e.g., at for “to”, in for “into”, out for “out of”). 

The Bayesian inference method utilized by our system is 

Naïve Bayes, however our methodology allows the use of 

any probabilistic inference method, leaving the choice up to 

the system designer. Following is the formula used to 

perform command inference in our system: 

argmax� �	�
�1, �2 , … , ��� = 1
� �	����	��
��

�

�
 

 Where the N=5 observations are the same as those 

previously listed. The likelihood and prior probabilities are 

calculated from a database of labeled training data, which 

could be provided to the system a priori or gathered 

incrementally through interaction. The inference of path type 

and static relations is achieved similarly, with the addition of 

the inferred command and path type (for static inference) as 

observations. An example labeled input for the instruction 

“Stand by the kitchen” is provided below: 

 
Observations Labeled Semantics 

{ Verb: “Stand” 

   Number of NP Parameters: 1 

   Figure Type: None 

   Ref. Object Type: Room 

   Preposition: “by”  } 

{ Command: Robot Movement 

   Path: to 

   Static Relation: near } 

 

D. Planning 

Once the semantic interpreter has inferred the instruction 

parameters (i.e. the command type, path type, and static 

spatial relation), the planning module attempts to find a 

solution for the robot given these command specifications, as 

well as any other constraints indicated by the user. 

Constraints are specified to the system the same as 

instructions, through natural language, and thus their 

grounding and semantic interpretation are also equivalent.  

The A* path planning algorithm is used in our system to 

find the minimum cost solution for robot action given the 

command and constraint specifications, which is then passed 

on to the action module for task execution. In the simplest 

case, constraints are handled by the planner through 

modification of the A* cost function. For example, the 

constraint “Stay away from the TV set” would apply the 

semantic field of the inferred static relation away from 

(attached to the reference object) to every point in the 

environment, and thus points with lower field values would 

subsequently have higher cost during A* search. More 

complex constraints would require the planner to segment 

the search into multiple steps to achieve intermediate goals 

[7]; this procedure is left beyond the scope of this paper. 

V. EVALUATION 

To evaluate the ability of our robot system to follow 

natural language directives, we first analyzed the 

effectiveness of the semantic interpretation module to infer 

the correct command specifications given the natural 

language input. Our testing domain consisted of a simulated 

mobile robot operating within a 2D home environment map. 

A dataset of 128 labeled training examples (each 

containing a list of observations with correct command 

specifications), were used in the evaluation of the semantic 

interpretation module. This dataset included the use of 8 

different dynamic spatial relations (path types), 10 separate 

static spatial relations, 2 commands, and 22 different verbs, 

each appearing multiple times (and in novel combinations) 

among the examples. In order to create a training set and a 

test set for evaluation, the dataset was split into two equal 

parts, using randomized selection of the examples. A two-

fold cross validation was performed on the dataset: the 

semantic interpreter first utilized the training set to gather 

probability statistics for the inference process, and was 

consequently evaluated against the test set. Subsequently the 

test set and training set were swapped and the inference 

performance was again evaluated. The results of both 

evaluations were then averaged to obtain the final inference 

accuracy results. 

The results of the testing show that the semantic 

interpreter was able to achieve an inference accuracy of 

99.2% for commands, 87.8% for paths, and 80.7% for static 

spatial relations. Table II contains a summary of these 

results. Given the relatively small size of the data set, the 

performance of the semantic interpreter is encouraging. 

Future work will include performing additional tests to 

confirm whether or not enhancing the sample size, and/or 

utilizing a more complex probabilistic model (e.g., Bayesian 

Network), would result in an increase in inference accuracy. 

Next, to validate the potential of our methodology 

towards enabling natural language directive following in 

service robots, with and without user-specified constraints, 

we present four example test runs of our system. These 

examples illustrate the ability of the system to parse natural 

language input, ground noun phrases, infer command 

semantics, plan, and execute an appropriate solution while 

obeying natural language directive constraints. 

In the first test run, the command given to the robot was 

“Go to the room by the entryway”, without constraints. 

