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Abstract 

DASH is a scalable shared-memory multiprocessor currently 
being developed at Stanford’s Computer Systems Laboratory. 
The architecture consists of powerful processing nodes, each 
with a portion of the shared-memory, connected to a scalable 
interconnection network. A key feature of DASH is its dis- 
tributed directory-based cache coherence protocol. Unlike tra- 
ditional snoopy coherence protocols, the DASH protocol does 
not rely on broadcast; instead it uses point-to-point messages 
sent between the processors and memories to keep caches con- 
sistent. Furthermore, the DASH system does not contain any 
single serialization or control point, While these features pro- 
vide the basis for scalability, they also force a reevaluation of 
many fundamental issues involved in the design of a proto- 
col. These include the issues of correctness, performance and 
protocol complexity. In this paper, we present the design of 
the DASH coherence protocol and discuss how it addresses the 
above issues, We also discuss our strategy for verifying the 
correctness of the protocol and briefly compare our protocol to 
the IEEE Scalable Coherent Interface protocol. 

1 Introduction 

The limitations of current uniprocessor speeds and the ability to 
replicate low cost, high-performance processors and VLSI com- 
ponents have provided the impetus for the design of multipro- 
cessors which are capable of scaling to a large number of pro- 
cessors. Two major paradigms for these multiprocessor archi- 
tectures have developed, message-passing and shared-memory. 
In a message-passing multiprocessor, each processor has ‘a lo- 
cal memory, which is only accessible to that processor. Inter- 
processor communication occurs only through explicit message 
passing. In a shared-memory multiprocessor, all memory is ac- 
cessible to each processor. The shared-memory paradigm has 
the advantage that the programmer is not burdened with the 
issues of data partitioning, and accessibility of data from all 
processors simplifies the task of dynamic load distribution. The 
primary advantage of the message passing systems is the ease 
with which they scale to support a large number of proces- 
sors. For shared-memory machines providing such scalability 
has traditionally proved difficult to achieve. 

We are currently building a prototype of a scalable shared- 
memory multiprocessor. The system provides high processor 
performance and scalability though the use of coherent caches 
and a directory-based coherence protocol. The high-level or- 

Figure 1: General architecture of DASH. 

ganization of the prototype, called DASH (Directory Architec- 
ture for SHared memory) [173. is shown in Figure 1. The ar- 
chitecture-consists of a number of processing nodes connected 
through a high-bandwidth low-latency interconnection network. 
The physical memory in the machine is distributed among the 
nodes of the multiprocessor, with all memory accessible to each 
node. Each processing node, or cluster, consists of a small 
number of high-performance processors with their individual 
caches, a portion of the shared-memory, a common cache for 
pending remote accesses, and a directory controller interfacing 
the cluster to the network. A bus-based snoopy scheme is used 
to keep caches coherent within a cluster, while inter-node cache 
consistency is maintained using a distributed directory-based 
coherence protocol. 

The concept of directory-based cache coherence was first pro- 
posed by Tang [20] and Censier and Feautrier 163. Subsequently, 
it has been been investigated by others ([1],[2] and [23]). Build- 
ing on this earlier work, we have deveIoped a new directory- 
based cache-coherence protocol which works with distributed 
directories and the hierarchical cluster configuration of DASH. 
The protocol also integrates support for efficient synchroniza- 
tion operations using the directory. Furthermore, in designing 
the machine we have addressed many of the issues left unre- 
solved by earlier work. 

In DASH, each processing node has a directory memory cor- 
responding to its portion of the shared physical memory. For 
each memory block, the directory memory stores the identities 
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of all remote nodes caching that block. Using the directory 
memory, a node writing a location can send point-to-point in- 
validation or update messages to those processors that are ac- 
tually caching that block. This is in contrast to the invalidating 
broadcast required by the snoopy protocol. The scalability of 
DASH depends on tbis ability to avoid broadcasts. Another im- 
portant attribute of the directory-based protocol is that it does 
not depend on any specific interconnection network topology. 
As a result, we can readily use any of the low-latency scalable 
networks, such as meshes or hypercubes, that were originally 
developed for message-passing machines 1771. 

While the design of bus-based snoopy coherence protocols 
is reasonably well understood, this is not true of distributed 
directory-based protocols. Unlike snoopy protocols, directory- 
based schemes do not have a single serialization point for all 
memory transactions. While this feature is responsible for their 
scalability, it also makes them more complex and forces one to 
rethink how the protocol should address the fundamental issues 
of correctness, system performance, and complexity. 

The next section outlines the important issues in designing 
a cache coherence protocol. Section 3 gives an overview of 
the DASH hardware architecture. Section 4 describes the de- 
sign of the DASH cohexencc protocol. relating it to the issues 
raised in section 2. Section 5 outlines some of the additional 
operations supported beyond the base protocol, while Section 6 
discusses scaling the directory structure. Section 7 briefly de- 
scribes our approach to verifying the correctness of the proto- 
col. Section 8 compares the DASH protocol with the proposed 
IEEE-SC1 (Scalable Coherent Interface) protocol for distributed 
directory-based cache coherence. Finally, section 9 presents 
conclusions and summarizes the current status of the design 
effort. 

2 Design Issues for Distributed Coher- 
ence Protocols 

‘Ihe issues that arise in the design of any cache coherence pro- 
tocol and, in particular, a distributed directory-based protocol, 
can be divided into three categories: those that deal with cor- 
rectness, those that deal with the performance, and those related 
to the distributed control of the protocol. 

2.1 Correctness 

The foremost issue that any multiprocessor cache coherence 
protocol must address is correctness. This translates into re- 
quirements in three areas: 

Memory Consistency Model: For a uniprocessor, the model 
of a correct memory system is well defined. Load operations 
return the last value written to a given memory location. Like- 
wise, store operations bind the value returned by subsequent 
loads of the location until the next store. For multiprocessors, 
however, the issue is more complex because the definitions of 
“last value written”, “subsequent loads” and “next store” be- 
come less clear as there may be multiple processors reading and 
writing a location. To resolve this difficulty a number of mem- 
ory consistency models have been proposed in the literature, 
most notably, the sequential and weak consistency models [8]. 
Weaker consistency models attempt to loosen the constraints on 
the coherence protocol while still providing a reasonable pro- 
gramming model for the user. Although most existing systems 

utilize a relatively strong consistency model, the larger latencies 
found in a distributed system favor the less constrained models. 

Deadlock: A protocol must also be deadlock free. Given 
the arbitrary communication patterns and finite buffering within 
the memory system there are numerous opportunities for dead- 
lock. For example, a deadlock can occur if a set of transactions 
holds network and buffer resources in a circular manner, and 
the consumption of one request requires the generation of an- 
other request. Similarly, lack of flow control in nodes can cause 
requests to back up into the network, blocking the flow of other 
messages that may be able to release the congestion, 

Error Handling: Another issue related to correctness is sup- 
port for data integrity and fault tolerance. Any large system will 
exhibit failures, and it is generally unacceptable if these fail- 
ures result in corrupted data or incorrect results without a fail- 
ure indication. This is especially true for parallel applications 
where algorithms are more complex and may contain some non- 
determinism which limits repeatability. Unfortunately, support 
for data integrity and fault-tolerance within a complex protocol 
that attempts to minimize latency and is executed directly by 
hardware is difficult. The protocol must attempt to balance the 
level of data integrity with the increase in latency and hard- 
ware complexity. At a minimum, the protocol should be able to 
flag all detectable failures, and convey this information to the 
processors affected. 

