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Abstract—The modeling techniques for business process are
mostly graphics-based, that is argued to be simplified when the
processes become too complex or expanded to provide full details.
In this paper we propose a technique for modeling composite
activities by including components of data, human actors and
atomic activities. Furthermore, we represent business processes
with composite activities using process-oriented languages. To ex-
plore the properties of the business processes under this modeling
technique, we define a set of metrics that reflect the degree of data
aggregation and human actor involvement of executing composite
activities. Algorithms to calculate these metrics are derived
based on the goal-directed nature of the modeling technique for
composite activities and business processes. At last by providing
a use case, we discuss the artifacts and future work for this
modeling technique.

Index Terms—business process, composite activity, goal-
directed

I. INTRODUCTION

Business process modeling, the goal of which is to rep-
resent, analyze and improve the processes of enterprises in
the discipline of systems engineering [2], has been an e-
merging research interest. The approaches in this area range
from modeling techniques along with their artifacts, to the
verification and evaluation of the business process properties.
With current IT technologies, business processes are more
and more automatically realized by, and integrated with, IT
functionalities, i.e., the enterprise software systems. On the
other hand, asynchronous patterns of development of business
processes and IT systems easily lead to a gap between them
[10] [12] [13]. This interrelation is covered in the research
area of Enterprise Architecture [29] and Service-oriented Ar-
chitecture [34] [11].

Traditional modeling techniques for business processes
mainly include flowcharting [28] [33] [21], IDEF family [22]
[19], Petri Nets [32], etc,. While each of these graphics-based
techniques models business processes with their preferred
emphasis, it is argued in [25] [4] [14] that these approaches are
incomplete, implicit and vulnerable in handling the business
process modeling for complex business goals. The BPEL fami-
ly [23] [20] [6] provides XML-based executable languages that
specify business processes to support web services. While it
facilitates the expansion of automatic business processes, it is
nevertheless viewed as being user-unfriendly [25].

Although business processes are usually modeled by the
research community as encapsulations of business activities
and their corresponding execution order [35] [24], the views of
business activities remain ambiguous and disjoint. Some work
[12] [13] simply assume business activities as actions taken
towards specific business goals. BPML [27] defines business
activities to two levels: complex activities that are composed
of atomic activities. Web-based techniques [23] [20] [6], on
the other hand, view business activities as the business logic
that can be accessed via IT-system interfaces for the purpose
of automatic execution. These views of business activities
are proper as the basis of their corresponding approaches
of business process modeling. However, they fail to provide
an explicit mechanism of modeling business activities in a
deterministic manner.

In this paper, we study a technique to explicitly model
composite activities that represent business processes with a
well-defined syntax, that is reified from modeling techniques
for software processes [31] [30]. A composite activity is spec-
ified as a tuple of components: data, human actor, and atomic
activity, where data is further modeled to indicate its states in
data flows within a composite activity. As in [27], an atomic
activity is defined as the activity which executes a single unit
of work. That means partial data or activity generated within
an atomic activity which does not impact on the service is not
represented. Human actor refers to role executing or involved
with atomic activities in the composite activity. Note that the
modeling of a composite activity starts with ensuring that all
atomic activities are executed by specified roles. For the sake
of brevity, we do not take time or location into consideration
for service modeling.

Business processes are represented with composite activities
by their execution order. We develop a set of assumption-
while-result-final functions with composite activities as their
parameters to model the activity order in business processes
in the manner of process-oriented languages. A business
process is initiated with an assumption() function. A while()
loop represents an execution block, which is determined by
the divergence or convergence relations among composite
activities. A while() loop is called when these relations are
detected in a business process. A result() function is called to
deliver composite activities as the outputs of the associated



while() loops. The result() function marks the end of the
current execution block and the beginning of the next one. A
final() function indicates the end of the entire business process.
A business process typically consists of one assumption()
and final() function, one or more while() loops and result()
functions. One while() loop takes the activities of result()
functions of other while() loops as trigger for execution, and
this dependency serializes the order of execution of composite
activities.

The use of this assumption-while-result-final function set
enables a specific execution order not only of composite activi-
ties, but also of data flows and human actor involvement within
and between composite activities. To explore the properties
of business processes in terms of composite activities and
modeling components of composite activities, we define two
sets of metrics: data dependencies and labor force factor. In
our approach, data dependencies indicate for a single piece of
data or composite activity, how much other data or how many
other composite activities impact it, and vice versa. There are
four types of dependency: data-to-data dependency, data-to-
activity dependency, activity-to-data dependency and activity-
to-activity dependency. The labor force factor indicates the
degree of human actors being involved with a business pro-
cess or a composite activity. We also provide algorithms for
calculating these metrics.

A goal-directed technique in business process modeling in-
tends to model components of business processes and present
their properties under the pre-set business goals [8]. Our
modeling technique for business processes is goal-directed
because the detection of the metrics above could be initiated by
identifying the final states of their corresponding components.
These final states, e.g., those located in the final() functions,
are analogous to business “goals”. They mark the end of the
workflows of the corresponding components and can be used
to evaluate their properties, i.e., data-to-data dependency, data-
to-activity dependency, etc., by backtracking these workflows
until the initialization of these components are detected.

A use case of purchasing an apartment and obtaining a
loan is used in our work to illustrate the process of modeling
composite activities and calculating the metrics. We compare
the results of our modeling the use case with the BPMN model
in [35], and discuss the uses of the metrics as guidance in
evaluating business processes.

The rest of the paper is organized as follows. Section II
introduces related work. Section III describes the details of
our modeling technique for composite activities and business
processes. Section IV explains the definition of the metrics
related to the modeling technique and the corresponding
algorithms to calculate them. Section V presents a use case to
illustrate the process of applying the modeling technique and
calculating the metrics. Section VI discusses our conclusions
and future work.

