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Abstract. We present a new approach to learning hypertext classifiers that combines a statistical text-learning
method with a relational rule learner. This approach is well suited to learning in hypertext domains because its
statistical component allows it to characterize text in terms of word frequencies, whereas its relational component
is able to describe how neighboring documents are related to each other by hyperlinks that connect them. We
evaluate our approach by applying it to tasks that involve learning definitions for (i) classes of pages, (ii) particular
relations that exist between pairs of pages, and (iii) locating a particular class of information in the internal structure

of pages. Our experiments demonstrate that this new approach is able to learn more accurate classifiers than either
of its constituent methods alone.
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1. Introduction

In recent years there has been a great deal of interest in applying machine-learning methods
to a variety of problems in classifying and extracting information from text. In large part,
this trend has been sparked by the explosive growth of the World Wide Web. An interesting
aspect of the Web is that it can be thought of as a graph in which pages are the nodes of the
graph and hyperlinks are the edges. The graph structure of the Web makes it an interesting
domain for relational learning. In previous work (Craven, Slattery, & Nigam,1998b), we
demonstrated that for several Web-based learning tasks, a relational learning algorithm can
learn more accurate classifiers than a common statistical approach. In this paper, we present
a new approach to learning hypertext classifiers that combines a statistical text-learning
method with a relational rule learner. We present experiments that evaluate one particular
instantiation of this general approach: @ai=based (Quinlan, 1990; Quinlan & Cameron-
Jones, 1993) learner augmented with the ability to invent predicates using a Naive Bayes
text classifier. Our experiments indicate that this approach is able to learn classifiers that
are often more accurate than either purely statistical or purely relational alternatives.

In previous research, the Web has provided a fertile domain for a variety of machine-
learning tasks, including learning to assist users in searches (Joachims, Freitag, & Mitchell,
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1997), learning information extractors (Kushmerick, Weld, & Doorenbos, 1997; Soderland,
1997), learning user interests (Mladenl996; Pazzani, Muramatsu, & Billsus, 1996), and
others. Most of the research in this field has involved (i) using propositional or statistical
learners, and (ii) representing documents by the words that occur in them. Our approach is
motivated by two key properties of hypertext:

e Documents (i.e. pages) are related to one another by hyperlinks. Important sources of
evidence for Web learning tasks can often be found in neighboring pages and hyperlinks.

e Large feature sets are needed to represent the content of documents because natural
language involves large vocabularies. Typically, text classifiers have feature spaces of
hundreds or thousands of words.

Because it uses a relational learner, our approach is able to represent document relationships
(i.e. arbitrary parts of the hypertext graph) in its learned definitions. Because it also uses a
statistical learner with a feature-selection method, it is able to learn accurate definitions in
domains with large vocabularies. Although our algorithm was designed with hypertext in
mind, we believe it is applicable to other domains that involve both relational structure and
large feature sets.

In the next section we describe the commonly useidof-wordsandbag-of-wordsep-
resentations for learning text classifiers. We describe the use of bag-of-words with the
Naive Bayes algorithm, which is often applied to text learning problems. We then describe
how a relational learner, such aslIE, can use a set-of-words representation along with
background relations describing the connectivity of pages for hypertext learning tasks. In
Section 3, we describe our new approach to learning in hypertext domains. Our method
is based on the Naive Bayes andiFalgorithms presented in Section 2. In Section 4 we
empirically evaluate our algorithm on three types of tasks—Ilearning definitions of page
classes, learning definitions of relations between pages, and learning to locate a particular
type of information within pages—that we have investigated as part of an effort aimed at
developing methods for automatically constructing knowledge bases by extracting infor-
mation from the Web (Craven, DiPasquo, Freitag, McCallum, Mitchell, Nigam, & Slattery,
1998a). Finally, Section 6 provides conclusions and discusses future work.

2. Two approaches to hypertext learning

In this section we describe two approaches to learning in text domains. First we discuss the
Naive Bayealgorithm, which is commonly used for text classification, and then we describe
an approach that involves using a relational learning method, suahig€kinlan, 1990;
Quinlan & Cameron-Jones, 1993), for such tasks. These two algorithms are the constituents
of the hybrid algorithm that we present in Section 3.

2.1. Naive Bayes for text classification

Mostwork in learning text classifiers involves representing documents assstisef words
or bags of wordsBoth of these are based on a vector representation of documents, with
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each element corresponding to a distinct word. The set-of-words representation indicates
only word presence or absence in the document, while the bag-of-words representation
takes the frequency of the word in the document into account. The key assumption made
by these representations is that the position of a word in a document does not matter (i.e.
encountering the worthachineat the beginning of a document is the same as encountering
it at the end).

The Naive Bayes classifier with a bag-of-words document representation is commonly
used for text classification (Mitchell, 1997). Given a documentwith n words
(w1, wa, ..., wn), we can determine the probability thatbelongs to thejth class,c;,
as follows:

Pr(cj) Pr(d| c;) - Pr(c) [T, Pr(wi | ¢j)

Pricj |d) = —F519) Prd)

)

Using this method to classify a document into one of a set of claSsage simply
calculate:

arg maxPr(c;) l_[ Pr(w | ¢)). 2)
i€ i=1

In order to make the word probability estimateg#r| c;) robust with respect to infre-
quently encountered words, it is common to use a smoothing method to calculate them.
Once such smoothing technique is to use Laplace estimates:

N(wi, cj) +1
Pl o) = =Ny + 7
where N (wi, ¢j) is the number of times word; appears in training set examples from
classcj, N(c;j) is the total number of words in the training set for clasandT is the total
number of unique words in the corpus.