2.2 Performance 

Given a protocol that is correct, performance becomes the next 
important design criterion. The two key metrics of memory 
system performance are latency and bandwidth. 

Latency: Performance is primarily determined by the la- 
tency experienced by memory requests. In DASH, support for 
cachable shared data provides the major reduction in latency. 
The latency of write misses is reduced by using write buffers 
and by the support of the release consistency model. Hiding 
the latency for read misses is usually more critical since the 
processor is stalled until data is returned. To reduce the la- 
tency for read misses, the protocol must minimize the number 
of inter-cluster messages needed to service a miss and the delay 
associated with each such message. 

Bandwidth: Providing high memory bandwidth that scales 
with the number of processors is key to any large system. 
Caches and distributed memory form the basis for a scal- 
able, high-bandwidth memory system in DASH. Even with dis- 
tributed memory, however, bandwidth is limited by the serial- 
ization of requests in the memory system and the amount of 
traffic generated by each memory request. 

Servicing a memory request in a distributed system often 
requires several messages to be transmitted. For example, a 
message to access a remote location generates a reply message 
containing the data, and possibly other messages invalidating 
remote caches. The component with the largest serialization in 
this chain limits the maximum throughput of requests. Serial- 
ization affects performance by increasing the queuing delays, 
and thus the latency, of memory requests. Queueing delays can 
become critical for locations that exhibit a large degree of shar- 
ing. A protocol should attempt to minimize the service time 
at all queuing centers. In particular, in a distributed system no 
central resources within a node should be blocked while inter- 
node communication is taking place to service a request. In this 
way serialization is limited only by the time of local, i&a-node 
operations. 
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The amount of traffic generated per request also limits the 
effective throughput of the memory system. Traffic seen by 
the global interconnect and memory subsystem increases the 
queueing for these shared resources. DASH reduces .traffic by 
providing coherent caches and by distributing memory among 
the processors. Caches filter many of the requests for shared 
data while grouping memory with processors removes private 
references if the corresponding memory is allocated within the 
local cluster. At the protocol level, the number of messages 
required to service different types of memory requests should 
be minimized, unless the extra messages directly contribute to 
reduced latency or serialization. 

2.3 Distributed Control and Complexity 

A coherence protocol designed to address the above issues must 
be partitioned among the distributed components of the multi- 
processor. These components include the processors and their 
caches, the directory and main memory controllers, and the in- 
terconnection network. The lack of a single serialization point, 
such as a bus, complicates the control since transactions do not 
complete atomically. Furthermore, multiple paths within the 
memory system and lack of a single arbitration point within the 
system allow some operations to complete out of order. The re- 
sult is that there is a rich set of interactions that can take place 
between different memory and coherence transactions. Parti- 
tioning the control of the protocol requires a delicate balance 
between the performance of the system and the complexity of 
the components. Too much complexity may effect the ability 
to implement the protocol or ensure that the protocol is correct. 

3 Overview of DASH 

Figure 2 shows a high-level picture of the DASH prototype we 
are building at Stanford. In order to manage the size of the 
prototype design effort, a commercial bus-based multiprocessor 
was chosen as the processing node. Each node (or cluster) is 
a Silicon Graphics POWER Station 4D/240 [4]. The 4D/240 
system consists of four high-performance processors, each con- 
nected to a 64 Kbyte first-level instruction cache, and a 64 Kbyte 
write-through data cache. The 64 Kbyte data cache interfaces 
to a 256 Kbyte second-level write-back cache through a read 
buffer and a 4 word deep write-buffer. The main purpose of this 
second-level cache is to convert the write-through policy of the 
first-level to a write-back policy, and to provide the extra cache 
tags for bus snooping. Both the first and second-level caches 
are direct-mapped. 

In the 4D/240, the second-level caches are responsible for bus 
snooping and maintaining consistency among the caches in the 
cluster. Consistency is maintained using the Illinois coherence 
protocol [19], which is an invalidation-based ownership proto- 
col. Before a processor can write to a cache line, it must first 
acquire exclusive ownership of that line by requesting that all 
other caches invalidate their copy of that line. Once a processor 
has exclusive ownership of a cache line, it may write to that 
line without consuming further bus cycles. 

The memory bus (MPBUS) of the 4D/240 is a pipelined syn- 
chronous bus, supporting memory-to-cache and cache-to-cache 
transfers of 16 bytes every 4 bus clocks with a latency of 6 bus 
clocks. While the MPBUS is pipelined, it is not a split transac- 
tion bus. Consequently, it is not possible to efficiently interleave 
long duration remote transactions with the short duration local 

Figure 2: Block diagram of sample 2 x 2 DASH system. 

transactions. Since this ability is critical to DASH, we have 
extended the MPBUS protocol to support a retry mechanism. 
Remote requests are signaled to retry while the inter-cluster 
messages are being processed. To avoid unnecessary retries the 
processor is masked from arbitration until the response from the 
remote request has been received. When the response srrives, 
the requesting processor is unmasked, retries the request on the 
bus, and is supplied the remote data. 

A DASH system consists of a number of modified 4D/240 
systems that have been supplemented with a directory controller 
board. This directory controller board is responsible for main- 
taining the cache coherence across the nodes and serving as the 
interface to the interconnection network. 

The directory board is implemented on a single printed cir- 
cuit board and consists of five major subsystems as shown in 
Figure 3. The directory controller (DC) contains the directory 
memory corresponding to the portion of main memory present 
within the cluster. It also initiates out-bound network requests 
and replies. The pseudo-CPU (PCPU) is responsible for buffer- 
ing incoming requests and issuing such requests on the cluster 
bus. It mimics a CPU on this bus on behalf of remote processors 
except that responses from the bus are sent out by the directory 
controller. The reply controller (RC) tracks outstanding requests 
made by the local processors and receives and buffers the corre- 
sponding replies from remote clusters. It acts as memory when 
the local processors are allowed to retry their remote requests. 
The network interface and the local portion of the network it- 
self reside on the directory card. The interconnection network 
consists of a pair of meshes. One mesh is dedicated to the re- 
quest messages while the other handles replies. These meshes 
utilize wormhole routing [9] to minimize latency. Finally, the 
board contains hardware monitoring logic and miscellaneous 
control and status registers. The monitoring logic samples a 
variety of directory board and bus events from which usage and 
performance statistics can be derived. 

The directory memory is organized as an array of directory 
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Figure 3: Directory board block diagram. 

enties. There is one entry for each memory block. The direc- 
tory entries used in the prototype are identical to that originally 
proposed in [6]. They are composed of a single state bit to- 
gether with a bit vector of pointers to clusters. The state bit 
indicates whether the clusters have a read (shared) or read/write 
(dirty) copy of the data. The bit vector contains a bit for each 
of the sixteen clusters supported iu the prototype. Associating 
the directory with main memory allows the directory to be built 
with the same DRAM technology as main memory. The DC ac- 
cesses the directory memory on each MPBUS transaction along 
with the access to main memory. The directory information is 
combined with the type of bus operation, address, and result 
of the snooping within the cluster to determine what network 
messages and bus controls the DC will generate. 

