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Abstract

Phalanx is a software system for building a persistent,
survivable data repository that supports shared data ab-
stractions (e.g., variables, mutual exclusion) for clients.
Phalanx implements data abstractions that ensure useful
properties without trusting the servers supporting these ab-
stractions or the clients accessing them, i.e., Phalanx can
survive even the arbitrarily malicious corruption of clients
and (some number of) servers. At the core of the system are
survivable replication techniques that enable efficient scal-
ing to hundreds of Phalanx servers. In this paper we de-
scribe the implementation of some of the data abstractions
provided by Phalanx, discuss their ability to scale to large
systems, and describe an example application.

1. Introduction

In this paper we introducePhalanx, a software system
for building persistent services that support shared data
abstractions, such as variables and mutual exclusion, for
clients. The properties that distinguish Phalanx from other
systems that provide such services are itsscalability and
its survivability: Phalanx is designed to scale to hundreds
of servers spread across a wide area and to be capable of
serving thousands of clients at a time. Moreover, Phalanx
can survive the arbitrarily malicious corruption of up to a
threshold of its servers and any number of clients while still
providing useful services.

The applications at which Phalanx is targeted are large-
scale distributed applications that have a need for shared
state with intrinsic survivability and security requirements.
Applications in this category include, for example:

1. Public key infrastructures: Common to many pro-
posals for public key infrastructures (PKIs) are on-line
services that support critical functions. These func-
tions may include certificate-generating services that
create certificates (i.e., bindings associating attributes

to public keys) as in [19, 27], revocation services that
enable a client to promptly invalidate her certificate as
in [8, 16], and directory services that enable a client to
locate the most up-to-date certificate for a name or key,
such as X.509 directories [10]. A PKI is a prime exam-
ple of a system that may need both to survive hostile at-
tempts to penetrate it due to the security requirements
it embodies, and to scale to worldwide proportions.

2. Robust publishing and dissemination: The Eternity
service [1] is a proposed service that would enable a
client to publish a document so that anyone can retrieve
it, but so that nobody—even the author, or an adversary
with the means to mount a military strike against the
service—could eliminate the document from existence
or otherwise deny access to it. Such a service will in-
herently require massive replication over a wide area
that can survive attempts to corrupt the data it holds.
The Eternity service is one (ambitious) example of a
broader class of robust publishing and dissemination
services that Phalanx is designed to support.

3. National voting systems: The AT&T Secure Systems
Research Department (of which we are members) was
recently tasked with designing an electronic voting
system for Costa Rica's national elections. Among the
goals of this design was to enable each voter to vote
from any of over 1000 voting stations in the country,
while still ensuring that no voter identifier could be
used to vote multiple times. This application is one in-
stance in which robust mutual exclusion (in this case,
for casting the vote for a voter identifier) across a wide
area is needed, and indeed this was one of the driving
applications in the design of Phalanx.

The scalability and survivabilitygoals of Phalanx, driven
by applications such as those above, are different from the
goals of any other system of which we are aware. And not
surprisingly, known approaches to building fault-tolerant
replicated data and shared data abstractions do not suffice



for our goals. In particular, the foremost approach for
building a survivable service today isstate machine repli-
cation[28], in which every (available) server receives, pro-
cesses, and responds to every client request; some examples
of systems implementing this approach are [29, 26, 11]. Be-
cause every server must reliably receive every request, this
approach generally does not scale well. Numerous other
approaches that support persistent and/or replicated data in
a distributed system with tolerance to only benign (crash)
failures are not suitable, either. These can be coarsely
categorized as group communication systems (see [25]),
distributed transactional systems (e.g., Argus [15], and
Thor [18]), and shared-memory emulation systems (e.g.,
Ivy [17] and Munin [3]). Though these systems allow more
efficient data access than Phalanx, their simpler access pro-
tocols cannot mask the arbitrary corruption of data replicas.

Phalanx therefore is constructed using a different ap-
proach in order to meet its scalability and survivability
goals. At the foundation of Phalanx are novelquorum
constructions that enable clients to complete operations on
shared data objects after interacting with only a typically
small subset (quorum) of servers, with no centralized lock-
ing or management, and with no server-to-server interac-
tion. Quorums can be surprisingly small—e.g., comprised
of onlyO(

p
n) out of a total ofn servers—and thus client

access protocols can efficiently scale tohundreds and pos-
sibly even thousands of servers. Quorum systems can be
constructed to tolerate failures ranging from benign to fully
arbitrary [20, 23], and for either type of failure can pro-
vide either strict consistency guarantees or only probabilis-
tic ones [24]. Phalanx allows clients to dynamically tune
the quorums they use for their application needs.

