
Microorganisms (including viruses, bacteria, archaea 
and protists) do not exist in isolation but form complex 
ecological interaction webs. Interactions within these 
ecological webs can have a positive impact (that is, a 
win), a negative impact (that is, a loss) or no impact 
on the species involved. The possible combinations 
of win, loss and neutral outcomes for two interaction 
partners allow the classification of various interac-
tion types1 (FIG. 1). For instance, bacteria (of different 
taxonomic groups) may cooperate to build a biofilm, 
which confers antibiotic resistance to its members2 
— a win–win relationship that is known as mutual-
ism. Other examples for mutualism are certain cases 
of cross-feeding (also known as syn trophy), in which 
two species exchange metabolic products to the ben-
efit of both3. Classical loss–win interactions are preda-
tor–prey relationships (for example, ciliates feeding 
on bacteria) and host–parasite relationships (for 
example, between bacteria and their bacteriophages). 
Amensalism — in which one partner is harmed with-
out any advantage to the other — occurs, for example, 
when metabolic by-products of a microbial species 
alter the environment to the detriment of other micro-
organisms (for example, lacto bacilli lowering the pH 
of the surrounding environment). In commensalistic 
relationships, one partner benefits without helping or 
harming the other. Commensalism is often found in 
biodegradation, in which commensals cross-feed on 
compounds that are produced by other community 
members (for example, in cellulose degradation4). 
Finally, a famous example of competition between 
microorganisms (that is, a loss–loss relationship)  
dates back to the 1930s, when Gause5 executed a series  

of co-culture experiments. He observed that for a  
number of species pairs, each species grew well in the 
absence of the other but, when co-cultured, one species (in  
this case, Paramecium aurelia) subdued the other 
(in this case, Paramecium caudatum). On the basis of 
these observations, Gause formulated his law of com-
petitive exclusion, which states that two species with 
similar niches exclude each other.

Detecting and investigating these various types of 
interactions in microbial ecosystems is far from straight-
forward6. Novel approaches towards the reconstruction 
of ecosystem-wide association networks can open the 
way towards global models of ecosystem dynamics. 
Ultimately, such models will be able to predict the out-
come of community alterations and the effects of pertur-
bations, and they could, in the long run, help with the 
engineering of complex microbial communities.

Here, we review these various strategies, discuss their 
strengths and weaknesses and give an overview of the 
insights into microbial ecology that these studies have 
provided.

From abundance data to community models
Microbial communities can be monitored with a range of 
techniques, ranging from flow cytometry7 via microar-
rays8 to ribosomal RNA9,10 and metagenomic sequenc-
ing11,12. The extraction of microbial abundances from 
the raw data is a complex, multiple-step procedure that 
relies on sequence clustering and reference databases (for 
example, REFS 12–14) to assign reads to known micro-
bial taxa. A number of pipelines that facilitate this task 
have been published in recent years (see REF. 15 for an 
overview).
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Mutualism
An interaction between two 
species in which each species 
derives a benefit. Also referred 
to as cooperation or symbiosis 
by some authors; however, 
mutualism is preferred here 
because ‘symbiosis’ can be 
used in a broader sense to 
include all ecological 
relationships, and ‘cooperation’ 
can be used to designate 
mutualism between single 
organisms rather than 
populations.

Niches
Defined by Hutchinson as the 
volume in which the growth 
rate of an organism is larger 
than or equal to 1, where the 
volume is an abstract space 
with axes that correspond to 
abiotic and biotic factors that 
affect the growth rate of the 
species.

Microbial interactions: from networks 
to models
Karoline Faust1,2 and Jeroen Raes1,2

Abstract | Metagenomics and 16S pyrosequencing have enabled the study of ecosystem 
structure and dynamics to great depth and accuracy. Co-occurrence and correlation 
patterns found in these data sets are increasingly used for the prediction of species 
interactions in environments ranging from the oceans to the human microbiome. In addition, 
parallelized co-culture assays and combinatorial labelling experiments allow high-throughput 
discovery of cooperative and competitive relationships between species. In this Review, we 
describe how these techniques are opening the way towards global ecosystem network 
prediction and the development of ecosystem-wide dynamic models.
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Network inference
The process of reconstructing 
the wiring diagram of a 
complex system from the 
behaviour of its components. 
For microbial communities, the 
goal of network inference is to 
predict ecological relationships 
between microorganisms from 
abundance data.

Regression
Prediction of a relationship 
between a dependent variable 
(here, the abundance of a 
target species) and 
independent variables (the 
abundance (or abundances)  
of one or more independent 
source species, environmental 
traits and possibly a noise 
term), which are termed 
factors here.

After abundance data have been obtained, it is pos-
sible to predict microbial relationships under the prem-
ise that strongly nonrandom distribution patterns are 
mostly due to ecological reasons (see BOX 1 on the debate 
about random processes versus ecological interactions in 
community assembly). This approach goes a long way 
back: in the 1970s, Jared Diamond suggested that ‘check-
erboard’ species distributions (that is, distributions that 
are mutually excluding) are a consequence of competi-
tive relationships (BOX 1). Predicting relationships from 
this principle is straightforward: when two species (or 
any taxonomically relevant units) co-occur or show a 
similar abundance pattern over multiple samples, a posi-
tive relationship is assumed; when they show mutual 
exclusion (as in the checkerboard pattern) or anticorre-
lation, a negative one is predicted. However, interpreta-
tion of the ecological relevance of these relationships is 
far from easy. For instance, a positive relationship can 
be due to cross-feeding, co-aggregation in biofilms,  
co-colonization, niche overlap or other reasons, whereas 
a negative relationship may result from amensalism, a 
prey–predator relationship, competition, and so on. In 
addition, relationships can be time-lagged (for example, if 
one species increases its abundance at a certain moment, 
another species might only disappear at a later time). 
Further (experimental) validation of such interactions is 
currently needed to disentangle the exact reasons behind 
the observed patterns.