The RC maintains its state io the remote access cache (RAC). 
The functions of the RAC include maintaining the state of cur- 
rently outstanding requests, buffering replies from the network 
and supplementing the functionality of the processors’ caches. 
The RAC is organized as a snoopy cache with augmented state 
information. The RAC’s state machines allow accesses from 
both the network and the cluster bus. Replies from the network 
are buffered in the RAC and cause the waiting processor to be 
released for bus arbitration. Wben the released processor re- 
tries the access the RAC supplies the data via a cache-to-cache 
transfer. 

3.1 Memory Consistency in DASH 

As stated in Section 2, the correctness of the coherence protocol 
is a function of the memory consistency model adopted by the 
architecture. There is a whole spectrum of choices for the level 
of consistency to support directly in hardware. At one end is the 
sequential consistency model [16] which requires the execution 
of the parallel program to appear as some interleaving of the 
execution of the parallel processes on a sequential machine. As 
one moves towards weaker models of consistency, performance 

gains are made at the cost of a more complex programming 
model for the user. 

The base model of consistency provided by the DASH hard- 
ware is called release consisrency. Release consistency [lo] is 
an extension of the weak consistency model first proposed by 
Dubois, Scheurich and Briggs [8]. The distinguishing character- 
istics of release consistency is that it allows memory operations 
issued by a given processor to be observed and complete out 
of order with respect to the other processors. The ordering of 
operations is only preserved before “releasing” synchronization 
operations or explicit ordering operations. Release consistency 
takes advantage of the fact that while in a critical region a pro- 
grammer has already assured that no other processor is accessing 
the protected variables. Thus, updates to these variables can be 
observed by other processors in arbitrary order. Only before 
the lock release at the end of the region does the hardware need 
to guarantee that ah operations have completed. While release 
consistency does complicate programming and the coherence 
protocol, it can hide much of the overhead of write operations. 

Support for release consistency puts several requirements on 
the system. First, the hardware must support a primitive which 
guarantees the ordering of memory operations at specific points 
in a program. Such fence [5, 101 primitives can then be placed 
by software before releasing synchronization points in order to 
implement release consistency. DASH supports two explicit 
fence mechanisms. A full-fence operation stalls the proces- 
sor until all of its pending operations have been completed, 
while a write-fence simply delays subsequent write-operations. 
A higher performance implementation of release consistency 
includes implicit fence operations within the releasing synchro- 
nization operations themselves. DASH supports such synchrv- 
nization operations yielding release consistency as its base con- 
sistency model. The explicit fence operations in DASH then 
allow the user or compiler to synthesize stricter consistency 
models if needed. 

The release consistency model also places constraints on the 
base coherence protocol. First, the system must respect the local 
dependencies generated by the memory operations of a single 
processor. Second, ah coherence operations, especially opera- 
tions related to writes, must be acknowledged so that the issuing 
processor can determine when a fence can proceed. Third, any 
cache lime owned with pending invalidations against it can not 
be shared between processors. This prevents the new processor 
from improperly passing a fence. If sharing is allowed then 
the receiving processor must be informed when all of the pend- 
ing invalidates have been acknowledged. Lastly, any operations 
that a processor issues after a fence operation may not become 
visible to any other processor until all operations preceding the 
fence have completed. 

4 The DASH Cache Coherence Protocol 

In our discussion of the coherence protocol, we use the follow- 
ing naming conventions for the various clusters and memories 
involved in any given transaction. A local cluster is a cluster 
that contains the processor originating a given request, while 
the home cluster is the cluster which contains the main memory 
and directory for a given physical memory address. A remote 
cluster is any other cluster. Likewise, local memory refers to 
the main memory associated with the local cluster while remote 
memory is any memory whose home is not the local. 

The DASH coherence protocol is an invalidation-based own- 
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ership protocol. A memory block can be in one of three states as 
indicated by the associated directory entry: (i) uncached-remote, 
that is not cached by any remote cluster; (ii) shared-remote, that 
is cached in an unmodified staate by one or more remote clus- 
ters; or (iii) dirty-remote, that is cached in a modified state by 
a single remote cluster. The directory does not maintain infor- 
mation concerning whether the home cluster itself is caching 
a memory block because all transactions that change the state 
of a memory block are issued on the bus of the home cluster, 
and the snoopy bus protocol keeps the home cluster coherent. 
While we could have chosen not to issue all transactions on the 
home cluster’s bus this would had an insignificant performance 
improvement since most requests to the home also require an 
access to main memory to retrieve the actual data. 

The protocol maintains the notion of an owning cluster for 
each memory block. The owning cluster is nominally the home 
cluster. However, in the case that a memory block is present 
in the dirty state in a remote cluster, that cluster is the owner. 
Only the owning cluster can complete a remote reference for a 
given block and update the directory state. While the directory 
entry is always maintained in the home cluster, a dirty cluster 
initiates all changes to the directory state of a block when it 
is the owner (such update messages also indicate that the dirty 
cluster is giving up ownership). The order that operations reach 
the owning cluster determines their global order. 

As with memory blocks, a cache block in a processor’s cache 
may also be in one of three states: invalid, shared, and dirty. 
The shared state implies that there may be other processors 
caching that location. The dirty state implies that this cache 
contains an exclusive copy of the memory block, and the block 
has been modified. 

The following sections outline the three primitive operations 
supported by the base DASH coherence protocol: read, read- 
exclusive and write-back. We also discuss how the protocol 
responds to the issues that were brought up in Section 2 and 
some of the alternative design choices that were considered. We 
describe only the normal flow for the memory transactions in the 
following sections, exception cases are covered in section 4.6. 

4.1 Read Requests 

Memory read requests are initiated by processor load instruc- 
tions. If the location is present in the processor’s first-level 
cache, the cache simply supplies the data. If not present, then a 
cache fill operation must bring the required block into the first- 
level cache. A fill operation first attempts to find the cache line 
in the processor’s second-level cache, and if unsuccessful, the 
processor issues a read request on the bus. This read request ei- 
ther completes locally or is signaled to retry while the directory 
board interacts with the other clusters to retrieve the required 
cache line. The detailed flow for a read request is given in 
Figure 7 in the appendix. 

The protocol tries to minimize latency by using cache-to- 
cache transfers. The local bus can satisfy a remote read if the 
given line is held in another processor’s cache or the remote 
access cache (RAC). The four processor caches together with 
the RAC form a five-way set associative (1.25 Mbyte) cluster 
cache. The effective size of this cache is smaller than a true set 
associative cache because the enties in the caches need not be 
distinct. The check for a local copy is initiated by the normal 
snooping when the read is issued on the bus. If the cache line 
is present in the shared state then the data is simply transferred 
over the bus to the requesting processor and no access to the 

remote home cluster is needed. If the c:ache line is held in a 
dirty state by a local processor, however, something must be 
done with the ownership of the cache line since the processor 
supplying the data goes to a shared state in the Illinois protocol 
used on the cluster bus. The two options considered were to: (i) 
have the directory do a sharing write-back to the home cluster; 
and (ii) have the RAC take ownership of the cache line. We 
chose the second option because it permits the processors within 
a cluster to read and write a shared location without causing 
traffic in the network or home cluster. 

