
Achieving Robust, Scalable Cluster I/O in Java

Matt Welsh and David Culler

University of California at Berkeley, Berkeley CA 94618, USA
{mdw,culler}@cs.berkeley.edu,

http://www.cs.berkeley.edu/~mdw

Abstract We present Tigris, a high-performance computation and I/O
substrate for clusters of workstations that is implemented entirely in
Java. Tigris automatically balances resource load across the cluster as a
whole, shielding applications from asymmetries in CPU, I/O, and net-
work performance. This is accomplished through the use of a dataflow
programming model coupled with a work-balancing distributed queue. To
meet the performance challenges of implementing such a system in Java,
Tigris relies on Jaguar, a system that enables direct, protected access
to hardware resources, including fast network interfaces and disk I/O.
Jaguar yields an order-of-magnitude performance boost over the Java
Native Interface for Java bindings to system resources. We demonstrate
the applicability of Tigris through a one-pass, parallel, disk-to-disk sort
exhibiting high performance.

1 Introduction

Realizing the performance potential of workstation clusters as a platform for
incrementally scalable computing presents many challenges. While the perfor-
mance aspects of communication [9,27], I/O [16], and process scheduling [4] have
been addressed in specific settings, maintaining good performance across a range
of different applications has proven difficult [3]. Applications tend to be fragile
with respect to performance imbalance across the cluster; a single overloaded
node can easily become a bottleneck for the entire application [2].

At the same time, Java has emerged as attractive platform allowing heteroge-
neous resources to be harnessed for large-scale computation. Java’s object orien-
tation, type and reference safety, exception handling model, code mobility, and
distributed computing primitives all contribute to its popularity as a base upon
which novel, component-based applications can be readily deployed. Increasingly,
Java is becoming pervasive as a core technology supporting applications such as
high-performance numerical computing [17], database connectivity [6], and scal-
able Internet services [14,19]. Unfortunately, most efforts in this direction focus
on interfaces to legacy servers by encapsulating them in Java contexts, rather
than the ability to construct large, I/O-intensive services directly in Java.

We present Tigris, a high-performance computation and I/O substrate for
clusters of workstations, implemented entirely in Java. Tigris automatically bal-
ances resource load across the cluster as a whole, shielding applications from

Modules Disks

R
es

er
vo

ir

R
es

er
vo

ir

ModulesDisks

Modules

Read Data Write Data
Sort, etc.

Hash-Join,

Figure 1. A sample Tigris application. Tigris applications consist of a series of
module stages connected by reservoirs. Reservoirs are realized as a distributed queue
which allows data to flow from producers to consumers at autonomously adaptive rates.

asymmetries in CPU, I/O, and network performance. This is accomplished through
the use of a dataflow programming model coupled with a work-balancing dis-
tributed queue. By exploiting the use of Java as the native execution and control
environment in Tigris, we believe that cluster application development is greatly
simplified and that applications can take advantage of code mobility, strong typ-
ing, and other features provided by Java. The key ideas in Tigris build upon
those River [5], a system which was implemented in C++ on the Berkeley Net-
work of Workstations [25]. We describe the major differences between Tigris and
River in Section 6.

Tigris achieves high-performance communication and disk I/O through the
use of Jaguar [28], an extension of the Java programming environment which
enables direct, protected access to hardware resources, such as fast network
interfaces. Jaguar yields an order-of-magnitude performance boost over the Java
Native Interface and eliminates the use of native methods, which raise protection
concerns.

We evaluate the communication and load-balancing performance of Tigris on
an 8-node workstation cluster and demonstrate its applicability through Tigris-
Sort, a one-pass, parallel, disk-to-disk sort.

2 The Tigris System

The goal of Tigris is to automatically overcome cluster resource imbalance and
mask this behavior from the application. This is motivated by the observation
that cluster applications tend to be highly sensitive to performance heterogene-
ity; for example, if one node in the cluster is more heavily loaded than others,
without some form of work redistribution the application may run at the rate

of the slowest node. The larger and more heterogeneous a cluster is, the more
evident this problem will be. Often, performance imbalance is difficult to pre-
vent; for example, the location of bad blocks on a disk can seriously affect its
bandwidth. This imbalance is especially serious for clusters which utilize nodes
of varying CPU, network, and disk capabilities. Apart from hardware issues,
software can cause performance asymmetry within a cluster as well; for exam-
ple, “hot spots” may arise due to the distribution of data and computation in
the application.

