Policy-based Information Sharing in
Publish/Subscribe Middleware

Jatinder Singh, Luis Vargas, Jean Bacon and Ken Moody
Computer Laboratory, University of Cambridge
Firstname.Lastname@cl.cam.ac.uk

Abstract—Healthcare is a highly collaborative environment,
where the active sharing of information is central to the care
process. Due to the sensitive nature of medical information,
care providers are responsible for protecting data, controlling
the circumstances in which it is released to others. The pub-
lish/subscribe (pub/sub) communication paradigm is useful for
data dissemination, as it allows parties to specify their interest
in receiving particular information. However, general pub/sub
implementation frameworks lack mechanisms to control the
flow of data. This paper describes the details of a model to
define and enforce fine-grained information sharing policies in an
active notification environment. The model, built above a pub/sub
middleware, allows policy definitions to control information flow
by 1) specifying the conditions for data access, and 2) tailoring
information to suit particular circumstances.

I. INTRODUCTION

Information sharing is a core requirement of modern ap-
plication environments. Networking systems supporting such
environments must manage the transmission of data across
boundaries, which may be logical, physical or organisational.
One function of policy is to define how information may be
shared. Examples are the use of schemas to ensure interoper-
ability, and the specification of authorisation rules to determine
conditions in which particular actions are permitted.

Certain scenarios require that data be stringently controlled.
Healthcare is one such environment; its collaborative nature
requires that data must be available to those providing care,
but the sensitivity of medical information means that it must
also be protected. Work on data availability tends to focus on
networking aspects, such as routing and interoperability, whilst
access control schemes are usually request-based, granting or
denying access to a particular action or data record. There is,
however, an increasing need to share information actively, that
is, to propagate and react to relevant information automatically,
as soon as it becomes available. In such a setting, data must
be actively controlled as part of the dissemination process.

Healthcare is a data-driven scenario, where one incident is
often relevant to many care providers [1]. Each provider is
responsible for different aspects of patient care, and thus each
requires specific information. The information appropriate to
a provider is sensitive to context; it depends on factors such as
environmental state, patient preference, business procedures/-
workflow, and the provider’s identity, role and credentials. The
aim of this work is to allow policy to regulate information flow
on a need-to-know basis, so that collaborators receive that and
only that information necessary to perform their duties.

This paper describes the use of policy to control and adapt
data according to circumstances. We describe the specifics
of a data control model built on publish/subscribe (pub/sub)
middleware, explaining how policy functions to control the
transmission of data as it flows through a system.

We begin by describing our application domain, the health-
care environment, noting the constraints and special consider-
ations it imposes. In Section III, we outline our previous work
on extending a database system with pub/sub functionality,
describing the mechanisms provided to allow integration of
data control policy into the active notification environment.
In Section IV we give an overview of the functionality of
our model, and describe how conditional clauses and trans-
formations are used to control information. The definition,
storage and representation of policy in our system is described
in Section V: Section VI covers policy conflicts, explaining
how they may be detected and resolved. In Section VII we
describe our implementation, detailing the process of policy
enforcement. We conclude with a discussion of related work.

II. MOTIVATION - HEALTHCARE

England is currently undertaking a large project to comput-
erise and integrate National Health Service (NHS) data. Our
work takes place under the CareGrid project, which focuses
on middleware to support homecare environments. Despite
differences in scope, the projects address similar issues: 1)
how systems and parties can interoperate, potentially across
management domains; 2) how to balance confidentiality and
privacy against the data availability requirements for proper
care; 3) how to support collaboration in an environment where
entities deliver different services as part of the care process.
Failures in health information systems can have serious per-
sonal, legal and privacy repercussions; thus policy must offer
appropriate controls, in order to support collaboration whilst
preserving the confidential nature of medical information [1].

A. Information Relevance

Healthcare is a collaborative environment, where care
providers interact to provide various services as part of the care
process. Each provider requires access to relevant information
to perform their duties, but this relevance depends on circum-
stance, such as the care provider’s credentials and role in the
care process, patient particulars and preference, environmental
state (e.g. emergency), and so forth. For example, a doctor
is directly responsible for the care of a patient, and thus is



interested in all aspects of treatment, and more generally, in
the patient’s wellbeing. Other providers take specialist roles,
dealing only with an aspect of care — such as a pharmacist
who is concerned solely with dispensing drugs, or a medical
accountant who deals only with funding. Pervasive/homecare
environments lend themselves to cross-organisational collabo-
rations, while introducing a range of technologies (e.g. sensors
and monitoring devices) into the interaction mix.

Y
Patient Treatment:
] T
N J 5
8
= Doctor
Home g'
Nurse l

Auditor

Care providers requiring information on the prescribing of drugs.

Pharmacy
Fig. 1.

