
SASI Enforcement of Security Policies:

A Retrospective∗

Úlfar Erlingsson Fred B. Schneider

Department of Computer Science

Cornell University

Ithaca, New York 14853

April 2, 1999
Revised: July 19, 1999

Abstract

SASI enforces security policies by modifying object code for a tar-
get system before that system is executed. The approach has been
prototyped for two rather different machine architectures: Intel x86
and Java JVML. Details of these prototypes and some generalizations
about the SASI approach are discussed.

1 Introduction

A reference monitor observes execution of a target system and halts that sys-
tem whenever it is about to violate some security policy of concern. Security
mechanisms found in hardware and system software typically either directly

∗Appears in Proceedings New Security Paradigms Workshop 1999.
∗Supported in part by ARPA/RADC grant F30602-96-1-0317, AFOSR grant F49620-

94-1-0198, Defense Advanced Research Projects Agency (DARPA) and Air Force Research
Laboratory, Air Force Material Command, USAF, under agreement number F30602-99-
1-0533, National Science Foundation Grant 9703470, and a grant from Intel Corporation.
The views and conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of these organizations or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright annotation thereon.

1

implement reference monitors or are intended to facilitate the implementa-
tion of reference monitors. For example, an operating system might mediate
access to files and other abstractions it supports, thereby implementing a
reference monitor for policies concerning those objects. As another example,
the context switch (trap) caused when a system call instruction is executed
forces a transfer of control, thereby facilitating invocation of a reference
monitor whenever a system call is executed.

To do its job, a reference monitor must be protected from subversion
by the target systems it monitors. Memory protection hardware, which
ensures that execution by one program cannot corrupt the instructions or
data of another, is commonly used for this purpose. But placing the reference
monitor and target systems in separate address spaces has a performance
cost and an expressiveness cost. The performance cost results from the
overhead due to context switches associated with transferring control to the
reference monitor from within the target system. The reference monitor
must receive control whenever the target system participates in an event
relevant to the security policy being enforced.

The expressiveness cost comes from the means by which target system
events cause the reference monitor to be invoked, since this restricts the
vocabulary of events that can be involved in security policies. Security
policies that govern operating system calls, for example, are feasible because
traps accompany systems calls. But, increasingly, security policies are today
being defined in terms of application-level abstractions and operations. For
instance, a web browser might need to enforce a security policy governing
how helper applications use web browser resources. If system calls are not
used for such operations, then traps are not available for transferring control
to the reference monitor; some other means of invoking the reference monitor
would have to be found.

An alternative to placing the reference monitor and target systems in sep-
arate address spaces is to modify the target system code, effectively merging
the reference monitor in-line. This is the basis for software-fault isolation
(SFI), which enforces the security policy that prevents reads, writes, or
branches to memory locations outside of certain predefined memory regions
associated with a target system [14, 12]. In theory, a reference monitor for
any security policy could be merged into a target application—provided the
target can be prevented from circumventing the merged code. Two pro-
totype systems that reduce this theory to practice are the subject of this
paper.

Our prototypes merge security policy enforcement code into the object
code for a target system. We chose to work at the level of object code, in

2

part, to minimize the size of the trusted computing base (TCB).1 Work-
ing at the object code level makes available the rich vocabulary of low-
level events—machine language instructions—over which any security policy
could presumably be crafted.

One of our prototypes transforms x86 assembly language output from the
gcc compiler; another prototype transforms Java Virtual Machine Language
(JVML). With each, security policies are specified using security automata,
a specification notation that has been proved expressive enough to define
any security policy that is enforceable using execution monitoring [11].

We proceed as follows. The use of security automata for specifying secu-
rity policies is discussed in §2. Our general approach to merging enforcement
code into a target system is the subject of §3. Two prototype realizations
of this approach are then discussed in §4. For each prototype, we discuss
how the integrity of the enforcement code is protected and give the results
of performance experiments. Next, in §5, we contrast our work with related
work. And, §6 critiques our approach, offering the conceptual basis for the
second-generation security enforcement toolset that we are now construct-
ing.