II. RELATED WORK

A number of approaches have been used to provide tech-
niques for modeling business processes. Flowcharting, show-

ing the scope of the whole business process and tracking the
flows of its associated information, was initially proposed by
Schriber in [33]. Subsequent work, such as [21], improves this
technique by introducing diagrams to include the principles of
decision sciences. BPMN [28] standardizes the flowcharting
diagrams to bridge the communication gap between business
process design and implementation, and is now widely used
[12] [13]. The IDEF family integrates business processes and
data structures. IDEF0 [22] is designed to model the activities
in terms of organizations, while IDEF3 [19] is modeled as
process flows to indicate how organizations work. Role activity
diagrams [5] concentrate on modeling roles with their associ-
ated activities and relations in the context of roles execution
as critical resources. These graphics-based techniques excel
in the global demonstrations of business processes. However,
graphics can be simplified when business processes become
too complex or expanded to provide full details. The XML-
based modeling languages, such as BPEL [23] and BPML
[27], are designed as the executable languages for specifying
the activities of business processes to support web services.
Though capable of “expressing executable processes that ad-
dress all aspects of enterprise business processes”, it is argued
that they are user-unfriendly and fail to convey the concepts
of human actors and data models [25]. Our approach, while
maintains the advantages of the techniques above, additionally
enables the flexibility of presenting complex business process-
es with including more concepts, such as human actors and
data models.

Business activities are sometimes viewed as actions execut-
ed in business processes, as in [12] and [13]. Moreover, for
different research needs, business activities sometimes require
multiple views within one approach, e.g., [37], where they are
viewed purely as actions of business logics in one example
while viewed as compositions of actions of business logics
and data in another example. Some approaches realize the
modeling of business activities by viewing business activi-
ties as representations of different levels of granularity. For
instance, in BPML [27], business activities are categorized
into two types: complex activities and simple activities. A
complex activity is an activity that contains one or more simple
activities, establishes a context for their execution, and directs
their execution by a definition of a specified activity set. Our
approach adopts the design of composite (complex) activities
and embeds data types, human actors and atomic activities
inside to explore properties formed by inter-composite-activity
relations.

The identification and measurement of metrics of busi-
ness process modeling has recently become an interest for
researchers. A group of researchers have adapted the concepts
of metrics in the discipline of software engineering and map
them to be the needed metrics of business process modeling.
For instance, a typical software metric, lines of code (LOC),
is logically mapped to derive the “number of activities” in
[17]. The authors of [3] derive a set of metrics for business
processes after reifying the metrics of software processes.
Moreover, some researchers propose metrics for evaluating
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certain nonfunctional requirements. A metric of weighted
coupling is designed in [36] to evaluate the degree of coupling
between different types of interrelations of business activities
and processes. Metrics for evaluating the similarity between
process models, are provided from the label-based, structural,
and behavioral dimensions in [9]. IT-level metrics are favored
to describe the artifacts and performance of IT-systems in the
realm of service-oriented business processes [38]: business-
level, application-system-level, and the IT-infrastructure-level
attributes are considered to be critical in representing the
properties of the a networked-service, which is implemented
by or implements other services of business processes.

Dependency among the metrics of business process model-
ing refers to the degree of one component of a business process
relying on other components. The researchers of [15] generate
one-to-one, one-to-many, and many-to-many dependencies to
describe the degree of how objects and activities of business
processes rely on each other. By exploring the dependencies
between local business processes and global business pro-
cesses, the authors of [16] define the metric inter-process
dependencies and extend a UML-based activity diagram to
all levels. In our approach, we model dependency in terms of
data flows to present their patterns in business processes. In
addition, we design labor force factor to indicate the degree
of human actor being involved with business activities and
processes, which has not yet been addressed by existing
approaches. These metrics help demonstrate the quality of
business process modeling and provides reference for potential
business process optimization.

III. MODELING TECHNIQUE OVERVIEW

In this section we provide an overview of our modeling
technique. Our approach provides syntax for product and pol-
icy models, as in [31] [30]. Typically, product models define
the type of components that constitute composite activities.
Policy models define the logical connections among composite
activities to reflect the business processes.

A. Product Models

A composite activity consists of the following components:
data, role, and atomic activity. Due to the states in data
flows within a composite activity, data is further classified
to initial data, input data, global data, consumed data,
output data, and final data. The object declarations of each
component is listed as follows:

type initial_data primitive;
type input_data primitive;
initial_data application_form;
input_data ready_to_start;
...
type global_data primitive;
type consumed_data primitive;
type output_data primitive;
type final_data primitive;
...
type role primitive;
role applicant;
role government_employee;

...
type atomic_activity primitive;
atomic_activity submit_application;
atomic_activity obtain_approval;
...

These object declarations, as in [30], include type definitions,
type instances, and object definitions. Types and type defini-
tions enable the appropriate abstractions and their values. The
components are considered to be primitive and their objects
are accordingly assigned. Note that data types are not limited
only to data objects, but can also be states. A sample composite
activity “apply for loan” and the illustration of its components
is stated as follows:

activity apply_for_loan
{
role applicant;
initial_data application_form;
input_data empty;
global_data government_ID;
consumed_data application_form;
atomic_activity <submit_application_form>;
output_data wait_for_approval;
final_data empty;
}

Each of the components of a composite activity is defined
and illustrated as follows:

1) initial data:
Definition 1: An initial data is the data that is initially

injected to the data flows and triggers the execution of the
associated composite activity along with global data and
input data (if there is any).

