
The DrScheme Project: An Overview

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi

Department of Computer Science

Rice University

Houston, Texas

URL: http://www.cs.rice.edu/CS/PLT/

Abstract

DrScheme provides a graphical user interface for edit-

ing and interactively evaluating Scheme programs on

all major graphical platforms (Windows 95/nt, MacOs,

Unix/X). The environment is especially well-suited to

beginning programmers because it supports a tower of

Scheme subsets. Each level corresponds to a particular

stage in a typical introductory Scheme course and im-

plements a stringent set of syntactic checks. The envi-

ronment also pinpoints run-time exceptions in a graph-

ical manner and implements a mostly functional read-

eval-print loop.

DrScheme's most advanced component is a power-

ful static debugger. It permits programmers to inspect

programs for potential safety violations before running

them. If the debugger discovers a potential problem, it

explains the problem by drawing a value-
ow graph over

the program text. The value-
ow graphs shows how an

inappropriate value may reach a program operation and

trigger a run-time check.

The development of DrScheme in Scheme validated

the strengths of Scheme, but also revealed several weak-

nesses. To overcome the latter, the underlying Scheme

implementation was extended with a class-based object

system, a language of program units, and a sophisti-

cated GUI engine. All of these extensions are available

to the programmer, who can thus interactively create

fully portable, graphical applications.

1 Origins and Goals

Over the past ten years, Scheme [1] has become the most

widely used functional programming language in intro-

ductory courses in the United States [11, 12]. When

Rice University implemented an introductory course us-

ing Scheme, the instructors noticed three signi�cant

problems with its popular implementations. First, al-

though Scheme's parenthesized pre�x notation is ex-

tremely simple, beginning students often encounter sur-

prising syntactic and run-time errors due to the transi-

tion from in�x algebraic syntax to pre�x Scheme syntax.

Second, Scheme implementations provide little or no

source information about run-time errors, even though

such information is far more useful for Scheme than for

C++ because the former is safe and the latter isn't.

Finally, the traditional Scheme read-eval-print loop ob-

scures the algebraic nature of values and introduces sub-

tle bugs due to its hidden state.

In response to these observations, Rice's program-

ming languages team (PLT) decided to launch the

DrScheme project. From the beginning, the project had

two goals:

� The �rst goal is to develop a modern program-

ming environment for Scheme. The environment

must support the teaching of programming princi-

ples in a pedagogically meaningful way. As part of

this goal, we have always aimed for a completely

portable graphical environment.

� The second goal is to equip the environment with

\smart" (i.e., semantics-based) programming tools

that assist advanced programmers with the devel-

opment of robust software. The �rst innovation

in this direction is MrSpidey , a static debugger.

This new kind of software tool statically analyzes

programs, reports potential facult sites to the pro-

grammer, and constructs graphical explanations of

its reasoning on demand.

At the same time, the project team realized that

the implementation of a large system would be a good

chance to evaluate the use of Scheme for non-trivial

software projects. In the past, Scheme has been used

successfully for the implementation of tools that pro-

cess languages, e.g., abstract machines, compilers, in-

terpreters, and type checkers. Since these applications

are heavily tree-oriented, Scheme is a natural choice.

For other contexts, however, especially that of graphi-

cal programming environments, Scheme does not seem

to o�er any particular advantages. Still, Scheme's ex-

pressiveness makes it a strong candidate for a thorough

evaluation.

1



Finally, the project naturally yields a signi�cant body

of Scheme code that is used on a daily basis. The exam-

ples and impetus provided by working with large pro-

grams are invaluable in improving the environment and

its smart tools. The eventual goal is to produce a self-

applicable programming environment and to prove the

usefulness of the smart tools in this context.

This column primarily addresses the �rst set of goals.

It presents DrScheme and MrSpidey and explains how

these tools support teaching and programming. qTwo

short sections brie
y discuss the remaining two goals.

The reference section provides some pointers for com-

plementary reports on the project and its contributions.

