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Abstract.

We extend the alternating minimization algorithm recently proposed in [38, 39] to the case of recovering blurry multichannel

(color) images corrupted by impulsive rather than Gaussian noise. The algorithm minimizes the sum of a multichannel extension

of total variation (TV), either isotropic or anisotropic, and a data fidelity term measured in the L1-norm. We derive the algorithm

by applying the well-known quadratic penalty function technique and prove attractive convergence properties including finite

convergence for some variables and global q-linear convergence. Under periodic boundary conditions, the main computational

requirements of the algorithm are fast Fourier transforms and a low-complexity Gaussian elimination procedure. Numerical

results on images with different blurs and impulsive noise are presented to demonstrate the efficiency of the algorithm. In

addition, it is numerically compared to an algorithm recently proposed in [20] that uses a linear program and an interior point

method for recovering grayscale images.
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1. Introduction. We consider the problem of recovering multichannel images degraded by cross-

channel blurring and impulsive noise (e.g. salt-and-pepper noise). Without loss of generality, we assume

that the underlying images have square domains and let an n×n original image with m channels be denoted

by ū = [ū(1); . . . ; ū(m)] ∈ Rmn2
, where ū(j) ∈ Rn2

represents the jth channel, j = 1, . . . , m. The observation

f ∈ Rmn2
of ū is

f = Kū + ω,(1.1)

where

K =




K11 K12 . . . K1m

K21 K22 . . . K2m

...
...

. . .
...

Km1 Km2 . . . Kmm



∈ Rmn2×mn2

(1.2)

is the cross-channel blurring operator, and ω ∈ Rmn2
represents additive noise. Given K, our objective is to

recover ū from the blurry and noisy observation f . We perform deblurring and denoising jointly by solving

a multichannel TV regularization problem with a 1-norm data fidelity term:

(1.3) min
u

n2∑

i=1

‖(Im ⊗Di)u‖2 + µ‖Ku− f‖1,
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where Im is the identity matrix of order m, “⊗” represents the Kronecker product, and (Im ⊗Di)u ∈ R2m

consists of certain first-order horizontal and vertical finite differences of u at pixel i. In particular, for RGB

color images where m = 3, there hold

u =




u(r)

u(g)

u(b)


 ∈ R3n2

and (I3 ⊗Di)u =




Diu
(r)

Diu
(g)

Diu
(b)


 ∈ R6.

Formulation (1.3) is often referred to as a TVL1 model. More generally, our algorithm applies to the following

local weighted TVL1-like problem

(1.4) min
u

n2∑

i=1

αi‖Giu‖2 + µ‖Ku− f‖1,

where, at any pixel i and for some positive integer q, Gi ∈ Rq×mn2
is a general local finite difference operator,

αi > 0 is a weighting parameter, and µ > 0 balances the regularization term and the fidelity term. Although

µ can be removed from (1.4) by rescaling αi, i = 1, . . . , n2, we keep it for convenience. As such, problem

(1.4) reduces to (1.3) by letting Gi = Im ⊗Di and αi ≡ 1. The origin of (1.3) and some related results are

reviewed briefly in Subsection 1.2.

The main contribution of this paper is an efficient algorithm for solving (1.4). Our algorithm can be

derived either from the classic quadratic penalty function technique in optimization, dated back to Courant’s

work [17] in 1943, or from the half-quadratic technique initially proposed by Geman and Yang in [22]. In this

paper, our derivation follows the former technique for its simplicity. A derivation based on the half-quadratic

technique can be found in [39] for a deblurring model under Gaussian noise.

Let z ∈ Rmn2
and wi ∈ Rq, i = 1, . . . , n2, be auxiliary variables that approximate Ku − f and Giu in

the nondifferentiable norms in (1.4), respectively. Then, by adding quadratic terms to penalize the difference

between every pair of original and auxiliary variables, we obtain the following approximate problem to (1.4):

min
w,z,u

n2∑

i=1

(
αi‖wi‖2 +

β

2
‖wi −Giu‖22

)
+ µ

(
‖z‖1 +

γ

2
‖z − (Ku− f)‖22

)
,(1.5)

where β, γ À 0 are penalty parameters. Let w = [w1; . . . ;wn2 ] ∈ Rqn2
. We introduce (1.5) because it

is numerically easier to minimize by an iterative and alternating approach due to the fact that with any

two of the three variables w, z and u fixed, the minimizer of (1.5) with respect to the third one has a

closed-form formula that is easy to compute. In addition, this approach is numerical stable for large values

of β and γ. Since w and z are decoupled for given u, our algorithm will minimize the objective function

in (1.5) with respect to (w, z) and u, alternately. We show that, for any fixed β, γ > 0, this alternating

minimization scheme generates a sequence of points converging to a solution of (1.5). Besides, we establish

finite convergence for some auxiliary variables and fast q-linear convergence for the rest. Furthermore, the

overall convergence is significantly accelerated by a continuation approach on the penalty parameters.

Although derived for ‖Giu‖2 in (1.4), the algorithm can be easily modified for ‖Giu‖1, or more generally,

h(Giu) for a convex function h(·). In what follows, we first give a brief review of impulsive noise removal

methods, as well as variational approaches for image denoising and/or deblurring, and then summarize the

contributions and organization of this paper.
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1.1. Impulsive noise and removal methods. Two common types of impulsive noise are salt-and-

pepper noise, corrupting a portion of all pixels with minimal or maximal intensities and leaving the remainder

unaffected, and random-valued noise, the same as salt-and-pepper noise except that corrupted pixels have

random intensity values. Such noise is often generated by malfunctioning pixels in camera sensors, faulty

memory locations in hardware, or erroneous transmission; see e.g. [6]. In images contaminated by such noise

a certain number of pixels of the underlying image are uncorrupted, and the corrupted pixels usually have

intensities distinguishable from those of their neighbors. Based on these characters, various of nonlinear

digital filter methods have been proposed; see [2]. Among them, the median type filters are most popular

due to their good denoising power and computational efficiency, e.g. the adaptive median filter [23], the

multistate median filter [16], and the median filter based on homogeneity information [18, 30]. These filters

first detect possibly noisy data entries and then replace them by using the median filters or their variants.

Most of these filters were designed for denoising only and not suitable for deblurring.

1.2. Variational approach. Another important class of methods for removing impulsive noise is the

variational approach. It is well-known that recovering ū from f by inverting (1.1) is ill-posed because the

solution is highly sensitive to the noise ω. To stabilize the recovery of ū, regularization is introduced, giving

rise to the variational formulation

min
u

Φreg(u) + µΦfid(u, f),(1.6)

where the regularization term Φreg(u) models some a priori information about ū, the fidelity term Φfid(u, f)

measures some type of deviation of u from the observation f , and µ > 0 balances these two terms in the

formulation.