For any data, it is allowed to be an initial data only
once in each of its flows. An initial data indicates the initial
appearance of this data on the flow. In other words, this data
is not included in the composite activities that are previously
executed of the flow as any data type.

2) input data:
Definition 2: An input data is the data that is generated

and delivered by other composite activities, and triggers the
execution of the associated composite activity along with
global data and initial data (if there is any).

Theorem 1: for any input data, there must be at least an
identical output data in a composite activity that is executed
beforehand, and vice versa.

Similar to [18], since input data marks the beginning of the
associated execution of a composite activity, the output data
where it is delivered from must be located in a composite
activity which has already been executed. It is possible that
the composite activity associated with this output data is not
necessarily executed directly ahead of the composite activity
associated with the identical input data. In our approach, our
rule is that an initial data cannot be an input data in the same
composite activity.

3) global data:
Definition 3: A global data is the data that is injected inde-

pendently from business processes, and, triggers the execution
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of the associated composite activity along with initial data
and input data (if there is any).

A global data is not an output data, final data, or
consumed data of any composite activity, due to the fact that
it is not the output of any composite activity. An example
of global data is “government ID” in the sample composite
activity “apply for loan”.

4) consumed data:
Definition 4: A consumed data is input data or initial data

that is consumed by the execution of the associated composite
activity.

Consumed data indicates the consumption of input data or
initial data; it is not output data in the associated composite
activity. Consumed data represents the end of the associated
data flow (there might, however, be other running flows of this
data).

5) output data:
Definition 5: An output data is the data that is the deliver-

able by the execution of the associated composite activity.
As in Theorem 1, for an output data, there is an identical

input data or initial data in a composite activity that is
executed later, unless it is a final data. For any input data
that is not consumed in the associated composite activity, we
generate an identical output data in this composite activity.

6) final data:
Definition 6: A final data is the data that is generated by

the execution of a business process and not consumed by
any composite activity, or a state to indicate the end of the
execution of a business process.

A final data is represented only in a composite activity
that is an end of a business process (there might be multiple
composite activities that mark the end of the execution of a
business process). Note that one composite activity where an
identical output data is represented is not necessarily executed
directly ahead of the composite activity associated with this
final data.

A final data and consumed data reflects a business goal
in terms of data type. They are considered as sources of our
goal-directed approach to evaluate their relevant properties by
backtracking them in the chain of composite activities.

7) role:
Definition 7: A role is a human actor involved with the

execution of a composite activity.
A composite activity is executed by only one role or one

specified group of roles. In this paper we do not consider the
case of multiple roles executing one composite activity.

8) atomic activity:
Definition 8: An atomic activity is the activity that executes

a single unit of work within the associated composite activity.
An atomic activity cannot be further decomposed. Any

data flow or human actor involvement that is included within
an atomic activity is not represented in the modeling of
composite activities.

Overall, a composite activity is one or more atomic activities
that are executed under one role or one specified group along
with a composition of initial data, input data, global data,

consumed data, output data, and final data. For the sake of
simplicity at this stage of our research, we do not address
the issues involved in composite activities being components
of composite activities and restrict our focus only atomic
activities. It is reasonable because according to our activity
structure, any composite activity inside of composite activities
can be reduced to a composition of atomic activities, data, and
human actors, and at last lead to our modeling of composite
activities. In the rest of this paper, we use the product models
to represent their respective notions to maintain consistency.

B. Policy Models

Policy models are classified into two categories that depict
the logical connections of composite activities: execution order
of composite activities and inter-activity relations. This is how
composite activities incorporate each other as the trigger or
results of one execution block. A sample of a business process
represented by our policy models is listed as follows, where
all the capital letters represent composite activities.

process sample
{
assumption(A and B);
while(A)

{
C;
G;
result(D and E};
}

while(B)
{
result(F cooperative (E and B));
}

while(E)
{
result(F cooperative (E and B));
}

while(D)
{
...
}

final(F and ...);
}

1) execution order of services: A business process is rep-
resented by an execution order of composite activities, that is
represented by a set of assumption-while-result-final functions,
where composite activities or their interrelations are used as
their parameters. The syntax of the functions are illustrated as
follows:
• assumption()

An assumption() function is only called in the beginning
of the execution of a business process. Composite activ-
ities or their interrelations, as its parameters, are initially
executed in this business process, such as composite
activities A and B in the sample process. Typically, there
is at least one initial data and no input data in the
composite activities of this function.

• while()
A business process is embodied with one or more while()
loops. The boundary of one while() loop is typically
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determined by the divergence or convergence relations
among multiple composite activities. That means the
initiation/end of one while() loop are these interrelations
of multiple composite activities . A while() loop takes
either the composite activities of an assumption() function
or a result() function of other while() loops, to trigger its
execution. In this paper, our rule is that for one while()
loop, there is only one composite activity as its parameter.
That indicates for one result() function with interrela-
tions of multiple composite activities as its parameters,
there are an identical number of while() loops as those
composite activities (excluding composite activities of
final() function), such as while(D) loop and while(E) loop
corresponding to the result(D and E) function of while(A)
loop.

• result()
A result() function is located in a while() loop to indicate
the end of the execution of this while() loop. It is called
when the execution of the associated while() loop detects
the divergence or convergence of multiple composite
activities, or composite activities of final() functions.
Only one result() function is allowed in one while() loop.
That means the body of a while() loop is the execution of
composite activities with a rigourous order. For instance,
in while(A) loop of the sample process, composite activ-
ities C and G are executed until the composite activities
D and E together as deliverables are detected and both
encapsulated as the parameters of a result() function.

