
The Directory-Based Cache Coherence Protocol
for the DASH Multiprocessor

Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy

Computer Systems Laboratory
Stanford University, CA 94305

Abstract

DASH is a scalable shared-memory multiprocessor currently
being developed at Stanford’s Computer Systems Laboratory.
The architecture consists of powerful processing nodes, each
with a portion of the shared-memory, connected to a scalable
interconnection network. A key feature of DASH is its dis-
tributed directory-based cache coherence protocol. Unlike tra-
ditional snoopy coherence protocols, the DASH protocol does
not rely on broadcast; instead it uses point-to-point messages
sent between the processors and memories to keep caches con-
sistent. Furthermore, the DASH system does not contain any
single serialization or control point, While these features pro-
vide the basis for scalability, they also force a reevaluation of
many fundamental issues involved in the design of a proto-
col. These include the issues of correctness, performance and
protocol complexity. In this paper, we present the design of
the DASH coherence protocol and discuss how it addresses the
above issues, We also discuss our strategy for verifying the
correctness of the protocol and briefly compare our protocol to
the IEEE Scalable Coherent Interface protocol.

1 Introduction

The limitations of current uniprocessor speeds and the ability to
replicate low cost, high-performance processors and VLSI com-
ponents have provided the impetus for the design of multipro-
cessors which are capable of scaling to a large number of pro-
cessors. Two major paradigms for these multiprocessor archi-
tectures have developed, message-passing and shared-memory.
In a message-passing multiprocessor, each processor has ‘a lo-
cal memory, which is only accessible to that processor. Inter-
processor communication occurs only through explicit message
passing. In a shared-memory multiprocessor, all memory is ac-
cessible to each processor. The shared-memory paradigm has
the advantage that the programmer is not burdened with the
issues of data partitioning, and accessibility of data from all
processors simplifies the task of dynamic load distribution. The
primary advantage of the message passing systems is the ease
with which they scale to support a large number of proces-
sors. For shared-memory machines providing such scalability
has traditionally proved difficult to achieve.

We are currently building a prototype of a scalable shared-
memory multiprocessor. The system provides high processor
performance and scalability though the use of coherent caches
and a directory-based coherence protocol. The high-level or-

Figure 1: General architecture of DASH.

ganization of the prototype, called DASH (Directory Architec-
ture for SHared memory) [173. is shown in Figure 1. The ar-
chitecture-consists of a number of processing nodes connected
through a high-bandwidth low-latency interconnection network.
The physical memory in the machine is distributed among the
nodes of the multiprocessor, with all memory accessible to each
node. Each processing node, or cluster, consists of a small
number of high-performance processors with their individual
caches, a portion of the shared-memory, a common cache for
pending remote accesses, and a directory controller interfacing
the cluster to the network. A bus-based snoopy scheme is used
to keep caches coherent within a cluster, while inter-node cache
consistency is maintained using a distributed directory-based
coherence protocol.

The concept of directory-based cache coherence was first pro-
posed by Tang [20] and Censier and Feautrier 163. Subsequently,
it has been been investigated by others ([1],[2] and [23]). Build-
ing on this earlier work, we have deveIoped a new directory-
based cache-coherence protocol which works with distributed
directories and the hierarchical cluster configuration of DASH.
The protocol also integrates support for efficient synchroniza-
tion operations using the directory. Furthermore, in designing
the machine we have addressed many of the issues left unre-
solved by earlier work.

In DASH, each processing node has a directory memory cor-
responding to its portion of the shared physical memory. For
each memory block, the directory memory stores the identities

CH2887-8/90/000010148$01.00 0 1990 IEEE

of all remote nodes caching that block. Using the directory
memory, a node writing a location can send point-to-point in-
validation or update messages to those processors that are ac-
tually caching that block. This is in contrast to the invalidating
broadcast required by the snoopy protocol. The scalability of
DASH depends on tbis ability to avoid broadcasts. Another im-
portant attribute of the directory-based protocol is that it does
not depend on any specific interconnection network topology.
As a result, we can readily use any of the low-latency scalable
networks, such as meshes or hypercubes, that were originally
developed for message-passing machines 1771.

While the design of bus-based snoopy coherence protocols
is reasonably well understood, this is not true of distributed
directory-based protocols. Unlike snoopy protocols, directory-
based schemes do not have a single serialization point for all
memory transactions. While this feature is responsible for their
scalability, it also makes them more complex and forces one to
rethink how the protocol should address the fundamental issues
of correctness, system performance, and complexity.

The next section outlines the important issues in designing
a cache coherence protocol. Section 3 gives an overview of
the DASH hardware architecture. Section 4 describes the de-
sign of the DASH cohexencc protocol. relating it to the issues
raised in section 2. Section 5 outlines some of the additional
operations supported beyond the base protocol, while Section 6
discusses scaling the directory structure. Section 7 briefly de-
scribes our approach to verifying the correctness of the proto-
col. Section 8 compares the DASH protocol with the proposed
IEEE-SC1 (Scalable Coherent Interface) protocol for distributed
directory-based cache coherence. Finally, section 9 presents
conclusions and summarizes the current status of the design
effort.

2 Design Issues for Distributed Coher-
ence Protocols

‘Ihe issues that arise in the design of any cache coherence pro-
tocol and, in particular, a distributed directory-based protocol,
can be divided into three categories: those that deal with cor-
rectness, those that deal with the performance, and those related
to the distributed control of the protocol.

2.1 Correctness

The foremost issue that any multiprocessor cache coherence
protocol must address is correctness. This translates into re-
quirements in three areas:

Memory Consistency Model: For a uniprocessor, the model
of a correct memory system is well defined. Load operations
return the last value written to a given memory location. Like-
wise, store operations bind the value returned by subsequent
loads of the location until the next store. For multiprocessors,
however, the issue is more complex because the definitions of
“last value written”, “subsequent loads” and “next store” be-
come less clear as there may be multiple processors reading and
writing a location. To resolve this difficulty a number of mem-
ory consistency models have been proposed in the literature,
most notably, the sequential and weak consistency models [8].
Weaker consistency models attempt to loosen the constraints on
the coherence protocol while still providing a reasonable pro-
gramming model for the user. Although most existing systems

utilize a relatively strong consistency model, the larger latencies
found in a distributed system favor the less constrained models.

Deadlock: A protocol must also be deadlock free. Given
the arbitrary communication patterns and finite buffering within
the memory system there are numerous opportunities for dead-
lock. For example, a deadlock can occur if a set of transactions
holds network and buffer resources in a circular manner, and
the consumption of one request requires the generation of an-
other request. Similarly, lack of flow control in nodes can cause
requests to back up into the network, blocking the flow of other
messages that may be able to release the congestion,

Error Handling: Another issue related to correctness is sup-
port for data integrity and fault tolerance. Any large system will
exhibit failures, and it is generally unacceptable if these fail-
ures result in corrupted data or incorrect results without a fail-
ure indication. This is especially true for parallel applications
where algorithms are more complex and may contain some non-
determinism which limits repeatability. Unfortunately, support
for data integrity and fault-tolerance within a complex protocol
that attempts to minimize latency and is executed directly by
hardware is difficult. The protocol must attempt to balance the
level of data integrity with the increase in latency and hard-
ware complexity. At a minimum, the protocol should be able to
flag all detectable failures, and convey this information to the
processors affected.

2.2 Performance

Given a protocol that is correct, performance becomes the next
important design criterion. The two key metrics of memory
system performance are latency and bandwidth.

