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Introduction

| wrote this text for a one semester course at the sophomore-junior level. Our experience with
students taking our junior physics courses is that even if they've had the mathematical prerequisites,
they usually need more experience using the mathematics to handle it efficiently and to possess usable
intuition about the processes involved. If you've seen infinite series in a calculus course, you may have
no idea that they're good for anything. If you've taken a differential equations course, which of the
scores of techniques that you've seen are really used a lot?

The world is (at least) three dimensional so you clearly need to understand multiple integrals,
but will everything be rectangular?

How do you learn intuition?

When you've finished a problem and your answer agrees with the back of the book or with
your friends or even a teacher, you're not done. The way do get an intuitive understanding of the
mathematics and of the physics is to analyze your solution thoroughly. Does it make sense? There
are almost always several parameters that enter the problem, so what happens to your solution when
you push these parameters to their limits? In a mechanics problem, what if one mass is much larger
than another? Does your solution do the right thing? In electromagnetism, if you make a couple of
parameters equal to each other does it reduce everything to a simple, special case? When you're doing
a surface integral should the answer be positive or negative and does your answer agree?

When you address these questions to every problem you ever solve, you do several things. First,
you'll find your own mistakes before someone else does. Second, you acquire an intuition about how
the equations ought to behave and how the world that they describe ought to behave. Third, It makes
all your later efforts easier because you will then have some clue about why the equations work the way
they do. It reifies the algebra.

Does it take extra time? Of course. It will however be some of the most valuable extra time you
can spend.

Is it only the students in my classes, or is it a widespread phenomenon that no one is willing to
sketch a graph? (“Pulling teeth” is the cliché that comes to mind.) Maybe you've never been taught
that there are a few basic methods that work, so look at section 1.8. And keep referring to it. This is
one of those basic tools that is far more important than you've ever been told. It is astounding how
many problems become simpler after you've sketched a graph. Also, until you've sketched some graphs
of functions you really don't know how they behave.

When | taught this course | didn't do everything that I'm presenting here. The two chapters,
Numerical Analysis and Tensors, were not in my one semester course, and | didn't cover all of the topics
along the way. Several more chapters were added after the class was over, so this is now far beyond a
one semester text. There is enough here to select from if this is a course text, but if you are reading
it on your own then you can move through it as you please, though you will find that the first five
chapters are used more in the later parts than are chapters six and seven. Chapters 8, 9, and 13 form a
sort of package. I've tried to use examples that are not all repetitions of the ones in traditional physics
texts but that do provide practice in the same tools that you need in that context.

The pdf file that I've placed online is hyperlinked, so that you can click on an equation or section
reference to go to that point in the text. To return, there's a Previous View button at the top or
bottom of the reader or a keyboard shortcut to do the same thing. [Command<— on Mac, Alt« on
Windows, Control«— on Linux-GNU] The index pages are hyperlinked, and the contents also appear in
the bookmark window.



| chose this font for the display versions of the text because it appears better on the screen than
does the more common Times font. The choice of available mathematics fonts is more limited.

I'd like to thank the students who found some, but probably not all, of the mistakes in the
text. Also Howard Gordon, who used it in his course and provided me with many suggestions for
improvements. Prof. Joseph Tenn of Sonoma State University has given me many very helpful ideas,
correcting mistakes, improving notation, and suggesting ways to help the students.

2008
A change in notation in this edition: For polar and cylindrical coordinate systems it is common to use
theta for the polar angle in one and phi for the polar angle in the other. | had tried to make them the
same (#) to avoid confusion, but probably made it less rather than more helpful because it differed from
the spherical azimuthal coordinate. In this edition all three systems (plane polar, cylindrical, spherical)
use phi as ¢ = tan~1(y/x). In line integrals it is common to use ds for an element of length, and
many authors will use dS for an element of area. | have tried to avoid this confusion by sticking to d/
and dA respectively (with rare exceptions).

In many of the chapters there are “exercises” that precede the “problems.” These are supposed
to be simpler and mostly designed to establish some of the definitions that appeared in the text.

This text is now available in print from Dover Publishers. They have agreed that the electronic
version will remain available online.
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Basic Stuft

1.1 Trigonometry
The common trigonometric functions are familiar to you, but do you know some of the tricks to
remember (or to derive quickly) the common identities among them? Given the sine of an angle, what
is its tangent? Given its tangent, what is its cosine? All of these simple but occasionally useful relations
can be derived in about two seconds if you understand the idea behind one picture. Suppose for example
that you know the tangent of 0, what is sin #? Draw a right triangle and designate the tangent of  as
x, so you can draw a triangle with tan = x/1.

The Pythagorean theorem says that the third side is v/1 + 22. You now
read the sine from the triangle as x/v/1 + 22, so

) tan 6
Sln9 e 1
V1 + tan? 6
Any other such relation is done the same way. You know the cosine, so what's the cotangent? Draw a
different triangle where the cosine is x /1.

Radians

When you take the sine or cosine of an angle, what units do you use? Degrees? Radians? Cycles? And
who invented radians? Why is this the unit you see so often in calculus texts? That there are 360° in
a circle is something that you can blame on the Sumerians, but where did this other unit come from?

20

0
s

R 2R
It results from one figure and the relation between the radius of the circle, the angle drawn,
and the length of the arc shown. If you remember the equation s = R#, does that mean that for a
full circle & = 360° so s = 360R? No. For some reason this equation is valid only in radians. The
reasoning comes down to a couple of observations. You can see from the drawing that s is proportional
to § — double # and you double s. The same observation holds about the relation between s and R,
a direct proportionality. Put these together in a single equation and you can conclude that

s=CRH

where (' is some constant of proportionality. Now what is C'?
You know that the whole circumference of the circle is 2 R, so if 6 = 360°, then
s
180
It has to have these units so that the left side, s, comes out as a length when the degree units
cancel. This is an awkward equation to work with, and it becomes very awkward when you try to do

calculus. An increment of one in Af is big if you're in radians, and small if you're in degrees, so it
should be no surprise that A sin6/A@ is much smaller in the latter units:

1

2rR = CR360°, and C=

degree™

i sinf = % cosf in degrees
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This is the reason that the radian was invented. The radian is the unit designed so that the propor-
tionality constant is one.

C = 1radian™! then s = (1 radian_l)RG

In practice, no one ever writes it this way. It's the custom simply to omit the C' and to say that
s = RO with 6 restricted to radians — it saves a lot of writing. How big is a radian? A full circle has
circumference 2 R, and this equals Rf when you've taken C' to be one. It says that the angle for a
full circle has 27 radians. One radian is then 360/27 degrees, a bit under 60°. Why do you always use
radians in calculus? Only in this unit do you get simple relations for derivatives and integrals of the
trigonometric functions.

Hyperbolic Functions
The circular trigonometric functions, the sines, cosines, tangents, and their reciprocals are familiar, but
their hyperbolic counterparts are probably less so. They are related to the exponential function as

et e 7T . et —e T sinh x et —e 7T
coshr = ——, sinhy = ———, tanhx = =
2 coshxr e*+e 7

(1.1)

The other three functions are

1 1
cschx = cothx =

sechx = -
coshz’ sinhz’ tanh x

Drawing these is left to problem 1.4, with a stopover in section 1.8 of this chapter.
Just as with the circular functions there are a bunch of identities relating these functions. For
the analog of cos? +sin? @ = 1 you have

cosh? § — sinh?60 = 1 (1.2)

For a proof, simply substitute the definitions of cosh and sinh in terms of exponentials and watch
the terms cancel. (See problem 4.23 for a different approach to these functions.) Similarly the other
common trig identities have their counterpart here.

1+ tan?d = sec? 0 has the analog 1 — tanh? § = sech? 0 (1.3)

The reason for this close parallel lies in the complex plane, because cos(ix) = coshx and sin(iz) =
isinh x. See chapter three.

The inverse hyperbolic functions are easier to evaluate than are the corresponding circular func-
tions. I'll solve for the inverse hyperbolic sine as an example

et —e %

5 , solve for z.

y =sinhz means x =sinh™!y, Y =
Multiply by 2e® to get the quadratic equation

2efy =e** -1 or (e””)2 —2y(e") —1=0
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The solutions to this are ¢¥ = y+ +/y2 + 1, and because /42 + 1 is always greater than |y|, you must
take the positive sign to get a positive e*. Take the logarithm of ¥ and

z=sinh 'y =In(y+y2+1)

(—o0 <y < 400)

As x goes through the values —oo to 400, the values that sinh x takes on go over the range —oo to

+00. This implies that the domain of sinh ™!y is —0o < 3y < +00. The graph of an inverse function

is the mirror image of the original function in the 45° line y = x, so if you have sketched the graphs of

the original functions, the corresponding inverse functions are just the reflections in this diagonal line.
The other inverse functions are found similarly; see problem 1.3

sinh ™'y =In (y + 42 +1)
cosh™'y =In(y£+/y2 1), y>1

_ 1. 1+y
tanh 'y = —In —Z, y| <1 1.4
3Ty Y (1.4)
1 1
cothly:2lnzi1, ly| > 1

The cosh™! function is commonly written with only the + sign before the square root. What does the
other sign do? Draw a graph and find out. Also, what happens if you add the two versions of the
cosh™1?

The calculus of these functions parallels that of the circular functions.

b det—e ™ et4e® i
—sinhx = — = = cos
dx dx 2 2

Similarly the derivative of cosh  is sinh z. Note the plus sign here, not minus.

Where do hyperbolic functions occur? If you have a mass in equilibrium, the total force on it
is zero. If it's in stable equilibrium then if you push it a little to one side and release it, the force will
push it back to the center. If it is unstable then when it's a bit to one side it will be pushed farther
away from the equilibrium point. In the first case, it will oscillate about the equilibrium position and for
small oscillations the function of time will be a circular trigonometric function — the common sines or
cosines of time, A coswt. If the point is unstable, the motion will be described by hyperbolic functions
of time, sinh wt instead of sinwt. An ordinary ruler held at one end will swing back and forth, but if
you try to balance it at the other end it will fall over. That's the difference between cos and cosh. For
a deeper understanding of the relation between the circular and the hyperbolic functions, see section
3.3
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1.2 Parametric Differentiation

The integration techniques that appear in introductory calculus courses include a variety of methods of
varying usefulness. There's one however that is for some reason not commonly done in calculus courses:
parametric differentiation. It's best introduced by an example.

oo
/ e T dx
0

You could integrate by parts n times and that will work. For example, n = 2:

oo 0 oo ) oo
=—z%e7 % + / 2ve Vdr =0—2xe™"| + / 2ePdr=0—-2e"" =2
0 0 0 0 0
Instead of this method, do something completely different. Consider the integral
oo
/ e “dx (1.5)
0

It has the parameter « in it. The reason for this will be clear in a few lines. It is easy to evaluate, and is
o 1
/ e YWdr=—e "
0 «

Now differentiate this integral with respect to «,

[e.9]

d [ d 1 o0 -1
/ e dr = —— or - / rem*dr = —
da J do 0 Q@
. . > 2 oe —-2-3
And again and again: —i—/ r2e” Y dy = +—3, —/ r3e % dy = 1
0 Q@ 0 a

The nt" derivative is
+n!

an—i—l

oo
i/ x"e” " dx = (1.6)
0

Set o = 1 and you see that the original integral is n!. This result is compatible with the standard
definition for 0!. From the equation n! = n-(n — 1)!, you take the case n =1, and it requires 0! = 1
in order to make any sense. This integral gives the same answer for n = 0.

The idea of this method is to change the original problem into another by introducing a parameter.
Then differentiate with respect to that parameter in order to recover the problem that you really want
to solve. With a little practice you'll find this easier than partial integration. Also see problem 1.47 for
a variation on this theme.

Notice that | did this using definite integrals. If you try to use it for an integral without limits
you can sometimes get into trouble. See for example problem 1.42.

1.3 Gaussian Integrals
Gaussian integrals are an important class of integrals that show up in kinetic theory, statistical mechan-
ics, quantum mechanics, and any other place with a remotely statistical aspect.

The simplest and most common case is the definite integral from —oo to 400 or maybe from 0 to oo.
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If n is a positive odd integer, these are elementary,

I/\ /OO dx e — (n odd) (1.7)

| n=1

To see why this is true, sketch graphs of the integrand for a few more odd n.

For the integral over positive 2 and still for odd n, do the substitution ¢ = ax?.
/OO dr a"e 0" = _ /oo dt t=D/2e=t = L((n —1)/2)! (1.8)
0 20/ (n+1)/2 0 20/(n+1)/2

Because n is odd, (n — 1)/2 is an integer and its factorial makes sense.
If n is even then doing this integral requires a special preliminary trick. Evaluate the special case
n =0 and o = 1. Denote the integral by I, then

[:/ dxe_“’z, and I% = (/ dxe_$2> (/ dye_y2>

In squaring the integral you must use a different label for the integration variable in the second factor
or it will get confused with the variable in the first factor. Rearrange this and you have a conventional

double integral.
[e.e] (e}
I? :/ da:/ dy e~ @*+¥?)

This is something that you can recognize as an integral over the entire -y plane. Now the trick is
to switch to polar coordinates*. The element of area dx dy now becomes r dr d¢, and the respective
limits on these coordinates are 0 to oo and 0 to 27w. The exponent is just r? = 2 + y2.

] 21 5
I? :/ rdr dpe™"
0 0

The ¢ integral simply gives 27. For the r integral substitute 7* = z and the result is 1/2. [Or use
Eq. (1.8).] The two integrals together give you 7.

I’ =, so / dee™ =1 (1.9)

Now do the rest of these integrals by parametric differentiation, introducing a parameter with
. . . 2 2 . . . .
which to carry out the derivatives. Change e™*" to e~ **", then in the resulting integral change variables
to reduce it to Eq. (1.9). You get

/_Oo dre % = g, so /_Oo dr x2e™ % = —di\/Z: % <oj§7/?2> (1.10)

You can now get the results for all the higher even powers of x by further differentiation with respect
to a.

* See section 1.7 in this chapter
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1.4 erf and Gamma

What about the same integral, but with other limits? The odd-n case is easy to do in just the same
way as when the limits are zero and infinity: just do the same substitution that led to Eq. (1.8). The
even-n case is different because it can't be done in terms of elementary functions. It is used to define
an entirely new function.

erf(z) = \/277 /Om dte (1.11)

z 0. 025 050 075 100 125 150 175 2.00
ecf 0. 0.276 0520 0.711 0.843 0.923 0.967 0.987 0.995

This is called the error function. It's well studied and tabulated and even shows up as a button
on some* pocket calculators, right along with the sine and cosine. (Is erf odd or even or neither?)
(What is erf(400)?)

A related integral worthy of its own name is the Gamma function.

I(x) = /Ooo dtt*~te (1.12)

The special case in which x is a positive integer is the one that | did as an example of parametric
differentiation to get Eq. (1.6). It is

I'(n)=(n—1)!
The factorial is not defined if its argument isn’'t an integer, but the Gamma function is perfectly
well defined for any argument as long as the integral converges. One special case is notable: x = 1/2.

r(1/2) :/0 dtt=/2e :/0 uduute ™ = 2/0 due ™™ = 7 (1.13)

| used ¢ = u? and then the result for the Gaussian integral, Eq. (1.9). You can use parametric
differentiation to derive a simple and useful recursion relation. (See problem 1.14 or 1.47.)

2l(z)=T(z+1) (1.14)

From this you can get the value of T'(11/5), I'(21/2), etc. In fact, if you know the value of the function
in the interval between one and two, you can use this relationship to get it anywhere else on the axis.
You already know that I'(1) = 1 = I'(2). (You do? How?) As x approaches zero, use the relation
I'(z) = I'(x + 1)/x and because the numerator for small x is approximately 1, you immediately have
that

[(z)~1/x  for small x (1.15)

The integral definition, Eq. (1.12), for the Gamma function is defined only for the case that
x > 0. [The behavior of the integrand near t = 0 is approximately t*~1. Integrate this from zero to
something and see how it depends on x.] Even though the original definition of the Gamma function
fails for negative x, you can extend the definition by using Eq. (1.14) to define I for negative arguments.
What is I'(—1/2) for example? Put © = —1/> in Eq. (1.14).

—%r(—1/2) CT(—(1/2)+1) =T(1/2) = V7, so T(=1/2) = -2y (1.16)

* See for example rpncalculator (v1.96 the latest). It is the best desktop calculator that I've found
(Mac and Windows). This main site seems (2008) to have disappeared, but | did find other sources
by searching the web for the pair “rpncalculator” and baker. The latter is the author's name. | found
mac.rbytes.net/cat/mac/scientific/rpn-calculator-x/


http://mac.rbytes.net/cat/mac/scientific/rpn-calculator-x/

1—Basic Stuff 7

The same procedure works for other negative x, though it can take several integer steps to get to a
positive value of = for which you can use the integral definition Eq. (1.12).

The reason for introducing these two functions now is not that they are so much more important
than a hundred other functions that | could use, though they are among the more common ones.
The point is that the world doesn’'t end with polynomials, sines, cosines, and exponentials. There are
an infinite number of other functions out there waiting for you and some of them are useful. These
functions can't be expressed in terms of the elementary functions that you've grown to know and love.
They're different and have their distinctive behaviors.

le erf ﬂ /\[_5 r . 1/T

There are zeta functions and Fresnel integrals and Legendre functions and Exponential integrals
and Mathieu functions and Confluent Hypergeometric functions and ... you get the idea. When one of
these shows up, you learn to look up its properties and to use them. If you're interested you may even try
to understand how some of these properties are derived, but probably not the first time that you confront
them. That's why there are tables, and the “"Handbook of Mathematical Functions” by Abramowitz
and Stegun is a premier example of such a tabulation, and it's reprinted by Dover Publications. There's
also a copy on the internet* www.math.sfu.ca/“cbm/aands/ as a set of scanned page images.

Why erf?

What can you do with this function? The most likely application is probably to probability. If you flip
a coin 1000 times, you expect it to come up heads about 500 times. But just how close to 500 will
it be? If you flip it twice, you wouldn't be surprised to see two heads or two tails, in fact the equally
likely possibilities are

TT HT TH HH

This says that in 1 out of 22 = 4 such experiments you expect to see two heads and in 1 out of 4 you
expect two tails. For just 2 out of 4 times you do the double flip do you expect exactly one head. All
this is an average. You have to try the experiment many times to see your expectation verified, and then
only by averaging many experiments.

It's easier to visualize the counting if you flip /N coins at once and see how they come up. The
number of coins that come up heads won't always be N/2, but it should be close. If you repeat the
process, flipping /N coins again and again, you get a distribution of numbers of heads that will vary
around N /2 in a characteristic pattern. The result is that the fraction of the time it will come up with
k heads and N — k tails is, to a good approximation

2 2N N
N , where 0=k 5 (1.17)

The derivation of this can wait until section 2.6, Eq. (2.26). It is an accurate result if the number of
coins that you flip in each trial is large, but try it anyway for the preceding example where N = 2. This
formula says that the fraction of times predicted for k heads is

k=0:/1/me?=0208 k=1=N/2: 0564 k=2: 0.208

* now superceded by the online work dImf.nist.gov/ at the National Institute of Standards and
Technology


http://store.doverpublications.com
http://www.math.sfu.ca/~cbm/aands/
http://dlmf.nist.gov/
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The exact answers are 1/4, 2/4, 1/4, but as two is not all that big a number, the fairly large error
shouldn’t be distressing.
If you flip three coins, the equally likely possibilities are

TTT TTH THT HTT THH HTH HHT HHH

There are 8 possibilities here, 23, so you expect (on average) one run out of 8 to give you 3 heads.
Probability 1/8.

To see how accurate this claim is for modest values, take N = 10. The possible outcomes are
anywhere from zero heads to ten. The exact fraction of the time that you get k heads as compared to
this approximation is

k= 0 1 2 3 4 5
exact: .000977 .00977 .0439 .117 .205 .246
approximate: .0017 .0103 .0417 .113 .206 .252

For the more interesting case of big /N, the exponent, e=20%/N | varies slowly and smoothly as

0 changes in integer steps away from zero. This is a key point; it allows you to approximate a sum
by an integral. If N = 1000 and 0 = 10, the exponent is 0.819. It has dropped only gradually from
one. For the same N = 1000, the fraction of the time to get exactly 500 heads is 0.025225, and this
approximation is 1/2/10007 =0.025231.

Flip IV coins, then do it again and again. In what fraction of the trials will the result be between
N/2 — A and N/2+ A heads? This is the sum of the fractions corresponding to 6 =0, 6 = +1, ...,
0 = +A. Because the approximate function is smooth | can replace this sum with an integral. This
substitution becomes more accurate the larger N

Cl5 / —262/N

Make the substitution 262 /N = z? and you have

F Ay/2/N 2/N 2 fA N
/ v dre” f/ 2/N = erf (Ay/2/N) (1.18)

The error function of one is 0.84, so if A = \/N/2 then in 84% of the trials heads will come up between
N/2—+/N/2 and N/2+ \/N/2 times. For N = 1000, this is between 478 and 522 heads.

1.5 Differentiating

When you differentiate a function in which the independent variable shows up in several places, how do
you carry out the derivative? For example, what is the derivative with respect to x of %7 The answer
is that you treat each instance of x one at a time, ignoring the others; differentiate with respect to
that x and add the results. For a proof, use the definition of a derivative and differentiate the function
f(x,x). Start with the finite difference quotient:

flx+ Az, x+ Ax) — f(z,x)

A
B f(gjx+Ax,w+Ax)—f(x,oc+Ax)—|—f(x,x+A:L’)—f(x,x)
N Ax
 flx+ Ax, o+ Ax) — f(v, v+ Az) | f(r,r+ Az) — f(z,T)
— A + ~ (1.19)

The first quotient in the last equation is, in the limit that Az — 0, the derivative of f with respect to
its first argument. The second quotient becomes the derivative with respect to the second argument.
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The prescription is clear, but to remember it you may prefer a mathematical formula. A notation more
common in mathematics than in physics is just what's needed:

cczif(t, t) = Dyif(t, t) + Daf(t, t) (1.20)

where D1 means “differentiate with respect to the first argument.” The standard “product rule” for
differentiation is a special case of this.

For example,
d z t2 3 x 2 t2
dx/ dte ™" =e™™ —/ dtte " (1.21)
0 0

The resulting integral in this example is related to an error function, see problem 1.13, so it's not as
bad as it looks.
Another example,

d d

%J;x:xxx’l—i—%km atk=ux
d
_ (I}{L‘x_l + %exlnk _ xxx—l +lnk6$1nk

=z +2% Inzx

1.6 Integrals
What is an integral? You've been using them for some time. I've been using the concept in this
introductory chapter as if it's something that everyone knows. But what is it?

If your answer is something like “the function whose derivative is the given function” or “the
area under a curve” then No. Both of these answers express an aspect of the subject but neither is
a complete answer. The first actually refers to the fundamental theorem of calculus, and I'll describe
that shortly. The second is a good picture that applies to some special cases, but it won't tell you how
to compute it and it won't allow you to generalize the idea to the many other subjects in which it is
needed. There are several different definitions of the integral, and every one of them requires more than
a few lines to explain. I'll use the most common definition, the Riemann Integral.

An integral is a sum, obeying all the usual rules of addition and multiplication, such as 1 + 2 +
3+4=(142)4+3+4)or5:(6+7)=(5-6)+ (5-7). When you've read this section, come back and
translate these bits of arithmetic into statements about integrals.

A standard way to picture the definition is to try to find the area under a curve. You can get
successively better and better approximations to the answer by dividing the area into smaller and smaller
rectangles — ideally, taking the limit as the number of rectangles goes to infinity.

To codify this idea takes a sequence of steps:

1. Pick an integer N > 0. This is the number of subintervals into which the whole interval between

a and b is to be divided.
&1
(L
"/

&2
[\' S b
1 €2
2. Pick N — 1 points between a and b. Call them x1, x5, etc.

Aa=T0<T<To<--<aTny_1<TN=0b
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and for convenience label the endpoints as xy and z . For the sketch , N = 8.
3. Let Amk =T — Tp_1- That is,

Az, = 21 — T, ATy =29 —T1, -

4. In each of the N subintervals, pick one point at which the function will be evaluated. I'll label
these points by the Greek letter £&. (That's the Greek version of “x.")

Ty <& <1y
xo <& <y, 1 <& <@g,

5. Form the sum that is an approximation to the final answer.
f(&)Axy + f(&)Ax2 + f(&3)Azs + - -

6. Finally, take the limit as all the Az;, — 0 and necessarily then, as N — oco. These six steps form
the definition

N b
lim Zf(gk)mk:/ ) da (1.22)
k=1 a

Axp—0

1/x
</

1 2
To demonstrate this numerically, pick a function and do the first five steps explicitly. Pick
f(x) = 1/x and integrate it from 1 to 2. The exact answer is the natural log of 2: In2 = 0.69315. ..
(1) Take N = 4 for the number of intervals
(2) Choose to divide the distance from 1 to 2 evenly, at x; = 1.25, 9 = 1.5, x3 = 1.75
a=20=1.<125<15<1.75<2. =x4=50

(3) All the Ax'’s are equal to 0.25.
(4) Choose the midpoint of each subinterval. This is the best choice when you use a finite number of
divisions without taking the limit.

£ =1125 & =1375 & =1625 & =1.875

(5) The sum approximating the integral is then

J(&)AT + f(§&)Ars + [f(&3)Azs + [f(E)Azry =

1 1 1
——— X 25+ —— X .25 + —— x .25 +

25 — 69122
1.125 1.375 1.625 La75 <20 =09

For such a small number of divisions, this is a very good approximation — about 0.3% error.
(What do you get if you take N =1 or N =2 or N = 10 divisions?)
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Fundamental Thm. of Calculus

If the function that you're integrating is complicated or if the functlon is itself not known to perfect
accuracy then a numerical approximation just like this one for f1 dx/x is often the best way to go.
How can a function not be known completely? If it is experimental data. When you have to resort to
this arithmetic way to do integrals, are there more efficient ways to do it than simply using the definition
of the integral? Yes. That's part of the subject of numerical analysis, and there’s a short introduction
to the subject in chapter 11, section 11.4.

The fundamental theorem of calculus unites the subjects of differentiation and integration. The
integral is defined as the limit of a sum, and the derivative is defined as the limit of a quotient of two
differences. The relation between them is

IF f has an integral from a to b, that is, if ff f(x) dx exists,

AND IF f has an anti-derivative, that is, there is a function F' such that dF'/dx = f,

THEN

/bf(a:) dr = F(b) — F(a) (1.23)

Are there cases where one of these exists without the other? Yes, though I'll admit that you are
not likely to come across such functions without hunting through some advanced math books. Check
out www.wikipedia.org for Volterra's function to see what it involves.

Notice an important result that follows from Eq. (1.23). Differentiate both sides with respect
tob

4 /bf( )d —*dF(b)—f(b) (1.24)
T A '
and with respect to a

2 s = Lrw = —fa (1.2

Differentiating an integral with respect to one or the other of its limits results in plus or minus the
integrand. Combine this with the chain rule and you can do such calculations as

d sinx 9 sinx 9
/ e dt = ST cosx — 772 +/ 2™ dt (1.26)
dx T2

All this requires is that you differentiate every x that is present and add the results, just as

ixQ—im x—dﬁxth@—l r+x-1=2x

dr”  dx dx dr B
You may well ask why anyone would want to do such a thing as Eq. (1.26), but there are more reasonable
examples that show up in real situations. |'ve already used this result in Eq. (1.21).

Riemann-Stieltjes Integrals

Are there other useful definitions of the word integral? Yes, there are many, named after various people
who developed them, with Lebesgue being the most famous. His definition* is most useful in much
more advanced mathematical contexts, and | won't go into it here, except to say that very roughly
where Riemann divided the z-axis into intervals Ax;, Lebesgue divided the y-axis into intervals Ay;.
Doesn't sound like much of a change does it? It is. There is another definition that is worth knowing
about, not because it helps you to do integrals, but because it unites a couple of different types of
computation into one. This is the Riemann-Stieltjes integral. You won't need it for any of the later

* One of the more notable PhD theses in history


http://www.wikipedia.org
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work in this book, but it is a fairly simple extension of the Riemann integral and I'm introducing it
mostly for its cultural value — to show you that there are other ways to define an integral. If you take
the time to understand it, you will be able to look back at some subjects that you already know and to
realize that they can be manipulated in a more compact form (e.g. center of mass).

When you try to evaluate the moment of inertia you are doing the integral

/7’2 dm

When you evaluate the position of the center of mass even in one dimension the integral is

]\14/xdm

and even though you may not yet have encountered this, the electric dipole moment is

/qu

How do you integrate x with respect to m? What exactly are you doing? A possible answer is that
you can express this integral in terms of the linear density function and then dm = A(z)dz. But if the
masses are a mixture of continuous densities and point masses, this starts to become awkward. Is there
a better way?

Yes

On the interval a < x < b assume there are two functions, f and «. Don't assume that either of them
must be continuous, though they can't be too badly behaved or nothing will converge. This starts the
same way the Riemann integral does: partition the interval into a finite number (V) of sub-intervals
at the points

CLZSL’U<;U1<JJ2<...<J}N:1) (1.27)
Form the sum
N
Z f(x)) Aoy, where  xp_ <) < xp and Aay, = a(xy) — a(xg_q) (1.28)
k=1

To improve the sum, keep adding more and more points to the partition so that in the limit all the
intervals xj, — xp_; — 0. This limit is called the Riemann-Stieltjes integral,

/ fdo (1.29)
What's the big deal? Doesn't dav = o/dx? Use that and you have just the ordinary integral
/f(m)o/(x) dx?

Sometimes you can, but what if o isn’t differentiable? Suppose that it has a step or several steps? The
derivative isn't defined, but this Riemann-Stieltjes integral still makes perfectly good sense.
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An example. A very thin rod of length L is placed on the z-axis with one end at the origin. It
has a uniform linear mass density A and an added point mass mg at x = 3L/4. (a piece of chewing
gum?) Let m(x) be the function defined as

m(x) = (the amount of mass at coordinates < )

Az (0 <z < 3L/4)
Ar+myg (BL/4<z <L)

This is of course discontinuous.
m(z)

| T
The coordinate of the center of mass is fxdm/fdm. The total mass in the denominator is

mo + AL, and I'll go through the details to evaluate the numerator, attempting to solidify the ideas
that form this integral. Suppose you divide the length L into 10 equal pieces, then

. _ [ AL/10 (k #8)
xk—/{?L/IO, (1{7—0,1,...,10) and Amk{)\L/10+m0 (]{328)
Amg =m(zs) — m(z7) = (Axs +mg) — Ax7 = AL/10 + my.
Choose the positions x;f anywhere in the interval; for no particular reason I'll take the right-hand
endpoint, x;g = kL/10. The approximation to the integral is now

10 7 10
Zx%Amk = Zx}c)\L/lo + 25(AL/10 +mg) + Zx}c)\L/lo
k=1 k=1 k=9

10

= Zx;ﬂ)\L/lo + xgmo
k=1

As you add division points (more intervals) to the whole length this sum obviously separates into two
parts. One is the ordinary integral and the other is the discrete term from the point mass.

L
/ eAdr + mo3L /A = NL? /2 + mo3L /4
0

The center of mass is then at
I AL%/2 +mo3L/4
em = mo + AL

If mo < AL, this is approximately L/2. In the reverse case is is approximately 3L /4. Both are just
what you should expect.

The discontinuity in m(x) simply gives you a discrete added term in the overall result.

Did you need the Stieltjes integral to do this? Probably not. You would likely have simply added
the two terms from the two parts of the mass and gotten the same result as with this more complicated
method. The point of this is not that it provides an easier way to do computations. It doesn't. It is
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however a unifying notation and language that lets you avoid writing down a lot of special cases. (Is it
discrete? Is it continuous?) You can even write sums as integrals: Let o be a set of steps:

0 r <1
1 1<z <2
; = [¢]

>
5<1<3 forx >0

— a(xr) =

1 1 1 1 T etc.

Where that last bracketed symbol means “greatest integer less than or equal to x.” It’s a notation more
common in mathematics than in physics. Now in this notation the sum can be written as a Stieltjes

integral.
fda= fd[x] = f(k) (1.30)
fran= ] ra =

At every integer, where [x] makes a jump by one, there is a contribution to the Riemann-Stieltjes sum,
Eq. (1.28). That makes this integral just another way to write the sum over integers. This won't help
you to sum the series, but it is another way to look at the subject.

The method of integration by parts works perfectly well here, though as with all the rest of this
material I'll leave the proof to advanced calculus texts. If [ f do exists then so does [ o df and

/fda:fa—/adf (1.31)

This relates one Stieltjes integral to another one, and because you can express summation as an integral
now, you can even do summation by parts on the equation (1.30). That's something that you are not
likely to think of if you restrict yourself to the more elementary notation, and it's even occasionally
useful.

1.7 Polar Coordinates

When you compute an integral in the plane, you need the element of area appropriate to the coordinate
system that you're using. In the most common case, that of rectangular coordinates, you find the
element of area by drawing the two lines at constant coordinates = and x + dx. Then you draw the
two lines at constant coordinates y and y + dy. The little rectangle that they circumscribe has an area

dA = dx dy.

¢+ do
y+dy b
)
, r+dr
rx+dx

In polar coordinates you do exactly the same thing! The coordinates are r and ¢, and the line at
constant radius 7 and at constant 7 + dr define two neighboring circles. The lines at constant angle ¢
and at constant angle ¢+ d¢ form two closely spaced rays from the origin. These four lines circumscribe
a tiny area that is, for small enough dr and d¢, a rectangle. You then know its area is the product of
its two sides*: dA = (dr)(r d¢). This is the basic element of area for polar coordinates.

* If you're tempted to say that the area is dA = dr d¢, look at the dimensions. This expression is
a length, not an area.
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The area of a circle is the sum of all the pieces of area within it

R 21
/dA:/ rdr | do
0 0

| find it more useful to write double integrals in this way, so that the limits of integration are next to
the differential. The other notation can put the differential a long distance from where you show the
limits of integration. | get less confused my way. In either case, and to no one's surprise, you get

R 27 R
/ rdr/ d¢_/ rdr2n — 27R2/2 = 7R?
0 0 0

For the preceding example you can do the double integral in either order with no special care. If
the area over which you're integrating is more complicated you will have to look more closely at the
limits of integration. I'll illustrate with an example of this in rectangular coordinates: the area of a
triangle. Take the triangle to have vertices (0,0), (a,0), and (0,b). The area is

a bla—x)/a b a(b—y)/b
b /dA_/ d:v/ dy  or /dy/ dr (1.32)
a 0 0 0 0

They should both yield ab/2. See problem 1.25.

1.8 Sketching Graphs

How do you sketch the graph of a function? This is one of the most important tools you can use
to understand the behavior of functions, and unless you practice it you will find yourself at a loss in
anticipating the outcome of many calculations. There are a handful of rules that you can follow to do
this and you will find that it's not as painful as you may think.

You are confronted with a function and have to sketch its graph.

1. What is the domain? That is, what is the set of values of the independent variable that you
need to be concerned with? Is it —oo to +oc orisit 0 <z < L orisit —m < ¢ < 7 or what?

2. Plot any obvious points. If you can immediately see the value of the function at one or more
points, do them right away.

3. Is the function even or odd? If the behavior of the function is the same on the left as it is on
the right (or perhaps inverted on the left) then you have half as much work to do. Concentrate on one
side and you can then make a mirror image on the left if it is even or an upside-down mirror image if
it's odd.

4. Is the function singular anywhere? Does it go to infinity at some point where the denominator
vanishes? Note these points on the axis for future examination.

5. What is the behavior of the function near any of the obvious points that you plotted? Does
it behave like 2?7 Like 22?7 If you concluded that it is even, then the slope is either zero or there’s a
kink in the curve, such as with the absolute value function, |z|.

6. At one of the singular points that you found, how does it behave as you approach the point
from the right? From the left? Does the function go toward +oco or toward —oco in each case?

7. How does the function behave as you approach the ends of the domain? If the domain extends
from —oo to 400, how does the function behave as you approach these regions?
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8. Is the function the sum or difference of two other much simpler functions? If so, you may
find it easier to sketch the two functions and then graphically add or subtract them. Similarly if it is a
product.

9. Is the function related to another by translation? The function f(z) = (z — 2)? is related to
22 by translation of 2 units. Note that it is translated to the right from x%. You can see why because
(x — 2)? vanishes at - = +2.

10. After all this, you will have a good idea of the shape of the function, so you can interpolate
the behavior between the points that you've found.

Example: sketch f(z) = z/(a? — x2).

1. The domain for independent variable wasn’t given, so take it to be —co < & <
2. The point = 0 obviously gives the value f(0) = 0.
4. The denominator becomes zero at the two points x = =+a.

3. If you replace x by —z, the denominator is unchanged, and the numerator changes sign. The
function is odd about zero.

1 ¢ 1 —

7. When x becomes very large (|| > a), the denominator is mostly —2, so f(x) behaves

like x/(—2%) = —1/x for large x. It approaches zero for large x. Moreover, when z is positive, it
approaches zero through negative values and when x is negative, it goes to zero through positive values.
=
—a a

5. Near the point x = 0, the 22 in the denominator is much smaller than the constant a2
(x? < a?). That means that near this point, the function f behaves like x/a?

|

.

6. Go back to the places that it blows up, and ask what happens near there. If x is a little
greater than a, the x2 in the denominator is a little larger than the a? in the denominator. This means
that the denominator is negative. When x is a little less than a, the reverse is true. Near x = a, The
numerator is close to a. Combine these, and you see that the function approaches —oco as * — a from
the right. It approaches +oc on the left side of a. |'ve already noted that the function is odd, so don’t
repeat the analysis near x = —a, just turn this behavior upside down.

With all of these pieces of the graph, you can now interpolate to see the whole picture.
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OR, if you're clever with partial fractions, you might realize that you can rearrange f as

T -1/2  -1/2
iz -y

a?—22 x—a x+a’

and then follow the ideas of techniques 8 and 9 to sketch the graph. It's not obvious that this is any
easier; it's just different.

Exercises
1 Express e* in terms of hyperbolic functions.
2 If sinhaz = 4/3, what is cosh2? What is tanh 7
3 If tanhx = 5/13, what is sinh 2? What is cosh 2?

4 Let n and m be positive integers. Let a = n? —m?, b= 2nm, ¢ = n®> + m?. Show that a-b-c

form the integer sides of a right triangle. What are the first three independent “Pythagorean triples?”
By that | mean ones that aren’t just a multiple of one of the others.

5 Evaluate the integral foa dx x? cos x. Use parametric differentiation starting with cos ax.
6 Evaluate foa dx x sinh x by parametric differentiation.
7 Differentiate ze” sin x cosh  with respect to .
2
8 Differentiate [ dt sin(xt) with respect to .

9 Differentiate fjf dt e=*t" with respect to .

10 Differentiate [*7 dt sin(xt?) with respect to .

3/
11 Differentiate [ SRT) gt g—at? Jo(Bt) with respect to x. Jy is a Bessel function.

12 Sketch the function y = vgt — gt?/2. (First step: set all constants to one. vg = g = 2 = 1. Except
exponents)

13 Sketch the function U = —mgy + ky?/2. (Again: set the constant factors to one.)
14 Sketch U = mgl(1 — cosf).

15 Sketch V = —Vpe @/,

16 Sketch x = xpe * sinwt.

17 Is it all right in Eq. (1.22) to replace “Axp — 0" with "N — c0?” [No.]

18 Draw a graph of the curve parametrized as © = cosf, y = sin 6.
Draw a graph of the curve parametrized as = cosh 6, y = sinh 6.

19 What is the integral f; dx e=*"?
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20 Given that [*° dx/(1+x?) =7, i.e. you don't have to derive this, what then is [*° dz/(a+2%)?
Now differentiate the result and find the two integrals [ dx/(1+ x?)? and [*_ dx/(1+ %),

21 Derive the product rule as a special case of Eq. (1.20).

22 The third paragraph of section 1.6 has two simple equations in arithmetic. What common identities
about the integral do these correspond to?

23 Plot a graph of y = e* with y and x in meters (z horizontal and y vertical). Start at the origin
and walk along the z-axis at one meter per second. When you are at the 20-meter point, where is the
1y coordinate and how fast is it rising? Not just numbers: compare both to real things.
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Problems
1.1 What is the tangent of an angle in terms of its sine? Draw a triangle and do this in one line.

1.2 Derive the identities for cosh? § — sinh? § and for 1 — tanh? §, Equation (1.3).

1.3 Derive the expressions in Eq. (1.4) for cosh™ !y, tanh ™'y, and coth™!y. Pay particular attention
to the domains and explain why these are valid for the set of 3 that you claim. What is sinh ™! (y) +
sinh ™! (—y)?

1.4 The inverse function has a graph that is the mirror image of the original function in the 45° line
y = x. Draw the graphs of all six of the hyperbolic functions and all six of the inverse hyperbolic
functions, comparing the graphs you should get to the functions derived in the preceding problem.

1.5 Evaluate the derivatives of cosh x, tanh z, and coth x.
1.6 What are the derivatives, dsinh™! y/dy and dcosh™? y/dy?

1.7 Find formulas for sinh 2y and cosh 2y in terms of hyperbolic functions of y. The first one of these
should take just a couple of lines. Maybe the second one too, so if you find yourself filling a page, start
over.

1.8 Do a substitution to evaluate the integral (a) simply. Now do the same for (b)

1.9 Sketch the two integrands in the preceding problem. For the second integral, if the limits are 0
and z with z > a, then before having done the integral, estimate approximately what the value of this
integral should be. (Say 2z = 10% or z = 10%°a.) Compare your estimate to the exact answer that you
just found to see if they match in any way.

1.10 Fill in the steps in the derivation of the Gaussian integrals, Egs. (1.7), (1.8), and (1.10). In
particular, draw graphs of the integrands to show why Eq. (1.7) is so.

1.11 What is the integral [* dtt"et ifn = -1 orn = —27 [Careful!, no conclusion-jumping
allowed.] Did you draw a graph? No? Then that’s why you're having trouble with this.

1.12 Sketch a graph of the error function. In particular, what is its behavior for small x and for large
x, both positive and negative? Note: “small” doesn't mean zero. First draw a sketch of the integrand
e~ and from that you can (graphically) estimate erf(x) for small z. Compare this to the short table
in Eq. (1.11).

1.13 Put a parameter « into the defining integral for the error function, Eq. (1.11), so it has fox dt e—t*
Differentiate this integral with respect to ae. Next, change variables in this same integral from ¢ to u:
u? = at?, and differentiate that integral (which of course has the same value as before) with respect
to alpha to show

€T
1
/ dt t2e ¥ = VT erf(z) — “xe
0 1 2
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As a check, does this agree with the previous result for z = oo, Eq. (1.10)?

1.14 Use parametric differentiation to derive the recursion relation xT'(x) = I'(x + 1). Do it once by
inserting a parameter in the integral for T', e=t — e~ and differentiating. Then change variables
before differentiating and equate the results.

1.15 What is the Gamma function of © = —1/2, —3/2, —5/27 Explain why the original definition of
I" in terms of the integral won't work here. Demonstrate why Eq. (1.12) converges for all x > 0 but
does not converge for x < 0. Ans: I'(=5/2) = —8y/7/15

1.16 What is the Gamma function for x near 17 near 07 near —17 —27 —37 Now sketch a graph of
the Gamma function from —3 through positive values. Try using the recursion relation of problem 1.14.
Ans: Near —3, I'(z) =~ —1/(6(z + 3))

1.17 Show how to express the integral for arbitrary positive x

/ dt %=t
0

in terms of the Gamma function. Is positive x the best constraint here or can you do a touch better?
Ans: 1T ((z +1)/2)

1.18 The derivative of the Gamma function at z = 1 is I'(1) = —0.5772 = —~. The number 7 is
called Euler's constant, and like 7 or e it's another number that simply shows up regularly. What is
I(2)? What is I"(3)? Ans: I"(3) =3 — 2y

1.19 Show that JE

T
The “double factorial” symbol mean the product of every other integer up to the given one. E.g. 5!l =
15. The double factorial of an even integer can be expressed in terms of the single factorial. Do so.
What about odd integers?

1.20 Evaluate this integral. Just find the right substitution. / dte (a>0)
0

1.21 A triangle has sides a, b, ¢, and the angle opposite c is 7. Express the area of the triangle in
terms of a, b, and . Write the law of cosines for this triangle and then use sin?~ + cos?y = 1 to
express the area of a triangle solely in terms of the lengths of its three sides. The resulting formula is
not especially pretty or even clearly symmetrical in the sides, but if you introduce the semiperimeter,
s = (a+b+ c)/2, you can rearrange the answer into a neat, symmetrical form. Check its validity in a
couple of special cases. Ans: \/s(s —a)(s — b)(s — ¢) (Hero's formula)

1.22 An arbitrary linear combination of the sine and cosine, Asinf+ B cos0, is a phase-shifted cosine:
C cos(0 + 9). Solve for C' and § in terms of A and B, deriving an identity in 6.

1.23 Solve the two simultaneous linear equations
axr + by = e, cr+dy=f

and do it solely by elementary manipulation (+, —, X, <), not by any special formulas. Analyze all the
qualitatively different cases and draw graphs to describe each. In every case, how many if any solutions
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are there? Because of its special importance later, look at the case e = f = 0 and analyze it as if
it's a separate problem. You should be able to discern and to classify the circumstances under which
there is one solution, no solution, or many solutions. Ans: Sometimes a unique solution. Sometimes
no solution. Sometimes many solutions. Draw two lines in the plane; how many qualitatively different
pictures are there?

1.24 Use parametric differentiation to evaluate the integral f:L‘2 sinx dx. Find a table of integrals if
you want to verify your work.

1.25 Derive all the limits on the integrals in Eq. (1.32) and then do the integrals.

1.26 Compute the area of a circle using rectangular coordinates,

1.27 (a) Compute the area of a triangle using rectangular coordinates, so dA = dx dy. Make it a right
triangle with vertices at (0,0), (a,0), and (a,b). (b) Do it again, but reversing the order of integration.
(c) Now compute the area of this triangle using polar coordinates. Examine this carefully to see which
order of integration makes the problem easier.

1.28 Start from the definition of a derivative, lim (f(z 4+ Az) — f(z))/Az, and derive the chain rule.

f(a) = glh(@)) = &~ do "

Now pick special, fairly simple cases for g and h to test whether your result really works. That is,
choose functions so that you can do the differentiation explicitly and compare the results, but also
functions with enough structure that they aren’t trivial.

1.29 Starting from the definitions, derive how to do the derivative,

d /@
- /0 g(t) dt

Now pick special, fairly simple cases for f and ¢ to test whether your result really works. That is,
choose functions so that you can do the integration and differentiation explicitly, but ones such the
result isn't trivial.

1.30 Sketch these graphs, working by hand only, no computers:

2

x x x r—a z .z
a? + a2’ a? — x?’ a®+ 3’ a?— (v —a)?’ L2 —22 L

1.31 Sketch by hand only, graphs of

sinx (=31 < x < +4m), e (=31 < & < +4m), sin(x — 7/2) (=37 < x < +4m)
111
1.32 Sketch by hand only, graphs of
1., ) (0<op<m)
= - <op< =

fo) =1+ gato 0o fo-{0_, 09D

f(x):{ﬂ (0§x<a))7 f(T):{KT/Rg (0<r<R)

(r —2a)? (a<r<2a K/r? (R<r <o)
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1.33 From the definition of the Riemann integral make a numerical calculation of the integral

1
4
/dx
0 1+£L'2

Use 1 interval, then 2 intervals, then 4 intervals. If you choose to write your own computer program
for an arbitrary number of intervals, by all means do so. As with the example in the text, choose the
midpoints of the intervals to evaluate the function. To check your answer, do a trig substitution and
evaluate the integral exactly. What is the % error from the exact answer in each case? [100x(wrong
— right)/right] Ans: 7

1.34 Evaluate erf(1) numerically. Use 4 intervals. Ans: 0.842700792949715 (more or less)

1.35 Evaluate [ dz sinz/x numerically. Ans: 1.85193705198247 or so.

1.36 x and y are related by the equation 22 —4xy+3y> = 0. You can easily check that (x,y) = (1,1)
satisfies it, now what is dy/dz at that point? Unless you choose to look up and plug in to the cubic
formula, | suggest that you differentiate the whole equation with respect to x and solve for dy/dz.
Generalize this to finding dy/dz if f(x,y) =0. Ans: 1/5

1.37 When flipping a coin N times, what fraction of the time will the number of heads in the run lie
between (N/2—21/N/2) and (N/2+42,/N/2)? What are these numbers for N = 1000? Ans: 99.5%

1.38 For N = 4 flips of a coin, count the number of times you get 0, 1, 2, etc. heads out of 2* = 16
cases. Compare these results to the exponential approximation of Eq. (1.17).
Ans: 2 — 0.375 and 0.399

1.39 Is the integral of Eq. (1.17) over all § equal to one?

1.40 If there are 100 molecules of a gas bouncing around in a room, about how long will you have to
wait to find that all of them are in the left half of the room? Assume that you make a new observation
every microsecond and that the observations are independent of each other. Ans: A million times the
age of the universe. [Care to try 102 molecules?]

1.41 If you flip 1000 coins 1000 times, about how many times will you get exactly 500 heads and 500
tails? What if it's 100 coins and 100 trials, getting 50 heads? Ans: 25, 8

1.42 (a) Use parametric differentiation to evaluate [« dz. Start with [ e**dzx. Differentiate and then
let @ — 0.
(b) Now that the problem has blown up in your face, change the integral from an indefinite to a definite

integral such as ff and do it again. There are easier ways to do this integral, but the point is that this
method is really designed for definite integrals. It may not work on indefinite ones.

1.43 The Gamma function satisfies the identity
[(z)[(1—z)=7/sin7mx

What does this tell you about the Gamma function of 1/2? What does it tell you about its behavior
near the negative integers? Compare this result to that of problem 1.16.
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1.44 Start from the definition of a derivative, manipulate some terms: (a) derive the rule for differen-
tiating the function h, where h(x) = f(x)g(z) is the product of two other functions.
(b) Integrate the resulting equation with respect to x and derive the formula for integration by parts.

1.45 Show that in polar coordinates the equation r = 2a cos ¢ is a circle. Now compute its area in
this coordinate system.

1.46 The cycloid* has the parametric equations © = afl — asinf, and y = a — acosf. Compute the
area, [y dx between one arc of this curve and the z-axis. Ans: 3ma?

1.47 An alternate approach to the problem 1.13: Change variables in the integral definition of erf to
t = au. Now differentiate with respect to « and of course the derivative must be zero and there's your
answer. Do the same thing for problem 1.14 and the Gamma function.

1.48 Recall section 1.5 and compute this second derivative to show

2 t
th /0 dt (t —t)F(t) = F(t)

1.49 From the definition of a derivative show that

dr  df/do

Make up a couple of functions that let you test this explicitly.

1.50 Redo problem 1.6 another way: = sinh ™!y <+ y = sinhx. Differentiate the second of these
with respect to y and solve for dz/dy. Ans: dsinh™ty/dy = 1/+/1 + y2.

* www-groups.dcs.st-and.ac.uk/~history /Curves/Cycloid.html


http://www-groups.dcs.st-and.ac.uk/~history/Curves/Cycloid.html

Inﬁnite Series

Infinite series are among the most powerful and useful tools that you've encountered in your introductory
calculus course. It's easy to get the impression that they are simply a clever exercise in manipulating
limits and in studying convergence, but they are among the majors tools used in analyzing differential
equations, in developing methods of numerical analysis, in defining new functions, in estimating the
behavior of functions, and more.

2.1 The Basics
There are a handful of infinite series that you should memorize and should know just as well as you do
the multiplication table. The first of these is the geometric series,

o
1
1+x+x2+x3+x4+-~22x”:m for |z| < 1. (2.1)
0

It's very easy derive because in this case you can sum the finite form of the series and then take a limit.
Write the series out to the term 2V and multiply it by (1 — z).

A+a+2®+2°+- +2V)(1—x) =

A+a+2?+28 a2V —@+a? v 23+t 4 2V =12V (2.2)
If || < 1 then as N — oo this last term, 27V+1, goes to zero and you have the answer. If x is outside
this domain the terms of the infinite series don’t even go to zero, so there's no chance for the series to
converge to anything.

The finite sum up to " is useful on its own. For example it's what you use to compute the
payments on a loan that’s been made at some specified interest rate. You use it to find the pattern of
light from a diffraction grating.