Tigris employs a dataflow programming model wherein applications are ex-
pressed as a series of modules each supporting a very simple input/output in-
terface. Modules are organized into stages, each of which is a set of identical
modules replicated across the nodes of a cluster. Increasing the number of mod-
ules in a stage can increase the effective bandwidth of that stage. Module stages
communicate through the use of reservoirs, which are virtual communication
channels through which data packets can be pushed or or pulled. A simple data-
transformation application might consist of three distinct stages: one which reads
data from disk and streams it out to a reservoir; one which reads packets from a
reservoir and performs some transformation on that data; and one which writes
data from a reservoir back onto disk. Figure 1 depicts this scenario.

Tigris addresses resource imbalance in a cluster by implementing reservoirs
as a distributed queue (DQ), which balances work across the modules of a stage.
The DQ allows data to flow at autonomously adaptive rates from producers
to consumers, thereby causing data to “flow to where the resources are.” In
Tigris, the DQ is implemented by balancing outgoing data from a module across
multiple communication channels.

2.1 Using Type-Safe Languages for Scalable Applications

Designers of robust, scalable systems can take advantage of the features pro-
vided by a type-safe language such as Java. Language protection and automatic
memory management eliminate many common sources of bugs, and object ori-
entation allows code to be built in a modular, reusable form. Within a clus-
ter, Java’s Remote Method Invocation (RMI) provides an elegant programming
model for harnessing distributed resources. A JVM can export remote interfaces
to local objects which are accessed through method invocation on a client-side
stub. Java’s portability simplifies the process of tying multiple heterogeneous
architectures into a single application. The use of bytecode mobility allows an
application to push new code modules into a JVM on demand. This is particu-
larly valuable for building flexible cluster applications, as the binding between
application modules and cluster nodes can be highly dynamic. For example, the
number of nodes devoted to running a particular task can be resized based on
application demand.

There are a number of challenges inherent in the use of Java for scalable
server applications. A great deal of previous work has addressed problems with
Java processor performance, including the efficiency of compiled code, thread

public class PrintModule implements ModuleIF {

public void init(ModuleConfig cfg) { /* Empty */ }

public void destroy() { /* Empty */ }

public String getName() { return "PrintModule"; }

public void doOperation(Water inWater, Stream outStream)

throws ModuleException {

for (int i = 0; i < inWater.getSize(); i++) {

System.out.println("Read: " + inWater.readByte(i));

}

outStream.Put(inWater);

}

}

Figure 2. An example of a Tigris module. This module displays the contents of
each packet it receives, and passes the packet along to the outgoing stream.

synchronization, and garbage collection algorithms [20,22]. Java compilers, in-
cluding both static and “just-in-time” (JIT) compilers, are now capable of gener-
ating code which rivals lower-level languages, such as C++, in performance [17].
However, obtaining high-performance I/O and efficient exploitation of low-level
system resources remain as important performance problems. In this paper we
describe Jaguar, our approach to obtaining high I/O performance in Java. Other
issues include memory footprint, the binding between Java and operating sys-
tem threads, and resource accounting. We believe that despite these issues, Java
provides a compelling environment for the construction of cluster-based appli-
cations.

In Tigris, each cluster node runs a Java Virtual Machine which is boot-
strapped with a receptive execution environment called the MultiSpace [14]. Mul-
tiSpace allows new Java classes to be “pushed into” the JVM remotely through
Java Remote Method Invocation. A Security Manager is loaded into the Multi-
Space to limit the behavior of untrusted Java classes uploaded into the JVM; for
example, an untrusted component should not be allowed to access the filesystem
directly. This allows a flexible security infrastructure to be constructed wherein
Java classes running on cluster nodes can be given more or fewer capabilities to
access system resources.

2.2 Design Overview

Tigris is implemented entirely in Java. Tigris modules are Java classes that
implement the ModuleIF interface, which provides a small set of methods that
each module must implement. The code for an example module is shown in
Figure 2. init and destroy are used for module initialization and cleanup, and
getName allows a module to provide a unique name for itself. The doOperation
method is the core of the module’s functionality: it is called whenever there is

incoming data for the module to process, and is responsible for generating any
outgoing data and pushing it down the dataflow path that the module is on.

