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Abstract 

Cognitive mapping is a qualitative decision modeling technique developed over twenty years ago by political 
scientists, which continues to see occasional use in social science and decision-aiding applications. In this paper, I 
show how cognitive maps can be viewed in the context of more recent formalisms for qualitative decision modeling, 
and how the latter provide a firm semantic foundation that can facilitate the development of more powerful 
inference procedures as well as extensions in expressiveness for models of this sort. 

1. Introduction 

The term cognitive map as used here refers to a particular form of graphical, qualitative 
model of a decision maker’s subjective beliefs. ’ The distinguishing characteristic of these 
models is a focus on abstract causal relationships among concepts, specifically on the direc- 
tions, or signs, of causal dependence. Cognitive maps attempt to capture the qualitative 
structure of a belief system as it relates to a decision problem, by representing the directional 
relationships among component beliefs. 

Cognitive maps were introduced by political scientists in the early 1970s as a formal tool for 
the analysis of policymaking behavior [l]. The motivations for focusing on qualitative, or sign, 
relationships were twofold: 

(1) The direction of relationships is typically all that is discernible from transcripts of policy 
sessions or verbal arguments. 

(2) The social scientists’ primary interest is in capturing the structure of a decision problem 
and determining the relationship among arguments, as opposed to prescribing a policy 
alternative. 

’ An alternate, common, but completely independent usage applies to a type of model of geographical knowledge 
originally developed by Lynch [17]. 
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In the ensuing years, political scientists generated cognitive maps as part of several historical 
studies [1,2,4,16]. Advocates of the technique claimed that the models faithfully captured the 
structure of arguments and offered some insights into policy practice. Moreover, the maps were 
simple to analyze, and although constructing them from raw historical data was labor-intensive, 
the process was amenable to robust modeling methodology. Nevertheless, their use does not 
seem to be very widespread in political science today, perhaps due largely to the difficulties of 
encoding. 2 However, others continue to apply cognitive maps and similar formalisms, notably 
to analyze the belief structures of business decision makers [3,13]. 

Cognitive mapping as practiced in political science and organization theory is primarily for 
descriptive purposes. Decision consultants have also employed cognitive maps prescriptively: 
constructing maps modeling individual and group perspectives on organizational problems, and 
then using these models to facilitate communication and decision making [ll]. 3 Cognitive maps 
have also been used to support knowledge acquisition, specifically in devices for structuring the 
task of quantitative modeling performed by human decision analysts [6]. 

Cognitive maps are interesting to us in part for their potential practical relevance to social 
science and cognitive modeling. Successful application in those areas would enhance their 
utility for decision support, as it could provide a bridge to other descriptions of subjective 
beliefs and preferences. Methodologies designed to elicit cognitive maps via interviews or from 
textual records could be adapted to decision-support contexts. (But ultimately, their usefulness 
as a foundation for decision analysis does not absolutely depend on cognitive validity.) In 
addition, cognitive maps possess historical interest as a relatively early (compared to qualitative 
reasoning in AI) attempt to formalize a form of qualitative reasoning in a decision-making 
context. 

In previous work, I have developed a formalism for qualitative probabilistic reasoning with 
some significant similarities to cognitive maps. 4 I have done so with the benefit of several 
technical innovations not available to the originators of cognitive mapping. In particular, the 
advent of graphical dependency models for probabilistic reasoning [19] and of sign algebras for 
qualitative reasoning [22], both in AI, can substantially solidify the technical underpinnings of 
cognitive maps. In doing so, we can both extend the formalism and improve our understanding 
of the assumptions and implications of alternate modeling choices and analysis procedures. 

