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Abstract

We describe a probabilistic approach to the task of placimjgats, de-
scribed by high-dimensional vectors or by pairwise diskinties, in a
low-dimensional space in a way that preserves neighbottittem A
Gaussian is centered on each object in the high-dimensspzale and
the densities under this Gaussian (or the given dissirtidajiare used
to define a probability distribution over all the potentiaighbors of
the object. The aim of the embedding is to approximate trsgritu-
tion as well as possible when the same operation is perfoonetthe
low-dimensional “images” of the objects. A natural costdtion is a
sum of Kullback-Leibler divergences, one per object, wHedls to a
simple gradient for adjusting the positions of the low-dirsi@nal im-
ages. Unlike other dimensionality reduction methods, pinisbabilistic
framework makes it easy to represent each object by a misfusédely
separated low-dimensional images. This allows ambigubjects, like
the document count vector for the word “bank”, to have varsiclose to
the images of both “river” and “finance” without forcing thmages of
outdoor concepts to be located close to those of corporateeqs.

1 Introduction

Automatic dimensionality reduction is an important “toislloperation in machine learn-
ing, both as a preprocessing step for other algorithms ¢e.geduce classifier input size)
and as a goal in itself for visualization, interpolationjgaression, etc. There are many
ways to “embed” objects, described by high-dimensionatanmscor by pairwise dissim-
ilarities, into a lower-dimensional space. Multidimensb scaling methods[1] preserve
dissimilarities between items, as measured either by Beah distance, some nonlinear
squashing of distances, or shortest graph paths as withajs@n3]. Principal compo-
nents analysis (PCA) finds a linear projection of the origdsta which captures as much
variance as possible. Other methods attempt to preseraédeometry (e.g. LLE[4]) or
associate high-dimensional points with a fixed grid of peintthe low-dimensional space
(e.g. self-organizing maps[5] or their probabilistic exd®n GTM[6]). All of these meth-
ods, however, require each high-dimensional object to Bedated with only a single
location in the low-dimensional space. This makes it diffita unfold “many-to-one”
mappings in which a single ambiguous object really belongseiveral disparate locations
in the low-dimensional space. In this paper we define a neiwmof embedding based on
probable neighbors. Our algorithm, Stochastic NeighbobEdding (SNE) tries to place
the objects in a low-dimensional space so as to optimallggite neighborhood identity,
and can be naturally extended to allow multigifferent low-d images of each object.



2 Thebasic SNE algorithm

For each object;, and each potential neighbgr, we start by computing the asymmetric
probability,p;;, thati would pickj as its neighbor:
exp(—d%)
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The dissimilaritiesd‘fj, may be given as part of the problem definition (and need not be

symmetric), or they may be computed using the scaled sqiareliiean distance (“affin-
ity”) between two high-dimensional points;, x; :
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whereg; is either set by hand or (as in some of our experiments) foyrallinary search
for the value ofr; that makes the entropy of the distribution over neighbotsaétplog k.
Here,k is the effective number of local neighbors or “perplexityidais chosen by hand.

In the low-dimensional space we also use Gaussian neigbbdstbut with a fixed variance
(which we set without loss of generality to lée so theinduced probability ¢;; that point

i picks pointj as its neighbor is a function of the low-dimensioimabges y; of all the
objects and is given by the expression:
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The aim of the embedding is to match these two distributianaell as possible. This is
achieved by minimizing a cost function which is a sum of Kattk-Leibler divergences
between the original(;) and inducedq;;) distributions over neighbors for each object:

C=Y" pijlog? =3 KL(P||Q) (@)
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The dimensionality of thg space is chosen by hand (much less than the number of objects)
Notice that making;; large wherp;; is small wastes some of the probability mass in¢he
distribution so there is a cost for modeling a big distanab@high-dimensional space with

a small distance in the low-dimensional space, though #ss than the cost of modeling

a small distance with a big one. In this respect, SNE is an dngment over methods
like LLE [4] or SOM [5] in which widely separated data-poirttan be “collapsed” as near
neighbors in the low-dimensional space. The intuition & thihile SNE emphasizes local
distances, its cost function cleanly enforces both keefliegimages of nearby objects
nearbyand keeping the images of widely separated objects relatialppart.