The prediction of microbial association networks 
from presence–absence or abundance data is a prob-
lem that is known as network inference in computer 
science, and there is a long history of methods for its 
resolution16,17. Network inference techniques are widely 
applied in genomics18,19 and are starting to be adopted 
in ecology as well20. Here, we distinguish between two 
groups of network inference methods: those that can 
predict relationships between two species (namely, 
pairwise relationships) and those that can predict more 
complex ones.

Pairwise relationships: similarity-based network  
inference. Although there are many subtleties and pit-
falls (see below), generally speaking, similarity-based 
network inference assesses the co-occurrence and/or 
mutual exclusion pattern of two species over multiple 
samples using a measure that quantifies the similarity of 
two species distributions. In a second step, the signifi-
cance of the similarity score is assessed (usually with a 
null distribution generated by permuting the data set 
in question). After assessing all possible combinations 
of species in a given abundance data set, all significant 
pairwise relationships are then combined to construct 
a network (FIG. 2).

Complex relationships: regression- and rule-based 
networks. Pairwise relationships do not capture more 
complex forms of ecological interactions, in which  
one species depends on (or is influenced by) multiple 
other species.

To infer these types of interactions, other tech-
niques must be applied. The first approach is regression:  
the abundance of one species is predicted from the 
combined abundances of other organisms (FIG. 2). 
Although the method is simple and often used, the 
meaning and interpretation of regression results are 
sometimes difficult, especially if factors are chosen 
using automatic feature selection methods (such as 
sparse regression). Even though the method often 
automatically selects sets of species that can math-
ematically predict the abundance of another species, 
this does not always mean that there is a biological 
reason for this. A second approach towards complex 
relationship inference is association rule mining21. In 
short, this approach consists of enumerating all logi-
cal rules supported by a presence–absence data set to 
find significant rules. For example, a rule could say ‘in 
the presence of species A and the absence of species B, 
species C is also present’. Rules are mined by enumer-
ating all possible sets of taxa up to a certain size and 
generating all possible rules for each set. In the second 
(and more challenging) step, a combination of filters is 
applied to correct for multiple testing and to retain only  
significant rules.

A complex relationship that is inferred through 
multiple regression or association rule mining can be 
represented in the resulting network as an edge that 
connects more than two nodes in a directed way to 
point from the independent taxa to the dependent 
taxon. Networks with such edges are formally known 
as directed hypergraphs. FIGURE 3a displays a network 
inferred from a similarity-based approach, in which 
pairwise relationships are represented by edges con-
necting two nodes, whereas FIG. 3b gives an example 
of a directed hypergraph that results from association 
rule mining in a global microbial presence–absence 
data set22 and that visualizes complex relationships 
with hyper-edges connecting up to three nodes. This 
said, more developments will be needed to design 
and to apply targeted multivariate approaches truly 
to disentangle complex relationships as well as to 
visualize them.

Figure 1 | Summary of ecological interactions between members of different 
species. The wheel display introduced by Lidicker1 has been adapted to summarize all 
possible pairwise interactions. For each interaction partner, there are three possible 
outcomes: positive (+), negative (–) and neutral (0). For instance, in parasitism, the parasite 
benefits from the relationship (+), whereas the host is harmed (–); this relationship is thus 
represented by the symbol pair + –.
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Lotka–Volterra equations
Equations that describe the 
dynamics of a prey–predator 
system. In their generalized 
form, the Lotka–Volterra 
equations can model the 
dynamics of more than two 
species and describe 
relationships other than 
prey–predator.

Hypergeometric distribution
This distribution underlies 
Fisher’s exact test, which is 
commonly used to infer 
networks from presence–
absence data. Given the 
occurrences of two taxa 
across the samples, the test 
assesses the significance of 
the number of observed 
co-presences.

Network inference and environmental traits. Network 
inference can incorporate measurements of environ-
mental traits by treating them as additional ‘species’ in 
similarity-based approaches23,24 or as additional factors 
in regression- or logical-rule-based approaches. This 
allows predicting relationships between species and 
environmental traits. For instance, strong relationships 
between microorganisms and concentrations of nutri-
ents such as nitrites and nitrates could pinpoint species 
that are involved in global biogeochemical cycling25,26.