Quorums are fundamental to Phalanx, and all objects are
implemented using quorum-based protocols. The basic op-
eration performed by a Phalanx client is aquorum remote
procedure call(Q-RPC; see Figure 1), which is the equiv-
alent of performing the same RPC to each server in some
quorum. Over Q-RPC, Phalanx servers implement an ob-
ject store that is accessed by object stubs residing at clients.
One of the purposes of this paper is to describe the imple-
mentation of two types of objects implemented at this layer:

1. Shared variables: A shared variable supports read
and write operations by clients. For most classes of
failure assumptions, we guaranteeatomicupdates [14,
22], and under the most severe failure scenarios—
readers, writers, and (a limited number) of servers
are all untrusted—then we provide onlysafeseman-
tics [14, 22].

2. Mutual exclusion: A mutual exclusion object grants
a right to at most one client out of some number of
contending clients. Phalanx supportsat-most-onemu-
tual exclusion andexactly-onemutual exclusion ob-
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Figure 1. Phalanx system architecture

jects, differing in the conditions which guarantee that
some client succeeds in gaining the right.

Using these and other objects, we are presently developing
higher-level services and applications for clients, including
transactions on multiple objects. In Section 6, we demon-
strate one such application, an electronic voting system built
over Phalanx.

2. System model and preliminaries

We presume a system model consisting ofserversand
clientsthat need not necessarily be distinct. Acorrectclient
or server is one that obeys its functional specification. One
that deviates from its specification isfaulty. Faulty clients or
servers can exhibit arbitrary (Byzantine) behavior, includ-
ing collaborating with other faulty clients and servers. We
assume that at mostb servers fail. Throughout this paper it
is convenient to further partition the faulty clients into two
sets: those that fail benignly and thedishonest. Formally,
the only property that this partition must have is that any
client that ever suffers a “truly Byzantine” failure—i.e., any
failure that cannot be classified as a crash, omission, or tim-
ing failure [4]—must be classified as dishonest. Thehonest
clients are all those that are not dishonest, i.e., all correct
and benignly faulty ones.

As mentioned in Section 1, our protocols leverage the
power ofquorum systemsto make operations as efficient as
possible. A quorum systemQ is a set of subsets of servers
with the property that for anyQ1; Q2 2 Q, Q1 \ Q2 6= ;.



Intuitively, this property can be used to ensure that con-
sistency is preserved across multiple operations performed
at different quorums. For example, supposing only benign
failures for the moment, if a client reads a variable at a quo-
rum of servers, then because there is a server in thatquo-
rum that also received the last-written value of the variable,
then the client will be sure to obtain it. Of course, in our
setting, simply requiring a non-empty intersection between
two quorums may not suffice, since all servers in that inter-
section may be “truly Byzantine” faulty. Therefore, in the
following sections we will make use of several variations of
quorum systems that are better suited to our environment.

To make use of quorums, clients communicate to servers
via aquorum remote procedure call. Given a quorum sys-
tem, a client's invocation of Q-RPC(m), wherem is a re-
quest, returns responses from a quorum of servers to the
requestm. To do this, Q-RPC(m) sendsm to servers as
necessary to collect responses from a quorum, and then re-
turns these responses to the client. The Q-RPC module pro-
vides additional interfaces, e.g., that enable a calling routine
to specify servers to avoid because those servers have been
detected to be faulty (e.g., based on responses they returned
to other Q-RPCs), or that enable a calling routine to issue a
query to a partial quorum to complete a previous Q-RPC in
which faulty servers returned useless (e.g., syntactically in-
correct) values. For the purposes of this paper, however, we
omit these interfaces from further discussion. In our proto-
cols, correct servers never send messages to other servers,
and correct clients never send messages to other clients.

We assume the existence of trapdoor one-way func-
tions [5], which are sufficient for constructing digital signa-
ture schemes. In our protocols, we will often assume that a
client or server possesses a private key known only to itself
with which it candigitallysignmessages, and that any other
client or server can verify the origin of that signed message.
Not all messages will be signed; we will explicitly indicate
that the messagem is signed byu by denoting ithmiu.

