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Abstract

Phalanx is a software system for building a persistent,
survivable data repository that supports shared data ab-
stractions (e.g., variables, mutual exclusion) for clients.
Phalanx implements data abstractions that ensure useful
properties without trusting the servers supporting these ab-
stractions or the clients accessing them, i.e., Phalanx can
survive even the arbitrarily malicious corruption of clients
and (some number of) servers. At the core of the system are
survivable replication techniques that enable efficient scal-
ing to hundreds of Phalanx servers. In this paper we de-
scribe the implementation of some of the data abstractions
provided by Phalanx, discuss their ability to scale to large
systems, and describe an example application.

1. Introduction

In this paper we introducBhalanx a software system
for building persistent services that support shared data
abstractions, such as variables and mutual exclusion, for
clients. The properties that distinguish Phalanx from other
systems that provide such services aresitalability and
its survivability. Phalanx is designed to scale to hundreds
of servers spread across a wide area and to be capable of
serving thousands of clients at a time. Moreover, Phalanx
can survive the arbitrarily malicious corruption of up to a
threshold of its servers and any number of clients while still
providing useful services.

The applications at which Phalanx is targeted are large-
scale distributed applications that have a need for shared
state with intrinsic survivability and security requirements.
Applications in this category include, for example:

1. Public key infrastructures: Common to many pro-

to public keys) as in [19, 27], revocation services that
enable a client to promptly invalidate her certificate as
in [8, 16], and directory services that enable a client to
locate the most up-to-date certificate for a name or key,
such as X.509 directories [10]. A PKl is a prime exam-
ple of a system that may need both to survive hostile at-
tempts to penetrate it due to the security requirements
it embodies, and to scale to worldwide proportions.

Robust publishing and dissemination The Eternity
service [1] is a proposed service that would enable a
clientto publish a document so that anyone can retrieve
it, but so that nobody—even the author, or an adversary
with the means to mount a military strike against the
service—could eliminate the document from existence
or otherwise deny access to it. Such a service will in-
herently require massive replication over a wide area
that can survive attempts to corrupt the data it holds.
The Eternity service is one (ambitious) example of a
broader class of robust publishing and dissemination
services that Phalanx is designed to support.

. National voting systems The AT&T Secure Systems

Research Department (of which we are members) was
recently tasked with designing an electronic voting
system for Costa Rica's national elections. Among the
goals of this design was to enable each voter to vote
from any of over 1000 voting stations in the country,
while still ensuring that no voter identifier could be
used to vote multiple times. This application is one in-
stance in which robust mutual exclusion (in this case,
for casting the vote for a voter identifier) across a wide
area is needed, and indeed this was one of the driving
applications in the design of Phalanx.

The scalability and survivability goals of Phalanx, driven

posals for public key infrastructures (PKIs) are on-line by applications such as those above, are different from the
services that support critical functions. These func- goals of any other system of which we are aware. And not
tions may include certificate-generating services that surprisingly, known approaches to building fault-tolerant
create certificates (i.e., bindings associating attributesreplicated data and shared data abstractions do not suffice



Persistent object servers

for our goals. In particular, the foremost approach for :
building a survivable service today state machine repli-
cation[28], in which every (available) server receives, pro- :
cesses, and responds to every client request; some examples
of systems implementing this approach are [29, 26, 11]. Be-:
cause every server must reliably receive every request, thig
approach generally does not scale well. Numerous other
approaches that support persistent and/or replicated data irh
a distributed system with tolerance to only benign (crash) !
failures are not suitable, either. These can be coarsely:

categorized as group communication systems (see [25]),
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distributed transactional systems (e.g., Argus [15], and:
Thor [18]), and shared-memory emulation systems (e.g.,,
Ivy [17] and Munin [3]). Though these systems allow more
efficient data access than Phalanx, their simpler access pro-
tocols cannot mask the arbitrary corruption of data replicas.
Phalanx therefore is constructed using a different ap-
proach in order to meet its scalability and survivability
goals. At the foundation of Phalanx are nowglorum
constructions that enable clients to complete operations on
shared data objects after interacting with only a typically
small subset (quorum) of servers, with no centralized lock-
ing or management, and with no server-to-server interac-
tion. Quorums can be surprisingly small—e.g., comprised
of only O(y/n) out of a total ofn servers—and thus client
access protocols can efficiently scalehtmndreds and pos-

sibly even thousands of servers. Quorum systems can bgJsing these and other objects, we are presently developing
constructed to tolerate failures ranging from benign to fully higher-level services and applications for clients, including
arbitrary [20, 23], and for either type of failure can pro- transactions on multiple objects. In Section 6, we demon-

vide either strict consistency guarantees or only probabilis-strate one such application, an electronic voting system built
tic ones [24]. Phalanx allows clients to dynamically tune gyer Phalanx.

the quorums they use for their application needs.