In addition to the position-independence assumption implicit in the bag-of-words rep-
resentation, Naive Bayes makes the additional assumption that the occurrence of a given
word in a document is independent of all other words in the document, given the class.
Clearly, this assumption does not hold in real text documents. However, in practice Naive
Bayes classifiers often perform quite well (Lewis & Ringuette, 1994).

Since document corpora typically have vocabularies of thousands of words, itis common
in text learning to use some type of feature selection method. Frequently used methods
include

(i) dropping putatively un-informative words that occur ostap-list
(i) dropping words that occur fewer than a specified number of times in the training set,
(i) ranking words by a measure such as their mutual information with the class variable,
and then dropping low-ranked words (Yang & Pederson, 1997), and
(iv) stemming Stemming refers to the process of heuristically reducing words to their
root form. For example, using the Porter stemmer (Porter, 1980), the wongsute
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computerandcomputingvould be stemmed to the roodmput Even after employing
such feature-selection methods, itis common to use feature sets consisting of hundreds
or thousands of words.

Note that while direct application of Formula 2 provides a classification for a document,
we can use the probabilities generated as a measure of confidence in a predicted class.
Depending on the intended application of our learned models, we may want to accept only
some of our most confident predictions. In the experiments presented in Section 4, we
consider how the predictive accuracy of various learned models changes as we limit our
predictions by thresholding on confidence.

2.2. Relational text learning

Both propositional and relational symbolic rule learners have also been used for text learn-
ing tasks (Cohen, 1995a, 1995b; Moulinier, dRaiis, & Ganascia, 1996). We argue that
relational learners are especially appealing for learning in hypertext domains because they
enable learned classifiers to represent the relationships among documents as well as in-
formation about the occurrence of words in documents. In previous work (Craven et al.,
1998b), we demonstrated that this ability enables relational methods to learn more accurate
classifiers than propositional methods in some cases.

In Section 4, we present experiments in which we apply Fo several hypertext learning
tasks. The problem representation we use for our relational learning tasks consists of the
following background relations:

e link_to(Hyperlink, Page, Page, Tag): This relation represents Web hyperlinks. For a
given hyperlink, the first argument specifies an identifier for the hyperlink, the second
argument specifies the page in which the hyperlink is located, and the third argument
indicates the page to which the hyperlink points. The fourth argument encodes whether
the link points to a page on another si@FSITE), a page in a subdirectorfpOWN),

a page in the current directoriyATERAL), a page in a parent directoryR) or a page
in a subdirectory of a parent directoty #DOWN).

e has_word(Page): This set of relations indicates the words that occur on each page. There
is one predicate for each word in the vocabulary, and each instance indicates an occurrence
of the word in the specified page.

e has_anchor_word(Hyperlink): This set of relations indicates the words that are found in
the anchor (i.e., underlined) text of each hyperlink.

e has_neighborhood_word(Hyperlink): This set of relations indicates the words that are
found in the “neighborhood” of each hyperlink. The neighborhood of a hyperlink includes
words in a single paragraph, list item, table entry, title or heading in which the hyperlink
is contained.

o all_words_capitalized(Hyperlink): The instances of this relation are those hyperlinks in
which all words in the anchor text start with a capital letter.

e has_alphanumeric_word(Hyperlink): The instances of this relation are those hyperlinks
which contain a word with both alphabetic and numeric characters (e.g., | teach)CS760
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This representation for hypertext enables the learner to construct definitions that describe
the graph structure of the Web (using i _to relation) and word occurrences in pages
and hyperlinks. A set-of-words representation of pages and hyperlinks is provided by the
has_word, has_anchor_word and has_neighborhood_word predicates. Note that we do
not use theory constants to represent words because doing so would require the relational
learner we use (#iL) to take two search steps in order to add a word-test literal. In our
representation, such a test can be added in a single step.

Unlike Naive Bayes, &IL does not provide a standard method for ordering its predictions
by confidence. In Section 4.3 we will show one scheme for producing prediction confidences
with this learner.

3. Combining the statistical and relational approaches

Inthis section we present an approach that combines a statistical text learner with arelational
learner. We argue that this algorithm is well suited to hypertext learning tasks. Like a
conventional bag-of-words text classifier, our algorithm is able to learn predicates that
characterize pages or hyperlinks by their word statistics. However, because it is a relational
learning method, it is also able to represent the graph structure of the Web, and thus it can
represent the word statistics of neighboring pages and hyperlinks.

As described in the previous section, a conventional relational learning algorithm, such
as FoIL, can use a set-of-words representation when learning in hypertext domains. We
hypothesize, however, that our algorithm has two properties that make it better suited to
such tasks than an ordinary relational method:

e Because it characterizes pages and hyperlinks using a statistical method, its learned
rules will not be as dependent on the presence or absence of specific key words as
a conventional relational method. Instead, the statistical classifiers in its learned rules
consider the weighted evidence of many words.

e Because it learns each of its statistical predicates to characterize a specific set of pages or
hyperlinks, it can perform feature selection in a more directed manner. The vocabulary
to be used when learning a given predicate can be selected specifically for the particular
classification task at hand. In contrast, when selecting a vocabulary for a relational learner
that represents words using background relations, the vocabulary is pruned without regard
to the particular subsets of pages and hyperlinks that will be described in clauses, since
a priori we do not know which subsets it will be useful for the learner to describe.