Traditional regularization techniques include the Tikhonov-like regularization [36], the TV regularization

[31], both of which have been well studied for grayscale images, and others. A discrete Tikhonov-like

regularization takes the form Φreg(u) =
∑

i

∑
j ‖(D(j)u)i‖22, where D(j)’s stand for a certain finite difference

operator, the inner summation is taken over some index set, and the outer one is taken over all the pixels.

Although the resultant minimization problems are relatively easy to solve, Tikhonov-like regularization tends

to make images overly smooth and often fails to adequately preserve important image attributes such as sharp

edges. In comparison, TV regularization overcomes these drawbacks. The discrete form of TV for a grayscale

image u ∈ Rn2
is given by TV(u) =

∑
i ‖Diu‖. If ‖·‖ is the 2-norm, TV(u) is isotropic because it is irrelevant

to rotation of data in this case. In other cases, e.g., ‖ · ‖ = ‖ · ‖1, it is anisotropic. The isotropic TV is

often preferred over any anisotropic ones. Compared with Tikhonov-like regularization, TV regularization

has the advantage of preserving sharp edges and object boundaries. For multichannel images, TV has been

extended in several ways such as “color-TV” in [5] and multichannel TV in [7, 11, 12, 35]. In our algorithm,

we use multichannel TV.

In the literature, the common data fidelity for the Gaussian noise is Φfid(u, f) = ‖Ku− f‖22, which also

represents the maximum likelihood estimation of ū. Such data fidelity is used in denoising, deblurring and

various of inverse problems; see e.g. [36, 31, 37]. However, practical systems suffer from outliers such as

salt-and-pepper noise, where only a portion of data entries are corrupted by noise of some non-Gaussian

distribution. In such cases, minimizing Φfid(u, f) = ‖Ku − f‖22 will fail to preserve the uncorrupted data
3



entries [27], while minimizing nonsmooth data fidelity will likely succeed. Theoretical results comparing

smooth and nonsmooth data fidelity terms for image denoising can be found in [27, 28]. It is pointed out in

[27] that nonsmooth fidelity terms can give correct pixel intensities under some favorable conditions.

The use of Φfid(u, f) = ‖Ku − f‖1, which is nonsmooth, was introduced in [1]. Recently, geometric

properties of the TVL1 model, which uses TV with the above L1 fidelity term, are analyzed in [9, 41, 42].

Motivated by [9], the authors of [41, 42] proved that the TVL1 model has some interesting properties that

lead to multiscale decomposition, contrast preservation, and morphological invariance. They also established

the equivalence between the TVL1 model and certain geometric optimization problems, which was used to

show that this model decomposes an image (or any signal) into components of different scales, measured in

terms of G-value [33], independent of their locations or intensities. These results have led to the applications

of the TVL1 model in medical imaging [40, 13] and computer vision [15, 14], in which this model has shown

its advantages over some competing models because it requires no feature or structural information beside

spacial scales.

Recently, a two-stage approach was proposed in [10, 8] where denoising (and possibly deblurring) is

performed in two stages. In the first stage, the likely outliers are identified using median filters and removed

from the data set. In the second stage, the image is restored using a specialized regularization method that

applies to the remaining data entries.

At present, highly efficient numerical methods are still in need for solving variational models that uses a

nonsmooth fidelity term for image deblurring. For TV-based deblurring models using smooth fidelity terms,

the majority of existing algorithms are based on solving the Euler-Lagrangian equations by gradient descent

or fixed-point iterations; see e.g. [37, 5]. For TVL1 problem (1.3), similar methods are used in [3]. Compared

to our proposed algorithm that takes advantage of fast transforms, the existing methods are slow, especially

when the size of the blurring kernel is relatively large [38].

1.3. Contributions. The main contribution of this paper is an efficient algorithm for solving the

general TVL1-like problem (1.4), which encompasses a variety of regularization functions such as weighted

TV and those based on higher-order derivatives. In addition, this algorithm is analyzed and shown to have

attractive convergence properties, which include global convergence with a strong q–linear rate and finite

convergence for some auxiliary variables. Under periodic boundary conditions, its computation can take

advantages of simple high-dimensional shrinkage and fast Fourier transform (FFT).

1.4. Organization. The paper is organized as follows. In Section 2, the alternating minimization algo-

rithm is derived, and the optimality conditions of (1.4) and (1.5) are studied. In Section 3, main convergence

results of the proposed algorithm are established. Practical implementation of the proposed algorithm and

a comparison to the method proposed in [20] are given in Section 4. In this section, multichannel image

recovery results are also presented. Finally, conclusion remarks are given in Section 5.

2. Basic algorithm and optimality. Before deriving the algorithm, we introduce our notation. Let

D(1), D(2) ∈ Rn2×n2
be the first-order forward finite difference matrices in horizontal and vertical directions,

respectively. Without loss of generality, we assume that (Im ⊗Di)u consists of the first-order forward finite

differences of u at pixel i in (1.3). Thus, Di ∈ R2×n2
is a two-row matrix formed by stacking the ith row
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of D(1) on that of D(2). For vectors v1 and v2, we let (v1; v2) be the vector formed by stacking the two.

Let ρ(T ) be the spectral radius of matrix T . Hereafter, the norm ‖ · ‖ refers to the 2-norm unless otherwise

specified. Additional notation will be introduced as the paper progresses.

2.1. An alternating minimization algorithm. To simplify analysis, we rewrite (1.4) and (1.5) by

rescaling some quantities. Let

(2.1) τ =
√

µβ/γ and (K, f, z) ←
√

µγ/β(K, f, z).

Then problems (1.4) and (1.5) are transformed to

(2.2) min
u

∑

i

αi‖Giu‖+ τ‖Ku− f‖1,

and

(2.3) min
w,z,u

∑

i

(
αi‖wi‖+

β

2
‖wi −Giu‖2

)
+ τ‖z‖1 +

β

2
‖z − (Ku− f)‖2,

respectively. It is easy to see that for a fixed u, the minimization with respect to w and z can be done in

parallel because they are separable in (2.3). In addition, for all subscripts i the first two terms in (2.3) are

separable with respect to wi and the the last two terms are separable with respect to each component of z.