• final()
A final() function is placed in the end of a business
process, with one composite activity or multiple parallel
composite activities connected by “and”, as its parameter-
s. Typically in composite activities that are the parameters
of a final() function, there is at least one final data that
indicates the business goal(s) of the execution of the
business process.

The set of assumption-while-result-final functions leads to a
flexible expression of execution order of a business process. A
while() loop is not necessarily placed right following while()
loops where its parameters result from. In the sample process,
while(D) loop is not placed following while(A) loop where the
composite activity D is delivered. This flexibility enables an
easy implementation of modeling business processes.

2) inter-activity relations: In this paper, we use a set
of operators to represent the relations between composite
activities of result() functions as follows:

• cooperative
One or more composite activities together proceed to
the subsequent executions. One sample form is result(A
cooperative (B and C and D)). This means the composite
activity A is the result of the execution of all the com-
posite activities B, C and D.

• exclusive
Only one out of multiple composite activities is allowed
to proceed to the subsequent executions. One sample

form is result(A exclusive (B and C and D)). This means
the composite activity A is the result of the only one
execution of the composite activities B, C, and D.

• N-cooperative
Any N out of M composite activities (N<=M) or more
together proceed to the subsequent executions. One sam-
ple form is result(A 2-cooperative (B and C and D)).
This means the composite activity A is the result of two
or more executions of the composite activities B, C, and
D.

• N-exclusive
Only N out of M composite activities (N<=M) or
less together proceed to the subsequent executions. One
sample form is result(A 2-exclusive (B and C and D)).
This means the composite activity A is the result of not
more than two executions of the composite activities B,
C, and D.

Composite activities that are placed ahead of the opera-
tors (i.e., cooperative, exclusive, etc,.) are defined as result
composite activities. Composite activities that are placed after
these operators trigger the result composite activities under
our semantics. Robust business processes are assumed in our
research at this stage. That means exceptions of a business
process are not considered, and result composite activities
are deterministic. In other words, they are either one single
composite activity or multiple composite activities connected
by the connector “and”. Note that the inter-activity relations of
result() functions can be complex when multiple operators are
placed between them, e.g., result(...cooperative (...N-exclusive
(...) and (...))). This complexity contributes the overall com-
plexity to the entire business process with graphics-based
modeling techniques. Intuitively, our approach provides an
easy way to model complex business process.

Modeling a business process by using our product and
policy models is very flexible. Usually, modeling components
of composite activities can be parallel to modeling a business
process with composite activities. Moreover, a whole() loop
does not have to be in order and is essentially a sub-business-
process that provides partial business functionalities. This
property provides a possibility that modification of a business
process might be restricted to only one or more while() loops.

IV. PERFORMANCE METRICS

To explore the interrelations of and between composite
activities and their components, we develop a set of perfor-
mance metrics that are classified into two categories: data
dependencies and labor force factor. Data dependencies refer
to the degree of data distribution, and measures for a single
piece of data or its associated composite activity, how much
other data or composite activities it is related to within
its flows. The labor force factor measures the workload of
role(s) being involved with a composite activity or a business
process. Data dependencies are further modeled to data-to-data
dependency, data-to-activity dependency, activity-to-data de-
pendency, activity-to-activity dependency. Data types involved



in the calculation of these metrics do not include global data,
because they are considered to remain constant.

A. Data-to-Data Dependency

In our approach, a successful generation of an output data
relies on the execution of its associated composite activi-
ty when all the input data/initial data are ready. Accord-
ingly, in one composite activity, output data depends on
input data/initial data with this dependency being reflected
by the number of the input data/initial data. Typically, the
more input data/initial data a composite activity has, the
more dependent its generation of output data is, and vice
versa.

In a business process, any data (non-global-data) ends as
either consumed data or final data in its flows. By local-
izing its final state and backtracking its flows, (that is, its
output data type in every composite activity it is associat-
ed with), the input data/initial data of all these composite
activities can be obtained. The accumulation of the number
of these input data/initial data is defined as the data-to-data
dependency of this data.

The calculation of data-to-data dependency of the target
data, namely Dtarget is initiated with the localization of
the composite activity, namely Asink, where Dtarget is its
final data or consumed data. A tracking process is then
conducted to detect the composite activity Aintermidiate that
is latest executed with Dtarget as its output data before Asink

in the context of a business process. The number of all
the input data/initial data of Aintermidiate is added to data-
to-data dependency of Dtarget. If Dtarget is input data in
Aintermidiate, that indicates at least one composite activity
is executed that delivers Dtarget to be the input data of
Aintermidiate. This process of tracking and calculating data-
to-data dependency of Dtarget continues until the composite
activity Asource is detected where Dtarget is its initial data.
That means this Asource is the very beginning of the generation
of Dtarget.

Ideally, backtracking flows of Dtarget is conducted in a
transparent manner where only one composite activity is
executed before or after another. This tracking process can be
challenging when a composite activity that is associated with
Dtarget is detected in a result() function with complex inter-
relations between multiple composite activities. The execution
order of these composite activities needs to be well understood
for tracking a business process. To explicitly present the
execution order of composite activities in a business process,
we use a sophisticated technique, namely, an abstract syntax
tree (AST), that is a tree representation of the abstract syntactic
structure of source code written in a programming language [1]
[26]. An example of an AST to depict result((A 2-exclusive (E
and F and G) ) cooperative (B and C and D)) is shown in Fig.1
with all the capital letters representing composite activities.

The AST under our syntax provides following properties.

• Operators (defined to include only cooperative, exclusive,
N-cooperative, and N-exclusive) are placed as none-leaf

cooperative 

2-exclusive and 

B(3) C(6) D(5) A(3) and 

E(2) F(5) G(4) 

Fig. 1. An AST example

nodes. Leaf nodes must be composite activities. Compos-
ite activities can be both non-leaf and leaf nodes.