As healthcare is a collaborative, data-driven environment,
it follows that a single incident (event) regarding a patient is
relevant to several parties. Given that carers deliver different
services, often only aspects of an incident will be relevant
to a particular provider. For example, a nurse caring for a
patient at home might prescribe a drug [2], see Figure 1.
As part of this process, he might record information such
as symptoms, patient complaints and observations in addition
to information regarding the drug and dosage. The act of
prescription bears a significance that depends on the role
of the care provider. Firstly, the doctor responsible for a
patient needs all information regarding the treatment process,
including notes, observations and reasons for the allocation of
drugs. The pharmacist requires a valid prescription in order to
dispense drugs legally, including the patient’s personal details,
and prescriber and drug information, but does not need any
information about symptoms or observations [3]. The supply
of controlled drugs is monitored by a designated auditor, who
must be notified when such drugs are prescribed; but this
monitoring focuses on the prescriber, and the auditor should
usually not receive information of patient particulars [4].

This example demonstrates that while multiple providers
interact as part of the care process, their roles within the
process differ. Similarly, the data requirements for performing
a particular task depend on the circumstances. In an environ-
ment where information is highly sensitive, it is desirable to
control data so as to release only the information relevant for
a particular party to perform their duty — i.e. provide data on
a need-to-know basis.

B. Local responsibility

There is an explicit push at the executive level of the NHS to
give more control to those providing (front-line) care services.
This is reflected in the national technical programme [5],
where systems, which must conform to central standards, are

to be customised to support the requirements of local service
providers. For instance, detailed care record services are being
proposed, so that care providers can share information (obser-
vations and treatments) at a local level. Home environments
are similar, in that a specific body (typically the Primary
Care Trust, i.e. Surgery) will be responsible for managing
the care of the patient. With control comes responsibility.
Care providers share information according to circumstance,
considering organisational and clinical requirements, as well
as patient preference [5]. Thus, in addition to the immediate
care of a patient, the responsibility of care providers extends
to issues of data management — to ensure that relevant data is
shared, while sensitive information is protected.

The healthcare domain differs from general networking
environments: 1) the environment is necessarily controlled, so
that interacting entities are not anonymous per se, but require
credentials to act within the health-space; 2) because health-
care concerns wellbeing, care providers are held responsible
for their contributions to the care process — both in deliver-
ing care and protecting data. Meeting these responsibilities
requires policy enforcement mechanisms that can respond to
circumstance (credentials and context).

III. MIDDLEWARE

Middleware is a software layer that lies between a phys-
ical (network) infrastructure and a number of applications,
allowing applications to communicate irrespective of imple-
mentation specifics. As middleware provides the sole means
of communication for applications, it is an appropriate place
to define and enforce information sharing policy. We use
middleware to bring real world considerations and context into
the messaging environment.

A. Publish/subscribe Middleware

Publish/subscribe [6] (pub/sub) is a widely used communi-
cation paradigm for large-scale distributed systems. Pub/sub is
built on the notion of events, i.e. occurrences in the system that
are to be shared. In this paradigm, an application takes the role
of a publisher and/or a subscriber who communicates through
the middleware. Subscribers register their interest in receiving
an event of a particular type through a subscription, optionally
specifying a condition (filter) on the content of events. A pub-
lisher produces events independently of subscribers; through
a process termed notification, each event is delivered to a
subscriber if it matches a relevant subscription. The interaction
between publishers and subscribers occurs through a pub/sub
middleware, which might be centralised as a single event
broker, or decentralised as a network of event brokers that
cooperate to route events from publishers to subscribers [7].

B. Publish/Subscribe Database Middleware

Databases provide an obvious point for information control.
We have extended the PostgreSQL [8] open-source database
system to include publish/subscribe middleware functional-
ity [9]. This allows a database system in the local domain
to function as an event broker (broker), reliably routing



CREATE HOOK RULE rulename
ON SUBSCRIBE EXECUTE funcname (args)

CREATE HOOK RULE rulename
ON PUBLISH ev_type condition EXECUTE funcname (args)

CREATE HOOK RULE rulename
ON NOTIFY ev_type TO username condition
EXECUTE funcname (args)

Fig. 2. Syntax for defining hook rules.

events between publishers, subscribers, and other brokers. This
integration simplifies information management by grouping
security, configuration (e.g. type schema) and recovery tasks
for database and pub/sub operations under the same interface.

In our model, events consist of a set of attribute-name/typed-
data-value pairs. Event types have a system-wide name and
a schema, to allow strong type-checking of event instances
and subscriptions at runtime. Events are transmitted in XML,
providing a common, human-readable standard for commu-
nication. Subscription filters take the form of arbitrary SQL
conditional statements allowing powerful and fine-grained
conditional clauses that may reference both context and stored
data through built-in and user-defined functions.