Based on these observations, it is easy to apply alternating minimization to (2.3). First, for a fixed u, the

minimizer function of wi is given by a multi-dimensional shrinkage [39]:

wi = max
{
‖Giu‖ − αi

β
, 0

}
Giu

‖Giu‖ , i = 1, . . . , n2,(2.4)

where we followed the convention 0 · (0/0) = 0, and the minimization with respect to z is given by the

well-known one-dimensional shrinkage:

(2.5) z = max
{
|Ku− f | − τ

β
, 0

}
◦ sgn(Ku− f),

where “◦” represents the pointwise product and all other operations are implemented componentwise.

Clearly, the computational cost for (2.4) is linear in terms of qn2, and that for (2.5) is linear in terms

of n2. Secondly, for fixed w and z, the minimization with respect to u is a least squares problem

(2.6) min
u

∑

i

‖wi −Giu‖2 + ‖Ku− (f + z)‖2.

Let G(j) ∈ Rn2×mn2
be the matrix formed by stacking the jth rows of G1, G2, . . . , Gn2 , j = 1, . . . , q,

G ,




G(1)

...

G(q)


 ∈ Rqn2×mn2

and W ,




w>
1

...

w>
n2


 , [w1; . . . ;wq] ∈ Rn2×q,(2.7)

where wj is the jth column of W and formed by stacking the jth components of w1,w2, . . . ,wn2 . Let

w = W(:) = (w1; . . . ;wq) ∈ Rqn2
, which is the vectorization of W column by column. For example, when
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m = 3 and Gi = I3 ⊗Di, then

G =




G(1)

G(2)

G(3)

G(4)

G(5)

G(6)




=




D(1) 0 0

D(2) 0 0

0 D(1) 0

0 D(2) 0

0 0 D(1)

0 0 D(2)




.

In the above notation, the normal equations of (2.6) can be written as

[
G>G + K>K

]
u = G>w + K>(f + z).(2.8)

Since each G(j) is a finite difference matrix applied to some channel, and K defined in (1.2) is a cross-

channel convolution, under the periodic boundary conditions for u, each n2 × n2 block in G and K has a

block circulant structure while each block within the structure is a circulant matrix; see e.g. [26]. Therefore,

both G and K can be blockwise diagonalized by pre- and post-multiplying by

Fp , Ip ⊗F , p = m, q,

and their inverses F>p = F−1
p = Ip ⊗ F−1, respectively, where F represents the two-dimensional discrete

Fourier transform matrix of order n2 × n2. More precisely, the following two matrices,

Ĝ = FqGF>m and K̂ = FmKF>m,

are both blockwise diagonal matrices with the block size n2 × n2. Then equation (2.8) is equivalent to
[
Ĝ>Ĝ + K̂>K̂

]
(Fmu) = Ĝ>Fqw + K̂>(Fmf + Fmz),(2.9)

where Fmv (v = u, f, z) is the discrete Fourier transform of v, and similarly for Fqw. Since both Ĝ and K̂

are blockwise diagonal, the coefficient matrix in the left-hand side of (2.9) is also blockwise diagonal with

m×m blocks of the size n2 × n2.

The solution of (2.6) can be obtained by solving its normal equations (2.8) in three steps. First, we

apply discrete FFTs to both sides of (2.8). Then, we solve the resulting blockwise diagonal systems (2.9)

by Gaussian elimination for Fmu. We note that, in general, a linear system involving such a blockwise

diagonal matrix can be solved by block Gaussian elimination without any pivoting or fillings, though for

large multichannel images, the cost of such a block Gaussian elimination can still be relatively high in

comparison to most other operations required by the algorithm. Finally, we apply F−1
m to Fmu to obtain u.

Clearly, all matrices involved in (2.8) need to be blockwise diagonalized only once. At every iteration,

it is only necessary to apply m Fourier transforms to z, q Fourier transforms to w and m inverse Fourier

transforms to Fmu. Therefore, the total number of two-dimensional discrete Fourier transforms (including

inverse Fourier transforms) of size n2 × n2 is 2m + q per-iteration. Moreover, block Gaussian elimination

applied to (2.9) without pivoting, where the coefficient matrix has m×m blocks of square diagonal matrices

of size n2, requites about (2/3)m3n2 arithmetic operations.
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Since minimizing the objective function in (2.3) with respect to each variable is computationally inex-

pensive, we propose solving (2.3) by the following alternating minimization scheme:

Algorithm 1. Input f , K, µ > 0, β, γ À 0 and {αi > 0, i = 1, . . . , n2}. Initialize u = f .

While “not converged”, Do

1) Given u, compute w and z by (2.4) and (2.5), respectively.

2) Given w and z, compute u by solving (2.8).

End Do

The stopping criterion of Algorithm 1 is specified in next subsection based on the optimality conditions

of (2.3). More details of Algorithm 1 are discussed in Section 4.

2.2. Optimality conditions. Now, we derive optimality conditions of (2.2) and (2.3) and specify a

stopping criterion for Algorithm 1. We need the following propositions.

Proposition 2.1. For any A ∈ Rp×n, the subdifferential of f(x) , ‖Ax‖ is

∂f(x) =

{
{A>Ax/‖Ax‖}, if Ax 6= 0;{
A>h : ‖h‖ ≤ 1, h ∈ Rp

}
, otherwise.

(2.10)

Proof. A simple proof of this proposition can be found in [38].

For t ∈ R, the signum and the signum set-valued functions are defined as

sgn(t) ,





+1 t > 0,

0 t = 0,

−1 t < 0,

and SGN(t) ,





{+1} t > 0,

[-1,1] t = 0,

{−1} t < 0,

respectively. For vector v ∈ RN , we let sgn(v) = (sgn(v1); . . . ; sgn(vN )) ∈ RN , where vi is the ith component

of v. Similarly, SGN(v) =
{
ξ ∈ RN : ξi ∈ SGN(vi),∀i

}
.

Proposition 2.2. For any B ∈ Rm×n, the subdifferential of g(x) , ‖Bx‖1 is

∂g(x) =
{
B>λ : λ ∈ SGN(Bx)

}
.(2.11)

Proof. By the definition of subdifferential for a convex function, we have

∂g(x) =
{
ξ ∈ Rn : ‖By‖1 − ‖Bx‖1 ≥ ξ>(y − x),∀y}

.