If a read request cannot be satisfied by the local cluster, the 
processor is forced to retry the bus operation, and a request 
message is sent to the home cluster. At the same time the 
processor is masked from arbitration so that it does not tie up the 
local bus. Whenever a remote request is sent by a cluster, a RAC 
entry is allocated to act as a placeholder for the reply to this 
request. The RAC entry also permits merging of requests made 
by the different processors within the same cluster. If another 
request to the same memory block is made, a new request will 
not be sent to the home cluster; this Educes both traffic and 
latency. On the other hand, an access to a different memory 
block, which happens to map to a RAC entry already in use, 
must he delayed until the pending operation is complete. Given 
that the number of active FUC entries is small the benefit of 
merging should outweigh the potential for contention. 

When the read request reaches the home cluster, it is issued 
on that cluster’s bus. This causes the directory to look up the 
status of that memory block. If the block is in an uncached- 
remote or shared-remote state the directmy controller sends the 
data over the reply network to the requesting cluster. It also 
records the fact that the requesting cluster now has a copy of 
the memory block. If the block is in the dirty-remote state, 
however, the read request is forwarded to the owning, dirty 
cluster. The owning cluster sends out two messages in response 
to the read. A message containing the data is sent directly to the 
requesting cluster, and a sharing writeback request is sent to the 
home cluster. The sharing writeback request writes the cache 
block back to memory and also updates the directory. The flow 
of messages for this case is shown in Figure 4. 

As shown in Figure 4, any request not satisfied in the home 
cluster is forwarded to the remote cluster that has a dirty copy 
of the data. This reduces latency by permitting the dirty clus- 
ter to respond directly to the requesting cluster. In addition, 
this forwarding strategy allows the directory controller to si- 
multaneously process many requests (:i.e. to be multithreaded) 
without the added complexity of maintaining the state of out- 
standing requests. Serialization is reduced to the time of a sin- 
gle intra-cluster bus transaction. The only resource held while 
inter-cluster messages are being sent is a single entry in the 
originating cluster’s RAC. 

The downside of the forwarding strategy is that it can result 
in additional latency when simultaneous accesses are made to 
the same block. For example, if two read requests from differ- 
ent clusters are received close together for a line that is dirty 
remote, both will be forwarded to the dirty cluster. However, 
only the Iirst one will be satisfied since this request will force 
the dirty cluster to lose ownership by doing a sharing writeback 
and changing its local state to read only. The second request 
will not find the dirty data and will be returned with a nega- 
tive acknowledge (NAK) to its originating cluster. This :NAK 
will force the cluster to retry its access. An alternative to the 
forwarding approach used by our protocol would havi been to 
buffer the read request at the home cluster, have the home send 
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Figure 4: Flow of Read Request to remote memory with direc- 
tory in dirty-remote state. 

a flush request to the owning cluster, and then have the home 
send the data back to the originating cluster. We did not adopt 
this approach because it would have increased the latency for 
such reads by adding an extra network and bus transaction. Ad- 
ditionally, it would have required buffers in the directory to hoId 
the pending transaction, or blocking subsequent accesses to the 
directory until the first request had been satisfied. 

4.2 Read-Exclusive Requests 
Write operations are initiated by processor store instructions. 
Data is written through the first-level cache and is buffered in a 
four word deep write-buffer. The second-level cache can retire 
the write if it has ownership of the line. Otherwise, a read- 
exclusive request is issued to the bus to acquire sole ownership 
of the line and retrieve the other words in the cache block. Ob- 
taining ownership does not block the processor directly; only 
the write-buffer output is stalled. As in the case of read requests, 
cache coherence operations begin when the read-exclusive re- 
quest is issued on the bus. The detailed flow of read-exclusive 
request is given in the appendix in Figure 9 and is summarized 
below. 

The flow of a read-exclusive is similar to that of a read re- 
quest. Once the request is issued on the bus, it checks other 
caches at the local cluster level. If one of those caches has 
that memory block in the dirty state (it is the owner), then that 
cache supplies the data and ownership and invalidates its own 
copy. If the memory block is not owned by the local cluster, 
a request for ownership is sent to the home cluster. As in the 
case of read requests, a RAC entry is allocated to receive the 
ownership and data. 

At the home cluster, the read-exclusive request is echoed 
on the bus. If the memory block is in an uncached-remote or 
shared-remote state the data and ownership are immediately sent 

c. RAC envy invalidate count 
dencmsnkd with each ACK 
until 0. then snuy &r.kxated 

Figure 5: Flow of Read-Exclusive Request to remote memory 
with directory in shared-remote state. 

back over the reply network. In addition, if the block is in the 
shared-remote state, each cluster caching the block is sent an 
invalidation request. The requesting cluster receives the data 
as before, and is also informed of the number of invalidation 
acknowledge messages to expect. Remote clusters send inval- 
idation acknowledge messages to the requesting cluster after 
completing their invalidation. As discussed in Section 3.1, the 
invalidation acknowledges are needed by the requesting proces- 
sor to know when the store has been completed with respect to 
all processors. The RAC entry in the requesting cluster persists 
until all invalidation acknowledges have been received. The re- 
ceipt of the acknowledges generally occurs after the processor 
itself has been granted exclusive ownership of the cache line 
and continued execution. Figure 5 depicts this shared-remote 
case. 

If the directory indicates a dirty-remote state, then the request 
is forwarded to the owning cluster as in a read request. At the 
dirty cluster, the read-exclusive request is issued on the bus. 
This causes the owning processor to invalidate that block from 
its cache and to send a message to the requesting cluster grant- 
ing ownership and supplying the data. In parallel, a request 
is sent to the home cluster to update ownership of the block. 
On receiving this message, the home sends an acknowledg- 
ment to the new owning cluster. This extra acknowledgment is 
needed because the requesting cluster (the new owning cluster) 
may give up ownership (e.g. due to a writeback) even before 
the home directory has received an ownership change message 
from the previous owner. If these messages reach the home 
out of order the directory will become permanently inconsis- 
tent. The extra acknowledgment guarantees that the new owner 
retain ownership until the directoty has been updated. 

Performance of the read and write operations is closely re- 
lated to the speed of the MPBUS and the latency of inter-cluster 
communication. Figure 6 shows the latencies for various mem- 
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Read Operations 
Hit in 1st Level Cache 1 pclock 
Fill from 2nd L-eve1 Cache 12 pclock 
Fill from Local Cluster 22 pclock 
Fill from Remote Cluster 61 pclock 
Fill from Dirty Remote, Remote Home 80 pclock 

Fill operations fetch 16 byte cache blocks ard empty 
the write-b@er before fetching the read-miss cache block. 

1 Operations Write 

Hit on 2nd Level Owned Block 3 pclock 
Owned by Local Cluster 18 pclock 
Owned in Remote Cluster 57 pclock 
Owned in Dirty Remote, Remote Home 76 pclock 

Write operations only stall the write-ba#er, not the 
processor, while rhefill is outstanding. 

Write delays assume Release Consistency (i.e. they do 
not waitfor remote invalidates to be acknowledged). 

Figure 6: Latency for various memory system operations in 
processor clocks. Each processor clock in the prototype is 40 
ns. 

ory operations in the DASH prototype assuming no network or 
bus contention. The figure illustrates the one-to-one relation- 
ship between the latency of an operation and its corresponding 
number of network hops and bus transactions. In DASH, the 
network and directory board overhead is roughly equal to the 
CPU overhead to initiate a bus transaction. Thus, if an intra- 
cluster bus transaction takes roughly 20 processor clocks then 
an inter-cluster transaction that involves two clusters, (i.e. three 
bus transactions) takes roughly 60 processor clocks, and a three 
cluster transaction takes 80 processor clocks. 