2 Security Automata

Informally, a security automaton involves a (not necessarily finite) set of
states, a (not necessarily finite) input alphabet, and a transition relation.2

The transition relation defines a next state for the automaton given its
current state and an input symbol. It is often convenient to define this
transition relation using first-order predicates: such a transition predicate
is true for a current state q, an input symbol s, and a next state q ′ iff
whenever the security automaton is in state q and input symbol s is read,
the automaton state changes to state q ′. If no transition from the current
automaton state can be made for the next input symbol to be read, then
the security automaton rejects its input.

Security automata can be regarded as defining reference monitors. The
input alphabet corresponds to the events that the reference monitor would

1In particular, by working on object code, high-level language processors are not part
of the TCB. However, software that performs object code analysis and object code modi-
fication is added to the TCB. That software can be relatively modest is size, as described
in §4.

2A precise definition of security automata is given in [11]. The summary given in this
section should suffice for understanding the current paper.

3

Figure 1: “No messages sent after reading a file”.

see. The transition relation encodes a security policy—the automaton re-
jects sequences of inputs corresponding to target system executions in which
the security policy would be violated. For example, Figure 1 depicts a se-
curity automaton for a security policy that prohibits message sends after
file reads. The automaton’s states are represented by the two nodes labeled
start and noSnd . (Automaton state start is the initial state of this security
automaton.) Predicates read and send characterize target-system instruc-
tions that cause files to be read and messages to be sent, respectively. Thus,
the security automaton of Figure 1 rejects any input corresponding to a
target system’s attempt to execute a send instruction while in state noSnd
(i.e. after a file read).

3 Merging-in a Security Automaton

Security Automata SFI Implementation (SASI) generalizes SFI to any se-
curity policy that is specified as a security automaton. With SFI, new code
is added to the target system immediately preceding any instruction that
accesses memory (i.e. any read, write, branch, subroutine call, or subroutine
return).3 This new code ensures that (i) all reads and writes to memory will
access addresses within the target’s data region, (ii) all branches, calls, and
returns will transfer control to an instruction within the target program,
and (iii) the functionality of these additions cannot be circumvented by the
target system.

With SASI, new code is added to the target system immediately pre-
ceding every instruction. The added code simulates a security automaton.
Specifically, new variables—accessible only to the code added for SASI—
represent the current state of the security automaton, and new code—that
cannot be circumvented—simulates an automaton state transition. The new
code also causes the target system to halt whenever the automaton rejects its
input (because the current automaton state does not allow a transition for

3In addition, with SFI, the instruction itself is modified in a way that preserves seman-
tics.

4

Figure 2: “Push once, and only once, before returning”.

the next target instruction). Thus, the automaton simulation is equivalent
to inserting a reference monitor in-line into the target system.

Analysis of a target system often allows simplification of code for simulat-
ing a security automaton. Each inserted copy of the automaton simulation
is a candidate for simplification based on the context in which that code ap-
pears. By using partial evaluation [6] on the transition predicates as well as
by using the automaton structure, irrelevant tests and updates to the secu-
rity automaton state can be removed. Figure 3 depicts the merging of a se-
curity automaton specification (given in Figure 2) into a a three-instruction
routine that squares a value in r0. The security policy in Figure 2 restricts
execution to pushing exactly one value onto a stack before returning.

The merge involves four phases:

Insert security automata. Inserts a copy of the security automaton be-
fore each target instruction.

Evaluate transitions. Evaluates any transition predicates that can be,
given the target instruction that follows each copy of the automaton.

Simplify automata. Deletes transitions labeled by transition predicates
that evaluated to false .

Compile automata. Translates the remaining security automata into
code that, if added at these locations, simulates the operation of the
security automaton. FAIL is invoked by the added code if the automa-
ton being simulated must reject its input.