Quorums are fundamental to Phalanx, and all objects are, System model and preliminaries
implemented using quorum-based protocols. The basic op-
eration performed by a Phalanx client isj@orum remote -

We presume a system model consistingsefversand

procedure calllQ-RPC; see Figure 1), which is the equiv- | . o .
alent of performing the same RPC to each server in SOmecllentsthat need not necessarily be distinctcérectclient

quorum. Over Q-RPC, Phalanx servers implement an ob-C S€IVer is one that obeys its functional specification. One
ject store that is accessed by object stubs residing at clients'Ehalt deviates from !ts sp_eC|f|cat|onfayI_ty. Faulty cl_|ent_s or
One of the purposes of this paper is to describe the irnple_servers can exhibit arbitrary (Byzantine) behavior, includ-

mentation of two types of objects implemented at this layer:

Q-RPC Q-RPC

Object stubs Object stubs

Application Application

Client Client

Figure 1. Phalanx system architecture

jects, differing in the conditions which guarantee that
some client succeeds in gaining the right.

ing collaborating with other faulty clients and servers. We
assume that at mostservers fail. Throughout this paper it

1. Shared variables A shared variable supports read is convenient to further partition the faulty clients into two
and write operations by clients. For most classes of S€ts: those that fail benignly and theshonest Formally,
failure assumptions, we guaran@emicupdates [14, the only property that this partition must have is that any

22], and under the most severe failure scenarios— client that ever suffers a “truly Byzantine” failure—i.e., any
readers, writers, and (a limited number) of servers failure that cannot be classified as a crash, omission, or tim-

ing failure [4]—must be classified as dishonest. Tloaest

clients are all those that are not dishonest, i.e., all correct

and benignly faulty ones.

. Mutual exclusion: A mutual exclusion object grants As mentioned in Section 1, our protocols leverage the
a right to at most one client out of some number of power ofquorum system® make operations as efficient as
contending clients. Phalanx suppaoatsmost-onenu- possible. A quorum syste@ is a set of subsets of servers
tual exclusion andexactly-onemutual exclusion ob-  with the property that for an),, @» € Q, Q1 N Q> # 0.

are all untrusted—then we provide ordgfeseman-
tics [14, 22].



Intuitively, this property can be used to ensure that con- some servera. Our protocols require that writes by differ-
sistency is preserved across multiple operations performedent writers result in different timestamps, and thus for each
at different quorums. For example, supposing only benignwriter w there is a known set;, of timestamps that does
failures for the moment, if a client reads a variable at a quo- notintersecf,. for any otherw’ € W,.. The timestamps in
rum of servers, then because there is a server inghat T,, can be formed, e.g., as integers appended with the name
rum that also received the lastiten value of the variable,  of w in the low-order bits.

then the client will be sure to obtain it. Of course, in our There are two different variable implementations that
setting, simply requiring a non-empty intersection between Phalanx supports, namely one that assumes that the writers
two quorums may not suffice, since all servers in that inter- of a variable are honest (Section 3.1) and (a more expensive)
section may be “truly Byzantine” faulty. Therefore, in the one that makes no assumptions about writers (Section 3.2).
following sections we will make use of several variations of These two protocols build upon two similar but weaker pro-
quorum systems that are better suited to our environment. tocols in [20].