4.3 Writeback Requests 

A dixty cache line that is replaced must be written back to 
memory. If the home of the memory block is the local cluster, 
then the data is simply written back to main memory. If the 
home cluster is remote, then a message is sent to the remote 
home which updates the main memory and marks the block 
uncached-remote. The flow of a writeback operation is given 
in the appendix in Figure 8. 

4.4 Bus Initiated Cache Transactions 

CPU initiated transactions have been described in the preceding 
sections. The protocol also includes transitions made by the 
slave caches that are monitoring their respective buses. These 
transitions are equivalent to those in a normal snoopy bus proto- 
col. In particular, a read operation on the bus will cause a dirty 
cache to supply data and change to a shared state. Dirty data will 
also be written back to main memory (or the RAC if remote). A 
read-exclusive operation on the bus will cause all other cached 
copies of the line to be invalidated. Note that when a valid line 
in the second-level cache is invalidated, the first-level cache is 
also invalidated so that the processor’s second-level cache is a 
superset of the first-level cache. 

4.5 Support for Memory Consistency 

As discussed in section 3.1, DASH supports the release consis- 
tency model. Memory system latency is reduced because the 

semantics of release consistency allows the processor to con- 
tinue after issuing a write operation. The write-buffer within 
the processor holds the pending operation, and the write-buffer 
is allowed to retire the write before the operation has completed 
with respect to all processors. The processor itself is allowed to 
continue while the write-buffer and directory controller are com- 
pleting the previous operations. Ordering of memory accesses 
is only guaranteed between operations separated by a releasing 
synchronization operation or an explicit fence operation. Upon 
a write-fence (explicit or implicit), all previous read and write 
operations issued by this processor must have completed with 
respect to all processors before any additional write operations 
can become visible to other processors. 

DASH implements a write fence by blocking a prqcessor’s 
access to its second-level cache and the MPBUS until all reads 
and writes it issued before the write fence have completed. This 
is done by stalling the write-fence (which is mapped to a store 
operation) in the processor’s write-buffer. Guaranteeing that 
preceding reads and writes have been performed without impos- 
ing undue processor stalls is the challenge. A first requirement 
is that all invalidation operations must ‘be acknowledged. As 
illustrated in Figure 5, a write operation to shared data can pro- 
ceed after receiving the exclusive reply from the directory, but 
the RAC entry associated with this operation persists until all 
of the acknowledges are received by the. reply controller (IX). 
Each RAC entry is tagged with the processor that is responsible 
for this entry and each processor has a dedicated counter in the 
RC which counts the total number of RA.C entries in use by that 
processor. A write fence stalls until the counter for that proces- 
sor is decremented to zero. At this point, the processor has no 
outstanding RAC entries, so all of its invalidation acknowledges 
must have been received. 

We observe that simply using a per processor counter to keep 
track of the number of outstanding invalidations is not sufficient 
to support release consistency. A simple counter does not allow 
the processor cache to distinguish between dirty cache lines 
that have outstanding invalidates fmm those that do not. This 
results in another processor not being able to detect whether 
a line returned by a dirty cache has outstanding invalidates. 
The requesting processor could then improperly pass through a 
fence operation. Storing the pending invalidate count on a per 
cache line basis in the RAC, and having the RAC snoop bus 
transactions, allows cache lines with pending invalidates to be 
distinguished. The RAC forces a reject of remote requests to 
such blocks with a NAK reply. Local atccesses are allowed,, but 
the RAC adds the new processor to its entry for the line making 
this processor also responsible for the original invalidations. 
Write-back requests of a line with outstanding invalidations are 
blocked by having the RAC take dirty ownership of the cache 
block. 

In the protocol, invalidation acknowledges are sent to the 
local cluster that initiated the memory request. An alternative 
would be for the home cluster to gather the acknowledges, and, 
when all have been received, send a message to the requesting 
cluster indicating that the request has been completed. We chose 
the former because it reduces the waiting time for completion 
of a subsequent fence operation by the requesting cluster and 
reduces the potential of a hot spot developing at the memory. 

4.6 Exception Conditions 

The description of the protocol listed above does not cover all of 
the conditions that the actual protocol must address. While enu- 

154 



merating all of the possible exceptions and protocol responses 
would require an overly detailed discussion, this section intro- 
duces most of the exception cases and gives an idea of how the 
protocol responds to each exception. 

One exception case is that a request forwarded to a dirty 
cluster may arrive there to find that the dirty cluster no longer 
owns the data. This may occur if another access had previously 
been forwarded to the dirty cluster and changed the ownership 
of the block, or if the owning cluster performs a writeback. 
In these cases, the originating cluster is sent a NAK response 
and is required to reissue the request. By this time ownership 
should have stabilized and the request will be satisfied. Note 
that the reissue is accomplished by simply releasing the proces- 
sor’s arbitration mask and treating this as a new request instead 
of replying with data. 

In very pathological cases, for example when ownership for a 
block is bouncing back and forth between two remote clusters, 
a requesting cluster (some third cluster) may receive multiple 
NAK’s and may eventually time-out and return a bus error. 
While this is undesirable, its occurrence is very improbable in 
the prototype system and, consequently, we do not provide a 
solution. In larger systems this problem is likely to need a com- 
plete answer. One solution would be to implement an additional 
directory state which signifies that other clusters are queued for 
access. Only the first access for a dirty line would be forwarded 
while tbis request and subsequent requests are queued in the di- 
rectory entry. Upon receipt of the next ownership change the 
directory can respond to all of the requests if they are for read 
only copies. If some are for exclusive access then ownership 
can be granted to each in turn on a pseudo-random basis. Thus, 
eventually all requests will be fulfilled. 

Another set of exceptions arise from the multiple paths 
present in the system. In particular, the separate request and 
reply networks together with their associated input and output 
FWO’s and bus requesters imply that some messages sent be- 
tween two clusters can be received out of order. The protocol 
can handle most of these misorderings because operations are 
acknowledged and out-of-order requests simple receive NAK 
responses. Other cases require more attention. For example, a 
read reply can be overtaken by an invalidate request attempting 
to purge the read copy. This case is handled by the snoop- 
ing on the RAC. When the RAC sees an invalidation request 
for a pending read, it changes the state of that RAC entry to 
invalidated-read-pending. In this state. the RC conservatively 
assumes that any read reply is stale and treats the reply as a 
NAK response. 

4.7 Deadlock 

In the DASH prototype, deadlocks are eliminated through a 
combination of hardware and protocol features. At the hard- 
ware level, DASH consists of two mesh networks, each of 
which guarantees point-to-point delivery of messages without 
deadlocks. However, this by itself is not sufficient to prevent 
deadlocks because the. consumption of an incoming message 
may require the generation of another outgoing message. This 
can result in circular dependencies between the limited buffers 
present in hvo or more nodes and cause deadlock. 

To address this problem, the protocol divides all messages 
into request messages (e.g. read and read-exclusive requests and 
invalidation requests) and reply messages (e.g. read and read- 
exclusive replies and invalidation acknowledges). Furthermore, 
one mesh is dedicated to servicing request messages while the 

other handles reply messages. Reply messages are guaranteed 
to be consumed at the destination, partly because of their nature 
and partly because space for the reply data is preallocated in the 
RAC. This eliminates the possibility of request-reply circular 
dependencies and the associated deadlocks. 

