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O U T L I N E

    INTRODUCTION 

  Decision Making refers to the process of evaluat-
ing the desirabilities of alternative choices and select-
ing a particular option. Thus, many brain functions 
can be characterized as decision making. For instance, 

animals seldom behave solely based on their intrin-
sic metabolic needs, as sensory information about the 
environment must be taken into account in determin-
ing which action the animal should produce to obtain 
the most desirable outcomes. Sensory inputs are 
always noisy, and perceptual analysis of these inputs 
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reduces the uncertainty about the nature of sensory 
stimuli encountered in the animal’s environment in 
order to categorize stimuli and select the most likely 
interpretation of the world. Once the relevant stimuli 
in the animal’s environment are properly interpreted, it 
is then necessary to evaluate the desirability of the out-
come expected from each of the alternative behavioral 
plans. Finally, even when the behavioral goal is set, a 
particular spatio-temporal sequence of muscle activa-
tion must be chosen to carry out the desired action. 

  Theoretical analyses of steady-state choice behav-
ior are often formulated based on the principles of 
optimality and equilibrium. For example, game theory 
seeks to describe optimal decision-making strategies for 
multiple decision makers trying to maximize their own 
self-interests through a variety of complex social inter-
actions ( von Neumann and Morgenstern, 1944 ;  Nash, 
1950 ; see also Chapter 5 for an introduction to game 
theory). However, such approaches are limited when 
the decision makers do not possess all the informa-
tion about the environment, or when the environment 
changes frequently. In such cases, the decision makers 
may need to improve their decision-making strategies 
incrementally by trial and error. This is often referred 
to as melioration  ( Herrnstein  et al ., 1997 ). Similarly, mod-
els based on reinforcement learning ( Sutton and Barto, 
1998 ) have been developed to account for how various 
choice behaviors change dynamically. 

  Neuroeconomics applies a variety of techniques 
to investigate the biological processes responsible for 
decision making. Among them, physiological tech-
niques that probe the activity of individual neurons at 
millisecond temporal resolution are generally appli-
cable only to animals, due to their invasive nature. 

In particular, non-human primates can be trained to 
perform relatively complex decision-making tasks, and 
their choice behaviors display many features similar to 
human choice behaviors. Since the brains of these two 
species display many structural and functional simi-
larities, the results of single-neuron recording experi-
ments conducted in non-human primates can provide 
valuable insights into the basic neural circuit mecha-
nisms of decision making in humans. In recent years, 
electrophysiological studies in behaving monkeys 
have begun to uncover single-neuron activity that is 
correlated with specific aspects of perceptual decision 
making and reward-dependent choice behavior. For 
instance, Shadlen and his colleagues used a perceptual 
decision-making task based on random dot motion 
direction discrimination ( Figure 31.1a   ), and found that 
activity of individual neurons in the primate posterior 
parietal cortex reflects the process of accumulating 
evidence ( Roitman and Shadlen, 2002 ). Others (Surgue 
et al ., 2004;  Lau and Glimcher, 2005 ) examined the 
choice behavior of monkeys during a decision-making 
task based on concurrent schedules of reinforcement 
( Figure 31.1b ), and found that their choice behavior 
largely conformed to the predictions of the matching 
law ( Herrnstein  et al ., 1997 ). Furthermore, the activity 
of neurons in the posterior parietal cortex encoded 
the rate of reward or utility expected from a particular 
choice ( Dorris and Glimcher, 2004 ;  Sugrue  et al ., 2004 ). 
In contrast to perceptual discrimination tasks and con-
current schedules of reinforcement, competitive games 
involve interactions among multiple decision agents. 
It has been shown that monkeys are capable of pro-
ducing stochastic choice behaviors that are nearly opti-
mal for such competitive games ( Dorris and Glimcher, 
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(a) Random-dot motion direction discrimination task

FIGURE 31.1      Decision-Making tasks used in monkeys.   (a) A random-dot motion discrimination task. When the animal fixates a central 
target, two peripheral choice targets are presented. Then, random-dot motion stimuli are presented, and the animal is required to shift its gaze 
towards one of the choice targets according to the direction of random-dot stimuli. (b) During a decision-making task based on concurrent 
reinforcement schedules, each target is baited with a particular probability (variable rate) or after a time interval sampled from a particular 
distribution (variable interval). 
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2004 ;        Lee  et al ., 2004, 2005 ). During such tasks, neurons 
in the dorsolateral prefrontal cortex and the anterior 
cin gulate cortex exhibited firing activity that reflected 
history of past choice and rewards ( Barraclough  et al ., 
2004 ;  Seo and Lee, 2007 ;  Seo  et al ., 2007 ).

   These experiments have spurred theoretical work 
that uses mathematical approaches to illuminate 
experimental observations. For instance, accumula-
tor models have been widely applied to perceptual 
decision making ( Smith and Ratcliff, 2004 ;  Gold and 
Shadlen, 2007 ; see also Chapter 4). Reward-based 
choice behavior has been described by reinforcement 
learning models ( Sutton and Barto, 1998 ; see also 
Chapter 22). We will briefly summarize these models 
in relationship to our neurophysiological recording 
experiments in non-human primates. Our focus, 
however, will be neural circuit modeling, which 
attempts to go one step further and explore how deci-
sion behavior and correlated neural activity can be 
explained by the underlying circuit mechanisms. For 
example, what are the neural circuit substrates for 
time integration of sensory evidence about alterna-
tive choices and for action selection? Is valuation of 
actions instantiated by neurons or synapses, and how 
does a neural circuit make dynamic decisions adap-
tively over time? What are the sources of stochastic-
ity in the brain that underlie random choice behavior? 
We will introduce neural circuit models and illustrate 
their applications to a perceptual discrimination task 
( Wang, 2002 ;  Machens  et al ., 2005 ;  Lo and Wang, 2006 ;
 Wong and Wang, 2006 ;  Miller and Wang, 2006 ), a 
foraging task based on concurrent schedules of rein-
forcement ( Soltani and Wang, 2006 ), and a matching 
pennies game task ( Soltani et al ., 2006 ). These compu-
tational studies showed that a general neural circuit 
model can reasonably account for salient behavioral 
and electrophysiological data from diverse decision 
tasks, suggesting common building blocks of decision- 
making circuitry that may be duplicated throughout 
different stages of sensori-motor transformation in the 
primate brain. 

    GAME-THEORETIC STUDIES OF 
DECISION MAKING IN NON-HUMAN 

PRIMATES 

    Game Theory and Learning in Social 
Decision Making 

   When each of the alternative actions produces a 
particular outcome without any uncertainty, optimal 
decision making consists simply of choosing the action 

that produces the most desirable outcome. When there 
is uncertainty about the outcomes expected from vari-
ous actions, the animal’s choice should be influenced 
by the likelihood of desirable outcomes expected from 
each action. A large number of economic theories, 
such as the expected utility theory ( von Neumann and 
Morgenstern, 1944 ) and prospect theory ( Kahneman
and Tversky, 1979 ), have been proposed to account 
for such decision making under uncertainty or risk. In 
reality, however, the environment changes constantly, 
and this frequently alters the likelihood of various out-
comes resulting from different actions. Consequently, 
optimality is rarely achieved, and typically subjects 
can only approximate optimal decision strategies by 
learning through experience ( Sutton and Barto, 1998 ).

   The complexity and hence difficulty of such learn-
ing would depend on the nature of dynamic changes 
in the animal’s environment, which can occur for 
a number of reasons. Some are cyclical, such as sea-
sonal changes, and others are predictable changes 
resulting from the animal’s own actions, such as the 
depletion of food and other resources. Animals living 
in social groups face even more difficult challenges, 
because competitive interactions with other animals 
tend to make it quite difficult to predict the outcomes 
resulting from their own actions. Nevertheless, deci-
sion making in such social settings provides a unique 
opportunity to test various theories about the behav-
ioral dynamics and underlying mechanisms of deci-
sion making. 