3. Shared variables

We begin by describing the implementation ofshared
variablesin Phalanx. A shared variable supportsread and
write operations on it, by which clients can read and update
the variable, respectively.

A variablex is represented in our system by a single copy
at each server. That is, every serveru maintains a copyxu
of the variablex and an associated timestamptx;u, initially
zero. In our protocol descriptions that follow, we assume
that there is a setWx of writers that have permission to
write to x, and that servers and readers can test whether a
given client is a member ofWx (e.g.,Wx could be encoded
in the name ofx or stored in a separate variable). During
a write by somew 2 Wx, the timestamptx;u is updated at

some serversu. Our protocols require that writes by differ-
ent writers result in different timestamps, and thus for each
writer w there is a known setTw of timestamps that does
not intersectTw0 for any otherw0 2Wx. The timestamps in
Tw can be formed, e.g., as integers appended with the name
of w in the low-order bits.

There are two different variable implementations that
Phalanx supports, namely one that assumes that the writers
of a variable are honest (Section 3.1) and (a more expensive)
one that makes no assumptions about writers (Section 3.2).
These two protocols build upon two similar but weaker pro-
tocols in [20].

As a practical matter, we note that shared variables can
be used to store arbitrary contents, e.g., large files. In the
case of large files, though, it may be desirable to read and
write only portions of the file rather than the entire con-
tents of such “variables”. This can be performed with minor
changes to our protocols below, but in this case, our proto-
cols achieve (only) safe variable semantics.

3.1. Honest writers

When all writers of a variable are assumed to be honest,
the main job of the variable read and write protocols is to
ensure that faulty servers and readers cannot mislead honest
clients. Suppose thateachw 2 Wx holds a private signing
key and each possible reader of the variable holds the corre-
sponding public key. Then, the task of masking the behavior
of faulty servers becomes particularly simple. It suffices for
w to digitally sign its updates to the variable, and for all
clients to employ a quorum system that ensures that some
correctserver is in the intersection of a write quorum and a
subsequent read quorum. This correct server can then for-
ward the digitally signed update to the reader, enabling it
to verify w' s digital signature on the value and adopt this
value.

The class of quorum systems that is required in this
case is called ab-disseminationquorum system [20]. Ab-
dissemination quorum system is one that ensures that the
intersection of any two chosen quorums contains at least
one correct server despite up tob faults. More precisely, a
quorum systemQ is ab-dissemination quorum systemif for
everyQ1; Q2 2 Q, jQ1 \ Q2j � b + 1. Note that if it is
presumed that no servers are dishonest (b = 0), then ab-
dissemination quorum system reduces to a regular quorum
system.

Given ab-dissemination quorum system, operations on
the shared variable are implemented as follows:

Write: For a writerw 2Wx to write the valuev intox, it

1. performs a Q-RPC to obtain a set of timestamps
ftx;ugu2Q1

currently held at a quorumQ1 of servers



2. chooses a timestampt 2 Tw greater than the highest
timestamp value, and

3. performs a second Q-RPC to sendhv; tiw to each
server in some quorumQ2.

Read: For a client to readx, it

1. performs a Q-RPC to obtain a set of signed
value/timestamp pairsfhvu; tuiwugu2Q1

currently
held at a quorumQ1 of servers

2. chooses the pairhv; tiw such thatw 2Wx and, among
all such pairs, that has the highest timestampt

3. performs a second Q-RPC to “write back”hv; tiw to
servers, to guarantee thathv; tiw is stored at some quo-
rumQ2, and

4. returnsv as the result of the read operation.

In either case, when a serveru receives a pairhv; tiw
such thatw 2 Wx, t 2 Tw , andt > tx;u, then it storesv,
t andw' s signature. In practice, the “write back” Q-RPC
of a read operation can be optimized to sendhv; tiw to a
server only if it did not already respond withhv; tiw in the
previous Q-RPC.

The digital signature by the writer serves two purposes.
First, it prevents a faulty server from forging a value and
convincing a client to accept it, since a correct client ac-
cepts only values signed by a writer. Second, it prevents a
faulty reader from forging a value and convincing a server
to accept it when it writes its chosen value back at the end
of the read protocol.

