
A Network Application Programming Interface
for Data Processing in Sensor Networks

Rice University Technical Report TREE0705

Raymond Wagner, J. Ryan Stinnett,
Marco Duarte, Richard Baraniuk

Dept. of Electrical and Computer Engineering
Rice University

David B. Johnson,
T. S. Eugene Ng

Dept. of Computer Science
Rice University

ABSTRACT
Since the inception of sensor networks, a wide variety of algo-
rithms for in-network data processing have emerged. To en-
able practical implementation of a broad class of these pro-
posed algorithms, sufficient application programming sup-
port for network communications is critical. While standard
(but relatively low-level) network application programming
interfaces (APIs) such as those implemented in TinyOS can
provide a basis for flexible application-specific customiza-
tion, experience in the past several years has shown that
data processing algorithms in fact share similar higher level
communication needs that can be better supported.

In this paper, we first identify common communication
patterns through an extensive survey of data processing
algorithms proposed over the past four years in the pro-
ceedings of the Information Processing in Sensor Networks
(IPSN) conference. We then present the design of a higher
level network API for sensor networks that is powerful, con-
venient to use, and compact. Many familiar issues in tra-
ditional networking such as addressing and reliability have
vastly different solutions in the sensor network environment,
and we carefully develop the rationales behind the design
of the resulting network API, providing an in-depth dis-
cussion on the fundamental design decisions. We believe
that the proposed network API serves as a starting point for
the implementation of a more comprehensive sensor network
communication middleware than what is found in currently
available systems, enabling algorithm developers to quickly
and easily implement their designs without having to handle
low-level networking details themselves.

1. INTRODUCTION
Sensor networks pose an incredible variety of research

challenges to the community that is working to make such
systems a reality. During the relatively few years in which
sensors networks have been actively studied, a great deal of
progress has been made toward designing sensor node hard-
ware, creating data processing applications to run on nodes,
and developing the programming and networking interfaces
to unite applications with hardware. There is, however, a
growing disconnect between the latter two endeavors that
must be addressed to sustain the growth of sensor networks
into a mature technology.

It is widely recognized that the sensor network model,
which consists of a wireless ad-hoc network of sensor nodes
connected to one or more sink nodes (that are perhaps at-

tached to the Internet), features a unique energy economics
which encourages the development of applications with dis-
tributed components. That is, application designers often
prefer localized collaboration among nodes and in-network
processing of data to long-haul transport of data to a central
location for conventional processing. And while an abun-
dance of creative distributed algorithms have been proposed,
a great deal still occupy the realm of theory. The in-network
collaborations require by these algorithms induce a variety
of network communication patterns, many of which are not
supported by standard sensor network programming tools
such as TinyOS [32]. And since many algorithm designers do
not have the backgrounds necessary to develop the network
communication protocols they need using TinyOS building
blocks, many of their designs go untested in real sensor net-
work environments. Thus, many algorithm developers are
unable to ascertain the true practicality of their designs and
identify and correct possible flaws exposed by the complex
operating environments of real-world deployments.

What these researchers lack is a network programming ab-
straction to allow them to implement their designs without
concerning themselves with the underlying network services
to support the communications they require.

We believe the time is right to design a network applica-
tion programming interface (API) that provides access to a
suitable set of abstract network services for data processing
in sensor networks. An API is not a specific implementa-
tion of these abstract services. Rather, an API provides a
portal through which an application accesses the abstract
services. Defining the API is a crucial intellectual exercise,
since the API is the part of the system that is the most dif-
ficult to change over time; any change to the API requires
application programs to be re-written. In contrast, the im-
plementation of an abstract service is relatively changeable.
For example, the implementation of a multi-hop datagram
service can change from using link state routing to distance
vector routing transparently.

Designing a suitable network API requires solid knowledge
of the applications’ communication needs. Fortunately, the
plethora of sensor network applications and algorithms pro-
posed to date provide strong guidance. Moreover, ad hoc
wireless network algorithms and protocols have matured in
recent years, so the basic technologies necessary for imple-
menting the abstract services are available. Starting with
these observations, this paper addresses the problem of de-
signing a suitable network API for sensor networking. Our
primary goals are to expose the technical trade-offs between



different API design choices and to propose a specific API
that is sufficiently powerful, convenient to use, compact, and
realizable with existing technologies. We intentionally leave
out implementation issues such as software architecture or
system performance evaluation. We expect future work to
explore and evaluate different implementation choices for
realizing the proposed API.

Our contributions in this paper are two-fold. First, we
conduct a survey of the distributed data processing algo-
rithms proposed in the proceedings of Information Process-
ing in Sensor Networks (IPSN) to extract a family of key
communication patterns that recur across the algorithms.
In Section 2 we present the results of this survey. Second,
we design a network API to cover the classes of communica-
tion. We begin by carefully discussing the design of the API
in Section 3, and we present the API calls and a brief discus-
sion of possible implementation directions for each in Section
4. We provide a detailed treatment of four of the surveyed
algorithms in Section 5, indicating the API calls necessary
to implement the communications required by each. Finally,
we conclude the paper in Section 6.

2. SURVEY OF APPLICATION
REQUIREMENTS

To understand the communication requirements of typi-
cal sensor network applications, we conducted an extensive
review of the papers proposing data processing algorithms
in the proceedings of IPSN to date. We surveyed over 100
papers in all, but due to space limitations, we present the
survey results for a set of 30 of them here, chosen to best
represent the diversity of application classes and communi-
cation patterns. For the complete survey results, we refer
the reader to [33]. In categorizing each paper, we carefully
looked to the authors’ description of the assumed network-
ing environment, making as few assumptions as possible on
our own part in order to accurately capture the authors’
original intent.