According to the map, the referenced room corresponded to 

the kitchen, which was correctly grounded by the system 

using the semantic field for ‘near the entryway’.  The robot 

successfully planned and executed the optimal path to the 

kitchen (see Fig. 5(a)). In run #2, the same command was 

given but with the added constraint “Walk along the wall”, 

which the robot was also able to account for by utilizing the 

semantic field values for the dynamic spatial relation along 



  

TABLE III.  SEMANTIC INFERENCE RESULTS FOR INSTRUCTIONS AND 

CONSTRAINTS OF TEST RUNS 

Inference 

Variable 

Run 1 

instruction 

Run 2 

constraint 

Run 3 

instruction 

Run 4 

constraint 

Command RM RM RM RM 

Path to along to to 

Static 

Relation 
at - away in 

Note. RM = robot movement command 

 
in the cost function during the planning process (Fig. 5(b)). 

In runs #3 and #4, the command to the robot was “Stand 

away from the sink in the bathroom” (differentiating from 

the kitchen sink), with the addition in run #4 of the constraint 

“Enter my room” (see Fig. 5(c) and (d)).  

To illustrate the usefulness of the semantic field model 

towards representing static and dynamic spatial relation 

primitives for use in path generation and classification, Fig. 6 

shows the progression of the at, along, away from, and in 

semantic field values along the execution paths generated for 

test runs #1-4, respectively. As demonstrated by the results, 

the values returned by the semantic fields are highly 

correlated with the progress made during path execution 

towards accomplishing the goals of the dynamic spatial 

relation inferred from the natural language instructions.  

As evidenced by inference results shown in Table III, and 

all four robot execution paths displayed in Fig. 5, the system 

was able to demonstrate its potential by successfully 

following the natural language directives, with and without 

constraints, during each of the test runs performed for the 

purposes of system evaluation.  

To demonstrate the generalizability of our approach and 

its usefulness in practice with real robots in real 

environments, next we present evaluation results of our robot 

software architecture using maps of real environments that 

were generated by physical robots implementing SLAM with 

onboard laser sensors. We provide the results of spatial 

language instructions given to a simulated mobile robot 

within these environments, with and without user-specified 

natural language constraints, to showcase the ability of our 

methodology to generate semantic fields, both dynamic and 

static, to accomplish spatial language tasks in real world task 

scenarios. The two maps that were used for this additional 

evaluation were collected from the Radish data set [23], and 

consist of a map of a building at the University of Freiburg 

(FR079), and a map of the interior of the Intel Research Lab 

in Seattle (intel_lab). The maps were manually annotated to 

specify landmark locations (e.g., rooms, walls, objects) and 

were given to the robot a priori. In practice, annotation for 

the robot-generated maps would be accomplished by the user 

and/or by a qualified technician during installation prior to 

first use.  

As previously mentioned, the syntactic parser module can 

accept text input from either a speech recognizer or keyboard 

input. To illustrate the feasibility of our approach to operate 

with human users in real world environments, we provide the 

results of our implemented speech recognition module on the 

128 natural language instruction training examples in our test 

database. Each of the entries was spoken exactly once for 

analysis, using a headset microphone placed approximately 1 

inch from the speaker’s mouth, and with minimal 

background noise. Table IV presents the accuracy results of 

the speech recognition module. The speech recognizer used 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.  Executed paths and semantic fields (command = blue, 

constraint = red) for test runs (a) run 1; (b) run 2; (c) run 3; (d) run 4. 
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(b) 
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Figure 6.  Semantic field values along execution paths in test runs  

(a) run 1; (b) run 2; (c) run 3; (d) run 4. 