Communication is managed by the Stream class, which provides two meth-
ods, Get and Put, allowing data items to be read from and written to a single,
point-to-point communications channel. The Water class represents the unit of
data which can be read from or written to a Stream; this is also the unit of
work that is processed by the module doOperation method. A Water can be
thought of as containing one or more data buffers that can be accessed directly
(similarly to a Java array) or from which other Java objects can be allocated.
This allows the contents of a Water to represent a structure with typed fields
that have meaning to the Java application, rather than as an untyped collection
of bytes or integers.

By subclassing Stream and Water, different communication mechanisms can
be implemented in Tigris. Our prototype implementation includes three stream
implementations:

– ViaStream provides reliable communications over Berkeley VIA [8], a fast
communications layer implemented on the Myrinet system area network.
This is accomplished through Jaguar (see below).

– MemoryStream implements communications between modules on the same
JVM, passing the data through a FIFO queue in memory.

– FileStream associates the Get and Put stream operations with data read
from and written to a file, respectively. This is a convenient way to abstract
disk I/O. Each Get or Put operation accesses file data in FIFO order; random
access is provided by a separate seek method.

Waters are initially created by a Spring, an interface which contains a sin-
gle method: createWater(int size). Every Stream has associated with it a
Spring implementation that is capable of creating Waters which can be sent
over that Stream. This allows a stream to manage allocation of Waters which
will be eventually transmitted over it; for example, a stream may wish to initial-
ize data fields in the Water to implement a particular communications protocol
(e.g., sequence numbers). The implementation of Water can ensure that a module
is unable to modify these “hidden” fields once the Water is created, by limiting
the range of data items that can be accessed by the application.

2.3 Reservoir Implementation

Reservoirs are used as a virtual communication channel between stages of a Tigris
application. Logically, modules pull data from their upstream reservoir, process
it, and push data to their downstream reservoir. Reservoirs are implemented as
a Distributed Queue (DQ), which dynamically balances communication between
individual modules in a stage. Each Tigris module has multiple incoming and
outgoing streams; the DQ is realized through the stream selection policy used
by each module. Each module has an associated thread that is responsible for
repeatedly issuing Get on one of the module’s incoming streams, and invoking

Module
Thread

Module
doOperation()

Module

Incoming data

Outgoing data

Incoming
Streams

Outgoing
Streams

Select downstream

Select upstream

Figure 3. Tigris Reservoir implementation. Tigris modules have an associated
thread which repeatedly selects an incoming stream, reads data from it, invokes the
module’s doOperation method, and sends outgoing data to one of the outgoing streams.
The reservoir is implemented through the stream selection policy used by this thread.
Module authors are required only to implement the doOperation method.

doOperation with two arguments: the input Water, and a handle to the outgoing
stream to which any new data should be sent. This logic is invisible to the
application, which is only responsible for implementing the doOperation method
for each module.

By passing a handle to the current outgoing stream to doOperation, the
module is capable of emitting zero or more Waters on each iteration. Also,
this permits the module to obtain a handle to the stream’s Spring to create
new Waters to be transmitted. Note that the module may decide to re-transmit
the same Water which it took as input; because a stream may not be capable
of directly transmitting an arbitrary Water (for example, a ViaStream cannot
transmit a FileWater), the stream is responsible for transforming the Water if
necessary, e.g., by making a copy.

There are three implementations of the DQ scheduler in our prototype:

– Round-Robin: Selects the incoming and outgoing stream for each iteration
in a round-robin fashion.

– Random: Selects the incoming stream for each iteration using round-robin,
and the outgoing stream at random. The algorithm maintains a credit count
for each outgoing stream. The credit count is decremented for each Water
sent on a stream, and is incremented when the Water has been processed
by the destination (e.g., through an acknowledgement). On each iteration,

a random stream S with a nonzero credit count is chosen from the set of
downstream reservoirs.

– Lottery: Selects the incoming stream for each iteration using round-robin,
and the outgoing stream using a lottery-based scheme. The algorithm main-
tains a credit count for each outgoing stream. On each iteration, a random
stream S is chosen where the choice of S is weighted by the value w = (cS/C)
where cS is the number of credits belonging to stream S and C =

∑
cS . The

intuition is that streams with more credits are more likely to be chosen,
allowing bandwidth to be naturally balanced across multiple streams.

A reservoir may also be Deterministic, in which packets are sent between
modules of a stage based on a deterministic routing. Deterministic reservoirs do
not perform load balancing, but are useful for applications which require data
to flow along a deterministic path between modules. The TigrisSort benchmark
described later makes use of a deterministic reservoir.