To make use of quorums, clients communicate to servers  As a practical matter, we note that shared variables can
via aquorum remote procedure callGiven a quorum sys-  be used to store arbitrary contents, e.g., large files. In the
tem, a client's invocation of Q-RP&j), wherem is a re- case of large files, though, it may be desirable to read and
quest, returns responses from a quorum of servers to thewrite only portions of the file rather than the entire con-
requestm. To do this, Q-RPG) sendsm to servers as  tents of such “variables”. This can be performed with minor
necessary to collect responses from a quorum, and then reehanges to our protocols below, but in this case, our proto-
turns these responses to the client. The Q-RPC module proeols achieve (only) safe variable semantics.
vides additional interfaces, e.g., that enablelbraroutine
to specify servers to avoid because those servers have beeR 1. Honest writers
detected to be faulty (e.g., based on responses they returned

to other Q-RPCs), or that enable a calling routine to issué a - \yhen all writers of a variable are assumed to be honest,
query to a partial quorum to complete a previous Q-RPC in the main job of the variable read and write protocols is to
which faulty servers returned useless (e.g., syntactically in-gngyre that faulty servers and readers cannot mislead honest
cor_rect) val_ues. For the purposes of_ this paper, however, Weyjients. Suppose thaachw € W, holds a private signing
omit these interfaces from further discussion. In our proto- key and each possible reader of the variable holds the corre-
cols, correct servers never send messages to other servers,ning public key. Then, the task of masking the behavior
and correct clients never send messages to other clients. ot ity servers becomes particularly simple. It suffices for

~ We assume the existence of trapdoor one-way func-, 4 gigitally sign its updates to the variable, and for all
tions [5], which are sufficient for constructing digital signa- jients to employ a quorum system that ensures that some
ture schemes. [n our protocols, we will often assume that 8¢ rectserver is in the intersection of a write quorum and a
client or server possesses a private key known only to itselfgpsequent read quorum. This correct server can then for-
with which it candigitally signmessages, and that any other 4. the digitally signed update to the reader, enabling it

client or server can verify the origin of that signed message. 4 verify w's digital signature on the value and adopt this
Not all messages will be signed; we will explicitly indicate 5 e.

that the message is signed by by denoting it(rn).. The class of quorum systems that is required in this

case is called &-disseminatiomquorum system [20]. A-
3. Shared variables dissemination quorum system is one that ensures that the
intersection of any two chosen quorums contains at least

We begin by describing the implementation sifared ~ ON€ correct server despite upltéaults. More precisely, a
variablesin Phalanx. A shared variable suppoadand ~ quorumsystend is ab-dissemination quorum systeftior
write operations on it, by which clients can read and update €Very @1, Q2 € Q, [Q1 N Q:| > b+ 1. Note that if it is

the variable, respectively. presumed that no servers are dishon&st(0), then ab-
Avariablez is represented in our system by a single copy dissemination quorum system reduces to a regular quorum

at each server. That is, every servemaintains a copy:,, system. _

of the variabler and an associated timestamyp,, initially Given ab-dissemination quorum system, operations on

zero. In our protocol descriptions that follow, we assume the shared variable are implemented as follows:

that there is a selV,, of writers that have permission to

write to z, and that servers and readers can test whether anrite:  For a writerw € W, to write the value; into «, it
given client is a member df/, (e.g.,}V,; could be encoded

in the name ofr or stored in a separate variable). During 1. performs a Q-RPC to obtain a set of timestamps
a write by somew € W,, the timestamp,, ,, is updated at {tsutueq, currently held at a quoruif}; of servers



2. chooses a timestanipe 17, greater than the highest
timestamp value, and

3. performs a second Q-RPC to sefidt), to each
server in some quoruig-.

Read: For aclientto read, it

1. performs a Q-RPC to obtain a set of signed
value/timestamp pairs{{v.,tu)w, fueqg, currently
held at a quorung); of servers

. chooses the pafp, t),, such thats € W, and, among
all such pairs, that has the highest timestamp

. performs a second Q-RPC to “write bacl¢, t),, to
servers, to guarantee that ¢),, is stored at some quo-
rumg)-, and

4. returnsy as the result of the read operation.

In either case, when a serverreceives a paifv, ),
such thatw € W,, ¢t € T3, andt > i, ,, then it stores),

t andw's signature. In practice, the “write back” Q-RPC
of a read operation can be optimized to séndt),, to a
server only if it did not already respond with, )., in the
previous Q-RPC.