Because SASI evaluates and simplifies security automata using only local
information, a more-global analysis can sometimes show inserted code to be
redundant. For example, in Figure 3, if the ret instruction can be reached
only through straight-line execution, then state==0 will necessarily be false
before ret is executed. Thus, the code appearing in Figure 3 before the
ret instruction might not be needed. The partial evaluator in SASI doesn’t
attempt global analysis because we feared increasing the size and complexity
of the TCB.

5

Figure 3: Simplification of inserted code.

4 Two Prototype SASI Implementations

Security policies for our SASI prototypes are represented in SAL (Security
Automaton Language). Each SAL specification consists of a (finite) list of
states, with each state having a list of transitions to other states. Macros
are defined at the start of the SAL specification and are expanded fully
bottom-up before use (and therefore may not be recursive). SAL supports
only deterministic automata, but this is not a real restriction since non-
determinism is easily removed from security automata.

SAL transition predicates are expressions constructed from constants,
variables, C-style arithmetic and logical operators, and calls to platform-
independent functions and to platform-specific functions:

• For the x86 SASI prototype, the platform-specific functions evaluate
to the opcode and operands of the next target instruction, as well as
defining the sets of addresses corresponding to data values that can
be read/written, and defining addresses of instructions in the target
system that can be branch, call, or return destinations.

• For the JVML SASI prototype, the platform-specific functions allow
access to class name, method name, method type signature, JVML
opcode, instruction operands, as well the JVM state in which the
target instruction will be executed.

As an illustration, Figure 4 contains SAL for a JVML SASI specification
of the security policy (given in Figure 1) prohibiting message sends after file
reads.

6

/* Macros */

MethodCall(name) ::= op=="invokevirtual" && param[1]==name;

FileRead() ::= MethodCall("java/io/FileInputStream/read()I");

Send() ::= MethodCall("java/net/SocketOutputStream/write(I)V");

/*

** The Security Automaton

*/

start ::=

!FileRead() -> start

FileRead() -> hasRead

;

hasRead ::=

!Send() -> hasRead

;

Figure 4: SAL specification for “No messages sent after reading a file”.

Associated with each SASI prototype is a rewriter which merges a secu-
rity automaton simulation into object code for a target system. The rewriter
operates as outlined in §3. Thus, it inserts code for a security automaton
simulation immediately before each target instruction. To construct that
code, the platform-specific SAL functions in transition predicates are in-
stantiated with actual values (if they are known) and with code that will
compute the values at runtime, otherwise. A generic partial evaluator is
next run to simplify the resulting automaton. Finally, object code for the
simplified security automaton is generated and inserted in the target code.

The integrity of a reference monitor merged by SASI into the object code
of a target system depends on preventing the corruption of that security
automaton simulation. This entails

• preventing the target system from modifying variables being used in
security automaton transition predicates and variables being used to
encode the state of the security automaton,

• preventing the target system from circumventing the code that imple-
ments transitions by the security automaton, and

• preventing the target system from modifying its own code or causing
other code to be executed (e.g. by using dynamic linking, which most
operating systems support), since this could nullify the measures just
described for preserving security automaton integrity.

The discharge of these obligations is platform dependent, but there are two
general approaches: verification of the object code to establish that the

7

Figure 5: A security automaton for SFI-like memory protection

unwelcome behavior is impossible and modification of the object code to
rule out the unwelcome behavior. Both are employed in our prototypes.

4.1 x86 Prototype

Our x86 SASI prototype works with the assembly language output of the
GNU gcc C compiler. Object code produced by gcc observes certain register-
usage conventions, is not self-modifying, and is guaranteed to satisfy two
assumptions:

• Program behavior is insensitive to adding stutter-steps (e.g. nop’s).

• Variables and branch-targets are restricted to the set of labels identi-
fied by gcc during compilation.