2.4 Initialization and Control

A Tigris application is controlled by an external client which contacts the Mul-
tiSpace control interface of each cluster node through Java RMI, and commu-
nicates with the TigrisMgr service running on that node. TigrisMgr provides
methods to create a module, to create a stream, to add a stream as an incoming
or outgoing stream of a given module, and to start and stop a given module.
In this way the Tigris application and module connectivity graph is “grown” at
runtime on top of the receptive MultiSpace environment rather than hardcoded.
Each cluster node need only be running the MultiSpace environment with the
TigrisMgr service preloaded.

Execution begins when the control client issues the moduleStart command
to each module, and ends when one of two conditions occur:

– The control client issues moduleStop to every module; or,
– Every module reaches the “End of Stream” condition.

“End of Stream” (EOS) is indicated by a module receiving a null Water as
input. This can be triggered by a producer pushing a null Water down a stream
towards a consumer, or by some other event (such as the DQ implementation
itself declaring an EOS condition). A module may indicate to its control thread
that EOS has been reached by throwing an EndOfStreamException from its
doOperation method; this obviates the need for an additional status value to
be passed between a module and its controlling thread.

3 Jaguar: High-Performance Communication and I/O in
Java

Efficient communication and I/O in Tigris is provided by Jaguar [28], an exten-
sion of the Java environment that enables direct access to system resources such

as fast network interfaces and disk I/O. Traditionally, Java applications make
use of low-level system functionality through the use of native methods, which
are written in a language such as C. To bind native method code to the Java ap-
plication, a native method interface is used, which has been standardized across
most JVMs as Sun Microsystems’ Java Native Interface [21]. However, the use
of native methods raises two important concerns. The first is performance: the
cost of traversing the native method interface can be quite high, especially when
a large amount of data must be copied across the Java-native code boundary.
The second is safety: invoking arbitrary native code from a Java application ef-
fectively negates the protection guarantees of the Java Virtual Machine. These
two problems conflate, as programmers tend to write more application code in
the native language to amortize the cost of crossing the native interface.

Jaguar overcomes these problems by providing applications with efficient
and safe access to low-level system resources. This is accomplished through a
bytecode specialization technique in which certain Java bytecode sequences are
translated to low-level code which is capable of performing functions not al-
lowed by the JVM, such as direct memory access. Because this low-level code
is inlined into the Java application at compile time, the overhead of the native
interface is avoided. Also, the compiler can perform aggressive optimizations on
the combined application and inlined Jaguar code. Low-level code is expressed
as a type-exact, portable superset of Java bytecode, Jaguar bytecode, which in-
cludes additional instructions required for direct memory access. Application
programmers are not permitted to make use of these instructions; they are only
used within Java-to-Jaguar bytecode translation rules.

Tigris makes use of Jaguar in two ways: to implement efficient network and
disk I/O, and to avoid Java object serialization. Network I/O is provided by the
ViaStream class, which is implemented using the Jaguar interface to the Berke-
ley VIA communications architecture. Jaguar’s VIA interface provides direct,
zero-copy access to the Myrinet system area network, and obtains a round-trip
time of 73 microseconds for small messages, and a peak bandwidth of over 488
mbits/second. This is identical to the performance of Berkeley VIA as accessed
from C code. Jaguar translates access to certain Java classes (representing VIA
registers, packet descriptors, and network buffers) into low-level code which di-
rectly manipulates these system resources.

Likewise, disk I/O in Tigris is provided by the FileStream class; this is
implemented by memory-mapping the contents of a disk file (using the mmap
system call) into the application address space. Jaguar specializes accesses to
the Water objects representing file data to direct access to this memory-mapped
region.

Jaguar is also used to map Java objects onto the raw byte streams transferred
over network and disk streams. Rather than employ Java object serialization,
which involves data copying and is very costly, Tigris uses Jaguar’s Pre-Serialized
Objects feature, which translates Java object field access into direct access to a
low-level network, disk, or memory buffer. No copies are required to map a Pre-

200

400

600

800

1000

1200

1400

1600

2 3 4 5 6 7 8

T
ot

al
 b

an
dw

id
th

, M
bp

s

Number of nodes

Random Selection
Round-Robin Selection

Lottery Selection

Ideal

Figure 4. Reservoir performance under scaling. This figure shows the aggregate
bandwidth through the reservoir as the number of nodes reading and writing data through
the reservoir is scaled. From 1 to 4 nodes write data into a reservoir implemented on top
of the VIA network interface, and 1 to 4 nodes read data from the reservoir. The three
DQ implementations (round-robin, randomized, and lottery) are shown, along with the
ideal bandwidth under perfect scaling.