N

N N+1
1—
S 1o o9
- —

Some other common series that you need to know are power series for elementary functions:

x? 2,k
z— —_— RS e —_—
e =1t a+ o+ _§k!
. 23 %0 £2k+1
smxzx—a—i—'-- :ZO:(—l) I
2 % 2k
_ X _ Kk Z
cosx—l—a—k--‘ —Z(—l) 25!
0
x? @’ S k+1
In(l+a)=2— 5+ 5 = => (-1 - (=< (2.4)
1
ala —1)z? ala—1)---(a—k+1
(1+a:‘)0‘_1+ozx+(2!)+--~ => @=1) k!(a Sk (] < 1)
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Of course, even better than memorizing them is to understand their derivations so well that you
can derive them as fast as you can write them down. For example, the cosine is the derivative of the
sine, so if you know the latter series all you have to do is to differentiate it term by term to get the
cosine series. The logarithm of (1 + x) is an integral of 1/(1 + ) so you can get its series from that
of the geometric series. The geometric series is a special case of the binomial series for « = —1, but
it's easier to remember the simple case separately. You can express all of them as special cases of the
general Taylor series.

What is the sine of 0.1 radians? Just use the series for the sine and you have the answer, 0.1, or
to more accuracy, 0.1 — 0.001/6 = 0.099833

What is the square root of 1.17 /1.1 = (1+.1)/2=1+1.0.1=1.05

What is 1/1.9? 1/(2—.1) = 1/[2(1 — .05)] = %(1 +.05) = .54 .025 = .525 from the first
terms of the geometric series.

What is /10247 /1024 = /1000 + 24 = {’/1000(1 +24/1000) =
10(1 + 24/1000)1/3 =10(1 + 8/1000) = 10.08

As you see from the last two examples you have to cast the problem into a form fitting the
expansion that you know. When you want to use the binomial series, rearrange and factor your expression
so that you have

(1 + something small)a

2.2 Deriving Taylor Series
How do you derive these series? The simplest way to get any of them is to assume that such a series
exists and then to deduce its coefficients in sequence. Take the sine for example, assume that you can
write

sine = A+ Bx + Ca? + D2® + Ex* + - -

Evaluate this at z = 0 to get
sin0=0=A+ B0+ C0*+ D0* + E0* +-.- = A
so the first term, A = 0. Now differentiate the series, getting
cosz = B+ 20z +3Dx? + 4Ex + - -
Again set x = 0 and all the terms on the right except the first one vanish.
cos0=1= B+2C0+3D0*+4E0* +---=B

Keep repeating this process, evaluating in turn all the coefficients of the assumed series.

sint = A+ Bx + C2? + Da® + Ex* + - - sin0=0=A
cosz = B+ 20z + 3Dx? + 4E23 + - - cos0=1=2R8
—sinz =2C + 6Dx + 12F2? + - -- —sin0=0=2C
—cosT = 6D + 24Ex + 60F 2% + - -- —cos0=—-1=6D
sine = 24F +120Fx + - -- sin0=0=24F
cosx = 120F + - -- cos0=1=120F

This shows the terms of the series for the sine as in Eq. (2.4).
Does this show that the series converges? If it converges does it show that it converges to the
sine? No to both. Each statement requires more work, and I'll leave the second one to advanced
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calculus books. Even better, when you understand the subject of complex variables, these questions
about series become much easier to understand.

The generalization to any function is obvious. You match the coefficients in the assumed expan-
sion, and get

2 3 4
J(@) = J(0) +2f(0) + S f(0) + S (0) + T /"(0) 4+

You don't have to do the expansion about the point zero. Do it about another point instead.

() = f(to) + (t = to) f'(to) + (t_mtO)Q

f(to) + -+ (2.5)
What good are infinite series?
This is sometimes the way that a new function is introduced and developed, typically by determining a
series solution to a new differential equation. (Chapter 4)
This is a tool for the numerical evaluation of functions.
This is an essential tool to understand and invent numerical algorithms for integration, differentiation,
interpolation, and many other common numerical methods. (Chapter 11)
To understand the behavior of complex-valued functions of a complex variable you will need to under-
stand these series for the case that the variable is a complex number. (Chapter 14)

All the series that I've written above are power series (Taylor series), but there are many other
possibilities.

1
(=3 - (2.6)
1
L2 412 & o1 nwx
— =3 + — (—1) 3 cos <T) (-L<z <L) (2.7)

The first is a Dirichlet series defining the Riemann zeta function, a function that appears in statistical
mechanics among other places.

The second is an example of a Fourier series. See chapter five for more of these.

Still another type of series is the Frobenius series, useful in solving differential equations: its form is
>k apx*tS. The number s need not be either positive or an integer. Chapter four has many examples
of this form.

There are a few technical details about infinite series that you have to go through. In introductory
calculus courses there can be a tendency to let these few details overwhelm the subject so that you are
left with the impression that that's all there is, not realizing that this stuff is useful. Still, you do need
to understand it.*

2.3 Convergence

Does an infinite series converge? Does the limit as N — oo of the sum, Z{V Uy, exist? There are a
few common and useful ways to answer this. The first and really the foundation for the others is the
comparison test.

Let u;. and v, be sequences of real numbers, positive at least after some value of k. Also assume
that for all k greater than some finite value, u;, < vj. Also assume that the sum, >, v}, does converge.
The other sum, > ;. uj, then converges too. This is almost obvious, but it's worth the little effort that
a proof takes.

* For animations showing how fast some of these power series converge, check out
www.physics.miami.edu/nearing/mathmethods/power-animations.html


http://www.physics.miami.edu/nearing/mathmethods/power-animations.html
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The required observation is that an increasing sequence of real numbers, bounded above, has a
limit.

After some point, k = M, all the uy and vy, are positive and uy, < vg. The sum ap = >y Uy
then forms an increasing sequence of real numbers, so by assumption this has a limit (the series
converges). The sum b, = >, uy is an increasing sequence of real numbers also. Because u;, < vy,
you immediately have b,, < a,, for all n.

b < an < lim ayp,
n—oo

this simply says that the increasing sequence b,, has an upper bound, so it has a limit and the theorem
is proved.

Ratio Test

To apply this comparison test you need a stable of known convergent series. One that you do have is
the geometric series, >, ¥ for |z| < 1. Let this ¥ be the v}, of the comparison test. Assume at least
after some point k£ = K that all the u; > 0.

Also that uy,q < Tuy.

Then up o < XUK 4 and U1 < TUK gives UK 1o < 22ug

You see the immediate extension is
UK tn < g

As long as x < 1 this is precisely set up for the comparison test using ). uyx" as the series that
dominates the ) uy,. This test, the ratio test is more commonly stated for positive 1y as

u
If for large k, kL << then the series Zuk converges (2.8)
Ug

This is one of the more commonly used convergence tests, not because it's the best, but because it's
simple and it works a lot of the time.

Integral Test

The integral test is another way to check for convergence or divergence. If f is a decreasing posi-
tive function and you want to determine the convergence of ) f(n), you can look at the integral
[°°dz f(x) and check it for convergence. The series and the integral converge or diverge together.

fa
f(2

g
Hi f@)

1 2 3 4 5

From the graph you see that the function f lies between the tops of the upper and the lower
rectangles. The area under the curve of f between m and n + 1 lies between the areas of the two
rectangles. That's the reason for the assumption that f is decreasing and positive.

n+1
fmy1>/ d f(z) > f(n+1)-1

n
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Add these inequalities from n = k to n = oo and you get

k+1 k+2 o0
FOk) + flk+ 1)+ / /k -=/k dz f(z)
>fk+D)+fk+2)+--- > A dr f(x) > f--- (2.9)
+1

The only difference between the infinite series on the left and on the right is one term, so either
everything converges or everything diverges.

You can do better than this and use these inequalities to get a quick estimate of the sum of a
series that would be too tedious to sum by itself. For example

o0

1 =1
Ymeltptptis

1

This last sum lies between two integrals.

/ dr — >Z / dx (2.10)

that is, between 1/3 and 1/4. Now I'll estimate the whole sum by adding the first three terms explicitly
and taking the arithmetic average of these two bounds.

oo
1 1 1 1/1 1
—=~l+=+—=+=|-+-)=1.653 2.11

Zl:rﬂ +22+32+2<3+4> (2.11)
The exact sum is more nearly 1.644934066848226, but if you use brute-force addition of the original
series to achieve accuracy equivalent to this 1.653 estimation you will need to take about 120 terms.
This series converges, but not very fast. See also problem 2.24.

Quicker Comparison Test

There is another way to handle the comparison test that works very easily and quickly (if it's applicable).
Look at the terms of the series for large n and see what the approximate behavior of the nt" term is.
That provides a comparison series. This is better shown by an example:

i n®—2n+1/n
- 5nd + sinn
For large n, the numerator is essentially n® and the denominator is essentially 5n°, so for large n this

series is approximately like
oo

>a

5n?

More precisely, the ratio of the nth term of this approximate series to that of the first series goes to
one as N — oo. This comparison series converges, so the first one does too. If one of the two series

diverges, then the other does too.
Apply the ratio test to the series for e”.

e k+1 |
_ k /1.4 Ukt _ % /(k’—l—l).: T
Zx [kt s uy, xk k! kE+1
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As k — oo this quotient approaches zero no matter the value of . This means that the series converges
for all x.

Absolute Convergence

If a series has terms of varying signs, that should help the convergence. A series is absolutely convergent
if it converges when you replace each term by its absolute value. If it's absolutely convergent then it
will certainly be convergent when you reinstate the signs. An example of a series that is convergent
but not absolutely convergent is

1 11
(=DM =1- 42— =h(1+1)=In2 (2.12)
— k 23

Change all the minus signs to plus and the series is divergent. (Use the integral test.)

Can you rearrange the terms of an infinite series? Sometimes yes and sometimes no. If a series
is convergent but not absolutely convergent, then each of the two series, the positive terms and the
negative terms, is separately divergent. In this case you can rearrange the terms of the series to converge
to anything you want! Take the series above that converges to In2. | want to rearrange the terms
so that it converges to /2. Easy. Just start adding the positive terms until you've passed v/2. Stop
and now start adding negative ones until you're below that point. Stop and start adding positive terms
again. Keep going and you can get to any number you want.

11 1 1 1 1 1 1

1 - — = — 4+ — — =€t
+3+5 2+7+9+ +13 360

2.4 Series of Series
When you have a function whose power series you need, there are sometimes easier ways to the result
than a straight-forward attack. Not always, but you should look first. If you need the expansion of

e +b 3hout the origin you can do a lot of derivatives, using the general form of the Taylor expansion.
Or you can say

%(amQ + bx)? + é(om:2 +bx)3+--- (2.13)

and if you need the individual terms, expand the powers of the binomials and collect like powers of x:

eax2+bx =1+ (CL.TQ + b.fU) +

1+bx + (a+b*/2)2* + (ab+b*/6)2® + - - -

If you're willing to settle for an expansion about another point, complete the square in the exponent

eam2+bz _ ea(x2+bx/a) _ 6a(:c2+b:r/a+b2/4a2)7132/4a _ 6a(av+b/2a)27b2/4a _ ea(x+b/2a)267b2/4a
e‘b2/4a[1 +a(z +b/2a)* + a*(x + b/2a)* /2 + - -]
and this is a power series expansion about the point xg = —b/2a.

What is the power series expansion of the secant? You can go back to the general formulation
and differentiate a lot or you can use a combination of two known series, the cosine and the geometric
series.

. 1 1 1
secC = = =
cost  1—Ja?4 Fat+- 11— [ga2— g+ ]
2 3
=1+ [+ [T+ [
=14 [La?— Lot )+ [ha? - et P
1 gt (= (et

=1+ 4%+ Zat 4+

(2.14)
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This is a geometric series, each of whose terms is itself an infinite series. It still beats plugging into the
general formula for the Taylor series Eq. (2.5).
What is 1/ sin® 2.7

1 1 1
sin® (2 —a3/30 4 25/50 — ) a3(1—a2/3 + a1 /5l —--)°
S R S R
x3(1+z) Sl
1
:ﬁ(l— 2?3042t /5 — )+ 6(—x? /3 4 2t /Bl — )2
_i+i+5£+
s 360

which is a Frobenius series.

2.5 Power series, two variables

The idea of a power series can be extended to more than one variable. One way to develop it is to use
exactly the same sort of brute-force approach that | used for the one-variable case. Assume that there
is some sort of infinite series and successively evaluate its terms.

flx,y) = A+ Bx+ Cy+ Da* + Exy + Fy?* + Ga® + Hzy + Txy* + Jy? - -

Include all the possible linear, quadratic, cubic, and higher order combinations. Just as with the single
variable, evaluate it at the origin, the point (0, 0).

F(0,0)=A+0+0+---

Now differentiate, but this time you have to do it twice, once with respect to x while y is held constant
and once with respect to y while x is held constant.

of B of _
%(x,y)—B—Fﬂ)x—i-Ey—i-‘-' then %(0,0)_3
of B of _
Fy(x,y)—C+Ex+2Fy+-~- then a—y(0,0)—C
Three more partial derivatives of these two equations gives the next terms.
0*f
B a5(%,y) =2D +6Gr +2Hy - -
*f
920y (x,y)=FE+2Hx+21y---
2
gj;(x y)=2F+2lx+6Jy---

Evaluate these at the origin and you have the values of D, F, and F'. Keep going and you have all the
coefficients.

This is awfully cumbersome, but mostly because the crude notation that I've used. You can
make it look less messy simply by choosing a more compact notation. If you do it neatly it's no harder
to write the series as an expansion about any point, not just the origin.

> Apnlz —a)™(y - b)" (2.15)

m,n=0
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Differentiate this m times with respect to x and n times with respect to y, then set x = a and y = b.
Only one term survives and that is

I — mn!
axmayn(“’b) mn!Amn

3
| can use subscripts to denote differentiation so that % is fr and angy is fmy. Then the

two-variable Taylor expansion is

f@,y) = FO)+£2(0)x + fy(0)y+
S [ea 002 + 2Ly (O)y + 1y (0] +

1 P (007 + 3Laay (0% + 3ayy (002 + iy O]+ (216)

Again put more order into the notation and rewrite the general form using A, as

A = ; ( ) (a,b) (2.17)

(m+n mIn! ) Qx™mIyn

That factor in parentheses is variously called the binomial coefficient or a combinatorial factor. Standard

notations for it are |
m! m
m:m%: <n> (2.18)

The binomial series, Eq. (2.4), for the case of a positive integer exponent is

m
m :
(14+x)" = Z < )x”, or more symmetrically

n
n=0
(a+b)" = (™ npmen (2.19)
0 §%<n>a

(a+b)?=a*+2ab+ b,  (a+b)>=a’+3a*+ 3ab® + b3
(a+b)* = a* +4ab + 6a%V* + 4ab® + b, etc.

Its relation to combinatorial analysis is that if you ask how many different ways can you choose n
objects from a collection of m of them, ,,,C), is the answer.

2.6 Stirling’s Approximation
The Gamma function for positive integers is a factorial. A clever use of infinite series and Gaussian

integrals provides a useful approximate value for the factorial of large n.
n! ~V2mnn"e " for large n (2.20)

Start from the Gamma function of n + 1.
nl=Tn+1)= / dtthe ! = / dt e~ ttmnt
0 0

The integrand starts at zero, increases, and drops back down to zero as ¢ — co. The graph roughly
resembles a Gaussian, and | can make this more precise by expanding the exponent around the point
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where it is a maximum. The largest contribution to the whole integral comes from the region near this
point. Differentiate the exponent to find the maximum:

et

4 21.06

}\t:n:5

dt
Expand about this point

ft) = —t+nlnt= f(n)

=-n+nlnn + 0

Keep terms to the second order and the integral is approximately

Ay =142 =

gives t=n

F (E=mf') + (E- )2+
+ (=) (=n/n?)[2 + -

n! ~ /oo dt e—n+nlnn—(t—n)2/2n — e M /OO dt e—(t—n)2/2n (2‘21)
0 0

At the lower limit of the integral, at ¢ = 0, this integrand is e

-n/2

, so if n is even moderately large

then extending the range of the integral to the whole line —co to +0o0 won't change the final answer

much.

n"e " /Oo dt e=(t=m?/2n _ pne=n,/omy
— 00

where the final integral is just the simplest of the Gaussian integrals in Eq. (1.10).

To see how good this is, try a few numbers

n n! Stirling
1 1 0.922
2 2 1.919
5 120 118.019
10 3628800 3598695.619

ratio
0.922
0.960
0.983
0.992

difference
0.078
0.081
1.981
30104.381

You can see that the ratio of the exact to the approximate result is approaching one even though the
difference is getting very large. This is not a handicap, as there are many circumstances for which this
is all you need. This derivation assumed that n is large, but notice that the result is not too bad even
for modest values. The error is less than 2% for n = 5. There are even some applications, especially in
statistical mechanics, in which you can make a still cruder approximation and drop the factor /27n.
That is because in that context it is the logarithm of n! that appears, and the ratio of the logarithms
of the exact and even this cruder approximate number goes to one for large n. Try it.

Although I've talked about Stirling's approximation in terms of factorials, it started with the
Gamma function, so Eq. (2.20) works just as well for I'(n + 1) for any real n:
I'(11.34 = 10.34 + 1) = 8116 833.918 and Stirling gives 8 051 701.
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Asymptotic

You may have noticed the symbol that | used in Egs. (2.20) and (2.21). “~" doesn't mean “ap-
proximately equal to” or “about,” because as you see here the difference between n! and the Stirling
approximation grows with n. That the ratio goes to one is the important point here and it gets this
special symbol, “asymptotic to.”

Probability Distribution
In section 1.4 the equation (1.17) describes the distribution of the results when you toss a coin. It's
straight-forward to derive this from Stirling's formula. In fact it is just as easy to do a version of it for
which the coin is biased, or more generally, for any case that one of the choices is more likely than the
other.

Suppose that the two choices will come up at random with fractions a and b, where @ + b = 1.
You can still picture it as a coin toss, but using a very unfair coin. Perhaps a = 1/3 of the time it
comes up tails and b = 2/3 of the time it comes up heads. If you toss two coins, the possibilities are

TT HT TH HH
and the fractions of the time that you get each pair are respectively
a? ba ab b?

This says that the fraction of the time that you get no heads, one head, or two heads are

a’ = 1/, 2ab = 4y,  bE =14 with total (@ +b)?=a?+2ab+b* =1 (2.22)
Generalize this to the case where you throw IV coins at a time and determine how often you
expect to see 0, 1, ..., N heads. Equation (2.19) says
N /N N N
N _ kpN—k — :
(a+0) —%(k)ab where (k;)_k‘!(N—k)!

When you make a trial |n which you toss IN coins, you expect that the choice will come up N
times only the fraction a’¥ of the trials. All tails and no heads. Compare problem 2.27.

The problem is now to use Stirling's formula to find an approximate result for the terms of this
series. This is the fraction of the trials in which you turn up £ tails and N — k heads.

SNk NV Nk V2rN NNe N
k(N —k)! Vork kke=k\/2n(N — k) (N k)N—ke—(N—F)

aFpN -k 1
b ,/ k;kN o (2.23)

The complicated parts to manipulate are the factors with all the exponentials of k in them. Pull them
out from the denominator for separate handling, leaving the square roots behind.

kk(N N k)N—ka—k’b—(N—k)
The next trick is to take a logarithm and to do all the manipulations on it.

In — klnk + (N — k)In(N — k) — klna — (N — k) Inb = f(k) (2.24)
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The original function is a maximum when this denominator is a minimum. When the numbers N and
k are big, you can treat k as a continuous variable and differentiate with respect to it. Then set this
derivative to zero and finally, expand in a power series about that point.

jkf(k)—lnk—i-l—ln(N—k)—1—lna+lnb—0
k a k a
lnN—k':1n57 7N—k257 kJ:CLN

This should be no surprise; a is the fraction of the time the first choice occurs, and it says that the
most likely number of times that it occurs is that fraction times the number of trials. At this point,
what is the second derivative?

d? 1 1
iz ) =5+ N
1 1 1 1 1 1 1

TNk aN TN _aN aN TN T N

when k = aN, (k) =
About this point the power series for f(k) is

f(k) :f(aN)+(k—aN)f’(aN)+%(k—aN)Qf”(aN)+--~

J— 1 p— 2 e
_NlnN+m(k: alN)* + (2.25)

To substitute this back into Eq. (2.23), take its exponential. Then because this will be a fairly sharp
maximum, only the values of k near to a/N will be significant. That allows me to use this central value
of k in the slowly varying square root coefficient of that equation, and | can also neglect higher order
terms in the power series expansion there. Let 0 = k — a/N. The result is the Gaussian distribution.

1 N NN 1 —62/2abN
. = e
V2r\| aN(N —aN) NNebt?/2abN  \/9qb N1

(2.26)

When a = b = 1/2, this reduces to Eq. (1.17).

When you accumulate N trials at a time (large V) and then look for the distribution in these
cumulative results, you will commonly get a Gaussian. This is the central limit theorem, which says
that whatever set of probabilities that you start with, not just a coin toss, you will get a Gaussian by
averaging the data. (Not really true. There are some requirements* on the probabilities that aren't
always met, but if as here the variable has a bounded domain then it's o.k. See problems 17.24 and
17.25 for a hint of where a naive assumption that all distributions behave the same way that Gaussians
do can be misleading.) If you listen to the clicks of a counter that records radioactive decays, they sound
(and are) random, and the time interval between the clicks varies greatly. If you set the electronics to
click at every tenth count, the result will sound regular, and the time interval between clicks will vary
only slightly.

* finite mean and variance
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2.7 Useful Tricks
There are a variety of ways to manipulate series, and while some of them are simple they are probably
not the sort of thing you'd think of until you've seen them once. Example: what is the sum of

1 1 1 1
1——-—4+-—=4+_-—=-...7

3 56 79

Introduce a parameter that you can manipulate, like the parameter you sometimes introduce to do
integrals as in Eq. (1.5). Consider the series with the parameter z in it.

3 5 7 9

X X xr x
fa)y=z-—F+57-Z+5 (2.27)

Differentiate this with respect to x to get
flx)y=1—2*+ 2% — 25 + 28 -

That looks a bit like the geometric series except that it has only even powers and the signs alternate.
Is that too great an obstacle? As 1/(1 — x) has only plus signs, then change x to —z, and 1/(1 + z)
alternates in sign. Instead of x as a variable, use 22, then you get exactly what you're looking for.

1

"@)y=1-a?+2* =25 +2% —... = ——
Now to get back to the original series, which is f(1) recall, all that | need to do is integrate this
expression for f'(z). The lower limit is zero, because f(0) = 0.

1 1
1 m
f() /0 v st =g

This series converges so slowly however that you would never dream of computing 7 this way. If you
take 100 terms, the next term is 1/201 and you can get a better approximation to 7 by using 22/7.
The geometric series is 1 4+ x + 22 4+ 22 + - - -, but what if there's an extra factor in front of each
term?
f(z)=2430 +42% + 523 + - -

Multiply this by = and it is 22 + 322 + 423 + 52% + - - -, starting to look like a derivative.

d
xf(x):2x+3x2+4a:3+5334+...:%(ﬁ—%xg—l—x‘l—i—---)

Again, the geometric series pops up, though missing a couple of terms.

_d 2 .3 I B S S
a:f(m)_%(lthjtx +x +---—1—x)—dx[ 1 x}_(l—w)Q 1

The final result is then
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2.8 Diffraction
When light passes through a very small opening it will be diffracted so that it will spread out in a
characteristic pattern of higher and lower intensity. The analysis of the result uses many of the tools
that you've looked at in the first two chapters, so it's worth showing the derivation first.

The light that is coming from the left side of the figure has a wavelength A\ and wave number
k = 2w /\. The light passes through a narrow slit of width = a. The Huygens construction for the
light that comes through the slit says that you can effectively treat each little part of the slit as if it is
a source of part of the wave that comes through to the right. (As a historical note, the mathematical
justification for this procedure didn't come until about 150 years after Huygens proposed it, so if you
think it isn't obvious why it works, you're right.)

Call the coordinate along the width of the slit y, where 0 < y < a. | want to find the total light
wave that passes through the slit and that heads at the angle 6 away from straight ahead. The light
that passes through between coordinates y and y + dy is a wave

Ady cos(kr — wt)
Its amplitude is proportional to the amplitude of the incoming wave, A, and to the width dy that | am
considering. The coordinate along the direction of the wave is 7. The total wave that will head in this
direction is the sum (integral) over all these little pieces of the slit.

Let 79 be the distance measured from the bottom of the slit to where the light is received far
away. Find the value of r by doing a little trigonometry, getting

r=ro—ysinf
The total wave to be received is now the integral

sin (k(ro — ysin6) — wt) ¢
—ksind

a
/ Ady cos (k(ro — ysinf) —wt) = A
0
0

Put in the limits to get

oy [sin (k(ro — asinf) — wt) — sin (krg — wt)]

| need a trigonometric identity here, one that you can easily derive with the techniques of complex

algebra in chapter 3.
sinz —siny = 2sin <$;y> Ccos (x—;y) (2.28)
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Use this and the light amplitude is

24 . ka . a .
m Sin (—2 Sin 9) COS <k5(7‘0 - 5 sin 0) - wt) (229)

The wave is the cosine factor. It is a cosine of (k -distance — wt), and the distance in question
is the distance to the center of the slit. This is then a wave that appears to be coming from the middle
of the slit, but with an amplitude that varies strongly with angle. That variation comes from the other
factors in Eq. (2.29).

It's the variation with angle that's important. The intensity of the wave, the power per area,
is proportional to the square of the wave's amplitude. I'm going to ignore all the constant factors, so
there's no need to worry about the constant of proportionality. The intensity is then (up to a factor)

sin? ((ka/2)sin )
sin? )

For light, the wavelength is about 400 to 700 nm, and the slit may be a millimeter or a tenth of a

millimeter. The size of ka/2 is then about

ka/2 =ma/\ ~ 3-0.1 mm/500 nm ~ 1000

I= (2.30)

When you plot this intensity versus angle, the numerator vanishes when the argument of sin?() is n,
with n an integer, +, —, or 0. This says that the intensity vanishes in these directions except for 6 = 0.
In that case the denominator vanishes too, so you have to look closer. For the simpler case that 6 # 0,
these angles are

k k
nr="Lsnf~ 0 p=+1, 42, ..
2 2
Because ka is big, you have many values of n before the approximation that sin § = # becomes invalid.

You can rewrite this in terms of the wavelength because k = 27 /\.
2ma
2

What happens at zero? Use power series expansions to evaluate this indeterminate form. The
first term in the series expansion of the sine is 0 itself, so

sin? ((ka/2)sin ) ((lm/2)9)2 ka\?
sin? ¢ 7 62 - <2>

What is the behavior of the intensity near # = 0? Again, use power series expansions, but keep
another term

nmw =

g, or  O#=n)\a

I = (2.31)

1
sin9:9—693+---, and  (1+2)%=14+ax+---

Remember, ka/2 is big! This means that it makes sense to keep just one term of the sine expansion
for sin 6 itself, but you'd better keep an extra term in the expansion of the sin*(ka. ..).

e ORI CORS]
ICONEICORS
OISR
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When you use the binomial expansion, put the binomial in the standard form, (1 4+ x) as in the second
line of these equations. What is the shape of this function? Forget all the constants, and it looks like
1 — #2. That's a parabola.

The dots are the points where the intensity goes to zero, n\/a. Between these directions it
reaches a maximum. How big is it there 7 These maxima are about halfway between the points where
(kasin®)/2 = nw. This is

781D9=(7’L+ oym, n==+1,+2, ...

At these angles the value of [ is, from Eq. (2.30),

ka\? 1 2
I={(— _
2 (2n + 1)7/2
The intensity at 6 = 0 is by Eq. (2.31), (ka/2)?, so the maxima off to the side have intensities that
are smaller than this by factors of

1

—— =0.045
9712 /4 ’

——— =0.016,...
2572 /4 ’

—\ /IN S
2.9 Checking Results

When you solve any problem, or at least think that you've solved it, you're not done. You still have to
check to see whether your result makes any sense. If you are dealing with a problem whose solution is
in the back of the book then do you think that the author is infallible? If there is no back of the book
and you're working on something that you would like to publish, do you think that you're infallible?
Either way you can’t simply assume that you've made no mistakes; you have to look at your answer
skeptically.

There's a second reason, at least as important, to examine your results: that’'s where you can
learn some physics and gain some intuition. Solving a complex problem and getting a complicated
answer may involve a lot of mathematics but you don't usually gain any physical insight from doing it.
When you analyze your results you can gain an understanding of how the mathematical symbols are
related to physical reality. Often an approximate answer to a complicated problem can give you more
insight than an exact one, especially if the approximate answer is easier to analyze.

The first tool that you have to use at every opportunity is dimensional analysis. If you are
computing a length and your result is a velocity then you are wrong. If you have something in your
result that involves adding a time to an acceleration or an angle to a distance, then you've made a
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mistake; go back and find it. You can do this sort of analysis everywhere, and it is one technique that
provides an automatic error finding mechanism. If an equation is dimensionally inconsistent, backtrack
a few lines and see whether the units are wrong there too. If they are correct then you know that your
error occurred between those two lines; then further narrow the region where the mistake happened by
looking for the place at which the dimensions changed from consistent to inconsistent and that's where
the mistake happened.

The second tool in your analysis is to examine all the parameters that occur in the result and
to see what happens when you vary them. Especially see what happens when you push them to an
extreme value. This is best explained by some examples. Start with some simple mechanics to see the

procedure.

ma A g—> M

mo

Two masses are attached by a string of negligible mass and that is wrapped around a pulley
of mass M so that it can't slip on the pulley. Analyze them to determine what is wrong with each.
Assume that there is no friction between m; and the table and that the string does not slip on the

pulley.

(a) az

mo

N mg—M/Q
N m2+m1—M/2g

m2+m1+M/2g

mo + My

(b) ax (c) ag

(a) If my > my, this is negative, meaning that the motion of m; is being slowed down. But
there's no friction or other such force to do this.
OR If m1 = mea, this is zero, but there are still unbalanced forces causing these masses to accelerate.

(b) If the combination of masses is just right, for example m; = 1kg, mo = 1kg, and M = 2kg,
the denominator is zero. The expression for a, blows up — a very serious problem.
OR If M is very large compared to the other masses, the denominator is negative, meaning that a, is
negative and the acceleration is a braking. Without friction, this is impossible.

(c) If M > my and my, the numerator is mostly —M /2 and the denominator is mostly +M /2.
This makes the whole expression negative, meaning that m; and mo are slowing down. There is no
friction to do this, and all the forces are the direction to cause acceleration toward positive .
OR If my = M/2, this equals zero, saying that there is no acceleration, but in this system, a, will
always be positive.

The same picture, but with friction p, between m; and the table.

(a) az = e g (b)ag="2"By (c)ay = e g
mo + fumy + M /2 me — M/2 ma + fumy — M /2

(a) If px is very large, this approaches zero. Large friction should cause m; to brake to a halt
quickly with very large negative ay;.
OR If there is no friction, pux = 0, then m; plays no role in this result but if it is big then you know
that it will decrease the downward acceleration of ms.

(b) The denominator can vanish. If my = M /2 this is nonsense.

(c) This suffers from both of the difficulties of (a) and (b).

Trajectory Example
When you toss an object straight up with an initial speed vy, you may expect an answer for the motion
as a function of time to be something like
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1
vy (t) = vy — gt, y(t) = vot — 59252 (2.32)

Should you expect this? Not if you remember that there’s air resistance. If | claim that the answers are
v
oy (t) = —ve + (vo + vr)e 9% y(t) = —vet + (vo + ’Ut)j [1— e=9t/™] (2.33)

then this claim has to be inspected to see if it makes sense. And | never bothered to tell you what
the expression “v;" means anyway. You have to figure that out. Fortunately that's not difficult in this
case. What happens to these equations for very large time? The exponentials go to zero, so

v
vy — —ve+ (Vo + ) 0= —uy, and y — —Utt+(Uo+Ut)j

Uy is the terminal speed. After a long enough time a falling object will reach a speed for which the force
by gravity and the force by the air will balance each other and the velocity then remains constant.
Do they satisfy the initial conditions? Yes:

vy(0) = —ve + (vo +vt)60 = v, y(0) = 0+ (vo +vt)% «(1-1)=0

What do these behave like for small time? They ought to reduce to something like the expressions
in Eq. (2.32), but just as important is to determine what the deviation from that simple form is. Keep
some extra terms in the series expansion. How many extra terms? If you're not certain, then keep one
more than you think you will need. After some experience you will usually be able to anticipate what
to do. Expand the exponential:

—gt 1 [—gt\?
vy(t) = —ve + (v + ) 1+g+(g) + -

UVt 2 (2

v 1 v 2¢2
:v0—<1+0>gt+<1+0>g+---
Ut 2 Ut Ut

The coefficient of ¢ says that the object is slowing down more rapidly than it would have without air

resistance. So far, so good. Is the factor right? Not yet clear, so keep going. Did | need to keep terms

to order 2?7 Probably not, but there wasn’t much algebra involved in doing it, so it was harmless.
Look at the other equation, for y.

y(t):—vtt+(vo+vt)% [1— [1_gt+1(9t>2_1<9t>3+...

Ut 2

1 Vo , 1 vo\ g°t3
=vt—=(1+—)gt*"— =1+ —
vo 2 < + Ut> g 6 < + Ut> UVt +

Now differentiate this approximate expression for ¢ with respect to time and you get the approximate
expression for v,. That means that everything appears internally consistent, and | haven't introduced
any obvious error in the process of approximation.

What if the terminal speed is infinite, so there's no air resistance. The work to answer this is
already done. Expanding e=9t/% for small time is the same as for large v, so you need only look back
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at the preceding two sets of equations and let vy — oo. The result is precisely the equations (2.32),
just as you should expect.

You can even determine something about the force that | assumed for the air resistance: F;, =
may, = mduvy/dt. Differentiate the approximate expression that you already have for vy, then at least

for small ¢
d Vo 1 v\ g2t?
Fy=m—|vo— (14+2)gt+=(14+2) L +...
y mdt|:’l)0 (+Ut>g+2<+vt> Ut+

v
——m<1+;>g+-~-——mg—mgvo/vt+-~- (2.34)
t

This says that the force appears to be (1) gravity plus (2) a force proportional to the initial velocity.
The last fact comes from the factor vy in the second term of the force equation, and at time zero, that
is the velocity. Does this imply that | assumed a force acting as I, = —mg — (a constant times)v,,?
To this approximation that’s the best guess. (It happens to be correct.) To verify it though, you would
have to go back to the original un-approximated equations (2.33) and compute the force from them.

— &b

I

— "

Electrostatics Example

Still another example, but from electrostatics this time: Two thin circular rings have radii @ and b and
carry charges ()1 and ()o distributed uniformly around them. The rings are positioned in two parallel
planes a distance c apart and with axes coinciding. The problem is to compute the force of one ring
on the other, and for the single non-zero component the answer is (perhaps)

@1Q2c ™/2 do
F= 51 / 2 2 — (2.35)
0 Jo  [c24 (b—a)?+4absin® 0]

Is this plausible? First check the dimensions! The integrand is (dimensionally) 1/(c2)3/2 = 1/c3, where
c is one of the lengths. Combine this with the factors in front of the integral and one of the lengths (c's)
cancels, leaving Q1(Q2/€oc?. This is (again dimensionally) the same as Coulomb’s law, q1qo/4megr?,
so it passes this test.

When you've done the dimensional check, start to consider the parameters that control the result.
The numbers a, b, and ¢ can be anything: small, large, or equal in any combination. For some cases
you should be able to say what the answer will be, either approximately or exactly, and then check
whether this complicated expression agrees with your expectation.

If the rings shrink to zero radius this has a = b = 0, so F, reduces to

F, @Q1Q2c /7T/2 ot — QiQec m _ 1@y
0

2m2¢ 3 2m2ey 263 Ameyc?

and this is the correct expression for two point charges a distance ¢ apart.

If ¢ > a and b then this is really not very different from the preceding case, where a and b are
zero.

If a =0 this is

P, Gl /”/2 d) Qi@ T2 Qi@
z = =
2meo Jo o (24 p2)¥? 0 20 [@2 41237 dmey[c2 + 12)%

(2.36)
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The electric field on the axis of a ring is something that you can compute easily. The only component of
the electric field at a point on the axis is itself along the axis. You can prove this by assuming that it's
false. Suppose that there's a lateral component of E and say that it's to the right. Rotate everything
by 180° about the axis and this component of E will now be pointing in the opposite direction. The
ring of charge has not changed however, so E must be pointing in the original direction. This supposed
sideways component is equal to minus itself, and something that's equal to minus itself is zero.

All the contributions to except those parallel the axis add to zero. Along the axis each piece
of charge dq contributes the component

J-
HIAN dq c

] ‘Q
' .
C: S .
' .
H .

: Amepc? + 02 /2 + b2

The first factor is the magnitude of the field of the point charge at a distance 7 = v/c2 + b2 and the
last factor is the cosine of the angle between the axis and r. Add all the dq together and you get ().
Multiply that by ()2 and you have the force on (5 and it agrees with the expressions Eq. (2.36)

If ¢ — 0 then F, — 0 in Eq. (2.35). The rings are concentric and the outer ring doesn't push
the inner ring either up or down.

But wait. In this case, where ¢ — 0, what if @ = b? Then the force should approach infinity
instead of zero because the two rings are being pushed into each other. If a = b then

(2.37)

F, = Q1Q2c /ﬂ/2 o
o

2m€g 2 + 4a2 sin? 9] 3/2

If you simply set ¢ = 0 in this equation you get

F, = (1120 /W/2 do
o

212 4a? sin® 0] 3/2
The numerator is zero, but look at the integral. The variable 6 goes from 0 to 7T/2, and at the end
near zero the integrand looks like
1 N 1 1
[1a2sin?0]*%  [40202)%*  8a°0°

Here | used the first term in the power series expansion of the sine. The integral near the zero end is
then approximately

cdf -1

0o 03 207,

and that’s infinite. This way to evaluate F’, is indeterminate: 0-oc can be anything. It doesn’t show
that this F), gives the right answer, but it doesn't show that it's wrong either.

Estimating a tough integral
Although this is more difficult, even tricky, I'm going to show you how to examine this case for small
values of ¢ and not for ¢ = 0. The problem is in figuring out how to estimate the integral (2.37) for



2—Infinite Series 43

small ¢, and the key is to realize that the only place the integrand gets big is in the neighborhood of
0 = 0. The trick then is to divide the range of integration into two pieces

7T/2 / /
/0 (¢ + 4a? s1n2 9

For any positive value of A the second piece of the integral will remain finite even as ¢ — 0. This means
that in trying to estimate the way that the whole integral approaches infinity | can ignore the second
part of the integral. Now choose A small enough that for 0 < 6 < A | can use the approximation
sinf = 0, the first term in the series for sine. (Perhaps A = 0.1 or so.)

/2 do A db
for small c, 5/ ~ 3/ + lower order terms
0 [c2+ 4a?sin? 0] 0 [c?+4a26?]

This is an elementary integral. Let 6 = (¢/2a) tan ¢.

A A 2 A
/ de _ / (¢/2a) sec® p do _ 1 : / con ¢ — 1 Y
0 [+ 4a20?] 3/2 0 [+ c2tan2@]3/2  2ac? ), 2a¢

The limit A’ comes from A = (¢/2a)tan A’, so this implies tan A’ = 2aA/c. Now given the tangent
of an angle, | want the sine — that's the first page of chapter one.

o 2aM/c 2aA
sin A" = =
V14 (2aA/c)2 V2 + 4a2A2

As ¢ — 0, this approaches one. Put all of this together and you have the behavior of the integral in
Eq. (2.37) for small c.

/2 do 1
/ 3 ~ 5002 + lower order terms
0 [62 + 4a2 sin? 9} ac

Insert this into Eq. (2.37) to get

FZ~Q1Q2C- I Qi@

2m2ey  2ac?  Am2epac

Now why should | believe this any more than | believed the original integral? When you are very
close to one of the rings, it will look like a long, straight line charge and the linear charge density on it is
then A\ = Q1 /2ma. What is the electric field of an infinitely long uniform line charge? E, = \/2megr.
So now at the distance ¢ from this line charge you know the E-field and to get the force on (5 you
simply multiply this field by ()s.

Q1/27a

F, should be
2mepe

Q = Q2 (2.38)
and that's exactly what | found in the preceding equation. After all these checks | think that | may
believe the result, and more than that you begin to get an intuitive idea of what the result ought to
look like. That’s at least as valuable. It's what makes the difference between understanding the physics
underlying a subject and simply learning how to manipulate the mathematics.
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Exercises
1 Evaluate by hand cos0.1 to four places.
2 In the same way, evaluate tan 0.1 to four places.

3 Use the first two terms of the binomial expansion to estimate v/2 = /1 + 1. What is the relative
error? [(wrong—right)/right]

4 Same as the preceding exercise, but for v/1.2.

. . 2 2
5 What is the domain of convergence for x — 2% + 2° — 2% + 25 — ...

o0
6 Does Z cos(n) — cos(n + 1) converge?
n=0

o0
1
7 Does —— converge?
2 T e

(o.9]
n!
8 Does E — converge?
n
n=1

x2 x3 xd

- + o7
1.2 2.22 7 3.33 4.4

9 What is the domain of convergence for

. . 1
10 From Eq. (2.1), find a series for A=

11 If x is positive, sum the series 1 + e ™% + 727 4 73 4 ...
12 What is the ratio of the exact value of 20! to Stirling’s approximation for it?

13 For the example in Eq. (2.22), what are the approximate values that would be predicted from
Eq. (2.26)7

14 Do the algebra to evaluate Eq. (2.25).

15 Translate this into a question about infinite series and evaluate the two repeating decimal numbers:
0.444444 ..., 0.987987987...

16 What does the integral test tell you about the convergence of the infinite series > ;" n~P?

17 What would the power series expansion for the sine look like if you require it to be valid in arbitrary
units, not just radians? This requires using the constant “C" as in section 1.1.
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Problems

2.1 (a) If you borrow $200,000 to buy a house and will pay it back in monthly instaliments over 30 years
at an annual interest rate of 6%, what is your monthly payment and what is the total money that you
have paid (neglecting inflation)? To start, you have N payments p with monthly interest ¢ and after
all N payments your unpaid balance must reach zero. The initial loan is L and you pay at the end of
each month.

(L1+2)—p)(Q+i)—p)(1+i)—p -+ N times =0

Now carry on and find the general expression for the monthly payment. Also find the total paid.

(b) Does your general result for arbitrary /N reduce to the correct value if you pay everything back at
the end of one month? [L(1+7) = p]

(c) For general IV, what does your result become if the interest rate is zero? Ans: $1199.10, $431676

2.2 In the preceding problem, suppose that there is an annual inflation of 2%. Now what is the total
amount of money that you've paid in constant dollars? That is, one hundred dollars in the year 2010 is
worth just $100/1.02!9 = $82.03 as expressed in year-2000 dollars. Each payment is paid with dollars
of gradually decreasing value. Ans: $324211

2.3 Derive all the power series that you're supposed to memorize, Eq. (2.4).
2.4 Sketch graphs of the functions

2 .2 2 _ _ _ B /a2
e ze T 26T e || TE || 2e || e 1/x e 1/x

2.5 The sample series in Eq. (2.7) has a simple graph (22 between —L and +L) Sketch graphs of one,
two, three terms of this series to see if the graph is headed toward the supposed answer.

2.6 Evaluate this same Fourier series for 22 at x = L; the answer is supposed to be L?. Rearrange
the result from the series and show that you can use it to evaluate ((2), Eq. (2.6). Ans: 72/6

2.7 Determine the domain of convergence for all the series in Eq. (2.4).
2.8 Determine the Taylor series for cosh x and sinh x.

2.9 Working strictly by hand, evaluate v/0.999. Also v/50. Ans: Here's where a calculator can tell you
better than | can.

2.10 Determine the next, 2%, term in the series expansion of the secant. Ans: 61x6/720

2.11 The power series for the tangent is not as neat and simple as for the sine and cosine. You can
derive it by taking successive derivatives as done in the text or you can use your knowledge of the series
for the sine and cosine, and the geometric series.

sine  x—a3/31+ - 3 )
tanx:cosa:: L—22/20 - = [z —a?/3l 4 14 (27204 )]

-1

Use the expansion for the geometric series to place all the 22 x? etc. terms into the numerator,

treating every term after the “1"” as a single small thing. Then collect the like powers to obtain the
series at least through x°.
Ans: x +x3/3 4225 /15 4+ 1727 /315 + - - -
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2.12 What is the series expansion for cscz = 1/sinx? As in the previous problem, use your knowledge
of the sine series and the geometric series to get this result at least through x°. Note: the first term
in this series is 1/x. Ans: 1/x + /6 + 723 /360 + 312° /15120 + - - -

2.13 The exact relativistic expression for the kinetic energy of an object with non-zero mass is
K=mc*(y—1)  where y=(1- 112/02)_1/2

and c is the speed of light in vacuum. If the speed v is small compared to the speed of light, find
an approximate expression for /X to show that it reduces to the Newtonian expression for the kinetic
energy, but include the next term in the expansion to determine how large the speed v must be in order
that this correction term is 10% of the Newtonian expression for the kinetic energy? Ans: v ~ 0.36 ¢

2.14 Use series expansions to evaluate

. 1l—cosz . sinkx
lim —— and lim
z—01 — coshx =0 T

2.15 Evaluate using series; you will need both the sine series and the binomial series.

I 1 1
im(———-—
20 \ sin? 22

Now do it again, setting up the algebra differently and finding an easier (or harder) way. Ans: 1/3

2.16 For some more practice with series, evaluate

2 1
lim ( — + ————r
z—0 <I 1—\/1—|—x>
Ans: Check experimentally with a few values of x on a pocket calculator.

2.17 Expand the integrand to find the power series expansion for
x
In(1+ z) —/ dt(1+t)*
0

Ans: Eq. (2.4)

2.18 (a) The error function erf(x) is defined by an integral. Expand the integrand, integrate term
by term, and develop a power series representation for erf. For what values of x does it converge?
Evaluate erf(1) from this series and compare it to the result of problem 1.34. (b) Also, as further
validation of the integral in problem 1.13, do the power series expansion of both sides of the equation
and verify the expansions of the two sides of the equation agree .

2.19 Verify that the combinatorial factor ,,,C), is really what results for the coefficients when you
specialize the binomial series Eq. (2.4) to the case that the exponent is an integer.

2.20 Determine the double power series representation about (0,0) of 1/[(1 — z/a)(1 —y/b)]

2.21 Determine the double power series representation about (0,0) of 1/(1 — z/a — y/b)
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2.22 Use a pocket calculator that can handle 100! and find the ratio of Stirling’'s approximation to the
exact value. You may not be able to find the difference of two such large numbers. An improvement

on the basic Stirling’s formula is
1
2rnne™™ [ 1+ —
( + 12n>

What is the ratio of approximate to exact for n =1, 2, 10?
Ans: 0.99898, 0.99948, ...

2.23 Evaluate the sum > 7°1/n(n+1). To do this, write the single term 1/n(n+1) as a combination
of two fractions with denominator n and (n + 1) respectively, then start to write out the stated infinite
series to a few terms to see the pattern. When you do this you may be tempted to separate it into two
series, of positive and of negative terms. Examine the problem of convergence and explain why this is
wrong. Ans: 1

2.24 (a) You can sometimes use the result of the previous problem to improve the convergence of a
slow-converging series. The sum > {° 1/n? converges, but not very fast. If you add zero to it you don't
change the answer, but if you're clever about how you add it you can change this into a much faster
converging series. Add 1 —> 7°1/n(n+1) to this series and combine the sums. (b) After Eq. (2.11) it
says that it takes 120 terms to get the stated accuracy. Verify this. For the same accuracy, how many
terms does this improved sum take? Ans: about 8 terms

2.25 The electric potential from one point charge is kq/r. For two point charges, you add the
potentials of each: kq1/r1 + kqa2/r2. Place a charge —q at the origin; place a charge +¢ at position
(z,y,2) = (0,0,a). Write the total potential from these at an arbitrary position P with coordinates
(z,y, z). Now suppose that a is small compared to the distance of P to the origin (1 = \/z2 + y? + 22)
and expand your result to the first non-vanishing power of a, or really of a/r. This is the potential
of an electric dipole. Also express your answer in spherical coordinates. See section 8.8 if you need.
Ans: kqa cos6/r?

2.26 Do the previous problem, but with charge —2q at the origin and charges +q at each of the two
points (0,0,a) and (0,0, —a). Again, you are looking for the potential at a point far away from the
charges, and up to the lowest non-vanishing power of a. In effect you're doing a series expansion in
a/r and keeping the first surviving term. Also express the result in spherical coordinates. The angular
dependence should be proportional to Ps(cosfl) = %00820 — % a "“Legendre polynomial.” The r
dependence will have a 1/73 in it. This potential is that of a linear quadrupole.

2.27 The combinatorial factor Eq. (2.18) is supposed to be the number of different ways of choosing
1 objects out of a set of m objects. Explicitly verify that this gives the correct number of ways for
m =1, 2, 3, 4. and all n from zero to m.

2.28 Pascal’s triangle is a visual way to compute the values of ,,C),. Start with the single digit 1 on
the top line. Every new line is computed by adding the two neighboring digits on the line above. (At
the end of the line, treat the empty space as a zero.)
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Write the next couple of lines of the triangle and then prove that this algorithm works, that is that the
m™ row is the ,,,Cy,, where the top row has m = 0. Mathematical induction is the technique that |
recommend.

2.29 Sum the series and show
1 2 3

2.30 You know the power series representation for the exponential function, but now apply it in a
slightly different context. Write out the power series for the exponential, but with an argument that
is a differential operator. The letter h represents some fixed number; interpret the square of d/dx as
d?/dx? and find
d
el f ()
Interpret the terms of the series and show that the value of this is f(z + h).

2.31 The Doppler effect for sound with a moving source and for a moving observer have different
formulas. The Doppler effect for light, including relativistic effects is different still. Show that for low
speeds they are all about the same.

v — U ff v po 1—v/c

[
== v+ s 1+v/c

The symbols have various meanings: v is the speed of sound in the first two, with the other terms
being the velocity of the observer and the velocity of the source. In the third equation c is the speed
of light and v is the velocity of the observer. And no, 1 = 1 isn't good enough; you should get these
at least to first order in the speed.

2.32 In the equation (2.30) for the light diffracted through a narrow slit, the width of the central
maximum is dictated by the angle at the first dark region. How does this angle vary as you vary the
width of the slit, a? What is this angle if @ = 0.1 mm and A = 700 nm? And how wide will the central
peak be on a wall 5 meters from the slit? Take this width to be the distance between the first dark
regions on either side of the center.

2.33 An object is a distance d below the surface of a medium with index of refraction n. (For example,
water.) When viewed from directly above the object in air (i.e. use small angle approximation), the
object appears to be a distance below the surface given by (maybe) one of the following expressions.
Show why most of these expressions are implausible; that is, give reasons for eliminating the wrong
ones without solving the problem explicitly.

(D) dvV1i+n2/n  (2)dn/vV1+n2  (3)nd (4)d/n  (5) dn*/\/1+n?

2.34 A mass m hangs from a string that is wrapped around a pulley of mass M. As the mass m;
falls with acceleration ay, the pulley rotates. An anonymous source claims that the acceleration of m;
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is one of the following answers. Examine them to determine if any is plausible. That is, examine each
and show why it could not be correct. NOTE: solving the problem and then seeing if any of these agree

is not what this is about.
(1) ay = Mg/(my — M) (2) ay = Mg/(mi+ M) (3) ay =mig/M

2.35 Light travels from a point on the left (p) to a point on the
right (¢), and on the left it is in vacuum while on the right of
the spherical surface it is in glass with an index of refraction n.
The radius of the spherical surface is R and you can parametrize
the point on the surface by the angle € from the center of the
sphere. Compute the time it takes light to travel on the indicated
path (two straight line segments) as a function of the angle 6.
Expand the time through second order in a power series in # and
show that the function 7'(f) has a minimum if the distance ¢ is
small enough, but that it switches to a maximum when q exceeds a particular value. This position is
the focus.

2.36 Combine two other series to get the power series in 6 for In(cos 6).
Ans: —102 — Lo* — L0% + ...

2.37 Subtract the series for In(1 — x) and In(1 + x). For what range of & does this series converge?
For what range of arguments of the logarithm does it converge?
Ans: -1 <z <1, 0<arg <oo

2.38 A function is defined by the integral

Todt
o= [ 55

Expand the integrand with the binomial expansion and derive the power (Taylor) series representation
for f about x = 0. Also make a hyperbolic substitution to evaluate it in closed form.