2 DrScheme: The Environment

DrScheme integrates program editing and program eval-

uation in a seamless manner (see �gure 1). To over-

come the problems of traditional Scheme implemen-

tations, its editor and evaluator support: a hierarchy

of four Scheme subsets whose choice is pedagogically

motivated, source correlation at all execution steps,

and a new kind of read-eval-print loop. In addition,

DrScheme also o�ers two pedagogic tools: a symbolic

evaluator and a context-sensitive syntax checker. Fi-

nally, DrScheme includes a static debugger, which an-

alyzes programs and exposes potential safety violations

prior to execution. The following three subsections pro-

vide an overview of DrScheme; for more detailed infor-

mation, we refer the reader to an extended report [5].

2.1 Pedagogic Enhancements

Language Levels: University courses typically intro-

duce students to Scheme in discrete segments. The �rst

segment covers �rst-order functional programming, the

second one higher-order functions and data structur-

ing, and the third one imperative facilities like set!,

operations that mutate data, and call/cc. Given this

widespread practice, DrScheme permits users to choose

one of these levels and then strictly enforces correspond-

ingly restrictive syntactic rules.

The strict enforcement of syntactic rules solves nu-

merous notational problems for beginners who, through

school mathematics and high school programming

courses, have become used to in�x operators and opera-

tor precedence. For example, the author of the program

(de�ne (length l)

(cond

[(null? l) 0]

[else 1 + (length (rest l))]))

has lapsed into algebraic syntax in the second clause

of the cond-expression. Since in standard Scheme the

value of a cond-clause is the value of its last expres-

sion, this version of length always returns 0, regardless

of its input. Other lapses into algebraic syntax may

yield similarly inexplicable results or, even worse, error

messages from the run-time system that make no sense

for a beginning student.

In DrScheme, beginners are protected from such

mishaps. By choosing the language level \Beginner", a

programmer installs a stringent set of syntactic checks,

which recognizes lapses into algebraic notation as easily

explicable syntax mistakes. A beginner can then �x

these mistakes before they cause additional run-time

problems. The other language levels (\Intermediate",

\Advanced", and \QuasiR4RS") address similar, but

less severe problems with Scheme's syntax.

Run-Time Errors: Many modern Pascal and C++

environments highlight a source location when a pro-

gram causes a core dump. Unfortunately, this source

correlation is in general completely useless because the

corresponding segmentation fault or bus error is not

a direct consequence of the abuse of a computational

primitive. The primitive has been misapplied much ear-

lier, but since low-level languages do not enforce ab-

straction invariants between the computer architecture

and the programming language, nonsensical bit patterns

may 
ow through the program arbitrarily long before an

error is signaled, if at all.

Scheme and other functional languages are safe and

through a mixture of syntatic and run-time checks en-

force invariants and, in turn, the intended level of data

abstraction. More technically, each primitive operation

(for which it is not possible to enforce its invariants stat-

ically) checks at run-time whether or not its arguments

and results are in the proper range. Examples of opera-

tions that check their arguments at run-time are arith-

metic operations, array indexing, and \pointer" deref-

erencing. When an operation detects a problem with its

arguments or results, it aborts the program execution.

Unfortunately, conventional Scheme environments do

not connect such run-time errors with the correspond-

ing source location and thus force the programmer to

search through the program for the error.

In contrast, in DrScheme a failed safety check does

not only signal the nature of an error but also high-

lights its location in the program. To implement the

second part, the underlying Scheme parser keeps track

of source locations even across general macro expan-

sions [3, 10]. The evaluator uses this source information,

if desired, by setting a special \source register" ahead

of primitive computational steps. This source register

contains enough information to highlight the primitive

application if it fails. The strategy ensures source cor-

2



Figure 1: The DrScheme Window (Windows 95/NT version)

relation and preserves the desired tail-call optimization

of Scheme [1].

A Transparent Repl: One distinct advantage of

Scheme over conventional languages is its read-eval-

print loop (Repl). Using the Repl, students can easily

experiment with individual expressions, procedures, or

compilation units. They can also change a program dur-

ing execution to �x a bug on the 
y or to observe and

measure certain quantities. While the Repl is an excel-

lent tool for gentle introductions to computing, it often

causes subtle bugs in the various stages of an introduc-

tory course.

