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Abstract. In algorithms for processing diffusion tensor images, two
common ingredients are interpolating tensors, and measuring the dis-
tance between them. We propose a new class of interpolation paths
for tensors, termed geodesic-loxodromes, which explicitly preserve clin-
ically important tensor attributes, such as mean diffusivity or fractional
anisotropy, while using basic differential geometry to interpolate tensor
orientation. This contrasts with previous Riemannian and Log-Euclidean
methods that preserve the determinant. Path integrals of tangents of
geodesic-loxodromes generate novel measures of over-all difference be-
tween two tensors, and of difference in shape and in orientation.

1 Introduction

Diffusion tensor imaging (DTI) can uniquely discern the directional microstruc-
ture of living tissue [1]. Certain mathematical attributes of diffusion tensors have
established clinical value. The tensor trace is three times the bulk mean diffu-
sivity (often referred to as apparent diffusion coefficient or ADC), and is used
for rapid detection of ischemic stroke [2], and for detecting edema around brain
lesions [3]. Fractional anisotropy (FA) indicates the directional dependence of dif-
fusion, and is currently the mainstay of DTI applications, because FA changes
are associated with many neurological or psychiatric conditions [4–6].

Recent work has created a sophisticated mathematical context for diffusion
tensors, considered as elements of a Riemannian manifold with a particular
affine-invariant metric, derived from statistical or information-theoretic consid-
erations [7–10]. The Log-Euclidean approach is a computationally efficient close
approximation [11]. These methods are rigorous in that they explicitly respect
the positive-definiteness of diffusivity. A consequence is that the determinant
det(D) is given especial importance, since its level-set det(D) = 0 delimits the
region of positive-definite tensors. Riemannian and Log-Euclidean tensor inter-
polation guarantee monotonic interpolation of the determinant.

We present a novel tensor interpolant, the geodesic-loxodrome, designed around
clinically significant tensor properties. In navigation, loxodromes are paths of
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constant bearing. We generalize this to monotonically interpolate three tensor
shape parameters, including tensor size and anisotropy. Geodesic-loxodromes
are by definition the shortest path with the loxodrome properties, so they form
geodesics on the manifold of tensors with fixed shape. In essence, geodesic-
loxodromes are minimal-length paths between tensors that monotonically in-
terpolate tensor shape. By computing tangents to geodesic-loxodromes and pro-
jecting out different components of the tangent, we create novel shape-specific
and orientation-specific measures of the large-scale difference between tensors.

For these tasks, we have found it advantageous to treat diffusion tensors as
elements of a vector space. Linear transforms on R

n constitute a vector space
isomorphic to R

n×n [12]. Though often viewed as a covariance matrix, a diffusion
tensor D is also a linear transform on R

3 with the essential physical property of
mapping (by Fick’s first law) concentration gradient vector ∇c to diffusive flux
vector j = −D∇c [1]. The set of positive-definite tensors is not a vector space (it
is not closed under subtraction), but if one seeks merely to describe properties
of given tensors, or to interpolate tensors in a convex manner, then the methods
need not be explicitly designed around the positive-definiteness constraint.

2 Theoretical Background

Loxodromes are paths of constant bearing, or paths main-
taining a fixed angle with north [13]. Stated another way,
let p(θ, φ) = (r cos(θ) sin(φ), r sin(θ) sin(φ), r cos(φ)) be a
parameterization of a radius-r globe in R

3 with p(0, 0) at
the north pole. Then n(x) = − ∂p/∂φ|p−1(x) is a tangent

to the sphere, pointing north. Let n̂(x) = n(x)/|n(x)|.
Then, a loxodrome with unit speed and bearing cos−1(α)
is traced by a path γ(t) on the globe for which:

|γ′(t)| = 1 and γ′(t) · n̂(γ(t)) = α for all t. (1)

The path tangent γ′(t) is also tangent to the sphere, and its constant inner
product with n̂ implies that γ(t) moves northward (or southward) at a constant
rate. Our geodesic-loxodromes similarly move along certain tensor shape param-
eters at a constant rate, thereby monotonically interpolating tensor shape. We
now review the mathematics needed to define geodesic-loxodromes, including
the theoretical distinction between tensor shape and orientation.

Notation. The six-dimensional vector space of second-order symmetric tensors
is notated Sym3. Tensor contraction A:B = tr(ABT) is an inner product on
Sym3, and the norm is |D| =

√
D:D. The tensor A can be decomposed into

isotropic and deviatoric parts, defined by A = tr(A)I/3 and Ã = A − A,
respectively. I is the identity tensor. SO3 is the group of rotations on R

3. The
group action ψ : SO3 × Sym3 7→ Sym3, ψ(R,D) = RDRT defines a mapping on
Sym3 for each rotation R in SO3. The orbit of D is SO3(D) = {RDRT|R ∈
SO3}; informally it is all possible rotations of D. The orbits of ψ partition Sym3

into equivalence classes because SO3 is a group. We can then say that tensors



A and B have the same shape if they are on the same orbit SO3(A) = SO3(B),
which is equivalent to saying they have the same three eigenvalues. A tensor

invariant J : Sym3 7→ R can be defined as a scalar-valued function of tensors
that is constant on orbits: SO3(D0) = SO3(D1) ⇒ J(D0) = J(D1). Trace tr()
and determinant det() are invariants, as are the tensor eigenvalues.