2.39 Light travels from a point on the right (p), hits a spherically
shaped mirror and goes to a point (¢). The radius of the spherical
surface is R and you can parametrize the point on the surface by
the angle 0 from the center of the sphere. Compute the time
it takes light to travel on the indicated path (two straight line
segments) as a function of the angle 6. .
Expand the time through second order in a power series in 6 and
show that the function T'(f) has a minimum if the distance ¢ is
small enough, but that it switches to a maximum when g exceeds
a particular value. This is the focus.

2.40 (a) The quadratic equation az? + bz + ¢ = 0 is almost a linear equation if a is small enough:

bx+c= 0= x = —c/b. You can get a more accurate solution iteratively by rewriting the equation as
C a ,
r=—7— <
b b

Solve this by neglecting the second term, then with this approximate x1 get an improved value of the

root by
C a o
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and you can repeat the process. For comparison take the exact solution and do a power series expansion
on it for small a. See if the results agree.
(b) Where does the other root come from? That value of x is very large, so the first two terms in
the quadratic are the big ones and must nearly cancel. ax? + bz = 0 so © = —b/a. Rearrange the
equation so that you can iterate it, and compare the iterated solution to the series expansion of the
exact solution.

b ¢

T=————

Solve 0.001z2 +x + 1 = 0. Ans: Solve it exactly and compare.
2.41 Evaluate the limits

. sinx —tanx . sinxz —tanx . sinz —tanx
@l =—— O T o @y

Ans: Check with a pocket calculator for x = 1.0, 0.1, 0.01
2.42 Fill in the missing steps in the derivation of Eq. (2.26).
2.43 s the result in Eq. (2.26) normalized properly? What is its integral do over all 67 Ans: 1

2.44 A political survey asks 1500 people randomly selected from the entire country whom they will
vote for as dog-catcher-in-chief. The results are 49.0% for T.l. Hulk and 51.0% for T.A. Spiderman.
Assume that these numbers are representative, an unbiased sample of the electorate. The number
0.49 x 1500 = aN is now your best estimate for the number of votes Mr. Hulk will get in a sample
of 1500. Given this estimate, what is the probability that Mr. Hulk will win the final vote anyway?
(a) Use Eq. (2.26) to represent this estimate of the probability of his getting various possible outcomes,
where the center of the distribution is at £k = aN. Using 6 = k — aN, this probability function is
proportional to exp ( — 52/2abN), and the probability of winning is the sum of all the probabilities of
having k > N/2, that is, f]t,% dk. (b) What would the answer be if the survey had asked 150 or 15000

people with the same 49-51 results? Ans: (a) [1 — erf (v/N/2ab(} — a))]. 22%, (b) 40%, 0.7%
2.45 For the function defined in problem 2.38, what is its behavior near x = 17 Compare this result

to equation (1.4). Note: the integral is f0A+ff. Also, 1 —t2 = (1 +t)(1 —t), and this ~ 2(1 — )
near 1.

2.46 (a) What is the expansion of 1/(1 +t2) in powers of ¢ for small ¢. (b) That was easy, now what
is it for large t? In each case, what is the domain of convergence?

2.47 The “average” of two numbers a and b commonly means (a + b)/2, the arithmetic mean. There
are many other averages however. (a,b > 0)

1
Mp(a,b) = [(a" +b") /2"
is the nt" mean, also called the power mean, and it includes many others as special cases. n = 2:
root-mean-square, n. = —1: harmonic mean. Show that this includes the geometric mean too: vVab =
limy,—0 My (a,b). It can be shown that dM,,/dn > 0; what inequalities does this imply for various

means? Ans: harmonic < geometric < arithmetic < rms

2.48 Using the definition in the preceding problem, show that dM,, /dn > 0. [Tough!]
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2.49 In problem 2.18 you found the power series expansion for the error function — good for small
arguments. Now what about large arguments?

2 z 7t2 2 o0 7t2 2 o0 1 7152
erf(m):ﬁ ) dte :1_ﬁ dte :1_ﬁ dtg'te
x x

Notice that you can integrate the te=t* factor explicitly, so integrate by parts. Then do it again and
again. This provides a series in inverse powers that allows you evaluate the error function for large
arguments. What is erf(3)? Ans: 0.9999779095 See Abramowitz and Stegun: 7.1.23.

2.50 A friend of mine got a different result for Eq. (2.35). Instead of sin? @ in the denominator, he
got a sin#. Analyze his answer for plausibility.

2.51 Find the minimum of the function f(r) = ar+b/r for a, b, r > 0. Then find the series expansion
of f about that point, at least as far as the first non-constant term.

2.52 In problem 2.15 you found the limit of a function as © — 0. Now find the behavior of the same
function as a series expansion for small x, through terms in z2. Ans: % + 1—15$2. To test whether this
answer or yours or neither is likely to be correct, evaluate the exact and approximate values of this for

moderately small « on a pocket calculator.

2.53 Following Eq. (2.34) the tentative conclusion was that the force assumed for the air resistance was
a constant times the velocity. Go back to the exact equations (2.33) and compute this force without
approximation, showing that it is in fact a constant times the velocity. And of course find the constant.

2.54 An object is thrown straight up with speed vg. There is air resistance and the resulting equation
for the velocity is claimed to be (only while it's going up)

vo — vy tan(gt /vy)
“0e + Vo tan(gt/vy)

vy(t) = v

where vy is the terminal speed of the object after it turns around and has then been falling long enough.
(a) Check whether this equation is plausible by determining if it reduces to the correct result if there
is no air resistance and the terminal speed goes to infinity. (b) Now, what is the velocity for small
time and then use F; = may to infer the probable speed dependence of what | assumed for the air
resistance in deriving this expression. See problem 2.11 for the tangent series. (c) Use the exact vy(t)
to show that no matter how large the initial speed is, it will stop in no more than some maximum time.
For a bullet that has a terminal speed of 100 m/s, this is about 16s.

2.55 Under the same circumstances as problem 2.54, the equation for position versus time is

7 v cos(gt /vr) + vo sin(gt /vy)
ylt) = ?t 8 < Ut >

(a) What is the behavior of this for small time? Analyze and interpret what it says and whether it
behaves as it should. (b) At the time that it reaches its maximum height (v, = 0), what is its position?
Note that you don't need to have an explicit value of ¢ for which this happens; you use the equation
that ¢ satisfies.

2.56 You can get the individual terms in the series Eq. (2.13) another way: multiply the two series:

ax+bx ax? ebx

(& =e

Do so and compare it to the few terms found after (2.13).



Complex Algebra

When the idea of negative numbers was broached a couple of thousand years ago, they were considered
suspect, in some sense not “real.” Later, when probably one of the students of Pythagoras discovered
that numbers such as /2 are irrational and cannot be written as a quotient of integers, legends have
it that the discoverer suffered dire consequences. Now both negatives and irrationals are taken for
granted as ordinary numbers of no special consequence. Why should v/—1 be any different? Yet it was
not until the middle 1800’s that complex numbers were accepted as fully legitimate. Even then, it took
the prestige of Gauss to persuade some. How can this be, because the general solution of a quadratic
equation had been known for a long time? When it gave complex roots, the response was that those
are meaningless and you can discard them.

3.1 Complex Numbers
As soon as you learn to solve a quadratic equation, you are confronted with complex numbers, but
what is a complex number? If the answer involves \/—1 then an appropriate response might be “What
is that?" Yes, we can manipulate objects such as —1 + 27 and get consistent results with them. We
just have to follow certain rules, such as 2 = —1. But is that an answer to the question? You can
go through the entire subject of complex algebra and even complex calculus without learning a better
answer, but it's nice to have a more complete answer once, if then only to relax* and forget it.

An answer to this question is to define complex numbers as pairs of real numbers, (a,b). These
pairs are made subject to rules of addition and multiplication:

(a,b) + (¢,d) = (a+c,b+d) and (a,b)(c,d) = (ac — bd, ad + bc)

An algebraic system has to have something called zero, so that it plus any number leaves that number
alone. Here that role is taken by (0,0)

(0,0) + (a,b) = (a+0,b+0) = (a,b) for all values of (a, b)
What is the identity, the number such that it times any number leaves that number alone?
(1,0)(c,d)=(1c—0-d,1-d+0-c) = (c,d)
so (1,0) has this role. Finally, where does v/—1 fit in?
(0,1)(0,1)=(0-0—-1-1,0-141-0) = (—1,0)

and the sum (—1,0) + (1,0) = (0,0) so (0,1) is the representation of i = y/—1, that is i + 1 = 0.
[(0,1)2 + (1,0) = (0,0)].

This set of pairs of real numbers satisfies all the desired properties that you want for complex
numbers, so having shown that it is possible to express complex numbers in a precise way, I'll feel free
to ignore this more cumbersome notation and to use the more conventional representation with the
symbol 7:

(a,b) «<— a+1b

That complex number will in turn usually be represented by a single letter, such as z = = + iy.

* If you think that this question is an easy one, you can read about some of the difficulties that
the greatest mathematicians in history had with it: “An Imaginary Tale: The Story of v/—1" by Paul
J. Nahin. | recommend it.

52
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The graphical interpretation of complex numbers is the Car-
tesian geometry of the plane. The z and y in 2 = = +4y indicatea | Y1 T %2
point in the plane, and the operations of addition and multiplication
can be interpreted as operations in the plane. Addition of complex .
numbers is simple to interpret; it's nothing more than common vec- !
tor addition where you think of the point as being a vector from the E _
origin. It reproduces the parallelogram law of vector addition. Z2 = T2+ 1Yo
The magnitude of a complex number is defined in the same
way that you define the magnitude of a vector in the plane. It is
the distance to the origin using the Euclidean idea of distance.

|z| = |z +iy| = Va2 + y? (3.1)

The multiplication of complex numbers doesn't have such a familiar interpretation in the language
of vectors. (And why should it?)

3.2 Some Functions
For the algebra of complex numbers I'll start with some simple looking questions of the sort that you
know how to handle with real numbers. If 2 is a complex number, what are z? and \/2? Use = and y
for real numbers here.

z =T+ 1y, so 22 = (v +iy)? = 2% —y? + 2wy

That was easy, what about the square root? A little more work:

VZ=w= z =w?

If 2 =2 + 4y and the unknown is w = u + v (u and v real) then
x4 iy = u? — v? + 2iuv, e r =u?—v? and Y = 2uv

These are two equations for the two unknowns 1 and v, and the problem is now to solve them.

2 2

_ Y .2 Y 4 o Yy
U_@’ o) x—u—m, or u—xu—Z—O

This is a quadratic equation for u2.

+ /12 2
’l,Lzzw7 then u =

+ 2 2
Ly [TEVITTEYT (3.2)

2

Use v = y/2u and you have four roots with the four possible combinations of plus and minus signs.
You're supposed to get only two square roots, so something isn't right yet; which of these four have to
be thrown out? See problem 3.2.

What is the reciprocal of a complex number? You can treat it the same way as you did the
square root: solve for it.

(r +1y)(u+1iv) =1, so xu—yv =1, v +yu=0
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Solve the two equations for u and v. The result is

1 T — 1y

-=— (3.3)

z Tty
See problem 3.3. At least it’s obvious that the dimensions are correct even before you verify the algebra.
In both of these cases, the square root and the reciprocal, there is another way to do it, a much simpler
way. That's the subject of the next section.

Complex Exponentials
A function that is central to the analysis of differential equations and to untold other mathematical
ideas: the exponential, the familiar €. What is this function for complex values of the exponent?

e = "W = el (3.4)

This means that all that's necessary is to work out the value for the purely imaginary exponent, and
the general case is then just a product. There are several ways to work this out, and I'll pick what is
probably the simplest. Use the series expansions Eq. (2.4) for the exponential, the sine, and the cosine
and apply it to this function.

(iy)* | Gy)?* | (iy)*

Wy o ; .
e’ =1+1y+ o1 + 3l + Al +
2 4 3 5
Y Y ; Y Y -
:1—5—%1—'”—%2y—a—i-ﬁ—-"}:cosy—i—zsmy (3.5)
A few special cases of this are worth noting: e™/2 = i, also €™ = —1 and €% = 1. In fact,

€2 — 1 so the exponential is a periodic function in the imaginary direction.
The magnitude or absolute value of a complex number z = x + iy is 7 = /22 + y2. Combine
this with the complex exponential and you have another way to represent complex numbers.

rsin 0

7 cosf

z=1x+4iy=rcosh+irsind = r(cosf + isinf) = re' (3.6)

This is the polar form of a complex number and x + 7y is the rectangular form of the same number.
The magnitude is |z| = r = /22 + y2. What is V1?7 Express it in polar form: (ei”/Q)l/Q, or better,
(ei(2n7r+7r/2))1/2' This is

el(nmtm/4) _ (em)n eim/4 — +(cosm/4+isinT/4) =+ \%Z K i
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3.3 Applications of Euler’s Formula
When you are adding or subtracting complex numbers, the rectangular form is more convenient, but
when you're multiplying or taking powers the polar form has advantages.

2129 = 11601 rget2 = pypoei(@1+02) (3.7)

Putting it into words, you multiply the magnitudes and add the angles in polar form.
From this you can immediately deduce some of the common trigonometric identities. Use Euler’s
formula in the preceding equation and write out the two sides.

71(cos By + isin61)ra(cos Oz + isinba) = r173[ cos(6h + b2) + isin(0; + 62)]

The factors 1 and 72 cancel. Now multiply the two binomials on the left and match the real and the
imaginary parts to the corresponding terms on the right. The result is the pair of equations

cos(bh + 03) = cos b1 cos B — sin 0 sin Oy

3.8
sin(#y + 03) = cos 01 sin 65 + sin 67 cos Oy (38)

and you have a much simpler than usual derivation of these common identities. You can do similar
manipulations for other trigonometric identities, and in some cases you will encounter relations for which
there's really no other way to get the result. That is why you will find that in physics applications where
you might use sines or cosines (oscillations, waves) no one uses anything but complex exponentials.
Get used to it.

The trigonometric functions of complex argument follow naturally from these.

16

¢ = cosf + isinb, so, for negative angle e " =cosf —isinf
Add these and subtract these to get
cos ) = %(ew +e ) and sinf = %(ew — e ) (3.9)
What is this if 6 = iy?
cos iy = %(efy +e*Y) =coshy  and sin iy = %(e*y —etY) =isinhy (3.10)

Apply Eq. (3.8) for the addition of angles to the case that § = x + iy.

cos(z + 1Y) = cosx cos 1y — sin T sin 1y = cos T coshy — ¢sinx sinh y and
sin(z + 1y) = sinx coshy + 7 cos x sinh y (3.11)

You can see from this that the sine and cosine of complex angles can be real and larger than one. The
hyperbolic functions and the circular trigonometric functions are now the same functions. You're just
looking in two different directions in the complex plane. It's as if you are changing from the equation
of a circle, 22 4+ y?> = R?, to that of a hyperbola, 22 — 2 = R?. Compare this to the hyperbolic
functions at the beginning of chapter one.

Equation (3.9) doesn't require that 6 itself be real; call it z. Then what is sin? z + cos? 27?

cos z = %(ei'Z + e_iz) and sin z = 2%,(6” — e_iz)

1. .. . . .
cos? z +sin’ z = 1 (2% 4727 42— eM% — 727 4 2] =1
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‘ This polar form shows a geometric interpretation for the periodicity of the exponential. ei(0+2m) —
el = i0+2kT) | the picture, you're going around a circle and coming back to the same point. If the
angle 6 is negative you're just going around in the opposite direction. An angle of —7 takes you to the
same point as an angle of +.

Complex Conjugate

The complex conjugate of a number z = x 4ty is the number z* = x — iy. Another common notation
is Z. The product 2*z is (z — iy)(z + iy) = 22 + y? and that is |z|?, the square of the magnitude of
z. You can use this to rearrange complex fractions, combining the various terms with 7 in them and
putting them in one place. This is best shown by some examples.

3+50  (3+51)(2—3i) 2141
2+3 (2+31)(2-3i) 13

What happens when you add the complex conjugate of a number to the number, 2 + 2*?
What happens when you subtract the complex conjugate of a number from the number?
If one number is the complex conjugate of another, how do their squares compare?

What about their cubes?

What about 2z + 22 and 2* 4 2*2?

What about comparing €% = e*+% and e**?

What is the product of a number and its complex conjugate written in polar form?
Compare cos z and cos z*.

What is the quotient of a number and its complex conjugate?

What about the magnitude of the preceding quotient?

Examples
Simplify these expressions, making sure that you can do all of these manipulations yourself.

3—4i  (3—4i)(2+14) 10-5i

- = - ~ = =2—1.
2—1 (2—12)(2+1) 5
(3i +1)? [212. +23+ZZ.] = (—8 + 61) [(2(4;2)5(322?50 :(—8+6i)5+7Z = 2_5262.

i3 +410 44 _(—i)+(—1)—|—i_;1_2,
2 +dBT4+ 1 (=) +@)+(1)

Manipulate these using the polar form of the numbers, though in some cases you can do it either way.

Vi (eiw/Q)l/Q _ pin/a _ 1\;%@'_

. ‘ 3
1-i)\? _ V2eim/4 _ (e—m/2>3 _ 3im/2 _
1+ \/ieiﬂ'/4 ’

9% 25 2€m/2 25 26m/2 25 i /6 25 (141/6) . \f
S — — - — - — X — 1T 1 3 .
<1+i\/§> (2(§+z’§ 3)) (2(31#/3) <€ ) ¢ 2 (V3+1)

Roots of Unity
What is the cube root of one? One of course, but not so fast; there are three cube roots, and you can
easily find all of them using complex exponentials.

1 = ek o 11/3 — <62k7ri)1/3 — o2kmi/3 (3.12)
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and k is any integer. k =0,1,2 give

13 =1, e*™/3 = cos(2m /3) + isin(2m/3), e'™/3 = cos(4m/3) + i sin(4r /3)
1 V3 1 V3
2 2 2 2
and other positive or negative integers k just keep repeating these three values.
e27ri/5
edmi/s
5% roots of 1
1
667ri/5

e8mi/5

The roots are equally spaced around the unit circle. If you want the nt" root, you do the same
sort of calculation: the 1/n power and the integers k = 0,1,2,...,(n — 1). These are n points, and
the angles between adjacent ones are equal.

3.4 Geometry

Multiply a number by 2 and you change its length by that factor.

Multiply it by 2 and you rotate it counterclockwise by 90° about the origin.

Multiply is by 7> = —1 and you rotate it by 180° about the origin. (Either direction: ? = (—1)?)

The Pythagorean Theorem states that if you construct three squares from the three sides of a
right triangle, the sum of the two areas on the shorter sides equals the area of the square constructed
on the hypotenuse. What happens if you construct four squares on the four sides of an arbitrary
quadrilateral?

Represent the four sides of the quadrilateral by four complex numbers that add to zero. Start
from the origin and follow the complex number a. Then follow b, then ¢, then d. The result brings you
back to the origin. Place four squares on the four sides and locate the centers of those squares: P,
PB,,... Draw lines between these points as shown.

These lines are orthogonal and have the same length. Stated in the language of complex numbers,
this is

Py — Py =i(P,— F)) (3.13)

a+b+c+d=0
ta+Ltia=P
a+3b+3ib =P

Pick the origin at one corner, then construct the four center points P 234 as complex numbers,
following the pattern shown above for the first two. E.g., you get to P from the origin by going
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halfway along a, turning left, then going the distance |a|/2. Now write out the two complex number
Py — P3 and P, — P and finally manipulate them by using the defining equation for the quadrilateral,
a+b+c+d=0. The result is the stated theorem. See problem 3.54.

3.5 Series of cosines

There are standard identities for the cosine and sine of the sum of angles and less familiar ones for
the sum of two cosines or sines. You can derive that latter sort of equations using Euler’'s formula and
a little manipulation. The sum of two cosines is the real part of e + €', and you can use simple
identities to manipulate these into a useful form.

r=g@+y +3(x-—y) and y=i@+y) - ix-y)

See problems 3.34 and 3.35 to complete these.
What if you have a sum of many cosines or sines? Use the same basic ideas of the preceding
manipulations, and combine them with some of the techniques for manipulating series.

1+ cosf +cos20 + - +cos NO =1+ e + 20 4 ... N0 (Real part)

The last series is geometric, so it is nothing more than Eq. (2.3).

‘ _ . , 1 — (i(N+1)0
el (@ () (@)Y = I
_ei(N—|—1)9/2 (e—i(N+1)0/2 _ ei(N+1)0/2) _ NG sin [(N + 1)9/2] (3.14)
ei0/2(e=i0/2 — ¢if/2) - sin /2 '

From this you now extract the real part and the imaginary part, thereby obtaining the series you want
(plus another one, the series of sines). These series appear when you analyze the behavior of a diffraction
grating. Naturally you have to check the plausibility of these results; do the answers work for small 67

3.6 Logarithms
The logarithm is the inverse function for the exponential. If e = z then w = In 2. To determine what
this is, let

0

w=1u+ 1 and z=re ) then e 0

ut+iv _ eueiv _ Tei
This implies that €“ = r and so u = In7, but it doesn't imply v = f. Remember the periodic nature
of the exponential function? e = ¢(0+277) 55 you can conclude instead that v = 6 + 2n.

Inz =1In(re?) = Inr +i(0 + 2n7) (3.15)

has an infinite number of possible values. Is this bad? You're already familiar with the square root
function, and that has two possible values, . This just carries the idea farther. For example In(—1) =
1 or 31w or —Tim etc. As with the square root, the specific problem that you're dealing with will tell
you which choice to make.

Im[2 T e
A sample graph of the logarithm in the com- T
plex plane is In(1 + #t) as ¢ varies from —oo to
+00. : : |

—im /2l T
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3.7 Mapping

When you apply a complex function to a region in the plane, it takes that region into another region.
When you look at this as a geometric problem you start to get some very pretty and occasionally useful
results. Start with a simple example,

w= f(z) =e* =T = Tl (3.16)

If y =0 and x goes from —oo to +00, this function goes from 0 to co.

If y is m/4 and = goes over this same range of values, f goes from 0 to infinity along the ray at angle
7 /4 above the axis.

At any fixed g, the horizontal line parallel to the x-axis is mapped to the ray that starts at the origin
and goes out to infinity.

The strip from —oco < x < 400 and 0 < y < 7 is mapped into the upper half plane.

D

T

o~ T =t

The line B from —oo + @7 /6 to +00 + @7 /6 is mapped onto the ray B from the origin along the
angle /6.
For comparison, what is the image of the same strip under a different function? Try

w=f(2)=2%=2*—y*+ 2zy

The image of the line of fixed 1 is a parabola. The real part of w has an x2 in it while the imaginary
part is linear in . That is the representation of a parabola. The image of the strip is the region among
the lines below.

@l RN

Pretty yes, but useful? In certain problems in electrostatics and in fluid flow, it is possible to use
complex algebra to map one region into another, with the accompanying electric fields and potentials or
respectively fluid flows mapped from a complicated problem into a simple one. Then you can map the
simple solution back to the original problem and you have your desired solution to the original problem.
Easier said than done. It's the sort of method that you can learn about when you find that you need it.
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Exercises

1 Express in the form a +ib: (3 — )2, (2 — 3i)(3 + 47). Draw the geometric representation for each
calculation.

2 Express in polar form, re®?. —2, 3i, 3+ 3i. Draw the geometric representation for each.

3 Show that (1 + 27)(3 + 4¢)(5 + 67) satisfies the associative law of multiplication. l.e. multiply first
pair first or multiply the second pair first, no matter.

4 Solve the equation 22 — 22 4+ ¢ = 0 and plot the roots as points in the complex plane. Do this as
the real number ¢ moves from ¢ =0 to c = 2

5 Now show that (a + bi)[(c + di)(e + fi)] = [(a+ bi)(c+di)] (e + fi). After all, just because real
numbers satisfy the associative law of multiplication it isn't immediately obvious that complex numbers
do too.

1120°

. y (e} .
6 Given 2; = 2¢"9" and 29 = 4e , evaluate 22, 2122, 22/21. Draw pictures too.

7 Evaluate V/i using the rectangular form, Eq. (3.2), and compare it to the result you get by using the
polar form.

8 Given f(2) = 22 + 2+ 1, evaluate f(3+27), f(3 — 21).
9 For the same [ as the preceding exercise, what are f/(3 4 2i) and f/(3 — 2¢)?

10 Do the arithmetic and draw the pictures of these computations:

(342i) 4+ (—1+1), (34 2i) — (—1+1), (—4+3i) — (4+1), -5+ (3 — 51)

11 Show that the real part of z is (z + 2*)/2. Find a similar expression for the imaginary part of z.

12 What is ¢" for integer n? Draw the points in the complex plane for a variety of positive and negative
n.

13 What is the magnitude of (4 + 37)/(3 — 47)? What is its polar angle?
14 Evaluate (1 +14)%.

15 What is v/1 —1? Do this by the method of Eq. (3.2).

16 What is v/1 —i? Do this by the method of Eq. (3.6).

17 Sketch a plot of the curve z = ae’® as the real parameter o varies from zero to infinity. Does the
behavior of your sketch conform to the small o behavior of the function? (And when no one's looking
you can plug in a few numbers for v to see what this behavior is.)

18 Verify the graph following Eq. (3.15).
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Problems

3.1 Pick a pair of complex numbers and plot them in the plane. Compute their product and plot that
point. Do this for several pairs, trying to get a feel for how complex multiplication works. When you
do this, be sure that you're not simply repeating yourself. Place the numbers in qualitatively different
places.

3.2 In the calculation of the square root of a complex number,Eq. (3.2), | found four roots instead of
two. Which ones don't belong? Do the other two expressions have any meaning?

3.3 Finish the algebra in computing the reciprocal of a complex number, Eq. (3.3).

3.4 Pick a complex number and plot it in the plane. Compute its reciprocal and plot it. Compute its
square and square root and plot them. Do this for several more (qualitatively different) examples.

3.5 Plot e in the plane where ¢ is a complex constant of your choosing and the parameter ¢ varies
over 0 < t < oo. Pick another couple of values for ¢ to see how the resulting curves change. Don’t
pick values that simply give results that are qualitatively the same; pick values sufficiently varied so that
you can get different behavior. If in doubt about how to plot these complex numbers as functions of ¢,
pick a few numerical values: e.g. t = 0.01,0.1, 0.2, 0.3, etc. Ans: Spirals or straight lines, depending
on where you start

3.6 Plot sinct in the plane where c is a complex constant of your choosing and the parameter t varies
over 0 <t < oco. Pick another couple of qualitatively different values for ¢ to see how the resulting
curves change.

3.7 Solve the equation 22 +iz+1=0

3.8 Just as Eq. (3.11) presents the circular functions of complex arguments, what are the hyperbolic
functions of complex arguments?

3.9 From (em)?’, deduce trigonometric identities for the cosine and sine of triple angles in terms of
single angles. Ans: cos3z = cosx — 4sin?wcosx = 4cos® x — 3cosx

3.10 For arbitrary integer n > 1, compute the sum of all the nt" roots of one. (When in doubt, try
n =2, 3, 4 first.)

3.11 Either solve for z in the equation e? = 0 or prove that it can’t be done.

3.12 Evaluate z/z* in polar form.

3.13 From the geometric picture of the magnitude of a complex number, the set of points z defined
by |z — 29| = R is a circle. Write it out in rectangular components to see what this is in conventional
Cartesian coordinates.

3.14 An ellipse is the set of points 2z such that the sum of the distances to two fixed points is a
constant: |z — 21| + |z — 22| = 2a. Pick the two points to be 23 = —f and 22 = +f on the real
axis (f < a). Write z as x + 4y and manipulate this equation for the ellipse into a simple standard
form. | suggest that you leave everything in terms of complex numbers (z, 2*, z1, 2], etc. ) until some
distance into the problem. Use x + 7y only after it becomes truly useful to do so.
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3.15 Repeat the previous problem, but for the set of points such that the difference of the distances
from two fixed points is a constant.

3.16 There is a vertical line z = —f and a point on the x-axis zg = +f. Find the set of points z so
that the distance to 2 is the same as the perpendicular distance to the line z = —f.

3.17 Sketch the set of points |z — 1| < 1.

3.18 Simplify the numbers

2
1+1 —1+14V3 P+ 43 V3 i
L—d" 41+iv3 3V 717 — 4i 141

3.19 Express in polar form; include a sketch in each case.

2-2i,  V3+i, —Vbi, —17—23i

3.20 Take two complex numbers; express them in polar form, and subtract them.

91 92
) )

z1 =11€6" 29 = Toe’ and 23 =29 — 21
Compute 2323, the magnitude squared of 23, and so derive the law of cosines. You did draw a picture

didn't you?

3.21 What is i°? Ans: If you'd like to check your result, type i A i into Google. Or use a calculator
such as the one mentioned on page 6.

3.22 For what argument does sin ) = 2?7 Next: cosf = 27
Ans: sin~!' 2 = 1.5708 &+ 1.3170

3.23 What are the other trigonometric functions, tan(iz), sec(ix), etc. What are tan and sec for the
general argument = + 1y.
Ans: tan(z + 1y) = (tanx + i tanhy) /(1 — i tan z tanh y)

3.24 The diffraction pattern from a grating involves the sum of waves from a large number of parallel
slits. For light observed at an angle # away from directly ahead, this sum is, for NV + 1 slits,

ro — dsinf



http://www.google.com
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cos (krg — wt) + cos (k(rg — dsin8) — wt) + cos (k(rg — 2dsin0) — wt)+
( ) (A ) — wt) (A ) — wt)
...+ cos (k(rg — Ndsin0) — wt)

Express this as the real part of complex exponentials and sum the finite series. Show that the resulting
wave is

sin (3(N + 1)kdsin 6)
sin (%k‘dsin 9)

cos (k(ro — 3Ndsinf) — wt)

Interpret this result as a wave that appears to be coming from some particular point (where?) and with
an intensity pattern that varies strongly with 6.

3.25 (a) If the coefficients in a quadratic equation are real, show that if z is a complex root of the
equation then so is z*. If you do this by reference to the quadratic formula, you'd better find another
way too, because the second part of this problem is

(b) Generalize this to the roots of an arbitrary polynomial with real coefficients.

3.26 You can represent the motion of a particle in two dimensions by using a time-dependent complex
number with z = x + iy = ret? showing its rectangular or polar coordinates. Assume that r and 6 are
functions of time and differentiate re’? to get the velocity. Differentiate it again to get the acceleration.
You can interpret e'? as the unit vector along the radius and ie' as the unit vector perpendicular to
the radius and pointing in the direction of increasing theta. Show that

Pz g | (dO)?
az = ¢ |lae "\

and translate this into the usual language of components of vectors, getting the radial () component
of acceleration and the angular component of acceleration as in section 8.9.

+2—

o[ d?0  _drdf
- 10, %Y
+ie [rdtQ 7 dt] (3.17)

3.27 Use the results of the preceding problem, and examine the case of a particle moving directly away
from the origin. (a) What is its acceleration? (b) If instead, it is moving at r = constant, what is its
acceleration? (c) If instead, 2 = 29 and y = vot, what are r(t) and 6(t)? Now compute d?z/dt? from
Eq. (3.17).

3.28 Was it really legitimate simply to substitute = + ¢y for 81 + 65 in Eq. (3.11) to get cos(x + 1y)?
Verify the result by substituting the expressions for cosx and for coshy as exponentials to see if you
can reconstruct the left-hand side.

3.29 The roots of the quadratic equation 22 + bz + ¢ = 0 are functions of the parameters b and c.
For real b and ¢ and for both cases ¢ > 0 and ¢ < 0 (say £1 to be specific) plot the trajectories of
the roots in the complex plane as b varies from —oo to +oo. You should find various combinations of
straight lines and arcs of circles.

3.30 In integral tables you can find the integrals for such functions as
/ dx e* cos b, or / dx e* sin bx

Show how easy it is to do these by doing both integrals at once. Do the first plus 7 times the second
and then separate the real and imaginary parts.
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3.31 Find the sum of the series
oo Z’n
2w
1
Ans: i /4 — %1112

3.32 Evaluate |cos z|%. Evaluate |sin z|%.

3.33 Evaluate /1 + 7. Evaluate In(1 + 7). Evaluate tan(1 + 7).

3.34 (a) Beats occur in sound when two sources emit two frequencies that are almost the same. The
perceived wave is the sum of the two waves, so that at your ear, the wave is a sum of two cosines of
w1t and of wyt. Use complex algebra to evaluate this. The sum is the real part of

ezwlt + eszt

Notice the two identities
w1 +w2 | Wy — w2

2 2

and the difference of these for ws. Use the complex exponentials to derive the results; don't just look
up some trig identity. Factor the resulting expression and sketch a graph of the resulting real part,
interpreting the result in terms of beats if the two frequencies are close to each other. (b) In the
process of doing this problem using complex exponentials, what is the trigonometric identity for the
sum of two cosines? While you're about it, what is the difference of two cosines?

Ans: coswit + coswat = 2 cos 1 5 (w1 + CL)Q)tCOS (w1 — wo)t

w1 =

3.35 Derive using complex exponentials: sinz — siny = 2sin (“5) cos (£3%).

3.36 The equation (3.4) assumed that the usual rule for multiplying exponentials still holds when you
are using complex numbers. Does it? You can prove it by looking at the infinite series representation
for the exponential and showing that

2 3 b2 b3 b)?
et 1+a+a—+%+ H1+b+ +g ]:[1+(a+b)+(a;)+

You may find Eq. (2.19) useful.

3.37 Look at the vertical lines in the z-plane as mapped by Eq. (3.16). | drew the images of lines
1y = constant, now you draw the images of the straight line segments x = constant from 0 < y < 7.
The two sets of lines in the original plane intersect at right angles. What is the angle of intersection of
the corresponding curves in the image?

3.38 Instead of drawing the image of the lines x =constant as in the previous problem, draw the
image of the line y = xtan «, the line that makes an angle o with the horizontal lines. The image
of the horizontal lines were radial lines. At a point where this curve intersects one of the radial lines,
what angle does the curve make with the radial line? Show that the answer is «, the same angle of
intersection as in the original picture.

3.39 Write each of these functions of 2z as two real functions w and v such that f(2) = u(z,y) +

w(z,y).
3 I+z 1

1—2’ 22’ ¥




3—Complex Algebra

3.40 Evaluate z* where 2 is an arbitrary complex number, z = x + iy = re??.

65

10

3.41 What is the image of the domain —oo < & < 400 and 0 < y < 7 under the function w = /27

Ans: One boundary is a hyperbola.

3.42 What is the image of the disk |z — a| < b under the function w = cz + d? Allow ¢ and d to be

complex. Take a real.

3.43 What is the image of the disk |z — a| < b under the function w = 1/2? Assume b < a.

Ans: Another disk, centered at a/(a? — b?).

3.44 (a) Multiply (2 +%)(3 + %) and deduce the identity

tan~1(1/2) +tan~1(1/3) = 7/4

(b) Multiply (5 +4)*(—239 4 4) and deduce

4tan~1(1/5) —tan~1(1/239) = 7 /4

For (b) a sketch will help sort out some signs.

(c) Using the power series representation of the tan™!, Eq. (2.27), how many terms would it take
to compute 100 digits of ™ as 4tan~!1? How many terms would it take using each of these two
representations, (a) and (b), for 7?7 Ans: Almost a googol versus respectively about 540 and a few

more than 180 terms.

3.45 Use Eq. (3.9) and look back at the development of Eq. (1.4) to find the sin~! and cos™! in terms

of logarithms.

3.46 Evaluate the integral [~ dx e~ cos B for fixed real o and 3. Sketch a graph of the result
versus 3. Sketch a graph of the result versus «, and why does the graph behave as it does? Notice
the rate at which the result approaches zero as either & — 0 or & — oo. The behavior is very different

in the two cases. Ans: e=#°/4 /7 /o

3.47 Does the equation sin z = 0 have any roots other than the real ones? How about the cosine?

The tangent?

3.48 Compute (a) sin™'i. (b) cos™'i. (c) tan='i.

cos™li=m/2—0.8811.

3.49 By writing

1 1 1
1+22 2|x+i xz—1

and integrating, check the equation

/1 de

o 1+a22 4

3.50 Solve the equations (a) coshu =0 (b) tanhu = 2
Ans: sech™' 2i = 0.4812 — 71.5707

3.561 Solve the equations (@) z—2z*=1

is a root. Compare the result of problem 3.25.

(d) sinh~'i.

1

|

Ans: sin"'7 = 0 + 0.88171,

(c) sechu = 2

(b) 23 — 322 4 42 = 2i after verifying that 1+
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3.52 Confirm the plot of In(1+1y) following Eq. (3.15). Also do the corresponding plots for In(10+1y)
and In(100 + ¢y). And what do these graphs look like if you take the other branches of the logarithm,
with the (6 + 2nm)?

3.53 Check that the results of Eq. (3.14) for cosines and for sines give the correct results for small 67
What about 6 — 277

3.54 Finish the calculation leading to Eq. (3.13), thereby proving that the two indicated lines have the
same length and are perpendicular.

3.55 In the same spirit as Eq. (3.13) concerning squares drawn on the sides of an

arbitrary quadrilateral, start with an arbitrary triangle and draw equilateral triangles

on each side. Find the centroids of each of the equilateral triangles and connect them. 4
The result is an equilateral triangle. Recall: the centroid is one third the distance from ,
the base to the vertex. [This one requires more algebra than the one in the text.]

(Napoleon's Theorem)



Differential Equations

The subject of ordinary differential equations encompasses such a large field that you can make a
profession of it. There are however a small number of techniques in the subject that you have to know.
These are the ones that come up so often in physical systems that you need both the skills to use them
and the intuition about what they will do. That small group of methods is what I'll concentrate on in
this chapter.

4.1 Linear Constant-Coefficient
A differential equation such as

2 3
(%) F2 1 1=0

relating acceleration to position and time, is not one that I'm especially eager to solve, and one of the
things that makes it difficult is that it is non-linear. This means that starting with two solutions x1 ()
and x5(t), the sum x1 + 22 is not a solution; look at all the cross-terms you get if you try to plug the
sum into the equation and have to cube the sum of the second derivatives. Also if you multiply x; (%)
itself by 2 you no longer have a solution.
An equation such as
ot hT | pd
dt3 dt
may be a mess to solve, but if you have two solutions, x1(t) and x5(t) then the sum axy + Sz is also
a solution. Proof? Plug in:

—x=0

td3(04$1 + Bra) | od(axy 4 Bra)

pIE + ¢ 7 — (ax1 + Bz2)

d3x dz (A dz
_ 1T pdTy 2 | odry _
—a<e 73 +1 i >+5< 73 tdt x) 0

This is called a linear, homogeneous equation because of this property. A similar-looking equation,

td T odr

el +t T —x =t
does not have this property, though it's close. It is called a linear, inhomogeneous equation. If x;(t)
and x5(t) are solutions to this, then if | try their sum as a solution | get 2¢ = ¢, and that’s no solution,
but it misses working only because of the single term on the right, and that will make it not too far
removed from the preceding case.

One of the most common sorts of differential equations that you see is an especially simple one
to solve. That's part of the reason it's so common. This is the linear, constant-coefficient, differential
equation. If you have a mass tied to the end of a spring and the other end of the spring is fixed, the
force applied to the mass by the spring is to a good approximation proportional to the distance that
the mass has moved from its equilibrium position.

If the coordinate x is measured from the mass's equilibrium position, the equation F =ma says
|—\QQQQQA d?*z
m——s = —kx (4.1)

67
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If there's friction (and there's always friction), the force has another term. Now how do you describe
friction mathematically? The common model for dry friction is that the magnitude of the force is
independent of the magnitude of the mass's velocity and opposite to the direction of the velocity. If
you try to write that down in a compact mathematical form you get something like

- v
Fhriction = _,UkFNW (4.2)

This is hard to work with. It can be done, but I'm going to do something different. (See problem 4.31
however.) Wet friction is easier to handle mathematically because when you lubricate a surface, the
friction becomes velocity dependent in a way that is, for low speeds, proportional to the velocity.

F;friction = —bv (4.3)

Neither of these two representations is a completely accurate description of the way friction works.
That's far more complex than either of these simple models, but these approximations are good enough
for many purposes and I'll settle for them.

Assume “wet friction” and the differential equation for the motion of m is

d*z dx
mdt2 = —kx bdt (4.4)
This is a second order, linear, homogeneous differential equation, which simply means that the highest
derivative present is the second, the sum of two solutions is a solution, and a constant multiple of a
solution is a solution. That the coefficients are constants makes this an easy equation to solve.

All you have to do is to recall that the derivative of an exponential is an exponential. det/dt =el.
Substitute this exponential for 2(¢), and of course it can't work as a solution; it doesn't even make
sense dimensionally. What is e to the power of a day? You need something in the exponent to make it
dimensionless, e®. Also, the function z is supposed to give you a position, with dimensions of length.
Use another constant: z(t) = Ae®. Plug this into the differential equation (4.4) to find

mAa?e® + bAae® + kAe™ = Ae™[ma® +ba+ k] =0
The product of factors is zero, and the only way that a product of two numbers can be zero is if one of

the numbers is zero. The exponential never vanishes, and for a non-trivial solution A # 0, so all that’s
left is the polynomial in c.

b+ V0> -4k
ma? +ba+k =0, with solutions  «a = o m (4.5)
The position function is then
x(t) = Ae™t 4 Bed2t (4.6)

where A and B are arbitrary constants and «; and ay are the two roots.

Isn't this supposed to be oscillating? It is a harmonic oscillator after all, but the exponentials
don’t look very oscillatory. If you have a mass on the end of a spring and the entire system is immersed
in honey, it won't do much oscillating! Translated into mathematics, this says that if the constant b is
too large, there is no oscillation. In the equation for «, if b is large enough the argument of the square
root is positive, and both «'s are real — no oscillation. Only if b is small enough does the argument of
the square root become negative; then you get complex values for the a's and hence oscillations.
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Push this to the extreme case where the damping vanishes: b = 0. Then «; = iy/k/m and

ay = —iy/k/m. Denote wy = \/k/m.
x(t) = Ae'ot 4+ Be~iwot (4.7)

You can write this in other forms using sines and cosines, see problem 4.10. To determine the arbitrary
constant A and B you need two equations. They come from some additional information about the
problem, typically some initial conditions. Take a specific example in which you start from the origin
with a kick, (0) = 0 and Z(0) = vy.

x(0)=0= A+ B, (0) = vg = 1woA — iwo B

Solve for A and B to get A = —B = vy/(2iwp). Then

=0 [0l — g=iwol] = D Sinwot

22&]0 wWo
As a check on the algebra, use the first term in the power series expansion of the sine function to see
how x behaves for small t. The sine factor is sin wot &~ wyt, and then x(t) is approximately vot, just as
it should be. Also notice that despite all the complex numbers, the final answer is real. This is another
check on the algebra.

Damped Oscillator
If there is damping, but not too much, then the a's have an imaginary part and a negative real part.
(Is it important whether it's negative or not?)

—b =+ iv4km — b2 b . k b2
o= VAR = —— +iw, where W' =4/— - — (4.8)
2m 2m m  4m?

This represents a damped oscillation and has frequency a bit lower than the one in the undamped case.
Use the same initial conditions as above and you will get similar results (let v = b/2m)

ZL‘(t) — Ae(—’y—i-iw/)t +Be(—’y—iw/)t
z(0) = A+ B =0, v2(0) = (—y + iw)A+ (—y —iw")B = vy (4.9)
The two equations for the unknowns A and B imply B = —A and

2iw’ A = vy, so  x(t) kel

—t [ iw't —iw't Vo —~t
= 5:5¢ et — e = ¢ Msinw't (4.10)

AN
O\

For small values of £, the first terms in the power series expansion of this result are

x(t) = %[1 —yt+ Y22 — Wt = WPt 6+ . ] = vot — voytE + ...

The first term is what you should expect, as the initial velocity is v; = vg. The negative sign in the
next term says that it doesn't move as far as it would without the damping, but analyze it further.
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Does it have the right size as well as the right sign? It is —vgyt? = —wvg(b/2m)t2. But that's an
acceleration: a,t?/2. It says that the acceleration just after the motion starts is a; = —bvg/m. s
that what you should expect? As the motion starts, the mass hasn't gone very far so the spring doesn’t
yet exert much force. The viscous friction is however —bv,. Set that equal to ma, and you see that
—voyt? has precisely the right value:

b 1 —on
z(t) = vot — voyt? = vot — vo=—1t? = vot + = ——12
(t) = vot — voy ot — Vo~ ot +5—
The last term says that the acceleration starts as a; = —buvg/m, as required.

In Eq. (4.8) | assumed that the two roots of the quadratic, the two a's, are different. What if
they aren't? Then you have just one value of @ to use in defining the solution e in Eq. (4.9). You
now have just one arbitrary constant with which to match two initial conditions. You're stuck. See
problem 4.11 to understand how to handle this case (critical damping). It's really a special case of what
I've already done.

What is the energy for this damped oscillator? The kinetic energy is mv?/2 and the potential
energy for the spring is kz2/2. s the sum constant? No.

If Fip=maz =—kx+ Fygice, then

dE_ d 1 muv? + k:xQ) = mvd—v + /{:xd—x

= d7t§( = 7 = U (mag + k) = Fy frict Vs (4.11)

“Force times velocity” is a common expression for power, and this says that the total energy is decreasing
according to this formula. For the wet friction used here, this is dE/dt = —bv2, and the energy
decreases exponentially on average.

4.2 Forced Oscillations

What happens if the equation is inhomogeneous? That is, what if there is a term that doesn’t involve
x or its derivatives at all. In this harmonic oscillator example, apply an extra external force. Maybe it's
a constant; maybe it's an oscillating force; it can be anything you want not involving x.

d’z dx
Mm—— = —kx — b— + Fou(t 4.12
dt? g; +Fel!) (4.12)
The key result that you need for this class of equations is very simple to state and not too difficult to
implement. It is a procedure for attacking any linear inhomogeneous differential equation and consists
of three steps.

1. Temporarily throw out the inhomogeneous term [here Fi:(t)] and completely solve the
resulting homogeneous equation. In the current case that's what you just saw when |
worked out the solution to the differential equation md?z /dt* + bdx /dt + kx = 0.
[Zhom (2)]

2. Find any one solution to the full inhomogeneous equation. Note that for step one you
have to have all the arbitrary constants present; for step two you do not. [Zinn(?)]

3. Add the results of steps one and two. [Zhom(t) + Zinh(?)]

I've already done step one. To carry out the next step I'll start with a particular case of the
forcing function. If Fi(t) is simple enough, you should be able to guess the answer to step two. If it's
a constant, then a constant will work for x. If it's a sine or cosine, then you can guess that a sine or
cosine or a combination of the two should work. If it's an exponential, then guess an exponential —
remember that the derivative of an exponential is an exponential. If it's the sum of two terms, such
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as a constant and an exponential, it's easy to verify that you add the results that you get for the two
cases separately. If the forcing function is too complicated for you to guess a solution then there’s a
general method using Green's functions that I'll get to in section 4.6.
Choose a specific example
Foa(t) = Fy[1 — 791 (4.13)

This starts at zero and builds up to a final value of Fj. It does it slowly or quickly depending on [3.
Fy

t

Start with the first term, Fp, for external force in Eq. (4.12). Try x(t) = C and plug into that
equation to find

kC = F,

This is simple and determines C'.
Next, use the second term as the forcing function, —EFye P!, Guess a solution x(t) = C'e~ Pt
and plug in. The exponential cancels, leaving

iy

122 v o I _
mC'F —bCB4IC' = ~Fy o C'= g

The total solution for the inhomogeneous part of the equation is then the sum of these two expressions.

nlt) = o (= )

The homogeneous part of Eq. (4.12) has the solution found in Eq. (4.6) and the total is

(t) = Thom(t) + Tinn(t) = 2(t) = A + Be™' + F <11€ = Meﬁt) (4.14)

There are two arbitrary constants here, and this is what you need because you have to be able to
specify the initial position and the initial velocity independently; this is a second order differential
equation after all. Take for example the conditions that the initial position is zero and the initial
velocity is zero. Everything is at rest until you start applying the external force. This provides two
equations for the two unknowns.

2 _
I(O):OZAJFBJFFOk(mﬂ,;?bgﬁJrk)
g

Now all you have to do is solve the two equations in the two unknowns A and B. Take the first,
multiply it by s and subtract the second. This gives A. Do the same with <1 instead of a5 to get B.

The results are
L g aa(mB—bB)— kB
T —as Y k(mB2—bB+k)
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Interchange 1 and s to get B.
The final result is

N Fy  (aa(mfp? —bp) — kB)e“t — (aq(mpB? — bp) — kfB)e*2t
M= m, k(mp? — B + k)

+F (}{ - Meﬁt> (4.15)

If you think this is messy and complicated, you haven't seen messy and complicated. When it takes
20 pages to write out the equation, then you're entitled say that it is starting to become involved.

Why not start with a simpler example, one without all the terms? The reason is that a complex
expression is often easier to analyze than a simple one. There are more things that you can do to it, and
so more opportunities for it to go wrong. The problem isn't finished until you've analyzed the supposed
solution. After all, | may have made some errors in algebra along the way. Also, analyzing the solution
is the way you learn how these functions work.

1. Everything in the solution is proportional to F{y and that's not surprising.
2. I'll leave it as an exercise to check the dimensions.
3. A key parameter to vary is 3. What should happen if it is either very large or very
small? In the former case the exponential function in the force drops to zero quickly
so the force jumps from zero to Fp in a very short time — a step in the limit that
B — 0.
4. If (3 is very small the force turns on very gradually and gently, as though you are being
very careful not to disturb the system.
Take point 3 above: for large 3 the dominant terms in both numerator and denominator every-
where are the mf3? terms. This result is then very nearly

. Fy (aa(mp?))emt — (an(mf?))e?! 1 1
e 2 I~ Gy ™)
i Sy 0!~ ae™] 4 Foy

Use the notation of Eq. (4.9) and you have

FO . U . 5ol 1
1) ~ PV AR G T I A N, (—y—iw’)t F=
_ Foe ! i o ' 1
= T [ — 2iysinw't — 2iw’ cosw't] + FOE
Fye 0t v 1
== [—asmw’t—cosw’ﬂ +FOE (4.16)
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At time £ = 0 this is still zero even with the approximations. That's comforting, but if it hadn’t
happened it's not an insurmountable disaster. This is an approximation to the exact answer after all,
so it could happen that the initial conditions are obeyed only approximately. The exponential terms
have oscillations and damping, so the mass oscillates about its eventual equilibrium position and after
a long enough time the oscillations die out and you are left with the equilibrium solution = = F} /k.

Look at point 4 above: For small 3 the 32 terms in Eq. (4.15) are small compared to the (3 terms
to which they are added or subtracted. The numerators of the terms with e’ are then proportional to
[. The denominator of the same terms has a k — b3 in it. That means that as 8 — 0, the numerator
of the homogeneous term approaches zero and its denominator doesn’'t. The last terms, that came
from the inhomogeneous part, don’t have any [ in the numerator so they don’t vanish in this limit.
The approximate final result then comes solely from the ;,n (1) term.

1

ZL’(t) =~ Fok

(1-e)

It doesn’t oscillate at all and just gradually moves from equilibrium to equilibrium as time goes on. It's
what you get if you go back to the differential equation (4.12) and say that the acceleration and the
velocity are negligible.

d?*z dx 1
mw[w 0] = —k.flj — b%[w 0] + Fext(t) — r = EFext(t)

The spring force nearly balances the external force at all times; this is “quasi-static,” in which the
external force is turned on so slowly that it doesn’t cause any oscillations.

4.3 Series Solutions
A linear, second order differential equation can always be rearranged into the form

y'+ Py + Qx)y = R(x) (4.17)

If at some point zy the functions P and () are well-behaved, if they have convergent power series
expansions about xq, then this point is called a “regular point” and you can expect good behavior of
the solutions there — at least if R is also regular there.

I'll look just at the case for which the inhomogeneous term R = 0. If P or () has a singularity
at xg, perhaps something such as 1/(z — xg) or /T — xg, then ¢ is called a “singular point” of the
differential equation.

Regular Singular Points

The most important special case of a singular point is the “regular singular point” for which the behaviors
of P and () are not too bad. Specifically this requires that (z — x¢)P(x) and (z — 20)?Q(x) have no
singularity at xg. For example

1 1 1
y//+5y/+ﬁy:0 and y”+ﬁy’+xy:0

have singular points at x = 0, but the first one is a regular singular point and the second one is not.
The importance of a regular singular point is that there is a procedure guaranteed to find a solution near
a regular singular point (Frobenius series). For the more general singular point there is no guaranteed
procedure (though there are a few tricks* that sometimes work).