   One way to tackle mathematically the problems of 
decision making in a social context is formulated by 
game theory ( von Neumann and Morgenstern, 1944 ;
see also Chapter 5 of this volume). In game theory, a 
game is specified by a particular number of decision
makers or players, a list of alternative choices availa-
ble to each player, and the payoff matrix that assigns a 
particular outcome or payoff to each player according 
to the combination of actions chosen by all players. 
In other words, the payoff given to a player does not 
depend simply on that player’s own action, but on 
the actions of all players in the game. In addition, 
a strategy for a given player is defined as a prob-
ability distribution over a set of available choices. 
A pure strategy refers to choosing a particular action 
exclusively, whereas a mixed strategy refers to a 
case in which multiple actions are chosen with posi-
tive probabilities. One of the predictions from game 
theory is that a set of players trying to maximize their 
self-interests would converge onto a set of strategies 
known as Nash Equilibrium, which is defined as a set 
of strategies for all players that cannot be changed by 
any individual player to increase his payoff. A game 
is called a mixed-strategy game when its equilibrium 

GAME-THEORETIC STUDIES OF DECISION MAKING IN NON-HUMAN PRIMATES
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strategy is mixed. In addition, a game is referred to as 
zero-sum when the sum of the payoffs for all players 
is always zero, so that someone’s gain necessarily 
means someone else’s loss. In the following sections, 
we describe the results from behavioral experiments 
to illustrate that non-human primates can approxi-
mate the mixed equilibrium strategies through itera-
tive learning algorithms in competitive zero-sum 
games with two and three alternative actions. These 
correspond to the familiar games of matching pennies 
and Rock–Paper–Scissors, respectively.  

    Choice Behavior During a Matching 
Pennies Game 

  To test whether and how monkeys approximated 
optimal decision-making strategies in simple competi-
tive games through experience, previous studies have 
examined the choice behavior of monkeys in a com-
puter-simulated binary zero-sum game, commonly 
referred to as matching pennies ( Lee  et al ., 2004 ;  Figure 
31.2a   ). In this game, each of two players chooses from 
two alternative options, and one of the players wins 
if his choices match and loses otherwise. During the 
experiment, a monkey was required to begin each 
trial by fixating a small yellow square presented in the 
center of a computer screen. Shortly thereafter, two 
identical green disks were presented along the hori-
zontal meridian, and the animal was required to shift 
its gaze towards one of the targets when the central fix-
ation target was extinguished. The computer opponent 
also chose its target according to a pre-specified algo-
rithm described below, and the animal was rewarded 
only when it chose the same target as the computer 
( Figure 31.2b ).

   When two rational players participate in the match-
ing pennies game, the Nash Equilibrium is for each 
player to choose the two targets with equal probabili-
ties and independently across successive trials. Any 
other strategy could be exploited by the opponent. 
In the monkey experiment, the strategy of the com-
puter opponent was systematically manipulated to 
determine how the animal’s choice behavior would 
be affected by the strategy of its opponent. Initially, 
the computer opponent chose the two targets with the 
same probabilities, regardless of the animal’s choices. 
This was referred to as algorithm 0, and corresponded 
to the Nash Equilibrium strategy pursued unilater-
ally without regard to the opponent’s behavior. In 
this case, the animal’s expected payoff would be fixed 
regardless of how it chose its target. Therefore, it was 
not surprising that all three monkeys tested with algo-
rithm 0 displayed a strong bias to choose one of the 
two targets more frequently. Overall, the monkeys C, 
E, and F chose the right-hand target in 70.0%, 90.2%, 
and 33.2% of the trials, respectively. In the next stage 
of the experiment, the computer opponent applied a 
set of statistical tests to determine whether the ani-
mal’s choice was randomly divided between the two 
targets. If not, the computer decreased its probability 
of choosing a particular target as the animal chose the 
same target more frequently. This was referred to as 
algorithm 1. Importantly, this algorithm did not exam-
ine the animal’s reward history, and therefore was not 
sensitive to any bias that the animal might show in 
using the information about its previous rewards to 
determine its future choices. When tested with algo-
rithm 1, the animals chose the two targets more or 
less equally frequently. Overall, during algorithm 1, 
the monkeys C, E, and F chose the right-hand target 
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FIGURE 31.2      Monkey’s choice behavior during the matching pennies game.  (a) During this task, the animal made a saccadic eye move-
ment towards one of the two peripheral targets to indicate its choice and was rewarded only when it chose the same target as the computer 
opponent. (b) The payoff matrix for the matching pennies game. (c) The probability that the animal would choose its target according to the 
so-called win–stay–lose–switch strategy during the matching pennies game against the computer opponent programmed with two different 
algorithms (1 and 2).        
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in 48.9%, 51.1%, and 49.0% of the trials, respectively. 
In addition, the animal’s successive choices were rela-
tively independent, and as a result, the animal’s over-
all reward rate was close to the optimal value of 0.5 
( Lee  et al ., 2004 ). Interestingly, the animals were more 
likely to choose the same target in the next trial if it 
was rewarded in a given trial (win–stay) and switch 
to the other target otherwise (lose–switch). Such strat-
egies were not penalized during the period of algo-
rithm 1, since the information about the animal’s 
reward history was not utilized by the computer 
opponent. All three animals chose their targets accord-
ing to this so-called win–stay–lose–switch (WSLS) 
strategy substantially more than in 50% of the trials 
( Figure 31.2c ).

   In reinforcement learning models ( Sutton and 
Barto, 1998 ;  Camerer, 2003 ), the animal’s choice is 
modeled by a set of value functions that are adjusted 
according to the outcome of the animal’s choice. To 
test whether the animal’s choice during the matching 
pennies game was accounted for by a reinforcement 
learning model, the value function at trial t for a given 
target x, Vt(x), was updated after each trial according 
to the following ( Lee et al ., 2004 ):

V x V x xt t t� � �1( ) ( ) ( )α Δ    (31.1)

   where x      �      L and R for the right-hand and left-hand 
targets, respectively,  α  is a decay factor, and  Δt (x)
reflects a change in the value function that depends 
on the outcome of a choice. It was assumed that if 
the animal chose the target x, the value function for 
x was adjusted according to whether the animal was 
rewarded or not. Namely, when the animal selected 
the target x in trial t, Δt (x)      �       Δrew  if the animal was 
rewarded, and  Δt (x)      �       Δunrew  otherwise. For the tar-
get not chosen by the animal, Δt(x)      �      0. The probabil-
ity that the animal would select the right-hand target 
was then determined by the following softmax rule:   

p V V Vt t t t(R) exp (R)/{exp (R) exp (L)}� �    (31.2)

   The model parameters,  α ,  Δrew , and  Δunrew  were 
estimated using a maximum likelihood procedure 
( Pawitan, 2001 ). This reinforcement learning model 
was compared with an alternative model based on 
the WSLS strategy. This WSLS model assumed that 
the animal chooses its target in each trial according 
to the WSLS strategy with some probability, p WSLS . 
For example, if the animal was rewarded for choos-
ing a particular target in the previous trial, this model 
assumes that the animal would choose the same 
target in the current trial with the probability of p WSLS . 
If the animal was not rewarded in the previous trial, it 

would switch to the other target with the same prob-
ability. Whether the animal’s choice behavior was 
better accounted for by the reinforcement learning 
model or the WSLS model was determined by the 
Bayesian Information Criterion (BIC), defined as 

BIC L k N� � �log log log2    (31.3)

   where L denotes the likelihood of the model, k the 
number of model parameters (k      �      1 and 3 for the 
WSLS model and reinforcement learning model, 
respectively), and N the number of trials ( Hastie et al ., 
2001 ). For each session, the model that minimized 
the BIC was chosen as the best model. The results of 
model-fitting showed that for the reinforcement learn-
ing model applied to the choice data obtained with 
algorithm 1, the value functions for a given target 
tended to increase (decrease) when the animal was 
(not) rewarded for choosing the same target ( Figure 
31.3   ). In addition, the reinforcement learning model 
performed better than the WSLS model in 56.0% of the 
sessions (70/125 sessions). Therefore, for algorithm 1, 
the performance of these two models was comparable, 
suggesting that the animal’s choice was largely deter-
mined by the WSLS strategy.   