C. Hook Rules

Hook rules allow integration of information sharing policy
into the pub/sub middleware. A hook rule is an active rule
evaluated by the database system at a specific point of the
messaging process: ON SUBSCRIBE, ON PUBLISH, or ON
NOTIFY. An ON SUBSCRIBE rule is evaluated when a broker
receives a subscription request. An ON PUBLISH rule is
evaluated when a broker receives an event from a publisher. An
ON NOTIFY rule is evaluated when an event type matches a
subscription. This occurs before application of the subscription
filter determining message delivery.

A hook rule definition includes a name, an interaction point,
a condition, and a function. The name uniquely identifies the
rule at the local broker. The interaction point (ON interaction
point) defines when the rule is to be evaluated. The ON
PUBLISH hook references an event type, while the ON
NOTIFY hook references an event type and a user whose
subscription is subject to the policy. The condition, like a
subscription filter, is defined as a SQL conditional statement.
When a hook rule is executed the function is called, with
aspects of messaging system context supplied as arguments.

As shown in Table I, the contextual inputs and return values
of the function vary according to the interaction point. The re-
sults of the executed functions replace the original occurrence,
allowing functions to modify subscriptions or events. Thus,
the subscription returned from the ON SUBSCRIBE function
is the one registered in the system, the event returned by an
ON PUBLISH function is matched against active subscriptions
and the event returned by an ON NOTIFY hook is delivered,
subject to any filters, to the particular subscriber.

At an interaction point, a single occurrence may activate
several hook rules. The middleware allows an administrator to
detect and resolve conflicts through a specified function. This
is passed the set of active hook rules, and returns an ordered

Interaction point | Context Return value
ON SUBSCRIBE | subscription, user subscription
ON PUBLISH event, user (publisher) | event

ON NOTIFY event, user (subscriber) | event

TABLE 1
CONTEXTUAL INPUTS AND RETURN VALUES OF HOOK RULE FUNCTIONS.

set of those applicable in the current context. The functions
for these rules are executed in order on the original event; the
results introduced to the next phase of the pub/sub process.

D. Middleware Summary

This section describes the mechanisms that bring application
level considerations into the messaging system. Event types
define particular semantics for event instances (messages),
which together with subscriber information (credentials) estab-
lish the application context. SQL-based conditionals support
powerful definitions of state, while hook rules provide an
interface to interact with pub/sub messaging. This middleware
forms the basis of our information control model.

IV. INFORMATION CONTROL MODEL - FUNCTIONALITY.

The basic pub/sub paradigm supports information exchange
between anonymous parties. Information flow in environments
such as healthcare must be controlled. Our model allows
control of data from the source, through a broker that releases
information according to the policy of its local domain [10].
A broker may, in the same manner as other entities, subscribe
to events occurring at another broker, in order to replicate data
locally, or to forward information actively to other subscribed
parties. In this model, communication occurs directly between
the broker and the subscriber, so that information dissemina-
tion is subject to the broker’s data disclosure policy.

A. Information Control

Our model allows active control over information dissem-
ination through policy definitions that: 1) transform events
as appropriate to circumstance; 2) control (subscriber) access
to events. Both mechanisms use conditional clauses to define
the criteria for policy activation. As such, policies reference
context, considering system and environmental (real-world)
state through event content, subscriber specifics, credentials,
stored data and the results of functions.

1) Data transformation: Transformation allows informa-
tion to be tailored to circumstance, altering an event as it
moves through the system. A conditional clause states the
circumstances in which a transformation occurs. Events are
transformed through invocation of a function, which may
alter attribute values in an event instance, by nullifying fields,
performing calculations/conversions, or bucketing values; or it
may convert an event into another type. Type conversion may
include value transformations, and may enrich an event (e.g. by
adding attributes, or other related information), restrict infor-
mation by degrading an event (e.g. hiding sensitive attributes),
or create a new event instance that is only loosely related. A
schema service provides users with event type definitions.



As illustrated in Figure 3, policies may define transforma-
tions either at publication time or on notification.

Filter

Evaluation
(imposed & sub
specified)

Entity
(publisher)

Entity

(subscriber)

Subscriber
Transformation

Receipt
Transformation

Fig. 3.

Points of definition for transformation policies.

Transformation on receipt. Policy may specify a transfor-
mation, in certain conditions, on publication of an event; the
result is introduced into the system as a new event instance'.
If there are multiple transformation policies for a given type,
then a single published event is converted into many.
Transformation on netification. This transforms an event
instance before delivery to the subscriber. This allows cus-
tomisation of an event to a particular subscriber. Here, policy
refers to an event type, a set of credentials and a condition.
Applying transformations. Transformation on receipt is
useful for interoperability, to convert events into a form more
suitable for local processing. Where the result of a transform
is likely to interest several parties, application at this stage
improves efficiency — performing a single transform regardless
of the number of subscribers. Type transformations are more
naturally performed on event receipt® This is because an event
type embodies a particular semantic, so that subscriptions more
accurately represent an interest if they reference the output
type directly. Transformation on notification is appropriate for
policy applicable to a specific group of subscribers, especially
for events occurring infrequently or with few subscribers.