2. Cognitive maps 

Technically, cognitive maps are directed graphs with signed edges. In formal notation, a 
cognitive map M is a pair, M = (C, E), where C is a set of nodes, or concepts, and E is a set of 

* Robert Axelrod, personal communication. 
3 It is unclear to me whether this line of research on cognitive maps derives historically from the work in political 
science. Rather, Eden [lo] stresses its antecedents in Kelly’s Personal Construct Theory [14], viewing cognitive maps 
as an abstraction and structurally explicit version of the Repertory Grid. He credits Tolman [21] with originating the 
term “cognitive map”, but Tolman’s work is clearly concerned with geographical maps, not (except analogically) 
causal graphs of general belief structures. 
4 The existence of cognitive maps and their relationship to my work on qualitative probabilistic reasoning [24] was 
brought to my attention by Dennis Buede in 1991. 
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signed edges, 

E = ((c, c’, 6): c, c’ E C, there is an edge of sign 6 from c to c’}. 

The possible signs 6 are usually + and -, although sometimes there are strict and non-strict 
versions, sometimes relations of sign 0 are made explicit, and ambiguous relations of sign “?” 
are sometimes allowed. That seems to be the extent of the mathematical structure we can 
attribute to cognitive maps in general. Further restrictions, such as acyclicity, may be imposed 
in particular cases. 

The signed edges are intended to express the positivity or negativity of the causal relation 
between the connected concepts. For example, the cognitive map of Fig. 1, taken from Levi and 
Tetlock’s study of the Japanese decision to attack Pearl Harbor [16], represents the causal 
argument that remaining idle would cause attrition of Japanese strength while enhancing the 
defensive preparedness of the US, both of which decrease Japanese prospects for success in 
war. Note that the concepts’ domains are not necessarily defined precisely. For example, 
remaining idle might be a binary proposition or may denote the amount of time of idleness. 
Similarly, there are no obvious scales for measuring Japanese strength, US preparedness, or 
success in war. Nevertheless, it seems easy to grasp the intended meaning of the signed 
relationships in this model. 

The intended inferences to draw from this cognitive map are just the obvious ones. 
Remaining idle decreases the prospects for Japanese success in war along two causal paths. 
Since both paths agree, the relationship between idleness and war prospects is negative. So 
given a belief that war is inevitable, starting it sooner would be better. 

Of course, cognitive maps may be more complex than that depicted in Figure 1 (see the 
references for larger examples). 

The general definition of the derived relationship between two concepts in an acyclic 
cognitive map is simply the sum of the signs for all paths between them, where the sign of a 
path is the product of the signs of its constituent links. 5 Let Pa,h be the set of paths in M from 
a to b. Then the sign of the derived causal relation from a to b is [l]: 

where @ and 8 denote sign addition and multiplication, respectively. In other words, the 
derived relation between a and b is the sign sum of the relations along all paths, where the 
relation on a path is the sign product of the relations on its constituent edges. Although Pu,b 

5 The situation is more complicated for cognitive maps with cycles. Axelrod [I] suggest that one add the signs of all 
(simple) paths and cycles. But it is not clear which cycles are to be included when querying the relation between two 
concepts, and also appears questionable whether a negative feedback path should contribute to a negative overall 
relation. Maps with feedback may perhaps be more useful for studying issues such as stability, which is sometimes 
determined by signs alone. As we are interested primarily in derived relations, for the subsequent discussion we 
assume acyclic maps. 
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US preparedness 

Fig. 1. A simple cognitive map (from Levi and Tetlock [ 161). 

may contain an exponential number of paths, the value of (11 can be computed in time 0(/E]> 
using standard graph-labeling techniques. 

3. Semantics 

3.1. Motivation 

Although the results from path analysis of a cognitive map may seem intuitive, in order to 
judge whether such conclusions are valid we require a more precise account of the meaning of 
the primitive concepts. Computing the derived relation via (1) is a form of inference: from the 
signs of certain links and the absence of others we conclude the derived sign of an arbitrary 
concept pair. In applying path analysis or any other inference procedure to cognitive maps, we 
would like some assurance that it is sound, and perhaps would be interested to know whether it 
is complete. 

But is not the soundness of path tracing obvious? Obviousness is in the mind of the intuiter, 
of course, but some subtle problems arise for some seemingly reasonable interpretations of 
concepts and signed relations. For example, if the signs denote positive or negative correlation 
and the concepts random variables, then path tracing is not sound. If x is positively correlated 
with y, and y positively correlated with z, it is still quite possible that x and z be negatively 
correlated, even if they are conditionally independent given y. Thus, correlation is evidently 
not a good interpretation for the sign of relationships. 