Serialized Object onto an I/O buffer. In this way, Tigris streams are used to
efficiently transfer Java objects rather than raw bytes.

4 Reservoir Performance

Figure 4 shows the performance of the Tigris reservoir implementations (round-
robin, randomized, and lottery) as the number of nodes passing data through the
reservoir is scaled up. All experiments were performed on a cluster of 500 MHz
Pentium III systems with 512 MB of memory running Linux 2.2.13, connected
using Myrinet with the Berkeley VIA communications layer. The Blackdown
port of Sun JDK 1.1.7v3 is used along with a Jaguar-enabled JIT compiler. The
ViaStream stream type is used, which implements a simple credit-based flow-
control scheme over VIA. End-to-end peak bandwidth through a ViaStream is
368 Mbits/sec, or 75% of the peak bandwidth of raw VIA, which implements no
flow-control or reliability.

In each case an equal number of nodes are sending and receiving data through
the reservoir. The results show only a slight bandwidth loss (12% less than
ideal) in the 8-node case, demonstrating that the presence of a reservoir does
not seriously affect performance when the system is perfectly balanced. The
bandwidth loss is partially due to the DQ implementation itself; in each case,
the receiving node selects the incoming stream from which to receive data in
a round-robin manner. Although the receive operation is non-blocking it does
require the receiver to test for incoming data on each incoming stream until
a packet arrives. We also believe that a portion of this bandwidth loss is due

0

200

400

600

800

1000

1200

0 1 2 3 4
Number of nodes perturbed

T
ot

al
 b

an
dw

id
th

, M
bp

s

No perturbation

Deterministic Reservoir
Lottery Reservoir

Figure 5. Reservoir performance under perturbation. This figure shows the per-
formance of the lottery reservoir as consumer nodes are artificially perturbed. 4 nodes
are pushing data into a reservoir and 4 nodes are pulling data from the reservoir. When
3 out of 4 consumers are perturbed, 56% of the total bandwidth can be achieved. With
the deterministic reservoir, performance drops as soon as a single receiver is perturbed.

the VIA implementation being used; as the number of active communication
channels increases, the network interface must poll additional queues to test for
incoming or outgoing packets.

The second benchmark demonstrates the performance of the lottery reservoir
in a scenario that models a performance imbalance in the cluster. This is accom-
plished by artificially loading nodes by adding a fixed delay to each iteration
of the module’s doOperation method. In this benchmark, 4 nodes are pushing
data into the reservoir, and 4 nodes are pulling data from the reservoir; the re-
ceiving nodes are perturbed as described above. Figure 5 shows the aggregate
bandwidth through the reservoir as the number of perturbed nodes is increased.

The total bandwidth in the unperturbed case is 1181.58 Mbits/second (4
nodes sending 8Kb packets at the maximum rate to 4 receivers through the
reservoir), or 295.39 Mbits/sec per node. Perturbation of a node limits its re-
ceive bandwidth to 34.27 Mbits/sec. The lottery reservoir balances bandwidth
automatically to nodes which are receiving at a higher rate, so that when 3 out
of 4 nodes are perturbed, 56% of the total bandwidth can be achieved. Over
90% of the total bandwidth is obtained with half of the nodes perturbed. With
the use of a non-load-balancing deterministic reservoir, the total bandwidth is
limited by the slowest node, as shown in the figure.

5 TigrisSort: A Sample Application

In order to evaluate Tigris more generally, we have implemented TigrisSort, a
parallel, disk-to-disk sorting benchmark. As with Datamation [12] and NOW-
Sort [3], sorting is a good way to measure the memory, I/O, and communication

Data
WriteRead

Data

ModulesDisks Modules Disks

Partition Sort

Figure 6. TigrisSort structure. The application consists of two types of modules:
partitioners and sorters. Partitioning nodes read data from their local disk and partition
it into buckets based on the record key. Full buckets are transmitted to the appropriate
sorting node, which sort the local data set and write it to the local disk. Communication
is accomplished using a deterministic reservoir which routes packets to the appropriate
sorting node based on the bucket’s key value.

performance of the complete system. While the existence of previous sorting
results on other systems yields a yardstick by which the Tigris system can be
compared, we were also interested in understanding the functional properties of
the Tigris and Jaguar mechanisms in the context of a “real application.”