We consider our approach to be quite general: it involves using a relational learner
to represent graph structure, and a statistical learner with a feature-selection method to
characterize the edges and nodes of the graph. Here we present an algorithm, which we
refer to as BIL-PILFs (for FoiL with Predicate Invention for Large Feature Spaces), that
represents one particular instantiation of our approach. This algorithm is basically F
augmented with a predicate-invention method in the spiritofd@ (Kijsirikul, Numao, &
Shimura, 1992). Table 1 shows the inner loop ofltFPILFs (which learns a single clause)
and its relation to its predicate invention method, which is shown in Table 2. Aside from
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Table 1 The inner loop of BIL-PILFS. This is essentially the inner loop obl augmented with our predicate
invention procedure.

Input: uncovered positive examplds™ of target relationR,
all negative example§ ~ of target relatiorR,
background relations

initialize clauseC: R(Xp, ... Xk) :- true.
T=TtuT~
while T contains negative tuples adis not too complex
call predicate-invention method to get new candidate literals (Table 2)
select literal (from background or invented predicates) to ad to
update tuple sék to represent variable bindings of updated
for each invented predica® (X;)
if Pj(Xi) was selected fo€ then retain it as a background relation

©NOoOOAWNE

Return: learned claus€

Table 2 The FoiL-PILFS predicate invention method.

Input: partial clauseC,
document collection for each type,
parametee

1. for each variable in C

2 for each document collectidn; associated with thiypeof X;

3 St = documents irDj representing constants boundXpin pos tuples
4. S~ = documents irD; representing constants boundXpin neg tuples
5. rank each word ii5" U S~ according to mut. info. w/ class variable

6 n=|StUS|xe

7 F = top rankech words

8 call Naive Bayes to learR; (X;) w/ feature sef, training setSt U S~

Return: all learned predicateB; (X;)

the steps numbered 4, 7, and 8, the inner loop®f fPILFS is the same as the inner loop
of FoIL.

The predicates thatdiL-PILFS invents are statistical classifiers applied to some textual
description of pages, hyperlinks, or components thereof. Currently, the invented predicates
are only unary, boolean predicates. We assume that each constant in the problem domain
has a type, and that each type may have one or more associated document collections. Each
constant of the given type maps to a unique document in each associated collection. For
example, the typpagemight be associated with a collection of documents that represent
the words in pages, and the typgperlink might be associated with two collections of
documents—one which represents the words in the anchor text of hyperlinks and one
which represents the “neighboring” words of hyperlinks.

Whereas @AmMP considers inventing a new predicate only when the basic relational
algorithm fails to find a clause, our method considers inventing new predicates at each
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step of the search for a clause. Specifically, at some point in the search, given a partial
clauseC that includes variableXy, . .., X, our method considers inventing predicates to
characterize eacl; for which the variable’s type has an associated collection of documents.
If there is more than one document collection associated with a type, then we consider
learning a predicate for each collection. For examplejifs of type hyperlink and we

have two document collections associated wiiperlink—one for anchor text and one

for “neighboring” text—then we would consider learning one predicate to characterize the
constants bound t&; using their anchor text, and one predicate to characterize the constants
using their “neighboring” text.

Once the method has decided to construct a predicate on a given vatialsieg a given
document collection, the next step is to assemble the training set for the Naive Bayes learner.
If we think of the tuple set currently covered Byas a table in which each row is a tuple and
each column corresponds to a variable in the clause, then the training set consists of those
constants appearing in the column associated ¥jttEach row corresponds to either the
extension of a positive training example or the extension of a negative example. Thus those
constants that appear in positive tuples become positive instances for the predicate-learning
task and those that appear in negative tuples become negative instances.

One issue that crops up, however, is that a given constant might appear multiple times
in the X; column, and it might appear in both positive and negative tuples. We enforce a
constraint that a constant may appear only once in the predicate’s training set. For example,
if a given constant is bound t&; in multiple positive tuples, it appears as only a single
instance in the training set for a predicate. The motivation for this choice is that we want
to learn Naive Bayes classifiers that generalize well to new documents. Thus we want the
learner to focus on the characteristics that are common to many of the documents in the
training set, instead of focusing on the characteristics of a few instances that each occur
many times in the training set.

Before learning a predicate using this training set, our method determines the vocab-
ulary to be used by Naive Bayes. In some cases the predicate’s training set may consist
of a small number of documents, each of which might be quite large. Thus, we do not
necessarily want to allow Naive Bayes to use all of the words that occur in the training
set as features. The method that we use involves the following two steps. First, we rank
each wordw; that occurs in the predicate’s training set according to its mutual information
with the target class for the predicate. Second, given this ranking, we take the vocabu-
lary for the Naive Bayes classifier to be theéop-ranked words whene is determined as
follows:

N=exm 3

Herem is the number of instances in the predicate’s training setedad parameter (set
to 0.1 throughout our experiments).