Just as scalar-valued functions over the vector space R
3 have gradients with

values in R
3, tensor invariants have gradients with values in Sym3

?. Adapting the
∇ notation from vector calculus, we use ∇J(D) to represent the tensor-valued
gradient of invariant J , evaluated at tensor D. ∇J “points” in the direction
along which J increases fastest. Deriving expressions for gradients of standard
invariants is in continuum mechanics texts [14], for example ∇tr(D) = I and
∇ det(D) = det(D)D−1. Any invariant J is constant on orbits of ψ, thus ∇J(D)
is orthogonal at D to the orbit SO3(D). We can then say that near D, ∇J(D)
spans one degree of freedom in tensor shape. For tensors in Sym3, shape has
three degrees of freedom (because the three eigenvalues are independent), and
we intend to define at each tensor D an orthonormal basis for shape variation.

Orthogonal Invariants. We build upon work by Ennis and Kindlmann that
advocates sets of orthogonal invariants for DTI analysis [15]. Invariants J1 and
J2 are said to be orthogonal if ∇J1(D) : ∇J2(D) = 0 for all D. We adopt the
same two sets of orthogonal invariants {Ki} and {Ri} as in [15], because they
contain trace and FA, which we intend to preserve in our method:

K1(D) = tr(D)

K2(D) = |D̃|
K3(D) = mode(D)

R1(D) = |D|
R2(D) = FA(D) =

√
3 eD:eD
2D:D

R3(D) = K3(D) = mode(D)

(2)

where mode(D) = 3
√

6 det(D̃/|D̃|). Both sets include measures of size (either
trace K1 or norm R1) and of anisotropy (either eigenvalue standard deviation
K2 or fractional anisotropy R2), and both use mode (K3 = R3) to distinguish
linear (mode = +1) from planar (mode = −1) anisotropy. Trace (K1) and FA
(R2) are not orthogonal, and so are in different invariant sets [15]. The deter-
minant is another measure of size, but we are unaware of two complementary
invariants that, with determinant, constitute an orthogonal invariant set. We
restate from [15] the formulae for the tensor-valued gradients of Ki and Ri:

∇K1(D) = I

∇K2(D) = Θ(D) = D̃/|D̃|
∇K3(D) = 3

√
6Θ(D)2−3K3(D)Θ(D)−

√
6I

K2(D)

∇R1(D) = D/|D|
∇R2(D) =

√
3
2

(
Θ(D)
|D| −

|eD|D
|D|3

)

∇R3(D) = ∇K3(D) .

(3)

We notate the normalized gradient of invariant J as ∇̂J(D) = ∇J(D)/|∇J(D)|.
Thus, at each tensor D, {∇̂Ki(D)} and {∇̂Ri(D)} form orthonormal bases for
local shape variation: nearby tensors along those directions differ only in shape,
not orientation, from D. Note that tensor diagonalization is not required to
compute either the invariants or their gradients.

? We omit the distinction between covariant and contravariant vectors as we use only
orthonormal bases, whose orthonormality is preserved by our group action ψ [14].



3 Methods

Interpolation. We define the geodesic-loxodrome γ(t) between A and B in
Sym3 as the shortest path satisfying (compare to Equation 1):

γ(0) = A, γ(l) = B, |γ′(t)| = 1, and

γ
′(t) :∇̂Ji(γ(t)) = αi for all t ∈ [0, l], i ∈ {1, 2, 3} (4)

where l and αi are constants that characterize the path, and either Ji = Ki or
Ji = Ri. By using normalized invariant gradients (∇̂Ji instead of ∇Ji), γ(t)
depends on the tensor shape degree of freedom parameterized by Ji, but not on
the parameterization rate |∇Ji|, which in general is not constant. γ(t) linearly

interpolates invariants with constant-magnitude gradients (trace K1, K2, and
norm R1); other invariants are merely monotonically interpolated:

d

dt
Ji(γ(t)) = γ

′(t) :∇Ji(γ(t)) = γ
′(t) :∇̂Ji(γ(t))|∇Ji(γ(t))| = αi|∇Ji(γ(t))|.