* The book by Bender and Orszag: “Advanced mathematical methods for scientists and engineers”
is a very readable source for this and many other topics.
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Examples of equations that show up in physics problems are

y'+y=0
(1—2%)y" —2xy' + Ll + 1)y =0 regular singular points at &1 (4.18)
22y +ay + (22 —n?)y =0 regular singular point at zero '

' +(a+1—x)y +ny=0 regular singular point at zero

These are respectively the classical simple harmonic oscillator, Legendre equation, Bessel equation,
generalized Laguerre equation.

A standard procedure to solve these equations is to use series solutions, but not just the standard
power series such as those in Eq. (2.4). Essentially, you assume that there is a solution in the form of
an infinite series and you systematically compute the terms of the series. I'll pick the Bessel equation
from the above examples, as the other three equations are done the same way. The parameter n in that
equation is often an integer, but it can be anything. It's common for it to be 1/> or 3/> or sometimes
even imaginary, but there's no need to make any assumptions about it for now.

Assume a solution in the form :

Frobenius Series: y(x) = Z apzhts (ap #0) (4.19)
0

If s =0 or a positive integer, this is just the standard Taylor series you saw so much of in chapter two,
but this simple-looking extension makes it much more flexible and suited for differential equations. It
often happens that s is a fraction or negative, but this case is no harder to handle than the Taylor
series. For example, what is the series expansion of (cosx)/x about the origin? This is singular at
zero, but it's easy to write the answer anyway because you already know the series for the cosine.

3 5

CcosST 1 r T T

r Tz 2t T

It starts with the term 1/x corresponding to s = —1 in the Frobenius series.

Always assume that ag # 0, because that just defines the coefficient of the most negative power,
5. If you allow it be zero, that's just the same as redefining s and it gains nothing except confusion.
Plug this into the Bessel differential equation.

2?2y +xy + (22 —n?)y =0

o0 0o o
a? Z ap(k + s)(k + s — 1)a"72 4 xZak(k + 8)zF sl 4 (22 — n?) zak$k+5 —0
k=0 k=0 o

o0 %) o -
S apk + )k + s — D2 £ 3 apk + )25 £ 3 apab 2 -2 3 apatts = 0
k=0 0 Pt >

S ap[(k+s)(k+s—1)+ (k+5) —n?]a" + 3 apah T =0
k=0 P

The coefficients of all the like powers of £ must match, and in order to work out the matches efficiently,
and so as not to get myself confused in a mess of indices, I'll make an explicit change of the index in
the sums. Do this trick every time. It keeps you out of trouble.
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Let / = k in the first sum. Let £ = k + 2 in the second. Explicitly show the limits of the index
on the sums, or you're bound to get it wrong.

o0 oo
Z ap[( +5)% —n?zt*s + Z ap_oxtts =
/=0 =

The lowest power of x in this equation comes from the £ = 0 term in the first sum. That coefficient of
2 must vanish. (ag # 0)
ap[s® —n? =0 (4.20)

This is called the indicial equation. It determines s, or in this case, maybe two s's. After this, set to
zero the coefficient of 2+
ag[(0+8)*—n*l +a; =0 (4.21)

This determines as in terms of ag; it determines a4 in terms of ay etc.

1
==y 9755 (=2, 4, ...
7 Z72(€+8)2_n27 )
For example, if n = 0, the indicial equation says s = 0.
1 1 1 1 1
a2 = —0og;3; a4 = —a275 = +a0ﬁ7 (6 = =045 = 00557553
k 1 a;/2
Qo = (~1)* a0 gz then = ap Z = apJo(x) (4.22)

and in the last equation | rearranged the factors and used the standard notation for the Bessel function,
In ().

This is a second order differential equation. What about the other solution? This Frobenius
series method is guaranteed to find one solution near a regular singular point. Sometimes it gives both
but not always, and in this example it produces only one. There are procedures that will let you find
the second solution to this sort of second order differential equation. See problem 4.49 for one such
method.

For the case n = 1/5 the calculations just above will produce two solutions. The indicial equation
gives s = +1/5. After that, the recursion relation for the coefficients give

1 1 1 1
ay = —@é—zm = —aé—zm = _GE_QM Qp_ 2€(€i 1)
For the s = +1/5 result
Az = —GO% a4 = —@ﬁ = +aom
= (-1
This solution is then
y(@) = a2 1= 4 T

3! 5!
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This series looks suspiciously like the series for the sine function, but is has some of the x's or some of
the factorials in the wrong place. You can fix that if you multiply the series in brackets by . You then
have
y(x) = apx x—§+ﬁ—... _aOW (4.23)

I'll leave it to problem 4.15 for you to find the other solution.

Do you need to use a Frobenius series instead of just a power series for all differential equations?
No, but | recommend it. If you are expanding about a regular point of the equation then a power series
will work, but | find it more systematic to use the same method for all cases. It's less prone to error.

4.4 Some General Methods

It is important to be familiar with the arsenal of special methods that work on special types of differential
equations. What if you encounter an equation that doesn't fit these special methods? There are some
techniques that you should be familiar with, even if they are mostly not ones that you will want to
use often. Here are a couple of methods that can get you started, and there’s a much broader set of
approaches under the heading of numerical analysis; you can explore those in section 11.5.

If you have a first order differential equation, dz/dt = f(x,t), with initial condition z(ty) = z¢
then you can follow the spirit of the series method, computing successive orders in the expansion.
Assume for now that the function f is smooth, with as many derivatives as you want, then use the
chain rule a lot to get the higher derivatives of x

dz
— = f(x,1
d*>x Of Ofdx . .
—_— = — —_—— = = T
= ot T os JetJa
I= ftt + 2f:m€«'t + fac:cftz + fxx = ftt + 2fxtj3 + fzxiQ + fw[ft + fxf]
2(t) = 2o + f(x0,t0)(t — to) + 32 (to)(t — t0)” + §Z(to)w(to)(t — to)* + - - (4.24)

Here the dot-notation (% etc.) is a standard shorthand for derivative with respect to time. This is
unlike using a prime for derivative, which is with respect to anything you want. These equations show
that once you have the initial data (Zg, Z¢), you can compute the next derivatives from them and from
the properties of f. Of course if f is complicated this will quickly become a mess, but even then it can
be useful to compute the first few terms in the power series expansion of .

For example, & = f(x,t) = Az?(1 + wt) with to = 0 and 79 = .

Ty = Aa?, Fo = Actw + 2A%a3, Fo = 4A%Pw + 2A%" + 2Aa[Ac’w + 24%03] (4.25)
If A=1/m-s and w = 1/s with & = 1 m this is
() =1+t+ 32+ 26>+

You can also solve this example exactly and compare the results to check the method.
What if you have a second order differential equation? Pretty much the same thing, though it is
sometimes convenient to make a slight change in the appearance of the equations when you do this.

¥ = f(x,2,1) can be written =, 0= f(x,v,1) (4.26)

so that it looks like two simultaneous first order equations. Either form will let you compute the higher
derivatives, but the second one often makes for a less cumbersome notation. You start by knowing o,
Zg, and now vy = Zp.
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Some of the numerical methods you will find in chapter 11 start from the ideas of these expansions,
but then develop them along different lines.

There is an iterative methods that of more theoretical than practical importance, but it's easy
to understand. I'll write it for a first order equation, but you can rewrite it for the second (or higher)
order case by doing the same thing as in Eq. (4.26).

t
T = f(x,t) with x(tp) =xo  generates  x1(t)= [ dt’ f(xo,t)
to

This is not a solution of the differential equation, but it forms the starting point to find one because
you can iterate this approximate solution x; to form an improved approximation.

t
xy,(t) :/t dt' f(xp_ (), 1), k=23, ... (4.27)

This will form a sequence that is usually different from that of the power series approach, though the
end result better be the same. This iterative approach is used in one proof that shows under just what
circumstances this differential equation & = f has a unique solution.

4.5 Trigonometry via ODE’s
The differential equation ©” = —u has two independent solutions. The point of this exercise is to derive
all (or at least some) of the standard relationships for sines and cosines strictly from the differential
equation. The reasons for spending some time on this are twofold. First, it's neat. Second, you have
to get used to manipulating a differential equation in order to find properties of its solutions. This is
essential in the study of Fourier series as you will see in section 5.3.

Two solutions can be defined when you specify boundary conditions. Call the functions c¢(z) and
s(x), and specify their respective boundary conditions to be

c(0)=1, d(0)=0, and  s(0)=0, §(0)=1 (4.28)

What is s’(x)? First observe that s’ satisfies the same differential equation as s and c:

u=—-u = (W) =W" =-u, and that shows the desired result.

This in turn implies that s" is a linear combination of s and ¢, as that is the most general solution to
the original differential equation.

§'(x) = Ac(x) + Bs(x)

Use the boundary conditions:

s'(0) =1= Ac(0)+ Bs(0) = A
From the differential equation you also have
s"(0) = —s(0) = 0= Ad(0) + Bs'(0) = B
Put these together and you have
s'(xr) =c(r)  And a similar calculation shows  ¢(x) = —s(z) (4.29)
What is ¢(x)? + s(x)?? Differentiate this expression to get

d

dx
This combination is therefore a constant. What constant? Just evaluate it at # = 0 and you see that
the constant is one. There are many more such results that you can derive, but that's left for the
exercises, problem 4.21 et seq.

[c(x)? + s(2)?] = 2c(x)d (x) + 25(2)s' () = —2¢(x)s(x) + 2s(x)c(x) =0
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4.6 Green’'s Functions
Is there a general way to find the solution to the whole harmonic oscillator inhomogeneous differential
equation? One that does not require guessing the form of the solution and applying initial conditions?
Yes there is. It's called the method of Green's functions. The idea behind it is that you can think of
any force as a sequence of short, small kicks. In fact, because of the atomic nature of matter, that's
not so far from the truth. If you can figure out the result of an impact by one molecule, you can add
the results of many such kicks to get the answer for 1023 molecules.

I'll start with the simpler case where there’'s no damping, b = 0 in the harmonic oscillator
equation.

mI + kr = Fex(t) (4.30)

Suppose that everything is at rest at the origin and then at time ¢’ the external force provides a small
impulse. The motion from that point on will be a sine function starting at ¢/,

Asin (wo(t —t)) (t>1t) (4.31)
The amplitude will depend on the strength of the kick. A constant force F' applied for a very short
time, At’, will change the momentum of the mass by mAwv, = F'At’. If this time interval is short
enough the mass doesn't have a chance to move very far before the force is turned off, then from that
time on it's subject only to the —kx force. This kick gives m a velocity FF/At'/m, and that's what
determines the unknown constant A.

Just after t = t/, v, = Awy = FAt'/m. This determines A, so the position of m is

_ [ B sin (wo(t — 1)) (t>1)
x(t)_{ (wo ) o (4.32)

impulse

X

AN
oy A D

When the external force is the sum of two terms, the total solution is the sum of the solutions
for the individual forces. If an impulse at one time gives a solution Eq. (4.32), an impulse at a later
time gives a solution that starts its motion at that later time. The key fact about the equation that
you're trying to solve is that it is linear, so you can get the solution for two impulses simply by adding
the two simpler solutions.

d2£IZ'1 d21’2
dtQ +k$1:F1(t) and m dt2

m + kxo :Fz(t)

then

mdQ(l’l 4 132)
dt?

+ k(xl —I—JIQ) = Fl(t) + Fg(t)
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The way to make use of this picture is to take a sequence of contiguous steps. One step follows
immediately after the preceding one. If two such impulses are two steps

_ [ Fto) (to<t<ty) _JEt) (<t <tly)
Fo= {0 (elsewhere) and Fi= 0 (elsewhere)

mi + kxr = Fy+ I (433)

then if ¢ is the solution to Eq. (4.30) with only the F{ on its right, and z is the solution with only
F7, then the full solution to Eq. (4.33) is the sum, z¢ + 1.

Think of a general forcing function [ e (f) in the way that you would set up an integral.
Approximate it as a sequence of very short steps as in the picture. Between tj and ¢, the force is
essentially ['(t;). The response of m to this piece of the total force is then Eq. (4.32).

F(tg) Aty
_ ) e sin (wolt —tg)) (8> tg)
a:k(t){o (wolt —tx)) o

where Atk = tk+1 — tk-

F
N - - - +

I tl/dl\;\ ts

To complete this idea, the external force is the sum of a lot of terms, the force between ¢; and
to, that between to and t3 etc. The total response is the sum of all these individual responses.

F(ty) At
_ —sksin (wo(t —1y))  (t > )
x(t) = zk: { . (wolt = 11)) 62

For a specified time ¢, only the times ¢;, before and up to ¢ contribute to this sum. The impulses
occurring at the times after the time ¢ can't change the value of z(%); they haven't happened yet. In
the limit that Aty — 0, this sum becomes an integral.

/ dt’ sm (wo(t —t")) (4.34)

Apply this to an example. The simplest is to start at rest and begin applying a constant force
from time zero on.

F t>0 /
Fext(t) = {00 Et S 03 / dt

and the last expression applies only for ¢ > 0. It is

sm (wo(t — 1))

Fy
P

z(t) = mwg

[1— cos(wot)] (4.35)
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As a check for the plausibility of this result, look at the special case of small times. Use the power
series expansion of the cosine, keeping a couple of terms, to get

- FO 2 B FO W(Q)tg i FO t2
z(t) ~ e [1— (1= (wot)?/2)] = e 2 " m2
and this is just the result you'd get for constant acceleration Fjy/m. In this short time, the position
hasn't changed much from zero, so the spring hasn't had a chance to stretch very far, so it can't apply
much force, and you have nearly constant acceleration.

This is a sufficiently important subject that it will be repeated elsewhere in this text. A completely
different approach to Green's functions will appear is in section 15.5, and chapter 17 is largely devoted
to the subject.

4.7 Separation of Variables
If you have a first order differential equation — I'll be more specific for an example, in terms of x and
t — and if you are able to move the variables around until everything involving x and dx is on one
side of the equation and everything involving t and dt is on the other side, then you have “separated
variables.” Now all you have to do is integrate.

For example, the total energy in the undamped harmonic oscillator is F = mv?/2 + ka?/2.
Solve for dz/dt and

iz [T o

To separate variables, multiply by dt and divide by the right-hand side.
dx
VE(E = ka2/2)

Now it’s just manipulation to put this into a convenient form to integrate.

=dt

ivai= o

Make the substitution 2 = asin § and you see that if a> = 2F /k then the integral on the left simplifies.

acosf do / [ k . 1
—_— = —dt so 0 =sin"" — =wpt+C
/a\/l—sin29 m @ ’
or  z(t)=asin(wot + C)  where  wo=/k/m

An electric circuit with an inductor, a resistor, and a battery has a differential equation for the
current flow:

Lﬁ +IR =V, (4.37)

Manipulate this into

dl dI
Ly =Vo-IR  then Ly =

T dt
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Now integrate this to get
dl L

Solve for the current [ to get
RI(t) = Vo — e~ (L/R)(EHO) (4.38)

Now does this make sense? Look at the dimensions and you see that it doesn’t, at least not yet. The
problem is the logarithm on the preceding line where you see that its units don’'t make sense either.
How can this be? The differential equation that you started with is correct, so how did the units get
messed up? It goes back to the standard equation for integration,

/dx/lenx—i—C

If x is a length for example, then the left side is dimensionless, but this right side is the logarithm of
a length. It's a peculiarity of the logarithm that leads to this anomaly. You can write the constant of
integration as C' = —InC" where (" is another arbitrary constant, then

/dx/x:lnx—i-C':lnx—lnC”:lng”

If C" is a length this is perfectly sensible dimensionally. To see that the dimensions in Eq. (4.38) will
work themselves out (this time), put on some initial conditions. Set I(0) = 0 so that the circuit starts
with zero current.

R-0=Vy— e W/ROC)  jnolies  o~(L/RIO) _ 1,

RI(t)=Vy— Ve /B or  I(t)=(1—e /B /R

and somehow the units have worked themselves out. Logarithms do this, but you still better check.
The current in the circuit starts at zero and climbs gradually to its final value [ = V;/R.

4.8 Circuits

The methods of section 4.1 apply to simple linear circuits, and the use of complex algebra as in that
section leads to powerful and simple ways to manipulate such circuit equations. You probably remember
the result of putting two resistors in series or in parallel, but what about combinations of capacitors or
inductors under the same circumstances? And what if you have some of each? With the right tools,
all of these questions become the same question, so it's not several different techniques, but one.

If you have an oscillating voltage source (a wall plug), and you apply it to a resistor or to a
capacitor or to an inductor, what happens? In the first case, V = IR of course, but what about the
others? The voltage equation for a capacitor is V' = ¢/C' and for an inductor it is V = LdI/dt. A
voltage that oscillates at frequency w is V' = V[ coswt, but using this trigonometric function forgoes
all the advantages that complex exponentials provide. Instead, assume that your voltage source is
V = Vet with the real part understood. Carry this exponential through the calculation, and take
the real part only at the end — often you won't even need to do that.
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These are respectively

‘/Oeiwt — IR = Ioeith
Vot = q/C = iwVpe™! = ¢/C =1/C = Lye™"/C
Vet = LT = iwLI = iwLIye™*

In each case the exponential factor is in common, and you can cancel it. These equations are then
V=IR V =1/iwC V=iwlLI

All three of these have the same form: V' = (something times)/, and in each case the size of the
current is proportional to the applied voltage. The factors of ¢ implies that in the second and third
cases the current is £90° out of phase with the voltage cycle.

The coefficients in these equations generalize the concept of resistance, and they are called
“impedance,” respectively resistive impedance, capacitive impedance, and inductive impedance.

1 .
V=Zrl=RI V=0Zcol=—%51 V=27,1=wLI (4.39)
twC'
Impedance appears in the same place as does resistance in the direct current situation, and this implies
that it can be manipulated in the same way. The left figure shows two impedances in series.

I —

The total voltage from left to right in the left picture is
V=211+ 71 =(Z1+ Zo)] = Zioral (4.40)

It doesn’t matter if what's inside the box is a resistor or some more complicated impedance, it matters
only that each box obeys V' = ZI and that the total voltage from left to right is the sum of the two
voltages. Impedances in series add. You don’t need the common factor et

For the second picture, for which the components are in parallel, the voltage is the same on each
impedance and charge is conserved, so the current entering the circuit obeys

V V 1 1 1

I1=15+1I, then — =4 — = 4
b Zrotal 21 Lo Ziotal 21 Lo

(4.41)

Impedances in parallel add as reciprocals, so both of these formulas generalize the common equations
for resistors in series and parallel. They also include as a special case the formula you may have seen
before for adding capacitors in series and parallel.

In the example Eq. (4.37), if you replace the constant voltage by an oscillating voltage, you have
two impedances in series.

Zwt = Zp+ 7 = R+iwL = [ =V/(R+iwL)



4—Differential Equations 83

What happened to the e~Lt/R term of the previous solution? This impedance manipulation tells you
the inhomogeneous solution; you still must solve the homogeneous part of the differential equation and
add that.

dl

LEE+IR:o::>1@y:AaRUL

The total solution is the sum

I(t) = Ae™BUL 4 Vet

R+ iwL
real part = AeBH/L 4 %;% where ¢ =tan! u;%L (4.42)
w

How did that last manipulation come about? Change the complex number R+ iwL in the denominator
from rectangular to polar form. Then the division of the complex numbers becomes easy. The dying
exponential is called the “transient” term, and the other term is the “steady-state” term.

The denominator is
Va2 + (2

R+iwl =a+if = \/042+62M (4.43) [ /AN
Va2 + 32 :

The reason for this multiplication and division by the same factor is | Qa

that it makes the final fraction have magnitude one. That allows me

to write it as an exponential, €!?. From the picture, the cosine and the

sine of the angle ¢ are the two terms in the fraction.

a+if =+a?+ 2 (cosd+ising) =+/a®+[2e?  and tan¢ = [/

In summary,
_ _) — ig — i
V_]Z—>I_Z—>Z_|Z|e — I = > 709

To satisfy initial conditions, you need the parameter A, but you also see that it gives a dying
exponential. After some time this transient term will be negligible, and only the oscillating steady-state
term is left. That is what this impedance idea provides.

In even the simplest circuits such as these, that fact that Z is complex implies that the applied
voltage is out of phase with the current. Z = |Z|ei®, so I = V' /Z has a phase change of —¢ from V.

What if you have more than one voltage source, perhaps the second having a different frequency
from the first? Remember that you're just solving an inhomogeneous differential equation, and you are
using the methods of section 4.2. If the external force in Eq. (4.12) has two terms, you can handle
them separately then add the results.

4.9 Simultaneous Equations
What's this doing in a chapter on differential equations? Patience. Solve two equations in two
unknowns:

(X)ax +by=e dx(X) — bx(Y): adx + bdy — bex — bdy = ed — fb
Y)cx+dy=f (ad — bc)r = ed — fb

Similarly, multiply (Y) by @ and (X) by ¢ and subtract:

acr + ady — acx — cby = fa — ec
(ad = bc)y = fa —ec
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Divide by the factor on the left side and you have
ed— fb fa—ec
_ et 4.44
T ad —be’ ad — be (4:44)

provided that ad — bc # 0. This expression appearing in both denominators is the determinant of the
equations.

Classify all the essentially different cases that can occur with this simple-looking set of equations
and draw graphs to illustrate them. If this looks like problem 1.23, it should.

Yy \y Yy
I \x// .

N
<
AN o
1. X

1. The solution is just as in Eq. (4.44) above and nothing goes wrong. There is exactly one
solution. The two graphs of the two equations are two intersecting straight lines.

2. The denominator, the determinant, is zero and the numerator isn't. This is impossible and
there are no solutions. When the determinant vanishes, the two straight lines are parallel and the fact
that the numerator isn't zero implies that the two lines are distinct and never intersect. (This could also
happen if in one of the equations, say (X), a =b =0 and e # 0. For example 0 = 1. This obviously
makes no sense.)

3a. The determinant is zero and so are both numerators. In this case the two lines are not only
parallel, they are the same line. The two equations are not really independent and you have an infinite
number of solutions.

3b. You can get zero over zero another way. Both equations (X) and (Y) are 0 = 0. This sounds
trivial, but it can really happen. Every x and y will satisfy the equation.

4. Not strictly a different case, but sufficiently important to discuss it separately: suppose that
the right-hand sides of (X) and (Y) are zero, e = f = 0. If the determinant is non-zero, there is a
unique solution and itis z =0, y = 0.

5. With e = f = 0, if the determinant is zero, the two equations are the same equation and
there are an infinite number of non-zero solutions.

In the important case for which e = f = 0 and the determinant is zero, there are two cases:
(3b) and (5). In the latter case there is a one-parameter family of solutions and in the former case
there is a two-parameter family. Put another way, for case (5) the set of all solutions is a straight line,
a one-dimensional set. For case (3b) the set of all solutions is the whole plane, a two-dimensional set.

Y

/

4.

Y

Y

Example: consider the two equations

kx+ (k—1)y =0,

S

5.

(1—k)x+(k—1)>2%y=0

3b.
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For whatever reason, | would like to get a non-zero solution for z and y. Can 1?7 The condition depends
on the determinant, so take the determinant and set it equal to zero.

k(k—1)??-QQ-k)(k-1)=0, o (k+1)(k—12=0
There are two roots, kK = —1 and k = +1. In the £ = —1 case the two equations become
—r—2y =0, and 20 +4y =0

The second is just —2 times the first, so it isn't a separate equation. The family of solutions is all those
x and y satisfying x = —2y, a straight line.
In the k = +1 case you have

x4+ 0y =0, and 0=0
The solution to this is x = 0 and y = anything and it is again a straight line (the y-axis).

4.10 Simultaneous ODE’s

Single point masses are an idealization that has some application to the real world, but there are many
more cases for which you need to consider the interactions among many masses. To approach this,
take the first step, from one mass to two masses.

Two masses are connected to a set of springs and fastened be- ey s ks
tween two rigid walls as shown. The coordinates for the two masses
(moving along a straight line) are 1 and x5, and I'll pick the zero F&M‘B‘M‘D‘W
point for these coordinates to be the positions at which everything is at L’:C |_>:C
1 2

equilibrium — no total force on either. When a mass moves away from
its equilibrium position there is a force on it. On mq, the two forces are
proportional to the distance by which the two springs ki and k3 are stretched. These two distances are
1 and 1 — X9 respectively, so F;, = ma, applied to each mass gives the equations

2

mlﬂ = —kiz1 — k3(z1 — 22), and Mo

dt?
I'm neglecting friction simply to keep the algebra down. These are linear, constant coefficient, homo-
geneous equations, just the same sort as Eq. (4.4) except that there are two of them. What made
the solution of (4.4) easy is that the derivative of an exponential is an exponential, so that when you
substituted x(t) = Ae all that you were left with was an algebraic factor — a quadratic equation in
«. Exactly the same method works here.

The only way to find out if this is true is to try it. The big difference is that there are two
unknowns instead of one, and the amplitude of the two motions will probably not be the same. If one
mass is a lot bigger than the other, you expect it to move less.

Try the solution

= —k)zl‘g — ]{?3(1’2 — l’]) (4.45)

r1(t) = Ae™, 75(t) = Be™ (4.46)

When you plug this into the differential equations for the masses, all the factors of e®! cancel, just the
way it happens in the one variable case.

m1a2A = —]{7114 — /{Zg(A — B), and TTL2()42B = —/{ZQB — k’g(B — A) (4.47)
Rearrange these to put them into a neater form.

(k1+k3+m1a2)A+ (—k?g)B:O
( — k’g)A + (k’g + ]{33 +m2a2)B =0 (448)
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The results of problem 1.23 and of section 4.9 tell you all about such equations. In particular,
for the pair of equations ax + by = 0 and cx + dy = 0, the only way to have a non-zero solution for
x and vy is for the determinant of the coefficients to be zero: ad — bc = 0. Apply this result to the
problem at hand. Either A = 0 and B = 0 with a trivial solution or the determinant is zero.

(k’l + k’g + m1a2) (kﬁg + k’g + m2a2) — (k3)2 =0 (449)

This is a quadratic equation for &, and it determines the frequencies of the oscillation. Note the plural
in the word frequencies.

Equation (4.49) is just a quadratic, but it's still messy. For a first example, try a special,
symmetric case: m1 = my = m and k1 = ko. There's a lot less algebra.

(k1 + ks +ma?)® — (k3)* = 0 (4.50)
You could use the quadratic formula on this, but why? It's already set up to be factored.
(k1 + ks + ma? — k3) (k1 + ks + ma® + k3) =0
The product is zero, so one or the other factors is zero. These determine the as.

2
. and ag:_m

- — (4.51)

These are negative, and that's what you should expect. There's no damping and the springs provide
restoring forces that should give oscillations. That’s just what these imaginary a's provide.

When you examine the equations az+by = 0 and cz+dy = 0 the condition that the determinant
vanishes is the condition that the two equations are really just one equation, and that the other is not
independent of it; it is actually a multiple of the first. You must solve that equation for x and y. Here,
arbitrarily pick the first of the equations (4.48) and find the relation between A and B.

Oé%:—ﬁ — (k’1+k53—|-m(—(k71/m)))A+(—]{73)B:0 — B=A

aj=———" = (ki +ks+m(—(k1+2ks/m)))A+ (—-k;)B=0 = B=-A

For the first case, a; = tiw; = ii\/kl/m, there are two solutions to the original differential equations.
These are called "normal modes.”
Il(t) = AQG_iwlt

11(t) = Ajeiwrt
1(#) ! and .
A26—zw1t

To(t) = Ae™rt x5 (t)

The other frequency has the corresponding solutions

$1(t) _ A3eiw2t o l’l(t) — A4efia)2t

Ty(t) = —Age’?t To(t) = —Age w2t
The total solution to the differential equations is the sum of all four of these.

Il(t) :Aleiwlt—i-AQe_iwlt+A3€iw2t+A4e_iw2t
x2(t) — At 4 Aye—iwnt — Ageiwst — Ayeiwet (4.52)
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The two second order differential equations have four arbitrary constants in their solution. You
can specify the initial values of two positions and of two velocities this way. As a specific example
suppose that all initial velocities are zero and that the first mass is pushed to coordinate xy and
released.

21(0)=20=A1+ Ay + A3 + Ay

8

o
(a]
Il

0
(0)=0
U;L-l(O) =0=1wA; —iw Ay + iWQAg — jwe Ay
( ) 0=1wA] —iw Ay — iw2A3 + twy Ay (4.53)

With a little thought (i.e. don't plunge blindly ahead) you can solve these easily.

&:&:&:m:%
_ 'CCO iwlt —iwlt iwgt —iwgt _ 'IO
$1(t)—z[€ +e +ew2t L ] —?[coswlt—kcoswgﬂ
xo(t) = T [ewlt + et _ piwat e‘zw?t] = ?0 [cos w1t — cos wgﬂ

From the results of problem 3.34, you can rewrite these as

x1(t) = xg cos (Mt> cos (Mt>

2 2
22(t) = o sin <“’2"2H‘“t) sin (“‘i““t) (4.54)

As usual you have to draw some graphs to understand what these imply. If the center spring k3
is a lot weaker than the outer ones, then Eq. (4.51) implies that the two frequencies are close to each
other and so |w; — wa| € wy + wa. Examine Eq. (4.54) and you see that one of the two oscillating
factors oscillate at a much higher frequency than the other. To sketch the graph of x5 for example you
should draw one factor [sin ((ws +wi)t/2)] and the other factor [sin ((w2 —w1)t/2)] and graphically

multiply them.
W
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The mass my starts without motion and its oscillations gradually build up. Later they die down
and build up again (though with reversed phase). Look at the other mass, governed by the equation
for 21(t) and you see that the low frequency oscillation from the (ws —w1)/2 part is big where the one
for x5 is small and vice versa. The oscillation energy moves back and forth from one mass to the other.

4.11 Legendre’s Equation

This equation and its solutions appear when you solve electric and gravitational potential problems
in spherical coordinates [problem 9.20]. They appear when you study Gauss's method of numerical
integration [Eq. (11.27)] and they appear when you analyze orthogonal functions [problem 6.7]. Because
it shows up so often it is worth the time to go through the details in solving it.

(1-2*)y] +Cy=0, or (1—a?)y" —2xy +Cy=0 (4.55)
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Assume a Frobenius solutions about x =0
o
y= Z akxk—f—s
0

and substitute into (4.55). Could you use an ordinary Taylor series instead? Yes, the point = 0 is
not a singular point at all, but it is just as easy (and more systematic and less prone to error) to use
the same method in all cases.

(1—2?) Zak(k +8) (k45— 1)akts2 - QxZak(k +s)zhHsl 4 CZaka:k+S —0
0 o >
Z ag(k +s)(k+s — 1)1;]”3*24_
0
Sap[ -2k +5)— (k+s)(k+s 1]k + O gt =0
0 0

o0
Z anio(n+s+2)(n+s+1)x" -

n=-—2
Z an[(n+ )+ (n+s)]z"™ + C Z a5 =0
n=0 n=0

In the last equation you see the usual substitution k& = n + 2 for the first sum and k = n for the rest.
That makes the exponents match across the equation. In the process, | simplified some of the algebraic
expressions.

The indicial equation comes from the n = —2 term, which appears only once.

aps(s—1) =0, so 5s=0,1

Now set the coefficient of "5 to zero, and solve for @, o in terms of a,. Also note that s is a
non-negative integer, which says that the solution is non-singular at x = 0, consistent with the fact
that zero is a regular point of the differential equation.

in — an(n+8)(n+s+ 1)-C
m+s+2)(n+s+1)
a08(5+1)_c (s+2)(s+3)—-C
(s+2)(s+1) (s+4)(s+3)
This looks messier than it is. Notice that the only combination of indices that shows up is n 4+ s. The
index s is 0 or 1, and n is an even number, so the combination n + s covers the non-negative integers:

0,12, ...
The two solutions to the Legendre differential equation come from the two cases, s =0, 1.

oo () () ()
(D5 (5] o
ot aos (S50 (4259 (559 @

(4.56)

then ay = ag etc. (4.57)

a9 =
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and the general solution is a sum of these.

This procedure gives both solutions to the differential equation, one with even powers and one
with odd powers. Both are infinite series and are called Legendre Functions. An important point about
both of them is that they blow up as x — +£1. This fact shouldn't be too surprising, because the
differential equation (4.55) has a singular point there.

2x n
1ra)1—a2)’

Yy - ( )y:() (4.59)

1+2)(1—2x
It's a regular singular point, but it is still singular. A detailed calculation in the next section shows that
these solutions behave as In(1 — x) near z = 1.

There is an exception! If the constant C' is for example C' = 6, then with s = 0 the equations

(4.57) are
as = a -0 as=a 6-6
2 = Qo 9 ) 4 — U2 12
The infinite series terminates in a polynomial

:O’ ag=ag=...=0

ap + asx?® = ag[l — 327
This (after a conventional rearrangement) is a Legendre Polynomial,

3 1

P = "% -~

2(2) = 527 =5
The numerator in Eq. (4.56) for any2 is [(n+ s)(n + s+ 1) — C]. If this happen to equal zero
for some value of n = N, then ap 5 = 0 and so then all the rest of ay 4. ..are zero too. The series
is a polynomial. This will happen only for special values of (', such as the value C' = 6 above. The

values of C' that have this special property are
C=(l+1), for £=0,1,2, ... (4.60)

This may be easier to see in the explicit representation, Eq. (4.58). When a numerator equals zero,
all the rest that follow are zero too. When C' = ¢({ 4 1) for even £, the first series terminates in a
polynomial. Similarly for odd ¢ the second series is a polynomial. These are the Legendre polynomials,
denoted Fy(x), and the conventional normalization is to require that their value at = 1 is one.
Py(z)=1 P(zx)==x P(z) = 5:1:2—%

Ps(z) = §x3—%x Py(z) = 35x4 er%

(4.61)

The special case for which the series terminates in a polynomial is by far the most commonly used
solution to Legendre’s equation. You seldom encounter the general solutions as in Eq. (4.58).
A few properties of the P, are

S U o0
() (14 1) Pasr (2) = (20 + 1)2Po(2) — nPo1 (2)
© Pala) = (WZ, =g (162)
@) Pl =1 Pa(a) = (1P E@)

(€  (1—2tw+2) Zt"P
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4.12 Asymptotic Behavior

This is a slightly technical subject, but it will come up occasionally in electromagnetism when you dig
into the details of boundary value problems. It will come up in quantum mechanics when you solve some
of the standard eigenvalue problems that you face near the beginning of the subject. If you haven't
come to these yet then you can skip this part for now.

You solve a differential equation using a Frobenius series and now you need to know something
about the solution. In particular, how does the solution behave for large values of the argument? All
you have in front of you is an infinite series, and it isn't obvious how it will behave far away from the
origin. In the line just after Eq. (4.59) it says that these Legendre functions behave as In(1 — x). How
can you tell this from the series in Eq. (4.58)7

There is a theorem that addresses this. Take two functions described by two series:

flx) = iakxk and g(z) = ibkxk

It does not matter where the sums start because you are concerned just with the large values of k. The
lower limit could as easily be —14 or +27 with no change in the result. The ratio test, Eq. (2.8), will
determine the radius of convergence of these series, and

k+1
k41T

—| <C <1 forlarge enough k
apx

is enough to insure convergence. The largest x for which this holds defines the radius of convergence,
maybe 1, maybe co.... Call it R.
Assume that (after some value of k) all the aj, and b, are positive, then look at the ratio of the
ratios,
U1/ Ok
b1/ b,

If this approaches one, that will tell you only that the radii of convergence of the two series are the
same. If it approaches one very fast, and if either one of the functions goes to infinity as x approaches
the radius of convergence, then it says that the asymptotic behaviors of the functions defined by the
series are the same.

1
If M —1-—0 asfastas -5, and if either f(x) or g(x) — occasz — R
bk 1/ by, k
Then J(z) — aconstantas z — R
9()

There are more general ways to state this, but this handles most cases of interest.
Compare these series near x = 1.

[e.e]
x
z or In(1 —x) 22?7 or
1
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Even in the third case, the signs of the terms are the same after a while, so this is relevant to
the current discussion. The ratio of ratios for the first and second series is

Apyr/0k 1 1 1

= :1_7
bk+1/bk: (/{?—l-l)/k 1+1/k3 k

These series behave differently as = approaches the radius of convergence (z — 1). But you knew that.
The point is to compare an unknown series to a known one.

Applying this theorem requires some fussy attention to detail. You must make sure that the
indices in one series correspond exactly to the indices in the other. Take the Legendre series, Eq. (4.56)
and compare it to a logarithmic series. Choose s = 0 to be specific; then only even powers of x appear.
That means that | want to compare it to a series with even powers, and with radius of convergence
= 1. First try a binomial series such as for (1 — 22)%, but that doesn't work. See for yourself. The
logarithm In(1 — ?) turns out to be right. From Eq. (4.56) and from the logarithm series,

- n . _ (n+s)n+s+1)-C
f(x) n§nana: with Gpio = Gp CETET )

x n
x) = — Cnx
TEED IR 3t
n even
Now look at the ratios.
ant2  nn+1)-C 1—1—%—% 2
- = 5 .2 — 1+
an (n+2)(n+1) 14245
Cny2  2/(n+2)  n 1 2
Cn 2/n n+2 1+2

These agree to order 1/n, so the ratio of the ratios differs from one only in order 1/n?, satisfying the
requirements of the test. This says that the Legendre functions (the ones where the series does not
terminate in a polynomial) are logarithmically infinite near x = £1. It's a mild infinity, but it is still an
infinity. Is this bad? Not by itself, after all the electric potential of a line charge has a logarithm of 7 in
it. Singular solutions aren’t necessarily wrong, it just means that you have to look closely at how you
are using them.

Exercises
1 What algebraic equations do you have to solve to find the solutions of these differential equations?

d3x dx d0z
S ey £ = 3.0
P +adt +bxr =0, Juio z
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2 These equations are separable, as in section 4.7. Separate them and integrate, solving for the
dependent variable, with one arbitrary constant.

dN B dx

dv,
o =M g

4 _ B
7 a(l—e )

—a? 422,

3 From Eq. (4.40) and (4.41) what are the formulas for putting capacitors or inductors in series and
parallel?
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Problems

4.1 If the equilibrium position © = 0 for Eq. (4.4) is unstable instead of stable, this reverses the sign in
front of k. Solve the problem that led to Eq. (4.10) under these circumstances. That is, the damping
constant is b as before, and the initial conditions are £(0) = 0 and v;(0) = v9. What is the small time
and what is the large time behavior?

Ans: (2muo/Vb% + 4km)e b/ sinh ( b2/4m +k/m t>

4.2 In the damped harmonic oscillator problem, Eq. (4.4), suppose that the damping term is an anti-
damping term. It has the sign opposite to the one that | used (+bdx/dt). Solve the problem with the
initial condition 2(0) = 0 and v;(0) = vy and describe the resulting behavior.

Ans: (2muvg/v/4km — b2)eP/?™ sin (Vakm — b2 t/2m)

4.3 A point mass m moves in one dimension under the influence of a force F) that has a potential
energy V(). Recall that the relation between these is

av

=%

Take the specific potential energy V(z) = —Vpa?/(a? + x?%), where Vj is positive. Sketch V. Write
the equation F, = mag. There is an equilibrium point at x = 0, and if the motion is over only small
distances you can do a power series expansion of F} about x = 0. What is the differential equation
now? Keep just the lowest order non-vanishing term in the expansion for the force and solve that
equation subject to the initial conditions that at time ¢t = 0, (0) = x¢ and v.(0) = 0.

How does the graph of V' change as you vary a from small to large values and how does this same
change in a affect the behavior of your solution? Ans: w = /2Vj/ma?

4.4 The same as the preceding problem except that the potential energy function is +Vpa?/(a? + x2).
Ans: z(t) = zg cosh (v/2Vp/ma®t) (Jz| < a/4 or so, depending on the accuracy you want.)

4.5 For the case of the undamped harmonic oscillator and the force Eq. (4.13), start from the beginning
and derive the solution subject to the initial conditions that the initial position is zero and the initial
velocity is zero. At the end, compare your result to the result of Eq. (4.15) to see if they agree where
they should agree.

4.6 Check the dimensions in the result for the forced oscillator, Eq. (4.15).

4.7 Fill in the missing steps in the derivation of Eq. (4.15).

4.8 For the undamped harmonic oscillator apply an extra oscillating force so that the equation to solve
is
d’x

mW - *kx + Fext(t)
where the external force is Fext(t) = Fycoswt. Assume that w # wy = \/k/m.
Find the general solution to the homogeneous part of this problem.
Find a solution for the inhomogeneous case. You can readily guess what sort of function will give you
a coswt from a combination of x and its second derivative.
Add these and apply the initial conditions that at time ¢ = 0 the mass is at rest at the origin. Be sure
to check your results for plausibility: 0) dimensions; 1) w = 0; 2) w — oo; 3) t small (not zero). In
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each case explain why the result is as it should be.
Ans: (Fy/m)[— coswot + coswt]/ (wE — w?)

4.9 In the preceding problem | specified that w # wy = y/k/m. Having solved it, you know why this
condition is needed. Now take the final result of that problem, including the initial conditions, and take
the limit as w — wy. [What is the definition of a derivative?] You did draw a graph of your result didn’t
you? Ans: (Fy/2muwy)t sin wot

4.10 Show explicitly that you can write the solution Eq. (4.7) in any of several equivalent ways,
Aetwot 4 Be~ol — (' coswyt + D sinwot = E cos(wot + ¢)

le., given A and B, what are C' and D, what are E and ¢? Are there any restrictions in any of these
cases?

4.11 In the damped harmonic oscillator, you can have the special (critical damping) case for which
b* = 4km and for which w’ = 0. Use a series expansion to take the limit of Eq. (4.10) as w’ — 0.
Also graph this solution. What would happen if you took the same limit in Eqgs. (4.8) and (4.9), before
using the initial conditions?

4.12 (a) In the limiting solution for the forced oscillator, Eq. (4.16), what is the nature of the result
for small time? Expand the solution through order t? and understand what you get. Be careful to be
consistent in keeping terms to the same order in ¢.

(b) Part (a) involved letting [ be very large, then examining the behavior for small . Now reverse the
order: What is the first non-vanishing order in ¢ that you will get if you go back to Eq. (4.13), expand
that to first non-vanishing order in time, use that for the external force in Eq. (4.12), and find z(t) for
small £. Recall that in this example 2(0) = 0 and %(0) = 0, so you can solve for £(0) and then for
#(0). The two behaviors are very different.

4.13 The undamped harmonic oscillator equation is d2x /dt? +w?z = 0. Solve this by Frobenius series
expansion about ¢t = 0.

4.14 Check the algebra in the derivation of the n = 0 Bessel equation. Explicitly verify that the general
expression for aqf, in terms of ag is correct, Eq. (4.22).

4.15 Work out the Frobenius series solution to the Bessel equation for the n = 1/2, S = —1/2 case.
Graph both solutions, this one and Eq. (4.23).

4.16 Derive the Frobenius series solution to the Bessel equation for the value of n = 1. Show that this
method doesn't yield a second solution for this case either.

4.17 Try using a Frobenius series method on " + y /2% = 0 around = = 0.

4.18 Solve by Frobenius series x%u” + 4zu’ + (22 + 2)u = 0. You should be able to recognize the
resulting series (after a little manipulation).

4.19 The harmonic oscillator equation, d?y/dx? + k?y = 0, is easy in terms of the variable . What
is this equation if you change variables to z = 1/x, getting an equation in such things as d*y/dz>.
What sort of singularity does this equation have at 2z = 0?7 And of course, write down the answer for
y(z) to see what this sort of singularity can lead to. Graph it.
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4.20 Solve by Frobenius series solution about z = 0: 4" + zy = 0.
Ans: 1 — (23/31) + (1-425/6!) — (1-4-72%/9!) + - is one.

4.21 From the differential equation d?u/dx? = —u, finish the derivation for ¢’ as in Eq. (4.29). Derive
identities for the functions c¢(x + y) and s(x + y).

4.22 The chain rule lets you take the derivative of the composition of two functions. The function
inverse to s is the function f that satisfies f(s(:c)) = x. Differentiate this equation with respect to x
and derive that f satisfies df (x)/dx = 1/+/1 — x2. What is the derivative of the function inverse to
c?

4.23 For the differential equation u” = +u (note the sign change) use the same boundary conditions
for two independent solutions that | used in Eq. (4.28). For this new example evaluate ¢’ and s’. Does
c? + 52 have the nice property that it did in section 4.5?7 What about c? — s2? What are ¢(z + y) and
s(x +y)? What is the derivative of the function inverse to s? to c¢?

4.24 Apply the Green's function method for the force Fy(1—e~5*) on the harmonic oscillator without
damping. Verify that it agrees with the previously derived result, Eq. (4.15). They should match in a
special case.

4.25 An undamped harmonic oscillator with natural frequency wy is at rest for time £ < 0. Starting at
time zero there is an added force Fysinwgt. Use Green's functions to find the motion for time ¢ > 0,
and analyze the solution for both small and large time, determining if your results make sense. Compare
the solution to problems 4.9 and 4.11. Ans: (Fy/2mw}) [ sin(wot) — wot cos(wot)]

4.26 Derive the Green's function analogous to Eq. (4.32) for the case that the harmonic oscillator is
damped.

4.27 Radioactive processes have the property that the rate of decay of nuclei is proportional to the
number of nuclei present. That translates into the differential equation dN/dt = —AN, where X is a
constant depending on the nucleus. At time £ = 0 there are Ny nuclei; how many are present at time
t later? The half-life is the time in which one-half of the nuclei decay; what is that in terms of A\?
Ans: In2/\

4.28 (a) In the preceding problem, suppose that the result of the decay is another nucleus (the
“daughter”) that is itself radioactive with its own decay constant Ay. Call the first one above A;. Write
the differential equation for the time-derivative of the number, Ny of this nucleus. You note that No
will change for two reasons, so in time dt the quantity d/N5 has two contributions, one is the decrease
because of the radioactivity of the daughter, the other an increase due to the decay of the parent.
Set up the differential equation for Ny and you will be able to use the result of the previous problem
as input to this; then solve the resulting differential equation for the number of daughter nuclei as a
function of time. Assume that you started with none, N2(0) = 0.

(b) Next, the “activity” is the total number of all types of decays per time. Compute the activity and
graph it. For the plot, assume that \; is substantially smaller than Ay and plot the total activity as a
function of time. Then examine the reverse case, A\; > \y

Ans: NO)\l [(2A2 — /\1)6_)\1t — )\26_/\2t] /()\2 — )\1)

4.29 The “snowplow problem” was made famous by Ralph Agnew: A snowplow starts at 12:00 Noon
in a heavy and steady snowstorm. In the first hour it goes 2 miles; in the second hour it goes 1 mile.
When did the snowstorm start? Ans: 11:23
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4.30 Verify that the equations (4.52) really do satisfy the original differential equations.

4.31 When you use the “dry friction” model Eq. (4.2) for the harmonic oscillator, you can solve the
problem by dividing it into pieces. Start at time ¢ = 0 and position = xy (positive). The initial
velocity of the mass m is zero. As the mass is pulled to the left, set up the differential equation and
solve it up to the point at which it comes to a halt. Where is that? You can take that as a new initial
condition and solve the problem as the mass is pulled to the right until it stops. Where is that? Then
keep repeating the process. Instead or further repetition, examine the case for which the coefficient of
kinetic friction is small, and determine to lowest order in the coefficient of friction what is the change in
the amplitude of oscillation up to the first stop. From that, predict what the amplitude will be after the
mass has swung back to the original side and come to its second stop. In this small px approximation,
how many oscillations will it undergo until all motion stops. Let b = uFy Ans: Let ¢, = mn/wo,
then for t,, <t < tpi1, z(t) =[ro— (2n+1)b/k]coswot + (—1)"b/k. Stops when t ~ mkx/2wob
roughly.

4.32 A mass m is in an undamped one-dimensional harmonic oscillator and is at rest. A constant
external force Fy is applied for the time interval 1" and is then turned off. What is the motion of the
oscillator as a function of time for all ¢ > 0?7 For what value of 1" is the amplitude of the motion a
maximum after the force is turned off? For what values is the motion a minimum? Of course you need
an explanation of why you should have been able to anticipate these two results.

4.33 Starting from the solution Eq. (4.52) assume the initial conditions that both masses start from the
equilibrium position and that the first mass is given an initial velocity v;1 = vg. Find the subsequent
motion of the two masses and analyze it.

4.34 |If there is viscous damping on the middle spring of Eqs. (4.45) so that each mass feels an extra
force depending on their relative velocity, then these equations will be

d2$1 . .
mlﬁ =—kix; — /{53(1‘1 - x2) - b(xl - 1‘2)7 and
d? . .
mo dtl; = —]CQSL'Q — kg(l’g — Qil) — b(l‘Q — 1'1)

Solve these subject to the conditions that all initial velocities are zero and that the first mass is pushed
to coordinate x( and released. Use the same assumption as before that m; = my = m and ky = ks.

4.35 For the damped harmonic oscillator apply an extra oscillating force so that the equation to solve
is
PPz bdw

i T Va
where the external force is Fex(t) = Fyeiwt,
(a) Find the general solution to the homogeneous part of this problem.
(b) Find a solution for the inhomogeneous case. You can readily guess what sort of function will give
you an et from a combination of  and its first two derivatives.
This problem is easier to solve than the one using coswt, and at the end, to get the solution for the
cosine case, all you have to do is to take the real part of your result.

kx 4+ Fex(t)

4.36 You can solve the circuit equation Eq. (4.37) more than one way. Solve it by the methods used
earlier in this chapter.
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4.37 For a second order differential equation you can pick the position and the velocity any way that
you want, and the equation then determines the acceleration. Differentiate the equation and you find
that the third derivative is determined too.

d?*z bdr k - A3z b d*x kdx

B m?t TP a3 mdt2  mdt
Assume the initial position is zero, (0) = 0 and the initial velocity is v, (0) = vy; determine the second
derivative at time zero. Now determine the third derivative at time zero. Now differentiate the above
equation again and determine the fourth derivative at time zero.
From this, write down the first five terms of the power series expansion of x () about ¢ = 0.
Compare this result to the power series expansion of Eq. (4.10) to this order.

4.38 Use the techniques of section 4.6, start from the equation m d?z/dt?> = F,(t) with no spring
force or damping. (a) Find the Green's function for this problem, that is, what is the response of the
mass to a small kick over a small time interval (the analog of Eq. (4.32))? Develop the analog of
Eq. (4.34) for this case. Apply your result to the special case that £ (t) = F{, a constant for time
t>0.
(b) You know that the solution of this differential equation involves two integrals of F}(t) with respect
to time, so how can this single integral do the same thing? Differentiate this Green’s function integral
(for arbitrary F;) twice with respect to time to verify that it really gives what it's supposed to. This is
a special case of some general results, problems 15.19 and 15.20.

t
Ans: % SO dt ()t =)

4.39 A point mass m moves in one dimension under the influence of a force [} that has a potential
energy V' (x). Recall that the relation between these is Fy, = —dV//dz, and take the specific potential
energy V(z) = —Voe=2%/a* where Vj is positive. Sketch V. Write the equation F}, = ma,. There
is an equilibrium point at x = 0, and if the motion is over only small distances you can do a power
series expansion of F} about x = 0. What is the differential equation now? Keep just the lowest
order non-vanishing term in the expansion for the force and solve that equation subject to the initial
conditions that at time ¢ = 0, x(0) = z¢ and v,(0) = 0. As usual, analyze large and small a.

4.40 Solve by Frobenius series methods

d’y  2dy 1
a2 T rar T V0

koo
Ans: Zfzo(—l)km is one.

4.41 Find a series solution about x = 0 for 3" + ysecx = 0, at least to a few terms.
Ans: ag[l — 322 + 0zt + Ssab + - ] +ag [w — a3 — St 4]

4.42 Fill in the missing steps in the equations (4.55) to Eq. (4.58).

4.43 Verify the orthogonality relation Eq. (4.62)(a) for Legendre polynomials of order £ =0, 1, 2, 3.

4.44 Start with the function (1 — 2zt + t2)71/2. Use the binomial expansion and collect terms to get
a power series in t. The coefficients in this series are functions of x. Carry this out at least to the
coefficient of 3 and show that the coefficients are Legendre polynomials. This is called the generating
function for the Py's. It is 20° Py(w)tt
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4.45 In the equation of problem 4.17, make the change of independent variable x = 1/z. Without
actually carrying out the solution of the resulting equation, what can you say about solving it?

4.46 Show that Eq. (4.62)(c) has the correct value P, (1) = 1 for all n. Note: (1—x?) = (1+z)(1—x)
and you are examining the point = 1.