We will show that ∂g(x) = S , {B>λ : λ ∈ SGN(Bx)}. First, for any B>λ ∈ S and y ∈ Rn, it holds that

‖By‖1 − ‖Bx‖1 − (B>λ)>(y − x) =
∑

i

{|(By)i| − |(Bx)i| − λi[(By)i − (Bx)i]} .(2.12)

Since λ ∈ SGN(Bx), it is easy to argue that the above is always nonnegative. Thus, S ⊂ ∂g(x). Next, we

show ∂g(x) ⊂ S by contradiction. Suppose there exists ξ ∈ ∂g(x), but ξ 6∈ S. Since S is closed and convex,

by the well-known separation theorem of convex sets, there must exist η ∈ Rn and α ∈ R such that the hyper-

plane η>x = α separates ξ and S so that η>ξ > α > η>(B>λ),∀λ ∈ SGN(Bx). Let I+ = {i : (Bx)i > 0},
I− = {i : (Bx)i < 0} and I0 = {i : (Bx)i = 0}. It follows that

η>ξ > α ≥ sup
{
η>(B>λ) : λ ∈ SGN(Bx)

}
=

∑

i∈I+

(Bη)i −
∑

i∈I−
(Bη)i +

∑

i∈I0

|(Bη)i|.(2.13)
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Let y = x + εη for some ε > 0 small enough. Since ξ ∈ ∂g(x), we get

εξ>η ≤ ‖By‖1 − ‖Bx‖1 =
∑

i∈I+∪I−
(|(Bx)i + ε(Bη)i| − |(Bx)i|) +

∑

i∈I0

ε|(Bη)i|

=
∑

i∈I+

ε(Bη)i −
∑

i∈I−
ε(Bη)i +

∑

i∈I0

ε|(Bη)i|.

The above inequality contradicts (2.13). Therefore, ∂g(x) = S and the result is proved.

Since the objective function is convex, a triplet (w, z, u) is a solution of (2.3) if and only if the subdif-

ferential of the objective at (w, z, u) contains the origin. In light of propositions 2.1 and 2.2 with A and B

being identity matrices of appropriate orders, the optimality conditions of (2.3) are




αiwi/‖wi‖+ β(wi −Giu) = 0, i ∈ I1 , {i : wi 6= 0},
‖Giu‖ ≤ αi/β, i ∈ I2 , {i : wi = 0},
τ sgn(zi) + β[zi − (Ku− f)i] = 0, i ∈ I3 , {i : zi 6= 0},
|(Ku− f)i| ≤ τ/β, i ∈ I4 , {i : zi = 0},

(2.14)

G>(Gu− w) + K>(Ku− f − z) = 0.(2.15)

We note that (2.15) is just another expression of (2.8). Our stopping criterion for Algorithm 1 is based on

(2.14) and (2.15). Let





r1(i) , (αiwi/‖wi‖)/β + wi −Giu, i ∈ I1,

r2(i) , ‖Giu‖ − αi/β, i ∈ I2,

r3(i) , τ sgn(zi)/β + zi − (Ku− f)i, i ∈ I3,

r4(i) , |(Ku− f)i| − τ/β, i ∈ I4,

r5 , G>(Gu− w) + K>(Ku− f − z),

where {Ij : j = 1, 2, 3, 4} are defined as in (2.14). Algorithm 1 is terminated once

Res , max
{

max
i∈I1

{‖r1(i)‖},max
i∈I2

{r2(i)},max
i∈I3

{|r3(i)|},max
i∈I4

{r4(i)}, ‖r5‖∞
}
≤ ε(2.16)

is met, where Res measures the total residual and ε > 0 is a prescribed tolerance.

Let KI3 ,KI4 be the submatrices of K with rows corresponding to those indices in I3 and I4 respectively.

Similarly, vI represents the subvector of v corresponding to I. From (2.14) and the relation between G and

Gi described in (2.7), eliminating w and z from (2.15) gives

∑

i∈I1

αiG
>
i

Giu

‖Giu‖ +
∑

i∈I2

G>i hi + τ

(
KI3

KI4

)>(
sgn(KI3u− fI3)

vI4

)
= 0,(2.17)

where hi , βGiu satisfies ‖hi‖ ≤ αi, and vI4 = β(KI4u−fI4)/τ satisfies ‖vI4‖∞ ≤ 1. Let u∗ be any solution

of (2.2). Define

I∗1 , {i : Giu
∗ 6= 0}, I∗2 , {i : Giu

∗ = 0}, I∗3 , {i : (Ku∗ − f)i 6= 0} and I∗4 , {i : (Ku∗ − f)i = 0}.
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In light of propositions 2.1 and 2.2, there exist {h∗i : ‖h∗i ‖ ≤ αi, i ∈ I∗2} and vI∗4 = {vi : |vi| ≤ 1, i ∈ I∗4} such

that

∑

i∈I∗1

αiG
>
i

Giu
∗

‖Giu∗‖ +
∑

i∈I∗2

G>i h∗i + τ

(
KI∗3

KI∗4

)>(
sgn(KI∗3 u∗ − fI∗3 )

vI∗4

)
= 0.(2.18)

Equation (2.17) differs from (2.18) only in the index sets involved. As β and γ increase, I1 and I3 will

converge to I∗1 and I∗3 , respectively.

3. Convergence analysis. It is well-known that the quadratic penalty method applied to a problem

like (1.4) converges to its solution as the penalty parameter goes to infinity (see Theorem 17.1 in [29]

for example). In this section, we establish convergence and a q-linear convergence result of the proposed

algorithm for fixed penalty parameters β and γ.

For simplicity, we assume that αi ≡ 1 and all analysis below can be easily extended to the case αi 6≡ 1.

First, we introduce some notation. For t ∈ R, let the one-dimensional shrinkage be defined by

sτ (t) = max
{
|t| − τ

β
, 0

}
· sgn(t).

For v ∈ RN , let sτ (v) , (sτ (v1); . . . ; sτ (vN )) ∈ RN , i.e. sτ applies to each component vi of v. For t ∈ Rq,

let the q-dimensional shrinkage be defined by

s (t) = max
{
‖t‖ − 1

β
, 0

}
t
‖t‖ ,

where 0 · (0/0) = 0 is followed. For vectors v1, . . . , vq ∈ RN , S(v1; . . . ; vq) : RqN → RqN is defined as

S(v1; . . . ; vq) , (s(t1); . . . ; s(tN )) , where ti = [(v1)i; . . . ; (vq)i] ∈ Rq, i = 1, . . . , N.(3.1)

Let P(·) , PB(·) : Rq → Rq be the projection onto the closed ball B , {t ∈ Rq : ‖t‖ ≤ 1/β}. The following

lemma shows that s(·) is nonexpansive. As a corollary, both S and sτ are nonexpansive.