   The same animals were then further tested against 
a third computer opponent which tested not only 
whether the animal’s choice sequences were random, 
but also whether the animal’s choice was independent 
of its previous choice outcomes (reward vs no reward). 
This was referred to as algorithm 2 ( Lee et al ., 2004 ). 
Compared to the choice behavior during algorithm 1, 
the choice behavior resulting from algorithm 2 
was dramatically different in that now the tendency 
to use the WSLS strategy was significantly reduced in 
all animals ( Figure 31.2c ). When the choice behavior 
was analyzed with the reinforcement learning model, 
it was found that the trial-to-trial changes in the value 
functions were much smaller compared to the results 
obtained in algorithm 1 (Figire 31.3). In addition, the 
reinforcement learning algorithm now accounted for 
the choice behavior better than the WSLS model in 
63.9% of the sessions (62/97 sessions). Therefore, the 
animals reduced their reliance on the WSLS strategy 
when it was no longer profitable.  

    Choice Behavior During a 
Rock–Paper–Scissors Game 

   Two monkeys were tested in a computerized 
Rock–Paper–Scissors game ( Figure 31.4a   ). During this 
game, the Nash Equilibrium is to choose randomly 
each of the three options with the probability of 1/3. 
Any other strategy can be exploited by the opponent. 

GAME-THEORETIC STUDIES OF DECISION MAKING IN NON-HUMAN PRIMATES
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Similar to the matching pennies game, each trial 
began when the animal fixated a small yellow square 
at the center of the computer screen. Then, three iden-
tical green disks were presented, with their spatial 
positions arbitrarily designated as “ Rock, ”   “ Paper, ”  
and  “ Scissors. ”  As in the matching pennies task, the 
computer chose its target according to one of three 

different algorithms, and the animal was rewarded 
according to the payoff matrix of the Rock–Paper–
Scissors game ( Figure 31.4b ). Namely, the animal 
was rewarded by a drop of fruit juice when it chose 
the same target as the computer opponent, and by 
two drops of juice when its choice beat the compu-
ter’s (e.g., when the animal and the computer chose 
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Rock and Scissors, respectively). The animal was not 
rewarded when its choice was beaten by the compu-
ter’s choice. 

   Similar to the results obtained from the matching 
pennies task, each animal displayed an idiosyncratic 
bias to choose a particular target, while the computer 
opponent unilaterally complied with the Nash 
Equilibrium by choosing the three targets with the 
same probabilities regardless of the animal’s choices 
( Lee  et al ., 2005 ; algorithm 0). Furthermore, as in the 
matching pennies task, when the computer opponent 
predicted the animal’s choice and behaved competi-
tively using only the information about the animal’s 
choice sequences (algorithm 1), the animal started 
choosing the three targets with more or less equal 
probabilities. Nevertheless, there was a significant 
bias to choose the target that would have beaten, and 
therefore was the best response to, the computer’s 
choice in the previous trial. For example, if the ani-
mal chose Rock in a given trial, it tended to choose 
Scissors in the next trial. This is referred to as the 
Cournot best response  ( Lee  et al ., 2005 ), which becomes 
the WSLS strategy when there are only two alterna-
tive choices. In the final stage of the experiment (algo-
rithm 2), the computer opponent utilized information 
about both the animal’s choice sequences and their 
outcomes. Therefore, the computer could now detect 
whether there was any bias for the animal to rely on 
such strategies as the Cournot best response. During 
algorithm 2, the probability of using the Cournot best 
response was significantly reduced in both animals. 
Nevertheless, both animals chose their targets corre-
sponding to the Cournot best response significantly 
more frequently than expected by chance (36.0% for 
both animals; Figure 31.4c ). These results were largely 
consistent with the predictions of a reinforcement 
learning algorithm ( Lee et al ., 2005 ).

    NEUROPHYSIOLOGICAL STUDIES 
OF DECISION MAKING IN 

COMPETITIVE GAMES 

  The results described in the previous section suggest 
that monkeys might approximate equilibrium strate-
gies in competitive games using reinforcement learn-
ing algorithms. Recently, a relatively large number of 
studies have identified neural signals related to the 
key components of reinforcement learning in multiple 
brain areas. For example, signals related to the dis-
crepancy between the predicted and actual rewards, 
commonly referred to as reward-prediction error, have 
been found in the anterior cingulate cortex ( Matsumoto

et al ., 2007 ;  Seo and Lee, 2007 ) as well as the midbrain 
dopamine neurons ( Schultz, 1998 ). In addition, signals 
resembling value functions have been identified in var-
ious cortical areas and the basal ganglia (see the other 
chapters in Part 5 of this volume). Thus, many of these 
cortical and subcortical areas might also be involved in 
updating the animal’s decision-making strategy dur-
ing competitive games. The studies described below 
tested this in the dorsolateral prefrontal cortex and 
the anterior cingulate cortex ( Barraclough et al ., 2004 ; 
 Seo and Lee, 2007 ;  Seo  et al ., 2007 ).

    Role of the Dorsolateral Prefrontal Cortex 
in Decision Making 

   The primate dorsolateral prefrontal cortex (DLPFC) 
is anatomically connected with the multiple cortical 
areas involved in the processing of sensory, motor, 
and affective signals ( Barbas and Pandya, 1987 ;
 Vogt and Pandya, 1987 ;  Barbas, 1995 ;  Carmichael 
and Price, 1996 ;  Fuster, 1997 ;  Luppino  et al ., 2003 ). 
Consistent with such diverse sources of its inputs, 
neurons in the DLPFC display modulations in their 
activity that reflect various aspects of sensory stimuli, 
motor responses, and mnemonic processes ( Chafee
and Goldman-Rakic, 1998 ;  Constantinidis  et al ., 2001 ; 
 Amemori and Sawaguchi, 2006 ). In addition, many 
neurons in the DLPFC change their activity according 
to the nature of the reward expected from a particular 
state of the environment ( Watanabe, 1996 ;  Leon and 
Shadlen, 1999 ;  Kobayashi  et al ., 2002 ). These findings 
suggest that the DLPFC might play an important role 
in decision making by encoding a particular state of 
the environment and the desirability of the outcome 
expected from such a state ( Lee et al ., 2007 ).

   Whether the neurons in the DLPFC encode signals 
necessary to optimize the animal’s decision-making 
strategy was tested during the matching pennies task. 
The results from these experiments showed that the 
DLPFC neurons encode a multitude of signals that 
can contribute to different stages of decision making 
( Barraclough  et al ., 2004 ;  Seo  et al ., 2007 ). First, some 
neurons in the DLPFC modulated their activity accord-
ing to the value functions of the two alternative tar-
gets, and therefore might be involved in computing or 
encoding the decision variable necessary to determine 
the animal’s choice. Second, activity of many neurons 
in the DLPFC encoded not only the upcoming choice 
of the animal, but also the animal’s choices in the pre-
vious trials ( Figure 31.5   , top;  Figure 31.6   , top). In real 
life, the consequence of a particular action might be 
revealed after some temporal delay and often after 
several intervening actions. This leads to the problem 
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of temporal credit assignment, since it may be impor-
tant to identify correctly the action that was responsi-
ble for a particular outcome. Memory signals related 
to the animal’s previous actions, such as those found 
in the DLPFC, are referred to as eligibility trace, and 
may play an important role in solving such problems. 
Third, some neurons in the DLPFC modulated their 
activity according to the previous choices of the com-
puter opponent ( Figure 31.5 , middle;  Figure 31.6 , mid-
dle). During the matching pennies game, the average 
reward expected from choosing a particular target is 
directly related to the probability that the same target 
will be chosen by the computer opponent. Therefore, 
the signals related to the computer’s previous choices 
provide the information necessary to estimate the 
likelihood of reward from a particular target. Finally, 
activity of the DLPFC neurons during the feedback 
period was often influenced by the outcomes of the 
animal’s previous choices, namely, whether the ani-
mal was rewarded or not in the previous trials ( Figure 
31.5 , bottom;  Figure 31.6 , bottom). This suggests that 
the activity in the DLPFC might be influenced by the 
animal’s reward history and therefore by the context 

in which a particular reward is delivered or omitted. 
Overall, these results suggest that the DLPFC might 
be closely involved in updating the animal’s decision- 
making strategies as well as determining the animal’s 
choice in a given trial.  