The appropriate interaction point for a transformation is a
question of design, depending upon the scenario. Suppose that
a notification policy entails nullifying a value for Dr. Nick
when an event concerns Patient Y. Effecting this through a
receipt transformation would require an event type specific
to the doctor, thus revealing the existence of such a policy.
Prescribing a drug involves recording symptoms, yet the
pharmacy and billing agency require only a legal prescription,
with observation details removed. Here it is sensible to convert
the prescribing event on receipt into a prescription, which is
forwarded to those who subscribe specifically to prescription
events. Modelling this scenario through notification policies
is cumbersome, as those interested in prescriptions must
subscribe to the general prescribing event, and the prescripiton
transformation function is executed for each subscriber.

2) Access control - Subscriber Specific Policies: Each bro-
ker requires users to be authorised to publish or to subscribe
to instances of an event type. For reasons of management and
scalability, our data control layer allows users to hold, and
policy to reference, sets of credentials. From now on, we shall
use the term subscriber to refer to a subscribed user holding
a particular credential set. Our model allows policy to impose

IWhether the original event is propagated depends upon the policy set.
2However, there are instances suited to notification type transforms. Thus,
a schema service provides the types and structures possible for a subscription.

credential-based conditions to control event dissemination, or
to tailor an event to suit the subscriber and circumstances.
Restrictions - Condition Imposition. Conditions define cir-
cumstances in which a subscriber may receive an event in-
stance. Imposed conditions are similar to subscription filters,
setting prerequisites for message delivery; but take precedence
over subscriber preference. Such conditions may reference
event content, context, environmental state, etc., and might
enforce a relationship — for example, where a Doctor receives
notifications only for patients that they manage.

Imposed conditions are absolute, in the sense that an event
instance is delivered only if all the conditions are satisfied. As
the policy can itself contain sensitive information, impositions
are neither revealed to a subscriber, nor do they prevent a
subscription if they are in conflict with a subscriber’s filter.
For example, policy stating that Dr. Nick cannot receive treat-
ment information about Jill Smith where disease=‘HIV’,
suggests that Jill is HIV positive. A subscription is denied only
when no policy authorises access to the event type; otherwise
it is accepted, with conditions imposed on event delivery.
Subscriber specific transformations. Notification trans-
formations allow fine-grained control over the information
released to particular subscribers. These occur when an event
instance matches the defined transformation conditions and
the event type matches a subscription. Evaluation of filters
(imposed and subscriber-specified) is performed after a trans-
formation, to ensure that the output adheres to any restrictions.

While imposed conditions are useful for absolute restric-
tions, a subscriber transform can also represent access control
policies (grant/deny), to allow resolution with other transfor-
mations. For example, policy stating that doctors should not
receive information for Patient Y, unless a specific privacy
transform has been executed, can be modelled as two transfor-
mation policies: P1 to enforce the denial, and P2 to perform the
transform. Since both policies are transformations, they can be
resolved to give the desired effect — i.e. P1 denies the event,
unless both policies are active, in which case P2 overrides
P1, and the transform is performed. Conflict and resolution is
discussed in detail in Section VI.

B. Broker functionality - Scenario

— v Broker — v
Prescribe Prescribe
Patient Details Patient Details
Nurse —{ | brug Information Drug Information —> Doctor
Patient Observations Patient Observations
Prescriber Specifics Prescriber Specifics
— Drug Record
Drug Information > B

P mil;r:sDcer[l:iilson Prescriber Specifics Auditor
Drug {
Prescriber

Pharni’lacist
Fig. 4. Transformations for the publication of a Prescribe event.
Figure 4 shows a broker tailoring information to circum-
stance. Data is released on a need-to-know basis, where for
the publication of a Prescribe event, the Doctor receives the
complete event, the Pharmacist receives a valid Prescription



with the medical notes removed, and the Auditor receives the
details of the drug and the prescriber without patient specifics.

V. PoLICY DEFINITION

Policy is central to our information control model, defining
the circumstances in which the data control mechanisms apply.
As this model is built in a database environment, policy itself
is stored as data; where event types, credentials, functions
(transformations) and conditions are represented in relational
tables. This allows the use of query languages to simplify the
process of policy activation, conflict detection and resolution.
Further, policies are subject to relational constraints, and may
be defined, modified and revoked in a transactional manner to
ensure a consistent policy set.