The motivation for this heuristic is the following. We want to make the dimensionality
(i.e. feature-set size) of the predicate learning task small enough such that if we find a
predicate that fits its training set well, we can be reasonably confident that it will gener-
alize to new instances of the “target class.” A lower bound on the number of examples
required to PAC-learn some target functidre F is (Ehrenfeucht, Haussler, Kerns, &
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Valiant, 1989):

<VC-dimensiomF))
m=Q
€

wheree is the usual PAC error parameter. We use this bound to get a rough answer to the
question:

Given m training examples, how large a feature space can we consider such that if we find
a promising predicate with our learner in this feature spasg have some assurance
that it will generalize well?

The VC-dimension of a two-class Naive Bayes learner s 1 wheren is the number of
features. Ignoring constant factors, and solvingtfere get Eq. 3. Note that this method is

only a heuristic. It does not provide any theoretical guarantees about the accuracy of learned
clauses since it makes several assumptions (e.g., that the “target function” of the predicate
is in F) and does not consider the broader issue of the accuracy of the clause in which the
literal will be used.

Another issue is how to set the class priors in the Naive Bayes classifier. Typically, these
are estimated by the class frequencies in the training data. These estimates are likely to
be biased towards the positive class in our context, however. Consider that estimating the
accuracy of a (partially grown) clause by the fraction of positive training-set tuples it covers
will usually result in a biased estimate. To compensate for this bias, we simply set the class
priors to the uniform distribution. Moreover, when a document does not contain any of the
words in the vocabulary of one of our learned classifiers, we assign the document to the
negative class (since the priors do not enforce a default class).

Once the training examples and the feature set have been determined, a Naive Bayes model
is learned as described in Section 2. The learning task here entails simply determining the
conditional probabilities of words in the vocabulary (i.e. features) given the two classes.
By treating this learned model as a Boolean function, we have our candidate Naive-Bayes
predicate.

Finally, after the candidate Naive-Bayes predicates are constructed, they are evaluated
like any other candidate literal. Those Naive-Bayes predicates that are included in clauses
are retained as new background relations so that they may be incorporated into subsequent
clauses. Those that are not selected are discarded.

Although our Naive Bayes classifiers produce probabilities for each instance, we do not
use these probabilities in our constructed predicates nor in the evaluation of our learned
clauses. Naive Bayes’ probability estimates are usually poor when its independence assump-
tion is violated, even though its predictive accuracy is often quite good in such situations
(Domingos & Pazzani, 1997).

4. Experimental evaluation

At the beginning of Section 3, we stated that oanFPILFS algorithm has two desirable
properties:
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e Because it characterizes pages and hyperlinks using a statistical method such as Naive
Bayes, its learned rules will not be dependent on the presence or absence of specific key
words. Instead, the statistical classifiers used in its learned rules consider the weighted
evidence of many words.

e Because it learns each of its statistical predicates to characterize a specific set of pages
or hyperlinks, it can perform feature selection in a directed manner. The vocabulary to
be used when learning a given predicate can be selected specifically for the particular
classification task at hand.

In this section, we test the hypothesis that this approach will learn definitions with higher
accuracy than a comparable relational method without the ability to use such statistical
predicates. Specifically, we compare owlFPILFS method to ordinary &L on several
hypertext learning tasks.

4.1. The university data set

Our primary data set for these experiments is one assembled for a research project aimed at
extracting knowledge bases from the Web (Craven et al., 1998a). This project encompasses
many learning problems and we study two of those here. The first is to recognize instances
of knowledge baselasseqe.g. students, faculty, courses etc.) on the Web. In some cases,
this can be framed as a page-classification task. We also want to recrgjaimnsbetween

objects in our knowledge base. Our approach to this task is to learn prototypical patterns
of hyperlink connectivity among pages. For example, a course home page containing a
hyperlink with the textinstructor: Tom Mitchell pointing to the home page of a
faculty member could represent a positive instance ofrtbteuctors_of_course relation.

Our data set consists of pages and hyperlinks drawn from the Web sites of four computer
science departments. This data set includes 4,167 pages and 10,353 hyperlinks intercon-
necting them. Each of the pages is labeled as being the home page of one of seven classes:
course, faculty, student, project, staff, department, and the catch-abbther class. For the
classification experiments in Section 4.3 we use only four of these classes and pool the
remaining examples into a singi¢her class. The distribution of examples for each class
and for each university is shown in Table 3.

The data set also includes instances of the relations between these entities. Each rela-
tion instance consists of a pair of pages corresponding to the class instances involved in

Table 3 Data set distribution per class and per university.

University student course faculty project other

Cornell 128 44 34 20 641
Texas 148 38 46 18 577
Washington 126 77 31 21 951

Wisconsin 156 85 42 25 959
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the relation. For example, an instance of th&tructors_of_course relation consists of a
course home page and person home page. Our data set of relation instances comprises
251instructors_of_course instances, 39Zhembers_of_project instances, and 74@epart-
ment_of_person instances. The complete data set is availablgtpt//www.cs.cmu.

edu/ ~WebKBL.

All of the experiments presented with this data set les@e-one-university-oudross-
validation, allowing us to study how a learning method performs on data from an unseen
university. This is important because we evaluate our knowledge-base extraction system,
which this research is a component of, on previously unseen Web sites.