4.47 Solve for the complete solution of Eq. (4.55) for the case C' = 0. For this, don't use series
methods, but get the closed form solution. Ans: Atanh™'z + B

4.48 Derive the condition in Eq. (4.60). Which values of s correspond to which values of £?

4.49 Start with the equation " + P(z)y’ + Q(x)y = 0 and assume that you have found one solution:
y = f(x). Perhaps you used series methods to find it. (a) Make the substitution y(x) = f(z)g(x)
and deduce a differential equation for g. Let G = ¢’ and solve the resulting first order equation for G
Finally write g as an integral. This is one method (not necessarily the best) to find the second solution
to a differential equation.

(b) Apply this result to the ¢ = 0 solution of Legendre's equation to find another way to solve prob-
lem 4.47. Ans:y = f [dz gy exp— [ Pdax

4.50 Treat the damped harmonic oscillator as a two-point boundary value problem.
mi + bt + kx =0, with 2(0)=0 and x(T)=d

[For this problem, if you want to set b=k =T =d = 1 that's 0.k |

(a) Assume that m is very small. To a first approximation neglect it and solve the problem.

(b) Since you failed to do part (a) — it blew up in your face — solve it exactly instead and examine the
solution for very small m. Why couldn’'t you make the approximation of neglecting m? Draw graphs.
Welcome to the world of boundary layer theory and singular perturbations. Ans: z(t) ~ el =t — el=t/m

4.51 Solve the differential equation @ = Az?(1+wt) in closed form and compare the series expansion
of the result to Eq. (4.25). Ans: z = o/ [1 — Aa(t + wt?/2)]

4.52 Solve the same differential equation & = Ax?(1 + wt) with z(tg) = « by doing a few iterations
of Eq. (4.27).

4.53 Analyze the steady-state part of the solution Eq. (4.42). For the input potential Vpe™!, find the
real part of the current explicitly, writing the final form as Iy cos(wt — @). Plot Iax and ¢ versus
w. Plot V' (t) and I(t) on a second graph with time as the axis. Recall these V" and I are the real part
understood.

4.54 If you have a resistor, a capacitor, and an inductor in series with an oscillating voltage source,
what is the steady-state solution for the current? Write the final form as . cos(wt — ¢), and plot
Imax and ¢ versus w. See what happens if you vary some of the parameters.

Ans: I = Vycos(wt — ¢)/|Z| where | Z| = /E2+ (wL — 1/wC)2 and tan ¢ = (wL — 1/wC)/R

4.55 In the preceding problem, what if the voltage source is a combination of DC and AC, so it is
V(t) = Vo + Vi coswt. Find the steady state solution now.
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4.56
. . . . . . L1 CQ
What is the total impedance left to right in the circuit Ry |_?
Ry | Ch

Ans: Ry + (1/iwC5) 4+ 1/[(1/iwLy) +1/((1/iwCh) +1/((1/R2) + (1/iwLs)))]

4.57 Find a Frobenius series solution about & = 0 for 3" + ycscx = 0, at least to a few terms.

Ans: z — $2? + Sad — Lot + Had + -

4.58 Find a series solution about = = 0 for 22y” — 2ixy’ + (z? +1i— 1)y = 0.

4.59 Just as you can derive the properties of the circular and hyperbolic trigonometric functions from
the differential equations that they satisfy, you can do the same for the exponential. Take the equation
u' = u and consider that solution satisfying the boundary condition u(0) = 1.

(a) Prove that u satisfies the identity u(z + y) = u(z)u(y).
(b) Prove that the function inverse to u has the derivative 1/x.

4.60 Find the asymptotic behavior of the Legendre series for the s = 1 case.

4.61 Find Frobenius series solutions for zy” +y = 0.



Fourier Series

Fourier series started life as a method to solve problems about the flow of heat through ordinary
materials. It has grown so far that if you search our library's catalog for the keyword “Fourier” you will
find 618 entries as of this date. It is a tool in abstract analysis and electromagnetism and statistics
and radio communication and .... People have even tried to use it to analyze the stock market. (It
didn’t help.) The representation of musical sounds as sums of waves of various frequencies is an audible
example. It provides an indispensible tool in solving partial differential equations, and a later chapter
will show some of these tools at work.

5.1 Examples
The power series or Taylor series is based on the idea that you can write a general function as an infinite
series of powers. The idea of Fourier series is that you can write a function as an infinite series of sines
and cosines. You can also use functions other than trigonometric ones, but I'll leave that generalization
aside for now, except to say that Legendre polynomials are an important example of functions used for
such more general expansions.

An example: On the interval 0 < x < L the function x? varies from 0 to L?. It can be written
as the series of cosines

, L2 42K (1) nmx

T Tl e
L? 412 T 1 27m+1 3nx (5.1)
= — = |cos— — oS —~ 4+ —COoS —— — - )
3 2 L 4 L 9 L

To see if this is even plausible, examine successive partial sums of the series, taking one term, then two
terms, etc. Sketch the graphs of these partial sums to see if they start to look like the function they
are supposed to represent (left graph). The graphs of the series, using terms up to n = 5 do pretty
well at representing the parabola.

5
x? 2 x? 3
1
1
P “
—
The same function can be written in terms of sines with another series:
202 N [(—1)nH! 2 nwx
2 n .
xr~ = 7 |: n — 7T2n3 (]. — (—1) )) SIDT (52)

1

and again you can see how the series behaves by taking one to several terms of the series. (right graph)
The graphs show the parabola ¥ = % and partial sums of the two series with terms up to n = 1, 3, 5.

100
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The second form doesn’t work as well as the first one, and there's a reason for that. The sine
functions all go to zero at # = L and 22 doesn't, making it hard for the sum of sines to approximate
the desired function. They can do it, but it takes a lot more terms in the series to get a satisfactory
result. The series Eq. (5.1) has terms that go to zero as 1/n?, while the terms in the series Eq. (5.2)
go to zero only as 1/n.*

5.2 Computing Fourier Series
How do you determine the details of these series starting from the original function? For the Taylor
series, the trick was to assume a series to be an infinitely long polynomial and then to evaluate it (and
its successive derivatives) at a point. You require that all of these values match those of the desired
function at that one point. That method won't work in this case. (Actually I've read that it can work
here too, but with a ridiculous amount of labor and some mathematically suspect procedures.)

The idea of Fourier's procedure is like one that you can use to determine the components of a
vector in three dimensions. You write such a vector as

A=A 2+ A+ ALz

And then use the orthonormality of the basis vectors, £:7 = 0 etc. Take the scalar product of the
preceding equation with Z.

P A=2 (A + A9+ A2 =A, and 9-A=A, and 2-A=A, (53)

>

This lets you get all the components of A. For example,

@-g:Ax:Acosa
<80 9 g:Ay:Acosﬁ (5.4)
é-g:AZ:Acosy

i//"'u

This shows the three direction cosines for the vector A. You will occasionally see these numbers used
to describe vectors in three dimensions, and it's easy to see that cos? o + cos? 3 + cos? y = 1.

In order to stress the close analogy between this scalar product and what you do in Fourier series,
I will introduce another notation for the scalar product. You don’t typically see it in introductory courses
for the simple reason that it isn't needed there. Here however it will turn out to be very useful, and in
the next chapter you will see nothing but this notation. Instead of i-Aor A-B you use <£,14T> or
<14Y, §> The angle bracket notation will make it very easy to generalize the idea of a dot product to
cover other things. In this notation the above equations will appear as

<ﬁ,g>:Acosa, <@,/T>=ACOS§, <2,/T>:Acosy

and they mean exactly the same thing as Eq. (5.4).

* For animated sequences showing the convergence of some of these series, see
www.physics.miami.edu/nearing/mathmethods/animations.html


http://www.physics.miami.edu/nearing/mathmethods/animations.html
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There are orthogonality relations similar to the ones for Z, §j, and 2, but for sines and cosines.
Let n and m represent integers, then

[ i (12 i (M52 .

This is sort of like -2 =0 and §-§ = 1, where the analog of % is sinwz/L and the analog of  is
sin 27 /L. The biggest difference is that it doesn't stop with three vectors in the basis; it keeps on with
an infinite number of values of n and the corresponding different sines. There are an infinite number of
very different possible functions, so you need an infinite number of basis functions in order to express
a general function as a sum of them. The integral Eq. (5.5) is a continuous analog of the coordinate
representation of the common dot product. The sum over three terms A, B, +AyBy+A. B, becomes a
sum (integral) over a continuous index, the integration variable. By using this integral as a generalization
of the ordinary scalar product, you can say that sin(7x/L) and sin(27x /L) are orthogonal. Let i be an
index taking on the values x, y, and z, then the notation A; is a function of the variable 7. In this case
the independent variable takes on just three possible values instead of the infinite number in Eq. (5.5).

How do you derive an identity such as Eq. (5.5)? The first method is just straight integration,
using the right trigonometric identities. The easier (and more general) method can wait for a few pages.

cos(z £y) =coszcosy Fsinxsiny, subtract: cos(x — y) — cos(x +y) = 2sinxsiny

Use this in the integral.

2 [ sin ("7 Y sin () = [ [eos (P o (U5

Now do the integral, assuming . # m and that n and m are positive integers.

- _Lm)7T “in <(n —2n)7rx> - +Lm)7r “in <(n —i—zn)mv) :

=0 (5.6)

Why assume that the integers are positive? Aren't the negative integers allowed too? Yes, but they
aren't needed. Put n = —1 into sin(n7x /L) and you get the same function as for n = +1, but turned
upside down. It isn't an independent function, just —1 times what you already have. Using it would be
sort of like using for your basis not only Z, {j, and £ but —Z, —J, and —2 too. Do the n = m case of
the integral yourself.

Computing an Example
For a simple example, take the function f(x) = 1, the constant on the interval 0 < x < L, and assume
that there is a series representation for f on this interval.

1= ij:an sin (?) (0<xz<1L) (5.7)

Multiply both sides by the sine of mmz/L and integrate from 0 to L.

/OL dx sin <m2x> 1= /OL dx sin (mgx) ni::lan sin (%) (5.8)
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Interchange the order of the sum and the integral, and the integral that shows up is the orthogonality
integral derived just above. When you use the orthogonality of the sines, only one term in the infinite

series survives.
L o L
/0 dx sin <m2’x> 1= nglan/o dz sin (?) sin <$)

N 0 (n#m)
:;a”'{L/z (Z:% (5.9)
=am L/2.

Now all you have to do is to evaluate the integral on the left.

[ (MY 1= B o™ By

This is zero for even m, and when you equate it to (5.9) you get

Ay = —— for m odd
mm

You can relabel the indices so that the sum shows only odd integers m = 2k + 1 and the Fourier series

IS
o)

4 1 . mmx 4 1 . 2k+ )7z
. Z msmT:%ZijLlsm 7 =1, (0<x <L) (5.10)
m odd >0 k=0
highest harmonic: 5 highest harmonic: 19 highest harmonic: 99

The graphs show the sum of the series up to 2k + 1 = 5, 19, 99 respectively. It is not a
very rapidly converging series, but it's a start. You can see from the graphs that near the end of
the interval, where the function is discontinuous, the series has a hard time handling the jump. The
resulting overshoot is called the Gibbs phenomenon, and it is analyzed in section 5.7.

Notation

The point of introducing that other notation for the scalar product comes right here. The same notation
is used for these integrals. In this context define

L
(fo) = [ de f(a)g(a) (5.11)
and it will behave just the same way that A B does. Eq. (5.5) then becomes
0 n#m . (NTX
(Un, Um) = {L/2 n 7: m where  u,(z) =sin <T) (5.12)
precisely analogous to @, @> =1 and <gj, 2y=0

These uy, are orthogonal to each other even though they aren’t normalized to one the way that £ and
1) are, but that turns out not to matter. <un, un> = L /2 instead of = 1, so you simply keep track of it.
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(What happens to the series Eq. (5.7) if you multiply every u,, by 2? Nothing, because the coefficients
ay, get multiplied by 1/2.)
The Fourier series manipulations, Egs. (5.7), (5.8), (5.9), become

1= Zanun then  (upm,1) = <um, Zanun> = Z an(Um, Un ) = Gm{Um, Um)  (5.13)
1 1

n=1

This is far more compact than you see in the steps between Eq. (5.7) and Eq. (5.10). You still have
to evaluate the integrals <um7 1> and <um,um>, but when you master this notation you'll likely make
fewer mistakes in figuring out what integral you have to do. Again, you can think of Eq. (5.11) as a
continuous analog of the discrete sum of three terms, <14Y, §> =AyBy + AyBy + A.B..

The analogy between the vectors such as £ and functions such as sine is really far deeper, and it
is central to the subject of the next chapter. In order not to get confused by the notation, you have to
distinguish between a whole function f, and the value of that function at a point, f(z). The former is
the whole graph of the function, and the latter is one point of the graph, analogous to saying that A
is the whole vector and Ay is one of its components.

The scalar product notation defined in Eq. (5.11) is not necessarily restricted to the interval
0 < x < L. Depending on context it can be over any interval that you happen to be considering at
the time. In Eq. (5.11) there is a complex conjugation symbol. The functions here have been real,
so this made no difference, but you will often deal with complex functions and then the fact that the
notation <f,g> includes a conjugation is important. This notation is a special case of the general
development that will come in section 6.6. The basis vectors such as £ are conventionally normalized
to one, £-& = 1, but you don't have to require it even there, and in the context of Fourier series it
would clutter up the notation to require <un,un> =1, so | don't bother.

Some Examples
To get used to this notation, try showing that these pairs of functions are orthogonal on the interval
0 < x < L. Sketch graphs of both functions in every case.

(z,L—32)=0  (sinma/L,cosmz/Ly=0  (sin3nz/L,L—2z)=0

The notation has a complex conjugation built into it, but these examples are all real. What if they
aren't? Show that these are orthogonal too. How do you graph these? Not easily.*

<e2i7r:v/L7 efam/L> —0 (L—4(7+4)z, L+ 3iz)y =0

Extending the function

In Equations (5.1) and (5.2) the original function was specified on the interval 0 < z < L. The two
Fourier series that represent it can be evaluated for any x. Do they equal z% everywhere? No. The
first series involves only cosines, so it is an even function of z, but it's periodic: f(x + 2L) = f(x).
The second series has only sines, so it's odd, and it too is periodic with period 2L.

* but see if you can find a copy of the book by Jahnke and Emde, published long before computers.
They show examples. Also check out
www.geom.uiuc.edu/~banchoff/script/CFGInd.html or
www.math.ksu.edu/“bennett/jomacg/


http://www.geom.uiuc.edu/~banchoff/script/CFGInd.html
http://www.math.ksu.edu/~bennett/jomacg/
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Here the discontinuity in the sine series is more obvious, a fact related to its slower convergence.

5.3 Choice of Basis
When you work with components of vectors in two or three dimensions, you will choose the basis that
is most convenient for the problem you're working with. If you do a simple mechanics problem with a
mass moving on an incline, you can choose a basis £ and §j that are arranged horizontally and vertically.
OR, you can place them at an angle so that they point down the incline and perpendicular to it. The
latter is often a simpler choice in that type of problem.

The same applies to Fourier series. The interval on which you’re working is not necessarily from
zero to L, and even on the interval 0 < x < L you can choose many sets of function for a basis:

sinnmx/L (n=1,2,...) as in equations (5.10) and (5.2), or you can choose a basis
cosnmx/L (n=0,1,2,...) as in Eq. (5.1), or you can choose a basis
sin(n + Yo)mz/L  (n=0,1,2,...), or you can choose a basis

2minz /L

e (n=0,41,£2,...), or an infinite number of other possibilities.

In order to use any of these you need a relation such as Eq. (5.5) for each separate case. That's a
lot of integration. You need to do it for any interval that you may need and that's even more integration.
Fortunately there's a way out:

Fundamental Theorem

If you want to show that each of these respective choices provides an orthogonal set of functions you
can integrate every special case as in Eq. (5.6), or you can do all the cases at once by deriving an
important theorem. This theorem starts from the fact that all of these sines and cosines and complex
exponentials satisfy the same differential equation, u” = A\u, where A is some constant, different in
each case. If you studied section 4.5, you saw how to derive properties of trigonometric functions simply
by examining the differential equation that they satisfy. If you didn’t, now might be a good time to
look at it, because this is more of the same. (I'll wait.)

You have two functions %1 and uy that satisfy

] = Auy and Uy = Aaun

Make no assumption about whether the \'s are positive or negative or even real. The u's can also be
complex. Multiply the first equation by w5 and the second by u], then take the complex conjugate of
the second product.

usu] = ANusu;  and  ugus” = Ajuquy

Subtract the equations.
uyuy — uruy” = (A — Ay)usu,

Integrate from a to b

b b
/ dr (usuf — uuy”) = (A — )\;)/ dx uyu, (5.14)
a a
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Now do two partial integrations. Work on the second term on the left:

b b b b b b
/ drujuy” = uyjuy —/ drujuy = ujuy'| —ujus —l—/ dx ufus
a a a a a a
Put this back into the Eq. (5.14) and the integral terms cancel, leaving
b b
s~ |, = O = %) [ desy (5.15)
a a

This is the central identity from which all the orthogonality relations in Fourier series derive. It's
even more important than that because it tells you what types of boundary conditions you can use in
order to get the desired orthogonality relations. (It tells you even more than that, as it tells you how
to compute the adjoint of the second derivative operator. But not now — save that for later.) The
expression on the left side of the equation has a name: “bilinear concomitant.”

You can see how this is related to the work with the functions sin(nmwz/L). They satisfy the
differential equation v’ = Au with A\ = —n?7%/L2 The interval in that case was 0 < = < L for
a<x<b.

There are generalizations of this theorem that you will see in places such as problems 6.16 and
6.17 and 10.21. In those extensions these same ideas will allow you to handle Legendre polynomials
and Bessel functions and Ultraspherical polynomials and many other functions in just the same way
that you handle sines and cosines. That development comes under the general name Sturm-Liouville
theory.

The key to using this identity will be to figure out what sort of boundary conditions will cause
the left-hand side to be zero. For example if u(a) = 0 and u(b) = 0 then the left side vanishes. These
are not the only possible boundary conditions that make this work; there are several other common
cases soon to appear.

The first consequence of Eq. (5.15) comes by taking a special case, the one in which the two
functions 1y and us are in fact the same function. If the boundary conditions make the left side zero
then

b
0= =) [ druj(epu )

The \'s are necessarily the same because the u's are. The only way the product of two numbers can
be zero is if one of them is zero. The integrand, u](x)u,(z) is always non-negative and is continuous,
so the integral can't be zero unless the function u; is identically zero. As that would be a trivial case,
assume it's not so. This then implies that the other factor, (A; — A]) must be zero, and this says that
the constant Ay is real. Yes, —n?7%/L? is real.

[To use another language that will become more familiar later, \ is an eigenvalue and d?/dx?
with these boundary conditions is an operator. This calculation guarantees that the eigenvalue is real ]

Now go back to the more general case of two different functions, and drop the complex conju-
gation on the \'s.

0= (A — o) /b da () ()

This says that if the boundary conditions on u make the left side zero, then for two solutions with
different eigenvalues (\'s) the orthogonality integral is zero. Eq. (5.5) is a special case of the following
equation.

b
If A £ X, then  (usun) = / da wy(z)uy (z) = 0 (5.16)
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Apply the Theorem
As an example, carry out a full analysis of the case for which @ = 0 and b = L, and for the boundary
conditions u(0) = 0 and u(L) = 0. The parameter \ is positive, zero, or negative. If A > 0, then set
A =k? and
u(x) = Asinh kx + B cosh kx, then u(0)=B=0
andso  u(L)=AsinhkL=0=A=0

No solutions there, so try A =0
u(x) = A+ Buz, then u(0)=A=0 andso wu(L)=BL=0=B=0
No solutions here either. Try A < 0, setting A = —k?2.
u(z) = Asinkz + B cos kzx, then u(0) =0 = B, so u(L) = AsinkL =0

Now there are many solutions because sinnm = 0 allows k = nw/L with n any integer. But,
sin(—x) = —sin(x) so negative integers just reproduce the same functions as do the positive integers;
they are redundant and you can eliminate them. The complete set of solutions to the equation u” = Au
with these boundary conditions has \,, = —n?72/L? and reproduces the result of the explicit integration
as in Eq. (5.6).

nww

Up () = sin (T) n=1, 2 3,... and

<un,um>:/Lda: sin (%) sin (mg‘”> —0 if m#m  (5.17)
0

There are other choices of boundary condition that will make the bilinear concomitant vanish.
(Verify these!) For example

u(0) = 0, W'(L)y=0  gives up(x)=sin(n+1p)rz/L n=0,1,2, 3,...

and without further integration you have the orthogonality integral for non-negative integers n and m

(Un, U ) = /OL dx sin (W) sin (W) =0 if n#m (5.18)

A very common choice of boundary conditions is
u(a) = u(b), uw'(a) =u'(b)  (periodic boundary conditions) (5.19)

It is often more convenient to use complex exponentials in this case (though of course not necessary).
On0<z<L
ikx

u(ﬂf) =e 5 where ]{,’2 = —)\ and U(O) =1= U(L) — 61]{,‘[/

The periodic behavior of the exponential implies that kL = 2nm. The condition that the derivatives
match at the boundaries makes no further constraint, so the basis functions are

Un(z) = 2™me/L (n =0, £1,42, ... (5.20)
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Notice that in this case the index n runs over all positive and negative numbers and zero, not just the
positive integers. The functions e2minz/L jnq e=2minz/L 5pq independent, unlike the case of the sines
discussed above. Without including both of them you don't have a basis and can't do Fourier series. If
the interval is symmetric about the origin as it often is, —L < x < 4L, the conditions are

u(—L) = e —y(4L) = et or 2R (5.21)
This says that 2k L = 2nm, so

oo
U () = "™/ L (n=0, £1,£2, ...) and flx) = chun(x)
—0o0
The orthogonality properties determine the coefficients:

<um7 f> = <Um; _icnun> = Cm<umaum>

L .
[ dme e ) i)
L

L ) ) L
= cm/ dg e~mmiw/Letmmiz/L _ cm/ dr1=2Lc,,
_L —L

In this case, sometimes the real form of this basis is more convenient and you can use the
combination of the two sets uy, and vy, where

Un(x) = cos(nmx /L), (n=0,1,2,...)
vp(z) = sin(nrx /L), (n=1,2,...) (5.22)
(Un,Um) =0 (n#m), (Un,Vm) =0 (n#m), (Un,Um) =0 (all n, m)

and the Fourier series is a sum such as f(z) =Y 0" anun + Y7 bpvn.
There are an infinite number of other choices, a few of which are even useful, e.g.

u'(a) =0=1u'(b) (5.23)
Take the same function as in Eq. (5.7) and try a different basis. Choose the basis for which the

boundary conditions are 4(0) = 0 and /(L) = 0. This gives the orthogonality conditions of Eq. (5.18).
The general structure is always the same.

f(x) = Zan un(z), and use <um,un> =0 (n#m)
Take the scalar product of this equation with u,, to get
(U, [) = (tm, Y an tin) = @ (Um, ) (5.24)

This is exactly as before in Eq. (5.13), but with a different basis. To evaluate it you still have to do
the integrals.

<Um,f> = /OL dx sin ((m—ki&)wm) 1=apm /OL dzx sin® <(m+£/2)7rx> = Gm<um,Um>

L L
m [1— COS ((m + 1/2)71-)] = §am
4
m = @2m+1)m

Then the series is

4[,7rx 1. 3mx 1. 57z }
— [sin — + - s —— + — sl + -
™

oL T3 M ap TN T (5.25)
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5.4 Musical Notes

Different musical instruments sound different even when playing the same note. You won't confuse the
sound of a piano with the sound of a guitar, and the reason is tied to Fourier series. The note middle C
has a frequency that is 261.6 Hz on the standard equal tempered scale. The angular frequency is then
21 times this, or 1643.8radians/sec. Call it wy =1644. When you play this note on any musical
instrument, the result is always a combination of many frequencies, this one and many multiples of it.
A pure frequency has just wy, but a real musical sound has many harmonics: wy, 2wy, 3wy, etc.

?
Instead of e/t an instrument produces Z ap, e"ieot (5.26)
n=1

A pure frequency is the sort of sound that you hear from an electronic audio oscillator, and it's not
very interesting. Any real musical instrument will have at least a few and usually many frequencies
combined to make what you hear.

Why write this as a complex exponential? A sound wave is a real function of position and time,
the pressure wave, but it's easier to manipulate complex exponentials than sines and cosines, so when
| write this, | really mean to take the real part for the physical variable, the pressure variation. The
imaginary part is carried along to be discarded later. Once you're used to this convention you don't
bother writing the “real part understood” anywhere — it's understood.

2

? :
p(t) =R Z ay, €0t — Z |an| cos (nwot + ¢n) where an = |an|e®n (5.27)
n=1

n=1

| wrote this using the periodic boundary conditions of Eq. (5.19). The period is the period of the lowest
frequency, T = 27 /wy.

A flute produces a combination of frequencies that is mostly concentrated in a small number of
harmonics, while a violin or reed instrument produces a far more complex combination of frequencies.
The size of the coefficients a,, in Eq. (5.26) determines the quality of the note that you hear, though
oddly enough its phase, ¢y, doesn't have an effect on your perception of the sound.

These represent a couple of cycles of the sound of a clarinet. The left graph is about what the
wave output of the instrument looks like, and the right graph is what the graph would look like if | add
a random phase, ¢y, to each of the Fourier components of the sound as in Eq. (5.27). They may look
very different, but to the human ear they sound alike.

You can hear examples of the sound of Fourier series online via the web site:
courses.ee.sun.ac.za/Stelsels_en_Seine_315/wordpress/wp-content/uploads/jhu-signals/
and Listen to Fourier Series

You can hear the (lack of) effect of phase on sound. You can also synthesize your own series and hear
what they sound like under such links as “Fourier synthese” and “Harmonics applet” found on this
page. You can back up from this link to larger topics by using the links shown in the left column of the
web page.


http://courses.ee.sun.ac.za/Stelsels_en_Seine_315/wordpress/wp-content/uploads/jhu-signals/
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Real musical sound is of course more than just these Fourier series. At the least, the Fourier
coefficients, ay, are themselves functions of time. The time scale on which they vary is however much
longer than the basic period of oscillation of the wave. That means that it makes sense to treat them
as (almost) constant when you are trying to describe the harmonic structure of the sound. Even the
lowest pitch notes you can hear are at least 20 Hz, and few home sound systems can produce frequencies
nearly that low. Musical notes change on time scales much greater than 1/20 or 1/100 of a second, and
this allows you to treat the notes by Fourier series even though the Fourier coefficients are themselves
time-dependent. The attack and the decay of the note greatly affects our perception of it, and that is
described by the time-varying nature of these coefficients.*

Parseval’s Identity
Let uy, be the set of orthogonal functions that follow from your choice of boundary conditions.

= Z An Uy ()

Evaluate the integral of the absolute square of f over the domain.

b b *
/ da | f(z)]* = / dx [Z amum(x)] [Z anun(:v)]
" b ! b
— Za;‘n Zan/ Az U (T)*un(x) = Z ]an|2/ dx [up (x)]?
In the more compact notation this is
<f7 f> = <Zamum; Zanun> = Z a:nan<um, Un> = Z |6Ln’2<un, un> (5.28)

The first equation is nothing more than substituting the series for f. The second moved the integral
under the summation. The third equation uses the fact that all these integrals are zero except for the
ones with . = n. That reduces the double sum to a single sum. If you have chosen to normalize
all of the functions u,, so that the integrals of |u,(z)|? are one, then this relation takes on a simpler
appearance. This is sometimes convenient.

What does this say if you apply it to a series I've just computed? Take Eq. (5.10) and see what
it implies.

<f’f>:/OLd“:L:i\akI2<un,un>:
i( 2/<:+1> / do sin? (W)Zi(@fé

k=0 k=0

Rearrange this to get

o0 2

> @ E (5.29)

* For an enlightening web page, including a complete and impressively thorough text on mathe-
matics and music, look up the book by David Benson. It is available both in print from Cambridge
Press and online. www.abdn.ac.uk/"mth192/ (University of Aberdeen)


http://www.abdn.ac.uk/~mth192/

5—Fourier Series 111

A bonus. You have the sum of this infinite series, a result that would be quite perplexing if you see it
without knowing where it comes from. While you have it in front of you, what do you get if you simply
evaluate the infinite series of Eq. (5.10) at L/2. The answer is 1, but what is the other side?

oo oo
lzgz 1 Sin(2k+1 m(L/2) 4
2k +1 s
k=0 k:o
o 1 1+1 1+1 ™
r — — - — — e e = —
3 5 7 9 4

But does it Work?

If you are in the properly skeptical frame of mind, you may have noticed a serious omission on my
part. |'ve done all this work showing how to get orthogonal functions and to manipulate them to derive
Fourier series for a general function, but when did | show that this actually works? Never. How do |
know that a general function, even a well-behaved general function, can be written as such a series?
I've proved that the set of functions sin(nmx/L) are orthogonal on 0 < z < L, but that's not good
enough.

Maybe a clever mathematician will invent a new function that | haven't thought of and that will
be orthogonal to all of these sines and cosines that I'm trying to use for a basis, just as k is orthogonal
to 7 and j. It won't happen. There are proper theorems that specify the conditions under which all
of this Fourier manipulation works. Dirichlet worked out the key results, which are found in many
advanced calculus texts.

For example if the function is continuous with a continuous derivative on the interval 0 < z < L
then the Fourier series will exist, will converge, and will converge to the specified function (except
maybe at the endpoints). If you allow it to have a finite number of finite discontinuities but with
a continuous derivative in between, then the Fourier series will converge and will (except maybe at
the discontinuities) converge to the specified function. At these discontinuities it will converge to the
average value taken from the left and from the right. There are a variety of other sufficient conditions
that you can use to insure that all of this stuff works, but I'll leave that to the advanced calculus books.

5.5 Periodically Forced ODE’s

If you have a harmonic oscillator with an added external force, such as Eq. (4.12), there are systematic
ways to solve it, such as those found in section 4.2. One part of the problem is to find a solution to
the inhomogeneous equation, and if the external force is simple enough you can do this easily. Suppose
though that the external force is complicated but periodic, as for example when you're pushing a child
on a swing.

d*x dzx
mW = —kl' - E + Fext(t)

b
That the force is periodic means Feyt(t) = Fext(t + T') for all times t. The period is 7.

Pure Frequency Forcing
Before attacking the general problem, look at a simple special case. Take the external forcing function
to be F{ coswel where this frequency is we = 2 /7. This equation is now

2x dx Fo . ;
kxr +b— = F, wet = —2 [eiwet 4 o—iwet 5.30
mos + kx + 7t 0 COS We 5 [ + ] (5.30)
Find a solution corresponding to each term separately and add the results. To get an exponential out,
put an exponential in.
dza: dx ¢

f hatad TWe ) - A twel
or dt2 +kx—i—bdt e assume Zinh (t) e
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Substitute the assumed form and it will determine A.
[m(—w?) + b(iwe) + k] Ae™wet = eiwet

This tells you the value of A is
1

- —mw2 + biwe + k

(5.31)

The other term in Eq. (5.30) simply changes the sign in front of 7 everywhere. The total solution for
Eq. (5.30) is then

FO 1 6iwet + 1

1o : : g~ wet 5.32
2 | —mw?+biwe +k —mw?2 —biwe + k (5:32)

Linh (t) —

This is the sum of a number and its complex conjugate, so it's real. You can rearrange it so that it
looks a lot simpler, but there’'s no need to do that right now. Instead I'll look at what it implies for
certain values of the parameters.
Suppose that the viscous friction is small (b is small). If the forcing
frequency, we is such that —mwg + k = 0, or is even close to zero, the de-
nominators of the two terms become very small. This in turn implies that the
response of = to the oscillating force is huge. Resonance. See problem 5.27. In
a contrasting case, look at we very large. Now the response of the mass is very
small; it barely moves.

General Periodic Force

Now I'll go back to the more general case of a periodic forcing function, but not one that is simply a
cosine. If a function is periodic | can use Fourier series to represent it on the whole axis. The basis to
use will of course be the one with periodic boundary conditions (what else?). Use complex exponentials,
then

u(t) _ 6iwt where eiw(t+T) _ eiwt

This is just like Eq. (5.20) but with ¢ instead of x, so
Un(t) = ™ (=0, +1, ..)) (5.33)

Let we = 27 /T, and this is ‘
un(t) — emwet

The external force can now be represented by the Fourier series

Feu( Z ay, eZk“’e where
k=—00
<emwet’ Z ay, ezkwet> _ anT _ <€mwet Fext / dt e—znwetF ( )

(Don't forget the implied complex conjugation in the definition of the scalar product, <,> Eq. (5.11))
Because the force is periodic, any other time interval of duration T is just as good, perhaps —7'/2 to
+71'/2 if that's more convenient.

How does this solve the differential equation? Plug in.

d*x ot
moy + b— + kx = Z ap €™ (5.34)

n=—oo
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All there is to do now is to solve for an inhomogeneous solution one term at a time and then to add
the results. Take one term alone on the right:

d’r dx ’
m——s + b— + kx = et
az o T
This is what | just finished solving a few lines ago, Eq. (5.31), but with nwe instead of simply we. The
inhomogeneous solution is the sum of the solutions from each term.

> 1
minh(t) = Z an _m(nwe)Q + bmwe +k

n=-—oo

eniwet (5.35)

Suppose for example that the forcing function is a simple square wave.

F, (0<t<T/2)

Fo(t) = { n Taerlry a9 Fealt+T)=Fealt (5.36)

The Fourier series for this function is one that you can do in problem 5.12. The result is

2 1
Fea(t) = Fo— > ﬁem%t (5.37)
n odd

The solution corresponding to Eq. (5.35) is now

1 1 1 Niwet

Zinn(t) = Fo 271 nzo;d (= m(nwe)? + tbnwe + k) n¢ (5-38)
A real force ought to give a real result; does this? Yes. For every positive 1 in the sum, there is
a corresponding negative one and the sum of those two is real. You can see this because every n that
appears is either squared or is multiplied by an “.” When you add the n = +5 term to the n = —5

term it's adding a number to its own complex conjugate, and that's real.
What peculiar features does this result imply? With the simply cosine force the phenomenon of
resonance occurred, in which the response to a small force at a frequency that matched the intrinsic

frequency +/k/m produced a disproportionately large response. What other things happen here?

The natural frequency of the system is (for small damping) still \/k/m. Look to see where a
denominator in Eq. (5.38) can become very small. This time it is when —m(nwe)? +k = 0. This is
not only when the external frequency we matches the natural frequency; it's when nwe matches it. If
the natural frequency is \/k/m = 100radians/sec you get a big response if the forcing frequency is
100 radians/sec or 33 radians/sec or 20 radians/sec or 14 radians/sec etc. What does this mean? The
square wave in Eq. (5.36) contains many frequencies. It contains more than just the main frequency
27 /T, it contains 3 times this and 5 times it and many higher frequencies. When any one of these
harmonics matches the natural frequency you will have the large resonant response.

Not only do you get a large response, look at the way the mass oscillates. If the force has a square
wave frequency 20 radians/sec, the mass responds* with a large sinusoidal oscillation at a frequency 5
times higher — 100 radians/sec.

* The next time you have access to a piano, gently depress a key without making a sound, then
strike the key one octave lower. Release the lower key and listen to the sound of the upper note. Then
try it with an interval of an octave plus a fifth.
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5.6 Return to Parseval
When you have a periodic wave such as a musical note, you can Fourier analyze it. The boundary
conditions to use are naturally the periodic ones, Eq. (5.20) or (5.33), so that

o0
— § :anemwot
—00

If this represents the sound of a flute, the amplitudes of the higher frequency components (the ay)
drop off rapidly with n. If you are hearing an oboe or a violin the strength of the higher components
is greater.

If this function represents the sound wave as received by your ear, the power that you receive
is proportional to the square of f. If f represent specifically the pressure disturbance in the air, the
intensity (power per area) carried by the wave is f(t)?v/B where v is the speed of the wave and B
is the bulk modulus of the air. The key property of th|s is that it is proportional to the square of the
wave's amplitude. That's the same relation that occurs for light or any other wave. Up to a known
factor then, the power received by the ear is proportional to f ().

This time average of the power is (up to that constant factor that I'm ignoring)

+T

(f*) = hm ﬁ dtf(t)2

Now put the Fourier series representation of the sound into the integral to get

1 +T o - 2
. 1NW
lim ﬁ /T dt _EOO ant€ 0

T—o0

The sound f(t) is real, so by problem 5.11, a_,, = ay,. Also, using the result of problem 5.18 the time
average of €™ is zero unless w = 0; then it's one.

()= i o [ lza emwot] [Za ezmwot]

T— o0

= lim QT/T dt ZZanei”wotameimwot

T— o0

T—oo 2 T
n
=D lanf? (5.39)
n

Put this into words and it says that the time-average power received is the sum of many terms, each
one of which can be interpreted as the amount of power coming in at that frequency nwgy. The
Fourier coefficients squared (absolute-squared really) are then proportional to the part of the power at
a particular frequency. The “power spectrum.”

Other Applications
In section 10.2 Fourier series will be used to solve partial differential equations, leading to equations
such as Eq. (10.15).
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In quantum mechanics, Fourier series and its generalizations will manifest themselves in displaying
the discrete energy levels of bound atomic and nuclear systems.
Music synthesizers are all about Fourier series and its generalizations.

5.7 Gibbs Phenomenon

There's a picture of the Gibbs phenomenon with Eq. (5.10). When a function has a discontinuity, its
Fourier series representation will not handle it in a uniform way, and the series overshoots its goal at the
discontinuity. The detailed calculation of this result is quite pretty, and it's an excuse to pull together
several of the methods from the chapters on series and on complex algebra.

41 2k + )mx
= i =1 0 L
WZQk:—f—lsm 7 , (0<x <L)
k=0
highest harmonic: 5 highest harmonic: 19 highest harmonic: 99

The analysis sounds straight-forward. Find the position of the first maximum. Evaluate the series
there. It really is almost that clear. First however, you have to start with the a finite sum and find the
first maximum of that. Stop the sum at k = N.

N
%Z 2l<;1+  Sin = JrLl)m = fn(x) (5.40)

k=0

For a maximum, set the derivative to zero.

, 4 2k + )7z
fN('r)_ L - COS L

Write this as the real part of a complex exponential and use Eq. (2.3).

al i(2k+1)mz/L al 2k+1 al 2k 1 — 2N+
T _ — —
Eoe _Eoz _zEOz =00

Factor these complex exponentials in order to put this into a nicer form.

imz(N+1)/L

—irx(N+1)/L _ girz(N+1)/L gimz(N+1)/L sin(N + 1)7T:E/L
= €

_ 6Z'Trgc/L € —
e—imz/L _ cimx/L eimz/L sinﬂ&:/L

The real part of this changes the last exponential into a cosine. Now you have the product of the sine
and cosine of (N + 1)mx/L, and that lets you use the trigonometric double angle formula.

sin2(N + 1)mz/L
2sinmx/L

fn(@) = % (5.41)

This is zero at the maximum. The first maximum after = 0 is at 2(N + 1)7a/L = m, or x =
L/2(N +1).
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Now for the value of f at this point,

N N
4 L @k Dal/aN 1) 4 1 @k+Dm
In(L/2AN +1)) = ;2/{;—1-1 L _w§2k+1sm2(]\7+1)

The final step is to take the limit as NV — co. As k varies over the set 0 to IV, the argument of the
sine varies from a little more than zero to a little less than . As [N grows you have the sum over a lot
of terms, each of which is approaching zero. It's an integral. Let t;, = k/N then At;, = 1/N. This
sum is approximately

1 1
kZMVtksmtkﬂ— ZAtk*kSlntkﬂ'—) /51n7rt

In this limit 2k + 1 and 2k are the same, and N + 1 is the same as V.
Finally, put this into a standard form by changing variables to 7t = .

.
2/ dr S 2 G0 = 1.17808 / a0 Smt = Si(z) (5.42)
T Jo x T

The function Si is called the “sine integral.” It's just another tabulated function, along with erf, T', and
others. This equation says that as you take the limit of the series, the first part of the graph approaches
a vertical line starting from the origin, but it overshoots its target by 18%.

Exercises

1 A vector is given to be A = 5%+ 3. Let a new basis be & = (2 + §)/v/2, and & = (2 — )/V/2.
Use scalar products to find the components of A in the new basis: A = A;é; + Ay és.

2 For the same vector as the preceding problem, and another basis fl =32+47 and j'z =—-82+67,
express A in the new basis. Are these basis vectors orthogonal?

3 On the interval 0 < x < L, sketch three graphs: the first term alone, then the second term alone,
then the third. Try to get the scale of the graphs reasonable accurate. Now add the first two and
graph. Then add the third also and graph. Do all this by hand, no graphing calculators, though if you
want to use a calculator to calculate a few points, that's ok.

sin (mxz/L) — & sin (3mx/L) 4 5= sin (5w /L)

4 For what values of « are the vectors A = a'# — 2¢+ £ and B=2a%+ af) — 4% orthogonal?

5 On the interval 0 < z < L with a scalar product defined as (f,g) = fOL dx f(x)*g(x), show that
these are zero, making the functions orthogonal:

x and L—3z, sinmz/L and cosmax/L,  sin3max/L and L -2z
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6 Same as the preceding, show that these functions are orthogonal:

e/l and e 2me/L L—3(7T+4x and L+ 3ix

7 With the same scalar product the last two exercises, for what values of « are the functions fi(z) =

ar — (1 —a)(L —3z) and fo(z) = 20z + (1 + «)(L — 3x) orthogonal? What is the interpretation

2
of the two roots?

8 Repeat the preceding exercise but use the scalar product (f,g) = LQL dz f(x)*g(z).

9 Use the scalar product (f,g) = fil dz f(x)*g(x), and show that the Legendre polynomials Py, P,
Py, P5 of Eq. (4.61) are mutually orthogonal.

10 Change the scalar product in the preceding exercise to (f, g) = fol dx f(x)*g(x) and determine if
the same polynomials are still orthogonal.

11 Verify the examples stated on page 104.
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Problems
5.1 Get the results in Eq. (5.18) by explicitly calculating the integrals.

5.2 (a) The functions with periodic boundary conditions, Eq. (5.20), are supposed to be orthogonal
on 0 < x < L. That is, <un,um> = 0 for n # m. Verify this by explicit integration. What is the
result if n = m or n = —m? The notation is defined in Eq. (5.11). (b) Same calculation for the real

version, (Up, Um ), (Un,VUm), and (Un, V), Eq. (5.22)

5.3 Find the Fourier series for the function f(z) = 1 as in Eq. (5.10), but use as a basis the set of
functions 1, on 0 < = < L that satisfy the differential equation u” = Au with boundary conditions
' (0) =0 and /(L) = 0. (Eq. (5.23)) Necessarily the first step will be to examine all the solutions to
the differential equation and to find the cases for which the bilinear concomitant vanishes.

(b) Graph the resulting Fourier series on —2L < x < 2L.

(c) Graph the Fourier series Eq. (5.10) on —2L < z < 2L.

5.4 (a) Compute the Fourier series for the function x on the interval 0 < x < L, using as a basis the
functions with boundary conditions /(0) = 0 and w/(L) = 0.

(b) Sketch the partial sums of the series for 1, 2, 3 terms. Also sketch this sum outside the original
domain and see what this series produces for an extension of the original function. Ans: Eq. (5.1)

5.5 (a) Compute the Fourier series for the function x on the interval 0 < x < L, using as a basis
the functions with boundary conditions u(0) = 0 = u(L). How does the coefficient of the nth term
decrease as a function of n? (b) Also sketch this sum within and outside the original domain to see
what this series produces for an extension of the original function.

Ans; 2L 57 (_17):“ sin(nmx /L)

5.6 (a) In the preceding problem the sine functions that you used don't match the qualitative behavior
of the function x on this interval because the sine is zero at = L and x isn't. The qualitative behavior
is different from the basis you are using for the expansion. You should be able to get better convergence
for the series if you choose functions that more closely match the function that you're expanding, so
try repeating the calculation using basis functions that satisfy u(0) = 0 and «/(L) = 0. How does the
coefficient of the nth term decrease as a function of n? (b) As in the preceding problem, sketch some
partial sums of the series and its extension outside the original domain. Ans: % > ((—1)”/(2n +

1)?)sin ((n + Yo)mz/L)

5.7 The function sin? x is periodic with period 7. What is its Fourier series representation using as a
basis functions that have this period? Egs. (5.20) or (5.22).

5.8 In the two problems 5.5 and 5.6 you improved the convergence by choosing boundary conditions
that better matched the function that you want. Can you do better? The function x vanishes at the
origin, but its derivative isn't zero at L, so try boundary conditions u(0) = 0 and u(L) = Lu/(L).
These conditions match those of x so this ought to give even better convergence, but first you have
to verify that these conditions guarantee the orthogonality of the basis functions. You have to verify
that the left side of Eq. (5.15) is in fact zero. When you set up the basis, you will examine functions of
the form sin kx, but you will not be able to solve explicitly for the values of k. Don't worry about it.
When you use Eq. (5.24) to get the coefficients all that you need to do is to use the equation that &
satisfies to do the integrals. You do not need to have solved it. If you do all the algebra correctly you
will probably have a surprise.
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5.9 (a) Use the periodic boundary conditions on —L < x < +L and basis e™"%/L to write 22 as a
Fourier series. Sketch the sums up to a few terms. (b) Evaluate your result at = L where you know
the answer to be L? and deduce from this the value of {(2).

5.10 On the interval —m < & < 7, the function f(x) = cosz. Expand this in a Fourier series defined
by u” = Au and u(—m) = 0 = u(m). If you use your result for the series outside of this interval you
define an extension of the original function. Graph this extension and compare it to what you normally
think of as the graph of cosx. As always, go back to the differential equation to get all the basis
functions

Ans: —2 3%, (2k+3) H— 7y Sin (2k+1)(z+m)/2)

5.11 Represent a function f on the interval —L < x < L by a Fourier series using periodic boundary

conditions
oo
r) = Z an emrix/L
—0oQ
(a) If the function f is odd, prove that for all n, a_, = —ay,
(b) If the function f is even, prove that all a_,, = ay.
(c) If the function f is real, prove that all a_,, = ay,.
(d) If the function is both real and even, characterize ay,.
(e) If the function is imaginary and odd, characterize a,

5.12 Derive the series Eq. (5.37).

5.13 For the function e~ on 0 < t < T, express it as a Fourier series using periodic boundary
conditions [u(0) = w(7T") and u/(0) = «/(T")]. Examine for plausibility the cases of large and small
«. The basis functions for periodic boundary conditions can be expressed either as cosines and sines
or as complex exponentials. Unless you can analyze the problem ahead of time and determine that it
has some special symmetry that matches that of the trig functions, you're usually better off with the
exponentials. Ans: [(1 —e=°T) /aT|[1 + 2 37°[a? cos nwt + anwsin nwt] /[a? + n*w?]]

5.14 (a) On the interval 0 < < L, write (L — x) as a Fourier series, using boundary conditions
that the expansion functions vanish at the endpoints. Next, evaluate the series at z = L /2 to see if it
gives an interesting result. (b) Finally, what does Parseval’s identity tell you?

Ans: Y30 AL 11— (1)) sin(nmz/L)
5.15 A full-wave rectifier takes as an input a sine wave, sinwt and creates the output f(t) = |sinwt|.
The period of the original wave is 27 /w, so write the Fourier series for the output in terms of functions
periodic with this period. Graph the function f first and use the graph to anticipate which terms in
the Fourier series will be present.

When you're done, use the result to evaluate the infinite series 3.5°°(—1)%*!/(4k? — 1)

Ans: m/4 —1/2

5.16 A half-wave rectifier takes as an input a sine wave, sinwt and creates the output
sinwt if sinwt >0 and 0 ifsinwt<0
The period of the original wave is 27 /w, so write the Fourier series for the output in terms of functions

periodic with this period. Graph the function first. Check that the result gives the correct value at
t = 0, manipulating it into a telescoping series. Sketch a few terms of the whole series to see if it's
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heading in the right direction.
Ans: 4/ + Lpsinwt — 8/r 3" o< cos(nwt)/(n? — 1)

5.17 For the undamped harmonic oscillator, apply an oscillating force (cosine). This is a simpler version
of Eq. (5.30). Solve this problem and add the general solution to the homogeneous equation. Solve
this subject to the initial conditions that z(0) = 0 and v,(0) = vy.

5.18 The average (arithmetic mean) value of a function is

T—o0 T—o0

+T T
(f)=lim 21T/—T dtft) or  (f)y= lim %/0 dt f(t)

as appropriate for the problem. ,
What is (sinwt )? What is (sin®wt )? What is (e=")?
What is <sinw1t sinw2t>? What is <eiwt>?

5.19 In the calculation leading to Eq. (5.39) | assumed that f(%) is real and then used the properties
of ay, that followed from that fact. Instead, make no assumption about the reality of f(¢) and compute

(f@F) = (f@O) f@)
Show that it leads to the same result as before, >~ |ap|?.

5.20 The series -
Z a” cosnf (la] <1)
n=0

represents a function. Sum this series and determine what the function is. While you're about it, sum
the similar series that has a sine instead of a cosine. Don't try to do these separately; combine them
and do them as one problem. And check some limiting cases of course. And graph the functions.
Ans: asind/(1+ a? — 2acos6)

5.21 Apply Parseval's theorem to the result of problem 5.9 and see what you can deduce.

5.22 If you take all the elements u,, of a basis and multiply each of them by 2, what happens to the
result for the Fourier series for a given function?

5.23 In the section 5.3 several bases are mentioned. Sketch a few terms of each basis.

5.24 A function is specified on the interval 0 <t < T to be

1 (0<t <ty
f(t)—{o (to <t <T) 0<ty<T
On this interval, choose boundary conditions such that the left side of the basic identity (5.15) is zero.
Use the corresponding choice of basis functions to write f as a Fourier series on this interval.

5.25 Show that the boundary conditions u(0) = 0 and au(L) + fu/(L) = 0 make the bilinear
concomitant in Eq. (5.15) vanish. Are there any restrictions on & and 37 Do not automatically assume
that these numbers are real.
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5.26 Derive a Fourier series for the function

A (0<z< L/2)
) = {A(IL ) (Lj2<s </L)

Choose the Fourier basis that you prefer. Evaluate the resulting series at = = L/2 to check the result.
Sketch the sum of a couple of terms. Comment on the convergence properties of the result. Are they

what you expect? What does Parseval's identity say?
Ans: (2AL/72) Y oaa(—1)F D 2 sin(kra /L) /K

5.27 Rearrange the solution Eq. (5.32) into a more easily understood form. (a) Write the first denom-
inator as ,
—mw? + biwe + k = Re'®

What are R and ¢? The second term does not require you to repeat this calculation, just use its results,
now combine everything and write the answer as an amplitude times a phase-shifted cosine.

(b) Assume that b is not too big and plot both IR and ¢ versus the forcing frequency we. Also, and
perhaps more illuminating, plot 1/R.

5.28 Find the form of Parseval's identity appropriate for power series. Assume a scalar product <f7 g> =
f_ll f(x)*g(x)dx for the series f(x) = > 7" anx™, and g(x) = > bpx", expressing the result in terms
of matrices. Next, test your result on a simple, low-order polynomial.

Ans: (af af...)M(by by ...)"where Moy =2, Moz = 2/3 Moy = 2/5, ...and"is transpose.

5.29 (a) In the Gibbs phenomenon, after the first maximum there is a first minimum. Where is it?
how big is the function there? What is the limit of this point? That is, repeat the analysis of section
5.7 for this minimum point.

(b) While you're about it, what will you get for the limit of the sine integral, Si(co)? The last result can
also be derived by complex variable techniques of chapter 14, Eq. (14.16). Ans: (2/7) Si(27) = 0.9028

5.30 Make a blown-up copy of the graph preceding Eq. (5.40) and measure the size of the overshoot.
Compare this experimental value to the theoretical limit. Same for the first minimum.

5.31 Find the power series representation about the origin for the sine integral, Si, that appeared in
Eq. (5.42). What is its domain of convergence?
Ans: 2 35°09(—1)" (22" /(2n + 1) (2n + 1)!)

5.32 An input potential in a circuit is given to be a square wave +Vj at

. _ . AN b
frequency w. What is the voltage between the points a and b? In particular,
assume that the resistance is small, and show that you can pick values of the
capacitance and the inductance so that the output potential is almost exactly
a sine wave at frequency 3w. A filter circuit. Recall section 4.8. a

5.33 For the function sin(mx/L) on (0 < = < 2L), expand it in a Fourier series using as a basis
the trigonometric functions with the boundary conditions u/(0) = 0 = w/(2L), the cosines. Graph the
resulting series as extended outside the original domain.