These restrictions considerably simplify the task of preventing a security
automaton simulation from being corrupted by the target system. In par-
ticular, it suffices to apply x86 SASI with the simple memory-protection
policy of Figure 5 in order to obtain target-system object code that cannot
subvert a merged-in security automaton simulation.4 The x86 SASI proto-
type therefore prepends a SAL description of the security policy in Figure 5
to the SAL input describing any security policy P to be enforced. This effec-
tively merges into the target system a security automaton simulation that
cannot be circumvented or corrupted, and where the security automaton
simulation enforces security policy P .

Our recursive use of x86 SASI works because the transition predicates
in Figure 5 are defined entirely in terms of SAL platform-specific functions

4The policy of Figure 5 even deals with the difficulties that arise because valid x86
instructions might exist at non-instruction boundaries in a target system—a bit pattern
for one instruction might encompass the bit pattern for another. By limiting branch
destination to valid labels, jumping into the middle of an instruction is prevented.

8

pushl %ebx

leal dirty(,%eax,4), %ebx

andl offsetMask, %ebx

orl writeSegment, %ebx

movl %edx, (%ebx)

popl %ebx

pushl %ebx

leal dirty(,%eax,4), %ebx

andl segmentMask, %ebx

cmpl writeSegment, %ebx

jne SASIx86_FAIL

popl %ebx

movl %edx, dirty(,%eax,4)

MiSFIT SASI x86 SFI

Figure 6: x86 SASI output for movl %edx, dirty(,%eax,4)

which, by virtue of being constructed from information provided by gcc,
accurately characterize the target program. An informal proof that the
transformation suffices proceeds by contradiction, along the following lines.
Only branch, call, return, and write instructions can subvert the security
automaton simulation. Let i be the first instruction that accomplishes the
subversion. Before each branch, call, return, and write instruction, code
to check that instruction’s operand is added by x86 SASI for the policy in
Figure 5. Thus, such checking code must immediately precede instruction
i. Since, by assumption, i is the first instruction that accomplishes the
subversion, the checking code that precedes it must have been reached and
executed. And since the transition predicates are, by construction, accurate,
the checking code that precedes i will prevent instruction i from executing.
The assumption that i is able to execute and subvert the security automaton
simulation is thus contradicted.

Code generated by gcc makes indirect stack references by using register
%ebp, and %ebp is guaranteed by gcc to point to a valid location in the stack.
Our x86 SASI prototype exploits this fact to avoid run-time checks for in-
direct references through %ebp (employing an implementation of Figure 5
that exploits assumptions from gcc about %ebp). Since indirect references
through %ebp constitute a significant fraction of the indirect memory ref-
erences in executables produced by gcc, the performance improvement by
avoiding these checks can be significant. But exploiting assumptions about
code generated by gcc in order to reduce the cost of an enforcement mech-
anism does expand the TCB—a questionable trade-off.

x86 SASI in Action

The memory protection policy given by the security automata of Figure 5 is
the same security policy as implemented by MiSFIT, a special-purpose SFI

9

Benchmark MiSFIT SASI x86 SFI

Page-eviction hotlist 2.378 (0.3%) 3.643 (2.6%)
Logical log-structured disk 1.576 (0.3%) 1.654 (0.5%)
MD5 message digest 1.331 (1.4%) 1.363 (0.1%)

Figure 7: Relative performance of MiSFIT and SASI x86 SFI

transformation tool for Intel x86 operating system extensions [12]. MiSFIT
thus constitutes a benchmark against which the performance of x86 SASI
can be measured.5 Consequently, for a set of target systems, we have run
x86 SASI with no additional SAL input (so that the policy being enforced
is the same as with MiSFIT), and we have run MiSFIT.