Latency: Performance is primarily determined by the la-
tency experienced by memory requests. In DASH, support for
cachable shared data provides the major reduction in latency.
The latency of write misses is reduced by using write buffers
and by the support of the release consistency model. Hiding
the latency for read misses is usually more critical since the
processor is stalled until data is returned. To reduce the la-
tency for read misses, the protocol must minimize the number
of inter-cluster messages needed to service a miss and the delay
associated with each such message.

Bandwidth: Providing high memory bandwidth that scales
with the number of processors is key to any large system.
Caches and distributed memory form the basis for a scal-
able, high-bandwidth memory system in DASH. Even with dis-
tributed memory, however, bandwidth is limited by the serial-
ization of requests in the memory system and the amount of
traffic generated by each memory request.

Servicing a memory request in a distributed system often
requires several messages to be transmitted. For example, a
message to access a remote location generates a reply message
containing the data, and possibly other messages invalidating
remote caches. The component with the largest serialization in
this chain limits the maximum throughput of requests. Serial-
ization affects performance by increasing the queuing delays,
and thus the latency, of memory requests. Queueing delays can
become critical for locations that exhibit a large degree of shar-
ing. A protocol should attempt to minimize the service time
at all queuing centers. In particular, in a distributed system no
central resources within a node should be blocked while inter-
node communication is taking place to service a request. In this
way serialization is limited only by the time of local, i&a-node
operations.

149

The amount of traffic generated per request also limits the
effective throughput of the memory system. Traffic seen by
the global interconnect and memory subsystem increases the
queueing for these shared resources. DASH reduces .traffic by
providing coherent caches and by distributing memory among
the processors. Caches filter many of the requests for shared
data while grouping memory with processors removes private
references if the corresponding memory is allocated within the
local cluster. At the protocol level, the number of messages
required to service different types of memory requests should
be minimized, unless the extra messages directly contribute to
reduced latency or serialization.

2.3 Distributed Control and Complexity

A coherence protocol designed to address the above issues must
be partitioned among the distributed components of the multi-
processor. These components include the processors and their
caches, the directory and main memory controllers, and the in-
terconnection network. The lack of a single serialization point,
such as a bus, complicates the control since transactions do not
complete atomically. Furthermore, multiple paths within the
memory system and lack of a single arbitration point within the
system allow some operations to complete out of order. The re-
sult is that there is a rich set of interactions that can take place
between different memory and coherence transactions. Parti-
tioning the control of the protocol requires a delicate balance
between the performance of the system and the complexity of
the components. Too much complexity may effect the ability
to implement the protocol or ensure that the protocol is correct.

3 Overview of DASH

Figure 2 shows a high-level picture of the DASH prototype we
are building at Stanford. In order to manage the size of the
prototype design effort, a commercial bus-based multiprocessor
was chosen as the processing node. Each node (or cluster) is
a Silicon Graphics POWER Station 4D/240 [4]. The 4D/240
system consists of four high-performance processors, each con-
nected to a 64 Kbyte first-level instruction cache, and a 64 Kbyte
write-through data cache. The 64 Kbyte data cache interfaces
to a 256 Kbyte second-level write-back cache through a read
buffer and a 4 word deep write-buffer. The main purpose of this
second-level cache is to convert the write-through policy of the
first-level to a write-back policy, and to provide the extra cache
tags for bus snooping. Both the first and second-level caches
are direct-mapped.

In the 4D/240, the second-level caches are responsible for bus
snooping and maintaining consistency among the caches in the
cluster. Consistency is maintained using the Illinois coherence
protocol [19], which is an invalidation-based ownership proto-
col. Before a processor can write to a cache line, it must first
acquire exclusive ownership of that line by requesting that all
other caches invalidate their copy of that line. Once a processor
has exclusive ownership of a cache line, it may write to that
line without consuming further bus cycles.

The memory bus (MPBUS) of the 4D/240 is a pipelined syn-
chronous bus, supporting memory-to-cache and cache-to-cache
transfers of 16 bytes every 4 bus clocks with a latency of 6 bus
clocks. While the MPBUS is pipelined, it is not a split transac-
tion bus. Consequently, it is not possible to efficiently interleave
long duration remote transactions with the short duration local

Figure 2: Block diagram of sample 2 x 2 DASH system.

transactions. Since this ability is critical to DASH, we have
extended the MPBUS protocol to support a retry mechanism.
Remote requests are signaled to retry while the inter-cluster
messages are being processed. To avoid unnecessary retries the
processor is masked from arbitration until the response from the
remote request has been received. When the response srrives,
the requesting processor is unmasked, retries the request on the
bus, and is supplied the remote data.

A DASH system consists of a number of modified 4D/240
systems that have been supplemented with a directory controller
board. This directory controller board is responsible for main-
taining the cache coherence across the nodes and serving as the
interface to the interconnection network.

The directory board is implemented on a single printed cir-
cuit board and consists of five major subsystems as shown in
Figure 3. The directory controller (DC) contains the directory
memory corresponding to the portion of main memory present
within the cluster. It also initiates out-bound network requests
and replies. The pseudo-CPU (PCPU) is responsible for buffer-
ing incoming requests and issuing such requests on the cluster
bus. It mimics a CPU on this bus on behalf of remote processors
except that responses from the bus are sent out by the directory
controller. The reply controller (RC) tracks outstanding requests
made by the local processors and receives and buffers the corre-
sponding replies from remote clusters. It acts as memory when
the local processors are allowed to retry their remote requests.
The network interface and the local portion of the network it-
self reside on the directory card. The interconnection network
consists of a pair of meshes. One mesh is dedicated to the re-
quest messages while the other handles replies. These meshes
utilize wormhole routing [9] to minimize latency. Finally, the
board contains hardware monitoring logic and miscellaneous
control and status registers. The monitoring logic samples a
variety of directory board and bus events from which usage and
performance statistics can be derived.

The directory memory is organized as an array of directory

150

hlPBUS Data c A 1,

Figure 3: Directory board block diagram.

enties. There is one entry for each memory block. The direc-
tory entries used in the prototype are identical to that originally
proposed in [6]. They are composed of a single state bit to-
gether with a bit vector of pointers to clusters. The state bit
indicates whether the clusters have a read (shared) or read/write
(dirty) copy of the data. The bit vector contains a bit for each
of the sixteen clusters supported iu the prototype. Associating
the directory with main memory allows the directory to be built
with the same DRAM technology as main memory. The DC ac-
cesses the directory memory on each MPBUS transaction along
with the access to main memory. The directory information is
combined with the type of bus operation, address, and result
of the snooping within the cluster to determine what network
messages and bus controls the DC will generate.

The RC maintains its state io the remote access cache (RAC).
The functions of the RAC include maintaining the state of cur-
rently outstanding requests, buffering replies from the network
and supplementing the functionality of the processors’ caches.
The RAC is organized as a snoopy cache with augmented state
information. The RAC’s state machines allow accesses from
both the network and the cluster bus. Replies from the network
are buffered in the RAC and cause the waiting processor to be
released for bus arbitration. Wben the released processor re-
tries the access the RAC supplies the data via a cache-to-cache
transfer.

3.1 Memory Consistency in DASH

As stated in Section 2, the correctness of the coherence protocol
is a function of the memory consistency model adopted by the
architecture. There is a whole spectrum of choices for the level
of consistency to support directly in hardware. At one end is the
sequential consistency model [16] which requires the execution
of the parallel program to appear as some interleaving of the
execution of the parallel processes on a sequential machine. As
one moves towards weaker models of consistency, performance

gains are made at the cost of a more complex programming
model for the user.