5.1 TigrisSort Structure

The structure of TigrisSort is shown in Figure 6. TigrisSort implements a one-
pass, disk-to-disk parallel sort of 100-byte records, each of which contains a
10-byte key. Data is initially striped across the input disks with 5 megabytes
of random data per node.1 The application consists of two sets of nodes: par-
titioners and sorters. Partitioning nodes are responsible for reading data from
their local disk and partitioning it based on the record key; the partition “buck-
ets” from each node are transmitted to the sorting nodes which sort the entire
data set and write it to the local disk. This results in the sorted dataset being
range-partitioned across the nodes, with each partition in sorted order. Commu-
nication is accomplished using a deterministic reservoir between the partitioning
1 This amount is arbitrary; the software has no limitation in the amount of data that

can be partitioned or sorted per node. 5 megabytes is a convenient value that limits
the amount of memory that must be devoted to pinned VIA network buffers, which
simplifies the benchmark structure somewhat.

nodes Amount Avg Total
sorted time/node sort bw

2 5 MBytes 762 msec 52.49 Mbps

4 10 MBytes 734.5 msec 108.91 Mbps

6 15 MBytes 733 msec 163.71 Mbps

8 20 MBytes 725 msec 220.68 Mbps

Figure 7. TigrisSort performance results.

and sorting stages; this reservoir routes Waters representing full buckets to the
appropriate sorting node based on the bucket’s key value. This application can-
not make use of a load-balancing reservoir, as data must be deterministically
partitioned across the sorting modules.

File I/O is implemented by a class which maps a file into the address space
of the JVM and exposes it directly to the Java application, through Jaguar,
using methods such as readByte and writeByte. Operations on this class cor-
respond to disk reads and writes through the memory-mapped file. This is the
same mechanism used by the FileStream class. A special method is provided,
flush(), which causes the contents of the memory-mapped file to be flushed to
disk.

This approach has several limitations. One is that the operating system being
used (Linux 2.2.13) does not allow the buffer cache to be circumvented using
memory-mapped files, meaning that file data may be double-buffered. Another
is that a particular write ordering cannot be enforced. Currently, Linux does
not provide a “raw disk” mechanism which provides these features. Rather than
concerning ourselves with these details, we assume that performance differences
arising because of them will be negligible. This seems to be reasonable: first, disk
I/O is just one component of the TigrisSort application, which does not appear
to be disk-bandwidth limited. Secondly, double-buffering of sort data in memory
is not problematic with the small (5 megabyte) per-node data partitions being
dealt with. Third, write ordering is not important for implementing parallel sort;
it is sufficient to ensure that all disk writes have completed.

The actual partitioning and sorting of records are implemented using native
methods which manipulate I/O buffers directly, using pointers. This was nec-
essary to avoid performance limitations of our Java compiler, which does not
perform aggressive optimizations such as array bounds-check elimination. No
data copying between Java and C is necessary as both Java (through Jaguar)
and native code can directly manipulate the contents of the I/O buffers.

5.2 TigrisSort Performance

Figure 7 shows the performance of TigrisSort as the benchmark is scaled up
from 2 to 8 nodes. In each case, half of the nodes are configured as partitioners,
and half as sorters; 5 megabytes of data are partitioned or sorted per node. The
total time to complete the sort averaged 738 milliseconds; as more nodes are

added to the application, more data can be sorted in constant time. Given this
result we feel that with careful tuning, TigrisSort can compete with the current
world-record holder of the Datamation sort record, Millennium Sort [7], which
was implemented on the same hardware platform using Windows NT and C++.
However, the dominant cost of Datamation sort on modern systems is application
startup; the results above do not include the cost of starting the Tigris system
itself. Because Tigris is implemented in Java, which involves higher application
startup cost (for class loading and JIT compilation), there is some question as
to what should be included in the startup measurements. For instance, for tra-
ditional Datamation sort implementations, the cost of compiling the application
and cold-booting the operating system are not measured.

6 Related Work

Tigris relates most closely to work in the areas of cluster programming frame-
works and parallel databases.

