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Abstract
We describe a probabilistic approach to the task of placing objects, de-
scribed by high-dimensional vectors or by pairwise dissimilarities, in a
low-dimensional space in a way that preserves neighbor identities. A
Gaussian is centered on each object in the high-dimensionalspace and
the densities under this Gaussian (or the given dissimilarities) are used
to define a probability distribution over all the potential neighbors of
the object. The aim of the embedding is to approximate this distribu-
tion as well as possible when the same operation is performedon the
low-dimensional “images” of the objects. A natural cost function is a
sum of Kullback-Leibler divergences, one per object, whichleads to a
simple gradient for adjusting the positions of the low-dimensional im-
ages. Unlike other dimensionality reduction methods, thisprobabilistic
framework makes it easy to represent each object by a mixtureof widely
separated low-dimensional images. This allows ambiguous objects, like
the document count vector for the word “bank”, to have versions close to
the images of both “river” and “finance” without forcing the images of
outdoor concepts to be located close to those of corporate concepts.

1 Introduction
Automatic dimensionality reduction is an important “toolkit” operation in machine learn-
ing, both as a preprocessing step for other algorithms (e.g.to reduce classifier input size)
and as a goal in itself for visualization, interpolation, compression, etc. There are many
ways to “embed” objects, described by high-dimensional vectors or by pairwise dissim-
ilarities, into a lower-dimensional space. Multidimensional scaling methods[1] preserve
dissimilarities between items, as measured either by Euclidean distance, some nonlinear
squashing of distances, or shortest graph paths as with Isomap[2, 3]. Principal compo-
nents analysis (PCA) finds a linear projection of the original data which captures as much
variance as possible. Other methods attempt to preserve local geometry (e.g. LLE[4]) or
associate high-dimensional points with a fixed grid of points in the low-dimensional space
(e.g. self-organizing maps[5] or their probabilistic extension GTM[6]). All of these meth-
ods, however, require each high-dimensional object to be associated with only a single
location in the low-dimensional space. This makes it difficult to unfold “many-to-one”
mappings in which a single ambiguous object really belongs in several disparate locations
in the low-dimensional space. In this paper we define a new notion of embedding based on
probable neighbors. Our algorithm, Stochastic Neighbor Embedding (SNE) tries to place
the objects in a low-dimensional space so as to optimally preserve neighborhood identity,
and can be naturally extended to allow multipledifferent low-d images of each object.



2 The basic SNE algorithm
For each object,i, and each potential neighbor,j, we start by computing the asymmetric
probability,pij , thati would pickj as its neighbor:pij = exp(�d2ij)Pk 6=i exp(�d2ik) (1)

The dissimilarities,d2ij , may be given as part of the problem definition (and need not be
symmetric), or they may be computed using the scaled squaredEuclidean distance (“affin-
ity”) between two high-dimensional points,xi;xj :d2ij = jjxi � xj jj22�2i (2)

where�i is either set by hand or (as in some of our experiments) found by a binary search
for the value of�i that makes the entropy of the distribution over neighbors equal tolog k.
Here,k is the effective number of local neighbors or “perplexity” and is chosen by hand.

In the low-dimensional space we also use Gaussian neighborhoods but with a fixed variance
(which we set without loss of generality to be12 ) so theinduced probabilityqij that pointi picks pointj as its neighbor is a function of the low-dimensionalimages yi of all the
objects and is given by the expression:qij = exp(�jjyi � yj jj2)Pk 6=i exp(�jjyi � ykjj2) (3)

The aim of the embedding is to match these two distributions as well as possible. This is
achieved by minimizing a cost function which is a sum of Kullback-Leibler divergences
between the original (pij) and induced (qij) distributions over neighbors for each object:C =Xi Xj pij log pijqij =Xi KL(PijjQi) (4)

The dimensionality of they space is chosen by hand (much less than the number of objects).
Notice that makingqij large whenpij is small wastes some of the probability mass in theq
distribution so there is a cost for modeling a big distance inthe high-dimensional space with
a small distance in the low-dimensional space, though it is less than the cost of modeling
a small distance with a big one. In this respect, SNE is an improvement over methods
like LLE [4] or SOM [5] in which widely separated data-pointscan be “collapsed” as near
neighbors in the low-dimensional space. The intuition is that while SNE emphasizes local
distances, its cost function cleanly enforces both keepingthe images of nearby objects
nearbyand keeping the images of widely separated objects relatively far apart.