However, the protocol also relies on request messages that 
generate additional requests. Because of the limited buffer 
space, this can result in deadlocks due to request-request circu- 
lar dependencies. Fairly large input and output FIFO’s reduce 
the probability of this problem. if it does arise, the directory 
hardware includes a time-out mechanism to break the possible 
deadlock. If the directory has been blocked for more than the 
time-out period in attempting to forward a request it will in- 
stead reject the request with a NAR reply message. Once this 
deadlock breaking mode is entered enough other requests are 
handled similarly so that any possible deadlock condition that 
has arisen within the request network can be eliminated. As 
in cases discussed earlier, this scheme relies on the processor’s 
ability to reissue its request upon receiving a NAIL 

4.8 Error Handling 

The final set of exceptions arise in response to error conditions 
in the hardware or protocol. The system includes a number 
of error checks including ECC on main memory, parity on the 
directory memory, length checking of network messages and 
inconsistent bus and network message checking. These checks 
are reported to processors through bus errors and associated 
error capture registers. Network errors and improper requests 
are dropped by the receiver of such messages. Depending upon 
the type of network message that was lost or corrupted, the 
issuing processor will eventually time-out its originating request 
or some fence operation which will be blocked waiting for a 
RAC entry to be deallocated. The time-out generates a bus- 
error which interrupts the processor. The processes using the 
psrticular memory location are aborted, but low level operating 
system code can recover from the error if it is not within the 
kernel. The OS can subsequently clean up the state of a line by 
using back-door paths that allow direct addressing of the RAC 
and directory memory. 

5 Supplemental Operations 

During the evolution of the DASH protocol, several additional 
memory operations were evaluated. Some of these operations 
are included in the DASH prototype, while others were not 
included due to hardware constraints or a lack of evidence that 
the extension would provide significant performance gains. 

The first major extension incorporated into the DASH pro- 
tocol was support for synchronization operations. The sharing 
characteristics of synchronization objects are often quite differ- 
ent from those of normal data. Locks, barriers, and semaphores 
can be highly contended. Using the normal directory protocol 
for synchronization objects can lead to hot spots. For example, 
when a highly contended lock is released, all processor caches 
containing the lock are invalidated, this invalidation results in 
the waiting processors rushing to grab the lock. DASH pro- 
vides special queue-based tack primitives that use the directory 
memory to keep track of clusters waiting for a lock. Using the 
directory memory is natural since it is already set up to track 
queued clusters, and the directory is normally accessed in read- 
modify-write cycles that match the atomic update necessary for 
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locks. An unlock of a queue-based lock while clusters are wait- 
ing results in a grant of the lock being sent to one of the waiting 
clusters. This grant allows the cluster to obtain the lock without 
any further network messages. Thus, queue-based locks reduce 
the hot spotting generated by contended locks and reduce the 
latency between an unlock operation and subsequent acquisi- 
tion of the lock. This and other synchronization primitives are 
discussed in detail in 1171. 

Another set of operations included in the prototype help hide 
the latency of memory operations. Normally, when a read is 
issued the processor is stalled until the data comes back. With 
very fast processors, tbis latency can be tens to hundreds of 
processor cycles. Support for some form of prefetch can clearly 
help. DASH supports both read prefetch and read-exclusive 
prefer& operations [17]. These operations cause the directory 
controller to send out a read or read-exclusive request for the 
data, but do not block the processor. Thus, the processor is able 
to overlap the fetching of the data with useful work. When the 
processor is ready to use the prefetched data, it issues a normal 
read or read exclusive request. By this time the data will either 
be in the RAC or the prefetch will be outstanding, in which case 
the normal read or read-exclusive is merged with the prefetch. 
In either case, the latency for the data will be reduced. Ideally, 
we would have liked to place the prefetched data directly in the 
requesting processor’s cache instead of the RAC, but that would 
have required significant modifications to the existing processor 
boards. 

There are some variables for which a write-update coherence 
protocol is more appropriate than the DASH write-invalidate 
protocol [3]. The prototype system provides for a single word 
update write primitive which updates memory and all the caches 
currently holding the word. Since exclusive ownership is not 
required, the producer’s write buffer can retire the write as soon 
as it has been issued on the bus. Update-writes are especially 
useful for event synchronization. The producer of an event can 
directly update the value cached by the waiting processor re- 
ducing the latency and traffic that would result if the value was 
invalidated. This primitive is especially useful in implementing 
barriers, as an update-write can be used by the last processor 
entering the barrier to release all waiting processors. Update op- 
erations conform to the release consistency memory model, but 
require explicit fence operations when used for synchronization 
purposes. 

6 Scalability of the DASH Directory 

The DASH directory scheme currently uses a full bit-vector 
to identify the remote clusters caching a memory block. While 
this is reasonable for the DASH prototype, it does not scale well 
since the amount of directory memory required is the propor- 
tional to the product of the main memory size and the number of 
processors in the system. We are currently investigating a vari- 
ety of solutions which limit the overhead of directory memory. 
The most straightforward modification is the use of a limited 
number of pointers per directory entry. Each directory pointer 
holds the cluster number of a cluster currently caching the given 
line. In any limited pointer scheme some mechanism must exist 
to handle cache blocks that are cached by more processors then 
there are pointers, A very simple scheme resorts to a broadcast 
in these cases [l]. Better results can be obtained if the pointer 
storage memory reverts to a bit vector when pointer overflow 
occurs. Of course, a complete bit vector is not possible, but if 

each bit represents a region of processors the amount of t&tic 
generated by such overtlows can be greatly reduced relative to 
a broadcast. 

Other schemes to scale the directory rely on restructuring of 
directory storage. Possible solutions include allowing point- 
ers to be shared between directory entries, or using a caclhe 
of directory entries to supplement or replace the normal direc- 
tory [la. 131. A directory structured as a cache need not have a 
complete backing memory since replaced directory entries can 
simply invalidate their associated cache entries (similar to how 
multi-level caches maintain their inclusion property). Recent 
studies [13] have shown that such sparse-directories can main- 
tain a constant overhead of directory memory compared with a 
full-bit vector when the number of processors grows from 64 
to 10X. A sparse directory using limited pointers and a coarse 
vector only increases the total traffic by only lo-20% and should 
have minimal impact on processor performance. Furthermore, 
such directory structuxes require only small changes to the co- 
herence protocol given here. 

7 Validation of the Protocol 

Validation of the DASH protocol presents a major challenge. 
Each cluster in DASH contains a complex directory controller 
with a large amount of state. This state coupled with the dis- 
tributed nature of the DASH protocol results in an enormous 
number of possible interactions between the controllers. Writ- 
ing a test suite that exercises all possible interactions in rea- 
sonable time seems intractable. Therefore, we are using two 
less exhaustive testing methods. Both these methods rely on 
the software simulator of DASH that we have developed. 

The simulator consists of two tightly coupled components: a 
low-level DASH system simulator that incorporates the coher- 
ence protocol, and simulates the processor caches, buses, and 
interconnection network at a very fine level of detail; and Tango 
[ll], a high-level functional simulator that models the proces- 
sors and executes parallel programs. Tango simulates parallel 
processing on a uniprocessor while the DASH simulator pro- 
vides detailed timing about latency of memory references. Be- 
cause of the tight coupling between the two parts, our simulator 
closely models the DASH machine. 