Although information control policy is represented as data
rows, it is specified in XML. This is because XML is easily
understood, sufficiently expressive for defining data control
specifics and is a standard endorsed by the NHS. Further, it
is the messaging format of the pub/sub service, meaning that
policy can be dynamically updated through messages. XML
policy specifications are parsed, and if valid, converted into the
relevant data representation. This eases the authoring process,
allowing policy to be analysed before it is committed.

Policy definitions may reference database loaded functions.
Functions used within a conditional clause may help to de-
termine state, e.g. whether a relationship exists between a
subscriber and event content. Transformation functions are
defined in XML, and converted into database functions after
parsing and validation. They alter the content of an event, and
may invoke other functions during the transformation process.

An organisation might have a rule that a doctor can only
receive information about patients that they treat. Policy im-
posing this relationship is represented in Figure 5 a), through
a function taking as arguments the subscriber, i.e. the user
as derived from the messaging context, and the value of
patient from the event instance. Figure 5 b) shows (partial)
policy for creating a prescription from a prescribe
event. The policy specifies the conditions for execution (here
in all circumstances), and includes a publ1ish block defining
the transformation. The policy fragment shown in Figure 5 c)
defines a subscriber specific transformation for an auditor,
applying a mapping function to nullify patient specific at-
tributes for prescribe events that reference controlled drugs
Mapping functions are named, and thus may be referenced
by a number of policies, at various interaction points. For
convenience, unless otherwise specified, where attributes have
an identical name and type, values are automatically copied
from the input to the output event type.

VI. POLICY CONFLICTS

Data control policies apply to an event type, credentials
(for subscriber-specific policies) and conditions that reference
aspects of state. Policies conflict when multiple policies be-
come active (apply) at an interaction point. Conflicts may be
static, where the policy definitions overlap, or dynamic, where
a conflict arises as a result of circumstances at run-time.

<subscriber_restriction>
<event_type>prescribe</event_type>
<credentials>doctor</credentials>
<restriction>treatsPatient (user,

</subscriber_restriction>

patient)</restriction>

a) Policy for imposing a condition on a subscriber.

<receipt_transform>
<event_type>prescribe</event_type>
<condition></condition>
<publish output_type="prescription">
<field id="patient_info">getDemographics (patient)</field>
<field id="drug_name">drug</field>
<field id="prescriber">getStaffDetails (staffid)</field>

</publish>
<receipt_transform>

b) Policy transforming an event upon receipt.

<mapping_function>
<name>remove_patient_details</name>
<input_type>prescribe</input_type>
<publish output_type="prescribe">
<field id="patient"></field>
<field id="observations"></field>

</mapping_function>

<subscriber_transform>
<event_type>prescribe</event_type>
<credential>drugauditor</credential>
<condition>isControlledDrug (drug)</condition>
<mapping>remove_patient_details</mapping>

</subscriber_transform>

¢) A subscriber specific transformation utilising a mapping function.

Fig. 5. Sample policy fragments.

A. Detecting potential conflicts

To assist policy administrators in maintaining a consistent
policy set, conflicts are detected through a combination of
queries and code that analyse and compare policy definitions.
Receipt transformation conflicts. Conflicts occur when
several transformation policies are applicable on event receipt.
At this stage, applying multiple policies is often appropriate,
particularly where the output types differ. Each transformation
produces an event with its own semantics, which is matched
against a subscription specific to the (output) type — an
example being the prescribing scenario. Care must be taken
if policies that produce events of the same type are applied
simultaneously, because the outputs may match (subject to fil-
ters) a single subscription. Whether this is appropriate depends
on the scenario, but it is important not to mislead subscribers.

Receipt transformation policies are defined with conditions
that reference event attributes, functions and/or context. On
receipt, conflicts occur where multiple policies are defined
for the same input (received) and output (transformed) types.
Policies conflict statically if the activation conditions overlap
in definition, otherwise such policies conflict dynamically.

Subscriber policy conflicts. Policy rules relating to sub-
scribers are defined for an event type, a credential set and an
imposed or transformation condition. This makes policy more
specific, but it also provides more opportunity for conflict,
given that subscribers will often hold multiple credentials.

In this scenario, the first step in detecting potential conflicts
is to determine whether a particular credential set activates




multiple policies for an event type. This involves parsing out
the credentials and associated operators (AND, OR, NOT)
from the policy definitions, in order to determine the com-
binations of credentials that may cause policies to conflict.
Credential definitions conflict statically when there is di-
rect overlap. For example, a policy defined for a Doctor
and another for Doctor or Nurse conflict statically, as
a subscriber holding the Doctor credential activates both.
Dynamic conflicts arise because of the credentials held by a
particular subscriber. For instance, if policy is defined for a
Nurse and another for a Head Nurse, these policies are
both activated when a subscriber holds both credentials.

Subscriber specific policies define a condition, which serves
either to impose a restriction (filter) on a subscription or to
state the conditions in which to perform a transformation. In
the same way as for receipt transformations, determining static
or dynamic conflicts for policies with conflicting credential
definitions involves considering the output types (for transfor-
mation policies) and the overlap of conditional clauses.