The digital signature by the writer serves two purposes.
First, it prevents a faulty server from forging a value and
convincing a client to accept it, since a correct client ac-
cepts only values signed by a writer. Second,
faulty reader from forging a value and convincing a server

to accept it when it writes its chosen value back at the end

of the read protocol.
Informally, our protocol above guarantees that writes
to the variable ar@atomic so that read and write opera-

be written only alimited number of times or with only a lim-
ited frequency. For example, in the Eternity service briefly
described in Section 1, the act of publishing a file is the
onlytime that it can be written, i.e., it can be written once.
Similarly, in Section 6 we describe another application in
which a variable is written at most once. In such cases, a
dishonest client should not be able to publish a variable so
that different readers see different variable contents. An-
other example would be an intrusion detection application
in which audit logs are consolidated at Phalanx at regular
intervals for dissemination to analysis programs; between
checkpoints, variables are rendered unwriteable. Our vari-
able implementation presented here at least ensures that be-
tween writes, readers will have consistent variable seman-
tics on which to base their analysis efforts.

The first difficulty that arises in treating dishonest writ-
ers is that the writer might send different updates to different
servers. To guard against this,@ehoprotocol is employed
in all write operations to guarantee agreement on the writ-
ten value among the servers. The echo protocol borrows
its name and functionality from the echo protocol in Ram-
part [26]. An echo protocol works as follows: To send an
update to the servers, a writer first obtains sigtesthoes”
for the update from a quorum of servers. It then writes the
new value with the attached set of echoes to each server
in some quorum. Since any two quorums intersect, it is
not possible for a writer to obtain a full quorum of echoes
for each of two different values with the same timestamp,

It prevents a‘provided that no correct server echoes more than one value

with the same timestamp. As a result, the value written with
a given timestamp is unique.

Though this suffices to ensure unique updates to the
servers, it does not suffice to ensure that readers can identify
the correct value. In the previous section, readers relied on

tions throughout the system appear to occur sequentiallyyy, digital signature of the writer to filter out forged values

To properly present the semantics provided by our proto-

cols and prove their correctness requires extending the stan

dard treatment of concurrent objects in benign failure envi-
ronment [14, 9] to an environment with Byzantine clients

from faulty servers. In the case of a dishonest writer, how-
ever, this signature is useless, and so we rely instead on cor-
rect servers to mask out the forged values of faulty servers.
This is achieved by making use obanasking quorum sys-

which is beyond our scope here. The interested reader 'Stem[20], where a quorum systes is ab-masking quorum

referred to [22] for a formal treatment of this subject. Due
to space limitations, we omit a proof for our protocol here.

3.2. Dishonest writers

In this section, we address the case that writers may be

dishonest. A natural question to ask is: why should we at-
tempt to provideanyvariable semantics in this case? After

all, a dishonest writer could presumably repeatedly write a
variable with different values so that no two variable reads
ever return the same contents. However, we would like to
restrict the damage done by a faulty client so that if it even-
tually stops, the system will be in (or will return to) a consis-

tent state. Additionally, in some applications, variables can

systenif forevery Q1, Q> € Q, |Q1NQ2| > 2b+1. Again,
if it is presumed that no servers are dishonést (0), then
a b-masking quorum system reduces to a regular quorum
system.
The protocol here employsiamasking quorum system
@ to perform read and write operations as follows:

Write:  For a writerw € W,, to write the value, it

1. performs a Q-RPC to obtain a set of timestamps
{tsutueq, currently held at a quorui}; of servers

2. chooses a timestanipe 17, greater than the highest
timestamp value



3. performs a second Q-RPC to sgpndt) to servers, to  succeed if mliiple clients contend for it. Accordingly, we
obtain signed echoes fdr,t) from a quorum@), of call this “at-most-one” mutual exclusion, indicating that at
servers most one (but possibly zero) clients succeed. The second

type ensures that some client succeeds no matter how many

(but at least one) contend for mutual exclusion; we call this

“exactly-one” mutual exclusion.

4. performs a third Q-RPC to forward the echoes from
@)» and write(v, t) at a quorum of servers.

Read: For a clientto read a variablg it 4.1. At-most-one mutual exclusion

1. performs a Q-RPC to obtaif{xy, s u)u tueg,, i-€.

the value/timestamp pairs currently held at a quorum [N some applications, one may need to achieve exclu-

that holds it sources maya priori be unlikely or indicative of foul play.

For example, one of the goals in an electronic election sys-
2. discards any value/timestamp pair returnedbbgr tem may be to ensure that each voter identifier can be used
fewer servers, and chooses from the remaining the pairto cast a vote only once. Achieving this may require en-

(v,1) (that occurs irb + 1 responses) with the largest  forcing mutual exclusion on attempts to cast a vote for each

timestampr. (If no such pair exists, the client returns  voter identifier, thereby precluding its use at multiple vot-

1 as the result of the read operation.) ing stations. Contention for a voter identifier indicates an
attempt to use the voter identifier multiple times, and the
vote can be (and probably should be) delayed until this con-
tention is resolved. For such circumstances, here we de-

4. returns as the result of the read operation. scribe the implementation of at-most-one mutual exclusion
in Phalanx.