Our fust scheme for testing the protocol consists of runnin,g 
existing parallel programs for which the results are known and 
comparing the output with that from the DASH simulator. The 
drawback of using parallel programs to check the protocol is 
that they use the memory system and synchronization features 
in “well-behaved” ways. For example, a well-written parallel 
program will not release a lock that is already free, and parallel 
programs usually don’t modify shared variables outside of a 
critical section. As a result, parallel applications do not test a 
large set of possible interactions. 

To get at the more pathological interactions, our second 
method relies on test scripts. These scripts can be written to 
provide a tine level of control over the protocol transitions and 
to be particularly demanding of the protocol. While writing an 
exhaustive set of such test scripts is not feasible, we hope to 
achieve reasonable test coverage with a smaller set of scripts 
by introducing randomness into the execution of the scripts. 

The randomness idea used is an extension of the Berkeley 
Random Case Generation (RCG) technique [22] used to verify 
the SPUR cache controller design. Our method, called Intelli- 
gent Case Generation (KG), is described in detail in [14]. Each 
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script is a self-contained test sequence which executes a number 
of memory operations on a set of processors. Each script con- 
sists of some initialization, a set of test operations, and a check 
for proper results. Like RCG, multiple, independent scripts run 
simultaneously and interact in two ways. First, a processor ran- 
domly chooses which of the multiple active scripts it is going 
to pick its next action from. Therefore, execution of the same 
set of scripts will be interleaved in time differently upon each 
run. Second, while each script uses unique memory locations, 
these locations may be in the same cache line. Scripts interact 
by changing the cache state of cache lines used by other scripts. 

ICC extends RCG in three ways. First, instead of simple two 
step scripts (a write followed by a read), ICC supports multi- 
step scripts in which some steps are executed in series and 
some are allowed to execute in parallel. Second, ICC provides 
a finer level of control over which processors execute which 
steps of a script and introduces randomness into the assignment 
process. Finally, ICC allows for a more flexible assignment of 
test addresses so that particular scripts do not have to be written 
to interact. Using ICC to dynamically assign addresses results 
in different scripts interacting at different times during a run, 
and results in the same script using various combinations of 
local and remote memory. 

Of course, the hardware itself will also serve as a verifica- 
tion tool. The hardware can run both parallel programs and 
test scripts. while debugging protocol errors on the hardware 
will be difficult, the sheer number of cycles executed will be a 
demanding test of the protocol. 

8 Comparison with Scalable Coherent 
Interface Protocol 

Several protocols that provide for distributed directory-based 
cache coherence have been proposed [l&21]. The majority of 
these protocols have not been defined in enough detail to do 
a reasonable comparison with the DASH protocol. One excep- 
tion is the IEEE P1596 - Scalable Coherent Interface (XI) [ 121. 
While still evolving, SC1 has been documented in sufficient de- 
tall to make a comparison possible. SC1 differs from DASH, 
however, in that it is only an interface standard, not a complete 
system design. SC1 only specifies the interfaces that each pro- 
cessor should implement, leaving open the actual node design 
and exact interconnection network. 

At the system level, a typical SC1 system would be similar 
to DASH with each processing node containing a processor, a 
section of main memory, and an interface to the interconnec- 
tion network. Both systems rely on coherent caches maintained 
by distributed directories and distributed memories to provide 
scalable memory bandwidth. The major difference lies in how 
and where the directory information is maintained. In SCI, the 
directory is a distributed sharing list maintained by the proces- 
sor caches themselves. For example, if processors A, B, and 
C are caching some location, then the cache entries storing this 
location wiIl form a doubly-linked list. At main memory, only 
a pointer to the processor at the head of the linked list is main- 
tained. In contrast, DASH places aU the directory information 
with main memory. 

The main advantage of the SCI scheme over DASH is that 
the smount of directory pointer storage grows naturally with the 
number of processors in the system. In DASH, the maximum 
number of processors must be fixed beforehand, or the system 

must support some form of limited directory information. On 
the other hand, the SC1 directory memory would normally em- 
ploy the same SRAM technology used by the processor caches 
while the DASH directory is implemented in main memory 
DRAM technology. Another feature of SC1 is that it guar- 
antees forward progress in all cases, including the pathological 
“live-lock” case alluded to in section 4.6. 

The primary disadvantage of the SC1 scheme is that the distri- 
bution of the individual directory entries increases the complex- 
ity and latency of the directory protocol, since additional direc- 
tory update messages must be sent between processor caches. 
For example, on a write to a shared block cached by N + 1 
processors (including the writing processor), the writer must 
perform the following actions: (i) detach itself from the sharing 
list; (ii) interrogate memory to determine the head of the shar- 
ing list; (iii) acquire head status from the current head, and (iv) 
serially purge the other processor caches by issuing invalidation 
requests and receiving replies indicating the next processor in 
the list. Altogether, this amounts to 2N + 8 messages including 
N serial directory lookups. In contrast, DASH can locate all 
sharing processors in a single directory lookup and invalidation 
messages are serialized only by the network transmission rate. 
Likewise, many read misses in SC1 require more inter-node 
communication. For example, if a block is currently cached, 
processing a read miss requires four messages since only the 
head can supply the cache block. Furthermore, if a miss is 
replacing a valid block in the processor’s cache, the replaced 
block must be detached from its sharing list. 

Recently, the SCI working committee has proposed a number 
of extensions to the base protocol that address some of these 
shortcomings. In particular, the committee has proposed ad- 
ditional directory pointers that allow sharing lists to become 
sharing kees, the support for request forwarding, and the use of 
a clean cached state. While these extensions reduce the differ- 
ences between the two protocols, they also add complexity. The 
fundamental question is what set of features leads to better per- 
formance at a given complexity level. As in the design of other 
hardware systems, this requires a careful balance between opti- 
mizing the performance of common operations without adding 
undue complexity for uncommon ones. The lack of good statis- 
tics on scalable shared memory machines, however, makes the 
identification of the common cases difficult. Thus, a complete 
comparison of the protocols is likely to require actual imple- 
mentations of both designs and much more experience with this 
class of machines. 

9 Summary and Status 

Distributed directory-based coherence protocols such as the 
DASH protocol allow for the scalability of shared-memory mul- 
tiprocessors with coherent caches. The cost of scalability is the 
added complexity of directory based schemes compared with 
existing snoopy. bus-based coherence protocols. The complex- 
ity arises primarily from the lack of a single serialization point 
within the system and the lack of atomic operations. Additional 
complexity stems simply from the larger set of components that 
interact to execute the protocol and the deeper hierarchy within 
the memory system. 

Minimizing memory latency is of paramount importance in 
scalable systems. Support for coherent caches is the first step in 
reducing latency, but the memory system must also be optimized 
towards this goal. The DASH protocol attempts to minimize la- 
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tency through the use of the release consistency model, cache- 
to-cache transfers, a forwarding control strategy and special pur- 
pose operations such as prefetch and update write. Adding these 
latency reducing features must, of course, be traded off with the 
complexity needed to support them. All of the above features 
were added without a significant increase in the complexity of 
the hardware. 