The modifications MiSFIT and x86 SASI make to a target system are not
very different. Figure 6 shows the Linux assembly output (target operand
on the right) generated by MiSFIT and x86 SASI for a movl instruction that
transfers the contents of register %edx into integer array dirty at a position
specified by the contents of register %eax. (In Figure 6, code inserted by
x86 SASI is typeset in a slanted font; original target system code is type-
set in an upright font.) Notice that MiSFIT actually replaces the original
movl, whereas x86 SASI only prepends additional instructions. In both, the
%ebx register is made usable by saving its contents on the stack.6 For effi-
ciency, x86 SASI uses a load-time generated (i.e. platform-specific) function
to determine if the processor flags must be saved for an instruction.7 This
platform-specific function is constructed by using a conservative data-flow
analysis within the x86 SASI rewriter.

Figure 7 gives running times for three target systems from [13, 12] that
have been processed by MiSFIT and by our x86 SASI prototype. The run-
ning times are relative to execution of the unmodified target system, and the
numbers shown are averages (with standard deviation in parentheses) over
30 runs on a 266mhz Pentium II running Linux 2.0.30. The “Page-eviction
hotlist” benchmark is a memory intensive application; not surprisingly, it
has a high overhead in both implementations, because checking code is ex-

5In fact, we chose in x86 SASI to make the assumption about %ebp only so that we could
compare the performance of x86 SASI with MiSFIT, which makes this same assumption.

6MiSFIT and x86 SASI thus both require that enough stack space be available for
saving the %ebx register. This can be ensured at load time. x86 experts will observe that
the code from MiSFIT actually contains a subtle bug. If array dirty overlaps the stack,
then the value of register %ebx can be overwritten while it resides on the stack.

7The Intel x86 architecture contains such processor flags, implicitly changed by most
instructions, that in some rare cases must be saved on the stack like the %ebx register.

10

ecuted for each indirect memory access.
As Figure 7 shows, x86 SASI and MiSFIT produce target systems hav-

ing comparable performance. But there are target systems where MiSFIT
performs considerably better. We do not regard this as discouraging, since
MiSFIT is a specialized tool, customized to enforce one specific policy, and
MiSFIT optimizes the code it adds. We believe that adding additional anal-
ysis and optimization capabilities to the x86 SASI rewriter would improve
the relative performance of x86 SASI. More importantly, the flexibility of be-
ing able to enforce any policy can make x86 SASI an attractive enforcement
tool even if there is some performance cost.

4.2 JVML Prototype

Type-safe languages, such as JVML, provide guarantees about the execu-
tion of their programs, including guarantees that imply the simple memory-
protection policy given in Figure 5 cannot be violated. A program that
does not satisfy this simple memory-protection policy will not be type safe.
Our JVML SASI prototype exploits the type safety of JVML programs to
prevent a security automaton simulation from being corrupted by the target
system in which it resides.

In particular, variables that JVML SASI adds to a JVML object pro-
gram as part of a security automaton simulation cannot be compromised
by the program itself. These variables are inaccessible to that program by
virtue of their names and types. Code that JVML SASI adds for the security
automaton simulation cannot be circumvented, because JVML type-safety
prevents jumps to unlabeled instructions, and the security automaton sim-
ulation code segments are constructed so they do not contain labels.8

The type-safety of JVML also empowers the JVML SASI user who is
formulating a security policy that concerns application abstractions. JVML
instructions contain information about classes, objects, methods, threads,
and types. This information is made available (though platform-specific
functions) in SAL to the author of a security policy. Security policies for
JVML SASI thus can define permissible computations in terms of these
application abstractions. In contrast, x86 code will contain virtually no
information about a C program it represents, so the author of a security
policy for x86 SASI may be forced to synthesize application-level events
from sequences of object code instructions.

8JVML SASI security policies must also rule out indirect ways of compromising the
variables or circumventing the code added for policy enforcement. For example, JVML’s
dynamic class loading and program reflection must be disallowed.

11

...

ldc 1 ; noSnd state number

putstatic SASIJVML/state ; change state to noSnd
invokevirtual java/io/FileInputStream/read()I ; read file

...

getstatic SASIJVML/state ; get current state number

ifeq SUCCEED ; if start = state goto SUCCEED

invokestatic SASIJVML/FAIL()V ; else violation

SUCCEED:

invokevirtual java/net/SocketOutputStream/write(I)V ; send msg

...