4.2. The representations

For the experiments in Sections 4.3 and 4.4, we give Ehe background predicates de-
scribed in Section 2.2. One issue that arises in using the predicates that represent words
in pages and hyperlinks is selecting the vocabulary for each one. For our experiments,
we removestop-wordsand apply the Porter stemming algorithm (Porter, 1980) to the re-
maining words (refer back to Section 2 for descriptions of these processes). We then use
frequency-based vocabulary pruning as follows:

e has_word (Page): We chose words that occur at least 200 times in the training set. This
procedure results in 607 to 735 predicates for each training set.

e has_anchor_word(Hyperlink): The vocabulary for this set of relations includes words
that occur at least five times among the hyperlinks in the training set. This results in 637
to 738 predicates, depending on the training set.

e has_neighborhood_word(Hyperlink): The vocabulary for this set of relations includes
words that occur at least twenty times among the hyperlinks in the training set. This set
includes 633 to 1025 predicates, depending on the training set.

The FoiL-PILFs algorithm is given as background knowledge the relations listed in
Section 2.2except forthe three relations above. Instead, it is given the ability to invent
predicates that describe the words in pages and the anchor and neighboring text of hyper-
links. Effectively, the two learners have access to the same information as input. The key
difference is that whereas ordinargE is given this information in the form of background
predicates, we allow®iL-PILFS to reference page and hyperlink words only via invented
Naive-Bayes predicates.

4.3. Experiments in learning page classes

To study page classification, we pick the four largest classes (exclothieg) from our
university data setstudent, course, faculty andproject. Each of these classes in turn is

the positive class for a binary page classification task. Pages from the remaining classes
(staff, department andother) were pooled into a newther class and were present in the
negative class for all four classification tasks, along with the pages for the three classes not
being learned. For example, we learn a classifier to distingmigtent home pages from all
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other pages. We rundi. and FoIL-PILFS on these tasks, as well as a Naive Bayes classifier
applied directly to the pages.

For each classifier used here, we can associate a numerical confidence along with each
prediction. For Naive Bayes, these confidence measures come from the predicted probabil-
ities of class membership. For the relational methods, the confidence measure for a given
example is the estimated accuracy of the first clause that the example saigfestimate
the accuracy of each of our learned clauses by calculating-astimate (Cestnik, 1990)
of the rule’s accuracy over the training examples. Trestimate of a rule’s accuracy is
defined as follows:

Ne +mp

m-estimate accuracy
n+m

wheren. is the number of instances correctly classified by the mig,the total number
of instances classified by the rulp,is a prior estimate of the rule’s accuracy, ands
a constant called thequivalent sample sizghich determines how heavily is weighted
relative to the observed data. In our experiments, wasets and we sep to the proportion
of instances in the training set that belong to the target class. We then use these scores to
sort the clauses in order of descending accufacy.

By varying a threshold at which we accept a positive prediction, we can trade off precision
(“quality” of positive predictions) for recall (“quantity” of positive predictions), depending
on the target system requirement for these predictions. Recall and precision are defined as
follows:

# correct positive predictions
# positive examples

# correct positive predictions
# positive predictions

Recall=

Precision=

Plotting recall against precision at various thresholds give us recall-precision curves
such as those for our four page-classification tasks shown in Figures 1 and 2. Each point
on the recall precision plot represents a particular classifier with that recall and precision
performance, obtained by using the threshold used to determine the classifier.

Looking at the graphs in figures 1 and 2, we note that neitloar &r FOIL-PILFS can
match Naive Bayes for recall performance in the limit. Since Naive Bayes is combining
evidence from whatever features it observes in a given test example, it can classify an
example as positive if we lower the threshold enough. The relational algorithms, on the
other hand, need a test example to match all the conditions in some learned rule before a
prediction and associated confidence can be obtained.

In contrast, both BIL and FoIL-PILFS achieve relatively high precision at the lower recall
rates they are confined to. Previous research (Craven et al., 1998b) has shown that the
relational approach to classifying hypertext often results in better classifier precision. For
two of the classestudent andfaculty, the recall-precision curves are fairly similar. For the
other two classegourse andproject, the FoIL-PILFS curve is superior to thediL curve.

In order to compare the algorithms in more detail, we can look at their recall and precision
performance as classifiers. For Naive Bayes in this case, we treat a prediction as positive
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Figure 1 Recall-Precision curves for each algorithm onshelent andcourse classification tasks.

when the predicted probability for the positive clag0.5. For iL and FOIL-PILFS, we

use all of the learned clauses in a given definition
precision figures for our classifier predictiochalso
1979; Lewis, Schapire, Callan & Papka, 1996)

asthe classifier. Table 4 shows the recall and

shown is theé=; score (van Rijsbergen,

for each algorithm on each task. This is a
score commonly used in the information-retrieval community which weights precision and

recall equally and has nice measurement properties. It is defined as:

2PR
P+R
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Figure 2 Recall-Precision curves for each algorithm onfdmulty andproject classification tasks.

Comparing thd-; scores first, we see that botbiE and FoIL-PILFS outperform Naive
Bayes on all tasks. More importantly, we observe that our new combined algorithm outper-
forms FOIL on three of the four classification tasks.