In the write protocol, a server generates a signed echo  To implement an at-most-one mutual exclusion object
for (v, ) only if w € W,,, t € T,y, and it has not previously  each server, maintains a variable,,, initially set to “frec”.
echoed(v', ) for anyv’ # v. In a write protocol and the  The protocol makes use oftadissemination quorum sys-
write-back phase of a read, each servenodifiesz, and  tem Q over the servers (see Section 3.1). To contend for
tzu ONly if ¢ is greater than the value it already holds in 3 3 client digitally signs a request to contend and sends
t- and if the request is accompanied by signed echoes fofit via a Q-RPC. When a server receives a properly signed
(v,t) from a quorum of servers (in the write protocol) or request from a client, it returns its value of and, if z,,
b+ 1 server signatures ofy, ¢) (in the write back). is presentlyfree, assignse,, to be the signed request from

As in the case for honest writers above, we informally the client. The client succeeds if it receivespmsses from
state here that the prOtOCOIS above achiesafa read/write every server in some quorum, and none of these responses
Variablesemantics, so that the variable eventually StabilizeSiS a proper|y Signed request by another client. Itis easy to
to a consistent state after writes complete, but may returnyerify that this mutual exclusion protocol achieves the fol-
arbitrary values to a reader while being written. lowing properties: (i) at most one client succeeds; (ii) if

We also note that in the case of honest writers, the pro-js honest and siceeds, then contended for mutual exclu-
tocol in this section can be used to implement safe variablesjon: and (i) if only one client contends and that client is

semantics without requiring signatures by clients. More- correct, then that client succeeds.

3. performs a second Q-RPC to “write bagk’, ¢) along
with b + 1 server signatures for it, and

over, in that case, the “echo” phase can be omitted. If each server digitally signs isee response to a client,
then a client can use the collection of sigieg responses
4. Mutual exclusion from a quorum of servers as proof that ittseeded in its

contention for mutual exclusion. That is, the client can use
In addition to the need for shared state, many applica- this as an access token to access the objects guarded by the

tions need mechanisms to coordinate updates to that state grutual exclusion object.
to otherwise enforce mutual exclusion for other operations.
In this section, we outline two classes of mutual exclusion 4-2. Exactly-one mutual exclusion
objects that we have developed for Phalanx. The two classes
of mutual exclusion objects that we describe here differin ~ The objects of Section 4.1 lack any guarantee of some
their liveness properties. Each type provides a “contend” client succeeding, except in the case that only a single cor-
operation that either succeeds or fails. The first type guar-rect client contends for mutual exclusion. In this section, we
antees that if a client is alone in contending for mutual ex- describe a mutual exclusion object guaranteeing that some
clusion, then that client succeedotigh no client might  client will succeed no matter how many contend for it.



Central to the implementation of these objects in Phalanx cur between clients and (quorums of) servers. In examin-
areconsensus objectsAbstractly, a consensus object is a ing the variable implementations of Section 3, it should be
shared object to which a client cgmoposea value and re-  clear that growth in the number of clients should have mini-
ceive a single value in return. The consensus object returngnal impact on the latency of our protocols. Servers process
the same value to each client, and the returned value is on@ small constant number of messages and perform a small
proposed by some client. That is, the returned values satisfyconstant number of computations (in particular, digital sig-
the following properties: (i) If any honest clientgeives natures and verifications) per read or write operation. As
v, then all correct clients receive and (ii) if any honest  such, growth in the number of clients results in at most a
client receivesy, then some client proposed It is well- linear growth in the load on each server for variable op-
known that no protocol satisfying (i) and (ii) can guarantee erations, and with a proper choice of quorum system (see
that clients receive a value in a finite number of steps [7]. below), this growth can be slow in practice. Our implemen-
Phalanx thus employs randomization to ensure that correctation of at-most-one mutex objects also share this property.
clients receive the consensus value with pralitgtone. In Our implementation of exactly-one mutex objects does not
the case that clients are presumed to be honest, we employ scale as elegantly, because in the consensus object imple-
randomized protocol based on one due to Aspnes and Hermentations that we employ [2, 21], the amount of work a
lihy [2], and for the general case (i.e., when clients can be client must do to obtain the consensus value is a function
dishonest), we use our own protocol [21]. In either case, of the humber of clients that have proposed values for it.
these consensus protocols terminate in a expected numbddowever, we expect that in the applications we envision,
of operations polynomial in the number of clients. mutex objects will seldom be contended for by more than a