Figure 8: SASI JVML enforcement of “no messages sent after reading a file”

JVML SASI in Action

Figure 8 shows code that was produced by our JVML SASI prototype for
enforcing the security policy defined in Figure 4 (corresponding to the se-
curity automaton of Figure 1 that prohibits sends after file reads). Code
inserted by our JVML SASI prototype is typeset in a slanted font; original
target system code is typeset in an upright font. Because the target sys-
tem’s instruction to invoke the FileInputStream/read method satisfies the
security automaton’s read predicate, this instruction has been prefixed by
security automaton simulation code; that code causes an automaton transi-
tion to state noSnd . And because the target system’s instruction to invoke
the write method satisfies the send predicate, it too has been prefixed with
security automaton simulation code; that code halts the application if start
is not the current state of the security automaton.

To gain some understanding about the performance overhead of policy
enforcement with JVML SASI, we used our prototype to implement the
functionality of Sun’s Java 1.1 SecurityManager (SM). Our enforcement is
based on a security automaton that specifies checks to be performed at ex-
actly those points in the the Java system libraries where Sun’s SM performs
runtime security checks. The SAL specification for this security automaton
is roughly four pages long and covers java.lang, java.io, and java.util. To en-
sure the behavioral equivalence of our implementation and Sun’s, ours calls
the same Java 1.1 check functions that SM does. Our implementation is
more flexible than Sun’s SM—check functions as well as new check points
can be added to ours simply by modifying the security automaton. Modi-
fying the SM in Sun’s implementation requires a new release of Java—not
just a subclassing of SM—because the places where SM is invoked are fixed
by Sun’s implementation.

12

Our JVML SASI implementation of the Java 1.1 SecurityManager turns
out to be quite efficient. Microbenchmarks to compare the security overhead
in our implementation with that in SM show no statistical difference in
the overhead. Moreover, our approach does have the possibility of being
significantly cheaper than SM. Sun’s SM is invoked at predefined points,
whether the check will succeed or not. In settings where access checks are
known to succeed—say, because a component is trusted or because of pre-
existing access control rights—our JVML SASI prototype does not add any
checking code (because the rewriter can simplify the security automaton as it
is being inserted). Data for the Blast and the Tar benchmarks in [4] suggest
that as much as a fourfold performance improvement can be expected when
checking code is eliminated in what arguably are realistic applications.

5 Related Work

SASI is not the first tool to use object code modification as a way of enforcing
security policies, nor is it the first work directed at enforcing user-defined
security policies.

Object code modification for security policy enforcement and for system
monitoring was first used starting in 1969 for an SDS-940 time-sharing sys-
tem at Berkeley [2]. More-recent work has been directed at enforcing various
memory-safety properties that become important for maintaining integrity
in extensible systems, where extensions and a base system share a single
address space [14, 12]. There has also recently been work directed at en-
forcing richer classes of security policies for Java programs. Naccio [4] mod-
ifies method-call instructions, redirecting them through a wrapper method;
Ariel [10] and Grimm and Bershad [5] insert reference monitor code between
target system instructions.

With object code modification, the overhead for enforcement can be low-
ered if object code for the target system is constructed in a way that obviates
some of the run-time checks. Overhead also can be lowered if analysis of
the object code can identify redundant checks (which are then suppressed).
SPIN [1] uses type-safety to avoid run-time enforcement checks, just as x86
SASI exploits the structure of gcc code and JVML SASI exploits type safety
guarantees provided by JVML. However, the problem with relying on as-
sumptions about the form of the object code is the impact it has on the TCB.
Tools that perform object code construction or analysis on which enforce-
ment depends now become part of the TCB; a flaw in such a tool becomes
a security vulnerability.