From static networks to dynamic models. Network infer-
ence produces a set of significant dependencies (that are 
either simple or complex) from multiple measurements 
(that are transversal, longitudinal or both) of a micro-
bial community. These dependencies can then help to 
build dynamic models of the microbial community. A 
dynamic model consists of a set of differential or dif-
ference equations or Boolean functions27 that describe 
the change of community member abundances over 
time. Dynamic modelling has a long tradition in popu-
lation ecology28, but few studies have attempted to build 
dynamic models for microbial communities that consist 
of multiple species. Mounier and colleagues29 modelled 
cheese fermentation community interactions with gen-
eralized Lotka–Volterra equations (gLV equations) (BOX 2). 
The model predicted negative interactions among three 
yeast species that were afterwards confirmed by co- 
culture experiments. Likewise, Hoffmann and col-
leagues30 tested several approaches to model marine 
phage abundances. From the best-fitting model (which 
is a modified gLV equation), the authors concluded that 

the dynamics of phage–host communities alternates 
between long periods of very low abundance and brief 
periods of bloom. Phage abundances are predicted to 
rise quickly following the blooms of their specific hosts 
(in agreement with the ‘kill the winner’ model31), after 
which phage numbers rapidly decrease at first and then 
more slowly, such that they survive at very low numbers 
until the next bloom of their host. This cycling through 
different dominating hosts that are decimated by their 
respective phages has recently been confirmed at the 
strain level32.

Microbial network inference — state of the art
Microbial association networks have been inferred for a 
range of communities, from soil33,34 and ocean commu-
nities24,35 to human body communities12,36,37. In addition, 
global networks have been independently constructed 
from different data sets (namely, Greengenes rRNA 
database and PubMed abstracts)22,38. In these studies, 
the networks were all built with similarity-based tech-
niques, mainly using either Pearson or Spearman corre-
lations for abundance data12,33,34,36 and the hypergeometric 
distribution for presence–absence data22,38. Another pop-
ular similarity-based network inference methodology is 
local similarity analysis (LSA)39, which can detect simi-
larity between shifted abundance profiles and is there-
fore frequently used to build association networks from 
time series data23,24,40. To set thresholds on similarity 
scores, most authors use a permutation test, as described 
in FIG. 2. In an interesting alternative approach, Pearson 
correlation thresholds are determined using random 
matrix theory34.

Box 1 | Community assembly: ecological interactions versus random processes

The extent to which ecological interactions between species shape their abundances remains the subject of debate. In 
his seminal paper on the distribution of bird species across tropical islands, Jared Diamond102 derived community 
assembly rules from the birds’ presence–absence patterns. In brief, he suggested that the presence of one bird species 
will prevent other bird species that are adapted to the same niche from settling on the same island, allowing competitive 
exclusion to be deduced from ‘checkerboard’-like presence–absence patterns.

This study sparked a decades-long discussion about the importance of such assembly rules in the formation and 
structure of communities. Connor and Simberloff103 attacked Diamond’s rules as being partly redundant and criticized 
that Diamond’s patterns did not withstand significance testing in simulations. Discussion of whether species presence–
absence or abundance patterns are due to chance or due to ecological processes has advanced the development of null 
models53. A null model can be described as a set of rules for the simulation of data that are expected under the null 
hypothesis. In this context, it is of interest to mention Hubbell’s unified theory of biogeography and biodiversity (from 
here on abbreviated as ‘the neutral theory’)83. According to the neutral theory, observed species distributions can be well 
explained by random processes of birth, death and immigration from a ‘metapopulation’. Because it does not model the 
impact of ecological interactions on species abundances, Hubbell’s neutral theory can serve as a null model against which 
the impact of ecological interactions can be tested. The neutral theory has been confirmed in some ecosystems104 but 
contradicted in other studies105. This ambiguity suggests that both assembly rules and random processes can determine 
species abundance distributions, possibly to different, ecosystem-specific extents.

The niche-based analysis (using Diamond’s rules) and the neutral-theory-based analysis (using Hubbell’s model) of 
species abundances have both been applied to microbial distribution data106,107. For instance, the number of perfect 
checkerboard patterns is significantly higher than random expectation in a collection of microbial data sets spanning 
samples from soil, sediment, freshwater and marine communities106 (supporting Diamond’s assembly rules); however, 
checkerboards can be caused both by competition and by different niche preferences or history108.

In REF. 107, Hubbell’s model is converted into a continuous form to deal with large microbial populations, and different 
growth rates are introduced in the model (thus relaxing the neutrality assumption). In this extended form, the neutral 
theory is able accurately to describe microbial abundances measured in lakes and in the lower respiratory tract but not in 
human faeces (which is possibly explained by the presence of distinct community configurations in the gut36).

In summary, both ecological and random processes seem to have a role in microbial communities and ideally should 
both be taken into account.
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Association networks that were built for marine 
and lake ecosystems not only captured links between 
microorganisms within and between different domains 
but also between microorganisms and seasonally 
variable environmental traits, such as concentrations 
of nitrites, nitrates and phosphates23,24. Apart from 
predicting individual relationships between micro-
organisms, the structure of association networks also  
gives insights into the organization of microbial com-
munities (see TABLE 1 for an overview). For instance, 
microbial networks, like protein interaction and human 
social networks, are scale-free22,24,33,34. This implies the 
presence of many taxa with only a few links and a few 
highly connected (hub) taxa. It is as of yet unclear 
whether these hub taxa are ecologically more relevant 
than less-connected taxa. In addition, the networks can 
be partitioned into clusters (which are densely intercon-
nected nodes), and these are interpreted as groups of 
taxa with overlapping niches22,33,38. Likewise, phylogeny 

shapes these networks: co-occurring taxa are more 
closely related than would be expected to occur at ran-
dom22,33. Interestingly, network properties can change 
when an important environmental parameter is altered, 
as has been demonstrated for soil communities at  
ambient and elevated carbon dioxide levels34.