Differentiating C is tedious becauseyk affectsqij via the normalization term in Eq. 3, but
the result is simple: �C�yi = 2Xj (yi � yj)(pij � qij + pji � qji) (5)

which has the nice interpretation of a sum of forces pullingyi towardyj or pushing it away
depending on whetherj is observed to be a neighbor more or less often than desired.

Given the gradient, there are many possible ways to minimizeC and we have only just be-
gun the search for the best method. Steepest descent in whichall of the points are adjusted
in parallel is inefficient and can get stuck in poor local optima. Adding random jitter that
decreases with time finds much better local optima and is the method we used for the exam-
ples in this paper, even though it is still quite slow. We initialize the embedding by putting
all the low-dimensional images in random locations very close to the origin. Several other
minimization methods, including annealing the perplexity, are discussed in sections 5&6.



3 Application of SNE to image and document collections
As a graphic illustration of the ability of SNE to model high-dimensional, near-neighbor
relationships using only two dimensions, we ran the algorithm on a collection of bitmaps of
handwritten digits and on a set of word-author counts taken from the scanned proceedings
of NIPS conference papers. Both of these datasets are likelyto have intrinsic structure in
many fewer dimensions than their raw dimensionalities: 256for the handwritten digits and
13679 for the author-word counts.

To begin, we used a set of3000 digit bitmaps from the UPS database[7] with600 examples
from each of the five classes 0,1,2,3,4. The variance of the Gaussian around each point
in the256-dimensional raw pixel image space was set to achieve a perplexity of 15 in the
distribution over high-dimensional neighbors. SNE was initialized by putting all theyi
in random locations very close to the origin and then was trained using gradient descent
with annealed noise. Although SNE was given no information about class labels, it quite
cleanly separates the digit groups as shown in figure 1. Furthermore, within each region of
the low-dimensional space, SNE has arranged the data so thatproperties like orientation,
skew and stroke-thickness tend to vary smoothly. For the embedding shown, the SNE
cost function in Eq. 4 has a value of6719 nats; with a uniform distribution across low-
dimensional neighbors, the cost is3000 loge(2999=15) = 15894 nats. We also applied
principal component analysis (PCA)[8] to the same data; theprojection onto the first two
principal components does not separate classes nearly as cleanly as SNE because PCA is
much more interested in getting the large separations rightwhich causes it to jumble up
some of the boundaries between similar classes. In this experiment, we used digit classes
that do not have very similar pairs like 3 and 5 or 7 and 9. When there are more classes and
only two available dimensions, SNE does not as cleanly separate very similar pairs.

We have also applied SNE to word-document and word-author matrices calculated from
the OCRed text of NIPS volume 0-12 papers[9]. Figure 2 shows amap locating NIPS au-
thors into two dimensions. Each of the 676 authors who published more than one paper
in NIPS vols. 0-12 is shown by a dot at the positionyi found by SNE; larger red dots
and corresponding last names are authors who published six or more papers in that period.
Distancesdij were computed as the norm of the difference between log aggregate author
word counts, summed across all NIPS papers. Co-authored papers gave fractional counts
evenly to all authors. All words occurring in six or more documents were included, ex-
cept for stopwords giving a vocabulary size of 13649. (Thebow toolkit[10] was used for
part of the pre-processing of the data.) The�i were set to achieve a local perplexity ofk = 25 neighbors. SNE seems to have grouped authors by broad NIPS field: generative
models, support vector machines, neuroscience, reinforcement learning and VLSI all have
distinguishable localized regions.

4 A full mixture version of SNE
The clean probabilistic formulation of SNE makes it easy to modify the cost function so
that instead of a single image, each high-dimensional object can have several different
versions of its low-dimensional image. These alternative versions have mixing proportions
that sum to1. Image-versionb of objecti has locationyib and mixing proportion�ib . The
low-dimensional neighborhood distribution fori is a mixture of the distributions induced
by each of its image-versions across all image-versions of apotential neighborj:qij =Xb �ib X
 �j
 exp(�jjyib � yj
 jj2)PkPd �kd exp(�jjyib � ykd jj2) (6)

In this multiple-image model, the derivatives with respectto the image locationsyib are
straightforward; the derivatives w.r.t the mixing proportions�ib are most easily expressed



Figure 1: The result of running the SNE algorithm on3000 256-dimensional grayscale
images of handwritten digits. Pictures of the original datavectorsxi (scans of handwritten
digit) are shown at the location corresponding to their low-dimensional imagesyi as found
by SNE. The classes are quite well separated even though SNE had no information about
class labels. Furthermore, within each class, properties like orientation, skew and stroke-
thickness tend to vary smoothly across the space. Not all points are shown: to produce this
display, digits are chosen in random order and are only displayed if a16 x 16 region of the
display centered on the 2-D location of the digit in the embedding does not overlap any of
the16 x16 regions for digits that have already been displayed.