The proposed applications span a wide variety of top-
ics. Algorithms for data analysis include standard signal
processing applications such as measurement compression
[26, 34, 37], target tracking [3, 8, 23, 27, 35], and parameter
estimation [25, 28, 38], as well as those more specific to sen-
sor networks, such as query servicing [9, 13, 14, 19, 36] and
aggregation [5, 10]. Network maintenance algorithms form
another common application class, with protocols to enable
node self-localization [16, 29], guide node placement, [18],
schedule node sleep cycles while maintaining sensing cover-
age [1, 4, 39], detect network faults [30], and provide navi-
gation assistance for mobile agents traversing a sensor net-
work [2]. Finally, a number of papers extend their algorithm
proposals to real-world implementations, that monitor envi-
ronmental and structural phenomena [6,11,15,31].

Despite great diversity in the kinds of applications, we
find significant commonality in their node communication
requirements. Some notion of address-based sending, either
to a single destination or a set of destinations, is found in
a majority of the proposed algorithms [2,3,5,6,8–10,13,14,
16, 19, 23, 25, 26, 28, 30, 31, 34, 36, 37, 39]. These addresses
typically take the form of unique node identifiers, though
a subset of applications address multicast groups to which
nodes may subscribe [14,23].

Region-based sending also emerges as a common feature.

Broadcast of a message is common, either to all of a node’s
immediate neighbors within wireless transmission range [2–
5, 10, 16, 18, 19, 29, 31, 34, 36, 38] or to all neighbors within
a larger number of radio hops [2, 14, 29]. This notion is
extended in several applications to sending a message to all
nodes within a geographic radius of the sender [1, 4, 14, 34].
Finally, a number of applications wish to send a message
to nodes within an arbitrary region of space not centered
around the sender [13,14,23,27,37].

Communication based on hierarchies of more- and less-
powerful devices is also common. In its simplest form, this
consists of sending to one or more central data sinks in an
otherwise homogeneous network of nodes [4,14,18,19,26,30,
31, 34, 37]. For networks with multiple device classes below
the level of the sink, this notion is extended to sending to a
more powerful parent device and less powerful child devices
[8, 11,15,35].

We note that most applications at least implicitly require
some form of multi-hop communication, with only a handful
specifically relying solely on single-hop transmissions [5, 10,
25, 28, 38]. Similarly, most applications imply at least some
level of reliability in packet delivery, with a very few claiming
complete robustness to unreliable links [5, 10,25,38].

Finally, while most applications concern themselves with
reception of packets only at the intended destination, a few
leverage the ability of nodes to eavesdrop on packets passing
through their vicinity on the way to a different destination
[14,25,35].

3. DESIGN DECISIONS
The survey results provide a starting point for specifying

an API to cover common communication patterns; a num-
ber of issues, however, influence the shape of the final API.
We motivate and detail key design decisions in this section,
beginning with a brief overview of the state of the art in
sensor network programming APIs.

3.1 Preliminaries
Over the past several years, a variety of programming

models and support frameworks have been developed for
sensor networks to overcome the unique challenges faced
when trying to implement data processing applications of
varying complexities on highly constrained hardware plat-
forms. Of the available architectures, TinyOS has garnered
the most research and attention. Its event-driven model is
attractive because it allows for a direct translation of hard-
ware interrupts from physical devices into handlers that run
in response to these interrupts.

TinyOS also allows developers to program in nesC, an
event-based extension of C created specifically for TinyOS,
rather than forcing users to adapt to an entirely new lan-
guage. TinyOS 2.0 contains a large selection of components
to simplify typical tasks an application might want to per-
form, such as collecting sensor readings, managing overall
device power, and communicating with other nearby de-
vices [22].

While TinyOS has greatly reduced the work required of
the application developer, its networking components are fo-
cused on supporting two basic communication types: single-
hop unicast to a single node and single-hop broadcast to all
nodes within radio range of the sender [21]. This provides
a basis upon which more complicated transmission schemes
can be built. For example, TinyOS 2.0 extends the single-



hop support to include a tree collection protocol [12]. The
communication classes directly supported by TinyOS, how-
ever, do not cover the bulk of the patterns enumerated in
Section 2.

Moreover, while TinyOS’s basic send and receive system
is well designed for simple networking systems, it lacks sev-
eral features useful to applications developers. For example,
to expend extra effort sending a certain packet in order to
increase its chances of reaching the receiver, a developer
may take a number of platform-dependent actions, such as
enabling automatic radio acknowledgements (ACKs) or in-
creasing the radio’s transmission power. There is, however,
currently no transparent way for an application to specify
increased reliability. Developers must directly access these
low level controls, which can differ from one platform to an-
other. As another example, to send data larger than the
packet structure’s fixed payload length, an application de-
signer must custom-build a fragmentation and reassembly
scheme. Implementing such a system can itself become quite
complex and distracting for designers wishing to focus their
efforts on novel applications.

3.2 Supporting Multiple Addressing Modes
In addition to the most basic form of unicast addressing

for identifying the recipient of a message, the proposed API
must also support a multicast group addressing mode as well
as addressing modes based on physical regions, either cen-
tered around the sending node or around an arbitrary point
in space. Efficiently supporting these families of send func-
tions in the proposed API requires the following decisions:

Provide a dedicated API call for each addressing
mode. Instead of having a generic send() API call and us-
ing a parameter to specify the intended addressing mode, we
dedicate a separate API call to each addressing mode. This
design allows the underlying execution environment, such
as TinyOS, to selectively load only the code corresponding
to the addressing mode(s) required by the application onto
the possibly resource-constrained nodes. This design also
removes the need to unnaturally force very different address-
ing modes such as unicast and region-based addressing to fit
into a single API call mold.