αi is constant and |∇Ji(γ(t))| ≥ 0, thus d

dt
Ji(γ(t)) has fixed sign, and Ji(γ(t))

is monotonic. In particular, if Ji(A) = Ji(B) for some i, Ji(γ(t)) is constant,
and γ(t) lies in a level-set Li of Ji. If Ji(A) = Ji(B) for all i = 1, 2, 3, then
γ(t) lies within the intersection ∩iLi. However, ∩iLi is exactly the orbit O =
SO3(A) = SO3(B) of ψ, because the three Ji determine the λi, and tensors with
equal eigenvalues are on the same orbit. As γ(t) is by definition the shortest
such path in O, by the Hopf-Rinow-de Rham theorem it is a geodesic on O [16].
Space does not permit a proof, but conditions for the theorem are met because
O is a closed subset of a complete metric space. We also note without proof that
geodesics on O are not simply images under ψ of geodesics on SO3, because the
extrinsic curvatures of orbits are non-uniformly scaled by eigenvalue differences.

Distance Measurement. A distance d(A,B) between A and B can be
defined in terms of the geodesic-loxodrome γ(t) connecting them: d(A,B) =∫

l

0
|γ′(t)|dt = l. However, the normalized invariant gradients ∇̂Ji can also de-

compose the path tangent γ
′(t) into mutually orthogonal shape σ(t) and orienta-

tion ω(t) tangents. From these we define shape dsh and orientation dor distances,
which measure large-scale differences specifically in shape and orientation:

σ(t) =
∑

i
γ
′(t) :∇̂Ji(γ(t))∇̂Ji(γ(t)) → dsh(A,B) =

∫
l

0
|σ(t)|dt

ω(t) = γ
′(t)− σ(t) → dor (A,B) =

∫
l

0
|ω(t)|dt

(5)

Implementation. Our initial investigation of geodesic-loxodromes has focused
on their theoretical definition and properties, rather than on a fast numerical
solution. We describe here a brute-force gradient-descent scheme for updating
vertices of a discretized polyline through Sym3 (initialized with linear interpo-
lation) so that it converges to the geodesic-loxodrome. For any vertex Dn, let
D− = (Dn + Dn−1)/2 and D+ = (Dn+1 + Dn)/2 be the (linearly) interpolated
tensor values at the edge midpoints around Dn, and let T− = Dn −Dn−1 and
T+ = Dn+1 −Dn be the (non-normalized) tangents into, and away from, Dn.



Then, ri(Dn) = T+ :∇̂Ji(D
+)−T− :∇̂Ji(D

−) is the change in the projec-

tion of the path tangent onto ∇̂Ji, which is zero on a loxodrome, and κ(Dn) =
|T+ −T−| is approximately proportional to the curvature at Dn, which is min-
imized on a minimal-length path. Gradient descent on r2

i
and κ2 leads to the

update rule Dn ← Dn+δ(
∑

i
ri(Dn)∇̂Ji(Dn)+U−∑

i
(U:∇̂Ji(Dn))∇̂Ji(Dn)),

where U = Dn−1 − 2Dn + Dn+1, and δ is the time increment. Note that the
curve-shortening curvature flow along U is only allowed to act along the sub-
space (of orientation change) orthogonal to the ∇̂Ji(Dn). After all vertices have
been so updated, vertices are moved along the polyline to enforce equi-distant
spacing (constant-rate parameterization). Results here use a 100-point polyline
with δ = 0.1, converging sufficiently in about one second on a modern PC. Dis-
tances (Eq. 5) are computed by summing (over the polyline) the lengths of the

segments (for d(A,B)), or their projections onto the span of the local ∇̂Ji (for
dsh(A,B)), or the complements of these projections (for dor (A,B)).

4 Results

We demonstrate geodesic-loxodromes with glyphs and with plots of invariants
along interpolation paths. Tensors are shown as superquadric glyphs [17]. For
qualitative comparisons, the invariant plots (on the right side of the figures) are
individually scaled (mode K3 is also shifted). Figure 1 interpolates two linearly
anisotropic tensors of different size and orientation. By their definitions, the first
three methods monotonically interpolate one invariant: the tensor trace (K1)
with linear interpolation (Fig. 1(a)), and the tensor determinant with Rieman-
nian [7–10] (Fig. 1(b)) and Log-Euclidean [11] (Fig. 1(c)) interpolation. By mono-
tonically interpolating three orthogonal invariants, however, geodesic-loxodromes
fully control tensor shape. In particular, the cylindrical shape is maintained in
Fig. 1(d) by fixing the anisotropy type (tensor mode K3).

Figure 2 interpolates two tensors with equal size (as measured by norm R1 =
|D|), but unequal FA (R2), mode (R3), and orientation. As in Fig. 1, Riemannian
results were very similar to Log-Euclidean, and so are not shown. Log-Euclidean
interpolation (Fig. 2(a)) does not monotonically interpolate norm (R1) or FA
(R2), and the wide range of mode (R3) leads to planar anisotropy dissimilar to
the endpoints. The geodesic-loxodrome (Fig. 2(b)), on the other hand, maintains
the norm, and monotonically interpolates the other invariants. Though not part
of the geodesic-loxodrome formulation, in this case the tensor determinant is
also monotonically interpolated; the apparent lengthening is due to rotation.