Differentiating C is tedious becaugg affectsg;; via the normalization term in Eq. 3, but
the result is simple:
ocC
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which has the nice interpretation of a sum of forces puljipgowardy ; or pushing it away
depending on whethgris observed to be a neighbor more or less often than desired.

Given the gradient, there are many possible ways to minifiizad we have only just be-
gun the search for the best method. Steepest descent in alhaftthe points are adjusted
in parallel is inefficient and can get stuck in poor local omi Adding random jitter that
decreases with time finds much better local optima and is #tbod we used for the exam-
ples in this paper, even though it is still quite slow. Weialize the embedding by putting
all the low-dimensional images in random locations venselto the origin. Several other
minimization methods, including annealing the perplextg discussed in sections 5&6.



3 Application of SNE to image and document collections

As a graphic illustration of the ability of SNE to model higlimensional, near-neighbor
relationships using only two dimensions, we ran the algaribn a collection of bitmaps of
handwritten digits and on a set of word-author counts takem the scanned proceedings
of NIPS conference papers. Both of these datasets are liadigve intrinsic structure in
many fewer dimensions than their raw dimensionalities: 26&he handwritten digits and
13679 for the author-word counts.

To begin, we used a set 83000 digit bitmaps from the UPS database[7] withD examples
from each of the five classes 0,1,2,3,4. The variance of thes&an around each point
in the 256-dimensional raw pixel image space was set to achieve agéipbf 15 in the
distribution over high-dimensional neighbors. SNE wasiatized by putting all they;

in random locations very close to the origin and then wasig@iusing gradient descent
with annealed noise. Although SNE was given no informatibou class labels, it quite
cleanly separates the digit groups as shown in figure 1. Eurtare, within each region of
the low-dimensional space, SNE has arranged the data spribyarties like orientation,
skew and stroke-thickness tend to vary smoothly. For theeglding shown, the SNE
cost function in Eq. 4 has a value 6719 nats; with a uniform distribution across low-
dimensional neighbors, the costd8001log,(2999/15) = 15894 nats. We also applied
principal component analysis (PCA)[8] to the same dataptiogection onto the first two
principal components does not separate classes nearlgaslylas SNE because PCA is
much more interested in getting the large separations rigtith causes it to jumble up
some of the boundaries between similar classes. In thisiexeet, we used digit classes
that do not have very similar pairs like 3 and 5 or 7 and 9. Wiheng are more classes and
only two available dimensions, SNE does not as cleanly s¢paery similar pairs.

We have also applied SNE to word-document and word-authdticea calculated from
the OCRed text of NIPS volume 0-12 papers[9]. Figure 2 shomsya locating NIPS au-
thors into two dimensions. Each of the 676 authors who plbtdsmore than one paper
in NIPS vols. 0-12 is shown by a dot at the positipnfound by SNE; larger red dots
and corresponding last names are authors who published siwi@ papers in that period.
Distancesl;; were computed as the norm of the difference between log ggtreauthor
word counts, summed across all NIPS papers. Co-authoreztpgpve fractional counts
evenly to all authors. All words occurring in six or more dowents were included, ex-
cept for stopwords giving a vocabulary size of 13649. (boevtoolkit[10] was used for
part of the pre-processing of the data.) Tdewere set to achieve a local perplexity of
k = 25 neighbors. SNE seems to have grouped authors by broad NIES denerative
models, support vector machines, neuroscience, reinfoeotlearning and VLSI all have
distinguishable localized regions.

4 A full mixture version of SNE

The clean probabilistic formulation of SNE makes it easy wdify the cost function so
that instead of a single image, each high-dimensional olgj@e have several different
versions of its low-dimensional image. These alternateesions have mixing proportions
that sum tol. Image-versiom of objecti has locatiory;, and mixing proportionr;,. The
low-dimensional neighborhood distribution fofs a mixture of the distributions induced
by each of its image-versions across all image-versiongoftential neighboy:
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In this multiple-image model, the derivatives with respecthe image locationg;, are
straightforward; the derivatives w.r.t the mixing proporis;, are most easily expressed
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Figure 1: The result of running the SNE algorithm 8000 256-dimensional grayscale
images of handwritten digits. Pictures of the original datatorsx; (scans of handwritten
digit) are shown at the location corresponding to their ivwiensional imageg; as found
by SNE. The classes are quite well separated even though &lBdinformation about
class labels. Furthermore, within each class, propeitesdrientation, skew and stroke-
thickness tend to vary smoothly across the space. Not altpare shown: to produce this
display, digits are chosen in random order and are only aysal if a16 x 16 region of the
display centered on the 2-D location of the digit in the entieg does not overlap any of
the 16 x16 regions for digits that have already been displayed.