The traditional Repl interferes with teaching in two

ways. First, Scheme's Repl inherited the LISP printer,

which displays results in a list-oriented notation that

ressembles but is not identical to the input notation.

Although this form of printing is useful for experienced

programmers, especially in the context of program-

writing programs, it is unintuitive for beginners who

learn to compute the value of a Scheme program us-

ing ordinary algebra. Second, a Repl uses a modi�-

able table, the namespace, to keep track of de�nitions.

Consequently, the Repl is a state-oriented element in a

world that otherwise has the appearances of an imple-

mentation of algebra. If the Repl is used in a careless

manner, it can introduce or shadow program bugs in a

way that is utterly confusing to beginning students.

DrScheme overcomes both problems with a new

Repl, which di�ers from Scheme's traditional read-eval-

print loop in that it is parameterized over the printer

and the namespace of the evaluator. The printer pa-

rameterization permits matching the language level and

the printer. Thus, for a beginner, DrScheme prints the

algebraic form of a value. After the introduction of

data mutation, it exposes the sharing among nodes in

a value. For 
exibility, the user can change the printer

that is provided by default. The choices also include

the traditional Scheme printer, and a printer that sup-

ports both program-writing programs and an algebraic

understanding of program execution (via quasiquote).

The namespace parameterization enables the environ-

ment to start each program execution with a clean slate.

That is, every time the programmer clicks on the \Exe-

cute" button (see �gure 1), the Repl loads the current

set of de�nitions into a new namespace, which elimi-

nates all legacy de�nitions from the preceding series of

interactions. The environment thus e�ciently mimics

an ine�cient and error-prone technique that is used by

experienced Scheme programmers to avoid legacy prob-

lems.

2.2 Pedagogic Tools

The Symbolic Stepper: Scheme courses invariably

introduce Scheme's basic functional core via a reduction

semantics. The semantics extends three groups of alge-

braic laws that students are (or should be) intimately

familiar with: the laws of primitive operations (like ad-

dition); the law of function application (�v-reduction);

and the law of replacement of equals by equals. This

reduction semantics scales up to full Scheme [4]

DrScheme includes a tool that enables students to re-

duce a program to a value, step by step. It can deal with

all the features used in Rice University's course, includ-

ing the entire functional sub-language, structure de�-

nitions, variable assignment, data structure mutation,

exceptions, and other control mechanisms. A student

invokes the stepper on the current program by choos-

3



Figure 2: MrSpidey: The static debugger (X version)

ing ToolsjStepper.1 By default, the stepper shows every

reduction step of a program evaluation. While this de-

fault is useful for a complete novice, a full reduction se-

quence contains too much information for programmers

with some experience. Hence the stepper permits the

student to choose which reduction steps are shown or

which sub-expressions the stepper is to focus on. The

student can change these controls to view a more de-

tailed reduction sequence at each stop.

Students use the stepper for two purposes. First, they

use it to understand the meaning of new language fea-

tures as they are introduced in the course. A few ses-

sions with the stepper illustrates the behavior of new

language constructs better than any blackboard expla-

nation. Second, students use the stepper to �nd bugs in

small programs. The stepper stops when it encounters a

run-time error and permits students to move backwards

through the reduction sequence. This usage quickly ex-

plains the reasons for bugs and even suggests �xes.

Syntactic-Lexical Anotations: Beginning pro-

grammers need help understanding the syntactic and

lexical structure of their programs. DrScheme provides

a syntax checker that annotates the source text of syn-

tactically correct programs based on the syntactic and

lexical structure of the program. The syntax checker

marks up the source text based on �ve syntactic cate-

gories: primitives, keywords, bound variables, free vari-

1The stepper is not available in DrScheme Version 50.

ables, and constants. On demand, the syntax checker

also displays arrows that point from bound identi�ers

to their binding occurrence, and from binding identi-

�ers to all of the their bound occurrences. Since the

checker processes the lexical structure of the program,

a program can use it to �-rename bound and de�ned

identi�ers.

2.3 Towards DrScheme II

For the second generation of DrScheme, we intend to

develop \smart tools" whose purpose it is to help the

programmer validate weak invariants of the program.