Comparing the precision and recall results fonFand FoiL-PILFSwe see thatBiIL-PILFS
has better recall thandt_ for all four data sets in all but two casesIE-PILFs outperforms
FolL. The increased recall performance is not surprising, given the statistical nature of the
predicates being produced. They testthe aggregate distribution of words in the test document
(or hyperlink), rather than depending on the presence of distinct keywords. Looking at the
precision results, there is no clear winner between nd FoIL-PILFS.

Pairwise comparisons of the three algorithms are shown in Table 5. Here we see, for each
pair of learning methods, how often one of them outperformed the other on one of the cross
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Table 4 Recall (R), precision (P) anB; scores on each of the classification tasks for Naive Bayas, Bnd
FOIL-PILFS.

student course faculty project

Method R P 51 R P R R P R R P 51

Naive Bayes 52.1 423 46.7 463 296 361 222 201 211 1.2 16.7 2.2
FoIL 455 596 516 500 570 533 346 495 408 155 27.7 19.9
FoIL-PiLFs 46.2 655 542 533 526 530 360 550 435 274 277 275

Table 5 Pairwise comparison of the classifiers. For each pairing, the number of times one classifier performed
better than the other on recall (R) and precision (P) is shown.

R wins P wins
Naive Bayes 5 3
FoIL 10 13
Naive Bayes 4 0
FoIL-PILFS 11 16
FoiL
FoiL-PILFs

validation runs. For example, of the 16 cross validation runs perfornad,Had better
recall than Naive Bayes 10 times, and had better precision 13 times. Confirming the results
using theF; score above, we see thablE-PILFs does indeed seem to outperformiEin
general , and &L outperforms Naive Bayes on all four tasks.

Figure 3 shows a sample clause learned by fPILFs. This clause uses five invented
predicates, one which tests the distribution of words on the page to be clasaljfi¢adq
that test the distribution of words on an outgoing liB,(and two that test the distribution
on the page pointed to by that link). Also shown are the words most highly weighted by
each of the predicates. These are determined by assessing

Pr(w; | pos
9 (Pr(wi | neg> )

for each wordw;, whereposrepresents the positive class with respect to the Naive Bayes
classifier, anahegrepresents the negative class. Note that foptge_naive_bayes_2 and

the page_naive_bayes_3 predicates, all of the words with positive log-odds ratios in their
respective models are listed.

4.4. Experiments in learning page relations

In this section we consider learning target concepts that represent specific relations between
pairs of pages. We learn definitions for the three relations described in Section 4.1. In
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project_page(A) :- page_naive_bayes_1(A), link_to(B,A,C,D), anchor_naive_bayes_1(B),
anchor_naive bayes 2(B), page_naive_bayes 2(C),
page_naive_bayes.3(C).

page_naive_bayes_1:  shore, queri, project, object, sequenc, group, date, relat,
releas, research ...
anchor_naive_bayes_1:  neural, utc, group, wind, tunnel, network, multiscalar,

home, ...
anchor_naive_bayes_2: neural, utc, home, wind, tunnel, back, multiscalar,
paradyn, ...
page_naive_bayes 2:  databas, utexa, problem, mail, version, email, educ, orient,

www, contact.
page.naive_bayes.3:  comput, univers, page, scienc, inform, home, depart.

Figure 3 Clause learned bydiL-PILFs for the project class. This clause covers 33 positive and no negative
training examples. On the unseen test set, it covgndjéct pages and 1 noproject page. Also shown are the
words with the greatest positive log-odds ratios for each invented predicate.

addition to the positive instances for these relations, each data set includes approximately
300,000 negative examples. Our experiments here involve one additional set of background
relations:clasgPage). For eacltlassfrom the previous section, the corresponding relation
lists the pages that represent instancedaxfs These instances are determined using actual
classes for pages in the training set and predicted classes for pages in the test set.

As in the previous section, we learn the target concepts using both (i) a relational learner
given background predicates that provide a bag-of-words representation of pages and hy-
perlinks, and (ii) a version of ourdiL-PILFS algorithm. The base algorithm we use here is
slightly different than BIL, however.

In previous work, we have found thaolt’s hill-climbing search is not well suited to
learning these relations for cases in which the two pages of an instance are not directly
connected. Thus, for the experiments in this section, we augment both algorithms with a
deterministic variant of Richards and Mooneggtational pathfindingnethod (Richards &
Mooney, 1992). The basic idea underlying this method is that a relational problem domain
can be thought of as a graph in which the nodes are the domain’s constants and the edges
correspond to relations which hold among constants. The algorithm tries to find a small
number of prototypical paths in this graph that connect the arguments of the target relation.
Once such a path is found, an initial clause is formed from the relations that constitute the
path, and the clause is further refined by a hill-climbing search.

Also, like DZeroski and Bratko'sn-FoiL (DZeroski & Bratko, 1992), both algorithms
considered here use-estimates of a clause’s error to guide its construction. We have found
that this evaluation function results in fewer, more general clauses for these tasksithian F
information gain measure.