The purpose of detecting potential conflicts is to provide the
policy administrator with sufficient information to maintain
a consistent policy set. The query capabilities of database
systems assist in conflict detection and policy definition pro-
cesses; for example, maintaining a log of credential activations
can provide heuristics for estimating the probability of conflict.

B. Conflict resolution

We stated that policy rules conflict if they are simultane-
ously activated by a particular set of conditions. However,
this definition considers only possible conflicts at the system
level — not the real world aspect. Our model does not itself
resolve conflicts, as it is extremely difficult, if not dangerous,
to do so in a complex environment such as healthcare. It is
argued that application-level conflict resolution is often better
addressed by careful policy (re)authoring, over formal and
complex resolution strategies [11]. As such, we provide the
means for policy administrators to detect and define conflicts
and appropriate resolution strategies.

As policy is local to a broker, the administrator can view
policy definitions — introducing, overriding or revoking policy
rules as appropriate. A function specified by the administrator
is passed the set of active transformation rules, and returns
an ordered set of those applicable in the current context. Our
model provides the following tools to help resolve conflicts at
an interaction point:

Ordered Invocation. This allows specification of the order
in which transformation functions are executed on the original
event. This is illustrated in Figure 6 a), in which R2 is applied
before R1.

Overrides. When it is inappropriate for multiple policy rules
to apply, for example if both generate the same output type,
one rule may be defined as overriding another. When both
rules are applicable, the overridden rule will not apply.
Aggregation. Aggregation is a resolution strategy, applied
to sets of rules that impose conditions in the context of
a single subscription. Aggregation concatenates conditional

clauses through boolean operators (AND, OR, NOT). First, if
several rules apply the same transformation function, it is
applied if the condition of any one of the rules is satisfied.
This prevents the transformation from being executed more
than once, so avoiding duplicate messages. Filters are applied
to the results of a transformation. If more than one restriction
(imposed condition or subscription filter) applies to a given
event type, any boolean combination of the conditions can be
specified; the system default action is that the event will be
delivered only if all the conditions are satisfied (AND).

_{R1, (R2,
R2} R1)

a) R2 applies before R1

_{RY,
R2}

b) R2 overrides R1

(resolver)

_’

(resolver)

(R2)>

Fig. 6. Conflict resolution strategies.

The conflict detection procedures are implemented as
database functions, executable by authorised applications, al-
lowing policy to be tested for conflicts before committal.
Policy resolution definitions are represented as data, and thus
can be queried as part of the policy design process. Our
implementation provides the means for policy authors to
ascertain whether the policy set is consistent, allowing the
definition and resolution of policy conflicts.

VII. IMPLEMENTATION AND ENFORCEMENT

Information sharing policy is implemented in the data
control layer. This layer interacts with the pub/sub service
through hook rules, and an API providing access to messaging
facilities, such as event creation and publication. This section
describes the process of policy enforcement within a broker.

Data Control Layer
Publish/Subscribe Layer

Network Layer
o — — o

Fig. 7. The middleware layers of a broker.
A. Receipt transformations

Hooks
& API

'Y
|4
1§
|4

AL A
S —

Receipt transformation policies are enforced through the use
of hook rules. On broker instantiation or when policy changes,
ON PUBLISH hook rules are created to inform the pub/sub
layer of the policy applicable on receipt of a particular event
type. The conditions for policy activation are defined in the
conditional segment of the rule. When an event is received,
the pub/sub layer determines the set of hook rules that are
applicable. This set is passed to a function in the data control
layer, which analyses conflict resolution policy to order and
override policy rules as appropriate. The resulting ordered
set is returned to the pub/sub layer, where the transformation
functions for policies remaining in the set are executed in order
— the resulting event instances moving through the pub/sub
layer for transmission to subscribers.



B. Subscriber policies

The application of subscriber specific policies is a two-
phase process. Firstly, upon a request to subscribe to an event
type, the data control layer searches for policy applicable
to the subscriber’s credentials. If no policies are found, the
subscription is denied. For each applicable transformation
policy, an ON NOTIFY hook rule is created, corresponding
to the event type, subscriber, activation conditions and the
transformation function defined by the policy. Policies im-
posing conditions are resolved (overridden and aggregated),
producing a filter encapsulating all restrictions relevant to this
subscription. Filters are also created, as defined by policy,
for each output type of the applicable transformation rules,
persisting for the lifetime of subscriptions. This ensures that
restrictions are enforced when notification transformations
involve a type conversion. As illustrated in Figure 8 a), the
subscription process concludes with an acknowledgement.

a)
Validate User
Subscriber (S)
Access
Handler Filters Filters
b)
Process Publish Hooks
Publisher—Ev—| Event Transforms
(validate & transforms) N

)&\@‘f&\e Access
& P Filters

[Z

. o

Subscriber 4=Ev= Process =

(S) Subscription
(match & subscriber Validate
transforms) EV’, Subscriber(S) Access
Conflict
Resolver
Fig. 8. Process for the enforcement of subscriber policy.