5.34 For the function cos(mx/L) on (0 < x < 2L), expand it in a Fourier series using as a basis the
trigonometric functions with the boundary conditions ©(0) = 0 = u(2L), the sines. Graph the resulting
series as extended outside the original domain.
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5.35 (a) For the function f(z) = x*, evaluate the Fourier series on the interval —L < x < L using
periodic boundary conditions (u(—L) = w(L) and v/(—L) = u/(L)). (b) Evaluate the series at the
point = L to derive the zeta function value ((4) = 7*/90. Evaluate it at x = 0 to get a related
series.

Ans: 24+ LA (1) [ — 5] cosnma/L

n2m? nirt

5.36 Fourier series depends on the fact that the sines and cosines are orthogonal when integrated over
a suitable interval. There are other functions that allow this too, and you've seen one such set. The
Legendre polynomials that appeared in section 4.11 in the chapter on differential equations satisfied
the equations (4.62). One of these is

1
2
dzx Py (x)P, =—9
[ do Pu@)Puta) = 520
This is an orthogonality relation, <Pn, Pm> = 20pm/(2n+1), much like that for trigonometric functions.
Write a function f(x) = > ¢° an Pn(x) and deduce an expression for evaluating the coefficients ay,.
Apply this to the function f(z) = 2.

5.37 For the standard differential equation u” = Au, use the boundary conditions u(0) = 0 and
2u(L) = Lu/(L). This is a special case of problem 5.25, so the bilinear concomitant vanishes. If
you haven't done that problem, at least do this special case. Find all the solutions that satisfy these
conditions and graph a few of them. You will not be able to find an explicit solution for the s, but
you can estimate a few of them to sketch graphs. Did you get them all?

5.38 Examine the function on —L < x < L given by

0 (-L<z<-L/2)and (L/2<z< L)
f@)=41 (0<x<L/2)
-1 (-L/2<z<0)

Draw it first. Now find a Fourier series representation for it. You may choose to do this by doing lots
of integrals, OR you may prefer to start with some previous results in this chapter, change periods, add
or subtract, and do no integrals at all.

5.39 In Eq. (5.30) | wrote coswet as the sum of two exponentials, giwel | o~iwet |nstead, write the

cosine as e with the understanding that at the end you take the real part of the result, Show that
the result is the same.

5.40 From Eq. (5.41) write an approximate closed form expression for the partial sum fy(x) for the
region x < L but not necessarily x < N L, though that extra-special case is worth doing too.

5.41 Evaluate the integral fOL dx x? using the series Eq. (5.1) and using the series (5.2).

5.42 The Fourier series in problem 5.5 uses the same basis as the series Eq. (5.10). What is the result
of evaluating the scalar products <1, 1> and <1, :L‘> with these series?

5.43 If you evaluated the n = m case of Eq. (5.6) by using a different trig identity, you can do it by
an alternative method: say that n and m in this equation aren’t necessarily integers. Then take the
limit as n — m.



Vector Spaces

The idea of vectors dates back to the middle 1800's, but our current understanding of the concept
waited until Peano's work in 1888. Even then it took many years to understand the importance and
generality of the ideas involved. This one underlying idea can be used to describe the forces and
accelerations in Newtonian mechanics and the potential functions of electromagnetism and the states
of systems in quantum mechanics and the least-square fitting of experimental data and much more.

6.1 The Underlying Idea
What is a vector?

If your answer is along the lines “something with magnitude and direction” then you have some-
thing to unlearn. Maybe you heard this definition in a class that | taught. If so, | lied; sorry about
that. At the very least | didn't tell the whole truth. Does an automobile have magnitude and direction?
Does that make it a vector?

The idea of a vector is far more general than the picture of a line with an arrowhead attached to
its end. That special case is an important one, but it doesn’t tell the whole story, and the whole story
is one that unites many areas of mathematics. The short answer to the question of the first paragraph
is

A vector is an element of a vector space.

Roughly speaking, a vector space is some set of things for which the operation of addition is
defined and the operation of multiplication by a scalar is defined. You don't necessarily have to be able
to multiply two vectors by each other or even to be able to define the length of a vector, though those
are very useful operations and will show up in most of the interesting cases. You can add two cubic
polynomials together:

(2 — 3z +42* — 72%) + (— 8 — 2z + 11z* + 92%)

makes sense, resulting in a cubic polynomial. You can multiply such a polynomial by* 17 and it's still
a cubic polynomial. The set of all cubic polynomials in & forms a vector space and the vectors are the
individual cubic polynomials.

The common example of directed line segments (arrows) in two or three dimensions fits this idea,
because you can add such arrows by the parallelogram law and you can multiply them by numbers,
changing their length (and reversing direction for negative numbers).

Another, equally important example consists of all ordinary real-valued functions of a real variable:
two such functions can be added to form a third one, and you can multiply a function by a number to
get another function. The example of cubic polynomials above is then a special case of this one.

A complete definition of a vector space requires pinning down these ideas and making them less
vague. In the end, the way to do that is to express the definition as a set of axioms. From these axioms
the general properties of vectors will follow.

A vector space is a set whose elements are called “vectors” and such that there are two operations
defined on them: you can add vectors to each other and you can multiply them by scalars (numbers).
These operations must obey certain simple rules, the axioms for a vector space.

* The physicist's canonical random number

123
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6.2 Axioms
The precise definition of a vector space is given by listing a set of axioms. For this purpose, I'll denote
vectors by arrows over a letter, and I'll denote scalars by Greek letters. These scalars will, for our

purpose, be either real or complex numbers — it makes no difference which for now.*

There is a function, addition of vectors, denoted +, so that U, + Us is another vector.
There is a function, multiplication by scalars, denoted by juxtaposition, so that a is a vector.
(U1 + U2) + U3 = U1 + (U2 + U3) (the associative law).

There is a zero vector, so that for each U, v+ O = 1.

Gl W=

There is an additive inverse for each vector, so that for each U, there is another vector U so that
v+v' =0.
The commutative law of addition holds: ¥] + U5 = Uy + 7.

©O© 0 N O
L
=
~
<y
I
e
~~
™
S

10 17 =

In axioms 1 and 2 | called these operations “functions.” Is that the right use of the word?
Yes. Without going into the precise definition of the word (see section 12.1), you know it means that
you have one or more independent variables and you have a single output. Addition of vectors and
multiplication by scalars certainly fit that idea.

6.3 Examples of Vector Spaces
Examples of sets satisfying these axioms abound:

1 The usual picture of directed line segments in a plane, using the parallelogram law of addition.

2 The set of real-valued functions of a real variable, defined on the domain [a < x < b]. Addition is
defined pointwise. If fi and f5 are functions, then the value of the function f; + f2 at the point
x is the number fi(x) + fo(x). Thatis, f1 + fo = f3 means f3(x) = fi(x) + fo(x). Similarly,
multiplication by a scalar is defined as (a.f)(x) = a(f(x)). Notice a small confusion of notation in
this expression. The first multiplication, (cf), multiplies the scalar « by the vector f; the second
multiplies the scalar o by the number f(x).

3 Like example 2, but restricted to continuous functions. The one observation beyond the previous
example is that the sum of two continuous functions is continuous.

4 Like example 2, but restricted to bounded functions. The one observation beyond the previous
example is that the sum of two bounded functions is bounded.

5 The set of n-tuples of real numbers: (aq,as,...,a,) where addition and scalar multiplication are
defined by

(a1y...,an) 4+ (b1,...,bp) = (a1 +b1,...,an + by) alay,...,ap) = (aaq, ..., qap)

6 The set of square-integrable real-valued functions of a real variable on the domain [a < x < b].
That is, restrict example two to those functions with ff dx |f(2)]?
requiring more than a second to check.

7 The set of solutions to the equation 0°¢/0x? + 0?¢/Jy? = 0 in any fixed domain. (Laplace’s

equation)

< 00. Axiom 1 is the only one

* For a nice introduction online see distance-ed.math.tamu.edu/Math640, chapter three.


http://distance-ed.math.tamu.edu/Math640

6—Vector Spaces 125

8 Like example 5, but with n = cc.

9 Like example 8, but each vector has only a finite number of non-zero entries.
10 Like example 8, but restricting the set so that Y |ax|> < co. Again, only axiom one takes work.
11 Like example 10, but the sum is Y 7% |ax| < oo.
12 Like example 10, but 77 |ag|P < oo. (p > 1)

13 Like example 6, but fab dz | f(z)P < cc.

14 Any of examples 2—-13, but make the scalars complex, and the functions complex valued.

15 The set of all n x 1 matrices, with addition being defined element by element.

16 The set of all polynomials with the obvious laws of addition and multiplication by scalars.

17 Complex valued functions on the domain [a < x < b] with >, |f(z)]*> < oco. (Whatever this
means. See problem 6.18)

18 {6} the space consisting of the zero vector alone.

19 The set of all solutions to the equations describing small motions of the surface of a drumhead.

20 The set of solutions of Maxwell's equations without charges or currents and with finite energy.
Thatis, [[E? + B?d%z < .

21 The set of all functions of a complex variable that are differentiable everywhere and satisfy

[dwdye =i )P < .

where z = x + 1y.

To verify that any of these is a vector space you have to run through the ten axioms, checking
each one. (Actually, in a couple of pages there's a theorem that will greatly simplify this.) To see what
is involved, take the first, most familiar example, arrows that all start at one point, the origin. I'll go
through the details of each of the ten axioms to show that the process of checking is very simple. There
are some cases for which this checking isn't so simple, but the difficulty is usually confined to verifying
axiom one.

The picture shows the definitions of addition of vectors and multiplication by scalars, the first two
axioms. The commutative law, axiom 6, is clear, as the diagonal of the parallelogram doesn’t depend
on which side you're looking at.

A+ B

— —

(A+B)+C A+ (B+C)

The associative law, axiom 3, is also illustrated in the picture. The zero vector, axiom 4, appears in
this picture as just a point, the origin.

The definition of multiplication by a scalar is that the length of the arrow is changed (or even
reversed) by the factor given by the scalar. Axioms 7 and 8 are then simply the statement that the
graphical interpretation of multiplication of numbers involves adding and multiplying their lengths.
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_____
_____

_____
P .

A

A’ a(A+B)

Axioms 5 and 9 appear in this picture.

Finally, axiom 10 is true because you leave the vector alone when you multiply it by one.

This process looks almost too easy. Some of the axioms even look as though they are trivial and
unnecessary. The last one for example: why do you have to assume that multiplication by one leaves
the vector alone? For an answer, | will show an example of something that satisfies all of axioms one
through nine but not the tenth. These processes, addition of vectors and multiplication by scalars, are
functions. | could write “f(¥7,72)" instead of “¥/; 4+ 2" and write “g(c,¥)" instead of "av”. The
standard notation is just that — a common way to write a vector-valued function of two variables. |
can define any function that | want and then see if it satisfies the required properties.

On the set of arrows just above, redefine multiplication by a scalar (the function g of the
preceding paragraph) to be the zero vector for all scalars and vectors. That is, ot = O for all v and 7.
Look back and you see that this definition satisfies all the assumptions 1-9 but not 10. For example,
9: (U] + U2) = aUy + a2 because both sides of the equation are the zero vector. This observation
proves that the tenth axiom is independent of the others. If you could derive the tenth axiom from the
first nine, then this example couldn't exist. This construction is of course not a vector space.

Function Spaces

Is example 2 a vector space? How can a function be a vector? This comes down to your understanding
of the word “function.” Is f(x) a function or is f(z) a number? Answer: it's a number. This is a
confusion caused by the conventional notation for functions. We routinely call f(z) a function, but
it is really the result of feeding the particular value, x, to the function f in order to get the number
f(x). This confusion in notation is so ingrained that it's hard to change, though in more sophisticated
mathematics books it is changed.

In a better notation, the symbol f is the function, expressing the fs
relation between all the possible inputs and their corresponding outputs. ~ “ 1
Then f(1), or f(m), or f(x) are the results of feeding f the particular /\ - f
inputs, and the results are (at least for example 2) real numbers. Think &— Z < !

of the function f as the whole graph relating input to output; the pair ! ==
(x,f(x)) is then just one point on the graph. Adding two functions is

adding their graphs. For a precise, set theoretic definition of the word hitfa=1s
function, see section 12.1. Reread the statement of example 2 in light of

these comments.

Special Function Space

Go through another of the examples of vector spaces written above. Number 6, the square-integrable

real-valued functions on the interval a < x < b. The single difficulty here is the first axiom: is the sum

of two square-integrable functions itself square-integrable? The other nine axioms are yours to check.
Suppose that

/abf(ac)2 dr < 0o and /abg(:zc)2 dr < oo.

simply note the combination

(f(@)+ (@) + (f(z) — g(x))* = 2 (2)? + 2g(x)?
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The integral of the right-hand side is by assumption finite, so the same must hold for the left side.
This says that the sum (and difference) of two square-integrable functions is square-integrable. For this
example then, it isn't very difficult to show that it satisfies the axioms for a vector space, but it requires
more than just a glance.

There are a few properties of vector spaces that seem to be missing. There is the somewhat odd
notation ¥/ for the additive inverse in axiom 5. Isn't that just —/? lIsn't the zero vector simply the
number zero times a vector? Yes in both cases, but these are theorems that follow easily from the ten
axioms listed. See problem 6.20. I'll do part (a) of that exercise as an example here:

Theorem: the vector O is unique.

Proof: aisume_)it is not, t_l]en there are two such vectors, 61 and 62.
By [4], O1 + O3 = O (O2 is a zero vector)

By [6], the left side is Oy + Oy

By [4], this is O, (61 is a zero vector)

Put these together and 51 = 62.

Theorem: If a subset of a vector space is closed under addition and multiplication by scalars,

then it is itself a vector space. This means that if you add two elements of this subset to each other
they remain in the subset and multiplying any element of the subset by a scalar leaves it in the subset.
It is a “subspace.”
Proof: the assumption of the theorem is that axioms 1 and 2 are satisfied as regards the subset. That
axioms 3 through 10 hold follows because the elements of the subset inherit their properties from the
larger vector space of which they are a part. Is this all there is to it? Not quite. Axioms 4 and 5 take
a little more thought, and need the results of the problem 6.20, parts (b) and (d).

6.4 Linear Independence
A set of non-zero vectors is linearly dependent if one element of the set can be written as a linear
combination of the others. The set is linearly independent if this cannot be done.

Bases, Dimension, Components

A basis for a vector space is a linearly independent set of vectors such that any vector in the space can
be written as a linear combination of elements of this set. The dimension of the space is the number
of elements in this basis.

If you take the usual vector space of arrows that start from the origin and lie in a plane, the
common basis is denoted 7, J. If | propose a basis consisting of

Y R U+
these will certainly span the space. Every vector can be written as a linear combination of them. They
are however, redundant; the sum of all three is zero, so they aren't linearly independent and aren’t a
basis. If you use them as if they are a basis, the components of a given vector won't be unique. Maybe
that's o.k. and you want to do it, but either be careful or look up the mathematical subject called
“frames.”

Beginning with the most elementary problems in physics and mathematics, it is clear that the
choice of an appropriate coordinate system can provide great computational advantages. In dealing
with the usual two and three dimensional vectors it is useful to express an arbitrary vector as a sum of
unit vectors. Similarly, the use of Fourier series for the analysis of functions is a very powerful tool in
analysis. These two ideas are essentially the same thing when you look at them as aspects of vector
spaces.

If the elements of the basis are denoted €, and a vector a@ is

a= E aié;h
7
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the numbers {a;} are called the components of @ in the specified basis. Note that you don't have to
talk about orthogonality or unit vectors or any other properties of the basis vectors save that they span
the space and they're independent.

Example 1 is the prototype for the subject, and the basis usually chosen is the one designated
Z, 4, (and Z for three dimensions). Another notation for this is 7, 7, kK — I'll use £-¢. In any case, the
two (or three) arrows are at right angles to each other.

In example 5, the simplest choice of basis is

&=(100 ... 0)
&=(0 10 ... 0)
€n;(o 00 ... 1) (6.1)

In example 6, if the domain of the functions is from —oco to 400, a possible basis is the set of

functions ,
Un(x) = 2™ /2,

The major distinction between this and the previous cases is that the dimension here is infinite. There
is a basis vector corresponding to each non-negative integer. It's not obvious that this is a basis, but
it's true.

If two vectors are equal to each other and you express them in the same basis, the corresponding
components must be equal.

> aig =) bié; = a;=b foralli (6.2)
7 7

Suppose you have the relation between two functions of time
A—Bw+n~t=pt (6.3)

that is, that the two functions are the same, think of this in terms of vectors: on the vector space of
polynomials in ¢ a basis is
50 =1, el = t, €o = t2, etc.

Translate the preceding equation into this notation.
(A — BW)go + ’}/51 = /851 (64)
For this to be valid the corresponding components must match:

A— Bw =0, and vy=p

Differential Equations
When you encounter differential equations such as

2 3
dx+bd—x+kx:0, or dx

Mmooy +bo + ktzd—x +ae Pt =0, (6.5)

T dt

the sets of solutions to each of these equations form vector spaces. All you have to do is to check the
axioms, and because of the theorem in section 6.3 you don't even have to do all of that. The solutions
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are functions, and as such they are elements of the vector space of example 2. All you need to do now
is to verify that the sum of two solutions is a solution and that a constant times a solution is a solution.
That's what the phrase “linear, homogeneous” means.

Another common differential equation is

a?0 g .
W%—Zsm@_o

This describes the motion of an undamped pendulum, and the set of its solutions do not form a vector
space. The sum of two solutions is not a solution.
The first of Egs. (6.5) has two independent solutions,

r1(t) = e Mcosw't, and () = e Msinw't (6.6)
where v = —b/2m and W' = % - 4%2. This is from Eq. (4.8). Any solution of this differential

equation is a linear combination of these functions, and | can restate that fact in the language of this
chapter by saying that x1 and x5 form a basis for the vector space of solutions of the damped oscillator
equation. It has dimension two.

The second equation of the pair (6.5) is a third order differential equation, and as such you
will need to specify three conditions to determine the solution and to determine all the three arbitrary
constants. In other words, the dimension of the solution space of this equation is three.

In chapter 4 on the subject of differential equations, one of the topics was simultaneous differential
equations, coupled oscillations. The simultaneous differential equations, Eq. (4.45), are

d2.’L'1 d2$2
dt? dt?
and have solutions that are pairs of functions. In the development of section 4.10 (at least for the equal

mass, symmetric case), | found four pairs of functions that satisfied the equations. Now translate that
into the language of this chapter, using the notation of column matrices for the functions. The solution

is the vector
z1(1)
(1)
and the four basis vectors for this four-dimensional vector space are

eiwlt e—iwlt eiwgt e—iwgt
€1 = eiwit | €2 = e—iwit | €3 = _piwat | €4 = _p—iwat

Any solution of the differential equations is a linear combination of these. In the original notation, you
have Eq. (4.52). In the current notation you have

= —k‘liﬂl — k’3($1 — 1'2), and mo = —kQ.CEQ — kg(.il?z — $1)

my

<x1> = A1+ Asér + Aszes + Asey

X2
6.5 Norms
The "norm” or length of a vector is a particularly important type of function that can be defined on a
vector space. It is a function, usually denoted by || ||, and that satisfies
1. |7]|>0; |7 =0ifandonlyif7=0
2. |lad[| = |af ]

3. ||h + Ta|| < ||1]| + ||T2|| ( the triangle inequality) The distance between two vectors U; and
Uy is taken to be ||t} — Ua]].
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6.6 Scalar Product
The scalar product of two vectors is a scalar valued function of two vector variables. It could be denoted
as f(u, V), but a standard notation for it is (&, ). It must satisfy the requirements

u?,(quv >:<'LE,E>+<1FJ,'U>

U, U > and <U?7>:0ifandonlyif17:6

1T} = /{7, 7). (6.7)

That this is a norm will follow from the Cauchy-Schwartz inequality. Not all norms come from scalar
products.

Examples

Use the examples of section 6.3 to see what these are. The numbers here refer to the numbers of that
section.

1 A norm is the usual picture of the length of the line segment. A scalar product is the usual product
of lengths times the cosine of the angle between the vectors.

(4,0) =1u-U=wuvcos?. (6.8)

4 A norm can be taken as the least upper bound of the magnitude of the function. This is distinguished
from the "maximum” in that the function may not actually achieve a maximum value. Since it is
bounded however, there is an upper bound (many in fact) and we take the smallest of these as the
norm. On —oo < & < 400, the function |tan™! x| has /2 for its least upper bound, though it
never equals that number.

5 A possible scalar product is

((a1, ... an), (b1,...,bn))y = > aj by. (6.9)
k=1

There are other scalar products for the same vector space, for example

{(a1, .. an), (b1, .. bn)y = > kaj by (6.10)
k=1

In fact any other positive function can appear as the coefficient in the sum and it still defines a
valid scalar product. It's surprising how often something like this happens in real situations. In
studying normal modes of oscillation the masses of different particles will appear as coefficients in
a natural scalar product.

| used complex conjugation on the first factor here, but example 5 referred to real numbers only.
The reason for leaving the conjugation in place is that when you jump to example 14 you want to
allow for complex numbers, and it's harmless to put it in for the real case because in that instance
it leaves the number alone.
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For a norm, there are many possibilities:

(1) lar, - an)ll = />0 lagf?

n
2) a1, an)ll =), lax (6.11)
(3) lI(a1, ..., an)[| = maxy_, |ag|
(4) [[(a1, ..., an)|| = max;_, klag|.

The United States Postal Service prefers a variation on the second of these norms, see problem 8.45.
6 A possible choice for a scalar product is

b
(f.9)= /a da f(x)* g(). (6.12)

9 Scalar products and norms used here are just like those used for example 5. The difference is that
the sums go from 1 to infinity. The problem of convergence doesn’t occur because there are only
a finite number of non-zero terms.

10 Take the norm to be
_ &0 2
l(ar 0, Ol = /300 laxl? (6.13)

and this by assumption will converge. The natural scalar product is like that of example 5, but with
the sum going out to infinity. It requires a small amount of proof to show that this will converge.
See problem 6.19.

11 A norm is ||U]| = >_;2, |a;|. There is no scalar product that will produce this norm, a fact that
you can prove by using the results of problem 6.13.

13 A natural norm is
1/p

b
11l = [ / da If(:v)lp] | (6.14)

To demonstrate that this is a norm requires the use of some special inequalities found in advanced
calculus books.

15 If A and B are two matrices, a scalar product is <A,B> = Tr(ATB), where T is the transpose
complex conjugate of the matrix and Tr means the trace, the sum of the diagonal elements. Several
possible norms can occur. One is ||A|| = \/Tr(ATA). Another is the maximum value of || A,

S : i 1/2
where @ is a unit vector and the norm of @ is taken to be [Ju|* + -+ + |up|?] 2

19 A valid definition of a norm for the motions of a drumhead is its total energy, kinetic plus potential.
How do you describe this mathematically? It's something like

fon () o

I've left out all the necessary constants, such as mass density of the drumhead and tension in the
drumhead. You can perhaps use dimensional analysis to surmise where they go.

There is an example in criminal law in which the distinctions between some of these norms have
very practical consequences. If you're caught selling drugs in New York there is a longer sentence if your
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sale is within 1000 feet of a school. If you are an attorney defending someone accused of this crime,
which of the norms in Eq. (6.11) would you argue for? The legislators who wrote this law didn't know
linear algebra, so they didn't specify which norm they intended. The prosecuting attorney argued for
norm #1, “as the crow flies,” but the defense argued that “crows don't sell drugs” and humans move
along city streets, so norm #2 is more appropriate.

The New York Court of Appeals decided that the Pythagorean norm (#1) is the appropriate one
and they rejected the use of the pedestrian norm that the defendant advocated (#2).
www.courts.state.ny.us/ctapps/decisions/nov05/1620pn05.pdf

6.7 Bases and Scalar Products
When there is a scalar product, a most useful type of basis is the orthonormal one, satisfying

(5. 7;) = 0y = {é t 2 (6.15)
The notation 5z‘j represents the very useful Kronecker delta symbol.

In the example of Eq. (6.1) the basis vectors are orthonormal with respect to the scalar product
in Eq. (6.9). It is orthogonal with respect to the other scalar product mentioned there, but it is not in
that case normalized to magnitude one.

To see how the choice of even an orthonormal basis depends on the scalar product, try a different
scalar product on this space. Take the special case of two dimensions. The vectors are now pairs of
numbers. Think of the vectors as 2 x 1 matrix column and use the 2 x 2 matrix

()

) : 2 1 b * * * *
<(a1,a2),(b1,b2)> = (al CL2) <1 2) (b;) = 2&1b1 +a1b2+a261 +2(12()2 (616)

Take the scalar product of two vectors to be

To show that this satisfies all the defined requirements for a scalar product takes a small amount of
labor. The vectors that you may expect to be orthogonal, (1 0) and (0 1), are not.

In example 6, if we let the domain of the functions be —L < x < +L and the scalar product is
as in Eq. (6.12), then the set of trigonometric functions can be used as a basis.

. nmTx d mmx
S —— an COS
L L
n=1,2,3,... and m=0,1,2,3,....

L NTT mmr
flx)= Zan sin —— + gbm cos — (6.17)

on the domain —L < x < +L is just an example of Fourier series, and the components of f in this
basis are Fourier coefficients aq,...,bg,.... An equally valid and more succinctly stated basis is
enmie/Lp =0, +1, £2, ...

Chapter 5 on Fourier series shows many other choices of bases, all orthogonal, but not necessarily
normalized.


http://www.courts.state.ny.us/ctapps/decisions/nov05/162opn05.pdf
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To emphasize the relationship between Fourier series and the ideas of
vector spaces, this picture represents three out of the infinite number of basis
vectors and part of a function that uses these vectors to form a Fourier series.

1 7wz 2 2mx 1  3mx
flx)= ismf—i— §SmT+ gsmT—i-'”
The orthogonality of the sines becomes the geometric term “perpendicular,” and
if you look at section 8.11, you will see that the subject of least square fitting
of data to a sum of sine functions leads you right back to Fourier series, and to
the same picture as here.

6.8 Gram-Schmidt Orthogonalization
From a basis that is not orthonormal, it is possible to construct one that is. This device is called the
Gram-Schmidt procedure. Suppose that a basis is known (finite or infinite), ¥, ¥, ...

Step 1: normalize 7. € = 171/\/<171,171>.
Step 2: construct a linear combination of ¥ and ¥ that is orthogonal to ;:
Let €9 = Up — €1<€1, 772> and then normalize it.

& = (a0, )2, (6.18)

Step 3: Let 530 = 173 — €1<€1, 173> — €2<€2, ’173> etc. repeating step 2.
What does this look like? See problem 6.3.

6.9 Cauchy-Schwartz inequality
For common three-dimensional vector geometry, it is obvious that for any real angle, cos?6 < 1. In
terms of a dot product, this is |A- B| < AB. This can be generalized to any scalar product on any

vector space:
(@, )| < @] 17| (6.19)

The proof starts from a simple but not-so-obvious point. The scalar product of a vector with itself is
by definition positive, so for any two vectors @ and ¥ you have the inequality

(U — M\, 0 — AT) > 0. (6.20)

where A is any complex number. This expands to
(U@, @) + |N*(¥,T) — N@,T) — X*(T,a) >0. (6.21)
How much bigger than zero the left side is will depend on the parameter . To find the smallest value

that the left side can have you simply differentiate. Let A = x + iy and differentiate with respect to x
and y, setting the results to zero. This gives (see problem 6.5)

A= (U, 1) /{T,7). (6.22)

Substitute this value into the above inequality (6.21)

(@.7)° I
{ {

> 0. (6.23)
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This becomes

(@) < (@,@)(7,7) (6.24)
This isn't quite the result needed, because Eq. (6.19) is written differently. It refers to a norm and |
haven't established that the square root of (¥,7') is a norm. When | do, then the square root of this
is the desired inequality (6.19).

For a couple of examples of this inequality, take specific scalar products. First the common
directed line segments:

(U,0) =u-U=uvcosh, ) luv cos 0] < |ul?|v|?

/d:cf /d:crf ”/jdx!g(x)ﬁ]

The first of these is familiar, but the second is not, though when you look at it from the general vector
space viewpoint they are essentially the same.

Norm from a Scalar Product
The equation (6.7), ||T|| = 1/(¥,7), defines a norm. Properties one and two for a norm are simple

to check. (Do so.) The third requirement, the triangle inequality, takes a bit of work and uses the
inequality Eq. (6.24).

+ <172, 1)2> + <171, 172> + <172, 171>

+ (U2, U2) + [(U1, o) | + (T2, 1)
+ <02,U2> + 2‘<'U171)2>‘

]
=

4
=

= <\/<271,771> + \/<q72,172>>

The first inequality is a property of complex numbers. The second one is Eq. (6.24). The square root

of the last line is the triangle inequality, thereby justifying the use of 1/(¥,¥) as the norm of ¥ and in
the process validating Eq. (6.19).

153+ Ball = /(B + BB+ 2) < (00, 00) + (T ) = 180+ 13 (6.25)

6.10 Infinite Dimensions
Is there any real difference between the cases where the dimension of the vector space is finite and the
cases where it's infinite? Yes. Most of the concepts are the same, but you have to watch out for the
question of convergence. If the dimension is finite, then when you write a vector in terms of a basis
U =) ay€y, the sum is finite and you don't even have to think about whether it converges or not. In
the infinite-dimensional case you do.

It is even possible to have such a series converge, but not to converge to a vector. If that sounds
implausible, let me take an example from a slightly different context, ordinary rational numbers. These
are the number m/n where m and n are integers (n # 0). Consider the sequence

1, 14/10, 141/100, 1414/1000, 14142/10000, 141421/100000,
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These are quotients of integers, but the limit is V/2 and that’s not* a rational number. Within the
confines of rational numbers, this sequence doesn’t converge. You have to expand the context to get
a limit. That context is the real numbers. The same thing happens with vectors when the dimension
of the space is infinite — in order to find a limit you sometimes have to expand the context and to
expand what you're willing to call a vector.

Look at example 9 from section 6.3. These are sets of numbers (a1, as,...) with just a finite
number of non-zero entries. If you take a sequence of such vectors

(1,0,0,...), (1,1,0,0,...), (1,1,1,0,0,...),...

Each has a finite number of non-zero elements but the limit of the sequence does not. It isn't a vector
in the original vector space. Can | expand to a larger vector space? Yes, just use example 8, allowing
any number of non-zero elements.

For a more useful example of the same kind, start with the same space and take the sequence

(1,0,...), (1, 1/2,0, o)y (1 1/2, 1/3,0, ce )y

Again the limit of such a sequence doesn’t have a finite number of entries, but example 10 will hold
such a limit, because > 7° |az|? < oco.

How do you know when you have a vector space without holes in it? That is, one in which these
problems with limits don't occur? The answer lies in the idea of a Cauchy sequence. I'll start again
with the rational numbers to demonstrate the idea. The sequence of numbers that led to the square
root of two has the property that even though the elements of the sequence weren't approaching a
rational number, the elements were getting close to each other. Let {r,}, n =1, 2, ... be a sequence
of rational numbers.

lim ‘rn — rm‘ =0 means
For any € > 0 there is an N so that if both n and m are > N then ‘rn — rm‘ < €.

This property defines the sequence 7, as a Cauchy sequence. A sequence of rational numbers converges
to a real number if and only if it is a Cauchy sequence; this is a theorem found in many advanced
calculus texts. Still other texts will take a different approach and use the concept of a Cauchy sequence
to construct the definition of the real numbers.

The extension of this idea to infinite dimensional vector spaces requires simply that you replace
the absolute value by a norm, so that a Cauchy sequence is defined by limy, ,, |V, — U] = 0. A
“complete” vector space is one in which every Cauchy sequence converges. A vector space that has
a scalar product and that is also complete using the norm that this scalar product defines is called a
Hilbert Space.

| don't want to imply that the differences between finite and infinite dimensional vector spaces is
just a technical matter of convergence. In infinite dimensions there is far more room to move around,
and the possible structures that occur are vastly more involved than in the finite dimensional case. The
subject of quantum mechanics has Hilbert Spaces at the foundation of its whole structure.

* Proof: If it is, then express it in simplest form as m/n = v/2 = m? = 2n% where m and n
have no common factor. This equation implies that m must be even: m = 2my. Substitute this value,
giving 2m? = n?. That in turn implies that n is even, and this contradicts the assumption that the
original quotient was expressed without common factors.
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Exercises

1 Determine if these are vector spaces with the usual rules for addition and multiplication by scalars.
If not, which axiom(s) do they violate?

(a) Quadratic polynomials of the form ax? + bx

(b) Quadratic polynomials of the form az? + bx + 1

(c) Quadratic polynomials ax? 4+ bx + ¢ with a + b+ ¢ =0

(d) Quadratic polynomials ax? + bz + c witha+b+c=1

2 What is the dimension of the vector space of (up to) 5th degree polynomials having a double root
atx =17

3 Starting from three dimensional vectors (the common directed line segments) and a single fixed
vector B, is the set of all vectors ¥ with ©'- B = 0 a vector space? If so, what is it's dimension?
Is the set of all vectors ¥ with ¥/ x B = 0 a vector space? If so, what is it's dimension?

4 The set of all odd polynomials with the expected rules for addition and multiplication by scalars. Is
it a vector space?

5 The set of all polynomials where the function “addition” is defined to be f3 = fo+ fi if the number
fa(x) = fi(—=z) + fa(—x). Is it a vector space?

6 Same as the preceding, but for (a) even polynomials, (b) odd polynomials

7 The set of directed line segments in the plane with the new rule for addition: add the vectors
according to the usual rule then rotate the result by 10° counterclockwise. Which vector space axioms
are obeyed and which not?
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Problems

6.1 Fourier series represents a choice of basis for functions on an interval. For suitably smooth functions

on the interval 0 to L, one basis is
5 [2 . nmx
En = Z Sin T (627)

Use the scalar product (f,g) = fo x) dx and show that this is an orthogonal basis normalized
to 1, i.e. it is orthonormal.

6.2 A function F'(z) = x(L — x) between zero and L. Use the basis of the preceding problem to write
this vector in terms of its components:

F=Y " ané,. (6.28)
1

If you take the result of using this basis and write the resulting function outside the interval 0 < x < L,
graph the result.

6.3 For two dimensional real vectors with the usual parallelogram addition, interpret in pictures the
first two steps of the Gram-Schmidt process, section 6.8.

6.4 For two dimensional real vectors with the usual parallelogram addition, interpret the vectors u and
¥ and the parameter \ used in the proof of the Cauchy-Schwartz inequality in section 6.9. Start by
considering the set of points in the plane formed by {#' — AU’} as \ ranges over the set of reals. In
particular, when \ was picked to minimize the left side of the inequality (6.21), what do the vectors
look like? Go through the proof and interpret it in the context of these pictures. State the idea of the
whole proof geometrically.

Note: | don't mean just copy the proof. Put the geometric interpretation into words.

6.5 Start from Eq. (6.21) and show that the minimum value of the function of A = x + iy is given by

the value stated there. Note: this derivation applies to complex vector spaces and scalar products, not
just real ones. Is this a minimum?

6.6 For the vectors in three dimensions,
U =2 +79, Uy =10+ 2, U3 =2+1

use the Gram-Schmidt procedure to construct an orthonormal basis starting from 7. Ans: €3 =

(Z—0+2)/V3

6.7 For the vector space of polynomials in x, use the scalar product defined as

1
(f.g) = / da f(a)'g(w)

(Everything is real here, so the complex conjugation won't matter.) Start from the vectors

170:1, 771 =, 172:1)2, 17321‘3
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and use the Gram-Schmidt procedure to construct an orthonormal basis starting from v,. Compare
these results to the results of section 4.11. [These polynomials appear in the study of electric potentials
and in the study of angular momentum in quantum mechanics: Legendre polynomials.]

6.8 Repeat the previous problem, but use a different scalar product:
o) s *
(f.9) = [ dwe ™ flaygo)

[These polynomials appear in the study of the harmonic oscillator in quantum mechanics and in the
study of certain waves in the upper atmosphere. With a conventional normalization they are called
Hermite polynomials.]

6.9 Consider the set of all polynomials in x having degree < N. Show that this is a vector space and
find its dimension.

6.10 Consider the set of all polynomials in x having degree < N and only even powers. Show that
this is a vector space and find its dimension. What about odd powers only?

6.11 Which of these are vector spaces?
) all polynomials of degree 3
) all polynomials of degree < 3 [Is there a difference between (a) and (b)?]
) all functions such that f(1) = 2f(2)
) all functions such that f(2) = f(1) +1
) all functions satisfying f(x + 27) = f(x)
f) all positive functions
g) all polynomials of degree < 4 satisfying fil drzf(x)=0.
h) all polynomials of degree < 4 where the coefficient of x is zero.
[Is there a difference between (g) and (h)?]

a
b
c
d
e

(
(
(
(
(
(
(
(

6.12 (a) For the common picture of arrows in three dimensions, prove that the subset of vectors ¥/
that satisfy A -4 = 0 for fixed A forms a vector space. Sketch it.
(b) What if the requirement is that both A-7 =0 and B-¥ = 0 hold. Describe this and sketch it.

6.13 If a norm is defined in terms of a scalar product, ||| = 1/(¥, ), it satisfies the “parallelogram
identity” (for real scalars),

i+ T+ [l@ - 717 = 2)1@ || + 27> (6.29)

6.14 If a norm satisfies the parallelogram identity, then it comes from a scalar product. Again, assume
real scalars. Consider combinations of ||+ ¥'||?, || — ¥||* and construct what ought to be the scalar
product. You then have to prove the four properties of the scalar product as stated at the start of
section 6.6. Numbers four and three are easy. Number one requires that you keep plugging away, using
the parallelogram identity (four times by my count).

Number two is downright tricky; leave it to the end. If you can prove it for integer and rational values
of the constant «, consider it a job well done. | used induction at one point in the proof. The final
step, extending « to all real values, requires some arguments about limits, and is typically the sort of
reasoning you will see in an advanced calculus or mathematical analysis course.
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6.15 Modify the example number 2 of section 6.3 so that f3 = f; + fo means f3(x) = fi(x —a) +
fa(x —b) for fixed a and b. Is this still a vector space?

6.16 The scalar product you use depends on the problem you're solving. The fundamental equation
(5.15) started from the equation ©” = Au and resulted in the scalar product

b
<u2,u1>:/ dx ug(x)*uy (T)

Start instead from the equation u” = Aw(x)u and see what identity like that of Eq. (5.15) you come
to. Assume w is real. What happens if it isn't? In order to have a legitimate scalar product in the
sense of section 6.6, what other requirements must you make about w?

6.17 The equation describing the motion of a string that is oscillating with frequency w about its
stretched equilibrium position is

7 (1) = ~wutayy

Here, y(x) is the sideways displacement of the string from zero; T'(x) is the tension in the string (not
necessarily a constant); () is the linear mass density of the string (again, it need not be a constant).
The time-dependent motion is really y(x) cos(wt + ¢), but the time dependence does not concern us
here. As in the preceding problem, derive the analog of Eq. (5.15) for this equation. For the analog
of Eq. (5.16) state the boundary conditions needed on ¥ and deduce the corresponding orthogonality
equation. This scalar product has the mass density for a weight.

* * b * *
Ans: [T(m)(y’lyZ - ylyzl)]a = (WQQ - W%) ff () yayn do

6.18 The way to define the sum in example 17 is

g |f(x)? = liné{the sum of |f(x)|? for those = where | f(x)|> > ¢ > 0}. (6.30)
c—
T

This makes sense only if for each ¢ > 0, |f(2)|?

2. Show that the function

is greater than c for just a finite number of values of

0 otherwise

fla) = {l/n forz =1/n

is in this vector space, and that the function f(z) = x is not. What is a basis for this space? [Take
0 <z < 1] This is an example of a vector space with non-countable dimension.

6.19 In example 10, it is assumed that > {°|az|? < co. Show that this implies that the sum used
for the scalar product also converges: ».7° a;by. [Consider the sums Y |ay + iby|?, > |ay, — iby|?,
> lag + bi|?, and 3 |ag, — by|?, allowing complex scalars.]

6.20 Prove strictly from the axioms for a vector space the following four theorems. Each step in your
proof must explicitly follow from one of the vector space axioms or from a property of scalars or from
a previously proved theorem.

(a) The vector O is unique. [Assume that there are two, Oy and O,. Show that they're equal. First
step: use axiom 4]
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—

(b) The number 0 times any vector is the zero vector: 00 = O.
(c) The vector ¥’ is unique.
(d) (-1)v=1".

6.21 For the vector space of polynomials, are the two functions {1+ 2, x+ 23} linearly independent?

6.22 Find the dimension of the space of functions that are linear combinations of
{1, sinx, cosx, sin®x, cos®x, sinx, cos*x, sin®xcos®z}

6.23 A model vector space is formed by drawing equidistant parallel lines in a plane and labelling
adjacent lines by successive integers from oo to +0o0. Define multiplication by a (real) scalar so that
multiplication of the vector by o means multiply the distance between the lines by 1/a. Define
addition of two vectors by finding the intersections of the lines and connecting opposite corners of the
parallelograms to form another set of parallel lines. The resulting lines are labeled as the sum of the
two integers from the intersecting lines. (There are two choices here, if one is addition, what is the
other?) Show that this construction satisfies all the requirements for a vector space. Just as a directed
line segment is a good way to picture velocity, this construction is a good way to picture the gradient
of a function. In the vector space of directed line segments, you pin the vectors down so that they all
start from a single point. Here, you pin them down so that the lines labeled “zero” all pass through a
fixed point. Did | define how to multiply by a negative scalar? If not, then you should. This picture of
vectors is developed extensively in the text “Gravitation” by Misner, Wheeler, and Thorne.

6.24 In problem 6.11 (g), find a basis for the space. Ans: 1, x, 3x — 5x3.

6.25 What is the dimension of the set of polynomials of degree less than or equal to 10 and with a
triple root at x = 17

6.26 Verify that Eq. (6.16) does satisfy the requirements for a scalar product.

6.27 A variation on problem 6.15: f3 = f; + fo means

(@) fs(x) = Afi(x —a) + B fa(x —b) for fixed a, b, A, B. For what values of these constants is this
a vector space?

(b) Now what about f3(x) = fi(23) + fo(23)?

6.28 Determine if these are vector spaces:

(1) Pairs of numbers with addition defined as (1, x2)+ (Y1, Y2) = (1 + Y2, 2+ Y1) and multiplication
by scalars as c(x1,22) = (cx1, cx2).

(2) Like example 2 of section 6.3, but restricted to those f such that f(x) > 0. (real scalars)

(3) Like the preceding line, but define addition as (f + g)(z) = f(x)g(z) and (cf)(x) = (f(x))c
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6.29 Do the same calculation as in problem 6.7, but use the scalar product
Lo
(f.9) = | a*do f@)a()
6.30 Show that the following is a scalar product.

b
(f.g) = / dz [f*(2)g(x) + A (2)g ()]

where ) is a constant. What restrictions if any must you place on A\? The name Sobolev is associated
with this scalar product.

6.31 (a) With the scalar product of problem 6.29, find the angle between the vectors 1 and x. Here

the word angle appears in the sense of A-B = ABcos®. (b) What is the angle if you use the scalar
product of problem 6.77 (c) With the first of these scalar products, what combination of 1 and z is
orthogonal to 1?7 Ans: 14.48°

6.32 In the online text linked on the second page of this chapter, you will find that section two of
chapter three has enough additional problems to keep you happy.

6.33 Show that the sequence of rational numbers a,, = > j_; 1/k is not a Cauchy sequence. What
about >°p_; 1/k??

6.34 In the vector space of polynomials of the form ax + J2°, use the scalar product (f,g) =
3

fol dz f(x)*g(x) and construct an orthogonal basis for this space. Ans: One pair is z, z° — 2x.
6.35 You can construct the Chebyshev polynomials by starting from the successive powers, 2, n =
0, 1, 2,... and applying the Gram-Schmidt process. The scalar product in this case is

(f.q) = /1 d f(ﬂi)*_gg)

The conventional normalization for these polynomials is 7},(1) = 1, so you should not try to make the
norm of the resulting vectors one. Construct the first four of these polynomials, and show that these
satisfy T}, (cos @) = cos(nf). These polynomials are used in numerical analysis because they have the
property that they oscillate uniformly between —1 and 41 on the domain —1 < z < 1. Verify that your
results for the first four polynomials satisfy the recurrence relation: T}, 1 (z) = 22T}, (x) — Tr—1(x).
Also show that cos ((n + 1)0) = 2cos 0 cos (nf) — cos ((n — 1)6).

6.36 In spherical coordinates (€, @), the angle 0 is measured from the z-axis, and the function
f1(0,¢) = cos@ can be written in terms of rectangular coordinates as (section 8.8)

z z
J1(0,0) = cost) = o \/W

Pick up the function f; and rotate it by 90° counterclockwise about the positive y-axis. Do this rotation
in terms of rectangular coordinates, but express the result in terms of spherical coordinates: sines and
cosines of # and ¢. Call it fo. Draw a picture and figure out where the original and the rotated function
are positive and negative and zero.
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Now pick up the same f; and rotate it by 90° clockwise about the positive x-axis, again finally expressing
the result in terms of spherical coordinates. Call it f3.
If now you take the original f and rotate it about some random axis by some random angle, show that
the resulting function f4 is a linear combination of the three functions f1, fo, and f3. l.e., all these
possible rotated functions form a three dimensional vector space. Again, calculations such as these are
much easier to demonstrate in rectangular coordinates.

6.37 Take the functions fi, f2, and f3 from the preceding problem and sketch the shape of the

functions
re”"f1(0,9), re"fa(0,9), re"f3(0,9)

To sketch these, picture them as defining some sort of density in space, ignoring the fact that they are
sometimes negative. You can just take the absolute value or the square in order to visualize where they
are big or small. Use dark and light shading to picture where the functions are big and small. Start by
finding where they have the largest and smallest magnitudes. See if you can find similar pictures in an
introductory chemistry text. Alternately, check out winter.group.shef.ac.uk/orbitron/

6.38 Use the results of problem 6.17 and apply it to the Legendre equation Eq. (4.55) to demonstrate
that the Legendre polynomials obey f_lldx Po(x)Pp(x) = 0 if n # m. Note: the function T'(x)
from problem 6.17 is zero at these endpoints. That does not imply that there are no conditions on
the functions y; and y, at those endpoints. The product of T'(x)yjy2 has to vanish there. Use the
result stated just after Eq. (4.59) to show that only the Legendre polynomials and not the more general
solutions of Eq. (4.58) work.

6.39 Using the result of the preceding problem that the Legendre polynomials are orthogonal, show
that the equation (4.62)(a) follows from Eq. (4.62)(e). Square that equation (e) and integrate f_ll dz.
Do the integral on the left and then expand the result in an infinite series in £. On the right you have
integrals of products of Legendre polynomials, and only the squared terms are non-zero. Equate like
powers of ¢ and you will have the result.

6.40 Use the scalar product of Eq. (6.16) and construct an orthogonal basis using the Gram-Schmidt

. 1 : : .
process and starting from <0> and <(1)) Verify that your answer works in at least one special case.

6.41 For the differential equation & + x = 0, pick a set of indePendent solutions to the differential
equation — any ones you like. Use the scalar product (f,g) = o dx f(x)*g(x) and apply the Gram-
Schmidt method to find an orthogonal basis in this space of solutions. Is there another scalar product
that would make this analysis simpler? Sketch the orthogonal functions that you found.
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Operators and Matrices

You've been using operators for years even if you've never heard the term. Differentiation falls into this
category; so does rotation; so does wheel-alignment. In the subject of quantum mechanics, familiar
ideas such as energy and momentum will be represented by operators. You probably think that pressure
is simply a scalar, but no. It's an operator.

7.1 The Idea of an Operator

You can understand the subject of matrices as a set of rules that govern certain square or rectangular
arrays of numbers — how to add them, how to multiply them. Approached this way the subject is
remarkably opaque. Who made up these rules and why? What's the point? If you look at it as simply
a way to write simultaneous linear equations in a compact way, it's perhaps convenient but certainly
not the big deal that people make of it. It is a big deal.

There's a better way to understand the subject, one that relates the matrices to more fundamental
ideas and that even provides some geometric insight into the subject. The technique of similarity
transformations may even make a little sense. This approach is precisely parallel to one of the basic
ideas in the use of vectors. You can draw pictures of vectors and manipulate the pictures of vectors and
that's the right way to look at certain problems. You quickly find however that this can be cumbersome.
A general method that you use to make computations tractable is to write vectors in terms of their
components, then the methods for manipulating the components follow a few straight-forward rules,
adding the components, multiplying them by scalars, even doing dot and cross products.

Just as you have components of vectors, which are a set of numbers that depend on your choice
of basis, matrices are a set of numbers that are components of — not vectors, but functions (also
called operators or transformations or tensors). I'll start with a couple of examples before going into
the precise definitions.

The first example of the type of function that I'll be interested in will be a function defined on
the two-dimensional vector space, arrows drawn in the plane with their starting points at the origin.
The function that I'll use will rotate each vector by an angle o counterclockwise. This is a function,
where the input is a vector and the output is a vector.

B f(UL +12)
f (@)

<y

What happens if you change the argument of this function, multiplying it by a scalar? You know
f(@), what is f(cv)? Just from the picture, this is ¢ times the vector that you got by rotating .
What happens when you add two vectors and then rotate the result? The whole parallelogram defining
the addition will rotate through the same angle o, so whether you apply the function before or after
adding the vectors you get the same result.

This leads to the definition of the word linearity:

f(ct)=cf(0), and  f(01+02) = [f(1h) + [(02) (7.1)

Keep your eye on this pair of equations! They're central to the whole subject.

143
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Another example of the type of function that I'll examine is from physics instead of mathematics.
A rotating rigid body has some angular momentum. The greater the rotation rate, the greater the
angular momentum will be. Now how do | compute the angular momentum assuming that | know the
shape and the distribution of masses in the body and that | know the body's angular velocity? The
body is made of a lot of point masses (atoms), but you don't need to go down to that level to make
sense of the subject. As with any other integral, you start by dividing the object in to a lot of small
pieces.

What is the angular momentum of a single point mass? It starts from basic Newtonian mechanics,
and the equation F' = dpj/dt. (It's better in this context to work with this form than with the more

common expressions F' = mda.) Take the cross product with 7, the displacement vector from the origin.
7x F=7xdp/dt

Add and subtract the same thing on the right side of the equation (add zero) to get

dp dr _ dr

A R

d,, . dr
Txp)—%xp

rx F=7x

Now recall that p'is m#, and ' = dr’/dt, so the last term in the preceding equation is zero because
you are taking the cross product of a vector with itself. This means that when adding and subtracting
a term from the right side above, | was really adding and subtracting zero.

7 x F'is the torque applied to the point mass m and 7 x p'is the mass’s angular momentum
about the origin. Now if there are many masses and many forces, simply put an index on this torque
equation and add the resulting equations over all the masses in the rigid body. The sums on the left
and the right provide the definitions of torque and of angular momentum.

—

- L= d S dL
TtotaIZZTkXFk:%Z(rkxpk):%
k k

For a specific example, attach two masses to the ends of a light rod and attach that rod to
a second, vertical one as sketched — at an angle. Now spin the vertical rod and figure out what
the angular velocity and angular momentum vectors are. Since the spin is along the vertical rod, that
specifies the direction of the angular velocity vector & to be upwards in the picture. (Viewed from above
everything is rotating counter-clockwise.) The angular momentum of one point mass is 77X p'= 7" x muv.
The mass on the right has a velocity pointing into the page and the mass on the left has it pointing
out. Take the origin to be where the supporting rod is attached to the axis, then 7 x p for the mass
on the right is pointing up and to the left. For the other mass both 7~ and j are reversed, so the cross
product is in exactly the same direction as for the first mass. The total angular momentum the sum of

these two parallel vectors, and it is not in the direction of the angular velocity.
1T X Mivp




7—Operators and Matrices 145

Now make this quantitative and apply it to a general rigid body. There are two basic pieces to
the problem: the angular momentum of a point mass and the velocity of a point mass in terms of its
angular velocity. The position of one point mass is described by its displacement vector from the origin,
7. Its angular momentum is then 7" x p, where p'= mu. If the rigid body has an angular velocity vector
W, the linear velocity of a mass at coordinate 7" is & x 7.