• Composite activities are placed left when its parent node
is one of the operators (i.e., cooperative, exclusive, N-
cooperative, N-exclusive). Multiple result composite ac-
tivities under one operator are individually placed as the
child nodes of the operator. They are not allowed to be
placed with the connector “and” as their parent nodes.
Composite activities that trigger these result composite
activities are placed under “and” following the operators,
as B, C, and D of Fig.1. This syntax restricts the use of
“and” and provides determinism.

• Leaf nodes that are placed in lower levels are executed
before those placed in higher levels.

• Operators are associated with the connector “and” as one
of their child nodes. The lowest leaf nodes (composite ac-
tivities) are either placed under “and” or other composite-
activity-nodes. To prove this property, assume the lowest
leaf nodes can be placed under operators. Since those
operators are defined to be followed with “and”, that
indicates there are lower leaf nodes that are placed under
“and”. This disproves the assumption that the lowest leaf
nodes can be placed under the operators, such as E, F,
and G in Fig.1

These properties contributes to the algorithm of calculat-
ing data-to-data dependency, that is initiated by identifying
the composite activity, namely CAtarget, where Dtarget is
its consumed data or final data in Algorithm1. By setting
Dtarget or its relevant operator as the root, an abstract syntax
tree whose leaf nodes are composite activities where Dtarget

is initial data, is built to represent the business process. The
paths from the root to each leaf node, namely P are printed
and tailored by replacing the composite-activity-nodes with
the respective number of their input data/initial data, when
Dtarget is their output data; and with zero otherwise. Then
these tailored paths, namely TP are sorted by their lengths
and mutual commonality. In our approach, leaf nodes that
are placed under the same operators, e.g., E, F, and G of



Fig.1 distinguish their corresponding set of P from each
other only by their last one elements (i.e.,leaf nodes). This
property provides the possibility to merge the corresponding
set of TP by simply manipulating their last one elements
(i.e., the number of the input data/initial data) under the
specific syntax (details of calculation under the syntax offered
in Algorithm.1). A new TP is merged by deleting the last
two elements of the original set of TPs and complementing
the manipulated number. This merged TP is sorted with the
rest of TPs. Starting from the longest TPs, this sorting and
merging process is iterated until all of the TPs are merged
and the final manipulated number is obtained as the data-to-
data dependency. Note that in our algorithm, details of AST,
printing path, sorting, tailoring, and merging are not addressed
because they are sophisticated techniques that are not our
concern.

Algorithm 1 DTD calculation(data): calculating data-to-data
dependency
Input:
Dtarget,
CAtarget := composite activities where Dtarget is consumed data or final data,
TAST := tree generated by AST,
P := set of paths with the number of l,
TP := set of tailored paths with the number of l
temporal, m, k := interger
Output:
DependencyDTD(Dtarget) := data-to-data dependency of Dtarget

1: TAST := AST(CAtarget);
2: {P} := PrintPath(TAST );
3: {TP} := tailor({P});
4: {TP} := sort({TP});
5: k := number of elements of TPl;
6: while {TP} is not empty do
7: m := number of TP that differs from TPl with only the last one element;
8: if (TPl[k-2] := ‘cooperative’ or ‘N-cooperative’ or ‘exclusive’ or ‘N-exclusive’)

or (TPl[k-2] := ‘and’ and TPl[k-3] := ‘cooperative’ or ‘N-cooperative’ or ‘and’
or empty)
or (TPl[k-2] is a number) then

9: for each TP from TPl−m to TPl do
10: temporal := temporal + TP[k-1];
11: end for
12: TPl−m := TPl−m -TPl−m[k-1] - TPl−m[k-2] + temporal;
13: delete from TPl−m+1 to TPl−m+1;
14: l := l - m;
15: k := k - 1;
16: sort({TP});
17: end if
18: if TPl[k-2] := ‘and’ and TPl[k-3] := ‘exclusive’ then
19: for each TP from TPl−m to TPl do
20: find the largest TP[k-1];
21: end for
22: temporal := the largest TP[k-2];
23: TPl−m := TPl−m -TPl−m[k-1] - TPl−m[k-2] + temporal;
24: delete from TPl−m+1 to TPl−m+1;
25: l := l - m;
26: k := k - 1;
27: sort({TP});
28: end if
29: if TPl[k-2] := ‘and’ and TPl)[k-3] := ‘N-exclusive’ then
30: for each TP from TPl−m to TPl do
31: find the N largest TP[k-1];
32: end for
33: temporal := temporal + the N largest TP[k-1];
34: TPl−m := TPl−m -TPl−m[k-1] - TPl−m[k-2] + temporal;
35: delete from TPl−m+1 to TPl−m+1;
36: l := l - m;
37: k := k - 1;
38: sort({TP});
39: end if
40: end while
41: DependencyDTD(Dtarget) := temporal;