(SNE was initialized by putting all thg; in random locations very close to the origin and then was
trained using batch gradient descent (see Eq. 5) with aedewdise. The learning rate was 0.2. For
the first 3500 iterations, each 2-D point was jittered by agdbaussian noise with a standard devia-
tion of 0.3 after each position update. The jitter was then reducédfto a further500 iterations.)
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Figure 2: Embedding of NIPS authors into two dimensions. hEeficthe 676 authors
who published more than one paper in NIPS vols. 0-12 is shove lopt at the lo-
cationy; found by the SNE algorithm. Larger red dots and correspanttist names
are authors who published six or more papers in that periotle ifiset in upper left
shows a blowup of the crowded boxed central portion of theespaDissimilarities be-
tween authors were computed based on squared Euclideamaiisbetween vectors of
log aggregate author word counts. Co-authored papers gactohal counts evenly
to all authors. All words occurring in six or more documentere included, except
for stopwords giving a vocabulary size of 13649. The NIPS tata is available at
http://ww. cs.toronto. edu/ ~rowei s/data. htmnl .



in terms ofr;, ;. , the probability that versioh of i picks versiorc of j:
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The effect ory;; of changing the mixing proportion for versignof objectm is given by
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whered,,; = 1if m = i and0 otherwise. The effect of changing,, on the cost, C, is
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Rather than optimizing the mixing proportions directlysieasier to perform unconstrained
optimization on “softmax weights” defined by, = exp(w;,)/ >_; exp(wi, ).

As a “proof-of-concept”, we recently implemented a simplifimixture version in which
every object is represented in the low-dimensional spacexigtly two components that
are constrained to have mixing proportiong)af. The two components are pulled together
by a force which increases linearly up to a threshold semaratBeyond this threshold
the force remains constahtwWe ran two experiments with this simplified mixture version
of SNE. We took a dataset containiig0 pictures of each of the digits 2,3,4 and added
100 hybrid digit-pictures that were each constructed by pigkiew examples of two of
the classes and taking each pixel at random from one of theséparents”. After mini-
mization,66% of the hybrids and onlyt9% of the non-hybrids had significantly different
locations for their two mixture components. Moreover, thixtare components of each
hybrid always lay in the regions of the space devoted to tassels of its two parents and
never in the region devoted to the third class. For this exame used a perplexity af0

in defining the local neighborhoods, a step size of for eaditipo update of).7 times the
gradient, and used a constant jitter0od5. Our very simple mixture version of SNE also
makes it possible to map a circle onto a line without losing raear neighbor relationships
or introducing any new ones. Points near one “cut point” andhicle can mapped to a
mixture of two points, one near one end of the line and one theaother end. Obviously,
the location of the cut on the two-dimensional circle getsdied by which pairs of mixture
components split first during the stochastic optimizatiBar certain optimization param-
eters that control the ease with which two mixture composieah be pulled apart, only
a single cut in the circle is made. For other parameter ggtfihowever, the circle may
fragment into two or more smaller line-segments, each otthvlis topologically correct
but which may not be linked to each other.

The example with hybrid digits demonstrates that even thstpiémitive mixture version
of SNE can deal with ambiguous high-dimensional objectsribad to be mapped to two
widely separated regions of the low-dimensional space evark needs to be done before
SNE is efficient enough to cope with large matrices of documerd counts, but it is
the only dimensionality reduction method we know of thatrpiges to treat homonyms
sensibly without going back to the original documents tadibiguate each occurrence of
the homonym.

1We used a threshold @f05. At threshold the force was.025 nats per unit length. The low-d
space has a natural scale because the variance of the Gawsséato determing; is fixed at 0.5.



5 Practical optimization strategies

Our current method of reducing the SNE cost is to use steggssent with added jitter
that is slowly reduced. This produces quite good embeddimigich demonstrates that the
SNE cost function is worth minimizing, but it takes severalits to find a good embedding
for just 3000 datapoints so we clearly need a better search algorithm.