The total angular momentum of a rotating set of masses m;, at respective coordinates 77, is the
sum of all the individual pieces of angular momentum

L:ZFk’ kaﬁka and since k:(EX _;ka
k

. (7.2)
L:ZFk’ ka((ﬂxf‘k)
k

If you have a continuous distribution of mass then using an integral makes more sense. For a given
distribution of mass, this integral (or sum) depends on the vector &. It defines a function having a
vector as input and a vector L as output. Denote the function by I, so L = [(&).

E:/dmfx(wxf)zf@) (7.3)

This function satisfies the same linearity equations as Eq. (7.1). When you multiply & by a
constant, the output, Lis multiplied by the same constant. When you add two &'s together as the
argument, the properties of the cross product and of the integral guarantee that the corresponding L's
are added.

I(c) =cl(W), and I(&y + Wo) = I(wh) + 1(Wo)

This function [ is called the “inertia operator” or more commonly the “inertia tensor.” It's not simply
multiplication by a scalar, so the rule that appears in an introductory course in mechanics (E =1d)is
valid only in special cases, for example those with enough symmetry.

Note: I is not a vector and L is not a function. L is the output of the function I when you
feed it the argument . This is the same sort of observation appearing in section 6.3 under “Function
Spaces.”

If an electromagnetic wave passes through a crystal, the electric field will push the electrons
around, and the bigger the electric field, the greater the distance that the electrons will be pushed.
They may not be pushed in the same direction as the electric field however, as the nature of the crystal
can make it easier to push the electrons in one direction than in another. The relation between the
applied field and the average electron displacement is a function that (for moderate size fields) obeys
the same linearity relation that the two previous functions do.

P =a(E)
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P is the electric dipole moment density and E is the applied electric field. The function « is called the
polarizability.

If you have a mass attached to six springs that are in turn attached to six walls,
the mass will come to equilibrium somewhere. Now push on this mass with another
(not too large) force. The mass will move, but will it move in the direction that
you push it? If the six springs are all the same it will, but if they're not then the
d_lsplacement will be more in the direction of the weaker iprings. The displacement,

d, will still however depend linearly on the applied force, F'.

7.2 Definition of an Operator

An operator, also called a linear transformation, is a particular type of function. It is first of all, a vector
valued function of a vector variable. Second, it is linear; that is, if A is such a function then A(?) is a
vector, and

AT + Bi) = aA(@) + BA(). (7.4)

The domain is the set of variables on which the operator is defined. The range is the set of all values
put out by the function. Are there nonlinear operators? Yes, but not here.

7.3 Examples of Operators

The four cases that | started with, rotation in the plane, angular momentum of a rotating rigid body,
polarization of a crystal by an electric field, and the mass attached to some springs all fit this definition.
Other examples:

5. The simplest example of all is just multiplication by a scalar: A(¥)) = ¢ for all U. This applies to
any vector space and its domain is the entire space.

6. On the vector space of all real valued functions on a given interval, multiply any function f by
1+ 2% (Af)(z) = (1 +22)f(x). The domain of A is the entire space of functions of z. This
is an infinite dimensional vector space, but no matter. There's nothing special about 1 + 22, and
any other function will do to define an operator.

7. On the vector space of square integrable functions [ [dz |f(z)? < oo] on a < x < b, define
the operator as multiplication by x. The only distinction to make here is that if the interval is
infinite, then x f(x) may not itself be square integrable. The domain of this operator in this case is
therefore not the entire space, but just those functions such that z f(x) is also square-integrable.
On the same vector space, differentiation is a linear operator: (Af)(z) = f/(x). This too has a
restriction on the domain: It is necessary that f’ also exist and be square integrable.

8. On the vector space of infinitely differentiable functions, the operation of differentiation, d/dz, is
itself a linear operator. It's certainly linear, and it takes a differentiable function into a differentiable
function.

So where are the matrices? This chapter started by saying that I'm going to show you the inside scoop
on matrices and so far I've failed to produce even one.

When you describe vectors you can use a basis as a computational tool and manipulate the
vectors using their components. In the common case of three-dimensional vectors we usually denote
the basis in one of several ways

A~

’2\7 ja ka or ﬁa Y, 27 or €1, €2, €3

and they all mean the same thing. The first form is what you see in the introductory physics texts. The
second form is one that you encounter in more advanced books, and the third one is more suitable when
you want to have a compact index notation. It's that third one that I'll use here; it has the advantage
that it doesn't bias you to believe that you must be working in three spatial dimensions. The index
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could go beyond 3, and the vectors that you're dealing with may not be the usual geometric arrows.
(And why does it have to start with one? Maybe | want the indices 0, 1, 2 instead.) These need not
be perpendicular to each other or even to be unit vectors.
The way to write a vector ¥ in components is
17:U3;i’+vy3’/\+1}z2, or U151+U2€2+U35322Uk€k (75)
k

Once you've chosen a basis, you can find the three numbers that form the components of that
vector. In a similar way, define the components of an operator, only that will take nine numbers to do
it (in three dimensions). If you evaluate the effect of an operator on any one of the basis vectors, the
output is a vector. That's part of the definition of the word operator. This output vector can itself be
written in terms of this same basis. The defining equation for the components of an operator f is

3
FE) =" frih (7.6)
k=1

For each input vector you have the three components of the output vector. Pay careful attention
to this equation! It is the defining equation for the entire subject of matrix theory, and everything in
that subject comes from this one innocuous looking equation. (And yes if you're wondering, | wrote
the indices in the correct order.)

Why?

Take an arbitrary input vector for f: « = f(v'). Both & and U are vectors, so write them in
terms of the basis chosen.

7=l = 1 (0) (zvz &) =D vif @) (7.7)

The last equation is the result of the linearity property, Eq. (7.1), already assumed for f. Now pull the
sum and the numerical factors v; out in front of the function, and write it out. It is then clear:

fvi€1 +v26) = f(vi€1) + f(va€z) = vif(€1) +vaf(€2)

Now you see where the defining equation for operator components comes in. Eq. (7.7) is
> upé =Y v > frih
k 7 k

For two vectors to be equal, the corresponding coefficients of €7, €5, etc. must match; their respective
components must be equal, and this is

U = Zvifki, usually written U = Z fkivi (78)
1 i

so that in the latter form it starts to resemble what you may think of as matrix manipulation. frow’cdumn
is the conventional way to write the indices, and multiplication is defined so that the following product
means Eq. (7.8).

Uy Jiu iz fis U1

uy | = fa Sz fo3 U2 (7.9)

us fa1 fa2 fa3 U3
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uy | = [ far fa2  fo3 2 is w1 = frivr + fiave + f13v3 etc.

us fa1 fa2 fs3 3
And this is the reason behind the definition of how to multiply a matrix and a column matrix. The
order in which the indices appear is the conventional one, and the indices appear in the matrix as they
do because | chose the order of the indices in a (seemingly) backwards way in Eq. (7.6).

HT fr—frr—F3 321

Components of Rotations

Apply this to the first example, rotate all vectors in the plane through the angle .. | don't want to
keep using the same symbol f for every function, so I'll call this function R instead, or better yet R,,.
R (V) is the rotated vector. Pick two perpendicular unit vectors for a basis. You may call them % and
7, but again I'll call them €] and €5. Use the definition of components to get

RGN A2
Ra(€1) =) Ry
__________________ Ra(er) K (7.10)
S Ral@) = 3 Riafi
ay b k
cos €1
The rotated €] has two components, so
Ro(€1) = €1cosa + ésina = Ry1€1 + Roj€ (7.11)
This determines the first column of the matrix of components,
Ry = cosa, and Ry =sina
Similarly the effect on the other basis vector determines the second column:
Ra(€3) = éscosa — €1 sina = Ryg €] + Rag €5 (7.12)
Check: Ry (€1) - Ra(€2) = 0.
Ris = —sina, and Roy = cos
The component matrix is then
()= (S onr ) 1

Components of Inertia
The definition, Eq. (7.3), and the figure preceding it specify the inertia tensor as the function that
relates the angular momentum of a rigid body to its angular velocity.

E:/dmfx (@ x ) = I(@) (7.14)
Use the vector identity, . L o o
Ax(BxC)=B(A-C)-C(A-B) (7.15)
then the integral is
I / dm [3(7-7) - 7@+ 7)] = I(@) (7.16)

Pick the common rectangular, orthogonal basis and evaluate the components of this function. Equa-
tion (7.6) says ¥ = x €] + yés + 2€3 so
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I(&) =Y I
2

@) = /dm [2(2% + 42 + 2%) — (28 + Y& + 285)()]
=111€1 + I é5+ I31€3

from which I = /dm (y2 + 22), Iy = —/dmym, I3 = — /dmzx

This provides the first column of the components, and you get the rest of the components the same
way. The whole matrix is

y?+22 —ay —rz
/dm —xy x*+z22 —yz (7.17)
—TZ —Yz 2%+ y2

These are the components of the tensor of inertia. The diagonal elements of the matrix may be
familiar; they are the moments of inertia. 22 4 12 is the perpendicular distance-squared to the z-axis,
so the element I35 (= I..) is the moment of inertia about that axis, [ dm 7’3_. The other components
are less familiar and are called the products of inertia. This particular matrix is symmetric: [;; = I;;.
That's a special property of the inertia tensor.

Components of Dumbbell
Look again at the specific case of two masses rotating about an axis. Do it quantitatively.

\Fl X mlﬁl
R
L. “\ 771(”‘1)

S ) T
vg(out)./ 1
€2
2 Lfl
The integrals in Eq. (7.17) are simply sums this time, and the sums have just two terms. I'm

making the approximation that these are point masses. Make the coordinate system match the indicated
basis, with x right and 4 up, then z is zero for all terms in the sum, and the rest are

FQ X ’ITLQ?TQ}A

/dm (1% + 2%) = mir? cos® a + myrs cos a

— / dmxy = —mlr% cos asin v — mgrg cos o sin o
/dm (22 + 2%) = myrisin® a + morssin®
/dm (2% +9%) = myr? + mars

The matrix is then

cos? o —cosasina 0

(I) = (mlr% + mﬂ%) — cosasin o sin? o 0 (7.18)
0 0 1
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Don't count on all such results factoring so nicely.
In this basis, the angular velocity & has just one component, so what is L?

2

cos” o —cosasina 0 0
(mﬂ’% + mgrg) —cosasina sin? o 0 w | =
0 0 1 0
—Ww cos (¢ Sin «
2 2 -2
(ml'r’l + 77127’2) wsin® o
0
Translate this into vector form:
L = (mqri + mor3)wsina( — € cos o + éxsin ) (7.19)

When o = 90°, then cosa = 0 and the angular momentum points along the y-axis. This is the
symmetric special case where everything lines up along one axis. Notice that if & = 0 then everything
vanishes, but then the masses are both on the axis, and they have no angular momentum. In the general
case as drawn, the vector L points to the upper left, perpendicular to the line between the masses.

Parallel Axis Theorem
When you know the tensor of inertia about one origin, you can relate the result to the tensor about a
different origin.

The center of mass of an object is

. 1 .
Tem = Wi /rdm (7.20)

where M is the total mass. Compare the operator I using an origin at the center of mass to I about
another origin.

@) :/dex (@ x 7) :/dm[F—ch+ch] X (& X [F = o + Fom])

(7.21)
= /dm [ — Tem] X (& % [ — Tem)) +/dm Tem X (W X Tem) + two cross terms
The two cross terms vanish, problem 7.17. What's left is
1@ :/dm 7 ] % (3 % [F = Tom]) + M rem (3 X Toan

=Icm(@) + M Tem X (& X Tem)
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Put this in words and it says that the tensor of inertia about any point is equal to the tensor of inertia
about the center of mass plus the tensor of inertia of a point mass M placed at the center of mass.

As an example, place a disk of mass M and radius R and uniform mass density so that its center
is at (z,y,2) = (R,0,0) and it is lying in the x-y plane. Compute the components of the inertia
tensor. First get the components about the center of mass, using Eq. (7.17).

z

T

—/dmwy, —/dmyz

are zero. For fixed y each positive value of x has a corresponding negative value to make the integral
add to zero. It is odd in  (or y); remember that this is about the center of the disk. Next do the I33
integral.

The integrals such as

M
2, .2 2 2
/dm(m +y):/dmr = W—mdAr
For the element of area, use dA = 2w dr and you have
M (R s M _R* 1. .,
I33_71W/(] dT’27T7‘ —TR227TT—§MR

For the next two diagonal elements,
Iy = /dm(y2 +22) = /dmy2 and Iy = /dm (2 + 22) = /dmx2
Because of the symmetry of the disk, these two are equal, also you see that the sum is
I+ Iy = /dm e /dm 2= Ty = %MRQ (7.23)

This saves integration. 11 = Ioo = M R?/4.
For the other term in the sum (7.22), you have a point mass at the distance R along the x-axis,
(z,y,2) = (R,0,0). Substitute this point mass into Eq. (7.17) and you have

0 0 0
Mo R2 0
0 0 R?

The total about the origin is the sum of these two calculations.

/4 0 0
MR*( 0 5/4 0
0 0 3/2
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Why is this called the parallel axis theorem when you're translating a point (the origin) and not an
axis? Probably because this was originally stated for the moment of inertia alone and not for the whole
tensor. In that case you have only an axis to deal with.

Components of the Derivative

The set of all polynomials in  having degree < 2 forms a vector space. There are three independent
vectors that | can choose to be 1, x, and x2. Differentiation is a linear operator on this space because
the derivative of a sum is the sum of the derivatives and the derivative of a constant times a function
is the constant times the derivative of the function. With this basis I'll compute the components of
d/dzx. Start the indexing for the basis from zero instead of one because it will cause less confusion
between powers and subscripts.

50:1, 51:ZE, 52:$2
By the definition of the components of an operator — I'll call this one D,
D(ey) = %1 =0, D(ey) = P 1 = ey, D(ey) = %xQ =2x = 2€;
These define the three columns of the matrix.
0 1 0 du? 0 1 0 0 0
(D)y=(0 0 2 check:d—:%‘is 0 0 2 0|=12
00 0 t 00 0/ \1 0

There's nothing here about the basis being orthonormal. It isn't.

7.4 Matrix Multiplication
How do you multiply two matrices? There's a rule for doing it, but where does it come from?
The composition of two functions means you first apply one function then the other, so

h=fog means h(U)= f(g9(?)) (7.24)

I'm assuming that these are vector-valued functions of a vector variable, but this is the general definition
of composition anyway. If f and g are linear, does it follow the h is? Yes, just check:

hct) = f(g(c¥)) = f(cg(@)) =cf(g(@)),  and
WUy + 02) = f(g(01 + B2)) = f(9(Th) + g(t2)) = f(g(T1)) + f(g(¥2))

What are the components of h? Again, use the definition and plug in.
hE) = i =f(9(€) = F(D_95i€) =>_95if (&) =D 95 O fj b (7.25)
k J J J k
and now all there is to do is to equate the corresponding coefficients of €.

hpi = Zgjifkj or more conventionally hi; = Z fkjgji (7.26)
j J

This is in the standard form for matrix multiplication, recalling the subscripts are ordered as f,. for

row-column.
hii hiz his fu fiz fis g1 G12 g13
hoi hsa hoz | = fo1 fa2 fo3 921 932 g23 (7.27)
hsi hsp  hsz 31 fz2 fa3 931 932 gs3
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The computation of hiy from Eq. (7.26) is

hiir hrz his fm—Ffrr—f3 g11 12 913
hotr  hoo hoz | = | for fao  fo3 g21 %22 g23
hs1  hsa  hss far fa2 fs3 g3 §32 933

—  hi2 = f11g12 + f12922 + f13932

Matrix multiplication is just the component representation of the composition of two functions,
Eq. (7.26), and there's nothing here that restricts this to three dimensions. In Eq. (7.25) | may have
made it look too easy. If you try to reproduce this without looking, the odds are that you will not
get the indices to match up as nicely as you see there. Remember: When an index is summed it is a
dummy, and you are free to relabel it as anything you want. You can use this fact to make the indices
come out neatly.

Composition of Rotations
In the first example, rotating vectors in the plane, the operator that rotates every vector by the angle

o has components
cosa —sin«
(Ba) = (sina Cos v ) (7.28)

What happens if you do two such transformations, one by o and one by 5?7 The result better be a total
rotation by o + 3. One function, Rg is followed by the second function R, and the composition is

Ratp = Raltg
This is mirrored in the components of these operators, so the matrices must obey the same equation.

(cos(a+6) —sin(a+ﬁ)>:<cosa —sina) <cosﬂ —sinﬂ)

sin(a+ )  cos(a+ ) sinav cosa sinf8  cosf3

Multiply the matrices on the right to get

sin a cos 3 4 cos acsin cosacos 3 — sinasin 3 (7.29)

(cosacosﬁ —sinasin8  —cosasin 3 —sinacosﬁ)
The respective components must agree, so this gives an immediate derivation of the formulas for the
sine and cosine of the sum of two angles. Cf. Eq. (3.8)

7.5 Inverses

The simplest operator is the one that does nothing. f(¢') = ¥ for all values of the vector U. This implies
that f(€1) = €; and similarly for all the other elements of the basis, so the matrix of its components
is diagonal. The 2 x 2 matrix is explicitly the identity matrix

(1) = (é ?) or in index notation 0ij = {(1) E:}t z ;;g (7.30)
and the index notation is completely general, not depending on whether you're dealing with two dimen-
sions or many more. Unfortunately the words “inertia” and “identity” both start with the letter “I" and
this symbol is used for both operators. Live with it. The § symbol in this equation is the Kronecker
delta — very handy.

The inverse of an operator is defined in terms of Eq. (7.24), the composition of functions. If the
composition of two functions takes you to the identity operator, one function is said to be the inverse of
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the other. This is no different from the way you look at ordinary real valued functions. The exponential
and the logarithm are inverse to each other because*

In(e®) == for all x.

For the rotation operator, Eq. (7.10), the inverse is obviously going to be rotation by the same angle
in the opposite direction.

RoR_o=1

Because the matrix components of these operators mirror the original operators, this equation must
also hold for the corresponding components, as in Egs. (7.27) and (7.29). Set 5 = —« in (7.29) and
you get the identity matrix.

In an equation such as Eq. (7.7), or its component version Egs. (7.8) or (7.9), if you want to
solve for the vector 1, you are asking for the inverse of the function f.

U= f(v) implies 7= f1()

The translation of these equations into components is Eq. (7.9)
<U1):<f11 f12> (Ul>
U2 f21 f22 V2
e 1 fa2 —f12> <U1> (Ul>
which implies = 7.31
P f11f22—f12f21 <—f21 f11 U2 V2 ( )

The verification that these are the components of the inverse is no more than simply multiplying the
two matrices and seeing that you get the identity matrix.

7.6 Rotations, 3-d
In three dimensions there are of course more basis vectors to rotate. Start by rotating vectors about
the axes and it is nothing more than the two-dimensional problem of Eq. (7.10) done three times. You

do have to be careful about signs, but not much more — as long as you draw careful pictures!
z z

V4
N
X x,/

The basis vectors are drawn in the three pictures: €, =&, € =7, €3= 2.

In the first sketch, rotate vectors by the angle o about the x-axis. In the second case, rotate by
the angle  about the y-axis, and in the third case, rotate by the angle v about the z-axis. In the first
case, the €] is left alone. The €5 picks up a little positive €3, and the €3 picks up a little negative €5.

Ra€1 (51) = 51, Ra€1 (52) = gg cos o + 53 sin v, Raé'l (53) = _’3 CosS&x — 52 sin « (732)

* The reverse, €™ works just for positive , unless you recall that the logarithm of a negative

number is complex. Then it works there too. This sort of question doesn't occur with finite dimensional
matrices.
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Here the notation Rg represents the function prescribing a rotation by 6 about the axis pointing along

0. These equations are the same as Eqs. (7.11) and (7.12).
The corresponding equations for the other two rotations are now easy to write down:

Rﬂg2 (51) = 51 COSﬁ - 53 Sinﬁ, Rﬁé'Q(_’Q) = 52, R/@é’Q (53) = 51 sinﬁ—i—é’;; COSﬁ (7.33)
ng:,)( 1) = 51 cosy + 52 sin’y, R,Yé's (52) = —51 siny + 52 Ccos 7y, ngs (53) = 53 (7.34)

From these vector equations you immediate read the columns of the matrices of the components of the
operators as in Eq. (7.6).

(Rﬂéél) (Rﬁéé) (R’Yéé)
1 0 0 cosfB 0 sinf cosy —siny 0
0 cosa —sina |, 0 1 0 ) siny cosy 0 (7.35)
0 sina cos« —sinff 0 cosf 0 0 1

As a check on the algebra, did you see if the rotated basis vectors from any of the three sets of equations
(7.32)-(7.34) are still orthogonal sets?

Do these rotation operations commute? No. Try the case of two 90° rotations to see. Rotate
by this angle about the z-axis then by the same angle about the y-axis.

0 01\ /1 0 0 0 1 0
(Reyesa) (Ramp) = 0 1 0] {00 —1]=[0 0 -1 (7.36)
100/ \0o 1 0 1.0 0

In the reverse order, for which the rotation about the y-axis is done first, these are

1 0 O 0 0 1 0 0 1
(R€1W/2) (Ré’gﬂ/Q) =10 0 -1 0 1. 0)=(1 0 O (7.37)
01 0 -1 0 0 0 1 0

Translate these operations into the movement of a physical object. Take the same 2-y-z coor-
dinate system as in this section, with = pointing toward you, y to your right and 2z up. Pick up a book
with the cover toward you so that you can read it. Now do the operation Rz ./, on it so that the cover
still faces you but the top is to your left. Next do Ré»ﬂ/2 and the book is face down with the top still
to your left. See problem 7.57 for and algebraic version of this.

Start over with the cover toward you as before and do Rg,,/, so that the top is toward you
and the face is down. Now do the other operation Raﬂ/2 and the top is toward you with the cover
facing right — a different result. Do these physical results agree with the matrix products of the last
two equations? For example, what happens to the vector sticking out of the cover, initially the column
matrix (1 0 0)? This is something that you cannot simply read. You have to do the experiment for
yourself.

7.7 Areas, Volumes, Determinants

In the two-dimensional example of arrows in the plane, look what happens to areas when an operator
acts. The unit square with corners at the origin and (0,1), (1,1), 1,0) gets distorted into a paral-
lelogram. The arrows from the origin to every point in the square become arrows that fill out the
parallelogram.
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What is the area of this parallelogram?

I'll ask a more general question. (It isn't really, but it looks like it.) Start with any region in the
plane, and say it has area A;. The operator takes all the vectors ending in this area into some new area
of a size Ay, probably different from the original. What is the ratio of the new area to the old one?
AQ/Al. How much does this transformation stretch or squeeze the area? What isn’t instantly obvious
is that this ratio of areas depends on the operator alone, and not on how you chose the initial region
to be transformed. If you accept this for the moment, then you see that the question in the previous
paragraph, which started with the unit square and asked for the area into which it transformed, is the
same question as finding the ratio of the two more general areas. (Or the ratio of two volumes in three
dimensions.) See the end of the next section for a proof.

This ratio is called the determinant of the operator.

The first example is the simplest. Rotations in the plane, R,. Because rotations leave area
unchanged, this determinant is one. For almost any other example you have to do some work. Use the
component form to do the computation. The basis vector €] is transformed into the vector f11 €1+ fa1 €2
with a similar expression for the image of €. You can use the cross product to compute the area of
the parallelogram that these define. For another way, see problem 7.3. This is

(fi1€1+ far€2) x (f12€1 + f22€2) = (firfo2 — forfr2)€s (7.38)

The product in parentheses is the determinant of the transformation.

det(f) = firfoo — for f12 (7.39)

What if | had picked a different basis, maybe even one that isn't orthonormal? From the definition of
the determinant it is a property of the operator and not of the particular basis and components you
use to describe it, so you must get the same answer. But will the answer be the same simple formula
(7.39) if | pick a different basis? Now that’s a legitimate question. The answer is yes, and that fact
will come out of the general computation of the determinant in a moment. [What is the determinant
of Eq. (7.13)7]

The determinant can be either positive or negative. That tells you more than simply how the
transformation alters the area; it tells you whether it changes the orientation of the area. If you place
a counterclockwise loop in the original area, does it remain counterclockwise in the image or is it
reversed? In three dimensions, the corresponding plus or minus sign for the determinant says that
you're changing from a right-handed set of vectors to a left-handed one. What does that mean? Make
an z-y-z coordinate system out of the thumb, index finger, and middle finger of your right hand. Now
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do it with your left hand. You cannot move one of these and put it on top of the other (unless you
have very unusual joints). One is a mirror image of the other.

The equation (7.39) is a special case of a rule that you've probably encountered elsewhere. You
compute the determinant of a square array of numbers by some means such as expansion in minors or
Gauss reduction. Here I've defined the determinant geometrically, and it has no obvious relation the
traditional numeric definition. They are the same, and the reason for that comes by looking at how the
area (or volume) of a parallelogram depends on the vectors that make up its sides. The derivation is
slightly involved, but no one step in it is hard. Along the way you will encounter a new and important
function: A.

Start with the basis €7, €5 and call the output of the transformation ¥, = f(€1) and U = f(é3).
The final area is a function of these last two vectors, call it A(ﬁl,ﬁg), and this function has two key
properties:

A(U, 17) =0, and A(Ul, OCUQ + 6173) = @A(Ul, 172) + 6/\(171,173) (7.40)

That the area vanishes if the two sides are the same is obvious. That the area is a linear function of
the vectors forming the two sides is not so obvious. (It is linear in both arguments.) Part of the proof
of linearity is easy:

A(l_fl, CYQTQ) = OéA(271, 172)

simply says that if one side of the parallelogram remains fixed and the other changes by some factor,
then the area changes by that same factor. For the other part, A(z_fl, U +173), start with a picture and
see if the area that this function represents is the same as the sum of the two areas made from the
vectors U1 &Us and U1 &s.

U1&Us form the area OCBA. U1 & U3 form the area OCED.

HDF = JEG
HDO =2 JEC
o)
area HJGF = area DEGF = area OCBA
area OCJH = area OCED
add these equations:
area OCGF = area OCBA + area OCED

The last line is the statement that sum of the areas of the two parallelograms is the area of the
parallelogram formed using the sum of the two vectors:

A(Th, Uy + U3) = A(Th, ) + A(Th, Us)
This sort of function A, generalized to three dimensions, is characterized by
(1) A(Oéﬁl + Bglla /2727 173) = OéA(ﬁl, /2727 173) + BA(UI/7 1727 173)
(2) A(h, 01, U3) =0 (7.41)

It is linear in each variable, and it vanishes if any two arguments are equal. I've written it for three
dimensions, but in N dimensions you have the same equations with /N arguments, and these properties
hold for all of them.
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Theorem: Up to an overall constant factor, this function is unique.

An important result is that these assumptions imply the function is antisymmetric in any two
arguments. Proof:

A(T) + Uy, Ty + T2, U3) = 0 = A(T1, U1, Vs) 4+ A(U1, Uz, Us) + A(Ta, Uy, Us) + A(Ua, Uz, T3)

This is just the linearity property. Now the left side, and the 1% and 4" terms on the right, are zero
because two arguments are equal. The rest is

A(Ul,ﬁg,ﬁg) +A(172,271,173) =0 (7.42)

and this says that interchanging two arguments of A changes the sign. (The reverse is true also. Assume
antisymmetry and deduce that it vanishes if two arguments are equal.)

| said that this function is unique up to a factor. Suppose that there are two of them: A and A’.
Now show for some constant «, that A — aA’ is identically zero. To do this, take three independent
vectors and evaluate the number A’(ﬁa,ﬁb,ﬁc) There is some set of U''s for which this is non-zero,
otherwise A’ is identically zero and that’s not much fun. Now consider

Up, Ue i ,
o= ———r and define Ao=A—-aA

This function Ag is zero for the special argument: (¥,, U, Uc), and now I'll show why it is zero for all
arguments. That means that it is the zero function, and says that the two functions A and A’ are
proportional.

The vectors (U3, Up, Uc) are independent and there are three of them (in three dimensions). They
are a basis. You can write any vector as a linear combination of these. E.g.

U1 = Av, + Bty and Uy = C'Uy + Dy and
Put these (and let's say ¥;) into Ag.
Ao (1717 1727 Uc) = ACAO (1737 1737 Uc) + ADAO (27aa 77[3; 77c) + BCAO (Ub, Uay Q_fc) + BDAO (’[fb, ﬁb, 27c)

All these terms are zero. Any argument that you put into Ag is a linear combination of ¥, U}, and g,
and that means that this demonstration extends to any set of vectors, which in turn means that Ag
vanishes for any arguments. It is identically zero and that implies A and A’ are, up to a constant overall
factor, the same.

In N dimensions, a scalar-valued function of /N vector variables,
linear in each argument and antisymmetric under interchanging any
pairs of arguments, is unique up to a factor.

I've characterized this volume function A by two simple properties, and surprisingly enough this is
all you need to compute it in terms of the components of the operator! With just this much information
you can compute the determinant of a transformation.

Recall: 77 has for its components the first column of the matrix for the components of f, and
Uy forms the second column. Adding any multiple of one vector to another leaves the volume alone.
This is

A(??l, Uy + 05171, 173) = A("L_ﬁ, 172, 773) + aA (771, 171, 173) (7.43)
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and the last term is zero. Translate this into components. Use the common notation for a determinant,
a square array with vertical bars, but forget that you know how to compute this symbol! I'm going
to use it simply as a notation by keep track of vector manipulations. The numerical value will come
out at the end as the computed value of a volume. ¥; = f(&;) = > Jii €;, then A(Uy,v,73) =

A (T, s + ath, U3) =

fu fietafu fis fu fiz fis fu fu fis fuu fiz fis
for fotafa fu|=|fa foo fa|talfa fa fu|=|fa fo fs
f31 faa+afs fs3 f31 fz2 fa3 fs1 far fa3 f31 fz2 fa3

To evaluate this object, simply choose o to make the element fi2 + afi1 = 0. Then repeat the
operation, adding a multiple of the first column to the third, making the element fi3+ 8f11 = 0. This
operation doesn't change the original value of A (%, U, U3).

f11 0 0 fll 0 0
AUy, Uy + iy, U + B01) = | fr foo+afu fas+Bfa|=|fa fia fo
far faot+afsi faz+Bfa Ja1 fi2 i3

Repeat the process to eliminate f5;, adding 0y to the third argument, where v = — f}./ f4,.

fiu 0 0 fuu O 0 fiz 0 0
=\(Ja Joo Joz|=|Ja Joo Joztfua|=|fan [fi O (7.44)
Jar fi fis Ja1 fio faz+Sa far fio f33

Written in the last form, as a triangular array, the final result for the determinant does not depend
on the elements f31, f31, fi. They may as well be zero. Why? Just do the same sort of column
operations, but working toward the left. Eliminate f3; and fi, by adding a constant times the third
column to the first and second columns. Then eliminate fo; by using the second column. You don't
actually have to do this, you just have to recognize that it can be done so that you can ignore the lower
triangular part of the array.

Translate this back to the original vectors and A is unchanged:

A(Ty, 2, U3) = A(f11€1, foo €2, f33€3) = fi1[a2f33 A(€1, €2, €3)

The volume of the original box is A(€1, €, €3), so the quotient of the new volume to the old
one is

det = f11ff33 (7.45)

The fact that A is unique up to a constant factor doesn’t matter. Do you want to measure volume
in cubic feet, cubic centimeters, or cubic light-years? This algorithm is called Gauss elimination.
It's development started with the geometry and used vector manipulations to recover what you may
recognize from elsewhere as the traditional computed value of the determinant.

Did | leave anything out in this computation of the determinant? Yes, one point. What if
in Eq. (7.44) the number f}, = 0?7 You can't divide by it then. You can however interchange any
two arguments of A, causing simply a sign change. If this contingency occurs then you need only
interchange the two columns to get a component of zero where you want it. Just keep count of such
switches whenever they occur.

Trace
There's a property closely related to the determinant of an operator. It's called the trace. If you have
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an operator f, then consider the determinant of M = I +¢f, where [ is the identity. This combination
is very close to the identity if € is small enough, so its determinant is very close to one. How close?
The first order in € is called the trace of f, or more formally

T(f) = 4 et (I+e€f)

p (7.46)

e=0

Express this in components for a two dimensional case, and

(f):<‘cl 2) = det(uef):det(l:a ljb6d>:(1+ea)(1+ed)—e2bc (7.47)

The first order coefficient of € is a + d, the sum of the diagonal elements of the matrix. This is the
form of the result in any dimension, and the proof involves carefully looking at the method of Gauss
elimination for the determinant, remembering at every step that you're looking for only the first order
term in €. See problem 7.53.

7.8 Matrices as Operators
There's an important example of a vector space that I've avoided mentioning up to now. Example 5
in section 6.3 is the set of n-tuples of numbers: (a1, as,...,an). | can turn this on its side, call it a
column matrix, and it forms a perfectly good vector space. The functions (operators) on this vector
space are the matrices themselves.

When you have a system of linear equations, you can translate this into the language of vectors.

ar+by=e and cx+dy=[f — <Ccl fl)(i):(;)

Solving for x and y is inverting a matrix.

There's an aspect of this that may strike you as odd. This matrix is an operator on the vector
space of column matrices. What are the components of this operator? What? Isn't the matrix a set of
components already? That depends on your choice of basis. Take an example

1 2 . . 5 1 - 0
M—<3 4> with basis 61<0>, €2<1>

Compute the components as usual.

- 1 2 1 1 o -
i (3 1) (1)~ () -rmes

This says that the first column of the components of M in this basis are (1 ) What else would you

3
expect? Now select a different basis.
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0

It doesn’t look at all the same, but it represents the same operator. Does this matrix have the same
determinant, using Eq. (7.39)?

The components of M in this basis are <_52 _1>

Determinant of Composition

If you do one linear transformation followed by another one, that is the composition of the two functions,
each operator will then have its own determinant. What is the determinant of the composition? Let
the operators be F' and G. One of them changes areas by a scale factor det(F') and the other ratio of
areas is det((7). If you use the composition of the two functions, F'G or G'F', the overall ratio of areas
from the start to the finish will be the same:

det(F'G) = det(F) - det(G) = det(G) - det(F) = det(GF) (7.48)

Recall that the determinant measures the ratio of areas for any input area, not just a square; it can be
a parallelogram. The overall ratio of the product of the individual ratios, det(F") det(G). The product
of these two numbers is the total ratio of a new area to the original area and it is independent of the
order of F' and G, so the determinant of the composition of the functions is also independent of order.

Now what about the statement that the definition of the determinant doesn’'t depend on the
original area that you start with. To show this takes a couple of steps. First, start with a square that's
not at the origin. You can always picture it as a piece of a square that is at the origin. The shaded
square that is 1/16 the area of the big square goes over to a parallelogram that's 1/16 the area of the
big parallelogram. Same ratio.
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An arbitrary shape can be divided into a lot of squares. That's how you do an integral. The
image of the whole area is distorted, but it retains the fact that a square that was inside the original
area will become a parallelogram that is inside the new area. In the limit as the number of squares goes
to infinity you still maintain the same ratio of areas as for the single original square.
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7.9 Eigenvalues and Eigenvectors

There is a particularly important basis for an operator, the basis in which the components form a
diagonal matrix. Such a basis almost always* exists, and it's easy to see from the definition as usual
just what this basis must be.

N
F@) =" friés
k=1

* See section 7.12.
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To be diagonal simply means that fi; = 0 for all ¢ # k, and that in turn means that all but one term
in the sum disappears. This defining equation reduces to

f(&) = fiié; (with no sum this time) (7.49)

This is called an eigenvalue equation. It says that for any one of these special vectors, the operator f
on it returns a scalar multiple of that same vector. These multiples are called the eigenvalues, and the
corresponding vectors are called the eigenvectors. The eigenvalues are then the diagonal elements of
the matrix in this basis.

The inertia tensor is the function that relates the angular momentum of a rigid body to its
angular velocity. The axis of rotation is defined by those points in the rotating body that aren’'t moving,
and the vector & lies along that line. The angular momentum is computed from Eq. (7.3) and when
you've done all those vector products and integrals you can't really expect the angular momentum to
line up with & unless there is some exceptional reason for it. As the body rotates around the &J axis,
L will be carried with it, making L rotate about the direction of . The vector L is time-dependent
and that implies there will be a torque necessary to keep it going, T = d[_:/dt. Because L is rotating
with frequency w, this rotating torque will be felt as a vibration at this rotation frequency. If however
the angular momentum happens to be parallel to the angular velocity, the angular momentum will not
be changing; dﬁ/dt = 0 and the torque T = dE/dt will be zero, implying that the vibrations will be
absent. Have you ever taken your car in for servicing and asked the mechanic to make the angular
momentum and the angular velocity vectors of the wheels parallel? It's called wheel-alignment.

How do you compute these eigenvectors? Just move everything to the left side of the preceding

equation.
f(&)— fi€; =0, or  (f—ful)éi=0

I is the identity operator, output equals input. This notation is cumbersome. I'll change it.
fW)y=M < (f-AXD)Uv=0 (7.50)

A is the eigenvalue and ¥ is the eigenvector. This operator (f — AI) takes some non-zero vector into
the zero vector. In two dimensions then it will squeeze an area down to a line or a point. In three
dimensions it will squeeze a volume down to an area (or a line or a point). In any case the ratio of the
final area (or volume) to the initial area (or volume) is zero. That says the determinant is zero, and
that's the key to computing the eigenvectors. Figure out which \’s will make this determinant vanish.

Look back at section 4.9 and you'll see that the analysis there closely parallels what I'm doing
here. In that case | didn’t use the language of matrices or operators, but was asking about the possible
solutions of two simultaneous linear equations.

B B a b [(x\ _ (0
ar +by =0 and cx +dy =0, or (C d><y>_<0>

The explicit algebra there led to the conclusion that there can be a non-zero solution (z,y) to the two
equations only if the determinant of the coefficients vanishes, ad — bc = 0, and that's the same thing
that I'm looking for here: a non-zero vector solution to Eq. (7.50).

Write the problem in terms of components, and of course you aren't yet in the basis where the
matrix is diagonal. If you were, you're already done. The defining equation is f(¢) = A, and in
components this reads

f11 f12 f13 U1 U1
Z Trivi = Avg, or far fa2 o fos vy | = A v
e fa1 fa2 fa3 V3 V3
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Here | arbitrarily wrote the equation for three dimensions. That will change with the problem. Put
everything on the left side and insert the components of the identity, the unit matrix.

fuu fiz fis 1 00 U1 0
Jau fa2 faz | —-A|0 1 0 va | =10 (7.51)
f31 faz fa3 0 0 1 U3 0

The one way that this has a non-zero solution for the vector ¥’ is for the determinant of the whole matrix
on the left-hand side to be zero. This equation is called the characteristic equation of the matrix, and in
the example here that's a cubic equation in A. If it has all distinct roots, no double roots, then you're
guaranteed that this procedure will work, and you will be able to find a basis in which the components
form a diagonal matrix. If this equation has a multiple root then there is no guarantee. It may work, but
it may not; you have to look closer. See section 7.12. If the operator has certain symmetry properties
then it's guaranteed to work. For example, the symmetry property found in problem 7.16 is enough
to insure that you can find a basis in which the matrix for the inertia tensor is diagonal. It is even an
orthogonal basis in that case.

Example of Eigenvectors

To keep the algebra to a minimum, I'll work in two dimensions and will specify an arbitrary but simple
example:
— — — — — — . 2 1
fler) =26e1+ e, [f(€2) =262+ € with components M = 1 9 (7.52)

The eigenvalue equation is, in component form

()= 0) o [G) G ()= s

The condition that there be a non-zero solution to this is

o[ (2 1) A(L )] o=@

The solutions to this quadratic are A = 1, 3. For these values then, the apparently two equation for
the two unknowns v1 and vy are really one equation. The other is not independent. Solve this single
equation in each case. Take the first of the two linear equations for v; and vy as defined by Eq. (7.53).

21)1 + vy = )\Ul
A =1 implies Vg = —1, A = 3 implies Vo = U
The two new basis vectors are then
5/1 = (51 — gg) and 5/2 = (51 + 52) (754)

and in this basis the matrix of components is the diagonal matrix of eigenvalues.

1 0

0 3
If you like to keep your basis vectors normalized, you may prefer to say that the new basis is (€1 —€5)/v/2
and (€1 + €)/v/2. The eigenvalues are the same, so the new matrix is the same.
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Example: Coupled Oscillators
Another example drawn from physics: Two masses are connected to a set of springs and fastened
between two rigid walls. This is a problem that appeared in chapter 4, Eq. (4.45).

m1d2x1/dt2 = —k?ll'l — ]{?3(.1’1 — 112), and MQd2ZL'2/dt2 = —k)g[Eg — k3($2 — 5(71)
The exponential form of the solution was
z1(t) = Ae™t xy(t) = Be™?

The algebraic equations that you get by substituting these into the differential equations are a
pair of linear equations for A and B, Eq. (4.47). In matrix form these equations are, after rearranging

some minus signs,
k1 + k3 —k3 A — W2 m 0 A
—ks ko + ks B 0 mo B

You can make it look more like the previous example with some further arrangement

ki + k3 —ks W2 mi 0 A (0

—ks ko + ks 0 me B) \0
The matrix on the left side maps the column matrix to zero. That can happen only if the matrix has
zero determinant (or the column matrix is zero). If you write out the determinant of this 2 x 2 matrix

you have a quadratic equation in w?. It's simple but messy, so rather than looking first at the general
case, look at a special case with more symmetry. Take m; = my = m and ky = ks.

k1 + ks —k3 2 1 0 R 212 2
det[( ey k1+k3)—wm<0 1)]—0—(k1+k3—mw) — k3

This is now so simple that you don't even need the quadratic formula; it factors directly.
(k1 + ks — mw® — k3) (k1 + ks — mw® + k3) =0
The only way that the product of two numbers is zero is if one of the numbers is zero, so either
ki —mw?=0 or ki + 2ks —mw? =0

This determines two possible frequencies of oscillation.

k1 /{1—1—2]€3
wy =14/ — and Wy = |/ ——=>
m m

You're not done yet; these are just the eigenvalues. You still have to find the eigenvectors and then go
back to apply them to the original problem. This is F' = mda after all. Look back to section 4.10 for
the development of the solutions.



7—Operators and Matrices 165

7.10 Change of Basis

In many problems in physics and mathematics, the correct choice of basis can enormously simplify a
problem. Sometimes the obvious choice of a basis turns out in the end not to be the best choice, and
you then face the question: Do you start over with a new basis, or can you use the work that you've
already done to transform everything into the new basis?

For linear transformations, this becomes the problem of computing the components of an operator
in a new basis in terms of its components in the old basis.

First: Review how to do this for vector components, something that ought to be easy to do. The
equation (7.5) defines the components with respect to a basis, any basis. If | have a second proposed
basis, then by the definition of the word basis, every vector in that second basis can be written as a
linear combination of the vectors in the first basis. I'll call the vectors in the first basis, €; and those in
the second basis €7, for example in the plane you could have

€1 =%, €é=7, and €1 =22+057, €,=052+2] (7.55)
Each vector é’g is a linear combination* of the original basis vectors:

€ =S(e) =) _ Sji€ (7.56)
j

This follows the standard notation of Eq. (7.6); you have to put the indices in this order in order to
make the notation come out right in the end. One vector expressed in two different bases is still one

vector, so
— ] =/ —
V= E V€5 = E V;€;
7 7

and I'm using the fairly standard notation of v} for the i*" component of the vector ¥ with respect to
the second basis. Now insert the relation between the bases from the preceding equation (7.56).

U= v ), 85if; =) i€
i J

and this used the standard trick of changing the last dummy label of summation from ¢ to j so that it
is easy to compare the components.

Z Sjiv; = v or in matrix notation (D) = (), = @)= (S)"(v)

Similarity Transformations
Now use the definition of the components of an operator to get the components in the new basis.

f(e3) = - Z J{ié’;
J
F(D8585) = D S5f (€) = 22 85 - frg = 22 S D Sy
j j T T

* There are two possible conventions here. You can write €% in terms of the €, calling the

coefficients .Sj;, or you can do the reverse and call those components Sj;. [€; = S(€7)] Naturally, both
conventions are in common use. The reverse convention will interchange the roles of the matrices S
and S~ in what follows.
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The final equation comes from the preceding line. The coefficients of €}, must agree on the two sides
of the equation.
/
> Sjifes =D FjiSks
J J
Now rearrange this in order to place the indices in their conventional [\, column Order.

Z Skifii = Z friSji

¢ s ’ o g (7.57)
(s s) O )= Chr ) (s &2)

In turn, this matrix equation is usually written in terms of the inverse matrix of .S,
S =S s (f) =SS (7.58)
and this is called a similarity transformation. For the example Eq. (7.55) this is
€1 =22+0.57 = 5S11€1 + S9165

which determines the first column of the matrix (), then €7, determines the second column.

9= %) we @ =g hs V)

Eigenvectors

In defining eigenvalues and eigenvectors | pointed out the utility of having a basis in which the com-
ponents of an operator form a diagonal matrix. Finding the non-zero solutions to Eq. (7.50) is then
the way to find the basis in which this holds. Now I've spent time showing that you can find a matrix
in a new basis by using a similarity transformation. Is there a relationship between these two subjects?
Another way to ask the question: |'ve solved the problem to find all the eigenvectors and eigenvalues,
so what is the similarity transformation that accomplishes the change of basis (and why is it necessary
to know it if | already know that the transformed, diagonal matrix is just the set of eigenvalues, and |
already know them)?

For the last question, the simplest answer is that you don’t need to know the explicit transforma-
tion once you already know the answer. It is however useful to know that it exists and how to construct
it. If it exists — I'll come back to that presently. Certain manipulations are more easily done in terms
of similarity transformations, so you ought to know how they are constructed, especially because almost
all the work in constructing them is done when you've found the eigenvectors.

The equation (7.57) tells you the answer. Suppose that you want the transformed matrix to be
diagonal. That means that fi, = 0 and f5; = 0. Write out the first column of the product on the

right.
(f ) (80 52) — (B 22)(30)

This equals the first column on the left of the same equation

/ S
i (5;)
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This is the eigenvector equation that you've supposedly already solved. The first column of the com-
ponent matrix of the similarity transformation is simply the set of components of the first eigenvector.
When you write out the second column of Eq. (7.57) you'll see that it's the defining equation for the
second eigenvector. You already know these, so you can immediately write down the matrix for the
similarity transformation.

For the example Eq. (7.52) the eigenvectors are given in Eq. (7.54). In components these are

= 1 ) 1 . ) - 1 1
el—><_1), and 62—>(1>, implying S_<_1 1>
The inverse to this matrix is )
/i1 -1
S (1 1

You should verify that S~'M S is diagonal.

7.11 Summation Convention

In all the manipulation of components of vectors and components of operators you have to do a lot of
sums. There are so many sums over indices that a convention* was invented (by Einstein) to simplify
the notation.

A repeated index in a term is summed.

Eq. (7.6) becomes f(€;) = fri€k-
Eq. (7.8) becomes u; = fy;v;.
Eq. (7.26) becomes hy; = fi.;9ji-
IM = M becomes d;; M3, = M.
What if there are three identical indices in the same term? Then you made a mistake; that can't
happen. What about Eq. (7.49)? That has three indices. Yes, and there | explicitly said that there is
no sum. This sort of rare case you have to handle as an exception.

7.12 Can you Diagonalize a Matrix?

At the beginning of section 7.9 | said that the basis in which the components of an operator form a
diagonal matrix “almost always exists.” There's a technical sense in which this is precisely true, but
that's not what you need to know in order to manipulate matrices; the theorem that you need to have
is that every matrix is the limit of a sequence of diagonalizable matrices. If you encounter a matrix that
cannot be diagonalized, then you can approximate it as closely as you want by a matrix that can be
diagonalized, do your calculations, and finally take a limit. You already did this if you did problem 4.11,
but in that chapter it didn't look anything like a problem involving matrices, much less diagonalization
of matrices. Yet it is the same.

1 2
(b 1)

Take the matrix
You can't diagonalize this. If you try the standard procedure, here is what happens:

1 2\ /(v _ [ n I-x 2 0 2
(2 (3)or(3) e (1,2 0m0

The resulting equations you get for A =1 are

Ovi +2v9 =0 and 0=0

* There is a modification of this convention that appears in chapter 12, section 12.5
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This provides only one eigenvector, a multiple of (é) You need two for a basis.

Change this matrix in any convenient way to make the two roots of the characteristic equation
different from each other. For example,
_(1+e€ 2
= (1)

1+e—N1-N)=0

The eigenvalue equation is now

and the resulting equations for the eigenvectors are
A=1: ev;+2v3=0, 0=0 A=1+4+¢€: 001 +203=0, €evy=0

Now you have two distinct eigenvectors,

1 1
A=1: (_6/2>, and A=1+¢€: <O>

You see what happens to these vectors as € — 0.

Differential Equations at Critical
Problem 4.11 was to solve the damped harmonic oscillator for the critical case that b> — 4km = 0.

d’x dx

Write this as a pair of equations, using the velocity as an independent variable.

dr q dv, k b
dft—Ux an dit—_%x_avx

In matrix form, this is a matrix differential equation.

it (5.) = (i ) (02)

This is a linear, constant-coefficient differential equation, but now the constant coefficients are matrices.
Don’t let that slow you down. The reason that an exponential form of solution works is that the
derivative of an exponential is an exponential. Assume such a solution here.

<72) _ (é) cot giving  « (é) et — <—k0/m —bl/m> (é) cot (7.60)

When you divide the equation by e®, you're left with an eigenvector equation where the eigenvalue
is a. As usual, to get a non-zero solution set the determinant of the coefficients to zero and the
characteristic equation is

det(?k_/% _b/ﬂll_a> — a(a+b/m)+ k/m =0
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with familiar roots

a=(-bxt b2 —4km)/2m

If the two roots are equal you may not have distinct eigenvectors, and in this case you do not. No
matter, you can solve any such problem for the case that b?> — 4km # 0 and then take the limit as this
approaches zero.

The eigenvectors come from the either one of the two equations represented by Eq. (7.60). Pick

the simpler one, ®A = B. The column matrix (g) is then A <;>

@C) )=A, <O}+) et LA (;_) ot

Pick the initial conditions that x(0) = 0 and v;(0) = vy. You must choose some initial conditions in
order to apply this technique. In matrix terminology this is

()= () ()

These are two equations for the two unknowns

A+ + A_ = O, Oé_t,_A_t,_ + a_A_ = Vo, SO A+ = A_ = —A+

oy —a’

(o) o=aa () ()

If you now take the limit as b?> — 4km, or equivalently as ar_ — v, this expression is just the definition

of a derivative.
T d (1Y ot tet b
(Ux>(t)—>voda<a>e _UO<(1+at)eat> a=—5— (7.61)

7.13 Eigenvalues and Google

The motivating idea behind the search engine Google is that you want the first items returned by a
search to be the most important items. How do you do this? How do you program a computer to
decide which web sites are the most important?

A simple idea is to count the number of sites that contain a link to a given site, and the site that
is linked to the most is then the most important site. This has the drawback that all links are treated
as equal. If your site is referenced from the home page of Al Einstein, it counts no more than if it's
referenced by Joe Blow. This shouldn’t be.

A better idea is to assign each web page a numerical importance rating. If your site, #1, is
linked from sites #11, #59, and #182, then your rating, x1, is determined by adding those ratings
(and multiplying by a suitable scaling constant).

T = C($11 + Ts9 + 35182)
Similarly the second site's rating is determined by what links to it, as

To = C($137 + X157983 + L1 + $876)
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But this assumes that you already know the ratings of the sites, and that’s what you're trying to find!
Write this in matrix language. Each site is an element in a huge column matrix {z;}.

\ IR R EAYE
€T; = CE;O&ZJZ'J or $.2 = C 0 101 1 x.2
j= :

An entry of 1 indicates a link and a 0 is no link. This is an eigenvector problem with the eigenvalue
A = 1/C, and though there are many eigenvectors, there is a constraint that lets you pick the right
one. All the z;s must be non-negative, and there's a theorem (Perron-Frobenius) guaranteeing that
you can find such an eigenvector. This algorithm is a key idea behind Google's ranking methods. They
have gone well beyond this basic technique of course, but the spirit of the method remains.

See www-db.stanford.edu/~backrub/google.html for more on this.

7.14 Special Operators

Symmetric

Antisymmetric

Hermitian

Antihermitian

Orthogonal

Unitary

Idempotent

Nilpotent

Self-adjoint

In no particular order of importance, these are names for special classes of operators. It is often

the case that an operator defined in terms of a physical problem will be in some way special, and it's
then worth knowing the consequent simplifications. The first ones involve a scalar product.