Use a separate address space for multicast address-
ing. In today’s IP network, unicast and multicast addresses
co-exist within a 32-bit address space, where multicast ad-
dresses are identified by the prefix bit sequence 1110. While
a similar strategy may be used for a sensor network API,
sensor node addresses are typically drawn from a 16-bit ad-
dress space [20]. To statically reserve a significant portion of
those 216 addresses for multicast addressing may be waste-
ful. Instead, the proposed API uses a separate 16 bit address
space for multicast addressing. An address is evaluated as
either unicast or multicast depending on the API call nam-
ing it as a destination.

3.3 Supporting Multiple Receive Modes
To enable an application running on a node to eavesdrop

on passing messages for which the node is not the intended
recipient, the proposed API supports overhearing receive
modes in addition to the basic mode where the receiving
node is the intended destination. The multi-hop nature of
network traffic enables two very different kinds of overhear-
ing receivers. The first merely observes traffic in the node’s

vicinity, while the second allows a node to intervene and
modify passing message. Support for these two modes is
qualified as follows:

Support an eavesdropping receive mode. A node is al-
lowed to passively listen to all overheard messages for which
the node is not the ultimate destination. This includes mes-
sages sent by neighbors for which the node is not the next-
hop destination as well as those for which it is the next-hop
destination. This is the multi-hop analogue to TinyOS’s
radio-channel eavesdropping.

Support an intervening receive mode. A node is noti-
fied of messages it is forwarding to another multi-hop des-
tination and allowed to modify those messages before per-
forming the forward (including optionally canceling the for-
ward). This new capability can allow for novel implemen-
tations of distributed algorithms. Consider, for example,
the algorithms proposed in [19, 26], both of which perform
cluster-based aggregation of data where the node serving as
the cluster head can change with time. Both algorithms ex-
pend effort to build and maintain a routing tree rooted at
the head node, and child data is aggregated by parents in
the tree as it flows to the root. Instead, each node in the
cluster could address the cluster head directly, with all nodes
utilizing the intervening-receive mode. Nodes would wait an
amount of time inversely proportional to their hop-count to
the head before aggregating all intercepted data with their
own reading and addressing the result to the cluster head.
Such a solution avoids re-building the routing tree when the
cluster head membership changes or detecting and repairing
links in the tree that have been broken due to changes in the
wireless communication environment.

3.4 Giving the Application the Ability to Control
Transmission Effort

Transmission effort is an important issue to consider in
designing a network API for sensor networks as it impacts
both the reliability of packet delivery and the amount of
energy consumed in delivering a packet.

Among existing network APIs that provide enhanced
transmission effort, the TCP socket API is the best-known.
It provides an end-to-end reliable in-order byte-stream de-
livery service to the application, and data is retransmitted
until an end-to-end acknowledgement is received. And while
the TCP socket API serves the common case in the commu-
nication and content oriented Internet, it does not serve the
common case in data-processing oriented sensor networks,
where data tend to be much more time-sensitive— consider,
for example, the sensor measurements that drive the target
tracking applications proposed in [3, 8, 23, 27, 35]. A TCP
socket-like API may retransmit a packet that the applica-
tion no longer considers useful, wasting energy. Moreover,
the in-order nature of the service causes the application to
lose control over the timing of packet transmissions. When
a packet is retransmitted past its deadline, the subsequent
packet may be delayed sufficiently to miss its deadline as
well.

Providing no transmission effort enhancement, however,
does not sufficiently serve sensor networks—the chance of a
packet being delivered successfully over a multi-hop wireless
sensor network can, in some cases, become too small to be
practical. These considerations led us to the following design
decisions:



Give control to applications. The proposed API is de-
signed to give applications control over the level of trans-
mission effort required. Wireless sensor networks’ reliability
characteristics will depend on the physical environments in
which they are deployed. Moreover, sensor network applica-
tions can have widely different tolerance to packet loss and
sensitivity to timeliness of data delivery. Thus, only appli-
cations themselves can decide the level of transmission effort
sufficient to achieve the desired performance.

Allow per-packet control. The proposed API allows the
transmission effort to be controlled on a per packet basis.
The API provides a datagram style service rather than a
byte-stream style service like TCP. This allows applications
to maintain finer control over the timing of packet trans-
missions. Packets of different importance to an application
can be transmitted at different effort levels to realize differ-
ent levels of reliability. The application can also adapt the
transmission effort level at run-time to find the operational
sweet-spot.

Provide an energy-based abstraction. The proposed
API expresses transmission effort abstractly in terms of an
energy factor relative to the amount of energy required for
regular transmission. Thus, an energy factor of 1 implies
no extra effort is needed, while a factor of 2 allows for up
to twice as much energy to be used for transmission of the
packet. Compared to an alternative where the transmission
effort is expressed in terms of lower level notions, such as
allowed number of re-transmissions, the energy-based ab-
straction has a number of advantages. First of all, applica-
tions on resource-constrained nodes can relate to energy con-
sumption most meaningfully —with the energy-based ab-
straction, the application can pick a desired balance between
reliability and energy consumption. Secondly, using energy
as an abstraction allows a variety of techniques such as in-
creased transmission power, decreased transmission rate, or
acknowledgements and retransmissions, to be used transpar-
ently by the lower layer software and hardware depending
on the situation.

Allow applications to manage congestion. Increasing
transmission effort may potentially exacerbate congestion
in the network; the proposed API explicitly leaves the man-
agement of network congestion to the applications. Sensor
network applications should be designed correctly to avoid
overloading the network. When necessary, an application
can use a variety of available techniques such as rate-based
and credit-based flow control [17] to help avoid transient
congestion.