With the recent expansion of the field towards study-
ing host-associated communities, it will not take long 
for ecological approaches, as discussed here, to intersect 
with clinical research. Networks for healthy human gut 
communities have already been inferred. For instance, 
a strain-level network that had been built from 124 illu-
mina-sequenced stool samples places Bacteroidetes and 
Firmicutes in different clusters12. Association networks 
were also used to identify the members of alternative gut 
communities (which are termed enterotypes)36. Recently, 
a microbial association network covering 18 human 
body sites (including the oral cavity, airways, skin, gut 
and vagina) has been constructed from 16S sequence 

Figure 2 | Principle of similarity- and regression-based network inference. The goal of network inference is to 
identify combinations of microorganisms that show significant co-presence or mutual exclusion patterns across samples 
and to combine them into a network. a | Network inference starts from an incidence or an abundance matrix, both of 
which store observations across different samples, locations or time points. b | Pairwise scores between taxa are then 
computed using a suitable similarity or distance measure. A range of such measures are used in the literature (for 
example, Pearson, Spearman, hypergeometric distribution and the Jaccard index). In contrast to similarity-based 
approaches, multiple regression can detect relationships that involve more than two taxa. To reduce over-fitting, sparse 
multiple regression is usually carried out — that is, the source taxa subset that best predicts the target taxon’s abundance 
is selected. In addition, the regression model is cross-validated: that is, after regression coefficients have been identified 
with a training data set, the model’s prediction accuracy is quantified on a test data set. c | In the next step, a random score 
distribution is generated by repeating the scoring step a large number of times (often 1,000 times or more). The random 
score distribution computes the P value (that is, the probability of obtaining a score by chance that is equal to or better 
than the observed score) to measure the significance of the predicted relationship. The P value is usually adjusted for 
multiple testing with procedures such as Bonferroni or Benjamini–Hochberg54. d | Taxon pairs with P values below the 
threshold are visualized as a network, where nodes represent taxa and edges represent the significant relationships 
between them. The edge thickness can reflect the strength of the relationship.
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data collected and processed by the Human Microbiome 
Consortium41 for a healthy cohort of 242 individuals. 
By combining several similarity measures with sparse 
regression in an ensemble approach, microbial relation-
ships have been inferred within and between body sites42. 
Cross-body-site associations mostly occurred between 
microorganisms in related body sites (for example, 
between different vaginal sites), a finding that is in agree-
ment with the discovery that body sites represent different 
microbial niches43. Alternative community configurations 
that are known for different stages of dental plaque forma-
tion44 and that are also described for the gut and vagina36,45 
were indirectly captured as strong mutual exclusions. 
Furthermore, the comparison of phylogenetic and func-
tional similarity of associated microorganisms showed 
that closely related pairs co-occurred in related habitats (in 
agreement with REF. 22), whereas exclusive relationships  
tended to occur in more distantly related pairs.

Pitfalls in microbial network inference
Network inference is a versatile tool for predicting rela-
tionships that has several advantages. It is generic (that 
is, networks can be built for genes, pathways and spe-
cies), it can integrate different data types (such as species 
abundances and environmental traits), it can accommo-
date hierarchical data (that is, when controlling for par-
ent–child relationships, networks can be built for several 
taxonomic ranks simultaneously, allowing detection 
of relationships that occur between higher taxonomic 
units), and it can identify community properties that are 
encoded in the network structure (such as niches, hub 
species and alternative communities).

However, network inference from microbial abun-
dance data faces multiple pitfalls that are often ignored 
but that can seriously affect the end results, such as 
normalization, similarity measure biases, the choice 
of appropriate null models and multiple testing issues. 
Furthermore, interpretation of such networks is not 
straightforward, and conclusions should be drawn with 
great care.

Pitfalls in network construction. In the ideal case, sam-
ples of equal volume are collected, and all microorgan-
isms therein are counted and analysed with standardized 
and uniform procedures. For count data thus obtained, 
no bias is introduced, and consequently no normaliza-
tion is required. In most cases, however, a whole process-
ing pipeline leads from the samples to the abundance 
data, and this can introduce biases at each step along 
the line6,46–48. One important effect of current sampling 
and sample characterization pipelines is that unequal  

Figure 3 | Examples for the prediction of pairwise versus complex relationships.  
Pairwise (a) and complex relationships (b) were inferred from a global microbial 
operational taxonomic unit (OTU) presence–absence data set22. a | Each node represents 
an OTU, and each edge represents a significant pairwise association between them. 
Significant relationships were detected with the hypergeometric distribution (the 
P values of which were adjusted for multiple testing). The edge thickness increases with 
significance. b | This network summarizes association rules mined with the a priori 
algorithm21,109 and filtered with the multiple testing correction suggested in REF. 110. The 
text box provides an example for such a rule. As the data set is extremely sparse, rules are 
restricted to positive associations involving up to three OTUs. Each node in network b 
represents an OTU, whereas each edge corresponds to a rule. In contrast to network a,  
an edge can connect three OTUs if they are all involved in the same rule. For ease of 
interpretation, the same OTU (with the same node fill and border colour) may occur 
multiple times in network b.