The case for a firm semantics is even stronger when we consider more complicated forms of 
inference. For example, we might be interested in deriving evidential relations among the 
concepts, that is, those going against the causal direction of the cognitive map. For example, 
historians might ask whether, according to the model of Fig. 1, the fact that the Japanese lost 
the war is evidence that they waited too long. Or perhaps we are interested in determining 
relations among effects of the same cause (Japanese attrition and US preparedness), or causes 
of the same effect (attrition and preparedness again). This latter form of relation is called 
intercausal and is an important component of diagnosis and explanation, which I return to 
below. And in any of these cases, we might want to conditional&e our conclusion on partial 
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information about the concepts, assuming that the values of some of them may have been 
observed or otherwise revealed. 

Finally, a precise description of the meaning of these basic qualitative relations is indispens- 
able if we wish to extend the formalism to include new qualitative relations. In order to 
augment cognitive maps to incorporate higher-order relations, functional dependencies, some 
numeric or algebraic information, or any other type of constraint, we need to understand how 
the new relation type complements, subsumes, or otherwise interacts with the basic sign 
relations. 

3.2. Abstract causal relations 

What form should a semantics for cognitive maps take? To serve the objectives described 
above, our semantics should provide a definition for abstract causal (sign) relations so that we 
can determine the validity of inference rules such as (1). The definition should be local as far as 
possible, so that in assessing the validity of a signed edge (c, c’, 61, we can limit our attention to 
a neighborhood of concepts c and c’. It should be unambiguously determined by the precise 
causal relation among the concepts, so that the sign relation is an abstraction of the precise 
relation. If the precise relation is a functional dependency, the sign would be an abstraction of 
the function relating the concepts. If the causal relation is probabilistic, the sign would be an 
abstraction of the probabilistic dependence, defined in terms of conditional probability. Since 
the probabilistic case is more general (and many of the uses of cognitive maps involve causal 
relations with considerable uncertainty), we focus on a semantics of abstract probabilistic 
dependencies. 6 

4. Qualitative probabilistic networks 

In previous work, I have developed a formalism, called qualitative probabilistic networks 
(QPNs), which shares some significant features with cognitive maps. QPNs have been described 
in detail elsewhere [24]; this paper mentions only some of the salient aspects. Like cognitive 
maps, QPNs are signed directed acyclic 7 graphs, with nodes denoting concepts and signed 
edges denoting abstract causal relations. 

Concepts are interpreted as random variables, although the variables’ domains need not be 
explicitly specified. 8 In this respect QPNs resemble cognitive maps, where we can express 
concepts such as “Japanese attrition” without identifying a measurement scale. In some 
descriptions of cognitive maps (e.g., Eden [lo]>, variables are defined in terms of their 
endpoints, or “poles”; semantically, however, what matters is the relative ordering among 
values, not whether they are at the extremes. 

6 For details on how to take advantage of the stronger constraints inherent in qualitative functional dependencies, 
when applicable, see [2.5]. 
’ As mentioned above, cognitive maps as originally defined need not be acyclic, but the path analysis techniques are 
uncontroversially applicable only in the acyclic case. 
’ This is a fine point: the semantic interpretation refers to values in the domain of the variable, but uses of QPNs 
need not specify the values. 
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Edges in a QPN denote the sign of probabilistic dependence. Specifically, an edge (c, c’, +) 
in a QPN G means that, for all values cr > c2 of c, cb of c’, and all assignments x to other 
predecessors of c’ in G, 

Pr(c’ 2 cb I cIx) 2 Pr(c’ 2 cb I c2x). (2) 
An edge (c, c’, -) is defined analogously, with I substituted for the central inequality in (2). 
If there is no edge from c to c’ (or, equivalently, an edge of sign 01, and no path from c’ to c 
(otherwise, Cc, c’, S> would create a cycle), then the left- and right-hand sides of (2) are equal. 
If none of these cases hold, and there is no path from c’ to c, then there is an ambiguous edge 
Cc, c’, ?>. 