The base model of consistency provided by the DASH hard-
ware is called release consisrency. Release consistency [lo] is
an extension of the weak consistency model first proposed by
Dubois, Scheurich and Briggs [8]. The distinguishing character-
istics of release consistency is that it allows memory operations
issued by a given processor to be observed and complete out
of order with respect to the other processors. The ordering of
operations is only preserved before “releasing” synchronization
operations or explicit ordering operations. Release consistency
takes advantage of the fact that while in a critical region a pro-
grammer has already assured that no other processor is accessing
the protected variables. Thus, updates to these variables can be
observed by other processors in arbitrary order. Only before
the lock release at the end of the region does the hardware need
to guarantee that ah operations have completed. While release
consistency does complicate programming and the coherence
protocol, it can hide much of the overhead of write operations.

Support for release consistency puts several requirements on
the system. First, the hardware must support a primitive which
guarantees the ordering of memory operations at specific points
in a program. Such fence [5, 101 primitives can then be placed
by software before releasing synchronization points in order to
implement release consistency. DASH supports two explicit
fence mechanisms. A full-fence operation stalls the proces-
sor until all of its pending operations have been completed,
while a write-fence simply delays subsequent write-operations.
A higher performance implementation of release consistency
includes implicit fence operations within the releasing synchro-
nization operations themselves. DASH supports such synchrv-
nization operations yielding release consistency as its base con-
sistency model. The explicit fence operations in DASH then
allow the user or compiler to synthesize stricter consistency
models if needed.

The release consistency model also places constraints on the
base coherence protocol. First, the system must respect the local
dependencies generated by the memory operations of a single
processor. Second, ah coherence operations, especially opera-
tions related to writes, must be acknowledged so that the issuing
processor can determine when a fence can proceed. Third, any
cache lime owned with pending invalidations against it can not
be shared between processors. This prevents the new processor
from improperly passing a fence. If sharing is allowed then
the receiving processor must be informed when all of the pend-
ing invalidates have been acknowledged. Lastly, any operations
that a processor issues after a fence operation may not become
visible to any other processor until all operations preceding the
fence have completed.

4 The DASH Cache Coherence Protocol

In our discussion of the coherence protocol, we use the follow-
ing naming conventions for the various clusters and memories
involved in any given transaction. A local cluster is a cluster
that contains the processor originating a given request, while
the home cluster is the cluster which contains the main memory
and directory for a given physical memory address. A remote
cluster is any other cluster. Likewise, local memory refers to
the main memory associated with the local cluster while remote
memory is any memory whose home is not the local.

The DASH coherence protocol is an invalidation-based own-

151

ership protocol. A memory block can be in one of three states as
indicated by the associated directory entry: (i) uncached-remote,
that is not cached by any remote cluster; (ii) shared-remote, that
is cached in an unmodified staate by one or more remote clus-
ters; or (iii) dirty-remote, that is cached in a modified state by
a single remote cluster. The directory does not maintain infor-
mation concerning whether the home cluster itself is caching
a memory block because all transactions that change the state
of a memory block are issued on the bus of the home cluster,
and the snoopy bus protocol keeps the home cluster coherent.
While we could have chosen not to issue all transactions on the
home cluster’s bus this would had an insignificant performance
improvement since most requests to the home also require an
access to main memory to retrieve the actual data.

The protocol maintains the notion of an owning cluster for
each memory block. The owning cluster is nominally the home
cluster. However, in the case that a memory block is present
in the dirty state in a remote cluster, that cluster is the owner.
Only the owning cluster can complete a remote reference for a
given block and update the directory state. While the directory
entry is always maintained in the home cluster, a dirty cluster
initiates all changes to the directory state of a block when it
is the owner (such update messages also indicate that the dirty
cluster is giving up ownership). The order that operations reach
the owning cluster determines their global order.

As with memory blocks, a cache block in a processor’s cache
may also be in one of three states: invalid, shared, and dirty.
The shared state implies that there may be other processors
caching that location. The dirty state implies that this cache
contains an exclusive copy of the memory block, and the block
has been modified.

The following sections outline the three primitive operations
supported by the base DASH coherence protocol: read, read-
exclusive and write-back. We also discuss how the protocol
responds to the issues that were brought up in Section 2 and
some of the alternative design choices that were considered. We
describe only the normal flow for the memory transactions in the
following sections, exception cases are covered in section 4.6.

4.1 Read Requests

Memory read requests are initiated by processor load instruc-
tions. If the location is present in the processor’s first-level
cache, the cache simply supplies the data. If not present, then a
cache fill operation must bring the required block into the first-
level cache. A fill operation first attempts to find the cache line
in the processor’s second-level cache, and if unsuccessful, the
processor issues a read request on the bus. This read request ei-
ther completes locally or is signaled to retry while the directory
board interacts with the other clusters to retrieve the required
cache line. The detailed flow for a read request is given in
Figure 7 in the appendix.

The protocol tries to minimize latency by using cache-to-
cache transfers. The local bus can satisfy a remote read if the
given line is held in another processor’s cache or the remote
access cache (RAC). The four processor caches together with
the RAC form a five-way set associative (1.25 Mbyte) cluster
cache. The effective size of this cache is smaller than a true set
associative cache because the enties in the caches need not be
distinct. The check for a local copy is initiated by the normal
snooping when the read is issued on the bus. If the cache line
is present in the shared state then the data is simply transferred
over the bus to the requesting processor and no access to the

remote home cluster is needed. If the c:ache line is held in a
dirty state by a local processor, however, something must be
done with the ownership of the cache line since the processor
supplying the data goes to a shared state in the Illinois protocol
used on the cluster bus. The two options considered were to: (i)
have the directory do a sharing write-back to the home cluster;
and (ii) have the RAC take ownership of the cache line. We
chose the second option because it permits the processors within
a cluster to read and write a shared location without causing
traffic in the network or home cluster.

If a read request cannot be satisfied by the local cluster, the
processor is forced to retry the bus operation, and a request
message is sent to the home cluster. At the same time the
processor is masked from arbitration so that it does not tie up the
local bus. Whenever a remote request is sent by a cluster, a RAC
entry is allocated to act as a placeholder for the reply to this
request. The RAC entry also permits merging of requests made
by the different processors within the same cluster. If another
request to the same memory block is made, a new request will
not be sent to the home cluster; this Educes both traffic and
latency. On the other hand, an access to a different memory
block, which happens to map to a RAC entry already in use,
must he delayed until the pending operation is complete. Given
that the number of active FUC entries is small the benefit of
merging should outweigh the potential for contention.

When the read request reaches the home cluster, it is issued
on that cluster’s bus. This causes the directory to look up the
status of that memory block. If the block is in an uncached-
remote or shared-remote state the directmy controller sends the
data over the reply network to the requesting cluster. It also
records the fact that the requesting cluster now has a copy of
the memory block. If the block is in the dirty-remote state,
however, the read request is forwarded to the owning, dirty
cluster. The owning cluster sends out two messages in response
to the read. A message containing the data is sent directly to the
requesting cluster, and a sharing writeback request is sent to the
home cluster. The sharing writeback request writes the cache
block back to memory and also updates the directory. The flow
of messages for this case is shown in Figure 4.

As shown in Figure 4, any request not satisfied in the home
cluster is forwarded to the remote cluster that has a dirty copy
of the data. This reduces latency by permitting the dirty clus-
ter to respond directly to the requesting cluster. In addition,
this forwarding strategy allows the directory controller to si-
multaneously process many requests (:i.e. to be multithreaded)
without the added complexity of maintaining the state of out-
standing requests. Serialization is reduced to the time of a sin-
gle intra-cluster bus transaction. The only resource held while
inter-cluster messages are being sent is a single entry in the
originating cluster’s RAC.