Lemma 3.1. For any t1, t2 ∈ Rq, it holds that

‖s(t1)− s(t2)‖2 ≤ ‖t1 − t2‖2 − ‖P(t1)− P(t2)‖2.

Furthermore, if ‖s(t1)− s(t2)‖ = ‖t1 − t2‖, then s(t1)− s(t2) = t1 − t2.

Proof. The proof of Lemma 3.1 is similar to the case when q = 2 in [38].

The analysis below is accomplished under the following mild assumption, which has been commonly

used in previous works of similar analysis:

Assumption 1. N (G) ∩N (K) = {0}.
The following matrices are used in our analysis:

H =

(
G

K

)
and M = G>G + K>K = H>H.

Under Assumption 1, M−1 is well defined. Furthermore, let v = (w; z) ∈ R(q+m)n2
and define

h(j)(v) = G(j)M−1
(
H>v + K>f

)
, j = 1, . . . , q,
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and

h(q+1)(v) = KM−1
(
H>v + K>f

)− f.

Let h(v) = (h(1)(v); . . . ;h(q)(v)), ĥ(v) = (h(v);h(q+1)(v)) and Ŝ ◦ ĥ = (S ◦ h; sτ ◦ h(q+1)).

Using the above notation, the iteration formulae (2.4), (2.5) and (2.8) can be expressed as

vk+1 =
(
wk+1; zk+1

)
=

(
S(G(1)uk; . . . ;G(q)uk); sτ (Kuk − f)

)
= Ŝ ◦ ĥ(vk)(3.2)

and

uk+1 = M−1
(
H>vk+1 + K>f

)
.(3.3)

Since the objective function in (2.3) is convex, bounded below, and coercive (i.e., its value goes to infinity

as ‖(w, z, u)‖ → ∞), problem (2.3) has at least one minimizer (v∗;u∗) = (w∗; z∗;u∗), which should satisfy

the fixed-point equations

(3.4) v∗ = (w∗; z∗) =
(
S(G(1)u∗; . . . ;G(q)u∗); sτ (Ku∗ − f)

)
= Ŝ ◦ ĥ(v∗)

and the equations

(3.5) u∗ = M−1
(
H>v∗ + K>f

)
.

To establish convergence of Algorithm 1, we need the following lemmas.

Lemma 3.2. For any v1 6= v2 in R(q+m)n2
, it holds that

‖ĥ(v1)− ĥ(v2)‖ ≤ ‖v1 − v2‖

with the equality holding if and only if ĥ(v1)− ĥ(v2) = v1 − v2.

Lemma 3.3. Let v∗ be any fixed point of Ŝ ◦ ĥ. For any v, we have ‖Ŝ ◦ ĥ(v) − Ŝ ◦ ĥ(v∗)‖ < ‖v − v∗‖
unless v is a fixed point of Ŝ ◦ ĥ.

Lemma 3.2 shows that ĥ is non-expansive and Lemma 3.3 gives a useful property for the fixed points of

Ŝ ◦ ĥ. Their proofs are similar to those in the lower dimensional case given in [38]. Given the above lemmas,

we can prove convergence of Algorithm 1.

Theorem 3.4 (Convergence). Under Assumption 1, the sequence {(wk, zk, uk)} generated by Algorithm

1 from any starting point (w0, z0, u0) converges to a solution (w∗, z∗, u∗) of (2.3).

Proof. The proof is similar to that of Theorem 3.4 in [38] and thus is omitted.

Next we develop a finite convergence property for the auxiliary variables w and z. Let

hi(v) = (h(1)
i (v); . . . ;h(q)

i (v)) ∈ Rq, i = 1, . . . , n2;

namely, hi(v) is the vector formed by stacking the ith components of {h(1)(v), . . . , h(q)(v)}. We will make

use of the following index sets:

L1 =
{

i, ‖Giu
∗‖ ≡ ‖hi(v∗)‖ <

1
β

}
, L2 =

{
i, |(Ku∗ − f)i| ≡ |h(q+1)

i (v∗)| < τ
}

,
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and their complements E1 = {1, . . . , n2} \ L1 and E2 = {1, . . . , mn2} \ L2.

Theorem 3.5 (Finite convergence). Under Assumption 1, the sequence {(wk, zk, uk)} generated by

Algorithm 1 from any starting point (w0, z0, u0) satisfies wk
i = w∗

i = 0, ∀ i ∈ L1, and zk
i = z∗i = 0, ∀ i ∈ L2,

for all but finite numbers of iterations that do not exceed ‖v0 − v∗‖2/ω2
1 and ‖v0 − v∗‖2/ω2

2, respectively,

where

(3.6) ω1 , min
i∈L1

{
1
β
− ‖hi(v∗)‖

}
> 0 and ω2 , min

i∈L2

{
τ − |h(q+1)

i (v∗)|
}

> 0.

Proof. For any i ∈ {1, . . . , n2}, it holds that

‖wk+1
i −w∗

i ‖2 =
∥∥s ◦ hi(vk)− s ◦ hi(v∗)

∥∥2 ≤ ∥∥hi(vk)− hi(v∗)
∥∥2

.(3.7)

Suppose wk+1
i 6= 0 for some i ∈ L1, then

‖wk+1
i −w∗

i ‖2 =
∥∥s ◦ hi(vk)− s ◦ hi(v∗)

∥∥2
=

(‖hi(vk)‖ − 1/β
)2

(3.8)

≤ {‖hi(vk)− hi(v∗)‖ − (1/β − ‖hi(v∗)‖)
}2

≤ ‖hi(vk)− hi(v∗)‖2 − (1/β − ‖hi(v∗)‖)2

≤ ‖hi(vk)− hi(v∗)‖2 − ω2
1 ,

where the first equality comes from the iteration of wi in (2.4) and the definition of hi(v); the second

equality holds because of ‖hi(v∗)‖ < 1/β, wk+1
i 6= 0 and the definition of s; the first inequality is triangular

inequality; the second inequality follows from the fact that ‖hi(vk)− hi(v∗)‖ ≥ 1/β − ‖hi(v∗)‖ > 0; and the

last one uses the definition of ω1 in (3.6). Furthermore,

‖zk+1 − z∗‖2 = ‖sτ ◦ h(q+1)(vk)− sτ ◦ h(q+1)(v∗)‖2 ≤ ‖h(q+1)(vk)− h(q+1)(v∗)‖2.(3.9)

Combining (3.7), (3.8) and (3.9), we get

‖vk+1 − v∗‖2 = ‖wk+1 − w∗‖2 + ‖zk+1 − z∗‖2 =
n2∑

i=1

‖wk+1
i −w∗

i ‖2 + ‖zk+1 − z∗‖2(3.10)

≤
n2∑

i=1

‖hi(vk)− hi(v∗)‖2 + ‖h(q+1)(vk)− h(q+1)(v∗)‖2 − ω2
1

=
q+1∑

j=1

‖h(j)(vk)− h(j)(v∗)‖2 − ω2
1 = ‖ĥ(vk)− ĥ(v∗)‖2 − ω2

1

≤ ‖vk − v∗‖2 − ω2
1 .