3.5 Providing Packet Fragmentation and
Reassembly Service

Operational experience from the IP Internet suggests that
packet fragmentation is a liability on network performance
and software complexity that should be avoided when pos-
sible. However, sensor network radios in general allow only
very small data payloads in packets. For instance, Chip-
con’s CC2420 radio currently supports a raw data size of
128 bytes [7], and TinyOS 2.0 uses a message structure with
a default payload data size of just 28 bytes [20]. It is easy
to find applications that send data units larger than such a
small size.

Consider, for example, the Fractional Cascading query
servicing algorithm [13], which returns the identifiers of

all sensors in a region whose measurements fall in a given
range— a set whose size can be arbitrarily large and re-
quire the payload of multiple packets. Consider also the
distributed wavelet compression algorithm of [34], where
transform data describing a node’s roles at each scale of
a multiscale transform must be sent by the sink before the
transform can begin. The number of transform scales, and
hence the size of the transform data, depends on the number
of nodes in the network and cannot be guaranteed to fit in
a single packet.

Our proposed API, therefore, provides a message frag-
mentation and reassembly service to reduce the burden on
application programmers. Note, however, that applications
should avoid packet fragmentation as much as possible.

The message fragmentation support of our API reflects
the following design decisions:

Require hop-by-hop fragment reassembly. As men-
tioned in Section 2, some applications leverage packet eaves-
dropping [14, 25, 35], and others will likely benefit from in-
tervening and modifying in-transit packets. To support such
applications, fragment reassembly must be performed at
each intermediate hop.

Require in-order fragment delivery at each hop. The
primary implementation complexity for fragmentation lies
in the reassembly of packet fragments when they may ar-
rive out of order. The lower layer software should there-
fore provide an in-order fragment delivery service. A simple
stop-and-wait protocol [17] is ideal for hop-by-hop in-order
fragment transmissions. Although in many cases, a stop-
and-wait protocol would sacrifice performance when com-
pared to a sliding-window protocol (e.g., as used in TCP),
this is not the case as used here, since there is no oppor-
tunity for pipelining of packets over the single wireless link
before fragment reassembly at each hop.

3.6 Providing Flexible Memory Allocation and
Management for Variable Sized Data

Both the application and the implementation of our sensor
network API will in general need to deal with data objects
for which the total size is not known in advance. For ex-
ample, the message fragmentation and reassembly service
described in Section 3.5 requires a node to collect the data
from a variable number of packets (fragments) to reassemble
the original application-level message; only once completely
reassembled can the API pass the message to the applica-
tion for processing. As another example, in a sensor network
with nodes organized into hierarchical levels (Section 3.7),
the application on some node may need a list of its imme-
diate children nodes that are one level below it in the hier-
archy; the number of such children included in the list may
be a dynamic function of the network topology for which it
may be difficult in advance to know the expected list size.

Our proposed API, therefore, provides a flexible mem-
ory allocation and management mechanism for such variable
sized data. This mechanism entails the following design de-
cisions:

Define a buffer chain data structure. Variable sized
data are stored in a buffer chain data structure. A buffer
chain is a linked list of memory chunks. Each memory chunk
contains application data as well as meta data that facili-
tate the manipulation of the buffer chain. Multiple buffer
chains containing different application messages can also be



linked together to form a message queue. The idea is sim-
ilar to the FreeBSD mbuf chain data structure [24]. The
primary advantage of this design is that memory manage-
ment is greatly simplified, since a pool of fix sized buffers
can be pre-allocated by the system and used dynamically to
store variable sized application data without heavy weight
memory allocation and de-allocation operations.

Provide a buffer allocation service. The application
can request fix sized buffers from the pool of buffers main-
tained by the system to create a buffer chain for storing its
variable sized data. When a buffer is no longer needed by
the application, it is returned to the pool for future use.

3.7 Supporting Self-Organized Device
Hierarchies

The proposed API is designed to enable self-organization
of the sensor network nodes into network hierarchies. Pro-
viding such network hierarchies is an important service since
many applications rely on more powerful devices managing
the data from less powerful devices— see, for example the
target tracking applications of [8,35] and the environmental
monitoring applications of [11,15].

Nodes in the network can be heterogeneous in many di-
mensions. Physically, nodes can have batteries with varying
capacities or they may even be connected to a power grid.
They can have varying computation capabilities, data stor-
age resources, and communication bandwidth. In addition,
nodes can also have different logical roles in a sensor net-
work. For example, a sink node has the special logical role
of a gateway between the sensor network and the outside
world and is usually placed at the root of a network hier-
archy. The proposed API is based on the following design
decisions:

Do not assign static roles to device classes. We
have explicitly decided against statically mapping different
classes of devices (e.g. Stargates and Micas) to different
fixed roles in a hierarchy, since the application should dic-
tate how these resources are used. Suppose, for example,
that some Mica nodes are connected to an external power
source. With the proposed API, the application will have
the flexibility of giving them a special role in the hierarchy
to take advantage of their additional resources.

Support hierarchy level-based abstraction. The pro-
posed API provides applications with the means to assign a
node a hierarchy level number at run time. For example, the
application can choose specific nodes to be the sinks and set
them at level 1, set less powerful Stargate devices at level 2,
and finally set least powerful Mica devices at level 3. The
lower layer software then organizes the nodes to form effi-
cient logical network hierarchies rooted at the level 1 nodes.
Each node at level K is associated with a parent node at
level K−1 whenever possible. Each node is also associated
with one of the nodes at level 1 to enable it to send messages
directly to the data sink. This approach allows applications
to make very flexible decisions based on both the physical
characteristics and the logical roles of network nodes.