    Role of the Anterior Cingulate Cortex in 
Decision Making 

   The primate anterior cingulate cortex is closely 
linked to the lateral prefrontal cortex and the orbit-
ofrontal cortex ( Vogt and Pandya, 1987 ;  Barbas and 
Pandya, 1989 ;  Carmichael and Price, 1996 ;  Luppino 
et al ., 2003 ). Similar to the lateral prefrontal cortex, the 
anterior cingulate cortex is also connected to cortical 
areas associated with motor functions, such as the sup-
plementary motor area and supplementary eye-field 
( Wang  et al ., 2001 ;  Luppino  et al ., 2003 ). Compared 
to the lateral prefrontal cortex, however, the ante-
rior cingulate cortex is more densely connected with 
the subcortical structures involved in emotion and 
reward processing, such as the amygdala ( Barbas
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FIGURE 31.5  An example neuron recorded in the dorsolateral prefrontal cortex of a monkey playing the matching pennies game against 
a computer opponent.   Each panel shows the average activity of the neuron aligned to the onset of the targets or the feedback stimulus,
separately according to the animal’s choice (top), the choice of the computer opponent (middle), or the reward (bottom) in the current (Trial 
lag      �      0) or previous trials (Trial lag      �      1 to 3). Black and blue lines indicate whether the animal (top) or the computer (middle) selected the left-
ward and right-ward target, or whether the animal was rewarded (black) or not (blue). Filled and empty circles correspond to the regression 
coefficients quantifying the effect of each variable in different time bins and also indicate whether each coefficient was statistically significant 
(filled; t -test,  P       �      0.05) or not (empty). Dotted vertical lines indicate the time when the animal fixated the central target. The gray background
in the left panels corresponds to the cue period during which the animal was required to maintain its fixation on the central target, whereas the 
gray background in the right panels corresponds to the feedback period.    
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and De Olmos, 1990 ;  Ghashghaei  et al ., 2007 ) and the 
ventral tegmental area ( Williams and Goldman-Rakic, 
1993 ;  Lewis  et al ., 2001 ). Accordingly, neurons in 
the anterior cingulate cortex often modulate their 
activity according to the expected and actual reward 
( Niki and Watanabe, 1979 ;        Amiez  et al ., 2005, 2006 ),
but neural signals reflecting the information about 
specific actions are less frequently observed in the 
anterior cingulate cortex than in the lateral prefrontal 
cortex ( Hoshi et al ., 2005 ;  Matsumoto  et al ., 2007 ).

   Consistent with these findings, the activity of neu-
rons in the anterior cingulate cortex was commonly 
modulated by the outcomes of the animal’s choices 
during the matching pennies game. For example, 
many ACC neurons increased or decreased their 
activity when the animal received a feedback signal 
indicating that it would be rewarded in a given trial. 
Such activity related to the choice outcome or reward 
was often maintained across multiple trials, and, 
as a result, the reward-related activity in the ACC 
was often influenced by the animal’s reward history 
( Seo and Lee, 2007 ). In addition, the time-course of 
such activity related to the outcome of the animal’s 
previous choice varied substantially across different 
neurons. In some neurons, activity was influenced 
similarly by the animal’s rewards in the current and 
previous trials, suggesting that the activity of such 

neurons might signal the local rate of reward. Such 
signals might be used as a reference point against 
which the value of the reward in a current trial is 
evaluated. In contrast, the activity of other neurons 
was modulated antagonistically by the rewards in the 
current and previous trials. For example, a particular 
neuron might increase its activity when the animal is 
rewarded in the current trial, but its activity might be 
decreased if the animal was rewarded in the previous 
trial. Such neurons would then show their maximal or 
minimal activity when the animal was rewarded after 
losing a reward in the previous trial. Analogous to 
the activity of dopamine neurons that encode reward-
prediction error ( Schultz, 1998 ), some neurons in the 
ACC might therefore encode the deviation of the 
reward received by the animal in the current trial rela-
tive to the reward expected from the outcomes in the 
previous trial. To test this further, the value functions 
of the two alternative targets as well as the reward-
prediction error were estimated on a trial-by-trial basis 
using a standard reinforcement learning model, and 
these estimates were used to test whether the activity 
of each ACC neuron was correlated with the sum or 
difference of the value functions or with the reward-
prediction error. The results showed that the activity 
of many ACC neurons was correlated with the sum 
of the value function, but relatively infrequently with 
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the difference of value functions. Since reinforcement 
learning algorithms choose a particular action based 
on the difference in value functions, these results sug-
gest that the ACC makes only a minor contribution to 
the process of action selection. In contrast, the activ-
ity of many neurons in the ACC was strongly corre-
lated with the reward-prediction error. Presumably, 
outcome-related activity in the ACC that is modulated 
by the animal’s reward history might influence the 
process of updating the value function of the alter-
native targets and therefore the animal’s subsequent 
actions. Precisely how this is accomplished, however, 
is currently not known. 

    MODELS OF DECISION MAKING 

   Experiments using different types of decision 
behaviors have led to two broad classes of models for 
decision making. On the one hand, so-called sequential-
sampling models describe information processing 
that unfolds in time and determine performance accu-
racy and reaction times in perceptual and memory 
tasks. One the other hand, game-theoretical mod-
els and reinforcement learning models account for 
dynamic choice behavior which is based on utility 
maximization and interplay with the environment or 
other decision agents. These models are important for 
quantitatively describing behavioral data and assess-
ing theoretical ideas about the cognitive processes of 
decision making. To truly understand the biological 
basis of decision behavior, however, it is critical to 
construct realistic neural circuit models that allow us 
to explore how key computations of decision making 
are instantiated by cellular machineries and collective 
dynamics of neural networks in the brain. Here we 
summarize models of varying degrees of complexity, 
with a focus on recently advanced neural models 
of decision circuits. We show that both perceptual 
decisions and value-based choice behaviors can be 
described by a recurrent neural circuit model that is 
endowed with reward-dependent synaptic plasticity. 

    Drift-diffusion, Leaky Competing 
Accumulator, and Attractor Network 
Models

   Sequential-sampling models are based on the intui-
tive idea that a decision is reached when stochastic 
accumulation of information about alternative choices 
reaches a particular threshold. For two-alternative 
forced choice tasks, a specific implementation is 

called the drift-diffusion model ( Ratcliff, 1978 ;  Smith 
and Ratcliff, 2004 ). In this model, an activity variable 
X represents the difference between the respective 
amounts of accumulated information about the two 
alternatives, say X 1  and X 2 , X      �      X 1       �      X 2 . The dynam-
ics of X is given by the drift diffusion equation, 

d /d ( )X t w t� �μ (31.4)

   where  μ  is the drift rate and w(t) is a white noise of 
zero mean and standard deviation  σ . The drift rate  μ
represents the bias in favor of one of the two choices 
(and is zero if there is no net bias). For instance, in a 
random-dot motion direction discrimination task,  μ
is proportional to the strength of motion signal. This 
system is a perfect integrator of the input: 

X( ) ( ) dt t w t t
t

� � 
 
μ ∫ (31.5)

   The integration process is terminated and the deci-
sion time is read out whenever X(t) reaches a posi-
tive threshold  θ  (choice 1) or a negative threshold  �θ
(choice 2). If the drift rate μ  is positive, then choice 1 
is correct, while choice 2 is an error ( Figure 31.7   ). 
Therefore, this type of models is commonly referred 
to as “ ramping-to-threshold ”  model, with the average 
ramping slope given by μ .

   The drift-diffusion model has been widely applied 
to fit behavioral data from perceptual and memory 
experiments ( Ratcliff, 1978 ;  Smith and Ratcliff, 2004 ).
This model is the continuous-time equivalent of 
the discrete-time Sequential Probability Ratio Test 
(SPRT), which is the optimal procedure for making 
binary choices under uncertainty, in the sense that it 

X (t )

0 t

FIGURE 31.7      Drift diffusion model for time integration in reac-
tion time tasks.  The variable X(t) represents the difference in the 
activity at time t between two neural pools A and B. X(t) undergoes 
a biased random walk, and decision A (or B) is reached when X 
reaches a prescribed threshold  θ  (or  �θ ). The time it takes to reach 
the threshold is read out as the response time. Six sample trials (four 
correct trials, green; two error trials, red) are shown.    
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minimizes the mean decision time among all tests 
for a given lower bound of error rate ( Wald and 
Wolfowitz 1948 ;  Bogacz  et al ., 2006 ).