The downside of the forwarding strategy is that it can result
in additional latency when simultaneous accesses are made to
the same block. For example, if two read requests from differ-
ent clusters are received close together for a line that is dirty
remote, both will be forwarded to the dirty cluster. However,
only the Iirst one will be satisfied since this request will force
the dirty cluster to lose ownership by doing a sharing writeback
and changing its local state to read only. The second request
will not find the dirty data and will be returned with a nega-
tive acknowledge (NAK) to its originating cluster. This :NAK
will force the cluster to retry its access. An alternative to the
forwarding approach used by our protocol would havi been to
buffer the read request at the home cluster, have the home send

152

Figure 4: Flow of Read Request to remote memory with direc-
tory in dirty-remote state.

a flush request to the owning cluster, and then have the home
send the data back to the originating cluster. We did not adopt
this approach because it would have increased the latency for
such reads by adding an extra network and bus transaction. Ad-
ditionally, it would have required buffers in the directory to hoId
the pending transaction, or blocking subsequent accesses to the
directory until the first request had been satisfied.

4.2 Read-Exclusive Requests
Write operations are initiated by processor store instructions.
Data is written through the first-level cache and is buffered in a
four word deep write-buffer. The second-level cache can retire
the write if it has ownership of the line. Otherwise, a read-
exclusive request is issued to the bus to acquire sole ownership
of the line and retrieve the other words in the cache block. Ob-
taining ownership does not block the processor directly; only
the write-buffer output is stalled. As in the case of read requests,
cache coherence operations begin when the read-exclusive re-
quest is issued on the bus. The detailed flow of read-exclusive
request is given in the appendix in Figure 9 and is summarized
below.

The flow of a read-exclusive is similar to that of a read re-
quest. Once the request is issued on the bus, it checks other
caches at the local cluster level. If one of those caches has
that memory block in the dirty state (it is the owner), then that
cache supplies the data and ownership and invalidates its own
copy. If the memory block is not owned by the local cluster,
a request for ownership is sent to the home cluster. As in the
case of read requests, a RAC entry is allocated to receive the
ownership and data.

At the home cluster, the read-exclusive request is echoed
on the bus. If the memory block is in an uncached-remote or
shared-remote state the data and ownership are immediately sent

c. RAC envy invalidate count
dencmsnkd with each ACK
until 0. then snuy &r.kxated

Figure 5: Flow of Read-Exclusive Request to remote memory
with directory in shared-remote state.

back over the reply network. In addition, if the block is in the
shared-remote state, each cluster caching the block is sent an
invalidation request. The requesting cluster receives the data
as before, and is also informed of the number of invalidation
acknowledge messages to expect. Remote clusters send inval-
idation acknowledge messages to the requesting cluster after
completing their invalidation. As discussed in Section 3.1, the
invalidation acknowledges are needed by the requesting proces-
sor to know when the store has been completed with respect to
all processors. The RAC entry in the requesting cluster persists
until all invalidation acknowledges have been received. The re-
ceipt of the acknowledges generally occurs after the processor
itself has been granted exclusive ownership of the cache line
and continued execution. Figure 5 depicts this shared-remote
case.

If the directory indicates a dirty-remote state, then the request
is forwarded to the owning cluster as in a read request. At the
dirty cluster, the read-exclusive request is issued on the bus.
This causes the owning processor to invalidate that block from
its cache and to send a message to the requesting cluster grant-
ing ownership and supplying the data. In parallel, a request
is sent to the home cluster to update ownership of the block.
On receiving this message, the home sends an acknowledg-
ment to the new owning cluster. This extra acknowledgment is
needed because the requesting cluster (the new owning cluster)
may give up ownership (e.g. due to a writeback) even before
the home directory has received an ownership change message
from the previous owner. If these messages reach the home
out of order the directory will become permanently inconsis-
tent. The extra acknowledgment guarantees that the new owner
retain ownership until the directoty has been updated.

Performance of the read and write operations is closely re-
lated to the speed of the MPBUS and the latency of inter-cluster
communication. Figure 6 shows the latencies for various mem-

153

Read Operations
Hit in 1st Level Cache 1 pclock
Fill from 2nd L-eve1 Cache 12 pclock
Fill from Local Cluster 22 pclock
Fill from Remote Cluster 61 pclock
Fill from Dirty Remote, Remote Home 80 pclock

Fill operations fetch 16 byte cache blocks ard empty
the write-b@er before fetching the read-miss cache block.

1 Operations Write

Hit on 2nd Level Owned Block 3 pclock
Owned by Local Cluster 18 pclock
Owned in Remote Cluster 57 pclock
Owned in Dirty Remote, Remote Home 76 pclock

Write operations only stall the write-ba#er, not the
processor, while rhefill is outstanding.

Write delays assume Release Consistency (i.e. they do
not waitfor remote invalidates to be acknowledged).

Figure 6: Latency for various memory system operations in
processor clocks. Each processor clock in the prototype is 40
ns.

ory operations in the DASH prototype assuming no network or
bus contention. The figure illustrates the one-to-one relation-
ship between the latency of an operation and its corresponding
number of network hops and bus transactions. In DASH, the
network and directory board overhead is roughly equal to the
CPU overhead to initiate a bus transaction. Thus, if an intra-
cluster bus transaction takes roughly 20 processor clocks then
an inter-cluster transaction that involves two clusters, (i.e. three
bus transactions) takes roughly 60 processor clocks, and a three
cluster transaction takes 80 processor clocks.

4.3 Writeback Requests

A dixty cache line that is replaced must be written back to
memory. If the home of the memory block is the local cluster,
then the data is simply written back to main memory. If the
home cluster is remote, then a message is sent to the remote
home which updates the main memory and marks the block
uncached-remote. The flow of a writeback operation is given
in the appendix in Figure 8.

4.4 Bus Initiated Cache Transactions

CPU initiated transactions have been described in the preceding
sections. The protocol also includes transitions made by the
slave caches that are monitoring their respective buses. These
transitions are equivalent to those in a normal snoopy bus proto-
col. In particular, a read operation on the bus will cause a dirty
cache to supply data and change to a shared state. Dirty data will
also be written back to main memory (or the RAC if remote). A
read-exclusive operation on the bus will cause all other cached
copies of the line to be invalidated. Note that when a valid line
in the second-level cache is invalidated, the first-level cache is
also invalidated so that the processor’s second-level cache is a
superset of the first-level cache.

4.5 Support for Memory Consistency

As discussed in section 3.1, DASH supports the release consis-
tency model. Memory system latency is reduced because the

semantics of release consistency allows the processor to con-
tinue after issuing a write operation. The write-buffer within
the processor holds the pending operation, and the write-buffer
is allowed to retire the write before the operation has completed
with respect to all processors. The processor itself is allowed to
continue while the write-buffer and directory controller are com-
pleting the previous operations. Ordering of memory accesses
is only guaranteed between operations separated by a releasing
synchronization operation or an explicit fence operation. Upon
a write-fence (explicit or implicit), all previous read and write
operations issued by this processor must have completed with
respect to all processors before any additional write operations
can become visible to other processors.

DASH implements a write fence by blocking a prqcessor’s
access to its second-level cache and the MPBUS until all reads
and writes it issued before the write fence have completed. This
is done by stalling the write-fence (which is mapped to a store
operation) in the processor’s write-buffer. Guaranteeing that
preceding reads and writes have been performed without impos-
ing undue processor stalls is the challenge. A first requirement
is that all invalidation operations must ‘be acknowledged. As
illustrated in Figure 5, a write operation to shared data can pro-
ceed after receiving the exclusive reply from the directory, but
the RAC entry associated with this operation persists until all
of the acknowledges are received by the. reply controller (IX).
Each RAC entry is tagged with the processor that is responsible
for this entry and each processor has a dedicated counter in the
RC which counts the total number of RA.C entries in use by that
processor. A write fence stalls until the counter for that proces-
sor is decremented to zero. At this point, the processor has no
outstanding RAC entries, so all of its invalidation acknowledges
must have been received.