A �rst extension in this direction is MrSpidey, a static

debugger and soft typer[7]. It subsumes the syntax

checker, but is computationally far more expensive.

MrSpidey analyzes the given program for potential

safety violations. That is, the tool attempts to prove

the legality of the arguments of primitive operations.

If it cannot establish that all possible arguments to a

primitive are in an appropriate range, it annotates the

operation in red. The underlying proof system is nec-

essarily conservative. Hence, the static debugger has a

mode that explains annotations by drawing, on demand,

the inferred value set for any expressions and arrows

describing the inferred 
ow of values that produced the

value set. Using these explanations, a programmer can

then decide whether the annotated operation may in-

deed fail or whether the underlying proof system is too

weak to prove the correctness of the invariant.

4



For an illustration of the tool, consider the buggy

program in the top part of �gure 2. The program is

simplistic and extremely small but su�ces to demon-

strate the capabilities of MrSpidey. After the static de-

bugger completes its analysis, it opens a window con-

taining the analyzed program. In this example add1 is

colored red (underlined in the �gure), which indicates

that the static debugger cannot prove that the argu-

ment will always be a number. The programmer can

then ask for the value set of add1's argument, to which

the static debugger responds by inserting the box to the

right of add1's argument. The box contains a descrip-

tion of the value set for the argument, which contains

null and which is why the static debugger concluded

that add1 may be misapplied. To see how null can 
ow

into the argument of add1, the static debugger can also

overlay the program with a slice of the value 
ow graph

from the o�ending argument of add1 to the source of

null. In this example, the graph is a single arrow from

null to length, since a recursive call may return this value

(see the bottom of �gure 2).

WhenMrSpidey is used on realistic multi-module pro-

grams, it analyzes the entire program at a coarse level.

For the modules that the programmer wishes to inspect,

MrSpidey displays the required information. A 
ow of

values that crosses module boundaries is indicated with

arrows that leave or enter the displayed module window:

see �gure 3. If a programmer demands to follow such

a cross-module graph, MrSpidey computes the neces-

sary information, opens a window, and displays the new

module.

3 A Scheme for Large Systems

The development of DrScheme in Scheme has produced

valuable insight into Scheme's capabilities for building

large systems. Not surprisingly, Scheme's core language

has served its role well as a tool in which programmers

can quickly explore ideas and create prototypes. The

most important features proved to be the dynamic type

(unitype) system, higher-order procedures, and threads

(continuations). Nevertheless, the project also demon-

strated that for the purpose of GUI-oriented projects,

Scheme should be extended with a number of features,

in particular an exception system, an object system for

interfacing with GUI libraries, facilities for encapsulat-

ing and linking program units, and a foreign function

interface.

We have overcome these de�ciencies with a new

Scheme implementation, MzScheme, and an accompa-

nying GUI engine, MrEd. As we gathered experience

developing DrScheme, we re�ned MzScheme and MrEd.

MzScheme's object system now supports composable

classes, which greatly simplify the implementation of

DrScheme's complex graphical interface. Its program

unit system permits the treatment of program units as

�rst-class values, mutually recursive references among

procedures across unit boundaries, and the dynamic

loading/linking of units. Finally, MrEd integrates GUI

classes with MzScheme's object and thread systems,

providing multiple event spaces so that DrScheme's GUI

can securely co-exist with a GUI program created by the

user. We report on our extensions to Scheme in more

detail elsewhere [8, 9].

4 DrScheme on DrScheme

A signi�cant milestone towards our primary goal is to

develop a programming environment that we can use to

produce DrScheme itself. To prove the feasibility, we

have developed MrSpidey to the point where it can be

applied to large portions of DrScheme's Scheme code

(around 70Kloc). The experiment indicates the poten-

tial bene�ts and the problems we are facing. While a

smart tool like MrSpidey can reveal bugs that hundreds

of users have not been able to �nd, an appropriate pro-

gramming environment requires much more computa-

tional resources than typical workstations provide. For

more information on this experiment (and others), we

refer the reader to Flanagan's thesis [7]. We expect

that further experiments of this kind will yield addi-

tional insight into the requirements for smart tools and

the software engineering process.