◀

Box 2 | Studying the dynamics of microbial communities with generalized Lotka–Volterra equations

The generalized Lotka–Volterra (gLV) equations (see the figure) are an example of a dynamic model of a microbial 
community. As an input, they require the growth rates and interaction strengths of the different community members, 
which can either be obtained experimentally or can be estimated from time series data using network inference 
techniques. The equations in this simplified form have drawbacks — for example, they do not account for random 
processes and miss an upper bound for total species abundances — but they are a good starting point for more 
sophisticated community models. After a model has been defined and its parameters have been determined, it can be 
used to study community stability and to carry out simulations to predict community behaviour in altered conditions. 
t, time; t

sim
, represents taxon units simulated after 1–6 time units. The top panel in the ‘Analysis’ part of the figure is 

adapted, with permission, from REF. 73 © (1973) Annual Reviews.
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amounts of abundance-yielding material are obtained per 
sample (for example, the amount of DNA extracted, the 
amount sequenced and the percentage of high-quality 
reads). For this reason, measurements are usually con-
verted into relative abundances through normalization 
or downsampling. However, computing correlations 
between the components of compositions (such as the 
relative abundances of taxa across samples) can strongly 
distort results — an effect that is known as compositional-
ity bias49 — yielding artefactual correlations. For example, 
artefactual correlations may occur between non-corre-
lated, low-abundance community members in the pres-
ence of highly abundant members. To assess similarity 
in compositional data, the choice of distance metric can 
help; Aitchison49 suggested log-ratio-based measures, 
but these necessitate the treatment of zeros to avoid 
negative infinities. Alternatively, dedicated normalization 
strategies can mitigate this effect as well42.

Another feature of microbial abundance data is the 
presence of a large percentage of zeros (that is, there is no 
observation) in the abundance matrix. This is problem-
atic because of their ambiguous interpretation: a zero in 
a data set obtained from 16S or metagenomic sequenc-
ing can either mean that the taxon is indeed absent from  
the sample or, more likely, that its abundance is below the 
detection level. This data sparsity problem is most prom-
inent for microorganisms in the ‘rare biosphere’50, which 
often have to be excluded from the analysis altogether 
because they are absent in too many samples. Besides 
data reduction, some of these problems can be alleviated 
by using the right distance measure.

When choosing a measure, several criteria have to be 
taken into account, such as its robustness to noise and to 
outliers, the assumption it makes about the relationship 
between the two taxa being compared (for example, a 
Pearson correlation assumes it to be linear) and its sen-
sitivity to data sparsity and compositionality issues. For 
instance, the Bray–Curtis dissimilarity does not take into 
account matching zeros in abundance profiles (as do cor-
relation measures) and is robust to the compositionality 

bias, but from our experience it can miss genuine rela-
tionships that would be captured by other measures. 
In this context, a recently published measure based on 
mutual information might be worth exploring51. FIGURE 4 
shows that the choice of the measure has a large impact 
on the resulting network. An extensive comparison of 
various measures, as was recently done for the com-
parison of microbial community composition52, is still  
lacking in the context of microbial network inference.

As explained in FIG. 2, the significance of a predicted 
association is assessed by computing a score distribution 
from random data, which in turn is generated from a 
null model (BOX 1). However, the ‘best’ randomization 
procedure for abundance data has yet to be determined; 
for instance, Gotelli53 lists no less than nine ways of data 
shuffling, each of which preserves a different combina-
tion of data properties. Thus, to select a suitable null 
model, it is necessary to know which data properties 
have to be preserved and which can be relaxed, a choice 
that ultimately depends on the sampling strategy and the 
ecosystem (or ecosystems) that are under study. Because 
the null model determines the threshold, its choice has a 
huge impact on the result and therefore has to be made 
with care.

The more taxon pairs that are compared for signifi-
cant (anti)correlation, the more likely it is that some 
will be significant by chance alone. Multiple testing 
correction is therefore an essential feature of every net-
work inference method. Usually, P values are adjusted 
using the Benjamini–Hochberg procedure54 (for exam-
ple, REFS 22,38,39), which controls the expected pro-
portion of wrongly rejected null hypotheses (that is, 
the number of false-positive associations).

The multiple testing problem is even more pro-
nounced in regression- and logical-rule-based approaches, 
which allow unravelling relationships between more 
than two taxa. For this reason and to avoid over-fitting 
(that is, an overly accurate fit to the data that captures 
noise rather than a relevant relationship), the number of 
independent taxa that are considered for predicting the 

Table 1 | Properties of microbial association networks and their interpretation

Network property Application to microbial networks

Node degree distribution The distribution of the number of interactions each node has in a network. In random 
networks, the node degree distribution follows a Poisson distribution111. However, for most 
biological networks, the degree distribution is better described by a power law distribution 
(‘as seen in scale-free’ networks)112. Although the node degree distributions of microbial 
networks are not always fit by a power law24, they are clearly far from being random22,24,34

Hub nodes Scale-free networks have many nodes with few links and a few highly connected nodes that 
are termed hubs. They are therefore supposed to be robust towards random node removal 
but sensitive to the removal of hub nodes113. In REF. 24, the hub nodes have been linked to 
the ecological concept of the keystone species64

Modularity Networks can be divided into clusters either manually or by using a network cluster 
algorithm (for example, REF. 114). More modular networks have a higher number of 
within-cluster edges than between-cluster edges compared to random expectation115. 
Clusters have been interpreted as niches in REFS 22,38

Average shortest path 
length (AL)

AL is calculated as the average number of steps in the shortest paths between each node 
to each other node in a network. Networks with a small AL are also known as small-world 
networks116. Microbial networks have a mostly small AL. A small AL has been interpreted to 
increase the speed of the network’s response to perturbations34
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profile of a dependent taxon needs to be restrained (for 
example, by sparse regression).