   Can a ramping-to-threshold mechanism be instan-
tiated by neural circuits? One key issue here is to 
determine the biological basis of time integration. The 
drift-diffusion model is a perfect integrator, whereas 
neurons and synapses are leaky, with short time 
constants of tens of milliseconds ( Kandel et al ., 2000 ). 
 Usher and McClelland (2001)  extended the drift-
diffusion model by incorporating a leak so that the 
integrator becomes forgetful with a decay time con-
stant. Moreover, there is a competition between the 
two dynamical variables X 1  and X 2  through mutual 
inhibition. This leaky competitive accumulator model 
proved to fit many behavioral data equally as well as 
the drift-diffusion model, provided that the integra-
tion time is sufficiently long. 

   We have proposed that a long integration time 
can be realized biophysically in a decision neural 
network through recurrent excitation ( Wang, 2002 ).
Reverberating excitation represents a salient charac-
teristic of cortical local circuits ( Douglas and Martin, 
2004 ). When this positive feedback is sufficiently 
strong, recurrent excitation in interplay with synaptic 
inhibition can create multiple stable states ( “ attrac-
tors ” ). Therefore, this class of models is referred to as 
 “ attractor network models. ”  Such models have been 
initially proposed for working memory – namely, the 
brain’s ability to actively hold information online in 
the absence of direct sensory stimulus. If a cortical 
network is endowed with a spontaneously active rest-
ing state and multiple memory states (for maintain-
ing different items of information), transient inputs 
(such as a sensory cue) can switch the system from 
the resting state to one of the memory states, which 
is then self-sustained in the form of persistent neural 
activity. This idea has been explored using biophysi-
cally realistic neural circuit models ( Wang, 2001 ;  Amit 
and Mongillo, 2003 ). Recently, it has been realized 
that the same models can also implement decision- 
making computations ( Wang, 2002 ;  Machens  et al ., 
2005 ;  Miller and Wang, 2006 ;  Wong and Wang, 2006 ).
Interestingly, physiological studies in behaving non-
human primates often reported neural activity corre-
lated with decision making in cortical areas, such as 
the prefrontal cortex or the parietal cortex, that also 
exhibit mnemonic persistent activity during working 
memory. Hence, recurrent network (attractor) models 
can be viewed as a promising neuronal instantiation 
of the ramping-to-threshold model, and they serve as 
a framework to elucidate a common circuit mecha-
nism for decision making and working memory in the 
brain.

    What is Spiking Network Modeling? 

   Physiological experiments in behaving animals 
are critical to uncover neural signals correlated with 
specific aspects of decision making. Biophysically-
based neural modeling can delineate circuit mecha-
nisms that give rise to the observed neural signals, 
and identify key computational principles at the con-
ceptual level. For certain questions about decision 
making, discussed below, it is important to capture 
neural firing of action potentials or spikes (electrical 
signals often described mathematically as point proc-
esses) through which neurons transmit information 
and communicate with each other. To this end, single 
cells should be described by a spiking neuron model, 
rather than a firing-rate model (as in the Usher-
McClelland model). A popular choice is either the 
leaky integrate-and-fire model or the Hodgkin-Huxley 
model. Such a model is calibrated by physiological 
measurements, such as the membrane time constant 
and the input–output function (the spike firing rate as 
a function of the synaptic input current), which can be 
different for excitatory pyramidal cells and inhibitory 
interneurons. Furthermore, it is worth emphasizing 
that, in a biophysically-based model, synapses must 
be modeled accurately. Unlike connectionist mod-
els in which coupling between neurons is typically 
an instantaneous function of firing activity, synapses 
have their own rise-time and decay time constant, 
and exhibit summation properties. Synaptic dynamics 
turn out to be a crucial factor in determining the inte-
gration time of a neural circuit dedicated to decision 
making, as well as controlling the stability of a strongly 
recurrent network. Finally,  “ building blocks ”  (single 
cells and synapses) are used to construct a network 
endowed with a biologically plausible architecture. 
A commonly assumed circuit organization is the so 
called “ Mexican-hat connectivity ”  – local excitation 
between neurons of similar selectivity combined with 
a more global inhibition (see  Figure 31.8    for a sche-
matic depiction of a simple two-neural pool network). 
Dynamic balance between synaptic excitation and 
inhibition is another feature of cortical microcircuits 
that has been increasingly recognized experimentally 
and incorporated in cortical network models. 

  Although this type of spiking network model may 
seem complicated compared with simple mathemati-
cal models such as the drift-diffusion model, it is actu-
ally minimal for quantitatively accounting for both 
behavioral data (determined by collective network 
dynamics) and spike train data of single neurons 
obtained from physiological experiments, and for 
exploring the synaptic circuit mechanisms required to 
explain these observations. 

MODELS OF  DECISION MAKING
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    A Recurrent Circuit Mechanism of 
Decision Making 

  A simple model for decisions with two alterna-
tive choices is schematically illustrated in Figure 
31.8  ( Wang, 2002 ). Two neural pools are selective for 
choice options (A or B), each consisting of a number of 
spiking neurons. The network connectivity exhibits 
salient features of a cortical circuit model: (1) direct 
excitatory connections are strong between pyrami-
dal cells with similar selectivity (within each neural 
pool) and weak between those with entirely different 
selectivity (between the two neural pools); (2) there is 
a balance between synaptic excitation and inhibition; 
and (3) inhibitory interneurons induce competition 
between the two neural pools. As a result, interactions 
between the two neural pools are effectively inhibi-
tory ( Wong and Wang, 2006 ), similar to the Usher-
McClelland model ( Bogacz  et al ., 2006 ). However, in 
contrast to the linear leaky competitor model, non-lin-
ear attractor dynamics that depend on reverberating 
excitation are critical to winner-takes-all competition. 

   Evidence for the two alternatives is provided by 
inputs I A  and I B  to the two neural pools. For instance, 
choice should be obvious if I A  is large and I B  is zero, 
whereas the weights of evidence for the two alterna-
tives are equal if I A       �      I B . This is shown in  Figure 31.9   , 
where the input magnitudes are expressed in terms 
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A B
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Inhibitory
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FIGURE 31.8  A simple model for decision making with two 
alternatives.  There are two pyramidal cell groups, each of which 
is selective to one of the two choice options, A or B. Within each 
pyramidal neural group there are strong recurrent excitatory con-
nections that can sustain persistent activity triggered by a transient 
preferred stimulus. The two neural groups compete through feed-
back inhibition from interneurons. Depending on the task design, 
one of the choices may be rewarded with some probability, whereas 
the other may not, in any given trial. The outcome signal (reward or 
not) is assumed to modulate Hebbian plasticity of input synapses 
cA  and c B . Since the network’s decision dynamics depends on c A
and c B , altered synaptic strengths lead to adaptive choice behavior 
across trials.    

of the synaptic strengths c A  and c B  of the input path-
way.  Figures 31.9a and 31.9b  display the time-course 
of network activity when c A  is larger than c B  in several 
simulation trials. In  Figure 31.9a , the population firing 
rates r A  and r B  of the two neural pools first increase 
together, then start to diverge: r A  ramps up for 
hundreds of milliseconds, whereas r B  gradually decays 
away. Therefore, the decision outcome of the network 
is A, which is the correct choice.  Figure 31.9b  shows 
several error trials, in which the neural pool B rather 
than A wins the competition. Across many trials, the 
probability of choosing A (the correct response) is 
larger than 0.5 when evidence in favor of A is stronger 
than that for B (c A  is larger than c B ).  Figure 31.9c  
shows that this probability is a sigmoid function of 
the difference c A � cB . Note that even when the inputs 
are equal (c A       �      c B ), stochastic neural spiking dynam-
ics still gives rise to winner-takes-all competition in 
each trial, with the choice probability at chance level 
(50%). Interestingly, this choice probability function is 
relatively insensitive to the absolute strengths c A  and 
cB ; therefore the network’s decision performance can 
be described by a softmax function 

P (c c ) /( exp( (c c )/ )A A B A B� � � � �1 1 σ    (31.6)

   where  σ  expresses the amount of stochasticity due to 
irregular spike firing in the network and also depends 
on other model properties, such as the firing rates of 
input neurons. Importantly, a softmax decision cri-
terion is widely assumed in more abstract models of 
choice behavior; indeed, it is the same equation used 
in the reinforcement learning model for fitting mon-
key’s behavioral data (equation (31.2)). Our neural 
circuit modeling lends support to this general assump-
tion, and allows insights into its underlying stochastic 
recurrent neural dynamics. 