13

Each of our SASI prototypes depends on a compiler for SAL and on a
rewriter (which does some analysis of object code). These software compo-
nents—written in Java—are part of the TCB for SASI, and they are neither
large nor complex. The SAL lexer/parser is roughly 1600 lines, and the
partial evaluator adds another 1600 lines. For x86 SASI, the SAL compiler
is approximately 850 lines; the rewriter is another 1100 lines, which includes
the analyzer necessary for constructing the platform-specific predicates. For
JVML SASI, the SAL compiler is approximately 1000 lines; the JVML as-
sembler (3300 lines) and disassembler (650 lines) that complete the picture
are components that already exist in the TCB of any JVM implementation.

Note, the compiler that produces JVML (e.g. javac) is not part of the
TCB for JVML SASI. The required type-safety is established by checking
JVML, using a relatively simple analysis. Inexpensive analysis techniques for
object code have become an active area of research within the programming
languages community because of the potential payoff for reducing the over-
head of security policy enforcement. Efficient Code Certification (ECC) pro-
vides an analysis method for checking the safety of memory, jump, and stack
operations [7]; Typed Assembly Language (TAL) provides a flexible type-
safe assembly language that prevents abstractions from being violated [8];
and Proof-Carrying Code (PCC) generalizes from type-safety to allow ver-
ification of proofs for even more-expressive classes of properties [9]. These
methods could provide a foundation for realizations of SASI for any suitably
constructed high-level language compiler and for a variety of platforms.

For supporting user-defined classes of security policies, expressiveness of
the policy specification language is crucial. In Ariel [10], Deeds [3], Grimm
and Bershad [5], and Naccio [4], security policies are formulated in a lan-
guage that, at least in part, is processed by a Java compiler. This is no
doubt attractive to Java programmers, since security policies can be spec-
ified without learning a new language. But by relying on a Java compiler
for security policies, that compiler becomes part of the TCB. The ability to
use Java for formulating security policies does, however, allow these systems
to employ additional state for purposes of policy enforcement, considerably
enlarging the set of security policies that can be specified.

Finally, Ariel [10], Grimm and Bershad [5], and Naccio [4], insert checks
only at JVML method and constructor calls; Deeds [3] inserts checks only
at Java SecurityManager invocations. This restricts the set of enforceable
security policies, as only some, not all, instructions in the target system can
be halted. For instance, these tools cannot enforce policies that prohibit
division by zero, restrict the value of a directly-accessible variable (e.g., a
global flag), or implement the stack-access policy of Figure 2. SASI can

14

enforce such policies.

6 SASI in Retrospect

Developing our two SASI prototypes has been instructive, but we do not
feel that either x86 SASI or JVML SASI could become a practical tool.9

First, SAL has proven to be an awkward language for writing real security
policies, because SAL forces relevant execution history of target system to be
summarized in a single, unstructured “current” state of one or more security
automata. Values from the target system that are instances of application-
level abstractions must be encoded in order for them to play any role in
subsequent enforcement decisions. It is awkward, for example, to write in
SAL a policy specifying that the same character string is used in a sequence
of operations—SAL cannot directly store strings in automaton states. By
changing SAL so that enforcement state can contain typed variables—with
types that may be application-level abstractions (e.g., strings)—we believe
this difficulty would be eliminated.

A second difficulty with our SASI prototypes concerns what events can
be used in defining security policies. A reference monitor that checks every
machine language instruction initially seemed like a powerful basis for defin-
ing application-specific security policies. In practice, this power has proved
difficult to harness. Most x86 object code, for example, does not make ex-
plicit the application-level abstractions that are being manipulated by that
code. There is no explicit notion of a “function” in x86 assembly language,
and “function calls” are found by searching for code sequences resembling
the target system’s calling convention. The author of a security policy thus
finds it necessary to embed a disassembler (or event synthesizer) within each
SAL security policy description. This is awkward and error-prone. One so-
lution would be to build a SASI that modified high-level language programs
rather than object code. A security automata could be merged into the
C++ program (say) for the target system rather than being merged into
the object code produced by the C++ compiler. But this is unattractive,
because a SASI that modifies C++ programs adds the C++ compiler to the
TCB.