When the type of an event instance matches a subscription,
the set of applicable ON NOTIFY rules is determined and
passed to the data control layer. In the same way as for
a receipt transformation, conflicts are resolved (ordered and
overridden), before ordered execution of the transformation
functions. The events are delivered to the subscriber if they
satisfy the imposed conditions (restrictions) and the subscriber
specified filter. Conflict resolution for notification policies does
not occur upon subscription, because such policies are acti-
vated in response to runtime circumstances (event instance and
state). Resolving transformation policies at the subscription
stage cannot take account of context.

Figure 8 b) illustrates the process of enforcing policy for the
publication of an event Ev. When an event instance is received
at a broker, the applicable ON PUBLISH rules are resolved,
and the associated transformations are executed in order. The

result event instances are passed to the pub/sub layer to be
matched against active subscriptions. In this example, as no
receipt transformation policies apply, the original event (Ev)
moves to the subscription matching phase. After matching
a subscription, the applicable (resolved) subscriber specific
transformations are applied — in this case, Ev is transformed
into Ev’ due to a subscriber specific policy for S. The
resulting events are then tested against the filters to determine
whether to allow delivery. Here the subscriber is authorised to
receive Ev’ , a transformed version of the original publication.

VIII. DISCUSSION AND RELATED WORK

Pub/sub systems provide a level of indirection between
producers and consumers, where there is generally little infor-
mation regarding the source or the recipients of events. Health-
care, however, is a domain that requires control. In healthcare,
much is known about system users through credentials (e.g.
registered with the NHS, licensed with an authority, active
doctor on duty). There is also a degree of local autonomy; care
providers dealing with medical information are responsible for
its protection, and the circumstances in which it is shared. Our
model applies local control above the pub/sub layer, with each
broker maintaining its own policy set governing the sharing of
data. The database environment brings powerful data-handling
and transaction facilities, providing a common interface for
managing data, policies, types, messaging-specifics and con-
flict resolution strategies. Policy rules can take account of
context, referencing the credentials of recipients, system and
environmental state. The model enables information flow to
be adapted to circumstances — allowing data dissemination
on a need to know basis.

Policy models considering the actions of users have been
widely researched. Here, we are concerned with building
information sharing policy into the messaging architecture. As
mentioned, work dealing specifically with data dissemination
or control tends to focus either on networking aspects or on
access control to data records [12]-[14]. These are particularly
useful in request-response (pull) scenarios. Our work com-
plements these by actively controlling information flow in a
notification environment.

Scoping [15] is a pub/sub concept that involves bundling
a set of components into a scope (group), allowing events
to flow freely between its members. Transformations can be
defined to translate events automatically as they move between
scopes. Such work considers security issues including routing
specifics (e.g. tunnelling), and it is relevant to interoperability,
in terms of managing data models in heterogeneous environ-
ments. However, in many situations members of a common
scope will have different data access privileges/requirements.
In our approach, information control policy may reference
credentials at the granularity of individual users, and event
transformations are applied according to policy, outside the
pub/sub layer. Our model is compatible with scoping, as scope
membership provides a separate credential that can support
data interoperability within the pub/sub framework.



There has been some work concerning access control in
pub/sub environments. Belokosztolszki et al. [16] integrated
a role-based access control model into a pub/sub service to
provide type-specific access control. In that work, event types
were hierarchical, where if a subscriber lacked the privilege
to subscribe to a particular type, rather than deny the request,
the subscription could be downgraded to a subtype for which
they have access. The work was extended by Bacon et al. [7],
[17] to provide attribute-level control. This considered multi-
domain environments, encrypting attributes of an event to
allow liberal distribution, where sensitive information is only
accessible by those holding the appropriate key. The focus
was on open networking environments, concerning issues of
routing, key management and untrusted brokers. Our work is
complementary, providing end-to-end information flow control
that can be tailored to a particular application environment.
Policy is enforced locally at brokers (local database systems),
allowing a degree of autonomy to individual administrative do-
mains. This model is appropriate in a healthcare environment.
In addition to access control mechanisms that take account of
context, our model provides transformations, allowing policy
to customise events (and subscriptions). This customisation
might restrict, to protect/hide sensitive information, enrich,
providing more detail for a particular subscriber or create
some loosely-related event instance. While our model does
not preclude the use of an event type hierarchy, we do not
require one. Our approach is compatible with encryption
models, where a transformation function can encrypt/decrypt
(aspects of) a message. Our focus is on local responsibility
and control, providing the means to define the content and
circumstances (context, recipient credentials) for information
release, irrespective of key management concerns.