Figure 3 demonstrates distance measures on a single slice of a DTI scan
(pixel size 1.53mm). The cerebral spinal fluid (CSF) is bright in the tensor trace
image (Fig. 3(a)), and the white matter is bright in the FA image (Fig. 3(b)),
both of which show a square centered on a reference pixel in the corpus callosum
splenium (left-right oriented linear anisotropy). Subsequent subfigures show mea-
sured distances between the tensors at each pixel and at the reference pixel. The
linear (Fig. 3(c)), Log-Euclidean (Fig. 3(d)), and geodesic-loxodrome d distances
(Fig. 3(e)) differ in brightness and contrast but are otherwise qualitatively sim-



(a) Linear interpolation: (1 − t)A + tB

(b) Riemannian interpolation: A1/2(A−1/2BA−1/2)tA1/2

(c) Log-Euclidean interpolation: exp((1 − t) log(A) + t log(B))

(d) Geodesic-loxodrome interpolation based on Ki invariants

Fig. 1. Interpolations between two cylindrical tensors. Trace (K1) is linearly interpo-
lated in (a), and determinant is monotonically interpolated in (b) and (c). Geodesic-
loxodromes (d) monotonically interpolate all Ki as well as (in this case) the determi-
nant. Constancy of mode (K3) wholly avoids planar anisotropy at intermediate values.

ilar. However, the geodesic-loxodrome shape distance dsh (Fig. 3(f)) and orien-
tation distance dor (Fig. 3(g)) highlight different structures. The shape distance
dsh is consistently low throughout the white matter, since these voxels all have
similar shape. The orientation distance dor , on the other hand, is low in the gray
matter, since there is little orientation change between isotropic and anisotropic
tensors of comparable size. Within the white matter (where FA is highest), dor
successfully distinguishes between left-right and other orientations (where dor
is low and high, respectively). These results suggest that the novel shape and
orientation distance measures (dsh and dor ) based on geodesic-loxodromes can
better differentiate neuroanatomic structures than previous distance measures,
highlighting their possible utility for segmentation.

5 Discussion and Future Work

This work was inspired by how the Riemannian and Log-Euclidean methods
guarantee monotonic interpolation of a particular invariant, the determinant.



(a) Log-Euclidean interpolation

(b) Geodesic-loxodrome interpolation based on Ri invariants

Fig. 2. Log-Euclidean and geodesic-loxodrome interpolation between two tensors with
equal R1 (tensor norm). By monotonically interpolating FA (R2) and anisotropy type
(mode R3), geodesic-loxodromes better maintain tensor shape during rotation.

(a) tr (b) FA (c) Lin. (d) L-E (e) G-L d (f)G-L dsh (g)G-L dor

Fig. 3. DTI slice with distance measures. The tensor trace (a) and FA (b) images indi-
cate (small square) the reference white-matter voxel to which distances are measured.
Note that the geodesic-loxodrome shape distance dsh (f) is low inside white matter.

Geodesic-loxodromes monotonically interpolate not one but three tensor invari-
ants, which by their orthogonality completely determine tensor shape, and which
by design include at least one clinically significant invariant, either trace (K1)
or FA (R2). Choosing between Ji = Ki or Ji = Ri depends on desired path
properties: the Ki are better if mean diffusivity (K1/3) is an essential tissue
parameter for the particular application, while Ri may be better if FA (R2) val-
ues are fundamental, although the actual differences between using Ki and Ri

are small. Our results highlight the importance of controlling anisotropy type
(tensor mode) during interpolation, which is unaddressed by previous methods.
Geodesic-loxodromes demonstrate the mapping of an intuitive distinction be-
tween shape and orientation into a mathematical formulation of interpolation
and distance measurement. In this light, the most closely related previous work
is by Chefd’hotel et al., in which images of diffusion tensors are regularized by
an “isospectral” flow that smoothes orientations but maintains shape [18].

We are uncertain whether geodesic-loxodromes are geodesics on some six-
dimensional Riemannian manifold embedded in Sym3. However, we believe it
should be possible to generalize to geodesic-loxodromes the notion of a weighted
intrinsic mean of multiple tensors on a Riemannian manifold [8–10], which would
lead to a novel method of interpolating three-dimensional images of tensor sam-



ples. This requires fast numerical methods for computing geodesic-loxodromes
and their exponential map counterparts (finding the geodesic-loxodrome given
its starting point and initial tangent), which is our current focus. We are also
studying how to apply our distance measures to segmentation, including opti-
mizing a weighted combination of dsh and dor into a single distance measure.
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