We observe that simply using a per processor counter to keep
track of the number of outstanding invalidations is not sufficient
to support release consistency. A simple counter does not allow
the processor cache to distinguish between dirty cache lines
that have outstanding invalidates fmm those that do not. This
results in another processor not being able to detect whether
a line returned by a dirty cache has outstanding invalidates.
The requesting processor could then improperly pass through a
fence operation. Storing the pending invalidate count on a per
cache line basis in the RAC, and having the RAC snoop bus
transactions, allows cache lines with pending invalidates to be
distinguished. The RAC forces a reject of remote requests to
such blocks with a NAK reply. Local atccesses are allowed,, but
the RAC adds the new processor to its entry for the line making
this processor also responsible for the original invalidations.
Write-back requests of a line with outstanding invalidations are
blocked by having the RAC take dirty ownership of the cache
block.

In the protocol, invalidation acknowledges are sent to the
local cluster that initiated the memory request. An alternative
would be for the home cluster to gather the acknowledges, and,
when all have been received, send a message to the requesting
cluster indicating that the request has been completed. We chose
the former because it reduces the waiting time for completion
of a subsequent fence operation by the requesting cluster and
reduces the potential of a hot spot developing at the memory.

4.6 Exception Conditions

The description of the protocol listed above does not cover all of
the conditions that the actual protocol must address. While enu-

154

merating all of the possible exceptions and protocol responses
would require an overly detailed discussion, this section intro-
duces most of the exception cases and gives an idea of how the
protocol responds to each exception.

One exception case is that a request forwarded to a dirty
cluster may arrive there to find that the dirty cluster no longer
owns the data. This may occur if another access had previously
been forwarded to the dirty cluster and changed the ownership
of the block, or if the owning cluster performs a writeback.
In these cases, the originating cluster is sent a NAK response
and is required to reissue the request. By this time ownership
should have stabilized and the request will be satisfied. Note
that the reissue is accomplished by simply releasing the proces-
sor’s arbitration mask and treating this as a new request instead
of replying with data.

In very pathological cases, for example when ownership for a
block is bouncing back and forth between two remote clusters,
a requesting cluster (some third cluster) may receive multiple
NAK’s and may eventually time-out and return a bus error.
While this is undesirable, its occurrence is very improbable in
the prototype system and, consequently, we do not provide a
solution. In larger systems this problem is likely to need a com-
plete answer. One solution would be to implement an additional
directory state which signifies that other clusters are queued for
access. Only the first access for a dirty line would be forwarded
while tbis request and subsequent requests are queued in the di-
rectory entry. Upon receipt of the next ownership change the
directory can respond to all of the requests if they are for read
only copies. If some are for exclusive access then ownership
can be granted to each in turn on a pseudo-random basis. Thus,
eventually all requests will be fulfilled.

Another set of exceptions arise from the multiple paths
present in the system. In particular, the separate request and
reply networks together with their associated input and output
FWO’s and bus requesters imply that some messages sent be-
tween two clusters can be received out of order. The protocol
can handle most of these misorderings because operations are
acknowledged and out-of-order requests simple receive NAK
responses. Other cases require more attention. For example, a
read reply can be overtaken by an invalidate request attempting
to purge the read copy. This case is handled by the snoop-
ing on the RAC. When the RAC sees an invalidation request
for a pending read, it changes the state of that RAC entry to
invalidated-read-pending. In this state. the RC conservatively
assumes that any read reply is stale and treats the reply as a
NAK response.

4.7 Deadlock

In the DASH prototype, deadlocks are eliminated through a
combination of hardware and protocol features. At the hard-
ware level, DASH consists of two mesh networks, each of
which guarantees point-to-point delivery of messages without
deadlocks. However, this by itself is not sufficient to prevent
deadlocks because the. consumption of an incoming message
may require the generation of another outgoing message. This
can result in circular dependencies between the limited buffers
present in hvo or more nodes and cause deadlock.

To address this problem, the protocol divides all messages
into request messages (e.g. read and read-exclusive requests and
invalidation requests) and reply messages (e.g. read and read-
exclusive replies and invalidation acknowledges). Furthermore,
one mesh is dedicated to servicing request messages while the

other handles reply messages. Reply messages are guaranteed
to be consumed at the destination, partly because of their nature
and partly because space for the reply data is preallocated in the
RAC. This eliminates the possibility of request-reply circular
dependencies and the associated deadlocks.

However, the protocol also relies on request messages that
generate additional requests. Because of the limited buffer
space, this can result in deadlocks due to request-request circu-
lar dependencies. Fairly large input and output FIFO’s reduce
the probability of this problem. if it does arise, the directory
hardware includes a time-out mechanism to break the possible
deadlock. If the directory has been blocked for more than the
time-out period in attempting to forward a request it will in-
stead reject the request with a NAR reply message. Once this
deadlock breaking mode is entered enough other requests are
handled similarly so that any possible deadlock condition that
has arisen within the request network can be eliminated. As
in cases discussed earlier, this scheme relies on the processor’s
ability to reissue its request upon receiving a NAIL

4.8 Error Handling

The final set of exceptions arise in response to error conditions
in the hardware or protocol. The system includes a number
of error checks including ECC on main memory, parity on the
directory memory, length checking of network messages and
inconsistent bus and network message checking. These checks
are reported to processors through bus errors and associated
error capture registers. Network errors and improper requests
are dropped by the receiver of such messages. Depending upon
the type of network message that was lost or corrupted, the
issuing processor will eventually time-out its originating request
or some fence operation which will be blocked waiting for a
RAC entry to be deallocated. The time-out generates a bus-
error which interrupts the processor. The processes using the
psrticular memory location are aborted, but low level operating
system code can recover from the error if it is not within the
kernel. The OS can subsequently clean up the state of a line by
using back-door paths that allow direct addressing of the RAC
and directory memory.

5 Supplemental Operations

During the evolution of the DASH protocol, several additional
memory operations were evaluated. Some of these operations
are included in the DASH prototype, while others were not
included due to hardware constraints or a lack of evidence that
the extension would provide significant performance gains.

The first major extension incorporated into the DASH pro-
tocol was support for synchronization operations. The sharing
characteristics of synchronization objects are often quite differ-
ent from those of normal data. Locks, barriers, and semaphores
can be highly contended. Using the normal directory protocol
for synchronization objects can lead to hot spots. For example,
when a highly contended lock is released, all processor caches
containing the lock are invalidated, this invalidation results in
the waiting processors rushing to grab the lock. DASH pro-
vides special queue-based tack primitives that use the directory
memory to keep track of clusters waiting for a lock. Using the
directory memory is natural since it is already set up to track
queued clusters, and the directory is normally accessed in read-
modify-write cycles that match the atomic update necessary for

155

locks. An unlock of a queue-based lock while clusters are wait-
ing results in a grant of the lock being sent to one of the waiting
clusters. This grant allows the cluster to obtain the lock without
any further network messages. Thus, queue-based locks reduce
the hot spotting generated by contended locks and reduce the
latency between an unlock operation and subsequent acquisi-
tion of the lock. This and other synchronization primitives are
discussed in detail in 1171.