Maintain self-organized logical overlays. It is impor-
tant to note that the hierarchies constructed are logical over-
lays, so that a parent and its children need not be within
physical radio range. This gives the lower layer software the
flexibility to optimize the overlay structures to achieve good
performance.

4. API DESCRIPTION
We present in this section the definition of our API for

data processing algorithms in sensor networks, from the
point of view of application developers who may use this
API, and we also provide suggestions on how the underly-
ing network protocols to support this API can be imple-
mented efficiently in a real system. Our presentation here is
divided between the API calls for sending messages and for
receiving messages, and for send calls, it is divided between
the calls for our three different addressing modes: address-
based sending, geographic region-based sending, and send-
ing relative to a device hierarchy. For each proposed API
call, we also provide citations to representative example data
processing algorithms that can directly use the call, based
on our survey of application requirements presented in Sec-
tion 2.

4.1 Address-Based Sending
There are three principle destination types for address-

based sending. The first sends a message to a single node
address. The second sends a message to a single address
that is a multicast address to which several nodes may be
subscribed. The third sends a message to each of a list of
node addresses. The calls for each of these send types are
specified as follows:

sendSingle(data, address, effort, hopLimit). The pa-
rameter data is a pointer to the buffer chain containing the
message data. address is the single-address destination for
the message, drawn from the physical node address space.
effort is an integer specifying the transmission effort level
to use at each hop (1 to MAXLEVEL). hopLimit is an in-
teger specifying the maximum number of hops over which
the message may be forwarded on its way to the destination
address (1 to MAXHOPS ). [2, 3, 5, 6, 8–10, 13, 14, 16, 19, 23,
25,26,28,31,34,36,37,39]

sendMulti(data, address, effort, hopLimit). The pa-
rameters here are as in sendSingle() above, except that
address is drawn from the multicast-group addressing space.
[14, 23]

sendList(data, addList, effort, hopLimit). The param-
eters here are as in sendSingle() above, except that addList
is a pointer to a buffer chain containing the list of des-
tination addresses drawn from the physical node address
space; the number of addresses in the list can be determined
from the length of the data (in bytes) in the addrList buffer
chain. [6, 9, 25,30,34,36,37,39]

Routing for sendSingle() can be done using any exist-
ing multihop wireless unicast routing protocol; this prob-
lem has been well studied in the literature. Likewise, for
sendMulti(), routing may be done using any existing multi-
hop wireless multicast routing protocol; although this prob-
lem has received less attention in sensor networks, it has
been well studied in the multihop wireless ad hoc network-
ing community.

Routing for sendList() can be done by leveraging the uni-
cast routing protocol used for sendSingle(). For example,
the sending node can determine the first hop toward each of
the destinations listed in addrList . For all destinations with
a common first hop, the sending node can forward a single
copy of the packet to that first-hop node; this process is re-
peated for each distinct first-hop node needed for the routes



to all destinations listed in addrList . In the header of the
packet sent to each unique first-hop node in this way, the
sending node includes a list of all destinations from addrList
reachable through that specific first-hop node. Each of these
nodes, upon receiving the packet, then repeats this process
with the remaining address list.

Multi-hop transmissions are only allowed to propagate a
limited number of hops (hopLimit) to allow applications to
control the scope of their packets and as a safeguard against
routing loops in the underlying routing protocols.

4.2 Region-Based Sending
Applications may often want to address all nodes within

certain geographic constraints. This may include all nodes
within a certain number of hops of a given node, all nodes
within a certain radius of a given node, or all nodes within
an arbitrary region of space. The API calls to support this
are specified as follows:

sendHopRad(data, hopRad , effort, hopLimit). The
parameters here are as in sendSingle() above, except that
hopRad is an integer specifying a hop-count from the send-
ing node within which all neighboring nodes are intended
to receive the message. hopRad can take a value rang-
ing from 1, corresponding to immediate radio neighbors,
to MAXHOPS , corresponding to a network-wide flood.
[2–5,10,14,16,18,19,29,31,34,36,38]

sendGeoRad(data, geoRad , outHops, effort,
hopLimit). The parameters here are as in sendSingle()
above, except that geoRad is a floating point number
specifying a geographic distance (in standardized units)
from the sending node within which all neighboring nodes
are intended to receive the message, and outHops specifies
the maximum number of hops that packets are allowed to
propagate outside the specified region in order to route
around voids inside the region, attempting to reach all
intended nodes. [1, 4, 14,34]

sendCircle(data, centerX , centerY , radius, single,
outHops, effort, hopLimit). The parameters here are
as in sendSingle() above, except that centerX and centerY
are floating point numbers that define the coordinates of the
center of a circle, and radius is a floating point number spec-
ifying the radius from that point within which all nodes are
intended to receive the message (all in standardized units).
single is a boolean flag indicating how many sensors in the
area must be reached: single= 1 specifies that only one sen-
sor in the area must receive the message [23], whereas sin-
gle= 0 specifies that all sensors in the area are intended to
receive the message. [14, 23,27]

sendPolygon(data, vertCount, vertices, single,
outHops, effort, hopLimit). The parameters here are as
in sendSingle() above, except that vertCount is an integer
specifying a number of polygon vertices (1 to some number
MAXVERTS ), and vertices is a pointer to an array of float-
ing point numbers representing the spatial coordinate pairs
of the vertices (in standardized units). single= 1 specifies
that only one sensor within the convex hull formed by the
vertex list must receive the message [13, 23], whereas sin-
gle= 0 specifies that all sensors in this area are intended to
receive the message. [13, 14,23,37]

The sendHopRad() API call can be implemented by any
form of a flooding protocol (or using a spanning tree proto-

col); as a special case, if hopLimit= 1 , sendHopRad() can
be implemented as a single link-layer broadcast transmission
of the packet. The sendGeoRad() API call is similar, except
that nodes forward the flood if they are still inside the spec-
ified geoRad radius around the originating node, or if they
are within outHops beyond the first node encountered out-
side this radius. The use of outHops increases the chance
of reaching all nodes inside the radius (at the expense of in-
creased overhead, as controlled by the application), despite
the presence of voids inside the circle.