The time per iteration could be reduced considerably byiigiygpairs of points for which
all four of p;;, pjs, ¢ij. q;; are small. Since the matrix; is fixed during the learning, it is
natural to sparsify it by replacing all entries below a certareshold with zero and renor-
malizing. Then pairs, j for which bothp;; andp;; are zero can be ignored from gradient
calculations if bothy;; andg;; are small. This can in turn be determined in logarithmic
time in the size of the training set by using sophisticatedngetric data structures such
as K-D trees, ball-trees and AD-trees, since ¢hedepend only orly; — y;||*>. Com-
putational physics has attacked exactly this same contplexien performing multibody
gravitational or electrostatic simulations using, for exde, the fast multipole method.

In the mixture version of SNE there appears to be an intergstiay of avoiding local
optima that does not involve annealing the jitter. Constdercomponents in the mixture
for an object that are far apart in the low-dimensional sp8geraising the mixing propor-
tion of one and lowering the mixing proportion of the otheg san move probability mass
from one part of the space to another without it ever appgaatrintermediate locations.
This type of “probability wormhole” seems like a good way toal local optima that arise
because a cluster of low-dimensional points must move titr@ubad region of the space
in order to reach a better one.

Yet another search method, which we have used with some ssictetoy problems, is
to provide extra dimensions in the low-dimensional spadedpenalize non-zero values
on these dimensions. During the search, SNE will use the @itnensions to go around
lower-dimensional barriers but as the penalty on usinggliésiensions is increased, they
will cease to be used, effectively constraining the emhegitt the original dimensionality.

6 Discussion and Conclusions

Preliminary experiments show that we can find good optimarsydinnealing the perplex-
ities o7 (using high jitter) and only reducing the jitter after thedirperplexity has been
reached. This raises the question of what SNE is doing wrewnatianceg?, of the Gaus-
sian centered on each high-dimensional point is very bighat the distribution across
neighbors is almost uniform. It is clear that in the high sage limit, the contribution of
pi; log(pij/gi;) to the SNE cost function is just as important for distant hbiys as for
close ones. Whes? is very large, it can be shown that SNE is equivalent to mining the
mismatch between squared distances in the two spacesdpdoil the squared distances
from an object are first normalized by subtracting off their “antigeometrnean,g?:

o~ - 2
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wheren is the number of objects.



This mismatch is very similar to “stress” functions used anmetric versions of MDS,
and enables us to understand the large-variance limit of &\&particular variant of such
procedures. We are still investigating the relationshimttric MDS and to PCA.

SNE can also be seen as an interesting special case of LietidRal Embedding (LRE)
[11]. In LRE the data consists of triplee.g. Colin has-mother Victoria) and the task
is to predict the third term from the other two. LRE learns awlishensional vector for
each object and an NxN-dimensional matrix for each relatianpredict the third term in
a triple, LRE multiplies the vector representing the firsieby the matrix representing
the relationship and uses the resulting vector as the meanGdiussian. Its predictive
distribution for the third term is then determined by theat®le densities of all known
objects under this Gaussian. SNE is just a degenerate mes§ibRE in which the only
relationship is “near” and the matrix representing thistieinship is the identity.

In summary, we have presented a new criterion, Stochastghlder Embedding, for map-
ping high-dimensional points into a low-dimensional sphased on stochastic selection
of similar neighbors. Unlike self-organizing maps, in whithe low-dimensional coor-
dinates are fixed to a grid and the high-dimensional endsraeetb move, in SNE the
high-dimensional coordinates are fixed to the data and tivedimensional points move.
Our method can also be applied to arbitrary pairwise didaiities between objects if such
are available instead of (or in addition to) high-dimensiorbservations. The gradient of
the SNE cost function has an appealing “push-pull” propertyhich the forces acting on
y; to bring it closer to points it is under-selecting and furtirem points it is over-selecting
as its neighbor. We have shown results of applying this élyorto image and document
collections for which it sensibly placed similar objectangy in a low-dimensional space
while keeping dissimilar objects well separated.

Most importantly, because of its probabilistic formulaticiGNE has the ability to be ex-
tended to mixtures in which ambiguous high-dimensionatotsj (such as the word “bank”)
can have several widely-separated images in the low-diinealsspace.
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