The recent work of Wun and Jacobsen [18] describes the
integration of policy into a pub/sub middleware; it suggests
possible applications, and investigates the distribution and
performance implications of policy integration. Our work
bears similarities, in that policies are executed at specific
points of the notification process; however, our aim is different,
given our specific focus on information control. Wun describes
a post-matching policy model, which couples a policy to a
specific pub/sub matching operation. Policies are evaluated
as part of the existing pub/sub process; i.e. if a subscription
is matched, the associated policies are triggered. As policy
rules do not have pre-matching activation conditions, some of
the overhead of policy evaluation is avoided®. In our model,
policies are conditional, allowing them to be executed either
before or after matching operations, with full reference to
event content and context. While this incurs an evaluation
overhead, it is essential for control — for example, to ensure
that notification transforms do not circumvent any imposed or
subscriber specified filters. In our application we also need
to consider policy conflict, and therefore introduce explicit
mechanisms for conflict detection and resolution.

3Their model also allows policies to have activation conditions that are
evaluated after matching is complete. This imposes an additional overhead.

IX. CONCLUSION

This paper describes a middleware model to control the
sharing of information in a publish/subscribe environment.
Our model builds policy into the messaging system, so that
information can be tailored to real world circumstances —
through reference to recipient credentials, message content
and environmental context. We have described how our model
allows policy rules to restrict access to information subject
to a variety of conditions, and to transform data in various
ways. Policy rules are local to each administrative domain;
mechanisms are provided to assist administrators to maintain
a consistent policy set. This work supports collaboration,
a fundamental requirement of the healthcare process, while
providing the means for health providers to protect sensitive
information for which they are responsible. We are currently
working towards updating subscriber-related policy automat-
ically on credential revocation. We also intend to provide
rigorous auditing mechanisms in order to track data flow, and
S0 assist in policy authoring and evaluation.

ACKNOWLEDGMENTS

EPSRC GR/C53719 CareGrid and Microsoft Research support
Jatinder Singh. CONACYT Mexico supports Luis Vargas.

REFERENCES

[1] J. Singh, J. Bacon, and K. Moody, “Dynamic trust domains for secure,
private, technology-assisted living,” in ARES, 2007, pp. 27-34.

[2] Department of Health (UK), “Safer management of Controlled Drugs,”
2007.

[3] British Medical Association and the Royal Pharmaceutical Society of
Great Britain, “British National Formulary,” September 2007.

[4] UK Crown, “The Controlled Drugs (Supervision of Management and
Use) Regulations 2006.”

[5] The House of Commons U.K., “The Electronic Patient Record: HC 422-
I, Sixth Report of Session 2006-07,” September 2007.

[6] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The Many Faces
of Publish/Subscribe,” ACM Computing Surveys, vol. 35, no. 2, pp. 114—
131, 2003.

[7]1 J. Bacon, D. M. Eyers, K. Moody, and L. I. W. Pesonen, “Securing
publish/subscribe for multi-domain systems,” in Middleware, 2005, pp.
1-20.

[8] The PostgreSQL Consortium, “PostgreSQL,” http://www.postgresql.org.

[9] L. Vargas, J. Bacon, and K. Moody, “Integrating Databases with Pub-

lish/Subscribe,” in DEBS, 2005, pp. 392-397.

J. Singh, L. Vargas, and J. Bacon, “A model for controlling data flow

in distributed healthcare environments,” in Pervasive Health, 2008.

R. Chadha, “A cautionary note about policy conflict resolution,” in

MILCOM, October 2006, pp. 1-8.

Connecting For Health (UK Crown), “Sealed Envelopes Briefing Paper:

‘Selective Alerting” Approach,” 2006.

R. J. Anderson, “A security policy model for clinical information

systems.” in I[EEE Symposium on Security and Privacy, 1996, pp. 30—43.

J. Longstaff, M. Lockyer, and J. Nicholas, “The TEES confidentiality

model: an authorisation model for identities and roles,” in SACMAT,

2003, pp. 125-133.

L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and G. Miihl,

“Security aspects in publish/subscribe systems,” in DEBS, 2004, pp. 44—

49.

A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and

K. Moody, “Role-based access control for publish/subscribe middleware

architectures,” in DEBS, 2003, pp. 1-8.

L. I. W. Pesonen, D. M. Eyers, and J. Bacon, “A capabilities-based

access control architecture for multi-domain publish/subscribe systems,”

in SAINT, 2006, pp. 222-228.

A. Wun and H.-A. Jacobsen, “A policy management framework for

content-based publish/subscribe middleware,” in Middleware, 2007, pp.

368-388.

[10]
(1]
(12]
[13]
[14]

[15]

[16]

[17]

(18]