(SNE was initialized by putting all theyi in random locations very close to the origin and then was
trained using batch gradient descent (see Eq. 5) with annealed noise. The learning rate was 0.2. For
the first 3500 iterations, each 2-D point was jittered by adding Gaussian noise with a standard devia-
tion of 0:3 after each position update. The jitter was then reduced to0 for a further500 iterations.)
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Figure 2: Embedding of NIPS authors into two dimensions. Each of the 676 authors
who published more than one paper in NIPS vols. 0-12 is show bya dot at the lo-
cationyi found by the SNE algorithm. Larger red dots and corresponding last names
are authors who published six or more papers in that period. The inset in upper left
shows a blowup of the crowded boxed central portion of the space. Dissimilarities be-
tween authors were computed based on squared Euclidean distance between vectors of
log aggregate author word counts. Co-authored papers gave fractional counts evenly
to all authors. All words occurring in six or more documents were included, except
for stopwords giving a vocabulary size of 13649. The NIPS text data is available at
http://www.cs.toronto.edu/�roweis/data.html.



in terms ofribj
 , the probability that versionb of i picks version
 of j:ribj
 = �j
 exp(�jjyib � yj
 jj2)PkPd �kd exp(�jjyib � ykd jj2) (7)

The effect onqij of changing the mixing proportion for versiong of objectm is given by�qij��mg = ÆmiX
 rmgj
 +Xb �ib�mg ribmg "Æmj �X
 ribj
# (8)

whereÆmi = 1 if m = i and0 otherwise. The effect of changing�mg on the cost, C, is�C��mg = �Xi Xj pijqij �qij��mg (9)

Rather than optimizing the mixing proportions directly, itis easier to perform unconstrained
optimization on “softmax weights” defined by�ib = exp(wib )=Pf exp(wif ).
As a “proof-of-concept”, we recently implemented a simplified mixture version in which
every object is represented in the low-dimensional space byexactly two components that
are constrained to have mixing proportions of0:5. The two components are pulled together
by a force which increases linearly up to a threshold separation. Beyond this threshold
the force remains constant.1 We ran two experiments with this simplified mixture version
of SNE. We took a dataset containing300 pictures of each of the digits 2,3,4 and added100 hybrid digit-pictures that were each constructed by picking new examples of two of
the classes and taking each pixel at random from one of these two “parents”. After mini-
mization,66% of the hybrids and only19% of the non-hybrids had significantly different
locations for their two mixture components. Moreover, the mixture components of each
hybrid always lay in the regions of the space devoted to the classes of its two parents and
never in the region devoted to the third class. For this example we used a perplexity of10
in defining the local neighborhoods, a step size of for each position update of0:7 times the
gradient, and used a constant jitter of0:05. Our very simple mixture version of SNE also
makes it possible to map a circle onto a line without losing any near neighbor relationships
or introducing any new ones. Points near one “cut point” on the circle can mapped to a
mixture of two points, one near one end of the line and one nearthe other end. Obviously,
the location of the cut on the two-dimensional circle gets decided by which pairs of mixture
components split first during the stochastic optimization.For certain optimization param-
eters that control the ease with which two mixture components can be pulled apart, only
a single cut in the circle is made. For other parameter settings, however, the circle may
fragment into two or more smaller line-segments, each of which is topologically correct
but which may not be linked to each other.

The example with hybrid digits demonstrates that even the most primitive mixture version
of SNE can deal with ambiguous high-dimensional objects that need to be mapped to two
widely separated regions of the low-dimensional space. More work needs to be done before
SNE is efficient enough to cope with large matrices of document-word counts, but it is
the only dimensionality reduction method we know of that promises to treat homonyms
sensibly without going back to the original documents to disambiguate each occurrence of
the homonym.

1We used a threshold of0:05. At threshold the force was0:025 nats per unit length. The low-d
space has a natural scale because the variance of the Gaussian used to determineqij is fixed at 0.5.



5 Practical optimization strategies
Our current method of reducing the SNE cost is to use steepestdescent with added jitter
that is slowly reduced. This produces quite good embeddings, which demonstrates that the
SNE cost function is worth minimizing, but it takes several hours to find a good embedding
for just3000 datapoints so we clearly need a better search algorithm.