Tigris’ design is based on River [5], a robust cluster-based I/O system im-
plemented in C++ on the Berkeley Network of Workstations [25]. While facially
quite similar, Tigris differs from the original River system in a number of im-
portant respects, mainly stemming from the use of Java and Jaguar. In River,
communication channels transmit raw byte streams (using Active Messages [9]),
and the application must extract typed values from them through the use of a
“data dictionary” class which maps field names onto byte offsets in the stream.
In Tigris, modules map Java objects directly onto I/O buffers represented by the
Water class through the use of Jaguar’s Pre-Serialized Object mechanism. Type
checking is therefore enforced by the compiler and modules operate directly on
“true” Java objects, rather than using a library for indirection.

River made use of a single DQ algorithm (randomized), while Tigris in-
troduces the round-robin and lottery DQ variants. Tigris additionally provides
stream interfaces to shared memory segments and memory-mapped disk files,
both enabled using Jaguar.

Other projects have considered support for parallel and distributed com-
puting in a type-safe language. JavaParty [18] is an extension to Java providing
transparent remote object access and object mobility. cJVM [1] is a cluster-based
JVM which implements DSM-like remote object access and thread migration.
DOSA [15] is a DSM system which provides fine-grain sharing at the granularity
of objects which could be applied to languages such as Java. Titanium [30] is a
dialect of Java for large-scale scientific computing; it is focused on static compi-
lation and automated techniques for optimization of parallel programs expressed
in the Titanium language. Other models for Java-based parallel computing, such
as work stealing in JAWS [29] and agents in Ninflet [23], have also been con-
sidered. Tigris is the first dataflow and I/O-centric programming model to our
knowledge to have been explored in the Java environment.

Parallel databases have made use of some of the dataflow concepts found in
Tigris. Systems such as Bubba [10], Gamma [11], and Volcano [13] made use

of static data partitioning techniques, rather than runtime adaption, to balance
load across multiple physical resources. Static partitioning techniques form the
foundation for all commercial shared-nothing parallel RDBMS products to our
knowledge. Relational database queries have long been viewed as a dataflow
graph; Eddies [6] build on the concepts in Tigris and River by dynamically
reordering operators in a parallel database query plan to adapt to runtime per-
formance fluctuations.

7 Conclusion

Cluster programming is by its nature a difficult task; obtaining good perfor-
mance in the face of performance perturbations is even harder. Compounding
this problem is the increasing use of clusters for irregular applications such as
hosting Internet services and databases, which must tolerate fluctuations in re-
source availability and performance. Java has proven to be a viable platform for
constructing such applications; what remains now is to bridge the gap between
application demands and the mechanisms provided the underlying platform.

Tigris takes the idea of cluster programming in Java a step further by in-
troducing dynamic resource adaptation to the programming model, as well as
the use of high-performance networking and disk I/O through Jaguar. Several
novel applications are being developed using Tigris as a base; the Telegraph [26]
and Ninja [24] projects at UC Berkeley are both incorporating Tigris into their
design for cluster-based scalable services.

We believe that through our experience with TigrisSort, as well as the low-
level benchmarks of the Tigris DQ performance, that Tigris is an effective plat-
form upon which to construct adaptive cluster applications. Moreover, the use of
Jaguar allows us to build interesting data-intensive applications entirely in Java,
which opens up new possibilities for developing flexible cluster programming
environments.

References

1. Y. Aridor, M. Factor, A. Teperman, T. Eilam, and A. Schuster. A high performance
cluster jvm presenting a pure single system image. In Proceedings of the ACM 2000
JavaGrande Conference, San Francisco, CA, June 2000.

2. R. H. Arpaci, A. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson, and D. A.
Patterson. The interaction of parallel and sequential workloads on a network of
workstations. In Proceedings of SIGMETRICS/PERFORMANCE, May 1995.

3. A. Arpaci-Dusseau, R. Arpaci-Dusseau, D. E. Culler, J. M. Hellerstein, and D. A.
Patterson. Searching for the sorting record: Experiences in tuning NOW-Sort. In
Proceedings of the 1998 Symposium on Parallel and Distributed Tools (SPDT ’98),
1998.

4. A. C. Arpaci-Dusseau, D. E. Culler, and A. Mainwaring. Scheduling with implicit
information in distributed systems. In 1998 SIGMETRICS Conference on the
Measurement and Modeling of Computer Systems, pages 233–243, June 1998.

5. R. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. Culler, J. Hellerstein, D. Pat-
terson, and K. Yelick. Cluster I/O with River: Making the fast case common.
In IOPADS ’99, 1999. http://www.cs.berkeley.edu/~remzi/Postscript/river.
ps.