Another set of operations included in the prototype help hide
the latency of memory operations. Normally, when a read is
issued the processor is stalled until the data comes back. With
very fast processors, tbis latency can be tens to hundreds of
processor cycles. Support for some form of prefetch can clearly
help. DASH supports both read prefetch and read-exclusive
prefer& operations [17]. These operations cause the directory
controller to send out a read or read-exclusive request for the
data, but do not block the processor. Thus, the processor is able
to overlap the fetching of the data with useful work. When the
processor is ready to use the prefetched data, it issues a normal
read or read exclusive request. By this time the data will either
be in the RAC or the prefetch will be outstanding, in which case
the normal read or read-exclusive is merged with the prefetch.
In either case, the latency for the data will be reduced. Ideally,
we would have liked to place the prefetched data directly in the
requesting processor’s cache instead of the RAC, but that would
have required significant modifications to the existing processor
boards.

There are some variables for which a write-update coherence
protocol is more appropriate than the DASH write-invalidate
protocol [3]. The prototype system provides for a single word
update write primitive which updates memory and all the caches
currently holding the word. Since exclusive ownership is not
required, the producer’s write buffer can retire the write as soon
as it has been issued on the bus. Update-writes are especially
useful for event synchronization. The producer of an event can
directly update the value cached by the waiting processor re-
ducing the latency and traffic that would result if the value was
invalidated. This primitive is especially useful in implementing
barriers, as an update-write can be used by the last processor
entering the barrier to release all waiting processors. Update op-
erations conform to the release consistency memory model, but
require explicit fence operations when used for synchronization
purposes.

6 Scalability of the DASH Directory

The DASH directory scheme currently uses a full bit-vector
to identify the remote clusters caching a memory block. While
this is reasonable for the DASH prototype, it does not scale well
since the amount of directory memory required is the propor-
tional to the product of the main memory size and the number of
processors in the system. We are currently investigating a vari-
ety of solutions which limit the overhead of directory memory.
The most straightforward modification is the use of a limited
number of pointers per directory entry. Each directory pointer
holds the cluster number of a cluster currently caching the given
line. In any limited pointer scheme some mechanism must exist
to handle cache blocks that are cached by more processors then
there are pointers, A very simple scheme resorts to a broadcast
in these cases [l]. Better results can be obtained if the pointer
storage memory reverts to a bit vector when pointer overflow
occurs. Of course, a complete bit vector is not possible, but if

each bit represents a region of processors the amount of t&tic
generated by such overtlows can be greatly reduced relative to
a broadcast.

Other schemes to scale the directory rely on restructuring of
directory storage. Possible solutions include allowing point-
ers to be shared between directory entries, or using a caclhe
of directory entries to supplement or replace the normal direc-
tory [la. 131. A directory structured as a cache need not have a
complete backing memory since replaced directory entries can
simply invalidate their associated cache entries (similar to how
multi-level caches maintain their inclusion property). Recent
studies [13] have shown that such sparse-directories can main-
tain a constant overhead of directory memory compared with a
full-bit vector when the number of processors grows from 64
to 10X. A sparse directory using limited pointers and a coarse
vector only increases the total traffic by only lo-20% and should
have minimal impact on processor performance. Furthermore,
such directory structuxes require only small changes to the co-
herence protocol given here.

7 Validation of the Protocol

Validation of the DASH protocol presents a major challenge.
Each cluster in DASH contains a complex directory controller
with a large amount of state. This state coupled with the dis-
tributed nature of the DASH protocol results in an enormous
number of possible interactions between the controllers. Writ-
ing a test suite that exercises all possible interactions in rea-
sonable time seems intractable. Therefore, we are using two
less exhaustive testing methods. Both these methods rely on
the software simulator of DASH that we have developed.

The simulator consists of two tightly coupled components: a
low-level DASH system simulator that incorporates the coher-
ence protocol, and simulates the processor caches, buses, and
interconnection network at a very fine level of detail; and Tango
[ll], a high-level functional simulator that models the proces-
sors and executes parallel programs. Tango simulates parallel
processing on a uniprocessor while the DASH simulator pro-
vides detailed timing about latency of memory references. Be-
cause of the tight coupling between the two parts, our simulator
closely models the DASH machine.

Our fust scheme for testing the protocol consists of runnin,g
existing parallel programs for which the results are known and
comparing the output with that from the DASH simulator. The
drawback of using parallel programs to check the protocol is
that they use the memory system and synchronization features
in “well-behaved” ways. For example, a well-written parallel
program will not release a lock that is already free, and parallel
programs usually don’t modify shared variables outside of a
critical section. As a result, parallel applications do not test a
large set of possible interactions.

To get at the more pathological interactions, our second
method relies on test scripts. These scripts can be written to
provide a tine level of control over the protocol transitions and
to be particularly demanding of the protocol. While writing an
exhaustive set of such test scripts is not feasible, we hope to
achieve reasonable test coverage with a smaller set of scripts
by introducing randomness into the execution of the scripts.

The randomness idea used is an extension of the Berkeley
Random Case Generation (RCG) technique [22] used to verify
the SPUR cache controller design. Our method, called Intelli-
gent Case Generation (KG), is described in detail in [14]. Each

156

script is a self-contained test sequence which executes a number
of memory operations on a set of processors. Each script con-
sists of some initialization, a set of test operations, and a check
for proper results. Like RCG, multiple, independent scripts run
simultaneously and interact in two ways. First, a processor ran-
domly chooses which of the multiple active scripts it is going
to pick its next action from. Therefore, execution of the same
set of scripts will be interleaved in time differently upon each
run. Second, while each script uses unique memory locations,
these locations may be in the same cache line. Scripts interact
by changing the cache state of cache lines used by other scripts.

ICC extends RCG in three ways. First, instead of simple two
step scripts (a write followed by a read), ICC supports multi-
step scripts in which some steps are executed in series and
some are allowed to execute in parallel. Second, ICC provides
a finer level of control over which processors execute which
steps of a script and introduces randomness into the assignment
process. Finally, ICC allows for a more flexible assignment of
test addresses so that particular scripts do not have to be written
to interact. Using ICC to dynamically assign addresses results
in different scripts interacting at different times during a run,
and results in the same script using various combinations of
local and remote memory.

Of course, the hardware itself will also serve as a verifica-
tion tool. The hardware can run both parallel programs and
test scripts. while debugging protocol errors on the hardware
will be difficult, the sheer number of cycles executed will be a
demanding test of the protocol.

8 Comparison with Scalable Coherent
Interface Protocol

Several protocols that provide for distributed directory-based
cache coherence have been proposed [l&21]. The majority of
these protocols have not been defined in enough detail to do
a reasonable comparison with the DASH protocol. One excep-
tion is the IEEE P1596 - Scalable Coherent Interface (XI) [121.
While still evolving, SC1 has been documented in sufficient de-
tall to make a comparison possible. SC1 differs from DASH,
however, in that it is only an interface standard, not a complete
system design. SC1 only specifies the interfaces that each pro-
cessor should implement, leaving open the actual node design
and exact interconnection network.

At the system level, a typical SC1 system would be similar
to DASH with each processing node containing a processor, a
section of main memory, and an interface to the interconnec-
tion network. Both systems rely on coherent caches maintained
by distributed directories and distributed memories to provide
scalable memory bandwidth. The major difference lies in how
and where the directory information is maintained. In SCI, the
directory is a distributed sharing list maintained by the proces-
sor caches themselves. For example, if processors A, B, and
C are caching some location, then the cache entries storing this
location wiIl form a doubly-linked list. At main memory, only
a pointer to the processor at the head of the linked list is main-
tained. In contrast, DASH places aU the directory information
with main memory.