For the sendCircle() call, routing can be done by adapting
any existing geographic routing protocol; the problem of ge-
ographic routing has been well studied in the literature. The
sending node routes the packet to geographic coordinates
that are the center of the circle (centerX , centerY ). How-
ever, once the packet is received by (or overheard by) the
first node that is inside this circle (the node need not be at
the center coordinates), geographic forwarding of the packet
terminates, and this node instead initiates a form of the
protocol used for sendGeoRad(), giving centerX , centerY ,
radius, and outHops to define the flood of the packet. Most
flooding protocols use a unique identifier for multiple pack-
ets that are part of the same flood, to ensure that the flood
expands efficiently in a well controlled manner; by assigning
the unique identifier at the original sending node (the node
initiating the sendCircle() call), the resulting flood will be
well controlled, even if the packet under geographic forward-
ing is overheard by multiple nodes that all initiate copies of
the flood — the different copies of the flood will in effect
merge into a single flood.

For the sendPolygon() API call, we proceed similarly to
the sendCircle() call, with the region boundary evaluated
for flooding purposes as the convex hull of the vertex list.

4.3 Device Hierarchy Sending
In any sensor network, there will typically be a hierarchy

induced by a central data sink and the nodes of the network.
In a sensor network with multiple classes of non-sink devices
(e.g., low power sensor nodes and higher power intermediate
nodes), we support extending this device hierarchy to reflect
these additional device classes. The API calls for sending in
the device hierarchy are specified as follows:

setLevel(level). The parameter level is an integer specify-
ing the level for this node in the hierarchy. We assume that
each node, in an application-specific manner, has access to
the level of the hierarchy it should occupy.

sendSink(data, effort, hopLimit). The parameters here
are as in sendSingle() above. The message is sent to the
“best” available sink node in the network, where the choice
of sink node is determined for the application by the API.
[4, 11,14,15,18,19,26,30,31,34,35,37]

sendParent(data, effort, hopLimit). The parameters
here are as in sendSingle() above. The message is sent to
the node’s parent in the device hierarchy. [8, 11,15,35]

sendChildren(data, effort, hopLimit). The parameters
here are as in sendSingle() above. The message is sent to
each of the node’s children in the device hierarchy. [11,15,35]

parent= getParent() returns the address of the node’s
current parent in the device hierarchy.

childList= getChildren() returns a pointer to a buffer
chain containing a list of the addresses of the node’s current



children in the device hierarchy; the number of children in
the list can be determined from the length of the data (in
bytes) in the childList buffer chain. This API call supports,
for example, a node sending to a subset of its children by
calling sendList() using a subset of the return child list.

newParent(parent). This API call is invoked by the API
implementation as an event into the application when the
node’s parent in the device hierarchy has changed. The pa-
rameter parent gives the address of the node’s new parent.

newChildren(childList). This API call is invoked by the
API implementation as an event into the application when
one or more of the node’s children in the device hierarchy has
changed. The parameter childList is a pointer to a buffer
chain containing a list of the node’s current children; the
number of children in the list can be determined from the
length of the data (in bytes) in the childList buffer chain.

In order to form the device hierarchy, the API implemen-
tation can cause each level-n node (at all but the nodes with
the largest level number) to broadcast a message announc-
ing itself as a level-n device. Any level-(n−1) node hear-
ing this message may consider itself as a potential parent
and contacts the level-n node with this information. The
level-n node then chooses its parent from the responding
level-(n−1) nodes and informs that parent of its status as
a level-n child. The lowest level of nodes (typically the low-
est power sensor nodes) never advertise themselves and only
look for messages from potential parents. The highest level
(sink) node(s) never look for potential parents.

The API implementation maintaining this process can pe-
riodically update parent assignment to cope with changing
network conditions. When a node’s parent changes, the API
implementation invokes the newParent() event in the appli-
cation if the application had earlier requested knowledge
of its parent through a getParent() call. Likewise, when a
node’s list of children changes (a new node becomes a child,
or an old child is no longer associated with this node), the
API implementation invokes the newChildren() event in the
application if the application had earlier requested knowl-
edge of its children through a getChildren() call.

We considered providing a sendLevel() call in our pro-
posed API, as a more general form of the sendParent() and
sendChildren() calls. Such a sendLevel() call, given a level
number in the device hierarchy, would send to the respec-
tive node(s) at that level. For example, for a node at level n
(n > 1), a sendLevel() to level n−1 would be equivalent
to a sendParent() call, and to level n+1 would be equiva-
lent to a sendChildren() call; a sendLevel() call need not be
limited, however, to only sending to levels n−1 and n+1,
creating an easy way to send to “grandchildren” (level n+2)
and “great grandparents” (level n−3), for example. We did
not include such a call in the API, though, since we did not
find the need for this generality in our survey of application
requirements, as presented in Section 2.