   Can this model account for reaction times as well 
as accuracy in a decision task? This network exhibits 
quasi-linear ramping activity for many hundreds of 
milliseconds ( Figure 31.9a, 31.9b ). This ramping activ-
ity is realized in spite of a short neuronal membrane 
time constant ( ~ 10       ms) by slow reverberation medi-
ated by the NMDA receptors (with a time constant 
of 50–100       ms) at the excitatory recurrent synapses. As 
in the drift-diffusion model, a fixed firing threshold  �
can be set such that a decision is made whenever r A  or 
rB  reaches  �  first, and the time elapsed since the stim-
ulus onset can be read out as the decision time. This 
model also predicts that reaction times are longer in 
error trials than in correct trials, which is commonly 
observed in decision tasks. 

   Our model has been applied to a monkey experi-
ment using a visual motion direction discrimination 
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FIGURE 31.9      Neuronal activity and decision performance of the model shown in  Figure 31.8 .   (a, b) The population firing rate of neurons is 
shown separately for trials in which the network’s choice is the neurons ’  preferred (red) or non-preferred (blue) target. Raster plots show spike 
trains for two selected neurons in population A (top) and B (bottom) in the same trials. Neural groups A and B win the competition in trials 
shown in A and B, respectively. Activity is aligned at the onset of the visual targets. A few hundred milliseconds after the input onset, the aver-
age firing rates in the two populations start to diverge. Spiking activity is higher when the chosen target is preferred for the neuron (compare 
red and blue lines), and when its input is larger (compare red traces in the left and right panels). Moreover, firing activity is higher when the 
chosen target is non-preferred for the neuron that receives a larger input (compare blue traces in the left and right panels). In these simulations, 
the synaptic strengths are c A       �      0.33 and c B       �      0.27.          (c) Choice behavior of the decision-making network for different sets of synaptic strengths. 
The probability of choosing target A is a function of the difference between the two synaptic strengths and it can be fitted by a sigmoid func-
tion. Different symbols represent different overall synaptic strengths.
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MODELS OF  DECISION MAKING

task ( Figure 31.1a ). In this experiment, a subject was 
shown a display of moving random dots, a fraction 
of which moved coherently in one of two possible 
directions (say A      �      left, B      �      right), and the remain-
ing dots moved in random directions. The task 
difficulty was varied from trial to trial by the motion 
coherence (0 to 100%). In monkeys performing this 

task, single neurons in the lateral intraparietal (LIP) 
cortex exhibited slow ramping activity that correlated 
with the perceptual decision about the direction (left-
ward or rightward) of the motion stimulus ( Gold and 
Shadlen, 2007 ). At lower motion coherence the sub-
ject’s reaction time was longer, and the ramping of the 
LIP neuronal firing rate was slower but reached the 
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same firing activity level at the time when the behav-
ioral response was produced, regardless of the motion 
coherence ( Roitman and Shadlen, 2002 ). Thus, LIP 
neurons display a ramping-to-threshold process at 
the cellular level. Our neural circuit model has been 
used to simulate this monkey experiment, with the 
motion coherence given by the relative input strength 
(IA       �      I B )/(I A       �      I B ) (between  � 100% and  � 100%). This 
model reproduces the monkey’s performance and 
reaction times, as well as salient physiological data of 
LIP neurons ( Wang, 2002 ).

    Neural Substrate of a Decision Threshold 

   Other studies have also revealed ramping-to-
threshold neural activity at the single cell level that 
is correlated with action selection and preparation 
( Schall, 2001 ). How can a decision threshold be instan-
tiated by neurons, rather than prescribed in an  ad hoc
manner? A natural hypothesis is that when decision 
neurons integrate inputs and reach a particular firing 
rate level, this event triggers an all-or-none response 
in downstream neurons and leads to the generation 
of a behavioral output. This idea was tested for ocu-
lomotor decision tasks in which the motor response 
is a rapid saccadic eye movement. In an extended, 
two-stage circuit model ( Lo and Wang, 2006 ), deci-
sion neurons in the cortex (as described above) project 
to movement neurons in the superior colliculus (SC), 
an important command center for saccades ( Figure 
31.10a   ). This model also includes a direct pathway in 
the basal ganglia, with an input layer (caudate, CD) 
and an output layer (substantia nigra reticulata, SNr). 
As a neural pool in the cortex ramps up in time, so 
do the synaptic inputs to the corresponding pool of 
SC movement neurons. When this input exceeds a 
well defined threshold level, an all-or-none burst of 
spikes is triggered in the movement cells, signaling 
a particular (A or B) motor output. In this scenario, a 
decision threshold (as a bound of firing rate of deci-
sion neurons) is instantiated by a hard threshold 
of synaptic input for downstream motor neurons. 
 Figure 31.10b  shows a sample trial of such a model 
simulation for the visual motion direction discrimina-
tion experiment. The rate of ramping activity fluctu-
ates from trial to trial, as a result of stochastic firing 
dynamics in the cortex, and is inversely related to the 
decision time (as defined by the time when a burst is 
triggered in the SC) on a trial-by-trial basis ( Figure 
31.11   ). Moreover, when the task is more difficult (with 
a lower motion coherence) ramping activity is slower, 
leading to longer reaction times [(b) compared to (a) 
in Figure 31.11 )]. However, the threshold of  cortical
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FIGURE 31.10      Multiple-circuit model of a decision threshold 
in the oculomotor system.   (a) Schematic model architecture. Neural 
pools in the cortical network integrate sensory information, as well 
as compete against each other. They project to both superior col-
liculus, and caudate nucleus in basal ganglia. Excitatory and inhibi-
tory connections are indicated as black and red lines, respectively. 
(b) Reaction time simulation using the oculomotor network model 
of spiking neurons. A saccadic response is triggered by a burst of 
spikes in SC movement neurons, when the ramping activity in one 
of the selective neural pools in the cortex exceeds a threshold, so 
that SC movement neurons receive sufficient cortical excitation, and 
are released from inhibition by the basal ganglia as a result of corti-
cal drive to the caudate. 
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firing activity that is read out by the downstream 
motion system has the same narrow distribution 
(inserts in Figure 31.11 ), regardless of the ramping 
speed or reaction times. Therefore, this model real-
izes a robust threshold detection mechanism, and the 
variability of reaction times is mostly attributed to the 
irregular ramping of neural activity itself rather than a 
stochastic decision bound. 

  How can a decision threshold be adaptively tuned 
in this circuit? For instance, in a speed–accuracy trade-
off, too low a threshold leads to quicker responses but 
more errors, whereas too high a threshold improves 
the accuracy but prolongs response times. Neither of 
these yields maximal rewards. Since in our model the 
decision threshold is defined as the minimum corti-
cal firing needed to induce a burst response in the 
downstream SC neurons, one would expect that this 
threshold could be adjusted by plastic changes in the 
cortico-collicular pathway: the same level of cortical 
input to the superior colliculus could be achieved with 
less firing of cortical neurons, if the synapses of the cor-
tico-collicular projection were stronger. Interestingly, 
this is not the case when the system is gated by the 
basal ganglia. This is because neurons in SNr normally 
fire tonically at a high rate ( Figure 31.10 ), and pro-
vide a sustained inhibition to SC movement neurons 

( Hikosaka  et al ., 2000 ). This inhibition must be released, 
as ramping activity in the cortex activates CD neurons, 
which in turn suppress the activity in the SNr, in order 
for SC neurons to produce a burst output. This highly 
non-linear disinhibition mechanism implies that the 
decision threshold is much more readily adjustable by 
tuning the synaptic strength of the cortico-striatal path-
way ( Lo and Wang, 2006 ). Indeed, such an adaptive 
tuning of the decision threshold is expected to depend 
on reward signals ( Reynolds et al ., 2001 ), and cortico-
striatal synapses represent a major target of innerva-
tion by dopamine neurons which play a critical role in 
reinforcement signaling ( Reynolds and Wickens, 2002 ). 
Our work suggests that dopamine-dependent plastic-
ity of cortico-striatal synapses is a likely neural locus 
for adaptive tuning of the decision threshold in the 
brain. 