The main advantage of the SCI scheme over DASH is that
the smount of directory pointer storage grows naturally with the
number of processors in the system. In DASH, the maximum
number of processors must be fixed beforehand, or the system

must support some form of limited directory information. On
the other hand, the SC1 directory memory would normally em-
ploy the same SRAM technology used by the processor caches
while the DASH directory is implemented in main memory
DRAM technology. Another feature of SC1 is that it guar-
antees forward progress in all cases, including the pathological
“live-lock” case alluded to in section 4.6.

The primary disadvantage of the SC1 scheme is that the distri-
bution of the individual directory entries increases the complex-
ity and latency of the directory protocol, since additional direc-
tory update messages must be sent between processor caches.
For example, on a write to a shared block cached by N + 1
processors (including the writing processor), the writer must
perform the following actions: (i) detach itself from the sharing
list; (ii) interrogate memory to determine the head of the shar-
ing list; (iii) acquire head status from the current head, and (iv)
serially purge the other processor caches by issuing invalidation
requests and receiving replies indicating the next processor in
the list. Altogether, this amounts to 2N + 8 messages including
N serial directory lookups. In contrast, DASH can locate all
sharing processors in a single directory lookup and invalidation
messages are serialized only by the network transmission rate.
Likewise, many read misses in SC1 require more inter-node
communication. For example, if a block is currently cached,
processing a read miss requires four messages since only the
head can supply the cache block. Furthermore, if a miss is
replacing a valid block in the processor’s cache, the replaced
block must be detached from its sharing list.

Recently, the SCI working committee has proposed a number
of extensions to the base protocol that address some of these
shortcomings. In particular, the committee has proposed ad-
ditional directory pointers that allow sharing lists to become
sharing kees, the support for request forwarding, and the use of
a clean cached state. While these extensions reduce the differ-
ences between the two protocols, they also add complexity. The
fundamental question is what set of features leads to better per-
formance at a given complexity level. As in the design of other
hardware systems, this requires a careful balance between opti-
mizing the performance of common operations without adding
undue complexity for uncommon ones. The lack of good statis-
tics on scalable shared memory machines, however, makes the
identification of the common cases difficult. Thus, a complete
comparison of the protocols is likely to require actual imple-
mentations of both designs and much more experience with this
class of machines.

9 Summary and Status

Distributed directory-based coherence protocols such as the
DASH protocol allow for the scalability of shared-memory mul-
tiprocessors with coherent caches. The cost of scalability is the
added complexity of directory based schemes compared with
existing snoopy. bus-based coherence protocols. The complex-
ity arises primarily from the lack of a single serialization point
within the system and the lack of atomic operations. Additional
complexity stems simply from the larger set of components that
interact to execute the protocol and the deeper hierarchy within
the memory system.

Minimizing memory latency is of paramount importance in
scalable systems. Support for coherent caches is the first step in
reducing latency, but the memory system must also be optimized
towards this goal. The DASH protocol attempts to minimize la-

157

tency through the use of the release consistency model, cache-
to-cache transfers, a forwarding control strategy and special pur-
pose operations such as prefetch and update write. Adding these
latency reducing features must, of course, be traded off with the
complexity needed to support them. All of the above features
were added without a significant increase in the complexity of
the hardware.

Verification of a complex distributed directory-based cache
coherence protocol is a major challenge. We feel that verifica-
tion through the use of test scripts and extensive random testing
will provide an acceptable level of confidence. The design ef-
fort of the prototype is currently in the implementation phase.
A functional simulator of the hardware is running as well as a
gate level simulation of the directory card. We plan to have a
4 cluster, 16 processor system running during the summer ‘of
1990. This prototype should serve as the ultimate verification
of the design and provide a vehicle to fully evaluate the design
concepts discussed in this paper.

10 Acknowledgments

The DASH project team is composed of a number of gradu-
ate students and faculty within the Computer System Labora-
tory at Stanford. Many related topics are being researched and
the results of much of this work has influenced the design of
the DASH architecture and coherence protocol. Besides the
authors, a number of others have directly contributed to the
development of DASH. In particular, we would like to thank
Wolf-Diehich Weber for creating the DASH simulator, Helen
Davis and Stephen Goldschmidt for modifying their Tango sim-
ulator to interact with the DASH simulator, and Bruce Kleinman
for developing the DASH protocol verifier. Likewise, we want
to recognize research engineer Dave Nakahira who has made
significant contributions to the design of the DASH hardware.
We also wish to thank Valid Logic Systems who has donated
the CAB software used to develop the DASH prototype.

This research is supported by DARPA contract N00014-87-
K-0828. Dan Lenoski is supported by Tandem Computers In-
corporated.

References

[l] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz.
An evaluation of directory schemes for cache coherence.
In Proc. of the 15th Annual Znt. Sym. on Computer Archi-
tecture, pages 280-289, June 1988.

[2] J. Archibald and J.-L. Baer. An economical solution to the
cache coherence problem. In Proc. of the 12th Znt. Sym.
on Computer Architecture, pages 355-362, June 1985.

[3] J. Archibald and J.-L. Baer. Cache coherence protocols:
Evaluation using a multiprocessor simulation model. ACM
Trans. on Computer Systems, 4(4):273-298, 1986.

[4] F. Baskett, T. Jennoluk, and D. Solomon. The 4D-MP
graphics superworkstation: Computing + graphics = 40
MIPS + 40 MFLOPS and 100,000 lighted polygons per
second. In Proc. of the 33rd IEEE Computer Society Znt.
Con. - COMPCON 88, pages 468-471, February 1988.

[S] W. C. Brantley, K. P. McAuliffe, and J. Weiss. R13
processor-memory element. In Proc.. of the 1985 Int. Con$
on Parallel Processing, pages 782-789, 1985.

[6] L. Censier and P. Feautrier. A new solution to coherence
problems in multicache systems. IE.EE Trans. on Comput-
ers, C-27(12):1112-1118, December 1978.

[7] W. J. Dally. Wire efficient VLSI multiprocessor commo-
nication networks. In Stanford Conference on Advanced
Research in VLSI, 1987.

[a] M. Dubois, C. Scheurich, and F. Briggs. Memory access
buffering in multiprocessors. In Proc. of the 13th Annual
Znt. Sym. on Computer Architecture, pages 434-442, June
1986.

[9] C. M. Flaig. VLSI mesh routing systems. Technical Report
5241:TR:87, California Institute of Technology, May 1987.

[lo] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In
Proc. of the 17th Annual Int. Sym. on Computer Architec-
ture, June 1990.

[ll] S. R. Goldschmidt and H. Davis. Tango introduction and
tutorial. Technical Report CSL-TR-90-410, Stanford Uni-
versity, January 1990.

[12] P1596 Working Group. P1596/Part IIIA - SC1 Cache Co-
herence Overview. Technical Report Revision 0.33, IEEE
Computer Society, November 1989.

[13] A. Gupta and W.-D. Weber. Reducing memory and traffic
requirements for scalable directory-based cache coherence
schemes. Technical Report CSL-T&90-417, Stanford Uni-
versity, March 1990.

[14] B. Kleinman. DASH Protocol Veroicarion, EE-391 Class
Project Report, December 1989.

[15] T. Knight. Architectures for artificial intelligence. In ht.
Conf. on Computer Design, 1987.

[16] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans. on
Computers, C-28(9):241-248, September 1979.

[17] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, J. Hen-
nessy, M. Horowitz, and M. Lam. Design of the Stanford
DASH multiprocessor. Technical Report CSLTR-89-40:3,
Stanford University, December 1989.