4.4 Receiving
The three main receive functions correspond to the three

receiving modes. A node can (1) receive a message for which
it is the target destination, (2) intercept and potentially
modify a message for which the node is a forwarder on the
path to a different target destination, or (3) passively eaves-
drop (without modification) on all messages overheard by

the node’s radio receiver. The API calls for receiving mes-
sages are specified as follows:

receiveTarget(data, metadata). This API call is invoked
by the API implementation as an event into the application
when a message has been received. The parameter data is
a pointer to a buffer chain holding the message data, and
metadata is a pointer to a buffer chain holding the header
information appropriate for the message packet type.

receiveForward(data, metadata). The parameters are
the same as in receiveTarget(). This API call is invoked
by the API implementation as an event into the applica-
tion when a message has been received. If the application
returns a zero result value in response to this call (the func-
tion return value), then the message will not be forwarded
(forwarding stops at this node). If instead the application
returns a nonzero result value, the message (possibly modi-
fied by the application) will be forwarded along to the next
hop to the destination(s).

receiveOverhear(data, metadata). The parameters are
the same as in receiveTarget(). This API call is invoked
by the API implementation as an event into the application
when a message has been received. Any message overheard
by this node’s radio will be received, regardless of the ad-
dressing of the message. [14, 25,35]

Within any of these receive events within the application,
the application handler for that event can then parse the
metadata for any packet-specific fields it cares to extract.
All packet types will support the following two calls:

type = getPacketType(metadata)
sender = getSender(metadata)

where type is an integer corresponding with one of the packet
classes, and sender specifies the address of the sender in the
physical address space. With this type information in hand,
the application layer can then use similar calls to extract
packet fields such as the destination address for sendSingle()
or the (remaining) list of destinations for sendList(), the
hop radius for sendHopRad() or the geographic radius for
sendGeoRad(), or the center and radius for sendCircle() or
the vertices for sendPolygon().

5. APPLICATION EXAMPLES
We now present detailed treatments of a selection of the

surveyed papers [13,14,23,34], chosen for the range of com-
munication patterns they exhibit. We briefly describe the
objective of each proposed algorithm and show how it can
be implemented using the API calls outlined in the previous
section.

5.1 TinyDB
In [14], the authors describe the TinyDB query engine for

sensor networks. Basic aggregate queries — such as min-
ima, maxima, averages, counts, and sums — are posed at
the network’s data sink. The sink broadcasts the query to
the network with an incrementing hop counter that allows
nodes to form an application-specific hierarchy to service the
query. Each node receiving the query picks a parent one-hop
closer to the sink than itself and re-broadcasts the query to
potential children in its 1-hop neighborhood. This query dis-
semination is handled as a network-wide flood at the sink



using the sendHopRad() call with hoplimit = MAXHOPS.
As the query forwards, each node can extract its minimum
distance to the sink from the decrementing hoplimit field.

Once the query has reached the entire network, each leaf
node (a node that has no children) evaluates the query using
its data and forwards the result to its parent. Each parent
aggregates messages from its children with its own datum
and forwards the result to its parent until the final aggregate
is computed at the sink. Each child-to-parent message is
sent using the sendSingle() API call.

TinyDB extends basic sink query servicing to support
more advanced event-driven queries issued from nodes in
the network. On detection of an event (say, a bird enter-
ing a nest monitored by a node), the node can query all
neighbors within a specified radius for data (such as light
and temperature) using the sendGeoRad() call. Data from
the neighboring nodes returns to the querying node using
sendSingle() calls, and a report is sent to the sink using
sendSink() addressing. Alternatively, the report can be sent
to a storage point within the network which is addressable
by all nodes but does not occupy a fixed location. In this
case, the querying node sends its report to a multicast group
of storage nodes using the sendMulti() call.

As an example of the utility of TinyDB, the authors con-
sider the problem of tracking a vehicle using magnetometer
readings at each sensor. Nodes in the network initially start
out in a low power mode, and those in the vicinity of the tar-
get power up when it first enters the sensor network using
dedicated wake-up circuitry. Each active node then mon-
itors the running average of its magnetometer and when a
threshold is exceeded inserts its measurement and node iden-
tifier into a storage point (again using the sendMulti() call).
The storage point estimates the target’s location using the
location of the node with the strongest reading. Nodes can
also eavesdrop on their neighbors’ messages to the storage
point using the receiveOverhear() call and suppress their
own transmissions when neighbors have a stronger reading.
Note that use of the receiveForward() receiver would also
allow nodes with stronger readings to suppress forwarding
messages from nodes with weaker readings. Finally, when a
sensing node detects that the target is moving out of range,
it can wake up nodes in the next area to be traversed by
the target using a region-based send such as sendCircle() or
sendPolygon().

5.2 Distributed Multi-Target Tracking
The authors of [23] tackle the problem of tracking multiple

maneuvering targets in a decentralized fashion. Maintain-
ing a complete record of the joint state space of targets in
any one component of the sensor network is impractical; it
is far more efficient to keep state information for each tar-
get in tracking agents occupying nearby nodes. When tar-
gets’ paths cross, however, their locations must be estimated
jointly, and target identity upon track divergence becomes
uncertain. Agents separately tracking each target following
the split must maintain a dialogue to determine which of
the targets they are actually tracking.

Before a merge, each target is tracked by an agent oc-
cupying a node designated as the track leader. To localize
its target, the node collects measurements from other nodes
in the vicinity of the target — a so-called “geographically
constrained group” (GCG) defined as a circle or polygon.
This process involves sendCircle() or sendPolygon() API

calls, and each measurement returns to the track leader via
a sendSingle() call. As the target moves, the track leader
duty is passed to a new node in the target’s path using
sendCircle() or sendPolygon() with the single-node-only op-
tion. When two targets come within a threshold range of
each other, the two GCGs are merged and serviced by a sin-
gle track leader. As the two targets subsequently diverge,
two new GCGs, each with its own track leader, are created.
To disambiguate target identities, nodes serving as track
leaders must maintain a dialogue for a time, so they form
an “acquaintance group” (AG). Since tracking agents move
from node to node to follow their targets, we represent the
AG as a multicast group to which each leader subscribes.
Messages passed between leaders to sort out target identi-
ties are then sent using the sendMulti() call.