Informally, our protocol above guarantees that writes
to the variable areatomic, so that read and write opera-
tions throughout the system appear to occur sequentially.
To properly present the semantics provided by our proto-
cols and prove their correctness requires extending the stan-
dard treatment of concurrent objects in benign failure envi-
ronment [14, 9] to an environment with Byzantine clients,
which is beyond our scope here. The interested reader is
referred to [22] for a formal treatment of this subject. Due
to space limitations, we omit a proof for our protocol here.

3.2. Dishonest writers

In this section, we address the case that writers may be
dishonest. A natural question to ask is: why should we at-
tempt to provideanyvariable semantics in this case? After
all, a dishonest writer could presumably repeatedly write a
variable with different values so that no two variable reads
ever return the same contents. However, we would like to
restrict the damage done by a faulty client so that if it even-
tually stops, the system will be in (or will return to) a consis-
tent state. Additionally, in some applications, variables can

be written only a limited number of times or with only a lim-
ited frequency. For example, in the Eternity service briefly
described in Section 1, the act of publishing a file is the
only time that it can be written, i.e., it can be written once.
Similarly, in Section 6 we describe another application in
which a variable is written at most once. In such cases, a
dishonest client should not be able to publish a variable so
that different readers see different variable contents. An-
other example would be an intrusion detection application
in which audit logs are consolidated at Phalanx at regular
intervals for dissemination to analysis programs; between
checkpoints, variables are rendered unwriteable. Our vari-
able implementation presented here at least ensures that be-
tween writes, readers will have consistent variable seman-
tics on which to base their analysis efforts.

The first difficulty that arises in treating dishonest writ-
ers is that the writer might send different updates to different
servers. To guard against this, anechoprotocol is employed
in all write operations to guarantee agreement on the writ-
ten value among the servers. The echo protocol borrows
its name and functionality from the echo protocol in Ram-
part [26]. An echo protocol works as follows: To send an
update to the servers, a writer first obtains signed“echoes”
for the update from a quorum of servers. It then writes the
new value with the attached set of echoes to each server
in some quorum. Since any two quorums intersect, it is
not possible for a writer to obtain a full quorum of echoes
for each of two different values with the same timestamp,
provided that no correct server echoes more than one value
with the same timestamp. As a result, the value written with
a given timestamp is unique.

Though this suffices to ensure unique updates to the
servers, it does not suffice to ensure that readers can identify
the correct value. In the previous section, readers relied on
the digital signature of the writer to filter out forged values
from faulty servers. In the case of a dishonest writer, how-
ever, this signature is useless, and so we rely instead on cor-
rect servers to mask out the forged values of faulty servers.
This is achieved by making use of ab-masking quorum sys-
tem[20], where a quorum systemQ is ab-masking quorum
systemif for everyQ1; Q2 2 Q, jQ1\Q2j � 2b+1. Again,
if it is presumed that no servers are dishonest (b = 0), then
a b-masking quorum system reduces to a regular quorum
system.

The protocol here employs ab-masking quorum system
Q to perform read and write operations as follows:

Write: For a writerw 2Wx to write the valuev, it

1. performs a Q-RPC to obtain a set of timestamps
ftx;ugu2Q1

currently held at a quorumQ1 of servers

2. chooses a timestampt 2 Tw greater than the highest
timestamp value



3. performs a second Q-RPC to sendhv; ti to servers, to
obtain signed echoes forhv; ti from a quorumQ2 of
servers

4. performs a third Q-RPC to forward the echoes from
Q2 and writehv; ti at a quorum of servers.

Read: For a client to read a variablex, it

1. performs a Q-RPC to obtainfhxu; tx;uiugu2Q1
, i.e.,

the value/timestamp pairs currently held at a quorum
Q1 of servers, each pair digitally signed by the server
that holds it

2. discards any value/timestamp pair returned byb or
fewer servers, and chooses from the remaining the pair
hv; ti (that occurs inb + 1 responses) with the largest
timestampt. (If no such pair exists, the client returns
? as the result of the read operation.)

3. performs a second Q-RPC to “write back”hv; ti along
with b+ 1 server signatures for it, and

4. returnsv as the result of the read operation.

In the write protocol, a server generates a signed echo
for hv; ti only if w 2Wx, t 2 Tw, and it has not previously
echoedhv0; ti for any v0 6= v. In a write protocol and the
write-back phase of a read, each serveru modifiesxu and
tx;u only if t is greater than the value it already holds in
tx;u and if the request is accompanied by signed echoes for
hv; ti from a quorum of servers (in the write protocol) or
b+ 1 server signatures onhv; ti (in the write back).