Therefore, for i ∈ L1, it holds that wk
i = w∗

i = 0 in no more than ‖v0 − v∗‖2/ω2
1 iterations.

For any i ∈ {1, . . . , mn2}, we have

(
zk+1
i − z∗i

)2
=

(
sτ ◦ h

(q+1)
i (vk)− sτ ◦ h

(q+1)
i (v∗)

)2

≤
∣∣∣h(q+1)

i (vk)− h
(q+1)
i (v∗)

∣∣∣
2

.(3.11)
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Similarly, suppose zk+1
i 6= 0 for some i ∈ L2, from z∗i = 0 we get

(
zk+1
i − z∗i

)2
=

(
sτ ◦ h

(q+1)
i (vk)

)2

=
(
|h(q+1)

i (vk)| − τ
)2

(3.12)

≤
{∣∣∣h(q+1)

i (vk)− h
(q+1)
i (v∗)

∣∣∣−
(
τ − |h(q+1)

i (v∗)|
)}2

≤
∣∣∣h(q+1)

i (vk)− h
(q+1)
i (v∗)

∣∣∣
2

−
(
τ − |h(q+1)

i (v∗)|
)2

≤
∣∣∣h(q+1)

i (vk)− h
(q+1)
i (v∗)

∣∣∣
2

− ω2
2 ,

where the reasoning is identical to that of (3.8) and ω2 is defined in (3.6). Combining (3.7), (3.11) and

(3.12), similar to (3.10) we get,

‖vk+1 − v∗‖2 ≤ ‖ĥ(vk)− ĥ(v∗)‖2 − ω2
2 ≤ ‖vk − v∗‖2 − ω2

2 .(3.13)

Therefore, zk
i = z∗i = 0 for i ∈ L2 in no more than ‖v0 − v∗‖2/ω2

2 iterations.

Given the finite convergence of wk
i = w∗

i = 0 for i ∈ L1 and zk
i = z∗i = 0 for i ∈ L2, we next show the

q-linear convergence of uk and the remaining components in vk. For convenience, let

L = L1 ∪
(
n2 + L1

) ∪ . . . ∪ (
(q − 1)n2 + L1

) ∪ (
qn2 + L2

)

and E = {1, . . . , (q + m)n2} \ L be the complement of L. Let vL be the subvector of v with components

{vi : i ∈ L} and vE be defined similarly. Furthermore, let P = HM−1H> and PEE = [Pi,j ]i,j∈E . From the

definition of M , it is obvious that P is a projection matrix and thus P 2 = P .

Theorem 3.6 (q-linear convergence). Under Assumption 1, the sequence {(vk, uk) = (wk, zk, uk)}
generated by Algorithm 1 satisfies

1. ‖vk+1
E − v∗E‖ ≤

√
ρ(PEE)‖vk

E − v∗E‖;
2. ‖uk+1 − u∗‖M ≤

√
ρ(PEE)‖uk − u∗‖M ;

for all k sufficiently large.

Proof. From (3.2 - 3.5) and the non-expansiveness of S and sτ , we get

(3.14) uk+1 − u∗ = M−1H>(vk+1 − v∗)

and

‖vk+1 − v∗‖2 = ‖wk+1 − w∗‖2 + ‖zk+1 − z∗‖2(3.15)

= ‖S(G(1)uk; . . . ;G(q)uk)− S(G(1)u∗; . . . ;G(q)u∗)‖2 + ‖sτ (Kuk − f)− sτ (Ku∗ − f)‖2

≤ ‖G(uk − u∗)‖2 + ‖K(uk − u∗)‖2 = ‖H(uk − u∗)‖2.

Combining the recursion (3.14), (3.15) and the definition of P , it holds

‖vk+1 − v∗‖2 ≤ ‖HM−1H>(vk − v∗)‖2 = ‖P (vk − v∗)‖2.

Since we are only interested in the asymptotic behavior of Algorithm 1, without loss of generality, we assume

that vk
L = v∗L = 0. Further from P 2 = P , the above inequality becomes

‖vk+1
E − v∗E‖2 ≤ (vk

E − v∗E)>PEE(vk
E − v∗E) ≤ ρ(PEE)‖vk

E − v∗E‖2,
12



which implies assertion 1 of this theorem. Multiplying H on both sides of (3.14), from vk
L = 0 and (3.15),

we get

‖H(uk+1 − u∗)‖2 ≤ ρ(PEE)‖vk+1 − v∗‖2 ≤ ρ(PEE)‖H(uk − u∗)‖2.

Recall that M = H>H. The above inequality implies assertion 2 of this theorem.

Theorem 3.6 states that Algorithm 1 generates a sequence of points that converge q-linearly with a

convergence rate depending on the spectral radius of the submatrix PEE rather than that of the whole

matrix. Since P is a projection matrix and PEE is a minor of P , it holds that ρ(PEE) ≤ ρ(P ) = 1.

4. Numerical results. In this section, we present numerical results of recovering images by the pro-

posed alternating minimization algorithm. In our experiments, we used two images, grayscale image Cam-

eraman (256 × 256) and RGB color image Rose (250 × 250), with different blurs and noise. The original

images are given in Figure 4.1. Two types of impulsive noises were used in the test: the salt-and-pepper

noise and the random-valued impulsive noise. In the rest of this section, we first describe the test platform

and a practical implementation of Algorithm 1, then compare our algorithm to the algorithm in [20] for

grayscale image deblurring. We next present color image results, and finally summarize the performance of

our algorithm.

Fig. 4.1. Original images. Cameraman (left, 256×256) and Rose (right, 250×250).

4.1. Test platform and practical implementation. We implemented Algorithm 1 in MATLAB and

generated all blurring effects using the MATLAB function “imfilter” with periodic boundary conditions.

The experiments were performed under Windows Vista Premium and MATLAB v7.6 (R2008a) running on

a Lenovo laptop with an Intel Core 2 Duo CPU at 1.8 GHz and 2 GB of memory.