Another pitfall in network construction is the faulty 
prediction of a relationship between two species because 
both are affected by a third one (for example, a positive link 
between two microbial taxa that are prey to a third). Tests 
for conditional independence (such as partial correlation 
or data-processing inequality) are commonly applied to 
remove these indirect links (for example, REF. 55).

In addition to identifying indirect links, partial cor-
relations can predict directed edges56 (that is, asymmet-
ric relationships), which would allow distinguishing 
unidirectional ecological interactions (such as amensal-
ism and commensalism) from bidirectional ecological 

interactions (such as competition and mutualism). 
However, as the number of samples is typically smaller 
than the number of taxa in each sample (this is known as 
the ‘small n large p’ problem), classical partial correla-
tions cannot be computed (see REF. 57 for an alternative). 
The small n large p situation also affects the calculation 
of other measures, such as correlation58.

Pitfalls in network interpretation. When interpreting 
the inferred network, it is important to keep in mind 
that most network inference approaches cannot distin-
guish between true ecological interactions and other 
nonrandom processes (for example, cross-feeding ver-
sus niche overlap). To differentiate between some of 

Figure 4 | Impact of the similarity measure on the network inference result. The network inferred from the oral 
cavity subset of a human microbial data set43 illustrates the impact of the measure. The top ten positive and negative 
edges of five different measures are displayed together in a multi-graph (a). The measures rank some edges consistently 
high but disagree on others. The scatter plot (b) illustrates the nonlinear relationship between the abundances of 
Atopobium and Capnocytophaga, which was detected by a Spearman correlation but not by a Pearson correlation. When 
clustering the measures on the basis of their edge overlap using Jaccard’s index (c), two groups emerge: the first group 
spans correlations and the second group consists of the dissimilarities.
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Chaos
A type of dynamic behaviour 
that is characterized by 
irregular oscillations and a 
sensitivity to small differences 
in initial conditions, so that for 
two similar sets of start 
conditions, the system may 
behave entirely differently after 
some time has elapsed.

Stable state
A region in (multi-dimensional) 
space in which the system 
remains and to which the 
system returns after a small 
perturbation. The stable state 
may be a point (also referred 
to as stable equilibrium or 
stable steady state), a limit 
cycle (at which the system 
oscillates) or may have other 
shapes (for example, the 
strange attractors of chaotic 
systems).

these possibilities, metabolic data can be considered. 
The analysis of the metabolic activities or potential (for 
example, from (meta)genomics data or activity profiling) 
can reveal complementary pathways, indicating syntro-
phy as well as redundant specialized pathways, which can 
be a telltale sign of competition38,59. In addition, because 
taxon assignment on lower taxonomic levels is not always 
accurate, a link between two closely related taxa may be 
entirely due to mutual (that is, false) cross-assignment. 
However, a relationship between niche similarity, co-
presence and phylogenetic similarity does exist11,22. To 
disentangle ecological signals and artefacts that occur 
because of inaccurate assignment, some authors (for 
example, REFS 36,38) only consider links above a certain 
taxonomic rank (for example, above family).

After a network has been obtained, various net-
work properties (TABLE 1) can be computed with pub-
licly available network analysis tool suites (for example, 
REFS 60–62). However, it is important to keep in mind 
that network properties might not be stable under 
changing network inference parameters. Furthermore, 
the network representation simplifies the system to such 
a degree that network properties can be misleading63 if 
they are not interpreted with care. An example is the 
interpretation of hub species (that is, species that are 
associated with many other species) as keystone species, 
the removal of which has a large impact on the com-
munity structure24. This concept, which was originally 
applied to top predators64, is extended here to any species 
for which removal is assumed to alter the community 
substantially. However, the effect of the removal of a spe-
cies with few connections can be enhanced by trophic 
cascades, as in the case of top predators. Vice versa, the 
effect of a hub species deletion may be small if the links 
are mostly due to niche overlap. A dynamic model is 
therefore better suited to studying the impact of species 
removal on the system.

As the field is rather new, the choice of the similarity 
measure, the null model or the threshold is often made 
without further justification. In the absence of a bench-
mark data set, it is not clear whether one measure or 
null model is indeed superior to another. A comprehen-
sive data set of known microbial interactions is needed 
to compare alternative microbial network inference 
approaches.

Experimental discovery of species interactions
Gause’s co-culture experiments5, which demonstrated 
competition between microbial species, are today a 
standard procedure for experimentally investigating 
microbial interactions. Co-culture experiments create 
an artificial community in a controlled environment 
and thus provide ideal conditions to test ecological con-
cepts concerning community stability and dynamics that 
cannot easily be measured in macro-ecological systems. 
For instance, an important debate in population ecology 
concerned the possibility of chaos in population dynam-
ics28,65. Becks and colleagues66 could demonstrate chaotic 
behaviour in a three-species system in the chemostat. In 
this system, one species was a predator with a preference 
for one of two prey species. In the absence of the predator, 

the preferred prey species out-competed the second prey 
species, but the latter did better with increased preda-
tor abundance. The abundances of these three species, 
which were monitored over several weeks, fluctuated 
irregularly and did not reach a stable state. However, the 
system dynamics depended on the flow of the medium 
through the chemostat: at higher dilution rates, the sys-
tem reached a stable state, whereas at lower rates, regular 
oscillations followed. In another interesting co-culture 
experiment, Harcombe67 demonstrated that mutual-
ism can be evolved experimentally. He co-cultivated a 
Salmonella enterica subsp. enterica serovar Typhimurium 
strain together with an Escherichia coli strain that was 
unable to synthesize methionine. The two strains could 
not be grown together on acetate or glucose plates, but 
on lactose plates, cooperative (and costly) methionine 
excretion evolved in the S. Typhimurium strain, which 
benefited from the lactose degradation by-products that 
had been excreted by the E. coli mutant. Interestingly, 
the percentage of methionine-excreting S. Typhimurium 
bacteria was much higher in a structured environment 
(that is, the lactose plate) than in an unstructured envi-
ronment (that is, the lactose liquid), presumably because 
the exchange of metabolites was more efficient in the 
plate than in the liquid.