As in the case for honest writers above, we informally
state here that the protocols above achieve asafe read/write
variablesemantics, so that the variable eventually stabilizes
to a consistent state after writes complete, but may return
arbitrary values to a reader while being written.

We also note that in the case of honest writers, the pro-
tocol in this section can be used to implement safe variable
semantics without requiring signatures by clients. More-
over, in that case, the “echo” phase can be omitted.

4. Mutual exclusion

In addition to the need for shared state, many applica-
tions need mechanisms to coordinate updates to that state or
to otherwise enforce mutual exclusion for other operations.
In this section, we outline two classes of mutual exclusion
objects that we have developed for Phalanx. The two classes
of mutual exclusion objects that we describe here differ in
their liveness properties. Each type provides a “contend”
operation that either succeeds or fails. The first type guar-
antees that if a client is alone in contending for mutual ex-
clusion, then that client succeeds, though no client might

succeed if multiple clients contend for it. Accordingly, we
call this “at-most-one” mutual exclusion, indicating that at
most one (but possibly zero) clients succeed. The second
type ensures that some client succeeds no matter how many
(but at least one) contend for mutual exclusion; we call this
“exactly-one” mutual exclusion.

4.1. At-most-one mutual exclusion

In some applications, one may need to achieve exclu-
sive access to certain resources, but contention for those re-
sources maya priori be unlikely or indicative of foul play.
For example, one of the goals in an electronic election sys-
tem may be to ensure that each voter identifier can be used
to cast a vote only once. Achieving this may require en-
forcing mutual exclusion on attempts to cast a vote for each
voter identifier, thereby precluding its use at multiple vot-
ing stations. Contention for a voter identifier indicates an
attempt to use the voter identifier multiple times, and the
vote can be (and probably should be) delayed until this con-
tention is resolved. For such circumstances, here we de-
scribe the implementation of at-most-one mutual exclusion
in Phalanx.

To implement an at-most-one mutual exclusion objectx,
each serveru maintains a variablexu, initially set to “free”.
The protocol makes use of ab-dissemination quorum sys-
temQ over the servers (see Section 3.1). To contend for
x, a client digitally signs a request to contend and sends
it via a Q-RPC. When a server receives a properly signed
request from a client, it returns its value ofxu and, if xu
is presentlyfree, assignsxu to be the signed request from
the client. The client succeeds if it receives responses from
every server in some quorum, and none of these responses
is a properly signed request by another client. It is easy to
verify that this mutual exclusion protocol achieves the fol-
lowing properties: (i) at most one client succeeds; (ii) ifc

is honest and succeeds, thenc contended for mutual exclu-
sion; and (iii) if only one client contends and that client is
correct, then that client succeeds.

If each server digitally signs itsfree response to a client,
then a client can use the collection of signedfree responses
from a quorum of servers as proof that it succeeded in its
contention for mutual exclusion. That is, the client can use
this as an access token to access the objects guarded by the
mutual exclusion object.

4.2. Exactly-one mutual exclusion

The objects of Section 4.1 lack any guarantee of some
client succeeding, except in the case that only a single cor-
rect client contends for mutual exclusion. In this section, we
describe a mutual exclusion object guaranteeing that some
client will succeed no matter how many contend for it.



Central to the implementation of these objects in Phalanx
areconsensus objects. Abstractly, a consensus object is a
shared object to which a client canproposea value and re-
ceive a single value in return. The consensus object returns
the same value to each client, and the returned value is one
proposed by some client. That is, the returned values satisfy
the following properties: (i) If any honest client receives
v, then all correct clients receivev; and (ii) if any honest
client receivesv, then some client proposedv. It is well-
known that no protocol satisfying (i) and (ii) can guarantee
that clients receive a value in a finite number of steps [7].
Phalanx thus employs randomization to ensure that correct
clients receive the consensus value with probability one. In
the case that clients are presumed to be honest, we employ a
randomized protocol based on one due to Aspnes and Her-
lihy [2], and for the general case (i.e., when clients can be
dishonest), we use our own protocol [21]. In either case,
these consensus protocols terminate in a expected number
of operations polynomial in the number of clients.