Let E(ū) be the mean intensity value of the original image ū and let u be the restored image. As is

usually done, we measured the quality of restoration by signal-to-noise ratio (SNR) which is defined as

SNR , 10 ∗ log10

‖ū−E(ū)‖2
‖ū− u‖2 .

Although Algorithm 1 is applicable to regularizations based on TV, weight TV, and high-order derivatives

(see [39] for details), we limited our experiments on model (1.3). The weighting parameter µ was determined
13



experimentally. We limit β = 210 and γ = 215 in the approximation problem (1.5) which, based on our

experimental results, are large enough to get almost the highest SNRs. Using β > 210 or γ > 215 would only

increase computational cost but not solution quality. Similar settings were used in [38, 39].

After rescaling, µ and γ are hidden in K, f, z and τ (see (2.1) where τ =
√

µβ/γ). From (2.5), the

smaller γ is, the larger τ is, and more zeros the shrinkage will produce. To speed up convergence, we

implemented a continuation scheme on γ; that is, let γ take a small value at the beginning and gradually

increase its value to 215. Specifically, we tested the γ-sequence 20, 21, 22 . . . , 215. Accordingly, β was set to

20, 22/3, 24/3 . . . , 210. Continuation techniques are widely used with penalty methods and, for our problem,

its use is also theoretically well-justified by Theorem 3.6. From the definitions of L and E, it is likely that

smaller β and γ yield smaller E and thus fast convergence. As such, earlier subproblems with smaller penalty

parameters can be solved quickly, and the later subproblems can also be solved relatively quickly with warm

starts from previous solutions.

To sum up, our practical implementation of Algorithm 1 involves two loops. The outer loop increases β

and γ from 1 to 210 and 215, respectively. For fixed β and γ, the inner loop solves (1.5) until (2.16) is met.

We set ε = 5 × 10−3 as the default. Although the above framework can be modified with much flexibility,

e.g., adaptively increasing the penalty parameters and selecting ε from one outer iteration to another, this

basic implementation already works surprisingly well. Following [38], we give the name fast total variation

deconvolution, or FTVd, to Algorithm 1 with the prescribed continuation scheme.

4.2. Grayscale image results. In this subsection, we compare the performance of FTVd with that

of the algorithm proposed in [20], where the authors converted the deblurring model

min
u

{∑

i

‖Diu‖1 + µ‖Ku− f‖1 : u ≥ 0

}
(4.1)

into a linear program and proposed to solve it by a primal-dual interior point method. Following their

naming, we refer to both the algorithm in [20] and solution of (4.1) as the Least Absolute Deviation or

LAD. Their approach requires solving a positive definite linear system at each iteration by a preconditioned

conjugate gradient (PCG) method with a sparse inverse preconditioner [4, 24, 34]. Specially, they used the

factorized banded inverse preconditioner (FBIP, [25]), which has a triangular block banded structure with

each block being also banded. Let p be the block-level lower bandwidths of the preconditioner and let q

be the (lower or upper) bandwidths of each block. As the authors pointed out, when the support size of

a blurring kernel is large, it is necessary to use large (p, q) to obtain a sufficiently good preconditioner.

However, the computational cost of FBIP at each outer iteration is O(p3q3n2) that increases quickly with p

and q. Therefore, for blurring kernels with a large support size, a balance needs to be found between the PCG

iteration numbers and the cost of preconditioner computation; see [20] for details. Since the linear systems

involved are increasingly ill-conditioned towards the end of outer iterations, a reasonable implementation

of their algorithm should be using the FBIP only when the plain CG method encounters difficulties. For

fairness of comparison, we utilized a diagonal preconditioner (similar to the one used in [32] that is included

in the LAD code provided to us by the authors of [20]) at the beginning and resorted to the FBIP only when

the iteration number required by the MATLAB pcg code exceeded 100 to reach a relative residue of 10−5.

This way, the wasteful cost of computing the FBIP at the early iterations was avoided.
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Since the LAD code used in our experiments is only applicable to grayscale images, we used Cameraman

for comparison. Furthermore, since the LAD algorithm solves only the 1-norm based, anisotropic TVL1

problem, we used our algorithm to solve (1.3) with ‖ · ‖2 being replaced by ‖ · ‖1. This modification requires

changing (2.4) to

wi = max{|Giu| − αi/β, 0} ◦ sgn(Giu), i = 1, . . . , n2,

where | · | represents componentwise absolute value. The optimality conditions (2.14)-(2.15) and the stopping

criterion (2.16) were modified accordingly. There are also two differences in the problems solved by these

two algorithms. First, problem (4.1) enforces nonnegativity on u while FTVd does not deal with this

requirement. This difference affects the solutions, but only to a small extent. Without the nonnegativity

constraints in (4.1), LAD does not run faster because it would need to split u into u+, u− and require

u = u+ − u−, u+, u− ≥ 0. The differences of the two algorithms in terms of CPU time and restoration

quality are given in next two paragraphs. Secondly, the LAD algorithm uses Neumann boundary conditions

instead of periodic boundary conditions that FTVd uses. The influence of boundary conditions on image

quality was also negligible because the sizes of the tested images are much larger than that of the tested

blurring kernels. For more details about boundary conditions, see [26].

Based on the above discussions, we set p = 4 and q = 7 in LAD and stopped LAD once the normalized

duality gap was less than 5 × 10−4. In this experiment, we applied the Gaussian blur of the size 7 × 7

and standard deviation std = 5. For LAD, after we generated the blurry image by MATLAB function

“imfilter” with symmetric boundary conditions, we corrupted 30% to 60% of pixels of the blurry image at

random with salt-and-pepper noise. For FTVd, we first generated the blurry image with periodic boundary

conditions and then corrupted the blurry image with exactly the same salt-and-pepper noise recorded when

generating noise for LAD. The blurry and noisy images and their restorations by FTVd and LAD are given

in Figure 4.2, where the values of µ, CPU time and SNRs of the restorations are also given. Since the blurry

and noisy images of LAD and FTVd have no visible difference, we only plotted the blurry and noisy images

for FTVd.