    REWARD-DEPENDENT 
PLASTICITY AND ADAPTIVE 

CHOICE BEHAVIOR 

    Computation of Returns by Synapses 

   To describe adaptive decision making, we have 
incorporated reward-dependent learning in our 
decision-making model. Consider a local neural net-
work shown in Figure 31.8 . Recall that the network’s 
behavior is described by a softmax decision criterion – 
that is, the probability of choosing A versus B is a func-
tion of the difference in the synaptic strengths c A  and 
cB  for the inputs to the two competing neural pools 
( Figure 31.9c ). Supposing that synaptic connections 
are plastic, then synaptic modifications will alter the 
network’s future decision behavior, which in turn will 
lead to further changes in the synapses ( Figure 31.8 ). 
Specifically, we used binary synapses that undergo 
a stochastic Hebbian learning rule, namely that syn-
aptic plasticity depends on coactivation of presynaptic 
and postsynaptic neurons and takes place stochastically 
( Fusi, 2002 ). Specifically, synapses between two neu-
rons are assumed to have two states (Down and Up). 
Synaptic potentiation (depression) corresponds 
to a probabilistic transition from the Down to Up 
(Up to Down) state that depends on the activity 
of both the pre- and post-synaptic neurons ( Hebb,
1949 ;  Fusi, 2002 ). In addition, it is assumed that syn-
apses for inputs to decision neurons are potentiated 
only if the choice is rewarded, and depressed other-
wise ( Soltani and Wang, 2006 ;  Soltani  et al ., 2006 ;  Fusi 
et al ., 2007 ). This is inspired by the suggestion that the 
presence or absence of dopamine signal can reverse 
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FIGURE 31.11    The slope of ramping activity of cortical deci-
sion neurons is inversely correlated with the reaction time in sin-
gle trials of simulated random-dots motion direction discrimination 
task. When the motion strength is weaker (3.2% in (b) compared to 
12.8% in (a)), the ramping slopes are smaller and the reaction times 
are longer. However, the variability of the cortical activity threshold 
remains the same (inserts), and therefore the variability in the reac-
tion time is primarily caused by the variability of the ramping slope 
due to neural firing fluctuations across trials.
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the sign of modification at certain classes of synapses 
in the brain ( Reynolds and Wickens, 2002 ). Our work-
ing hypothesis is that input synapses onto a decision 
circuit are updated according to such a reward-
dependent Hebbian learning rule (see also  Seung,
2003 ). As a result of synaptic modifications, the input 
strengths for the competing neural groups of the 
decision network vary from trial to trial, leading to 
adaptive dynamics of choice behavior. 

   This synaptic learning rule is a biologically plau-
sible instantiation of reinforcement learning, and the 
model endowed with such synaptic plasticity is a gen-
eral one rather than one designed for a particular task. 
We have tested the model with two types of choice 
behavior. First, we used the model to investigate a for-
aging task, in which a subject makes successive choices 
adaptively in a stochastic environment ( Sugrue  et al ., 
2004 ; see also Chapter 30 of this volume). Second, 
the model was applied to simulate the behavior in a 
game-theoretic task that involves dynamic interplay 
between decision agents ( Barraclough  et al ., 2004 ), 
and which was summarized earlier in this chapter. In 
these tasks, whether a subject’s choice yields reward 
or not depends either on the stochastic environment 
or on the competing agent. In either case, the model 
simulates a decision maker whose choice outcomes 
lead to synaptic plasticity that in turn influences 
future choices, thereby learning to forage adaptively 
or play a dynamic game with an opponent. We found 
that during learning, the synaptic strengths c A  and c B
compute returns R A  and R B  (the amount of reward per 
choice) rather than income (the amount of reward per 
unit time) for the alternative options A and B ( Soltani
and Wang, 2006 ). Moreover, because synapses are 
potentiated or weakened stochastically over time, they 
are forgetful and behave like a leaky integrator of past 
choice outcomes. In our model, synaptic integration 
of past rewards has a time constant of a few trials, and 
therefore the decision behavior is influenced only by 
rewards harvested locally in time, in agreement with 
behavioral ( Lee  et al ., 2004 ;  Sugrue  et al ., 2004 ;  Lau and 
Glimcher 2005 ) and neurophysiological ( Figure 31.6 ; 
 Seo and Lee, 2007 ;  Seo  et al ., 2007 ) observations.  

    Matching Law: Melioration Versus 
Optimization

  In foraging tasks commonly used in laboratories, 
rewards are delivered to two response options stochas-
tically at baiting rates λA  and  λB , respectively, accord-
ing to a particular concurrent reinforcement schedule 
( Figure 31.1b ;  Sugrue  et al ., 2004 ;  Lau and Glimcher, 
2005 ). Behavioral studies using this task have led to 
Herrinstein’s matching law, which states that a subject 

allocates his choices in a proportion which matches 
the relative reinforcement obtained from these choices 
( Herrnstein  et al ., 1997 ). Moreover, the spiking activ-
ity of neurons in the lateral intraparietal cortex (LIP) 
is modulated by a representation of value that the 
authors defined as fractional income ( Sugrue  et al ., 
2004 ; see also Chapter 30 for details). To explore a cor-
tical circuit mechanism of matching behavior, we have 
used our neural circuit model of decision making, 
endowed with reward-dependent synaptic plasticity 
( Figure 31.8 ). As shown in  Figure 31.12a–b   , the model 
reproduces the matching behavior observed in the 
monkey experiment. As the reward rate  λA / λB  varies 
from one block of trials to the next, the choice behavior 
of the model changes quickly, so that the probability 
of choosing A versus B matches approximately  λA / λB . 
We showed analytically that the synaptic strengths 
(cA  and c B ) are proportional to the returns (reward per 
choice) of the two targets, namely c A �  R A  and c B �  R B . 
Furthermore, the model qualitatively reproduces 
neural activity observed in LIP that is modulated by 
the values of the response options ( Figure 31.13   ). 

   Figure 31.12c  shows the probability of choosing 
option A (P A ) along with the input synaptic strengths 
(cA  and c B ) across six blocks of trials. The process of 
synaptic plasticity is stochastic, and there is considera-
ble variability within each block of 200 trials. However, 
on average (indicated by the blue line for P A ), the choice 
probability ratio matches that of rates at which rewards 
are delivered to the two targets, and this matching 
behavior is learned through plastic synapses. For 
instance, if in a block of trials the reward probability  λA
is larger than  λB , then c A  is more likely to be potenti-
ated than c B  through the successive decisions of the 
network across trials because the return from choosing 
A is higher, leading to a larger P A . The converse occurs 
in a block of trials where  λA  is smaller than  λB . 

  Note that synaptic modifications take place on a 
trial-by-trial basis, locally in time. There is no prescrip-
tion in the model for global optimization. The model’s 
performance is close to the matching behavior, which is 
achieved dynamically through a melioration process – 
i.e., the model chooses the alternative with a higher 
return, so that the interplay between decision behav-
ior and synaptic plasticity iteratively improves the 
total income (reward per unit time) to the maximum 
possible, given the constraints of the stochastic neuro-
nal and synaptic dynamics ( Soltani and Wang, 2006 ).
Moreover, the model also reproduces the observation 
that, in the monkey experiment, matching is not per-
fect, and the relative probability of choosing the more 
rewarding option is slightly smaller than the rela-
tive reward rate ( “ under-matching ” ) ( Figure 31.12b ).
A model analysis showed that under-matching is a 
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natural consequence of stochasticity in neural activity 
( Soltani and Wang, 2006 ).

   In summary, our model suggests that although 
activity of LIP neurons depends on values of response 
options ( Figure 31.13 ), valuation may occur elsewhere, 
at the synaptic level and in the form of returns. For the 
sake of simplicity we have considered a local network 
model, but we are agnostic regarding the actual site 
of synaptic plasticity that is critically involved with 
valuation. Candidate loci include the cortico-striatal 
connections in the basal ganglia ( Lo and Wang, 2006 ),
or synaptic pathways within the orbitofrontal cortex 
(see Chapter 29). 