We use Fig.1 to illustrate how sorting and merging pro-
cess works. Assume Dtarget is initialized in E, F, and G,
consumed in A, and is output data in the other composite
activities. By applying the abstract syntax tree (AST) and
sorting techniques, the set of paths from root (cooperative)
to every leaf node is represented as {(cooperative, and, B),
(cooperative, and, C), (cooperative, and, D), (cooperative, 2-
exclusive, A), (cooperative, 2-exclusive, and, E), (coopera-
tive, 2-exclusive, and, F), (cooperative, 2-exclusive, and, G),
}. Then they are transformed to the “compound” paths by
replacing the composite-activity-nodes with their respective
number of input data/initial data (the number associated with
the composite activities in Fig.1), that is, {(cooperative, and,
3), (cooperative, and, 6), (cooperative, and, 5), (cooperative,
2-exclusive, 3), (cooperative, 2-exclusive, and, 2), (coopera-
tive, 2-exclusive, and, 5), (cooperative, 2-exclusive, and, 4)
}. The last three paths are detected to be similar to each
other with the only difference of their respective number of
input data/initial data. Because the composite activities in the
original paths are executed as the trigger of the operator “2-
exclusive”, the two largest number of input data/initial data
(i.e., 4 and 5) of them are added to be the last one element of a
merged path, represented as (cooperative, 2-exclusive, 9). This
merging process repeats and the results in the interim set of
paths are represented as {(cooperative, and, 3), (cooperative,
and, 6), (cooperative, and, 5), (cooperative, 2-exclusive, 3),
(cooperative, 2-exclusive, 9)}; {(cooperative, 12), (coopera-
tive, and, 3), (cooperative, and, 6), (cooperative, and, 5)};
{(cooperative, 12), (cooperative, 14), }. At last, the data-to-
data dependency of Dtarget is calculated as 26.

Data-to-data dependency, along with other dependencies in
our approach, are considered as “worst-case” metrics, that is,
the calculation of those metrics aims at providing a possibly
maximum value to depict the dependencies among objects,
such as the example above.

Note that backtracking composite activities might be
nondeterministic. For instance, a piece of data might be
consumed data or final data of multiple composite activities,
because they are in parallel executed under the same operators,
directly or indirectly. To calculate data-to-data dependency of
this case, we simply need to make a root that includes these
composite activities as its child nodes before proceeding to
AST. Moreover, one composite activity might be detected in
multiple result() functions of while() loops under our modeling
syntax. In this case, a result() function with its associated
while() loop is randomly selected in the context of the busi-
ness process to apply AST for subsequently backtracking.
Assuming a robust modeling of a business process under our
policy models, this random backtracking is able to provide the
complete paths of composite activities.

Typically, data-to-data dependency describes the degree of
Dtarget flows being impacted by other data flows of a business
process. A larger data-to-data dependency indicates Dtarget

flows relying on more data flows associated of the business
process, and vice versa.



B. Data-to-Activity Dependency

In a business process, Dtarget is delivered in its flows by
the successful execution of the composite activities where it
functions as output data. On the other hand, malfunctions of
the executions of the composite activities cause the failure
of delivering Dtarget and the business process. The more
composite activities where Dtarget is their component, the
more Dtarget is impacted by the executions of these composite
activities, and vice versa. This number of the composite
activities where Dtarget is detected as their component is
defined as data-to-activity dependency.

The calculation of data-to-activity dependency differs from
that of data-to-data dependency only in the way of accumula-
tion, i.e., data-to-activity dependency is only incremented by
1 each time when it is updated as in Algorithm1.

C. Activity-to-Data Dependency

Generally, the successful execution of a composite activ-
ity relies on all its input data/initial data being ready, and
ensures the data flows and business process by delivering its
output data to the following composite activities. The more
input data/initial data one composite activity has, the more
it is impacted by their flows; On the other hand, the more
output data/final data it generates, the more data flows it
impacts, and vice versa. The interrelation of this composite
activity and its relevant data flows is defined as activity-to-
data dependency, that is accurately reflected as the summation
of data-to-data dependencies of all its initial data, input data,
output data, and final data of a composite activity.

Note that we do not simply define activity-to-data depen-
dency as the number of all the data of a composite activity,
because only the data number of a composite activity does
not necessarily depict the degree of the interrelations of the
composite activity and its relevant data flows. For instance,
composite activity A includes a lot of data yet their flows are
limited in the business process; composite activity B includes
a close number of data as A and its relevant data flows span
all over the business process. It is not accurate to perceive
A and B have the similar activity-to-data dependency just by
their close data numbers.

The algorithm to calculate activity-to-data dependency is
illustrated in Algorithm2.

Algorithm 2 ATD calculation(activity): calculating activity-
to-data dependency
Input: CAtarget := composite activity for the calculation of activity-to-data dependency
Output: DependencyATD(CAtarget)
1: for each data ∈ input data, initial data, output data, and final data in CAtarget

do
2: DTD calculation(data);
3: DependencyATD(CAtarget) := DependencyATD(CAtarget) +

DependencyDTD(data);
4: delete data;
5: end for

Note that for the data that is both input data and
output data of CAtarget, the replication of it being counted
to DependencyATD(CAtarget) needs to be avoided. This is
ensured by conducting “delete data” in Algorithm.2.

D. Activity-to-Activity Dependency

Similar to activity-to-data dependency, the dependency be-
tween composite activity CAtarget and other composite activ-
ities in the context of data flows are determined by CAtarget

generating output data and delivering them to other composite
activities, and vice versa. The degree of this dependency is
reflected by the number of the composite activities that all the
data of CAtarget “traverse to” in their flows. This number is
defined as activity-to-activity dependency in our approach.

The calculation of activity-to-activity dependency is sim-
ilar to that of activity-to-data dependency except for each
input data, initial data, output data, and final data of
CAtarget, their data-to-activity dependencies are counted to
the activity-to-activity dependency of CAtarget.

E. Labor Force Factor

Labor force factor is the metric to depict the degree of
human actor being involved with business activities and pro-
cesses, that is hardly to find in the previous approaches. This
degree is reflected by the workload of human actors, similar
to man-month, etc,. [7] of traditional concepts of software
engineering. In our approach, atomic activity is defined as the
activity that is executed in a single unit of work and repre-
sented as one component of a composite activity. Accordingly,
a new unit, namely role-activity, is developed to depict the
degree of roles being involved with atomic activity. One role-
activity is the workload of one role being involved with one
atomic activity.