With consensus objects in hand, implementing exactly- handful of clients at any time.
one mutual exclusion is straightforward. Each mutual ex-  Scalability with growth in the number of servers is pri-
clusion object is represented by a consensus object. To conmarily dictated by the quorum system used, as quorum sys-
tend for mutual exclusion, a client proposes its own identi- tems exist with a wide array of properties [20, 23, 24]. For
fier as the consensus value. If it receives its own identifier asexample, there are dissemination constructions whose re-
the consensus value, then it has succeeded in its contentiogjjience ish = @ and that have quorum sizes as small

for mutual exclusion. _ asO(n?/%) (so, e.g., fom = 1000, quorum size is< 200).

~ Simpler emulations of exactly-one mutual exclusion ob- \areover, probabilistic constructions exist with quorums of
jects using shared variables can be achieved using adaptasi;e o (,/n), that simultaneously have outstanding avail-
tions of Dijkstra's mutual exclusion algorithm [6] or Lam-  apjjity. These latter constructions admit a certain well-
port's bakery algorithm [12] to the case of faulty clients; gefined probability of inconsistency in any given operation.
see [22]. H(_)wever, the co_nsensus-object-based implemen- o pogt guorum system to use can differ from protocol
tation des_cnbed here, Wh'le sqmewhat more cqmplex, of- to protocol. Thus we are constructing Phalanx to be flexible
fers certain advantages in practice. In particular, it enables &5 to the quorums it uses to maintain objects, and to allow

Phalanx serverto asc_ert_aln, based_ on local data only, which, o, switching between quorum systems dynamically at run
client has succeeded in its contention (see [21]), e.g., to ®Mtime. In particular, different Phalanx objects can be main-

force access control 1o guarded objects. DL_Je toqlhxe_ tained simultaneously using different quorum systems.
rum structure of our system, the aforementioned simpler E . . . .
or particular applications, it may be possible to further

fsolutu:_ns E{O exactly-onz tnr:utulal exclusg)_lr_]t p;ov![(rj]e Iessd'dn'dtunethe guorum system used to enhance the performance of
ormation to SErvers and thus fess capability for these adde our protocols. For example, ifitis known that variable reads

featu_res. Due to space constraints, here we omit furtherdls-far outnumber variable writes, then it should be possible
cussion of these issues.

to employ a quorum construction with distinguished read
quorums and write quorums that optimize reads at the cost
5. Scale of more expensive writes.

The scalability that we believe Phalanx can achieve is
based on two factors: efficient protocol design that enables
Phalanx to scale well as the number of clients grows, and
the use of quorum systems that enable Phalanx to scale well
as the number of servers grows. In this section, we briefly ~ As discussed in Section 1, the design of Phalanx was
consider these two factors. partly driven by the requirements of an electronic voting

We first note that in our design, clients need never com- system for Costa Rica that we helped to develop. In this
municate with one another, nor do servers communicatesection we briefly describe a simplified voting application
among themselves, and thus, interaction is limited to oc- that we have built using Phalanx. This application both cap-

6. Example application: A distributed voting
system



tures many of the requirements of the Costa Rican electiongor which statiornu; is allowed to contend only if it includes

and demonstrates some of the features of Phalanx. f(s;, VID) in its request to contend. More precisely, the
In our voting system, there are polling stations  voting protocol proceeds as follows: When a voter visits a
uy, ..., u, that are geographically distributed but that can polling station, she enters her voter identiN8D and vote

communicate over a network. It is presumed thatan at the polling station. The polling statian takes the fol-
be large; e.g., in the case of the Costa Rican electionslowing steps, in order.
n > 1000. During the course of an election, each voter
o . . ’ It computegy; = A(VID) andy, = ., VID).
can visit a polling station to cast her vote. The goals of the * ptes (VID) vz = Jlsi )

election system can be stated informally as follows. ¢ It confirms that there is an access tag of the form
(y1,S) (whereS denotes some set). If not, th&tD
1. At the end of the election, there is a consistent per- is not a valid voter identifier, and; rejects it.

station, per-candidate vote tally that is available to all

polling stations ¢ It contends for the mutex object named, includ-

ing y- in its signed request to contend. If this fails

2. The total number of votes cast in the election is at most (i.e., some server returns a signed request from another
the total number of voters who actually voted. serveru; containing ay, such that(y,) € S), then
thisVID has already been used in this election apd

3. If polling stationu is correct and voter voted atu,

- ) rejects it.
thenv's vote is counted correctly in the tally.