Note that when (2) holds with equality (the edge has sign 0, or is absent), then c and c’ are 
conditionally independent given the predecessors of c’. The independence properties of QPNs 
are identical to those of numeric probabilistic dependency networks [19], so all results and 
algorithms based on graph structure alone carry over. 

There are two compelling reasons to adopt this definition for signed edges in cognitive maps 
as well. First, inference via path analysis - formula (1) - is valid under this definition, as long 
as a and b have no common ancestors. 9 Second, among a broad class of potential definitions 
(those based on relative conditional probabilities of the effect, given various possibilities for the 
cause; see [24] for details), this is the only one for which path analysis is valid. We have already 
noted above that a definition based on correlation, for example, would not suffice. Since path 
analysis seems a minimal requirement for an intuitive, nontrivial inference mechanism, the case 
for this particular semantic account is quite strong. 

5. Non-causal paths 

The path analysis formula (1) applies only to directed paths from a to b. This corresponds to 
pure causal inference, the situation depicted in Fig. 2(a). However, in a cognitive map, there 
may be many undirected pathways among a pair of variables, only some of which are purely 
causal paths. With the probabilistic definition above, we can consider the implications of 
non-causal pathways on the results of path analysis. We can also address the issue of 
instantiated evidence, that is, situations where the values of one or more variables have been 
observed. 

For instance, if a variable on a causal pathway has been observed, it has the effect of 
blocking that path. If e is observed evidence, then in asking for the derived causal relation of a 
on b given e, we should ignore (remove from Pa,J any paths that - like that depicted in Fig. 
2(b) - traverse e. This follows from the conditional independence properties of probabilistic 
networks. 

9 The original path analysis definition ignores the possibility of common ancestors, which does not seem justifiable. 
For a proof of the validity of the basic chaining operation, see [24]. If a and b have no common ancestors, repeated 
application of this operation is sufficient. 
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(a) @- ... -@ 

(b) @__+ ... __+@_+ . . . _+@ 

(d) @- . . . ++-w a.. + 

(e) 

Fig. 2. Patterns of inference from a to b: (a) pure causal inference, (b) causal pathway blocked by evidence, e, (c) 
evidential inference, (d) effects with a common causal ancestor, z (e) causes with a common effect, y. 

Next, let us consider inference on pathways that cut against the causal grain. Inference from 
effect to cause is called evidential reasoning, and is common in diagnosis and other reasoning 
tasks. It is easy to show by applying Bayes’s rule to (2) that the sign of probabilistic dependence 
from c’ to c is the same as that from c to c’, and hence when b is a causal ancestor of a (as in 
Fig. 2(c)), the same formula for path analysis applies (note that the exclusion of cycles implies 
that we need only perform path analysis one way or the other). 

In the case (Fig. 2(d)) where a and b have a common ancestor, z, there exists an evidential 
path from a to z, as well as causal path from z to b. By the previous argument, the evidential 
path can be treated just like the causal path, with the sign from a to z behaving as if the path 
were in the reverse direction. This can then be combined with the causal path from z to b, 
yielding a total derived relation along this mixed path from a to .z to b equal to the sign 
multiplication of all its edges. As Druzdzel and Henrion have recently shown [7,8], the signs 
along all paths can be considered independently, and thus we can simply include mixed paths 
consisting of an evidential followed by a causal subpath in the set Pa,b of formula (1). 

Finally, we must consider the case (Fig. 2(e)) where an undirected pathway between a and b 
includes a concept y with both edges leading in. For example, a and b might have a common 
descendant. These pathways can be ignored, unless y or one of its descendants has been 
observed. In that case, the parents of y are related by an intercausal relation. This means that 
given y, knowing whether one of y’s potential causes obtained gives us information about the 
other potential cause. The sign of the intercausal relation cannot be determined by the abstract 
causal relations in basic cognitive maps, however. 
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Quality control 

+ 
Production efficiency 

3 

? 

Product reliability + 

Fig. 3. A cognitive map fragment (from Narayanan and Fahey [ES]) with intercausal interactions. 