5 Conclusion

The construction of DrScheme overcomes the pedagogic

problems of Scheme with a strong integration of the

editing and evaluation process. Our experience with

DrScheme at Rice is positive. DrScheme has been used

in our introductory course on a large range of platforms.

It has signi�cantly strengthened our course. Starting

this fall DrScheme is also used in local secondary schools

for introductory programming at the ninth and tenth

grade level. The students are excited about the graphi-

cal, interactive mode of experimentation. Since we have

made DrScheme publicly available, over 100 non-Rice

users/sites have signed up for the DrScheme announce-

ment list. One (French) book on Scheme distributes

DrScheme on an enclosed CD-ROM.

Many aspects of DrScheme apply to languages other

than Scheme. Any language becomes more accessi-

ble to the beginner in an environment that provides a

tower of well-chosen language levels, a mostly functional

read-eval-print loop (outside of the debugger), accurate

source highlighting for safety violations, and a stepping

tool that reinforces the algebraic view of computation.

In addition, typed languages can bene�t from graphi-

cal explanations of type errors like those of the static

5



Figure 3: Analyzing Multiple Modules

debugger.

In conclusion, we believe that the continued develop-

ment of DrScheme will provide new inspiration into the

development of Scheme, related functional and object-

oriented languages, and programming environments.

Acknowledgements: The development of DrScheme

bene�ted from many contributions. Cormac Flanagan

(now at DEC SRC) created MrSpidey, the static de-

bugger; Stephanie Weirich (Cornell) produced a �rst

prototype. Gann Bierner (University of Pennsylvania)

implemented the �rst version of the symbolic stepper.

Richard Cobbe, Daniel Grossman (Cornell), and Mark

Krentel contributed various pieces to the Scheme imple-

mentation and the environment. Corky Cartwright and

Bruce Duba made important suggestions in numerous

discussions. The authors also gratefully acknowledge

the patience of those people who used early versions

of DrScheme in various courses at Rice: Ian Barland,

Corky Cartwright, Mike Ernst, and Joe Warren. The

project is partially supported by several grants from

the National Science Foundation and the Department

of Education.

References

[1] Clinger, W. and J. Rees. The revised4 report on

the algorithmic language Scheme. Lisp Pointers,

4(3), 1991.

[2] Dybvig, R. K. The Scheme Programming Lan-

guage. Prentice-Hall, 1987.

[3] Dybvig, R. K., R. Hieb and C. Bruggeman. Syn-

tactic abstraction in Scheme. Lisp and Symbolic

Computation, 5(4):295{326, 1993.

[4] Felleisen, M. and R. Hieb. The revised report

on the syntactic theories of sequential control and

state. Theoretical Computer Science, 235{271,

1992.

[5] Findler, R. B., C. Flanagan, M. Flatt, S. Krishna-

murthi and M. Felleisen. DrScheme: A pedagogic

programming environment for scheme. In Pro-

gramming Languages: Implementations, Logics,

and Programs, LNCS 1292, 369{388, Southamp-

ton, UK, 1997.

[6] Flanagan, C., M. Flatt, S. Krishnamurthi,

S. Weirich, and M. Felleisen. Catching Bugs in

the Web of Program Invariants. In Programming

Language Design and Implementation, 23{32, May

1996.

[7] Flanagan, C. E�ective Static Debugging via Com-

ponential Set-Based Analysis. PhD thesis, Rice

University, 1997.

[8] Flatt, M. and M. Felleisen. Units: Cool modules

for HOT languages. In Programming Languages:

Design & Implementation, 1998.

[9] Flatt, M., S. Krishnamurthi and M. Felleisen.

Classes and mixins. In Principles of Programming

Languages, Janurary 1998.

[10] Krishnamurthi, S. Zodiac: A framework for build-

ing interactive programming tools. Technical Re-

port TR96-262, Rice University, 1996.

[11] Reid, R. J. First-course language for computer sci-

ence majors. Posting to comp.edu, October 1995.

[12] Schemer's Inc. and Terry Kaufman. Scheme in col-

leges and high schools. Available on the web.

URL: http://www.schemers.com/schools.html.

6