¢ It accepts the voter's vote and stores it ioeal tally.
4. If polling stationu is correct, then all that is revealed

about votes cast at are (i) which voters voted at,

and (ii) how many votes were cast for each candidate
atu. No information about individual votes is revealed
(beyond what can be inferred from (i) and (ii)).

Each server, uporeceiving(y,, y=) in u;'s signed request

to contend for the mutex object namgd finds the access

tag (y1, S) and verifies thak(y,) € S. If so, the server
interprets this request as a request to contend for the object
namedy; .

We admit the possibility, albeit unlikely, that a polling ~ The second type of shared object employed by polling
station could be corrupted (i.e., fails), in which case it could Stations is an untrusted-writer variable (see Section 3.2) per
inhibit or change the votes cast by the voters that visit it. Polling station per candidate. At the end of the election,
Nevertheless, the properties above limit and isolate the ef-u: Writes its tally for candidate into the designated shared
fects of a faulty station so that, for example, it can be deter- Variable. Each such tally variable is “write once”, i.e., can
mined if it could have any effect on the final outcome of the P€ written at most once. Once all polling stations have done
elections. this, any polling station can compute the overall election

A voter is named by a voter identifie¥[D). It is pre- results by reading all shared variables and tallying the indi-
sumed that each voter is given HéiD (e.g., on a voting  Vvidual scores from each pimg station.
card) during some registration process that is outside the Briefly, the properties described above for our system
scope of our system. Ead¥iD is a large, unpredictable are achieved as follows. Property 1 is achieved due to the
string that is not known to the polling stations. How- Cconsistency of values written to the untrusted-writer shared
ever, each plting station holds, foreachVID, anaccess  Variables that, in this case, can be written only once. Prop-
tag (h(VID), {A(f(si,VID))}1<i<n) Whereh is a one-way €1y 2 can be ensured during a post-election audit by verify-
collision-resistant functionf is a pseudo-random function, ing that each piting station reports a number of votes that
ands; is a large random value known only tg. These ac- S at most the total number of voter identifiers for which it
cess tags are installed at eachlipg station by the author- ~ Succeeded in its mutual exclusion contentions. Property 3
ity overseeing the elections. Upon receiviny from a holds because unless a voter visits anothdlirgpstation,
voter, the polling station can determine whether it is valid N0 other station can contend for her voter identifier (due to
by seeing ifz(VID) is the first component of amccess tag. the properties of the access tags) and so the correct station
However, becausé is one-way, these access tags are not that she does visit can complete her vote. Property 4 holds
helpful in allowing a polling station to predistiDs. Below because the only information recorded in shared state is (i)
we will see that these access tags are also used to ensuf@ Which voter identifiers have polling stations contended
property 3 above. and (ii) the tally for each candidate perlipag station.

The polling stations in our system act both as Pha-
lanx servers and as clients of the system that make use of Conclusion
Phalanx-replicated objects. As clients, the polling stations
employ one at-most-one mutual exclusion object (see Sec- In this paper we introduced the Phalanx software system
tion 4.1) petVID, which is hamed by the valugVID) and for the construction of survivable and scalable data repos-



itories. The distinguishing features of Phalanx are its im- [15]
plementation of strong data abstractions in a scalable way
using untrusted servers and clients. The applications for
which we are targeting Phalanx include critical components [16]
of large scale public-key infrastructures, publishing and dis-
semination services, and national election systems. In thi
paper we focused on the protocols used to implement som
of the basic data abstractions that Phalanx supports, in par-
ticular shared variables and mutual exclusion objects. We[1g]
argued for the scalability of Phalanx based on the efficiency
of these protocols and the novel use of quorum systems at
the core of Phalanx, and we described a prototype voting
application that we have built with the system. [1
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