The time per iteration could be reduced considerably by ignoring pairs of points for which
all four of pij ; pji; qij ; qji are small. Since the matrixpij is fixed during the learning, it is
natural to sparsify it by replacing all entries below a certain threshold with zero and renor-
malizing. Then pairsi; j for which bothpij andpji are zero can be ignored from gradient
calculations if bothqij andqji are small. This can in turn be determined in logarithmic
time in the size of the training set by using sophisticated geometric data structures such
as K-D trees, ball-trees and AD-trees, since theqij depend only onkyi � yjk2. Com-
putational physics has attacked exactly this same complexity when performing multibody
gravitational or electrostatic simulations using, for example, the fast multipole method.

In the mixture version of SNE there appears to be an interesting way of avoiding local
optima that does not involve annealing the jitter. Considertwo components in the mixture
for an object that are far apart in the low-dimensional space. By raising the mixing propor-
tion of one and lowering the mixing proportion of the other, we can move probability mass
from one part of the space to another without it ever appearing at intermediate locations.
This type of “probability wormhole” seems like a good way to avoid local optima that arise
because a cluster of low-dimensional points must move through a bad region of the space
in order to reach a better one.

Yet another search method, which we have used with some success on toy problems, is
to provide extra dimensions in the low-dimensional space but to penalize non-zero values
on these dimensions. During the search, SNE will use the extra dimensions to go around
lower-dimensional barriers but as the penalty on using these dimensions is increased, they
will cease to be used, effectively constraining the embedding to the original dimensionality.

6 Discussion and Conclusions
Preliminary experiments show that we can find good optima by first annealing the perplex-
ities �2i (using high jitter) and only reducing the jitter after the final perplexity has been
reached. This raises the question of what SNE is doing when the variance,�2i , of the Gaus-
sian centered on each high-dimensional point is very big so that the distribution across
neighbors is almost uniform. It is clear that in the high variance limit, the contribution ofpij log(pij=qij) to the SNE cost function is just as important for distant neighbors as for
close ones. When�2i is very large, it can be shown that SNE is equivalent to minimizing the
mismatch between squared distances in the two spaces, provided all the squared distances
from an objecti are first normalized by subtracting off their “antigeometric” mean,g2i :Mismat
h =Xij h(d2ij � g2i )� (d̂2ij � ĝ2i )i2 (10)d2ij = jjxi � xj jj2=�2; g2i = � logXk 6=i exp(�d2ik)n� 1 ; (11)d̂2ij = jjyi � yj jj2=�2; ĝ2i = � logXk 6=i exp(�d̂2ik)n� 1 (12)

wheren is the number of objects.



This mismatch is very similar to “stress” functions used in nonmetric versions of MDS,
and enables us to understand the large-variance limit of SNEas a particular variant of such
procedures. We are still investigating the relationship tometric MDS and to PCA.

SNE can also be seen as an interesting special case of Linear Relational Embedding (LRE)
[11]. In LRE the data consists of triples (e.g. Colin has-mother Victoria) and the task
is to predict the third term from the other two. LRE learns an N-dimensional vector for
each object and an NxN-dimensional matrix for each relation. To predict the third term in
a triple, LRE multiplies the vector representing the first term by the matrix representing
the relationship and uses the resulting vector as the mean ofa Gaussian. Its predictive
distribution for the third term is then determined by the relative densities of all known
objects under this Gaussian. SNE is just a degenerate version of LRE in which the only
relationship is “near” and the matrix representing this relationship is the identity.

In summary, we have presented a new criterion, Stochastic Neighbor Embedding, for map-
ping high-dimensional points into a low-dimensional spacebased on stochastic selection
of similar neighbors. Unlike self-organizing maps, in which the low-dimensional coor-
dinates are fixed to a grid and the high-dimensional ends are free to move, in SNE the
high-dimensional coordinates are fixed to the data and the low-dimensional points move.
Our method can also be applied to arbitrary pairwise dissimilarities between objects if such
are available instead of (or in addition to) high-dimensional observations. The gradient of
the SNE cost function has an appealing “push-pull” propertyin which the forces acting onyi to bring it closer to points it is under-selecting and further from points it is over-selecting
as its neighbor. We have shown results of applying this algorithm to image and document
collections for which it sensibly placed similar objects nearby in a low-dimensional space
while keeping dissimilar objects well separated.

Most importantly, because of its probabilistic formulation, SNE has the ability to be ex-
tended to mixtures in which ambiguous high-dimensional objects (such as the word “bank”)
can have several widely-separated images in the low-dimensional space.
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