With consensus objects in hand, implementing exactly-
one mutual exclusion is straightforward. Each mutual ex-
clusion object is represented by a consensus object. To con-
tend for mutual exclusion, a client proposes its own identi-
fier as the consensus value. If it receives its own identifier as
the consensus value, then it has succeeded in its contention
for mutual exclusion.

Simpler emulations of exactly-one mutual exclusion ob-
jects using shared variables can be achieved using adapta-
tions of Dijkstra's mutual exclusion algorithm [6] or Lam-
port's bakery algorithm [12] to the case of faulty clients;
see [22]. However, the consensus-object-based implemen-
tation described here, while somewhat more complex, of-
fers certain advantages in practice. In particular, it enables a
Phalanx server to ascertain, based on local data only, which
client has succeeded in its contention (see [21]), e.g., to en-
force access control to guarded objects. Due to thequo-
rum structure of our system, the aforementioned simpler
solutions to exactly-one mutual exclusion provide less in-
formation to servers and thus less capability for these added
features. Due to space constraints, here we omit further dis-
cussion of these issues.

5. Scale

The scalability that we believe Phalanx can achieve is
based on two factors: efficient protocol design that enables
Phalanx to scale well as the number of clients grows, and
the use of quorum systems that enable Phalanx to scale well
as the number of servers grows. In this section, we briefly
consider these two factors.

We first note that in our design, clients need never com-
municate with one another, nor do servers communicate
among themselves, and thus, interaction is limited to oc-

cur between clients and (quorums of) servers. In examin-
ing the variable implementations of Section 3, it should be
clear that growth in the number of clients should have mini-
mal impact on the latency of our protocols. Servers process
a small constant number of messages and perform a small
constant number of computations (in particular, digital sig-
natures and verifications) per read or write operation. As
such, growth in the number of clients results in at most a
linear growth in the load on each server for variable op-
erations, and with a proper choice of quorum system (see
below), this growth can be slow in practice. Our implemen-
tation of at-most-one mutex objects also share this property.
Our implementation of exactly-one mutex objects does not
scale as elegantly, because in the consensus object imple-
mentations that we employ [2, 21], the amount of work a
client must do to obtain the consensus value is a function
of the number of clients that have proposed values for it.
However, we expect that in the applications we envision,
mutex objects will seldom be contended for by more than a
handful of clients at any time.

Scalability with growth in the number of servers is pri-
marily dictated by the quorum system used, as quorum sys-
tems exist with a wide array of properties [20, 23, 24]. For
example, there are dissemination constructions whose re-
silience isb =

p
n�1
2

and that have quorum sizes as small
asO(n3=4) (so, e.g., forn = 1000, quorum size is< 200).
Moreover, probabilisticconstructions exist with quorums of
sizeO(

p
n), that simultaneously have outstanding avail-

ability. These latter constructions admit a certain well-
defined probability of inconsistency in any given operation.

The best quorum system to use can differ from protocol
to protocol. Thus we are constructing Phalanx to be flexible
as to the quorums it uses to maintain objects, and to allow
even switching between quorum systems dynamically at run
time. In particular, different Phalanx objects can be main-
tained simultaneously using different quorum systems.

For particular applications, it may be possible to further
tune the quorum system used to enhance the performance of
our protocols. For example, if it is known that variable reads
far outnumber variable writes, then it should be possible
to employ a quorum construction with distinguished read
quorums and write quorums that optimize reads at the cost
of more expensive writes.

6. Example application: A distributed voting
system

As discussed in Section 1, the design of Phalanx was
partly driven by the requirements of an electronic voting
system for Costa Rica that we helped to develop. In this
section we briefly describe a simplified voting application
that we have built using Phalanx. This application both cap-



tures many of the requirements of the Costa Rican elections
and demonstrates some of the features of Phalanx.

In our voting system, there aren polling stations
u1; : : : ; un that are geographically distributed but that can
communicate over a network. It is presumed thatn can
be large; e.g., in the case of the Costa Rican elections,
n > 1000. During the course of an election, each voter
can visit a polling station to cast her vote. The goals of the
election system can be stated informally as follows.

1. At the end of the election, there is a consistent per-
station, per-candidate vote tally that is available to all
polling stations.

2. The total number of votes cast in the election is at most
the total number of voters who actually voted.

3. If polling stationu is correct and voterv voted atu,
thenv' s vote is counted correctly in the tally.

4. If polling stationu is correct, then all that is revealed
about votes cast atu are (i) which voters voted atu,
and (ii) how many votes were cast for each candidate
atu. No information about individual votes is revealed
(beyond what can be inferred from (i) and (ii)).