Despite their versatility and amenability to a multi-
tude of ecological questions, ‘classic’ co-culture experi-
ments routinely involve only a small number of species. 
Just as high-throughput meta-omics-based profiling has 
boosted the field of computational microbial network 
inference, co-culture experiments are scaling up using 
novel technologies as well. However, several hurdles have 
to be taken towards achieving this goal.

The first hurdle to overcome for any high-through-
put approach towards co-culturing is the ‘uncultivable’ 
microorganisms, which make up the majority of most 
communities. Cultivating uncultivable microorganisms 
is a question of finding the right conditions. Simulating 
their natural environment (which is called in situ cultiva-
tion) can substantially extend the portion of cultivable 
microorganisms68. Recently, high-throughput approaches 
towards in situ cultivation, such as the isolation chip69, 
have been developed.

A second challenge, especially if more than two spe-
cies are to be co-cultured, is identifying the community 
members and, ideally, quantifying their abundance dur-
ing co-culturing to improve our understanding of the 
dynamics of the interactions. From such quantitative 
data, interaction strengths could be estimated, enabling 
the development of fully fledged dynamic community 
models (BOX 2).

Valm and colleagues70 have developed a combina-
torial labelling strategy based on fluorescence, which 
allowed simultaneously identifying 15 different genera 
in a human dental plaque sample. They currently use 8 
fluorophores that can be combined pairwise to form 28 
different colours. This combinatorial generation of col-
ours makes the approach scalable: with 15 fluorophores, 
105 binary combinations and 455 ternary combinations 
can be generated, which is enough to label complex 
microbial communities differentially.
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Succession
The orderly and predictable 
manner by which communities 
change over time following the 
colonization of a new 
environment.

A third difficulty lies in the generation of a large num-
ber of artificial microbial communities that would allow 
analysing different species combinations in parallel.

This difficulty could be overcome with the micro-
droplet technology developed by Park and colleagues71. 
Using this technology, the authors could encapsulate 
mixtures of cells coming from different species in drop-
lets and pack ~1,400 droplets into a small chip. As a proof 
of concept, they simulated a case of obligate mutualism 
with two auxotrophs, which only survived when injected 
together into a droplet. Park and colleagues noted that 
their co-culture device can even quantify the strength 
of the mutualistic relationship in terms of growth rate. 
Artificial microbial communities can also be spatially 
structured. For instance, in REF. 72, two mutualistic spe-
cies are grown separately in the shell and core of fibres 
that are designed for co-culturing.

If these technological improvements in cultivation, 
labelling and parallelization are put together, a ‘co-
culture chip’ may soon be available for high-through-
put co-culturing and species-removal experiments. 
Because the number of potential interactions to test is 
still much too high for the average microbial commu-
nity, high-throughput co-culturing needs to go hand 
in hand with network inference or other approaches to 
pinpoint candidates. Vice versa, high-throughput co-
culturing could provide the benchmark data that are 
needed for the evaluation and improvement of network 
inference approaches. Network inference combined with 
co-culture experiments can deliver the growth rates and 
interaction strengths that are needed for mathematical 
simulations of the community.

Dynamic modelling of microbial interactions
Inferred networks can be considered to be static models 
of microbial communities, effectively providing a ‘snap-
shot’ of the community status at a given time. However, 
numerous phenomena (such as stability, perturbation 
and succession) can only be studied if the model describes 
how microbial populations change over time, which 
will require the use of dynamic models of microbial 
communities.

The stability and development of macro-ecological 
communities has been intensively studied with the 
aid of dynamic models28,65,73,74. The recent availabil-
ity of metagenomics time series data8,23,24,35,75 makes it 
worthwhile to consider these modelling techniques for 
microbial communities. Here, we briefly describe three 
potential key areas in which dynamic models will be able 
to provide important insights.

Community stability. Thanks to their rapid growth 
and short generation times, microorganisms lend 
themselves perfectly for studies on community stabil-
ity and response to perturbation. Mathematical models 
of microbial communities can systematically assess the 
impact of species removal in order to pinpoint keystone 
species, to identify crucial thresholds beyond which a 
perturbation will irreversibly alter or destroy the com-
munity or to study chaotic behaviour. This is particularly 
relevant in, for example, the gut microbiome, in which 

there is substantial interest in investigating the effect of 
invading species or modulating the microbiota using 
pre- and probiotics.

Alternative stable states. Recently, alternative microbial 
communities were identified in the vaginal and gut eco-
systems (that is, the enterotypes)36,45. The exact nature 
and underlying drivers of these alternative communi-
ties are of great interest. The possibility that ecosystems 
could support alternative stable states was first suggested 
by Lewontin76 and has since then been discussed and 
tested in several ecosystems (reviewed in REF. 77).