Labor force factor can be calculated in both dimensions
of a composite activity and a business process. The labor
force factor of a composite activity is calculated as multiplying
the number of roles by the number of atomic activity of the
composite activity. Labor force factor of a business process is
the accumulation of that of the composite activities involved
with the same roles.

Labor force factor is also considered as “worst-case” metric.
That indicates labor force factor is to provide the “possi-
bly maximum” role-activity. We apply the methodologies of
backtracking composite activities of calculating data-to-data
dependency for calculating labor force factor of a business
process. Similar to the calculation of data-to-data dependency,
when multiple composite activities that are executed by iden-
tical roles are detected under the operators “exclusive” or “N-
exclusive”, the labor force factor of these composite activities
is counted with the largest or the summation of the N largest
labor force factor of the composite activities.

Data dependencies and labor force factor can be used to
evaluate the quality of modeling business process with our
methodologies in the domain of data flows and human actor
involvement. Typically, a high data dependency or labor force
factor implies a composite activity or data as a potential bot-
tleneck, that might hinder the execution of a business process
severely when encountering exceptions. In other words, data
dependencies and labor force factor can be used to optimize
business process modeling.



The evaluation of data dependencies are considered goal-
directed because it is initiated with identifying the final states
of objects, i.e., data and composite activities, that reflect
business goals. These data dependencies can be evaluated
by subsequently backtracking the objects in the workflow of
business processes. Using our product and policy models, data
dependencies introduced by our goal-directed approach helps
access the quality of business processes, establish optimistic
ones and provides reference for the evolving them.

V. A USE CASE

In this section we verify our approach by applying it to a use
case from [35] represented in Fig.2. This use case combines
purchasing an apartment and applying for a housing loan. In
this BPMN model, e1 indicates the beginning of the business
process while e2 and e3 indicate the end of the business
process. g5 is the gateway that reflects the divergence relation
between multiple activities while the rest of gis reflect the
convergence relations.

We use our product and policy models to model the business
process with representing the activities by composite activities.
The policy model of this use case is listed as follows:

Process apartment_purchasing_and_loan {
assumption (apartment_purchase_application()

and loan_application());
while(apartment_purchase_application()) {

down_payment();
result((issue_certificate() and

insurance()) cooperative
(down_payment() and
loan_agreement()));

}
while(loan_application()) {

asset_evaluation();
loan_agreement();
result(((public_notification() and

document_archive()) exclusive
(insurance() and loan_agreement()))
and ((issue_certificate() and
insurance()) cooperative
(down_payment() and
loan_agreement()));

}
while(insurance()) {

result((public_notification()
and document_archive()) exclusive
(insurance() and loan_agreement());

}
final(issue_certificate() and

public_notification() and
document_archive());

}

One example of the composite activities is stated as follows:

activity issue_certificate{
role applicant, government_employee,

government_officer;
\\issue_certificate_group

initial_data empty;
input_data approved_loan_application_form,

approved_apartment_application

_form,
certificate_of_loan,
ready_to_issue_certificate;

global_data government_ID;
consumed_data ready_to_issue_certificate;
atomic_activity <submit_materials>,

<verify_materials>,
<approve_certificate>,
<issue_certificate>;

output_data empty;
final_data approved_loan_application_form,

approved_apartment_application
_form,
certificate_of_loan;

}

The complete models of the use case is attached in the link
https://webspace.utexas.edu/yz4466/www/use case.pdf

A. Results and Analysis

TABLE I
DATA-BASED DEPENDENCY

data col1 col2 col3 col4 col5
data-to-data
dependency

18 22 19 2 8

data-to-
activity

dependency

5 7 5 1 2

Table I lists data-to-data dependency and data-to-activity
dependency of some data in the use case, where col1 to col5
respectively represents approved apartment application form,
approved loan application form, certificate of loan,
estimated loan rate, and insurance policy. The first three
pieces of data significantly impact the whole business process
due to their high weights of data-to-data and data-to-activity
dependency.

Data-to-data and data-to-activity dependency together pro-
vide a scope for the degree of data flows being distributed on
activities. Typically a high data-to-data dependency and a low
data-to-activity dependency together indicate an unbalanced
data flows over the entire business process. That means these
data have a large impact on a few composite activities while
a comparably small impact on others.

TABLE II
ACTIVITY-BASED DEPENDENCY

activity col1 col2 col3 col4 col5
activity-to-

data
dependency

69 73 47 21 24

activity-to-
activity

dependency

21 23 17 8 9

Table II lists the activity-to-data dependency and
activity-to-activity dependency of some composite
activities in the use case, where col1 to col5 respectively
represents public notification, insurance, loan agreement,
apartment purchasing application, and loan application. We
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Fig. 2. A BPMN example

find when it approaches the later executed composite activities,
their activity-to-activity and activity-to-data dependency tend
to become higher. Particularly, it is because more data is
generated and delivered along with the execution of the
business process. In other words, the later executed part of
the business process of this use case is more vulnerable to
handle the exceptions from the previously executed part of
the business process.

TABLE III
LABOR FORCE FACTOR

role col1 col2 col3 col4 col5
labor force

factor
23 5 17 12 10

Table III lists the labor force factor of some human ac-
tors in the use case, where col1 to col5 respectively repre-
sents applicant, insurance employee, government employee,
government officer, and bank employee. In this use case,
applicant needs to make the most effort to accomplish the
goals of this business process.