We admit the possibility, albeit unlikely, that a polling
station could be corrupted (i.e., fails), in which case it could
inhibit or change the votes cast by the voters that visit it.
Nevertheless, the properties above limit and isolate the ef-
fects of a faulty station so that, for example, it can be deter-
mined if it could have any effect on the final outcome of the
elections.

A voter is named by a voter identifier (VID). It is pre-
sumed that each voter is given herVID (e.g., on a voting
card) during some registration process that is outside the
scope of our system. EachVID is a large, unpredictable
string that is not known to the polling stations. How-
ever, each polling station holds, foreachVID, an access
taghh(VID); fh(f(si;VID))g1�i�ni whereh is a one-way
collision-resistant function,f is a pseudo-random function,
andsi is a large random value known only toui. These ac-
cess tags are installed at each polling station by the author-
ity overseeing the elections. Upon receiving aVID from a
voter, the polling station can determine whether it is valid
by seeing ifh(VID) is the first component of anyaccess tag.
However, becauseh is one-way, these access tags are not
helpful in allowing a polling station to predictVIDs. Below
we will see that these access tags are also used to ensure
property 3 above.

The polling stations in our system act both as Pha-
lanx servers and as clients of the system that make use of
Phalanx-replicated objects. As clients, the polling stations
employ one at-most-one mutual exclusion object (see Sec-
tion 4.1) perVID, which is named by the valueh(VID) and

for which stationui is allowed to contend only if it includes
f(si;VID) in its request to contend. More precisely, the
voting protocol proceeds as follows: When a voter visits a
polling station, she enters her voter identifierVID and vote
at the polling station. The polling stationui takes the fol-
lowing steps, in order.

� It computesy1 = h(VID) andy2 = f(si;VID).

� It confirms that there is an access tag of the form
hy1; Si (whereS denotes some set). If not, thenVID
is not a valid voter identifier, andui rejects it.

� It contends for the mutex object namedy1, includ-
ing y2 in its signed request to contend. If this fails
(i.e., some server returns a signed request from another
serveruj containing ay0

2
such thath(y0

2
) 2 S), then

this VID has already been used in this election andui
rejects it.

� It accepts the voter's vote and stores it in alocal tally.

Each server, upon receivinghy1; y2i in ui' s signed request
to contend for the mutex object namedy1, finds the access
tag hy1; Si and verifies thath(y2) 2 S. If so, the server
interprets this request as a request to contend for the object
namedy1.

The second type of shared object employed by polling
stations is an untrusted-writer variable (see Section 3.2) per
polling station per candidate. At the end of the election,
ui writes its tally for candidatec into the designated shared
variable. Each such tally variable is “write once”, i.e., can
be written at most once. Once all polling stations have done
this, any polling station can compute the overall election
results by reading all shared variables and tallying the indi-
vidual scores from each polling station.

Briefly, the properties described above for our system
are achieved as follows. Property 1 is achieved due to the
consistency of values written to the untrusted-writer shared
variables that, in this case, can be written only once. Prop-
erty 2 can be ensured during a post-election audit by verify-
ing that each polling station reports a number of votes that
is at most the total number of voter identifiers for which it
succeeded in its mutual exclusion contentions. Property 3
holds because unless a voter visits another polling station,
no other station can contend for her voter identifier (due to
the properties of the access tags) and so the correct station
that she does visit can complete her vote. Property 4 holds
because the only information recorded in shared state is (i)
for which voter identifiers have polling stations contended
and (ii) the tally for each candidate per polling station.

7 Conclusion

In this paper we introduced the Phalanx software system
for the construction of survivable and scalable data repos-



itories. The distinguishing features of Phalanx are its im-
plementation of strong data abstractions in a scalable way
using untrusted servers and clients. The applications for
which we are targeting Phalanx include critical components
of large scale public-key infrastructures, publishingand dis-
semination services, and national election systems. In this
paper we focused on the protocols used to implement some
of the basic data abstractions that Phalanx supports, in par-
ticular shared variables and mutual exclusion objects. We
argued for the scalability of Phalanx based on the efficiency
of these protocols and the novel use of quorum systems at
the core of Phalanx, and we described a prototype voting
application that we have built with the system.
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