    Random Choice Behavior in Matching 
Pennies Game 

   Our model can be extended to decision making in 
competitive games between multiple agents, which is 

the main topic of the earlier sections of this chapter. 
The idea is that several such models, each simulating 
a  “ decision maker, ”  can interact according to a payoff 
matrix. We have used our model to simulate the mon-
key experiment of Barraclough et al . (2004) , in which 
monkeys play matching pennies with a computer 
opponent that uses three different algorithms (0, 1, 
and 2, see description above). The model reproduces 
many salient behavioral observations ( Soltani et al ., 
2006 ). If the opponent is not interactive (using 
Algorithm 0), the model decision behavior is idio-
syncratic and might, for instance, choose one of the tar-
gets exclusively. When the opponent uses algorithm 1, 
the model exhibits prominent win–stay–lose–switch 
(WSLS) behavior, as observed in monkeys. Finally, 
when the opponent uses algorithm 2 and is fully inter-
active according to the rules of matching pennies, the 
model behavior becomes quasi-random. This is shown 
in Figure 31.14   , with several different sets of initial 

FIGURE 31.12  An attractor network model shows matching behavior in a dynamic environment.   (a) For one session of the simulated 
matching experiment, the cumulative choice probability for target A is plotted against the cumulative choice probability for target B. Black 
straight lines show the baiting probability ratio in each block. The slope of the cumulative plot is equal to the choice ratio, and is approxi-
mately equal to the baiting probability ratio. In this session the following baiting probability ratios are used in sequence [1:1, 1:3, 3:1, 1:1, 1:6, 
6:1]. (b) Each point shows the block-wise choice fraction as a function of the block-wise reward fraction for a block of trials on which the bait-
ing probabilities are held constant. Most of the points fall close to the diagonal line (perfect matching), but the choice fraction is slightly lower 
than the reward fraction when the latter is larger than 1/2 (under-matching). (c) The synaptic strengths, c A  (red) and c B  (green), and the choice 
probability (blue) plotted as a function of time. The thin black line indicates the baiting probability ratio in each block. In each block the synap-
tic strengths fluctuate according to the value of returns from the two choices (not shown).        
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values for the synaptic variables c A  and c B  ( Figure 
31.14 , (a)). Different c A  and c B  values yield a different 
initial probability P A  of choosing response A versus B 
( Figure 31.14 , (b)). Competitive interaction with the 
opponent, however, quickly equalizes the synaptic 
variables ( Figure 31.14 , (a)), and the choice probability 
becomes very close to 0.5 ( Figure 31.14 , (b)), regard-
less of the initial state of the system. For instance, if 
initially the system chooses target A more frequently 
because c A  is larger than c B , it would be exploited by 
the opponent, and the unrewarded outcomes from 
choosing A would induce depression of c A  of the 
synapses to the neural pool A, so that the difference 
cA � cB  decreases over time, and the system gradually 
chooses B more frequently. 

  Interestingly, our model, with a reinforcement learn-
ing rule that changes only synapses onto the neurons 
selective for the chosen option, does not capture all the 
details of the monkey’s behavior. In particular, it shows 
a probability of WSLS, P(WSLS), below a limited value 
(about 0.65), whereas P(WLSL) can be nearly 1 in mon-
keys with algorithm 1. We found that P(WLSL)  ~ 1 can 
be realized in our model with a different learning rule, 
according to which synapses onto both neural popula-
tions (selective for the chosen and unchosen targets) 
are modified in each trial. This is akin to a  “ belief-
dependent learning rule ”  ( Camerer, 2003 ;  Lee  et al ., 
2005 ). It is also in line with the conclusion that both 
past reinforcers and past choices influence future deci-
sion behavior ( Lau and Glimcher, 2005 ).

  Although our model can reproduce monkey’s 
behavior obtained with different algorithms, different 
model parameters are required for each algorithm. 
How can these model parameters be tuned adaptively, 
as the opponent’s algorithm is changed? To address 
this question, we incorporated a meta-learning rule 
proposed by  Schweighofer and Doya (2003)  that maxi-
mizes long-term rewards. We found that the enhanced 
model captures the very slow changes of the mon-
key’s behavior, as the opponent’s algorithm changes 
from session to session ( Soltani  et al ., 2006 ).

  A general insight of this work is that a decision cir-
cuit produces random choice behavior, not necessarily 
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because the system has a prescribed  “ random number 
generator, ”  but because the trial-to-trial choice dynam-
ics force the decision agent to play randomly. This is 
well demonstrated in our model, because the same 
model produces either stereotypical responses or 
random responses, depending on the behavior of its 
opponent. The model decision maker does not have 
the goal to play randomly, but simply tries to play its 
best, given the environment and other decision agents 
involved in the game. This conclusion is consistent 
with previous behavioral studies and models, empha-
sizing the critical importance of feedbacks in the pro-
duction of quasi-random behavior ( Rapoport and 
Budescu, 1992 ;  Camerer, 2003 ). Moreover, our model 
suggests that irregular neural firing that gives rise to 
sigmoid decision criterion, and the stochastic nature 
of synaptic learning, contribute to the generation of 
random choice behavior, which can be desirable and 
even optimal in interactive decision tasks. Thus, this 
model sheds insights into neural processes in the 
brain underlying the randomness observed at the 
psychological level ( Glimcher, 2005 ). Therefore, neuro-
biologically based neural modeling helps to bridge 
the gap between cognitive behavior and its underly-
ing neural network mechanisms. 

    CONCLUSION 

   Much of the research in behavioral economics 
focuses on how decision makers choose among vari-
ous options when the information about the uncertain 
future prospects are provided explicitly. For example, 
in studies on decision making under risk, the decision
makers are given specific information about the mag-
nitudes and probabilities of possible payoffs from 
each choice. In real life, however, information about 
the magnitude, likelihood, and temporal delay of 
reward and punishment resulting from a particular 
choice often has to be estimated through experience. 
Furthermore, such reward contingencies often change 
over time, and this happens frequently when multiple 
agents interact. Especially valuable insight into the 
cognitive processes underlying such adaptive choice 
behaviors comes from studies on choice behaviors 
in games. Simple competitive zero-sum games, such 
as matching pennies and Rock–Paper–Scissors, also 
provide opportunities to study the underlying neural 
mechanisms for dynamic decision making, because 
non-human primates can be easily trained to play 
such games against a computer-simulated opponent. 

   Recently, neurophysiological studies have identi-
fied different types of signals encoded by individual 

neurons in the frontal cortex and the posterior 
parietal cortex during such computer-simulated 
competitive games that might be used to determine 
the choice of the animal and update its strategy 
based on the previous choice outcomes. These stud-
ies have largely focused on the neural correlates of 
value functions and the signals necessary to update 
the value functions according to simple reinforce-
ment learning algorithms. In contrast, the behav-
ioral strategies of humans and animals might be 
also influenced by high-level cognitive factors, such 
as abstract rules and behavioral contexts, and the 
knowledge of the dynamic properties of the environ-
ment ( Hampton et al ., 2006 ). The neural mechanisms 
responsible for updating the animal’s decision-
making strategies based on such multiple sources of 
information are not well understood, and should be 
pursued in future research. Future studies also need to 
elucidate the neural processes involved in integrating 
different types of costs and benefits during decision 
making ( Roesch et al ., 2006 ;  Lee  et al ., 2007 ;  Rushworth 
et al ., 2007 ). It might be also possible to investigate 
the neural processes specialized for social interac-
tions, since non-human primates can be also trained to 
play relatively simple experimental games in labo-
ratory settings ( Chen and Hauser, 2005 ;  Jensen  et al ., 
2007 ). 

   The results from neurophysiological record-
ing experiments need to be linked to mechanistic 
models about how information regarding the out-
comes of previous choices is incorporated into a net-
work of spiking neurons, allowing the animal to 
adjust its decision-making strategies adaptively. We 
have developed such a model of spiking neurons 
that is characterized by strongly recurrent or attractor 
dynamics and endowed with reward-depend-
ent Hebbian synaptic plasticity. These studies have 
begun to provide important clues as to how adaptive 
stochastic decision making, such as matching behavior 
in a foraging task or approximate Nash Equilibrium 
in a competitive game, result from a dynamic inter-
play between a decision-making network and its 
environment. This model will need to be extended 
to investigate how a neural network or system of 
networks can optimally combine the information 
about various aspects of reward and punishment, 
such as their magnitude, probability, and immedi-
acy. Also, the biophysical basis of reward-dependent 
plasticity in the brain remains to be elucidated. 
We expect that progress in this direction will ulti-
mately account for the discrepancy between the choice 
behaviors of humans and animals, and the rational 
choice behaviors prescribed by normative economic 
theories.

CONCLUSION
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