As can be seen from Figure 4.2, the results of FTVd and LAD have similar qualities in all of the four

tests. The results of LAD have slightly higher SNRs than those of FTVd but the differences are visually

indistinguishable. By comparing the CPU times, we conclude that FTVd is much faster than LAD. In

these tests, we set p = 4 and q = 7 in LAD because we tried with a great deal of efforts and failed to run

LAD to the prescribed accuracy with smaller p and q due to numerical singularity in FBIP that caused the

MATLAB pcg code to exit without producing an approximate solution. When the support size of blurring

kernel became larger, the linear system that LAD needed to solve became even more ill-conditioned. As a

result, the diagonal preconditioners used in [20] were not sufficient to greatly improve the ill-conditioning

of the linear systems and denser FBIPs became essential. As pointed out before, the computation of each

FBIP was O(p3q3n2) which increases quickly with p and q. In comparison, the performance of FTVd is not

affected by the increase of the support size of blurring kernels because it avoids solving any linear systems

iteratively. To illustrate this, we applied the Gaussian blur of the size 15 × 15 and standard deviation std

= 9 and the same levels of slat-and-pepper noise. The recovered results by FTVd are shown in Figure 4.3,

from which we see that the CPU times required did not increase. However, we were not able to solve (4.1)
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Blurry&Noisy: 30% Salt&Pepper 40% Salt&Pepper 50% Salt&Pepper 60% Salt&Pepper

FTVd.  µ:  13, t: 15.1s, SNR: 14.16dB FTVd.  µ:  10, t: 13.9s, SNR: 13.21dB FTVd.  µ:   8, t: 13.5s, SNR: 12.35dB FTVd.  µ:   4, t: 16.8s, SNR: 11.08dB

LAD.  µ:  13, t: 186s, SNR: 14.20dB LAD.  µ:  10, t: 159s, SNR: 13.29dB LAD.  µ:   8, t: 180s, SNR: 12.45dB LAD.  µ:   4, t: 239s, SNR: 11.13dB

Fig. 4.2. Recovered from 7×7 sized Gaussian blur with salt-and-pepper noise from 30% to 60%.

FTVd.  µ:  13, t: 15.7s, SNR: 11.94dB FTVd.  µ:  10, t: 16.1s, SNR: 11.27dB FTVd.  µ:   8, t: 13.3s, SNR: 10.53dB FTVd.  µ:   4, t: 13.3s, SNR: 9.36dB

Fig. 4.3. Recovered from 15×15 sized Gaussian blur with salt-and-pepper noise from 30% to 60% (left to right).

to the prescribed accuracy by setting p = 4 and q = 7 in LAD for this blur. We tried larger p and q values

without success because for larger (p, q) LAD simply took too much memory and CPU time to run on the

aforementioned laptop computer.

4.3. Color image results. In this subsection, we present recovery results for color images by FTVd.

We first blurred the color image Rose by cross-channel blurring described below and then corrupted 30%
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to 60% of its pixels at random with random-valued noise. Let (A, hsize) denote the average blur of the

size hsize, (G, hsize, sigma) the Gaussian blur of the size hsize and standard deviation sigma, and (M,

len, theta) the motion blur with motion length len and angle theta. We chose a “diagonally dominant”

cross-channel blurring kernel:



Hrr Hrg Hrb

Hgr Hgg Hgb

Hbr Hbg Hbb


 =




0.8 · (A, 9) 0.1 · (A, 9) 0.1 · (A, 9)

0.15 · (G, 11, 5) 0.7 · (G, 11, 5) 0.15 · (G, 11, 5)

0.2 · (M, 21, 135) 0.2 · (M, 21, 135) 0.6 · (M, 21, 135)


 ,(4.2)

where Hσ1,σ2 defines within-channel blurring for σ1 = σ2 and cross-channel blurring for σ1 6= σ2. Considering

that within-channel blurs are usually stronger than cross-channel ones, we assigned larger weights to the

within-channel blurs. Similar methods for choosing kernel weights are used in the literature; see e.g., [19, 21].

We note that the types, locations and support sizes of blurring kernels appear to have little or no influence

on the efficiency of FTVd, as was also observed in [39]. The blurry and noisy images and their restorations

from FTVd are given in Figure 4.4 along with the values of µ, CPU time and SNRs.

Blurry&Noisy: 30% RV 40% RV 50% RV 60% RV

 µ:  10, t: 119s, SNR: 17.16dB  µ:   8, t: 117s, SNR: 16.04dB  µ:   4, t: 138s, SNR: 14.06dB  µ:   2, t: 136s, SNR: 10.60dB

Fig. 4.4. Recovered from cross-channel blurring and random-valued noise from 30% to 60%.

Generally, it is more difficult to remove random-valued noise than salt-and-pepper noise because the

former has a wider range of intensity values. As can be seen from Figure 4.4, the restored images are cleaner

when the amount or random noise is smaller. The required CPU times are significantly longer than those

reported for the grayscale image in Figures 4.2 and 4.3 because the per-iteration computational cost has

increased significantly from deblurring single-channel images to multichannel ones.

4.4. Summary. In the framework of Algorithm 1, there are two steps at each iteration. The first step

computes w and z by (2.4) and (2.5), respectively, and the second solves (2.8) by FFTs and block Gaussian

elimination. The computation of w and z only involves shrinkage operations and thus has linear complexity

in terms of n2. Therefore, the main computational work lies in solving the normal equations (2.8) by FFTs

and block Gaussian elimination (for multichannel images). Consider Gi = Im ⊗Di for all i. For grayscale

images where m = 1 and q = 2, a total number of 4 FFTs (including 1 inverse FFT) are needed to solve
17



(2.8) while no Gaussian elimination is necessary. For color images where m = 3 and q = 6, a total number

of 12 FFTs (including 3 inverse FFTs) are needed plus about 18n2 arithmetic operations required by the

block Gaussian elimination. In our experiments, the total number of inner iterations required by FTVd was

typically around 250. Therefore, the total number of FFTs was about 1000 for grayscale images and 3000 for

RGB color images. Upon profiling our code, we observed that for color images about 40% of the total CPU

time was spent on Gaussian elimination and checking optimality conditions; the rest was spent on FFTs and

other calculations. Furthermore, the CPU time used by FTVd changes little with the size of the blurring

kernel, and increases only moderately with the image size.

5. Conclusion remarks. An alternating minimization algorithm is proposed for solving the TVL1-like

problem (1.4). The algorithm is applicable to both the isotropic and anisotropic TV discretizations, and has

finite convergence for some auxiliary variables and a fast q-linear global convergence rate for the rest. At each

iteration, the total computational cost is dominated by the costs of a number of FFTs and block Gaussian

elimination. Our numerical results show that the algorithm is efficient and stable. For grayscale images and

a relatively small kernel size, our algorithm is already over one order of magnitude faster than a state-of-

the-art algorithm, and the advantage further widens as the kernel size increases. Our numerical results also

show that while doing deblurring, the algorithm is capable of removing a large amount of impulsive noise

from grayscale or color images that contaminates up to 60% pixels.
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