[la] B. O’Krafka and A. R. Newton. An empirical evaluation
of two memory-efficient directory methods. In Proc. of
the 17th Annual Znt. Sym. on Computer Architecture, June
1990.

[19] M. S. Papamarcos and J. H. Patel. A low overhead coher-
ence solution for multiprocessors wirh private cache mem-
ories. In Proc. of the 11th Annual Int. Sym. on Computer
Architecture, pages 348-354, June 1.984.

[20] C. K. Tang. Cache design in the tightly coupled multipro-
cessor system. In AFZPS Conf. Proc., National Computer
Conf., NY, NY, pages 749-753, June 1976.

158

WI

P-4

WI

J. Willis. Cache coherence in systems with parallel com-
munication channels & many processors. Technical Report
TR-88-013, Philips Laboratories - Briarcliff, March 1988.

D. A. Wood, G. A. Gibson, and R. H. Katz. Verifying a
mulitprocessor cache controller using random case gener-
ation. Technical Report 89/490, University of California,
Berkeley, 1988.

W. C. Yen, D. W. Yen, and K.-S. Fu. Data coherence prob-
lem in a multicache system. IEEE Trans. on Computers,
C-34(1):56-65, January 1985.

Appendix A: Coherence Transaction De-
tails

if (Data held locally in shared stat. by procrssor or RAC)
Oth.= cache(.) supply data for fill;

rls. if (Data bald locally in dirty *tat. by proceseor or I'AC) {
Dirty cache suppllen data for fill and goes to ahared .t.t.:
if (Hemcry Rome ia Local,

Writeback Data to main memory;
else

RAC tekes dat. in shared-dirty *tat.;
I

*Is. if (Memory hone la Local) (
if (Directory entry stat. I- Dirty-Remet.)

M.mory supplies read data;
*le. (

Allocate RAC entry, mask arbitration and fort. retry:
Fo=w.=d Read Request to Dirty C1u.t.~‘;
PCP" on Dirty C1u.t.r iseu.. read =.c,u.et;
Dirty cache euppli.. data .nd go.. to shared *tat.;
DC *end. shared d.ta reply to local clueter;
loc.1 RC g-t. reply .,-ad unm.aka processor e=bit=.tion;
"pan local processor read, RC suppli.. data irnd the

RAC entry goes to shared *tat.;
Directory entry *tat. - Shared-Remote;
I

1

.ls. /* Memory home i. Remet. *I (
Allocate RAC entry, m..k azbitratlo" and force r-try;
Local DC eands read =.qu.st to ho,". clueter;
if (Directory entry atat. I- Dirty-Remote) (

Directory entry stats - Sharad-Remote, upd.t. w&o=;
"Cm. DC *en*. reply to local RCj
Local R-2 get. reply and unmp~k. processor rrbitration;

.1*. (
Ho,,,. DC forrard. Read Requast to dirty cluster;
PCP" on dirty cluetar ieeu.. read request and DC sends

reply to local cluster and sharing writsback to ho,,,.;
Local RC get. reply and unmask. proceaeor .=bit=ation;
Home DC gets sharing writoback, writes back dirty data,

Directory entry atat. - Shared-Remote, "pd.t. vector;
I

Upon loo.1 p=oc.,.o= =.ad, RC sup~li.. the d.t. and tb.
RAC entry go.. to shared stat.:

I

Figure 7: Normal flow of read request bus transaction.

if (Memory Homo ia Local) I
Writaback data i. written back into main memory;
1

.lP. I' M.uuJry HOme i. Ilemot. "I (
Writeback request ..nt to home;
Writebilck data is .=itt.,n back into main memory;
Directory entry stat. - Oncached-Remet., update vector;
1

if (Data held locally in dirty #tat. by p=oc..ao= or R&C)
Dirty cache euppli.~ Read-Excluaiv. fill data md

in"*lidat.* self;

el.. if (Msmory "OnI. is Locrl) (
*witoh (Directory .ntEy stat.) (

~a.. Uncechsd-Remote :
Memory suppli.. dat., any locally cilched copiss

are inv.1idat.d;
brsak;

CP.. sha=.d-Remote :
RC allocat.. a" entry in RAC with DC opcifird

inv.1id.t. acknowl.dg. Count;
"emcry suppli.. d.t., any loc.lly crcbed copies .=.

invalidated;
Local DC sends inva1id.t. request to shared clu.t.=.;
Dir. entry *tat. - Vnc.oh.d-Remet., "pd.t. ".cto=;
"pon rrcelpt of all acknoulsdg.. RC d..lloc.t.a RA.2

entry;
break;

Ca... Di=ty-R*mot. :
Allocate R&C atry. m.sk arbitration and force retry;
Forrard R.ad-Exc1u.i". Request to dirty clu.t.=;
PCP" at dirty cluster i..".. Road-%x =..qu.st,

Dirty cache supplias data and invalidates ..lf;
DC in dirty c1u.t.r ..ndr r-ply to loc.1 Rc;
Local RC g-t. rsply from dirty c1u.t.r md unmask.

p=oc.,aso= arbitration;
"pon local proaeseor rs-Read-Ex, RC .up,,li., dat.,

RAC entry i. do.1loc.t.d and
Dir. entry stat. - "ncachsd-Remot., updat. "e&o=;

1
1

else /* Memor" HOme is R.mot. */ ,
RC~allocat~e RAC entry, masks ;rbitration end foec.. r-try;
Local DC *an** R**d-Bxol*siv* request to hour;
awitch ,Di=.ctory *"try *t&a) {

~a.88 Oncached-R-mot. :
Worn. memory supplies data, any locally cachsd copi..

.r. invalidated, Ho.. DC ..nd. r-ply to local Rc;
Dir.ctory entry *t*t. - Dirty-Rsmot., "pdete V.&o=;
Local RC get. R..d-Ex reply with zero invalid.tion

co"nt and unmaakm ~=o~...o= for Irbitration;
Upon local processor ;.-R-ad-Ex, RC euppliee datn and

R&C entry i. d..lloc.t.d;
break;

ces. 8h*red-Re.mot. :
Home memory ."ppli.. data, eny Ioc.lly cached copies

LT. invalid.t.d, Horn. DC smd. reply to local RC;
Home DC oond. inv.1id.ti.x =.qu..t. to .h.=ing

clusters:
Dirsctory entry *tat. - Dirty-Remote, vpdat. vector;
Local RC q.tn rwl!, with dat. and inva1id.t. acknor-

ledg. count .~deunma.k~ p=oc...o= for arbitration;
Upon local p=oc.s.o= re-R.-d-Ex, RC supplies d.t.;
Upon receipt of all acknoxlsdges RC deallocate. RX

*"try;
b=..k;

case Dirty-Remet. :
Born. DC forr.=de R-ad--Ex request to dirty cluster;
PCP” et dirty c1ust.r iasu.. Read-&x rsqueet,

Dirty cash. su&i.e d.ta and in"..lidat.. self;
DC in dirty clustrr *end. reply to local RC with

acknowledge count of on. and ..nd. Dirty T=sn.f.=
request to home;

Local RC geta reply and acknowledge count and un,,,.sks
processor fo= .=bit=.tion;

Upon local processor =.-Read-Ex, RC euppliee data;
upon receipt Of Dirty Tran.f.r r.qu.et, HOlM DC

sends acknorl.dq"."t to local RC,
Horn. Dir. antry stat. - Dirty-R-mot., update w&o=;

Upon receipt of acknowledge RC d..lloc.t.a RAC entry;
,

Figure 9: Normal flow of read-exclusive request bus transaction.

Figure 8: Normal flow of a write-back request bus transaction.

159