Compared with a execution order of business activities
delivered from the original BPMN model of this use case,
our product and policy models provide more information
including data flows and human actor involvement, and deliver
a well-understood and flexible modeling techniques for users.
Furthermore, along with the metrics, our modeling technique
provides ways to verify the validity of business process
models, and possible ways to optimize it.

B. Verification of Validity

One important property of a modeling language is to ac-
curately determine the validity of a business process, that is,
to ensure the execution of the modeled business process is
logically reasonable. Our product and policy models enable
viewing a business process from the dimensions of data
dependencies and human actor involvement, that could be
adopted as the perspectives for verifying the validity of the
modeled business process.

In the BPMN model of this use case, the business pro-
cess is in parallel initialized by the composite activities
apartment purchase application and loan application. That
implies the two of the composite activities are not able
to realize any data transactions in between. However, it is
safe and sound to conduct loan application with the official

document, e.g., approved appartment application form as an
evidence for banks to verify the loan qualification of the
applicant. While this can be easily deduced by applying data
flows of our approach, it is difficult for the original BPMN
model to deliver.

C. Optimization of Business Process

Our design of the metrics can be used for the optimization of
business processes. Particularly, people want to maintain a low
level of data dependencies and labor force factors. High data
dependencies of any data or composite activity reflects a high
possibility of exceptions, because it is significantly impacted
by the large amount of other data or activities. In addition,
a high labor force factor for a role represents the unbalanced
distribution of the workload of the entire business process, that
potentially leads to a waste of resources and low efficiency.

Some heuristics to optimize business processes under high
data dependencies include restricting the data flow, e.g., by
replacing some data types of one piece of data with other
data. To reduce the labor force factor, one can design more
parallel sub-processes where more roles can participate. This
can be a future research interest.

VI. DISCUSSION, CONCLUSIONS AND FUTURE WORK

In this paper we propose a goal-directed technique for
modeling a business process with composite activities and
designing its relevant metrics. A business process is modeled
by our product and policy models with composite activities.
A composite activity embodies data types, human actors,
and atomic activities as its components. Composite activi-
ties integrating with their associated components construct
business processes with multiple domain of views, that is,
execution order of composite activities, data flows, and hu-
man actor involvement. Moreover, These views potentially
provide a basis for optimizing business process models. To
explore this potential basis, we design a set of metrics of
data dependencies and labor force factor. We also develop
goal-directed algorithms, that is, modeling business goals as
final states of those metrics and backtrack them for their
evaluation. Data dependencies are comprised of four metrics
to depict the degree of interrelations of data and composite
activities, and their respective impact on the execution of
business processes. Labor force factor provides the level of
human actors being involved with the execution of a business



process and its associated composite activities. We design a
use case to illustrate our modeling of business process and
composite activities, evaluate the metrics, and explain the use
of our modeling techniques.

Our product and policy models are designed in a both
rigid and flexible manner. They are designed with rigorous
syntax that enables an explicit execution order of composite
activities, paths of data flows, and amount of human actor
involvement, and derives abstract-syntax-tree-based algorithms
of calculating the relevant metrics. On the other hand, this
rigorous syntax helps provide flexibility for business process
designers to use policy models, that is, execution blocks (i.e.,
while() loops) do not have to be placed in the context of
business process with strict chronological order. The use of
while() loops possibly separate the entire business processes
into multiple individually functioned sub-processes that en-
able a possible enactment on specific while() loops, without
interfering with others.

There is a variety of future work that can be implemented
to improve the quality and usability of our approach. For
instance, the principles of defining components of composite
activities need to be well formed. Researchers of [14] propose
that business process modeling techniques should be capable
of presenting one or more of functional (i.e., what), behavioral
(i.e., when and how), organizational (i.e., where and whom),
and informational (i.e., data) perspectives. In this paper we
include the functional, informational and part of behavioral
and organizational perspectives. In the future, components
of time and location can be taken into consideration for
designing our product and policy models and thus provide
more perspectives for optimization and evolution of business
processes. One possibility to realize this is to combine our
approach with other existing approaches, such as the graphics-
based techniques [28] [32] [19].

This rigidity and flexibility provide a possibility to transform
our product and policy models into executable languages for
automation for business process modeling. By developing
tools out of executable languages, the algorithms to calculate
metrics can be automatically implemented to provide results
that are the basis of the optimization and evolution of business
processes, especially for large-scale business processes.

The metrics of our approach are coarse-grained at the
current stage. Data dependencies and human actor involvement
that are accumulated from that of each composite activity
simply reflect the degree of overall data aggregation and
workload of roles on business processes. They do not explicitly
present the patterns of how these metrics are distributed
among different composite activities. Developing fine-grained
metrics to provide more explicit patterns of the objects can be
interesting in future researches.

Moreover, our approach is established on deterministic
business processes, that is, the results out of the execution
of previous composite activities is deterministically either one
composite activity or a combination of composite activities.
While in reality, execution of business processes are possi-
bly nondeterministic and provide diverse results. It can be

challenging to take nondeterministic business processes into
consideration to improve our modeling technique.

To evaluate the efficacy of our approach, we would like
to conduct case studies in industry to gain the feedback
from business actors and enterprise software engineers for its
improvement in the future. Moreover, we would like to apply
our approach in realistic environment, that is, use our approach
to construct and analyze business processes of enterprises.

Finally, in Service-oriented Architecture, business process-
es, as a layer, interact with IT-applications through the orches-
tration of a service layer in between [10]. Business services
that are designed based on the business activities impact and
guide the modeling of the services of IT-applications. Our long
term goals are to integrate modeling services with our current
approaches of business processes and activities and to explore
the interrelations between business services and IT-services.
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