6. Intercausal reasoning 

In comparison with causal and evidential inference, intercausal reasoning has received 
relatively little attention. Nevertheless, formation of derived relations among causes of ob- 
served effects is ubiquitous in diagnosis, argumentation, and explanation. By examining the 
semantics of joint causal relations, we can determine conditions under which such inferences 
are warranted. 

6.1. Qualitative synergy 

The relation between two causes given their common effect depends on how they interact in 
producing the effect. If two causes are competing, then establishing one would tend to decrease 
belief in the other. This phenomenon is called explaining away [19]. If they are complementary, 
then the opposite phenomenon would obtain. For example, in the fragment of Fig. 3, quality 
control and product reliability are two causal influences on production efficiency. Instituting a 
quality control regime and improving the design of the product are two ways of improving 
efficiency, so if we observe that a company has increased productivity, we might hypothesize 
that they have taken one or both of these measures. But once we find out for certain that they 
have taken one of them (say quality control), this would tend to decrease our degree of belief in 
the hypothesis that they have taken the other (product redesign), since the former is sufficient 
to “explain away” the observation. However, it is also plausible that these measures are highly 
complementary, for example if the product redesign is geared specifically to facilitate quality 
control. In that case, an increase in belief in one hypothesis would tend to reinforce the other. 

A precise probabilistic condition distinguishing these cases, called product synergy, has a 
form similar to that of our basic abstract causal relation (2): 

Definition 1 (product synergy [26]). Let c and c’ be predecessors of y, and let x denote an 
assignment to y’s other predecessors, if any. Variables c and c’ exhibit negative product synergy 
with respect to a particular value yO of y, if, for all c1 > c2, c; > CL, and x, 

Pr( y = yO I c,c;x)Pr( y = yO I c&x) G Pr( y = y. I c,c’,x)Pr( y = y. I &x). (3) 

Positive and zero product synergy are defined analogously. The sign of product synergy 
corresponds directly to the sign of the intercausal relation of c on c’ given an observation yo. 

We can extend cognitive maps to perform intercausal inference as well as the causal and 
evidential sort by augmenting the causal relations to include product synergy. Then, the path 
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analysis procedure can be extended to account for pathways with instantiated evidence, that is, 
the situation of Fig. 2(e) where y or some descendant of y denotes observed evidence. Efficient 
algorithms based on propagation of signs along the graph have been described by Druzdzel and 
Henrion [S]. For the general case where there may be undirected loops in the graph (or we wish 
to average over unobserved causal variables not participating in the intercausal pathway), we 
need to strengthen (3) to hold with respect to any probability distribution over x [9]. 

6.2. Qualitative explanation 

One prominent application of cognitive maps was to the study of political argumentation [2]. 
If the cognitive map represents the belief structure of a political agent, then we should be able 
to apply typical operations on arguments to the map structure. For example, a common tactic in 
argument is to posit facts or pose hypotheticals, examining the implications derived from the 
belief structure conditional on the posited fact or hypothetical. This is a form of explanation 
problem: given some evidence, describe how the belief structure would explain the evidence 
and what further conclusions would be drawn. 

Intercausal inference plays a significant role in qualitative explanation [12]. In describing 
how beliefs would be modified by evidence, one needs to establish whether arguments compete 
and explain away each other, or whether they are complementary and support each other. 

7. Decision making 

In most of the cognitive maps developed by political scientists, causal paths begin with policy 
variables, and end with variables representing some stakeholders’ utility. Thus, overall argu- 
ments are of the form, “this policy option will be beneficial (deleterious) to that group”. 
Presumably, the map endorses an option if it can be shown to qualitatively increase the utility 
of all the groups of interest. The power to prescribe decisions can also be justified by an appeal 
to qualitative probabilistic networks. 

In QPNs (as in influence diagrams [20]), we distinguish decision variables under the agent’s 
direct control, and designate one variable as the value node denoting the objective. Edges into 
the value node describe the qualitative functional relation of the antecedent concept on utility. 
Derived relations on utility can be computed using the same path analysis routines that apply to 
random variables. As expected, if the policy variable has an unambiguous sign with respect to 
utility, then the recommended policy option is determined. 