  

TABLE IV.  SPEECH RECOGNITION MODULE ACCURACY 

Sentence Error Rate 

(total correct / total sentences) 

Sentence Error Rate 9/128 = 7.03% 

Sentence Semantic Error Rate 6/128 = 4.68% 

Word Error Rate 

(substitutions + deletions + insertions / total words) 

Word Error Rate (8 + 5 + 2)/686 = 15/686 = 2.18% 

Word Semantic Error Rate (4 + 5 + 2)/686 = 11/686 = 1.6% 

Note. Semantic error rates exclude errors resulting in semantically equivalent sentences/words 

 

TABLE V.  INSTRUCTIONS GIVEN IN TEST RUNS 5-12 

Type[Run #] Natural Language Instruction 

Instruction[5]: 

Constraint: 

Instruction[6]: 

Constraint: 

Instruction[7]: 

Constraint: 

Instruction[8]: 

Instruction[9]: 

Instruction[10]: 

Constraint: 

Instruction[11]: 

Instruction[12]: 

Constraint: 

Go to the cafeteria 

     Walk along the north hallway wall 

Go to the cafeteria 

     Walk along the south hallway wall 

Stand away from the desk in my office 

     Enter the meeting room  

Stand between my office and the lab  

Relocate to the lounge area next to the lab 

Relocate to the lounge area next to the lab 

     Roll along the central wall 

Get to the kitchen  

Get to the kitchen      

     Travel inside the central area 

 

in the module was Nuance’s Dragon NaturallySpeaking [21]. 

The low error rate of the speech recognition module 

observed under our test conditions (low ambient noise and 

using a user mounted headset microphone), combined with 

the availability of algorithms to interpret spoken language 

under various forms of disfluency and repetition (e.g., [25]), 

demonstrate the feasibility of obtaining grammatically 

correct text input from spoken language in real world 

scenarios for use in our software architecture for service 

robots. 

Eight additional test runs of our robot architecture were 

conducted using real world maps generated by robots using 

onboard laser sensors, as noted above. The natural language 

instructions, with their associated constraints, given to the 

robot in test runs #5-12 are provided in Table V. The robot 

execution paths for each of the test runs, along with 

associated semantic fields displayed for reference purposes, 

are provided in Fig. 7-8. 

While these results were obtained from simulations in 

2D, it is very common for robots operating in real-world 

environments (such as a home or office) to utilize a 2D map 

representation of the environment for localization and spatial 

task planning. The SLAM maps presented in this section are 

identical to the maps that would be used by a real robot 

operating in the actual 3D environments, and the methods 

employed for spatial language instruction understanding and 

task following, as presented in this paper, would also be 

identical. As a last step towards implementing our 

methodology on a real robot, translation of the discretized 

plan returned by the planner to continuous robot motor 

commands (e.g., wheel velocities) is necessary. This 

translation can be accomplished using a local planner which 

utilizes the returned A* path to fill a cost map covering the 

robot’s local environment to determine the wheel velocities 

that would result in robot movement best following the 

generated path. This local planner would also be able to 

respond to dynamic obstacles not represented in the map 

(e.g., people, objects, etc.) and can be implemented using the 

dynamic window approach proposed by Fox et al. [24], for 

which there is an available ROS package which facilitates its 

usage in practice [22]. 

The evaluation results presented above, regarding speech 

recognition accuracy and spatial navigation task performance 

using SLAM maps, demonstrate the feasibility of our 

approach for use in practical applications with real robots. 

The evaluation of the robot software architecture in multiple 
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Figure 7.  Executed paths and semantic fields (command = blue, constraint = red) for test runs (a) run 5; (b) run 6; (c) run 7; (d) run 8. 

 



  

environments, using both manually-created and robot 

generated maps, demonstrates the generalizability of the 

approach and its effectiveness in accomplishing spatial 

language instruction tasks, with and without user specified 

constraints, across domains and in novel real world 

environments. 

VI. CONCLUSION 

We have described the need for enabling autonomous 

service robots with spatial language understanding to 

facilitate natural communication with non-expert users for 

task instruction, task modification, and user feedback on 

robot task execution, and have presented a general approach 

we have developed toward addressing this research 

challenge. 

The results obtained from our evaluation testing 

demonstrate the potential of our methodology for 

representing dynamic spatial relations, grounding and 

interpreting the semantics of natural language instructions 

probabilistically, and generating appropriate robot execution 

plans under user-specified natural language constraints. 
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Figure 8.  Executed paths and semantic fields (command = blue, 

constraint = red) for test runs (a) run 9; (b) run 10; (c) run 11;  

(d) run 12. 