Connell and Sousa78 formulated three criteria that 
natural communities must fulfil to be considered as 
alternative stable states: each alternative state must 
be truly stable (at least until all community members 
have been replaced by their offspring); switches should 
take place only on perturbation; and alternative stable 
states must occur in the same environment. The first 
two criteria are difficult to validate in macro-ecological 
systems, but they are feasible for microbial communi-
ties. The difficulty lies with the third criterion: instead 
of representing different stable states, the communities 
could be driven by subtle differences in the environment 
that escaped detection. A telltale sign for a true multiple-
stable-state system would be if, in repeated experiments, 
the community switch only occurs after perturbation 
and in the absence of any other changes. With a dynamic 
model of the community, the number of stable states in 
the system can be computed.

Further studies will need to be carried out to assess 
whether the alternative community configurations 
in the vaginal and gut ecosystems36,45 might represent 
true alternative stable states. So far, induced enterotype 
switching has not been successful79.

Microbial succession. Microbial succession is known 
to occur in, for instance, dental plaque biofilms (which 
form in several stages44), in plankton communities that 
vary with the seasons23,24 and in the infant gut (which is 
sterile at birth8,80). Network inference can indirectly cap-
ture succession in the form of strong mutual exclusions 
but cannot distinguish between succession and other 
relationships (such as competition).

Many factors (for example, dispersal and random 
processes) shape microbial succession81. Mathematical 
models can help to study their relative importance by 
simulating the dynamics of communities with varying 
initial conditions and by comparing deterministic and 
stochastic models. Models can also investigate whether 
the end result of succession depends on the initial species 
present, their abundance and the order of settlement. For 
instance, in a data set that features microbial abundances 
in infant intestinal microbiota monitored over a year8, 
Trosvik and colleagues82 showed that the same stable-
state phylum-level abundances were reached regardless 
of initial conditions but that the initial conditions had an 
impact on the time span needed to reach the stable state. 
Finally, a special challenge for models on succession is to 
capture the impact of evolution, as microorganisms are 
known to evolve novel relationships rapidly67.
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Challenges of dynamic microbial community modelling. 
Modelling microbial communities that consist of mul-
tiple species is still in its infancy and faces numerous 
challenges. First of all, models of real-world microbial 
communities have to handle a large number of species 
(or groups of species) and also have to take into account 
that important community members (such as bacterio-
phages) might not have been monitored at all. In addi-
tion, to be realistic, models have to take into account 
random processes83 and to relax the assumption that 
interaction strengths between species are constant over 
time (because novel relationships can rapidly evolve). 
Also, the appropriate level at which to model the com-
munity has to be selected depending on the questions 
in mind (for example, at the species level versus at the 
pathway level). In some systems — for example, when 
microorganisms cooperate in biofilms — game theoretical 
modelling approaches may be worth exploring84.

The most important challenge will be to integrate 
metabolic data into dynamic models. Static metabolic 
models have been already developed using flux balance 
analysis (FBA)85,86. However, FBA assumes that the com-
munity is at a stable steady state, which is likely to be 
an unrealistic assumption87, and it requires high-quality 
metabolic reconstructions, which are hard to come 
by in a fully automated way (the most advanced auto-
mated metabolic reconstruction procedure still contains 
manual steps88). Although dynamic extensions of FBA 
have been made89, the exploration of other modelling  
techniques that require less detail may be worthwhile.

Future directions in microbial modelling
The main application of microbial community mod-
elling is the manipulation of microbial communities 
to enhance the abundances of beneficial species and 
functions and to suppress harmful ones. This consti-
tutes an ecosystem-wide extension of synthetic biology 
(to ‘synthetic ecology’): instead of engineering a single  
species, the goal is to engineer a whole community90,91 

by species removal or addition, manipulation of species 
abundances or by genetically engineering community 
members92,93.

Manipulating microbial communities is relevant 
for waste water treatment94, food production29 and for 
the prevention and treatment of diseases such as car-
ies95, inflammatory bowel disease96 and obesity97,98. For 
inflammatory bowel disease and obesity, the gut eco-
system is a prime target for modelling. However, few 
attempts have been made so far to develop models for 
the gut microbiota99. A microbial community model 
could be applied to simulate the treatment with pre- 
and probiotics, to find out whether the enterotype has 
an impact on the response to the treatment and to pre-
dict the duration that is necessary to achieve a stable 
shift towards a healthier state. A gut community model 
could be validated and refined with the new experimen-
tal systems that are being developed: for instance, with 
in vitro gut models100 or gnotobiotic mice101. However, 
realistic models that could predict the effects of pre- and 
probiotics are still a long way off, because our knowl-
edge of the interactions between the gut microbiota, 
the host and the metabolic processes in the gut is still 
incomplete.

Even if all of this knowledge were available, microbial 
community engineering would face daunting challenges. 
Microbial communities are highly complex, nonlinear, 
evolving systems that can be chaotic and therefore 
unpredictable. The long list of failed attempts to manipu-
late macro-ecological systems to control pests or invasive 
species should warn us that engineering ecosystems is a 
difficult endeavour.

However, the quick growth and short generation 
times in microbial ecosystems permit rapid and thor-
ough model testing. Thanks to technological advances 
and constant methodological innovation, a bright future 
lies ahead for microbial ecological modelling, and many 
more fundamental insights can be expected in the 
coming years.
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