In addition, we can often derive policy implications even when the absolute relations of 
policy variables to utility are ambiguous. To do so, we require another qualitative synergy 
concept describing the interactions among causal variables on other random variables or on 
utility. 

Definition 2 (additive synergy [24]). Let c and c’ be predecessors of y, and let x denote an 
assignment to y’s other predecessors, if any. Variables c and c’ exhibit positive product synergy 
with respect to y, if, for all cl > c2, c’, > CL, y,, and x, 

Pr(y~y,Ic,c’,x)+Pr(y~y,Ic,c;x)~Pr(y~y,Ic,c;x)+Pr(y~y,Ic,c;x). (4) 
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Note that, in contrast to product synergy, additive synergy is defined with respect to a 
variable y, not a specific value. The definitions of negative and zero additive synergy are 
analogous. 

If a decision variable d and an observed variable e have a positive synergy on utility, then the 
optimal policy for d must be monotonically increasing in e. Synergy on random variables can 
also be propagated through qualitative influences to reveal indirect synergy relations (and 
thereby monotone policy constraints) holding in a complex network. For examples and details, 
see [23,24]. 

8. Other forms of map analysis 

Several forms of analysis that have been applied to cognitive maps are not supported or even 
addressed by the probabilistic semantics presented here. For example, several of the studies of 
cognitive maps of policymakers and business managers draw conclusions based on measures of 
the complexity of the map structure [16,18] or on its change in structure over time [3,18]. For 
the most part, these complexity and change measures are simply derived from the size of the 
graph (nodes and links) or number of common components, and do not make any use of the 
sign relations or more complex argument structure. The validity of such measures with respect 
to the hypotheses being investigated requires some further assumptions about the meaning of 
the cognitive maps, but this would seem to go beyond the semantics of individual causal 
relations. 

9. Related work 

There has been no previous notice, to my knowledge, of cognitive maps by the AI qualitative 
reasoning community. The only work I am aware of in the uncertain reasoning community 
directly addressing cognitive maps are some fuzzy extensions [l&27]. However, fuzzy cognitive 
maps are not really qualitative models at all, but rather quantitative models based on particular 
techniques for associating numbers or intervals with edges on directed graphs. Like cognitive 
maps, the quantities combine by propagation along paths, but there is no other connection to 
the original spirit of cognitive maps. Their interpretation of a sign relation is a fuzzy interval, 
but this has no semantic account in terms of beliefs or other fundamental relation. 

There are other modeling formalisms that resemble cognitive maps in associating signs with 
edges in a directed graph (for example, some qualitative econometric models). Where the 
graphs are acyclic and the nodes can be considered random variables, the QPN definitions 
provide a suitable semantics - and the inference algorithms a computational mechanism - 
for these formalisms as well. 

10. Conclusion 

Cognitive maps were originally designed to capture the intuitive, qualitative, causal relation- 
ships thought to represent the structure of a political decision problem. Some simple inference 
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mechanisms - based on path analysis from cause to effect - were proposed to draw 
conclusions about the consequences of a cognitive map. By defining a precise semantic 
interpretation of qualitative causality in terms of abstracted probabilistic relationships, we can 
justify these inference mechanisms as well as extend them to address evidential and intercausal 
inference patterns. Using transformation-based or propagation-based inference procedures, we 
can derive relations among arbitrarily connected concepts. 

In extending our inference to the realm of intercausal reasoning and decision making, we 
find it necessary and useful to introduce new, higher-order qualitative synergy relations. The 
new relations correspond to intuitive interaction concepts (competition or complementarily), 
are robust under natural inference operations (e.g., chaining), and justify useful qualitative 
conclusions about patterns of reasoning (e.g., explaining away> or optimal decisions (e.g., 
monotone policies). Undoubtedly there are other critical qualitative distinctions waiting to be 
identified, enriching our representations and extending the scope and power of our qualitative 
modeling techniques. 
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