As in the previous experiment, the only difference between the two algorithms we com-
pare here is the way in which they use predicates to describe word occurrences. We refer to
the baseline method ag™-FoiL, and we refer to the variant ofofi_-PILFS used here as
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Table 6 Recall R), precision P) andF; results for the relation learning tasks.

department_of_person instructors_of_course members_of_project
Method R P R R P R R P R
PATH-FOIL 49.3 84.8 62.4 66.9 4.7 70.6 56.1 73.1 63.5

PATH-FOIL-PILFS 75.8 98.4 85.7 60.6 86.9 71.4 55.4 81.0 65.8

Table 7 Recall R) and precision P) results for the relation learning tasks.

department_of_person instructors_of_course members_of_project
Method R wins P wins R wins P wins R wins P wins
PATH-FoOIL 1 1 2 0 2 0
PATH-FOIL-PILFS 2 2 1 2 2 4

PATH-FoIL-PILFS. We do not consider directly applying the Naive Bayes method in these
experiments since the target relations are of arity two and necessarily require a relational
learner.

Table 6 shows recall, precision, afd results for the three target relations. FEepart-
ment_of_person, PATH-FOIL-PILFs provides significantly better recall and precision than
PATH-FoIL. For the other two target concept® R -FoIL has better precision, but slightly
worse recall. RTH-FoIL-PILFS has superioF; scores for all three target relations. Table 7,
shows the number of cross-validation folds for which one algorithm outperformed another.
As this table shows,/H-FoIL-PILFs is the clear winner in terms of precision, but that the
results are mixed for recall.

Figures 4 and 5 show the recall-precision curves for the three page-relation tasks.
These curves suggest that, whereas-HRFOIL is perhaps better fanstructors_of_course,
PATH-FoIL-PILFS is the clear winner on théepartment_of_person, and superior fomem-
bers_of_project as well.

4.5. Relational learning and internal page structure

So far we have considered relational learning applied to tasks that involve representing the
relationshipsamonghypertext documents. Hypertext documents, however, have internal
structure as well. In this section we apply our learning method to a task that involves
representing the internal layout of Web pages. Specifically, the task we address is the
following: given a reference to a country name in the Web page of a company, determine if
the company has operations in that country or not.

Our approach makes use of an algorithm that parses Web pages into tree structures
representing the layout of the pages (Dipasquo, 1998). For example, one node of the tree
might represent an HTML table where its ancestors are the HTML headings that come
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Figure 4 Recall-Precision curves for tliezpartment_of_person andinstructors_of_course relation learning
tasks.

above it in the page. In general, any node in the tree can have some text associated with it.
We frame our task as one of classifying nodes that contain a country name in their associated
text.

In our experiments here we applple and FIL-PILFS to this task using the following
background relations:

e heading(Node, Page), li(Node, Page), list(Node, Page), list_or_table(Node, Page),
paragraph(Node, Page), table(Node, Page), td(Node, Page), title(Node, Page),
tr(Node, Page): These predicates list the nodes of each given type, and the page in which
a node is contained. The types correspond to HTML elements.
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Figure 5 Recall-Precision curves for theembers_of_project task.

e ancestor(Node, Node), parent(Node, Node), sibling(Node, Node), ancestor_heading
(Node, Node), parent_heading(Node, Node): These predicates represent relations that
hold among the nodes in a tree. The two relatimmsestor_heading andparent_heading
are specializations @fncestor andheading, respectively. They are used to relate given
nodes to the HTML heading tags that are their ancestors or direct parents.

The target relationhas_location(Node, Page), is a binary relation so that the learner can
easily relate nodes by their common page as well as by their relationship in the tree. In a
setup similar to our previous experiments, we giveLFa set ofhas_node_word(Node)
predicates, and we allowdt_-PILFS to invent predicates that characterize the words in
nodes. Our data set for this task consists of 788 pages parsed into 44,760 nodes. There are
337 positive instances of the target relation and 363 negative ones. We conapate F
FolL-PILFs on this task using a five-fold cross-validation run.

Figure 6 shows the recall-precision curve for the three algorithms on this task. In this case,
the relational representation is only a win at the lower recall levels where, as before, we get
better precision performance than Naive Bayes. The performanceiiobRd FoIL-PILFS
on this graph is fairly comparable, except at low recall levels.

Table 8 shows the recall, precision aRdresults for our algorithms viewed as simple
classifiers. Additionally, the table shows the number of folds for which one algorithm

Table 8 Recall R), precision P), andF; results for the node classification task.

Method R P R Rwins P wins

FoiL 55.5 64.0 59.5 1 2
FOIL-PILFS 61.4 63.1 62.2 4 3
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Figure 6. Recall-Precision curves for each algorithm on the node classification task.

outperformed the other in terms of precision or recatiiLFPILFS provides better recall at
the cost of slightly worse precision than ordinaiFunder this evaluation. As expected,
FoiL-PiLFs outperformed BIL on recall in four of the five folds. It produced better precision
results in three of the five folds.

4.6. Varying the vocabulary parameterkoiL-PILFS

As described in Section 3, ouok -PILFs algorithm employs a parameterwhich controls

how many words Naive Bayes can use when constructing a new predicate. In contrast to our
experiments with ordinarydiL, where we had to make vocabulary-size decisions separately
for the page, anchor and neighborhood predicatpsvides a single parameter to set when
using FOIL-PILFS.