5.3 Fractional Cascading
In [13], the authors present a framework called Fractional

Cascading for answering range queries injected from any-
where in the network. Each node in the network has a
global view of the measurement field that decays in reso-
lution proportional to distance from the node — that is, a
node knows much more about measurements from nearby
nodes than from those far away. This allows queries posed
at arbitrary locations, counting or enumerating all sensors
in a rectangular area whose measurements lie in some range,
to be efficiently routed to regions with relevant information.

The structure that enables efficient query processing is
a virtual quadtree partition of the bounding box contain-
ing the sensor field. This square box is partitioned into four
sub-squares, and each of these is recursively partitioned into
four smaller sub-squares, and so on, until a minimum square
size is reached. At each scale, the larger square giving rise to
the four smaller squares is declared a parent and the smaller
squares its children. To guide query routing, the maximum
measurement value of any sensor node in a given quadtree
square is stored in the nodes in all children of that square’s
parent — i.e., its sibling squares. This structure is built in
a bottom-up fashion. One node in a square (which by in-
duction has access to the maximum value in each of that
square’s children) computes the square’s maximum value
and sends the value to all nodes in the square’s siblings,
implemented using a sendPolygon() call.

The answer to each range query is compiled in three steps.
First, the query is directed toward a sensor in the region
of interest, which requires a sendPolygon() API call with
the single-node-only option. Once in the region, the query
sequentially visits each sub-region designated as a “canon-
ical piece” — that is, a quadtree square which is com-
pletely contained inside the query region but whose parent
square extends outside the region. This again necessitates a
sendPolygon() API (single-node-only) call. Once the query
has arrived at any sensor in the canonical region, it can ex-
ploit the distributed information structure to efficiently tra-
verse the sub-tree for that region, recursively visiting each
child square in a fashion appropriate to the query, again
using a sendPolygon() API (single-node-only) call. For ex-
ample, if the query wishes to compile a list of sensors with
measurements above a threshold value, the query need not
recur on any children or siblings of a square with a max-
imum temperature below the threshold. Since any sensor
in each square records the maximum value in that square
and its sibling squares, the query can efficiently traverse the



squares of each canonical region’s subtree.
Finally, the aggregated query data return to the querying

node using a sendSingle() API call.

5.4 Distributed Wavelet Compression
In [34], the authors propose a distributed wavelet com-

pression algorithm. This entails first computing a dis-
tributed wavelet transform of data within the network and
then selectively streaming wavelet coefficients from nodes
to the sink. First, however, the sink must learn of each
node’s self-localized position, sent using a sendSink() call
by each node. Using this information, the sink computes a
set transform data for each node and sends it to the node
using a sendSingle() call.

Given this transform data, the multi-scale wavelet trans-
form, based on the theory of wavelet lifting, proceeds in the
network as follows. A subset of nodes at each scale are des-
ignated to compute wavelet transform values. Each node in
this set computes its value — called a wavelet coefficient —
using values from neighbors not generating wavelet coeffi-
cients. Each such neighbor knows which nodes will require
its value — called a scaling coefficient – and transmits this
value to those nodes, using an instance of the sendList()
call. Each node which computes a wavelet coefficient col-
lects these neighboring values, computes its coefficient, and
sends the coefficient value back to the neighbors, again using
an instance of the sendList() call. Each neighbor collects the
list of wavelet coefficients sent to it and uses the information
to compute a new coarser-scale scaling coefficient for itself.
The process then repeats at the next scale on the remaining
scaling coefficient nodes, with a subset giving rise to wavelet
coefficients at the new scale and the remainder participating
as scaling coefficients in further scales of the transform.

Once the transform has iterated to a final, coarsest scale,
each node has a transform coefficient replacing its original
measurement. This set of coefficients is much more sparse
than the original measurement set — in other words, the
energy of the measured signal is concentrated at far fewer
nodes. To harvest a lossily compressed version of the mea-
surement field, the sink broadcasts a threshold to all sensors
using the sendHopRad() call with hoplimit = MAXHOPS.
Upon receiving this threshold query, each node with a co-
efficient whose magnitude is above the threshold sends its
coefficient to the sink using the sendSink() call. The process
may repeat with subsequent threshold broadcasts from the
sink and node replies until it has harvested enough coeffi-
cients to reconstruct the field to some desired fidelity.

To provide robustness to occasional node and routing
failures, [34] also proposes a mechanism for nodes to re-
pair transform data in a distributed fashion. If a wavelet
coefficient-generating node cannot hear from a required
neighbor, it can begin to search for new neighbors outward
in an expanding radial neighborhood. Such a request is im-
plemented using the sendGeoRad() call, and replies from
potential neighbors return using the sendSingle() call. New
and remaining neighbors must be informed of this change
using further sendList() and sendSingle() calls.

6. CONCLUSIONS
We have presented a network API for sensor networks.

The selection of the abstract services that the API pro-
vides has been informed by an extensive survey of over
100 data processing algorithms. Moreover, guided by the

characteristics of sensor network hardware and software, we
have carefully made a set of design decisions that covers a
wide range of issues including addressing modes, receiving
modes, transmission reliability enhancement, message frag-
mentation, system memory management, and device hierar-
chy formation.

By presenting a concrete API, we hope to stimulate fur-
ther discussions in the research community on API design
issues for sensor networks. In addition, we believe the API
also opens new research directions. Specifically, the pre-
sented API frames two new challenges for future research to
address: (1) how to optimally enhance transmission reliabil-
ity given an energy budget and the current environmental
conditions, and (2) how to optimally self-organize nodes dy-
namically into device hierarchies.
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