6. R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing.
In Proceedings of the 2000 ACM SIGMOD International Conference on Manage-
ment of Data, Dallas, TX, May 2000.

7. P. Buonadonna, J. Coates, S. Low, and D. E. Culler. Millennium Sort: A Cluster-
Based Application for Windows NT Using DCOM, River Primitives and the Virtual
Interface Architecture. In Proceedings of the 3rd USENIX Windows NT Sympo-
sium, July 1999.

8. P. Buonadonna, A. Geweke, and D. Culler. An implementation and analysis of the
Virtual Interface Architecture. In Proceedings of SC’98, November 1998.

9. B. Chun, A. Mainwaring, and D. Culler. Virtual network transport protocols for
Myrinet. IEEE Micro, 18(1), January/February 1998.

10. G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data Placement in Bubba.
SIGMOD Record, 17(3):99–108, September 1988.

11. D. J. DeWitt, S. Ghanderaizadeh, and D. Schneider. A Performance Analysis of
the Gamma Database Machine. SIGMOD Record, 17(3):350–360, September 1988.

12. Anon et. al. A measure of transaction processing power. In Datamation, 31(7):
112-118, February 1985.

13. G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing System.
SIGMOD Record, 19(2):102–111, June 1990.

14. S. Gribble, M. Welsh, D. Culler, and E. Brewer. Multispace: An evolutionary
platform for infrastructural services. In Proceedings of the 16th USENIX Annual
Technical Conference, Monterey, California, 1999.

15. Y. Charlie Hu, Weimin Yu, Dan Wallach, Alan Cox, and Willy Zwaenepoel. Run-
time support for distributed sharing in typed languages. In Proceedings of the
Fifth ACM Workshop on Languages, Compilers, and Run-time Systems for Scalable
Computers, Rochester, NY, May 2000.

16. J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. S. Blumenthal. PPFS:
A high performance portable parallel file system. In Proceedings of the 9th ACM
International Conference on Supercomputing, pages 385–394, July 1995.

17. J. Moreira, S. Midkiff, and M. Gupta. From flop to megaflops: Java for technical
computing. In Proceedings of the 11th Workshop on Languages and Compilers for
Parallel Computing (LCPC’98), 1998. http://www.research.ibm.com/ninja/.

18. M. Philippsen and M. Zenger. JavaParty - transparent remote objects in Java. In
Concurrency: Practice and Experience, 9(11):1225-1242, November 1997.

19. Sun Microsystems Inc. Enterprise Java Beans Technology. http://java.sun.com/
products/ejb/.

20. Sun Microsystems Inc. Java HotSpot Performance Engine. http://java.sun.com/
products/hotspot/index.html.

21. Sun Microsystems Inc. Java Native Interface Specification. http://java.sun.

com/products/jdk/1.2/docs/guide/jni/index.html.
22. Sun Microsystems Labs. The Exact Virtual Machine (EVM). http://www.

sunlabs.com/research/java-topics/.
23. H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh, and U. Nagashima.

Ninflet: A migratable parallel objects framework using Java. In ACM 1998 Work-
shop on Java for High-Performance Network Computing, 1998. http://www.cs.

ucsb.edu/conferences/java98/papers/ninflet.pdf.

24. UC Berkeley Ninja Project. http://ninja.cs.berkeley.edu.
25. UC Berkeley NOW Project. The UC Berkeley Network of Workstations Project.

http://now.cs.berkeley.edu.
26. UC Berkeley Telegraph Project. http://db.cs.berkeley.edu/telegraph/.
27. T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-level network

interface for parallel and distributed computing. In Proceedings of the 15th Annual
Symposium on Operating System Principles, December 1995.

28. M. Welsh and D. Culler. Jaguar: Enabling efficient communication and I/O
from Java. Concurrency: Practice and Experience, 2000. Special Issue on Java
for High-Performance Network Computing, To appear, http://www.cs.berkeley.
edu/~mdw/proj/jaguar.

29. A. Woo, Z. Mao, and H. So. The Berkeley JAWS Project. http://www.cs.

berkeley.edu/~awoo/cs262/jaws.html.
30. Yelick, Semenzato, Pike, Miyamoto, Liblit, Krishnamurthy, Hilfinger, Graham,

Gay, Colella, and Aiken. Titanium: A high-performance Java dialect. In ACM 1998
Workshop on Java for High-Performance Network Computing, February 1998.