In all of our experiments so far we have set 0.1. In order to assess hovok-PILFS's
performance is affected by varyirg we rerun the page classification experiment from
Section 4.3 withe setto 0.01, 0.05, 0.15 and 0.2. The smallésrces Naive Bayes to work
with fewer words, the larger allows it up to twice as many as in our original experiments.
Precision, recall an&; scores for this experiment are shown in Table 9.

Itis hard to see general trends in this table. We note, however, that mostif th&ues
in this table are superior to the correspondigvalues for BIL shown in Table 4. This
result suggests that the outcomes of our previously described experiments did not depend
on a fortuitous choice af. Finally, we note that this single parameter to be set is preferable
to the case of ordinarydfL where we had to set three different vocabulary-size parameters.

5. Related work

The idea of predicate invention has a long history in the field of inductive logic program-
ming; there are several reviews of work done in this area (Stahl, 1996; Kramer, 1995). Our
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Table 9 Recall (R), precision (P) anféy scores for BIL-PILFS on the four page classification tasks as we vary

student course faculty project
Method R P R R P R R P R R P R
0.01 43.4 71.2 53.9 57.4 54.3 55.8 36.0 44.7 39.9 19.1 28.6 22.9
0.05 45.2 64.1 53.0 49.2 58.8 53.6 32.7 40.3 36.1 20.2 29.8 24.1
0.10 46.2 65.5 54.2 53.3 52.6 53.0 36.0 55.0 435 27.4 27.7 27.5
0.15 34.0 61.7 43.9 55.7 54.4 55.1 37.3 58.2 45.4 19.1 21.3 20.1
0.20 414 61.8 496 537 585 560 346 408 375 143 26.7 186

FoIL-PILFs method is similar to the CHAMP (Kijsirikul et al., 1992), CWS (Srinivasan,
Muggleton, & Bain, 1992), MOBAL (Wrobel, 1994), and CHILLIN (Zelle, Mooney, &
Konvisser, 1994) systems which all invent predicates to cover an extensionally given set
of target tuples. Srinivasan and Camacho (Srinivasan & Camacho, 1999) have also devel-
oped an algorithm that combines a relational learner with a numeric feature-value learner.
FoiL-PiLFs differs from these systems in the method it uses to define new predicates (Naive
Bayes), and in its policy of liberally considering new invented predicates. It was designed
with the special properties of text and hypertext in mind.

Our work is also related to recent research on learpiogabilistic relational models
(Koller & Pfeffer, 1997; Friedman, Getoor, Koller, & Pfeffer, 1999). There are several key
differences, however. Whereas we have focused on learning predictive models for particular
target concepts, the probabilistic relational approach focuses on the more general task of
learning a joint probability distribution over the relevant features in a problem domain.
Moreover, whereas our approach can use an existentially quantified variable to characterize
some entity related to another entity of interest, the probabilistic relational approach can
characterize only aggregate properties of related entities. Finally, the probabilistic relational
approach has not yet been applied to large, complex data setsL.aBIEFS has.

6. Conclusions

We have presented a hybrid relational/statistical approach to learning in text domains.
Whereas the relational component is able to describe the graph structure of hyperlinked
pages and the internal structure of HTML pages, the statistical component is adept at
learning predicates that characterize the distribution of words in pages, hyperlinks and parts
of pages. We described one particular instantiation of this approach: an algorithm based on
FolL that invents predicates on demand which are represented as Naive Bayes models. We
evaluated this approach by comparing it to a baseline method that represents words directly
in background relations. Our experiments indicate that our method generally learns more
accurate definitions.

This work has explored one particular method for combining relational and statistical
learning. Currently, we are exploring a number of directions in this general framework:
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e Investigating other search strategies. Because'$-hill-climbing search is myopic, we
suspect that it does not add literals describing relationships among documents as often
as it would be profitable to do so. One modification to the search strategy that we are
currently investigating is the use oflational cliches(Silverstein & Pazzani, 1991).
Relational cliches consist of sequences of predicates to be considered in a single search
step.

e Using the confidence scores produced by our invented Naive Bayesian predicates. Cur-
rently we treat our Naive Bayes models as Boolean predicates by thresholding on confi-
dence> 0.5. We are investigating methods that use these probability estimates to combine
evidence across the literals of a clause.

e Simultaneously fitting all of the parameters in a clause. Tog-PILFS approach in-
volves incrementally adding statistical predicates to a clause in a hill-climbing search.
We hypothesize that clauses with more globally optimal combinations of literals can be
learned by simultaneously trying to learn all of the predicates in a clause. Specifically,
we are investigating an approach that views the predicates as hidden variables and uses
the Expectation Maximization (EM) algorithm to determine the parameters of all of the
predicates at once.

Finally, we believe that our approach is applicable to learning tasks other than those that
involve hypertext. We hypothesize that it is well suited to other domains that involve both
relational structure, and potentially large feature spaces. In future work, we plan to apply
our method in such domains.
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Notes

1. This method for estimating confidence of a prediction on a test example was chosen for ease of implementation
and because of its close relation to howiFclassifies test examples. Of course itignores available information
about the other rules that matched the test example.

2. This change does not affect the classifications made by a learned set of clauses. It affects only our confidence
associated with each prediction.

3. Since our graphs show the best precision at a given recall, the endpoint precision values in the graph may be
slightly higher than those in our tables.
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