Verification of a complex distributed directory-based cache 
coherence protocol is a major challenge. We feel that verifica- 
tion through the use of test scripts and extensive random testing 
will provide an acceptable level of confidence. The design ef- 
fort of the prototype is currently in the implementation phase. 
A functional simulator of the hardware is running as well as a 
gate level simulation of the directory card. We plan to have a 
4 cluster, 16 processor system running during the summer ‘of 
1990. This prototype should serve as the ultimate verification 
of the design and provide a vehicle to fully evaluate the design 
concepts discussed in this paper. 
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Appendix A: Coherence Transaction De- 
tails 

if (Data held locally in shared stat. by procrssor or RAC) 
Oth.= cache(.) supply data for fill; 

rls. if (Data bald locally in dirty *tat. by proceseor or I'AC) { 
Dirty cache suppllen data for fill and goes to ahared .t.t.: 
if (Hemcry Rome ia Local, 

Writeback Data to main memory; 
else 

RAC tekes dat. in shared-dirty *tat.; 
I 

*Is. if (Memory hone la Local) ( 
if (Directory entry stat. I- Dirty-Remet.) 

M.mory supplies read data; 
*le. ( 

Allocate RAC entry, mask arbitration and fort. retry: 
Fo=w.=d Read Request to Dirty C1u.t.~‘; 
PCP" on Dirty C1u.t.r iseu.. read =.c,u.et; 
Dirty cache euppli.. data .nd go.. to shared *tat.; 
DC *end. shared d.ta reply to local clueter; 
loc.1 RC g-t. reply .,-ad unm.aka processor e=bit=.tion; 
"pan local processor read, RC suppli.. data irnd the 

RAC entry goes to shared *tat.; 
Directory entry *tat. - Shared-Remote; 
I 

1 

.ls. /* Memory home i. Remet. *I ( 
Allocate RAC entry, m..k azbitratlo" and force r-try; 
Local DC eands read =.qu.st to ho,". clueter; 
if (Directory entry atat. I- Dirty-Remote) ( 

Directory entry stats - Sharad-Remote, upd.t. w&o=; 
"Cm. DC *en*. reply to local RCj 
Local R-2 get. reply and unmp~k. processor rrbitration; 

.1*. ( 
Ho,,,. DC forrard. Read Requast to dirty cluster; 
PCP" on dirty cluetar ieeu.. read request and DC sends 

reply to local cluster and sharing writsback to ho,,,.; 
Local RC get. reply and unmask. proceaeor .=bit=ation; 
Home DC gets sharing writoback, writes back dirty data, 

Directory entry atat. - Shared-Remote, "pd.t. vector; 
I 

Upon loo.1 p=oc.,.o= =.ad, RC sup~li.. the d.t. and tb. 
RAC entry go.. to shared stat.: 

I 

Figure 7: Normal flow of read request bus transaction. 

if (Memory Homo ia Local) I 
Writaback data i. written back into main memory; 
1 

.lP. I' M.uuJry HOme i. Ilemot. "I ( 
Writeback request ..nt to home; 
Writebilck data is .=itt.,n back into main memory; 
Directory entry stat. - Oncached-Remet., update vector; 
1 

if (Data held locally in dirty #tat. by p=oc..ao= or R&C) 
Dirty cache euppli.~ Read-Excluaiv. fill data md 

in"*lidat.* self; 

el.. if (Msmory "OnI. is Locrl) ( 
*witoh (Directory .ntEy stat.) ( 

~a.. Uncechsd-Remote : 
Memory suppli.. dat., any locally cilched copiss 

are inv.1idat.d; 
brsak; 

CP.. sha=.d-Remote : 
RC allocat.. a" entry in RAC with DC opcifird 

inv.1id.t. acknowl.dg. Count; 
"emcry suppli.. d.t., any loc.lly crcbed copies .=. 

invalidated; 
Local DC sends inva1id.t. request to shared clu.t.=.; 
Dir. entry *tat. - Vnc.oh.d-Remet., "pd.t. ".cto=; 
"pon rrcelpt of all acknoulsdg.. RC d..lloc.t.a RA.2 

entry; 
break; 

Ca... Di=ty-R*mot. : 
Allocate R&C atry. m.sk arbitration and force retry; 
Forrard R.ad-Exc1u.i". Request to dirty clu.t.=; 
PCP" at dirty cluster i..".. Road-%x =..qu.st, 

Dirty cache supplias data and invalidates ..lf; 
DC in dirty c1u.t.r ..ndr r-ply to loc.1 Rc; 
Local RC g-t. rsply from dirty c1u.t.r md unmask. 

p=oc.,aso= arbitration; 
"pon local proaeseor rs-Read-Ex, RC .up,,li., dat., 

RAC entry i. do.1loc.t.d and 
Dir. entry stat. - "ncachsd-Remot., updat. "e&o=; 

1 
1 

else /* Memor" HOme is R.mot. */ , 
RC~allocat~e RAC entry, masks ;rbitration end foec.. r-try; 
Local DC *an** R**d-Bxol*siv* request to hour; 
awitch ,Di=.ctory *"try *t&a) { 

~a.88 Oncached-R-mot. : 
Worn. memory supplies data, any locally cachsd copi.. 

.r. invalidated, Ho.. DC ..nd. r-ply to local Rc; 
Dir.ctory entry *t*t. - Dirty-Rsmot., "pdete V.&o=; 
Local RC get. R..d-Ex reply with zero invalid.tion 

co"nt and unmaakm ~=o~...o= for Irbitration; 
Upon local processor ;.-R-ad-Ex, RC euppliee datn and 

R&C entry i. d..lloc.t.d; 
break; 

ces. 8h*red-Re.mot. : 
Home memory ."ppli.. data, eny Ioc.lly cached copies 

LT. invalid.t.d, Horn. DC smd. reply to local RC; 
Home DC oond. inv.1id.ti.x =.qu..t. to .h.=ing 

clusters: 
Dirsctory entry *tat. - Dirty-Remote, vpdat. vector; 
Local RC q.tn rwl!, with dat. and inva1id.t. acknor- 

ledg. count .~deunma.k~ p=oc...o= for arbitration; 
Upon local p=oc.s.o= re-R.-d-Ex, RC supplies d.t.; 
Upon receipt of all acknoxlsdges RC deallocate. RX 

*"try; 
b=..k; 

case Dirty-Remet. : 
Born. DC forr.=de R-ad--Ex request to dirty cluster; 
PCP” et dirty c1ust.r iasu.. Read-&x rsqueet, 

Dirty cash. su&i.e d.ta and in"..lidat.. self; 
DC in dirty clustrr *end. reply to local RC with 

acknowledge count of on. and ..nd. Dirty T=sn.f.= 
request to home; 

Local RC geta reply and acknowledge count and un,,,.sks 
processor fo= .=bit=.tion; 

Upon local processor =.-Read-Ex, RC euppliee data; 
upon receipt Of Dirty Tran.f.r r.qu.et, HOlM DC 

sends acknorl.dq"."t to local RC, 
Horn. Dir. antry stat. - Dirty-R-mot., update w&o=; 

Upon receipt of acknowledge RC d..lloc.t.a RAC entry; 
, 

Figure 9: Normal flow of read-exclusive request bus transaction. 

Figure 8: Normal flow of a write-back request bus transaction. 
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