The approach taken in JVML SASI seems the more promising way to

9However, demos of these tools are available on WWW. Access
http://sasi.cs.cornell.edu/x86demo/ for our prototype x86 SASI processor and
access http://sasi.cs.cornell.edu/javademo/ for our prototype JVML SASI proces-
sor.

15

handle security policies involving application-level abstractions. That is, we
advocate relying on annotations of the object code that are easily checked
and that expose application-level abstractions. Our current work on build-
ing a second-generation of SASI tools is concentrating on JVML for this
reason. The approach, however, is not limited to JVML code or even to
type-safe high-level languages. Object code for x86 could include the neces-
sary annotations by using the ECC [7] and TAL [8] approaches mentioned
above.

Finally, we were pleasantly surprised to observe that our object code
modifications do not affect program correctness. High level languages, by
distancing the programmer from the assembly language, help prevent pro-
gram correctness from depending on certain properties of programs—data
placement, relative offsets between labels, and so on. This distance gives
SASI the latitude to add enforcement code.

Acknowledgments This work has benefited from many lengthy discus-
sions with Greg Morrisett, Robbert van Renesse, and the members of the
TACOMA group at Cornell University. Discussions with David Evans helped
us sharpen some of our arguments. Dexter Kozen, Andrew Myers, David
Walker, Michal Cierniak, and the NSPW program committee provided help-
ful comments on a draft of this paper.

References

[1] B.N. Bershad, S. Savage, P. Pardyak, E.G. Sirer, M.E Fiuczynski,
D. Becker, S. Eggers, and C. Chambers. Extensibility, safety and perfor-
mance in the SPIN operating system. In Proc. Symposium on Operating
System Principles (SOSP’95), pages 267–284. ACM Press, December
1995.

[2] P. Deutsch and C.A. Grant. A flexible measurement tool for software
systems. In Information Processing (Proc. of the IFIP Congress), pages
320–326, 1971.

[3] G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control
for mobile code. In Proc. 5th Conf. on Computer & Communications
Security, May 1998.

[4] D. Evans and A. Twyman. Policy-directed code safety. In Proc. IEEE
Symposium on Security and Privacy, May 1999.

16

[5] R. Grimm and B.N. Bershad. Providing policy-neutral and transparent
access control in extensible systems. In C.D. Jensen J. Vitek, editor, Se-
cure Internet Programming: Security Issues for Mobile and Distributed
Objects, volume 1603 of Lecture Notes in Computer Science, pages 317–
338. Springer-Verlag, 1999.

[6] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Au-
tomatic Program Generation. Prentice Hall, 1993.

[7] D. Kozen. Efficient code certification. Technical Report TR98 1661,
Cornell University, January 1998.

[8] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to
typed assembly language (extended version). In Proc. Principles of
Programming Languages (POPL’98), pages 85–97, January 1997.

[9] G. Necula. Proof-carrying code. In Proc. Principles of Programming
Languages (POPL’97), pages 106–119, January 1997.

[10] R. Pandey and B. Hashii. Providing fine grained access control for
mobile programs through binary editing. Technical Report TR98 08,
University of California, Davis, August 1998.

[11] F.B. Schneider. Enforceable security policies. Technical Report TR98
1664, Cornell University, January 1998.

[12] C. Small. A tool for constructing safe extensible C++ systems. In
Proc. 3rd Conference on Object-Oriented Technologies and Systems,
June 1997.

[13] C. Small and M. Seltzer. A comparison of OS extension technologies. In
Proc. 1996 USENIX Technical Conference, pages 41–54, January 1996.

[14] R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham. Efficient
software-based fault isolation. Operating System Review, 27(5), 1993.

17