Symmetric: (u,S(v)) =(S(u),v)
Antisymmetric: (U, A(0)) = —(A(u),7)

The inertia operator of Eq. (7.3) is symmetric.
@) = /dex (@ x ) satisfies (@, [(@2)) = B - (@) = (I(@1), B2 ) = I(&1) - @
Proof: Plug in.
Gy (@) = & -/dex (@ % 7) :@1-/dm (G272 — (@ 7))
- /dm [G1 - Gor? — (@1 -F) (G2 - 7)] = 1(@1) - @

What good does this do? You will be guaranteed that all eigenvalues are real, all eigenvectors are
orthogonal, and the eigenvectors form an orthogonal basis. In this example, the eigenvalues are moments
of inertia about the axes defined by the eigenvectors, so these moments better be real. The magnetic
field operator (problem 7.28) is antisymmetric.

Hermitian operators obey the same identity as symmetric: (4, H(V')) = (H(@),0). The
difference is that in this case you allow the scalars to be complex numbers. That means that the scalar
product has a complex conjugation implied in the first factor. You saw this sort of operator in the


http://www-db.stanford.edu/~backrub/google.html
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chapter on Fourier series, section 5.3, but it didn't appear under this name. You will become familiar
with this class of operators when you hit quantum mechanics. Then they are ubiquitous. The same
theorem as for symmetric operators applies here, that the eigenvalues are real and that the eigenvectors
are orthogonal.

Orthogonal operators satisfy (O(u),O(v')) = (u,7). The most familiar example is rotation.
When you rotate two vectors, their magnitudes and the angle between them do not change. That's all
that this equation says — scalar products are preserved by the transformation.

Unitary operators are the complex analog of orthogonal ones: (U (), U(7)) = (u, ), but all
the scalars are complex and the scalar product is modified accordingly.

The next couple you don't see as often. Idempotent means that if you take the square of the
operator, it equals the original operator.

Nilpotent means that if you take successive powers of the operator you eventually reach the
zero operator.

Self-adjoint in a finite dimensional vector space is exactly the same thing as Hermitian. In
infinite dimensions it is not, and in quantum mechanics the important operators are the self-adjoint
ones. The issues involved are a bit technical. As an aside, in infinite dimensions you need one extra
hypothesis for unitary and orthogonal: that they are invertible.
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Problems

7.1 Draw a picture of the effect of these linear transformations on the unit square with vertices at
(0,0), (1,0), (1,1), (0,1). The matrices representing the operators are

1 2 1 -2 -1 2
@ (33) o 3 @3
Is the orientation preserved or not in each case? See the figure at the end of section 7.7

7.2 Using the same matrices as the preceding question, what is the picture resulting from doing (a)
followed by (c)? What is the picture resulting from doing (c) followed by (a)? The results of section
7.4 may prove helpful.

7.3 Look again at the parallelogram that is the image of the unit square in
the calculation of the determinant. In Eq. (7.39) | used the cross product to (a+0, ¢+ d)
get its area, but sometimes a brute-force method is more persuasive. If the :

. a b :
transformation has components (c d) The corners of the parallelogram ey T

that is the image of the unit square are at (0,0), (a,c), (a +b,c+d), |/ (ajc):
(b,d). You can compute its area as sums and differences of rectangles and : —
triangles. Do so; it should give the same result as the method that used a

cross product.

7.4 In three dimensions, there is an analogy to the geometric interpretation of the cross product as the
area of a parallelogram. The triple scalar product A- B x C is the volume of the parallelepiped having
these three vectors as edges. Prove both of these statements starting from the geometric definitions
of the two products. That is, from the AB cosf and AB sin @ definitions of the dot product and the
magnitude of the cross product (and its direction).

7.5 Derive the relation ¥ = & x 7 for a point mass rotating about an axis. Refer to the figure before
Eq. (7.2).

7.6 You have a mass attached to four springs in a plane and that are in turn attached to four walls as
on page 145; the mass is at equilibrium. Two opposmg spring have spring constant k; and the other
two are ky. Push on the mass with a (small) force F and the resulting displacement of m is d= f(F )
defining a linear operator. Compute the components of f in an obvious basis and check a couple of
special cases to see if the displacement is in a plausible direction, especially if the two k's are quite
different.

7.7 On the vector space of quadratic polynomials, degree < 2, the operator d/dz is defined: the
derivative of such a polynomial is a polynomial. (@) Use the basis ¢y = 1, €; = x, and & = 2
and compute the components of this operator. (b) Compute the components of the operator d*/dx?.
(c) Compute the square of the first matrix and compare it to the result for (b). Ans: (a)? = (b)

7.8 Repeat the preceding problem, but look at the case of cubic polynomials, a four-dimensional space.

7.9 In the preceding problem the basis 1, x, 22, 23 is too obvious. Take another basis, the Legendre
polynomials:

Py(x) =1, Pi(x) ==, Py(x) = gxz — %, Py(x) = 2753 — §x
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and repeat the problem, finding components of the first and second derivative operators. Verify an
example explicitly to check that your matrix reproduces the effect of differentiation on a polynomial of
your choice. Pick one that will let you test your results.

7.10 What is the determinant of the inverse of an operator, explaining why?
Ans: 1/ det(original operator)

7.11 Eight identical point masses m are placed at the corners of a cube that has one corner at the origin
of the coordinates and has its sides along the axes. The side of the cube is length = a. In the basis that
is placed along the axes as usual, compute the components of the inertia tensor. Ans: I;; = 8ma?

7.12 For the dumbbell rotating about the off-axis axis in Eq. (7.19), what is the time-derivative of L?
In very short time dt, what new direction does L take and what then is dL? That will tell you dL/dt
Prove that this is & x L.

7.13 A cube of uniform volume mass density, mass m, and side a has one corner at the origin of
the coordinate system and the adjacent edges are placed along the coordinate axes. Compute the
components of the tensor of inertia. Do it (a) directly and (b) by using the parallel axis theorem to
check your result.
2/3 —1/4 —1/4
Ans:ma? | —1/4  2/3 —1/4
-1/4 -1/4 2/3

7.14 Compute the cube of Eq. (7.13) to find the trigonometric identities for the cosine and sine of
triple angles in terms of single angle sines and cosines. Compare the results of problem 3.9.

7.15 On the vectors of column matrices, the operators are matrices. For the two dimensional case take

a b N . (1 1
M = (c d) and find its components in the basis (1> and <_1).

What is the determinant of the resulting matrix? Ans: Mj; = (a+b+ ¢+ d)/2, and the determinant
is still ad — bc.

7.16 Show that the tensor of inertia, Eq. (7.3), satisfies &y - [(W2) = I(&1) 2. What does this
identity tell you about the components of the operator when you use the ordinary orthonormal basis?
First determine in such a basis what €1 - I(€3) is

7.17 Use the definition of the center of mass to show that the two cross terms in Eq. (7.21) are zero.
7.18 Prove the Perpendicular Axis Theorem. This says that for a mass that lies flat in a plane, the
moment of inertia about an axis perpendicular to the plane equals the sum of the two moments of

inertia about the two perpendicular axes that lie in the plane and that intersect the third axis.

7.19 Verify in the conventional, non-matrix way that Eq. (7.61) really does provide a solution to the
original second order differential equation (7.59).

7.20 The Pauli spin matrices are

0 1 0 —i 10
w=(Va) (7)) ()
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Show that 0,0y = 10, and the same for cyclic permutations of the indices x, y, 2. Compare the
products 0,0y and 0y0; and the other pairings of these matrices.

7.21 Interpret 7 - A as 0z Ay +0oyAy + 0. A, and prove that
G-AG-B=A-B+id-AxB
where the first term on the right has to include the identity matrix for this to make sense.

7.22 Evaluate the matrix

Evaluate this by two methods: (a) You may assume that A'is in some sense small enough for you to
manipulate by infinite series methods. This then becomes a geometric series that you can sum. Use
the results of the preceding problem.

(b) You can manipulate the algebra directly without series. | suggest that you recall the sort of
manipulation that allows you to write the complex number 1/(1—4) without any i's in the denominator.
| suppose you could do it a third way, writing out the 2 x 2 matrix and explicitly inverting it, but |
definitely don’t recommend this.

7.23 Evaluate the sum of the infinite series defined by e~y Where have you seen this result before?
The first term in the series must be interpreted as the identity matrix. Ans: I cosf — ioy sin )

7.24 For the moment of inertia about an axis, the integral is fri_ dm. State precisely what this m
function must be for this to make sense as a Riemann-Stieltjes integral, Eq. (1.28). For the case that
you have eight masses, all mg at the 8 corners of a cube of side a, write explicitly what this function
is and evaluate the moment of inertia about an axis along one edge of the cube.

7.25 The summation convention allows you to write some compact formulas. Evaluate these, assuming
that you're dealing with three dimensions. Note Eq. (7.30). Define the alternating symbol €;;;. to be
1:1t is totally anti-symmetric. That is, interchange any two indices and you change the sign of the
value.

2: €193 = 1. [Eg €132 = —1, €319 = -I—l]

0is  €ijkA;Br, i€k, OmnAmBn,  SmnUmUn,  UnUn,
€ijk€mnk = OimOjn — Oinljm
Multiply the last identity by A;B;;,Cy, and interpret.
7.26 The set of Hermite polynomials starts out as
Hy=1, H, =2z, Hy =42 — 2, Hs =8x® — 12z, Hy = 162 — 4822 + 12,

(a) For the vector space of cubic polynomials in x, choose a basis of Hermite polynomials and compute
the matrix of components of the differentiation operator, d/dx.

(b) Compute the components of the operator d?/dz? and show the relation between this matrix and
the preceding one.

7.27 On the vector space of functions of x, define the translation operator

Tof =9 means  g(z)=f(z—a)
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This picks up a function and moves it by a to the right.

(a) Pick a simple example function f and test this definition graphically to verify that it does what |
said.

(b) On the space of cubic polynomials and using a basis of your choice, find the components of this
operator.

(c) Square the resulting matrix and verify that the result is as it should be.

(d) What is the inverse of the matrix? (You should be able to guess the answer and then verify it. Or
you can work out the inverse the traditional way.)

(e) What if the parameter a is huge? Interpret some of the components of this first matrix and show
why they are clearly correct. (If they are.)

(f) What is the determinant of this operator?

(g) What are the eigenvectors and eigenvalues of this operator?

7.28 The force by a magnetic field on a moving charge is F= quU X B. The operation U x B defines
a linear operator on ¥, stated as f(v') = U’ x B. What are the components of this operator expressed
in terms of the three components of the vector B? What are the eigenvectors and eigenvalues of this
operator? For this last part, pick the basis in which you want to do the computations. If you're not
careful about this choice, you are asking for a lot of algebra. Ans: eigenvalues: 0, +18

7.29 In section 7.8 you have an operator M expressed in two different bases. What is its determinant
computed in each basis?

7.30 In a given basis, an operator has the values
A(éi) = 51 + 352 and A(gg) = 251 + 454

(a) Draw a picture of what this does. (b) Find the eigenvalues and eigenvectors and determinant of A
and see how this corresponds to the picture you just drew.

7.31 The characteristic polynomial of a matrix M is det(M — AI). [ is the identity matrix and A is
the variable in the polynomial. Write the characteristic polynomial for the general 2 x 2 matrix. Then
in place of A in this polynomial, put the matrix M itself. The constant term will have to include the
factor I as usual. For this 2 x 2 case verify the Cayley-Hamilton Theorem, that the matrix satisfies its
own characteristic equation, making this polynomial in M the zero matrix.

7.32 (a) For the magnetic field operator defined in problem 7.28, place 2 = €3 along the direction of

B. Then take &) = (£ —i9)/v/2, €2 = (£ +i§)/+/2 and find the components of the linear operator
representing the magnetic field. (b) A charged particle is placed in this field and the equations of

motion are ma = I' = v x B. Translate this into the operator language with a matrix like that of

problem 7.28, and write F = md in this language and this basis. Ans: (part) mi; = —iqBry, where
r = (x +1iy)/V2. miy = +igBrs, where 13 = (x — iy)/V/2.

7.33 For the operator in problem 7.27 part (b), what are the eigenvectors and eigenvalues?

7.34 A nilpotent operator was defined in section 7.14. For the operator defined in problem 7.8, show
that it is nilpotent. How does this translate into the successive powers of its matrix components?

7.35 A cube of uniform mass density has side a and mass m. Evaluate its moment of inertia about an
axis along a longest diagonal of the cube. Note: If you find yourself entangled in a calculation having
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multiple integrals with hopeless limits of integration, toss it out and start over. You may even find
problem 7.18 useful. Ans: ma?/6

7.36 Show that the set of all 2 x 2 matrices forms a vector space. Produce a basis for it, and so what
is its dimension?

7.37 In the vector space of the preceding problem, the following transformation defines an operator.
f(M) = SMS~!. For S, use the rotation matrix of Eq. (7.13) and compute the components of this
operator f. The obvious choice of basis would be matrices with a single non-zero element 1. Instead,
try the basis I, 0, 0y, 0,. Ans: A rotation by 2c about the y-axis, e.g. f(€1) = €; cos 2ac— €3 sin 20v.

7.38 What are the eigenvectors and eigenvalues of the operator in the preceding problem? Now you'll
be happy | suggested the basis that | did.

7.39 (a) The commutator of two matrices is defined to be [A,B] = AB — BA. Show that this
commutator satisfies the Jacobi identity.

[A,[B,CNI+[B,[C, Al +[C,[A, B]] = 0

(b) The anti-commutator of two matrices is {A, B} = AB 4+ BA. Show that there is an identity like
the Jacobi identity, but with one of the two commutators (the inner one or the outer one) replaced by
an anti-commutator. I'll leave it to you to figure out which.

7.40 Diagonalize each of the Pauli spin matrices of problem 7.20. That is, find their eigenvalues and
specify the respective eigenvectors as the basis in which they are diagonal.

7.41 What are the eigenvalues and eigenvectors of the rotation matrix Eq. (7.13)? Translate the answer
back into a statement about rotating vectors, not just their components.

7.42 Same as the preceding problem, but replace the circular trigonometric functions in Eq. (7.13)
with hyperbolic ones. Also change the sole minus sign in the matrix to a plus sign. Draw pictures of
what this matrix does to the basis vectors. What is its determinant?

7.43 Compute the eigenvalues and eigenvectors of the matrix Eq. (7.18). Interpret each.

7.44 Look again at the vector space of problem 6.36 and use the basis f1, f2, f3 that you constructed
there. (@) In this basis, what are the components of the two operators described in that problem?

(b) What is the product of these two matrices? Do it in the order so that it represents the composition
of the first rotation followed by the second rotation.

(c) Find the eigenvectors of this product and from the result show that the combination of the two
rotations is a third rotation about an axis that you can now specify. Can you anticipate before solving
it, what one of the eigenvalues will be?

(d) Does a sketch of this rotation axis agree with what you should get by doing the two original rotations
in order?

7.45 Verify that the Gauss elimination method of Eq. (7.44) agrees with (7.38).
7.46 What is the determinant of a nilpotent operator? See problem 7.34.

7.47 (a) Recall (or look up) the method for evaluating a determinant using cofactors (or minors). For
2x2, 3x3, and in fact, for Nx N arrays, how many multiplication operations are required for this.
Ignore the time to do any additions and assume that a computer can do a product in 10710 seconds.
How much time does it take by this method to do the determinant for 10x10, 20x20, and 30x30
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arrays? Express the times in convenient units.

(b) Repeat this for the Gauss elimination algorithm at Eq. (7.44). How much time for the above three
matrices and for 100100 and 1000x 10007 Count division as taking the same time as multiplication.
Ans: For the first method, 30x30 requires 10 000xage of universe. For Gauss it is 3 us.

7.48 On the vector space of functions on 0 < x < L, (a) use the basis of complex exponentials,
Eq. (5.20), and compute the matrix components of d/d.
(b) Use the basis of Eq. (5.17) to do the same thing.

7.49 Repeat the preceding problem, but for d?/dxz?. Compare the result here to the squares of the
matrices from that problem.

7.50 Repeat problem 7.27 but using a different vector space of functions with basis

(a) enmix/L (n =0, £1, £2,..))

(b) cos(nmz/L), and sin(mmx/L).

These functions will be a basis in the set of periodic functions of x, and these will be very big matrices.

7.51 (a) What is the determinant of the translation operator of problem 7.277
(b) What is the determinant of d/dz on the vector space of problem 7.267

7.52 (a) Write out the construction of the trace in the case of a three dimensional operator, analogous
to Eq. (7.47). What are the coefficients of €2 and €37 (b) Back in the two dimensional case, draw a
picture of what (I 4 €f) does to the basis vectors to first order in €.

7.53 Evaluate the trace for arbitrary dimension. Use the procedure of Gauss elimination to compute
the determinant, and note at every step that you are keeping terms only through €? and €!. Any higher
orders can be dropped as soon as they appear. Ans: sz\il fii

7.54 The set of all operators on a given vector space forms a vector space.* (Show this.) Consider
whether you can or should restrict yourself to real numbers or if you ought to be dealing with complex
scalars.

Now what about the list of operators in section 7.14. Which of them form vector spaces?

Ans: Yes(real), Yes(real), No, No, No, No, No, No, No

7.55 In the vector space of cubic polynomials, choose the basis

—

€y =1, €1 =1+ux, €y =14+ 22, Gy =14x+ 2%+

In this basis, compute the matrix of components of the operator P, where this is the parity operator,
defined as the operator that takes the variable = and changes it to —z. For example P(¢1) =1 — .
Compute the square of the resulting matrix. What is the determinant of P? If you had only the
quadratic polynomials with basis €y, €1, €2, what is the determinant? What about linear polynomials,
with basis €y, €7 Maybe even constant polynomials?

7.56 On the space of quadratic polynomials define an operator that permutes the coefficients: f(z) =
ax® +bx + ¢, then Of = g has g(x) = bx? + cx + a. Find the eigenvalues and eigenvectors of this
operator.

* If you're knowledgeable enough to recognize the difficulty caused by the question of domains,
you'll recognize that this is false in infinite dimensions. But if you know that much then you don’t need
to be reading this chapter.
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7.57 The results in Eq. (7.36) is a rotation about some axis. Where is it? Notice that a rotation about
an axis leaves the axis itself alone, so this is an eigenvector problem. If it leaves the vector alone, you
even know what the eigenvalue is, so you can easily find the vector. Repeat for the other rotation,
found in Eq. (7.37) Ans: €1 + €5 — €3

7.58 Find the eigenvectors and eigenvalues of the matrices in problem 7.1.



Multivariable Calculus

The world is not one-dimensional, and calculus doesn’t stop with a single independent variable. The
ideas of partial derivatives and multiple integrals are not too different from their single-variable coun-
terparts, but some of the details about manipulating them are not so obvious. Some are downright
tricky.

8.1 Partial Derivatives
The basic idea of derivatives and of integrals in two, three, or more dimensions follows the same pattern
as for one dimension. They're just more complicated.
The derivative of a function of one variable is defined as
df(z) .. = flz+Azx) - f(z)

dr Aligo Az (8.1)

You would think that the definition of a derivative of a function of z and y would then be defined as

8f(x,y) lim f(I—i—AZE,y)—f(ZL’,y)

or  Az—0 Az

(8.2)

and more-or-less it is. The O notation instead of d is a reminder that there are other coordinates floating
around that are temporarily being treated as constants.

In order to see why | used the phrase “more-or-less,” take a very simple example: f(x,y) = v.
Use the preceding definition, and because y is being held constant, the derivative 0f/0x = 0. What
could be easier?

| don't like these variables so I'll switch to a different set of coordinates, =’ and ¥':

Y =x+y  and ¥ =ux

What is O f /0x’ now?
flr,y)=y=y —z=y -2

Now the derivative of f with respect to ' is —1, because I'm keeping the other coordinate fixed. Or is
the derivative still zero because ' = x and I'm taking 0 f /0z and why should that change just because
I'm using a different coordinate system?

The problem is that the notation is ambiguous. When you see 0f/Ox it doesn’t tell you what
to hold constant. Is it to be y or 3/ or yet something else? In some contexts the answer is clear and
you won't have any difficulty deciding, but you've already encountered cases for which the distinction
is crucial. In thermodynamics, when you add heat to a gas to raise its temperature does this happen at
constant pressure or at constant volume or with some other constraint? The specific heat at constant
pressure is not the same as the specific heat at constant volume; it is necessarily bigger because during
an expansion some of the energy has to go into the work of changing the volume. This sort of derivative
depends on type of process that you're using, and for a classical ideal gas the difference between the
two molar specific heats obeys the equation

Cp—CU:R

If the gas isn't ideal, this equation is replaced by a more complicated and general one, but the same
observation applies, that the two derivatives d()/dT aren't the same.

179
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In thermodynamics there are so many variables in use that there is a standard notation for a
partial derivative, indicating exactly which other variables are to be held constant.

ou nd U
o), ° v ) p

represent the change in the internal energy of an object per change in volume during processes in which
respectively the temperature and the pressure are held constant. In the previous example with the

function f =y, this says
@) 0 (),
Xz y T Y

This notation is a way to specify the direction in the z-y plane along which you're taking the derivative.

8.2 Chain Rule
For functions of one variable, the chain rule allows you to differentiate with respect to still another
variable: y a function of & and x a function of ¢ allows

dy _ dyde
dt — dz dt
You can derive this simply from the definition of a derivative.

Ay y(z(t+ At)) — y(z(t))

(8.3)

At At
Cy(zt+AY) —y(o(t) x(t+At)—z(t) Ay Az
Tzt A —x(t) At VNN

Take the limit of this product as At — 0. Necessarily then you have that Ax — 0 too (unless the
derivative doesn't exist anyway). The second factor is then the definition of the derivative dx/dt, and
the first factor is the definition of dy/dz. The Leibnitz notation as written in Eq. (8.3) leads you to
the required proof.

What happens with more variables? Roughly the same thing but with more manipulation, the
same sort of manipulation that you use to derive the rule for differentiating more complicated functions
of one variable (as in section 1.5).

Compute jtf(x(t), y(t))

Back to the A’s. The manipulation is much like the preceding except that you have to add and subtract
a term in the second line.

Af fz(t+ At),y(t+ At)) — f(x(t),y(t))
At At

_ [+ A,y + A1) — f2(t), y(t+ AY) + f(2(t), y(t + A1) — f(2(t),y()

At
_ flat+ A, y(t + AY) — f(x), y(t + A)) x(t + At) — x(t)
B z(t+ At) — 2(t) ' At
L Fe®),y+ AD) = f(2(t),y(®)  y(t+ AL —y(D)
y(t + At) —y(1) At

Af Az Af Ay

T Ar At T Ay At
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In the first factor of the first term, A f/Ax, the variable x is changed but y is not. In the first factor
of the second term, the reverse holds true. The limit of this expression is then

LAf_d_(OFY do | (0F) dy
Alzltgloﬂ dt <8x>y at " <8y>m dt (8.4)

If these manipulations look familiar, it's probably because they mimic the procedures of section 1.5.
That case is like this one, with the special values x =y = t.

Example: (When you want to check out an equation, you should construct an example so that
it reveals a lot of structure without requiring a lot of calculation.)

f(z,y) = Axzy?, and z(t) = Ct3, y(t) = Dt?
First do it using the chain rule.
df  (0f\ dx af\ dy
i - (ax)ydﬁ (ay)xdt
= (Ay?) (3Ct?) + (2Axy) (2Dt)
= (A(Dt?)?) (3Ct?) + (2A(Ct*)(Dt?)) (2Dt)

= 7TACD*t®
Now repeat the calculation by first substituting the values of z and y and then differentiating.
d _d 3 22
a7 = g LACE)(DE)’]
_d 247
= %[ACD t ]
= 7TACD?*t°
What if f also has an explicit ¢ in it: f(t, x(t), y(t))? That simply adds another term. Remem-
ber, dt/dt = 1.
df <af> <8f> dx <3f> dy
- =\ a7 + | 5= — +t |5 - 8.5
dt ot 2 ox yt dt Oy )y di (8:5)

Sometimes you see the chain rule written in a slightly different form. You can change coordinates
from (x,y) to (7, ¢), switching from rectangular to polar. You can switch from (z,y) to a system such
as (2/,y') = (x +y,x —y). The function can be expressed in the new coordinates explicitly. Solve for
2,1 in terms of 7, ¢ or x’, 3y’ and then differentiate with respect to the new coordinate. OR you can
use the chain rule to differentiate with respect to the new variable.

(o0), = (@), (05), * (5). (55), »

This is actually not a different equation from Eq. (8.4). It only looks different because in addition to ¢
there's another variable that you have to keep constant: ¢t — x/, and %/ is constant.

Example: When you switch from rectangular to plane polar coordinates what is 9f/0¢ in terms
of the x and y derivatives?

T =1 CoSs ¢, Yy =rsing, so
(), = (@), (36), (3, (35),

_ <g£)y (—rsin o) + <g‘§>x(rcos )



8—Multivariable Calculus 182

If f(x,y) = 2% +y? this better be zero, because I'm finding how f changes when 7 is held fixed. Check
it out; it is. The equation (8.6) presents the form that is most important in many applications.
Example: What is the derivative of y with respect to ¢ at constant x?

().~ (), (36), (), (&),

_ [sind]- [ 822] [rcos ] 1 = rcoi¢ (8.7)
rA¢ Ay
A¢

¢

You see a graphical interpretation of the calculation in this diagram: ¢ changes by A¢, so the
coordinate moves up by Ay (z is constant). The angle between the lines Ay and rA¢ is ¢ itself. This
means that Ay +rA¢ = 1/ cos ¢, and that is precisely the preceding equation for (8y/8¢)$.

In doing the calculation leading to Eq. (8.7), do you see how to do the calculation for (87‘/8¢)m?
Differentiate the equation x = r cos ¢ with respect to ¢.

oo (35) -0 () oo (257) () e

Solve for the unknown derivative and you have the result.
Another example: f(x,y) = x% — 2xy. The transformation between rectangular and polar
coordinates is x = 7 cos ¢, y =rsing. What is (0f/0x) ?

(@), (50), (@), (@), (50), =2+ 0 (31),

dy\ _ (3y/a¢)r _TCcosg
<8x>r = 00/39), ~ —rsmg ¢ (8.8)
(Remember problem 1.497) Put these together and
<g£>r = (22 — 2y) + (—27)(—cot ¢) = 2z — 2y + 2z cot ¢ (8.9)

The brute-force way to do this is to express the function f explicitly in terms of the variables x and r,
eliminating ¥ and ¢.

y=rsing =r?— a2 then

CRI

—2(r? — 2?) + 222

r2 _ 2

1
=2r—2Vr2—a? —-20——(—x) =20+

s (8.10)

You can see that this is the same as the equation (8.9) if you look at the next-to-last form of equation
(8.10).

x 7 cos ¢
= = cot ¢

r? —x? r2 —1r2cos? ¢
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Is this result reasonable? Look at what happens to y when you change x by Ay
a little bit. Constant r is a circle, and if ¢ puts the position over near the right
side (ten or twenty degrees), a little change in = causes a big change in y as shown
by the rectangle. As drawn, Ay/Ax is big and negative, sort of like the (negative) Ax
cotangent of ¢ as in Eq. (8.8).

8.3 Differentials
For a function of a single variable you can write

df = ;l“idx (8.11)

and read (sort of) that the infinitesimal change in the function f is the slope times the infinitesimal
change in x. Does this really make any sense? What is an infinitesimal change? Is it zero? Is dz a
number or isn't it? What's going on?

It is possible to translate this intuitive idea into something fairly simple and that makes perfectly
good sense. Once you understand what it really means you'll be able to use the intuitive idea and its
notation with more security.

Let g be a function of two variables, z and h.

g(x, h) = d‘];(;) h  has the property that %|f(x +h) = f(x) = g(x,h)| — 0 ash—0

That is, the function g(x, h) approximates very well the change in f as you go from x to x + h. The
difference between g and Af = f(z + h) — f(x) goes to zero so fast that even after you've divided by
h the difference goes to zero.
The usual notation is to use the symbol dx instead of h and to call the function df instead* of
g.
df (x,dx) = f'(x)dx has the property that

1 (8.12)
a}f(x-kdx) — f(x) —df (z,dz)| — 0 as dz — 0

In this language dx is just another variable that can go from —oo to 400 and df is just a specified
function of two variables. The point is that this function is useful because when the variable dx is small
df provides a very good approximation to the increment Af in f.

What is the volume of the peel on an orange? The volume of a sphere is V' = 4713/3, so its
differential is dV = 47r? dr. If the radius of the orange is 3cm and the thickness of the peel is 2mm,
the volume of the peel is

dV = 4nr? dr = 47(3cm)?(0.2cm) = 23cm?

The whole volume of the orange is %71'(3 cm)3 = 113 cm3, so this peel is about 20% of the volume.

Differentials in Several Variables
The analog of Eq. (8.11) for several variables is

df = df(x,y,dx,dy) = (gi)ydaj + (g?];)mdy (8.13)

* Who says that a variable in algebra must be a single letter? You would never write a computer
program that way. d Fred2/d Fred = 2 Fred is perfectly sensible.
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Roughly speaking, near a point in the x-y plane, the value of the function f changes as a linear function
of the coordinates as you move a (little) distance away. This function df describes this change to high
accuracy. It bears the same relation to Eq. (8.4) that (8.11) bears to Eq. (8.3).

For example, take the function f(z,y) = x? + y?. At the point (z,y) = (1,2), the differential
is

df (1,2,dz, dy) = (27) dzr + (2y)

(1,2)

dy = 2dx + 4dy
(1,2)

so that
£(1.01,1.99) =~ f(1,2) +df(1,2,.01, —.01) = 1% + 22 +2(.01) + 4(—.01) = 4.98

compared to the exact answer, 4.9802.
The equation analogous to (8.12) is

df (x,y,dz, dy) has the property that
%]f(:rerx,erdy)—f(w,y)—df(x,y,dx,dy)] — 0 as dr — 0 (8.14)

where dr = \/dx? + dy? is the distance to (z,y). It's not that you will be able to do a lot more with
this precise definition than you could with the intuitive idea. You will however be able to work with a
better understanding of you're actions. When you say that “dx is an infinitesimal” you can understand
that this means simply that dx is any number but that the equations using it are useful only for very
small values of that number.

You can't use this notation for everything as the notation for the derivative demonstrates. The
symbol “df /dx" does not mean to divide a function by a length; it refers to a well-defined limiting
process. This notation is however constructed so that it provides an intuitive guide, and even if you do
think of it as the function df divided by the variable dx, you get the right answer.

Why should such a thing as a differential exist? It's essentially the first terms after the constant
in the power series representation of the original function: section 2.5. But how to tell if such a series
works anyway? I've been notably cavalier about proofs. The answer is that there is a proper theorem
guaranteeing Eq. (8.14) works. It is that if both partial derivatives exist in the neighborhood of the
expansion point and if these derivatives are continuous there, then the differential exists and has the
value that | stated in Eq. (8.13). It has the properties stated in Eq. (8.14). For all this refer to one of
many advanced calculus texts, such as Apostol's.*

8.4 Geometric Interpretation

For one variable, the picture of the differential is simple. Start with a graph of the function and at a
point (x,y) = (z, f(x)), find the straight line that best approximates the function in the immediate
neighborhood of that point. Now set up a new coordinate system with origin at this (x,y) and call the
new coordinates dx and dy. In this coordinate system the straight line passes through the origin and
the slope is the derivative df (x)/dx. The equation for the straight line is then Eq. (8.11), describing

the differential.
_df(x)
dy = . dx

* Mathematical Analysis, Addison-Wesley
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For two variables, the picture parallels this one. At a point (z,y,2) = (x,y, f(z,y)) find the
plane that best approximates the function in the immediate neighborhood of that point. Set up a
new coordinate system with origin at this (x,y, z) and call the new coordinates dx, dy, and dz. The
equation for a plane that passes through this origin is adx + Sdy + ydz = 0, and for this best
approximating plane, the equation is nothing more than the equation for the differential, Eq. (8.13).

The picture is a bit harder to draw, but with a little practice you can do it.
For the case of three independent variables, I'll leave the sketch to you.

Examples

The temperature on the surface of a heated disk is given to be T(r, ¢) = Ty + T1 (1 — 72 /a?), where
a is the radius of the disk and Tj and 77 are constants. If you start at position x =c < a, y =0 and
move parallel to the y-axis at speed vy what is the rate of change of temperature that you feel?

Use Eq. (8.4), and the relation r = /22 + y2.

AT _(OT\ dr | (OTY do_ (0T [(or\ do (o) dy
dt ar ), dt ¢ ), dt — \0r),|\0x/, dt dy ), dt
——2TW- vt

= 1 0,2 /02+’U§t2

~(2n ) byfy

2
= o1,
a

As a check, the dimensions are correct (are they?). At time zero, this vanishes, and that’s what
you should expect because at the beginning of the motion you're starting to move in the direction
perpendicular to the direction in which the temperature is changing. The farther you go, the more
nearly parallel to the direction of the radius you're moving. If you are moving exactly parallel to the
radius, this time-derivative is easier to calculate; it's then almost a problem in a single variable.

d—T ~ d—T@ ~ f2T1L2U0 ~ f2T1V702tUO
a a

So the approximate and the exact calculation agree. In fact they agree so well that you should try to
find out if this is a lucky coincidence or if there some special aspect of the problem that you might have
seen from the beginning and that would have made the whole thing much simpler.
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8.5 Gradient

The equation (8.13) for the differential has another geometric interpretation. For a function such as
f(z,y) = 2% + 43>, the equations representing constant values of f describe curves in the z-y plane.
In this example, they are ellipses. If you start from any fixed point in the plane and start to move away
from it, the rate at which the value of f changes will depend on the direction in which you move. If you
move along the curve defined by f =constant then f won't change at all. If you move perpendicular
to that direction then f may change a lot.

The gradient of f at a point is the vector pointing in
the direction in which f is increasing most rapidly, and
the component of the gradient along that direction is the
derivative of f with respect to the distance in that direction.

To relate this to the partial derivatives that we've been using, and to understand how to compute
and to use the gradient, return to Eq. (8.13) and write it in vector form. Use the common notation for
the basis: Z and §J. Then let

L L (OFN . (OFY .
dr=dxz + dyg and G = (ax>y$+ (&/)xy (8.15)
The equation for the differential is now
df = df (z,y,dz,dy) = G- dF (8.16)
o -
dr

Because you know the properties of the dot product, you know that this is G drcosf and it is
largest when the directions of dr” and of G are the same. It's zero when they are perpendicular. You
also know that df is zero when d7’ is in the direction along the curve where f is constant. The vector
G is therefore perpendicular to this curve. It is in the direction in which f is changing most rapidly.
Also because df = G dr cos0, you see that GG is the derivative of f with respect to distance along that
direction. G is the gradient.

For the example f(z,y) = 2% + 4y, G= 2x T +8y1. At each point in the x-y plane it provides
a vector showing the steepness of f at that point and the direction in which f is changing most rapidly.

Notice that the gradient vectors are twice as long where the ellipses are closest together as
they are at the ends where the ellipses are farthest apart. The function changes more rapidly in the
y-direction.
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The U.S.Coast and Geodetic Survey makes a large number of maps, and hikers are particularly
interested in the contour maps. They show curves indicating the lines of constant altitude. When
Apollo 16 went to the Moon in 1972, NASA prepared a similar map for the astronauts, and this is a
small segment of that map. The contour lines represent 10 meter increments in altitude.*

i)
v

:
R L b ¢
5 CINCO CRATERS (F7—~<

The gravitational potential energy of a mass m near the Earth’'s (or Moon's) surface is mgh.
This divided by m is the gravitational potential, gh. These lines of constant altitude are then lines of
constant potential, equipotentials of the gravitational field. Walk along an equipotential and you are
doing no work against gravity, just walking on the level.

8.6 Electrostatics
The electric field can be described in terms of a gradient. For a single point charge at the origin the
electric field is

— kq "
Ew,y,2) = 47
where 7 is the unit vector pointing away from the origin and r is the distance to the origin. This

vector can be written as a gradient. Because this E is everywhere pointing away from the origin, it's
everywhere perpendicular to the sphere centered at the origin.

> kq
E = — -
grad -

You can verify this a several ways. The first is to go straight to the definition of a gradient. (There's
a blizzard of minus signs in this approach, so have a little patience. It will get better.) This function is
increasing most rapidly in the direction moving toward the origin. (1/7) The derivative with respect to
distance in this direction is —d/dr, so

—d/dr(1/r) = +1/r2. The direction of greatest increase is along —#, so grad (1/r) = —7#(1/r?). But
the relation to the electric field has another —1 in it, so

kg _ | kg
grad .= +7 2
There's got to be a better way.

Yes, instead of insisting that you move in the direction in which the function is increasing most
rapidly, simply move in the direction in which it is changing most rapidly. The derivative with respect
to distance in that direction is the component in that direction and the plus or minus signs take care of
themselves. The derivative with respect to 7 of (1/r) is —1/72. That is the component in the direction
7, the direction in which you took the derivative. This says grad (1/7) = —#(1/12). You get the same
result as before but without so much fussing. This also makes it look more like the familiar ordinary
derivative in one dimension.

* history.nasa.gov/alsj/al6/ scan by Robin Wheeler


http://history.nasa.gov/alsj/a16/
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Still another way is from the Stallone-Schwarzenegger brute force school of computing. Put
everything in rectangular coordinates and do the partial derivatives using Egs. (8.15) and (8.6).

o/r)\  _ [o@d/r) o\ 10 ;5—u—7s 1 v

Repeat this for y and z with similar results and assemble the output.

kq kqxi+yj+zZ  kqr l{;qf
T ey 2 rir r?

The symbol V is commonly used for the gradient operator. This vector operator will appear in
several other places, the curl of a vector field will be the one you see most often.

—grad

N .0 0
From Eq. (8.15) you have
grad f =V f (8.18)

8.7 Plane Polar Coordinates

When doing integrals in the plane there are many coordinate systems to choose from, but rectangular
and polar coordinates are the most common. You can find the element of area with a simple sketch:
The lines (or curves) of constant coordinate enclose an area that is, for small enough increments in the

coordinates, a rectangle. Then you just multiply the sides. In one case Az - Ay and in the other case
Ar-rAgp.

o+ do
A r+dr
T x+dr

Vibrating Drumhead
A circular drumhead can vibrate in many complicated ways. The simplest and lowest frequency mode
is approximately

2(r,¢,t) = 20(1 — r?/R?) cos wt (8.19)

where R is the radius of the drum and w is the frequency of oscillation. (The shape is more accurately
described by Eq. (4.22) but this approximation is pretty good for a start.) The kinetic energy density
of the moving drumhead is u = %0(02/&)2. That is, in a small area AA, the kinetic energy is
AK = uAA and the limit as AA — 0 of AK/AA is the area-energy-density. In the same way, o is
the area mass density, dm/dA.

What is the total kinetic energy because of this oscillation? It is [udA = [ud?r. To evaluate
it, use polar coordinates and integrate over the area of the drumhead. The notation d?r is another
notation for dA just as d®r is used for a piece of volume.
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R 27 o 9
/udA = / rdr do 523((1 —r?/R*)wsinwt)
0 0

o R 2
= —2m23w? sin? wt/ drr(1—r?/R?)
0

2
1 r=R 2
— om22w? sin? wt2/ d(r?) (1- 742/R2) (8.20)
r=0
1 51 3 =N
= omziw? sin® wt§R2§ (1- 7“2/32) (—1)
0

1
= 60R2wz§w2 sin? wt
See problem 8.10 and following for more on this.*

8.8 Cylindrical, Spherical Coordinates

The three common coordinate systems used in three dimensions are rectangular, cylindrical, and spher-
ical coordinates, and these are the ones you have to master. When you need to use prolate spheroidal
coordinates you can look them up.

z
)
T
—oco<r <00 0<r<oo 0<r<oo
—00 < Y < 00 0<o<2rm 0<f<m
—00 < 2 < 00 —00 < 2 < 00 0<op<2rm

The surfaces that have constant values of these coordinates are planes in rectangular coordinates;
planes and cylinders in cylindrical; planes, spheres, and cones in spherical. In every one of these cases
the constant-coordinate surfaces intersect each other at right angles, hence the name “orthogonal
coordinate” systems. In spherical coordinates | used the coordinate # as the angle from the z-axis and
¢ as the angle around the axis. In mathematics books these are typically reversed, so watch out for
the notation. On the globe of the Earth, ¢ is like the longitude and @ like the latitude except that
longitude goes 0 to 180° East and 0 to 180° West from the Greenwich meridian instead of zero to 27.
Latitude is 0 to 90° North or South from the equator instead of zero to m from the pole. Except for
the North-South terminology, latitude is 90° — 6.

The volume elements for these systems come straight from the drawings, just as the area elements
do in plane coordinates. In every case you can draw six surfaces, bounded by constant coordinates, and
surrounding a small box. Because these are orthogonal coordinates you can compute the volume of the
box easily as the product of its three edges.

In the spherical case, one side is Ar. Another side is rAf. The third side is not 7A¢@; it is
rsin @#A¢. The reason for the factor sin 6 is that the arc of the circle made at constant r and constant

* For some animations showing these oscillations and others, check out
www.physics.miami.edu/nearing/mathmethods/drumhead-animations.html


www.physics.miami.edu/nearing/mathmethods/drumhead-animations.html
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0 is not in a plane passing through the origin. It is in a plane parallel to the z-y plane, so it has a
radius 7 sin 6.

)

rectangular cylindrical spherical
volume d*r = dxdydz rdrdodz r?sin 6 dr df d¢
area d’r = dxdy rdodz or rdodr r2sin 6 do do

Examples of Multiple Integrals
Even in rectangular coordinates integration can be tricky. That's because you have to pay attention to
the limits of integration far more closely than you do for simple one dimensional integrals. I'll illustrate
this with two dimensional rectangular coordinates first, and will choose a problem that is easy but still
shows what you have to look for.

An Area
Find the area in the z-y plane between the curves y = 2?/a and y = x.

a T a Vay
(A)/ da:/ dy1 and  (B) / dy/ dr 1
0 x2/a 0 Y

) Y

T T

In the first instance | fix x and add the pieces of dy in the strip indicated. The lower limit of the
dy integral comes from the specified equation of the lower curve. The upper limit is the value of y for
the given x at the upper curve. After that the limits on the sum over dx comes from the intersection
of the two curves: y = x = x%/a gives x = a for that limit.

In the second instance | fix ¥ and sum over dz first. The left limit is easy, x = ¥, and the upper
limit comes from solving y = 22 /a for x in terms of y. When that integral is done, the remaining dy
integral starts at zero and goes up to the intersection at y = = = a.

Now do the integrals.

‘ 2% _@ _@
(A)/de[x—a:/a]— 5 32" 6
a 3/2 2 2
_ oyl = q1/2% @ _a
(B)/dy[\/ay y|=a 52 26

If you would care to try starting this calculation from the beginning, without drawing any pictures, be
my guest.
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A Moment of Inertia

The moment of inertia about an axis is fri dm. Here, r| is the perpendicular distance to the axis.
What is the moment of inertia of a uniform sheet of mass M in the shape of a right triangle of sides
a and b? Take the moment about the right angled vertex. The area mass density, 0 = dm/dA is
2M /ab. The moment of inertia is then

a bla—z)/a a
/(x2+y2)0dA:/ da:/ dya(x2+y2):/ dxa[x2y+y3/3}
0 0 0

_ [ 2b 170 ’ a3
—/0 da:a[a: a(a x)+3 (a) (a—z)
_[b a4_a4 +1 b3 at
=\ 7)) 3 et

1 s Moo 9
_Ea(ba +ab’) = - —(a® +b%)

bla—z)/a

0

The dimensions are correct. For another check take the case where a = 0, reducing this to Mb2/6. But
wait, this now looks like a thin rod, and | remember that the moment of inertia of a thin rod about its
end is M?/3. What went wrong? Nothing. Look again more closely. Show why this limiting answer
ought to be less than Mb%/3.

Volume of a Sphere

What is the volume of a sphere of radius R? The most obvious approach would be to use spherical
coordinates. See problem 8.16 for that. I'll use cylindrical coordinates instead. The element of volume
is dV = rdrdepdz, and the integrals can be done a couple of ways.

27 +vVR2—r2 +R 21 VR2—-22
/d?’r—/ rd'r’/ d¢/ dz:/ dz/ d¢/ rdr (8.21)
VRZ=r2 -R 0 0

You can finish these now, see problem 8.17.

A Surface Charge Density
An example that appears in electrostatics: The surface charge density, dq/dA, on a sphere of radius
Ris (0, ¢) = 0gsin? 0 cos? ¢. What is the total charge on the sphere?

The element of area is R?sin df d¢, so the total charge is [odA,

™ 21 +1 21
Q= / sin 0 df R? do ogsin? 0 cos? p = R? dcostoo(1— cos? ) d¢ cos® ¢
0 0

-1 0
The mean value of cos? is 1/2. so the ¢ integral gives 7. For the rest, it is

+1 4

= —gomR?

1
oo R? [cos 60— 3 cos® 9] 73

Limits of Integration
Sometimes the trickiest part of multiple integrals is determining the limits of integration. Especially
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when you have to change the order of integration, the new limits may not be obvious. Are there any
special techniques or tricks to doing this? Yes, there is one, perhaps obscure, method that you may
not be accustomed to.

Draw Pictures.

If you have an integral such as the first one, you have to draw a picture of the integration domain

to switch limits.
Y

/Oldy/y\/ﬁdxf(x,y) [/Old:z;/oxdy—i—/lﬁdx/omdy] f(z,y) (8.22)
x

Of course, once you've drawn the picture you may realize that simply interchanging the order of
integration won't help, but that polar coordinates may.

V2 /4
/ rdr/
0 0

8.9 Vectors: Cylindrical, Spherical Bases

When you describe vectors in three dimensions are you restricted to the basis Z, §, 27 In a different
coordinate system you should use basis vectors that are adapted to that system. In rectangular coordi-
nates these vectors have the convenient property that they point along the direction perpendicular to
the plane where the corresponding coordinate is constant. They also point in the direction in which the
other two coordinates are constant. E.g. the unit vector Z points perpendicular to the plane of constant
x (the y-z plane); it also point along the line where y and z are constant.

N
A
N
4
>
<
=»

=

x ¢

Do the same thing for cylindrical coordinates. The unit vector £ points perpendicular to the x-y
plane. The unit vector 7 points perpendicular to the cylinder = constant. The unit vector gg points
perpendicular to the plane ¢ = constant and along the direction for which r and z are constant. The
conventional right-hand rule specifies 2 = 7 x qb

For spherical coordinates 7 points perpendicular to the sphere » =constant. The gg vector
is perpendicular to the plane ¢ =constant and points along the direction where r = constant and
f = constant and toward increasing coordinate ¢. FlnaIIy 0 is perpendicular to the cone # = constant
and again, points toward increasing #. Then qf) =7 X 9 and on the Earth, these vectors 7, 0 and qf)
are up, South, and East.

Solenoid

A standard solenoid is cylindrical coil of wire, so that when the wire carries a current it produces a
magnetic field. To describe this field, it seems that cylindrical coordinates are advised. Until you know
something about the field the most general thing that you can write is

B(r,¢,2) = 7 Be(r,0,2) + ¢ By(r, 6, 2) + 2 B.(r, ¢, 2)
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In a real solenoid that's it; all three of these components are present. If you have an ideal, infinitely
long solenoid, with the current going strictly around in the ¢ direction, (found only in textbooks) the
use of Maxwell's equations and appropriately applied symmetry arguments will simplify this to 2 B, (7).

Gravitational Field

The gravitational field of the Earth is simple, § = —#G M /r?, pointing straight toward the center of

the Earth. Well no, not really. The Earth has a bulge at the equator; its equatorial diameter is about

43 km larger than its polar diameter. This changes the g-field so that it has a noticeable # component.

At least it's noticeable if you're trying to place a satellite in orbit or to send a craft to another planet.
A better approximation to the gravitational field of the Earth is

S GM
g=-t

3Q N
2 —GF[T(?)COSQQ—1)/2+9COS(981H(9] (8.23)
The letter ) stands for the quadrupole moment. |@Q| < M R?, and it's a measure of the bulge. By
convention a football (American football) has a positive @); the Earth’s () is negative. (What about a
European football?)

Nuclear Magnetic Field
The magnetic field from the nucleus of many atoms (even as simple an atom as hydrogen) is proportional
to

Tig[zfcose +0sin0) (8.24)

As with the preceding example these are in spherical coordinates, and the component along the qg
direction is zero. This field's effect on the electrons in the atom is small but detectable. The magnetic
properties of the nucleus are central to the subject of nuclear magnetic resonance (NMR), and that has
its applications in magnetic resonance imaging* (MRI).

8.10 Gradient in other Coordinates

The equation for the gradient computed in rectangular coordinates is Eq. (8.15) or (8.18). How do
you compute it in cylindrical or spherical coordinates? You do it the same way that you got Eq. (8.15)
from Eq. (8.13). The coordinates r, ¢, and z are just more variables, so Eq. (8.13) is simply

df =df(r,¢,z,dr,d¢,dz) = <gi>¢z dr + (gj;)w do + <g];>r7¢> dz (8.25)

All that's left is to write dr” in these coordinates, just as in Eq. (8.15).
di = Pdr + ¢rde + 2dz (8.26)

The part in the (,zAS direction is the displacement of d7”in that direction. As ¢ changes by a small amount
the distance moved is not d¢; it is 7 d¢. The equation

df =df(r, ¢, z,dr,d¢,dz) = grad f - dr’
combined with the two equations (8.25) and (8.26) gives grad f as

grad f = fgi o (571"2@]; R 2?)5 =Vf (8.27)

* In medicine MRI was originally called NMR, but someone decided that this would disconcert the
patients.
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Notice that the units work out right too.
In spherical coordinates the procedure is identical. All that you have to do is to identify what di”
is.

di = #dr + 0r df + drsin 6 do

Again with this case you have to look at the distance moved when the coordinates changes by a small
amount. Just as with cylindrical coordinates this determines the gradient in spherical coordinates.

af ~10f 1 af
grad f = P50+ 0 aa+¢rsine%_vf

(8.28)

The equations (8.15), (8.27), and (8.28) define the gradient (and correspondingly V) in three
coordinate systems.

8.11 Maxima, Minima, Saddles
With one variable you can look for a maximum or a minimum by taking a derivative and setting it to
zero. For several variables you do it several times so that you will get as many equations as you have
unknown coordinates.

Put this in the language of gradients: Vf = 0. The derivative of f vanishes in every direction
as you move from such a point. As examples,

flay) =2 +y?, o =-a?—¢’ o =2y

For all three of these the gradient is zero at (z,y) = (0,0); the first has a minimum there, the second
a maximum, and the third neither — it is a “saddle point.” Draw a picture to see the reason for the
name. The generic term for all three of these is “critical point.”

An important example of finding a minimum is “least square fitting” of functions. How close are
two functions to each other? The most commonly used, and in every way the simplest, definition of
the distance (squared) between f and g on the interval a < x < b is

b
|zl - gt (5.20)

This means that a large deviation of one function from the other in a small region counts more than
smaller deviations spread over a larger domain. The square sees to that. As a specific example, take a
function f on the interval 0 < x < L and try to fit it to the sum of a couple of trigonometric functions.
The best fit will be the one that minimizes the distance between f and the sum. (Take f to be a
real-valued function for now.)

DQ(a,B):/OLda: (f( ) — asin =% _ Bsin 2”) (8.30)

D is the distance between the given function and the sines used to fit it. To minimize the distance,
take derivatives with respect to the parameters o and (3.

0D? L . Tz . 27w . T
00[:2/0 dl‘ <f(x)—OCSIHL— SlnL> <—SIHT>—O

2 L
881; 2/0 dz <f() Ocsmﬂz;—ﬁsmTj) (—sin?)zo
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These two equations determine the parameters o and [3.

/ dx sin’ / dzx f(x s1n —

ﬂ/ dx sin? === 27rx / dz f(z)sin 27r7x

The other integrals vanish because of the orthogonality of sin7x/L and sin27x/L on this interval.
What you get is exactly the coefficients of the Fourier series expansion of f. The Fourier series is the
best fit (in the least square sense) of a sum of orthogonal functions to f. See section 11.6 for more on
this

Is it a minimum? Yes. Look at the coefficients of a? and 32 in Eq. (8.30). They are positive;
+a + 32 has a minimum, not a maximum or saddle point, and there is no cross term in /3 to mess
it up.

The distance function Eq. (8.29) is simply (the square of) the norm in the vector space sense of
the difference of the two vectors f and g. Equations(6.12) and (6.7) here become

shortest distance
to the plane

b
\|f—g\\2:<f—g,f—g>=/a d | f(x) -

The geometric meaning of Eq. (8.30) is that €1 and é5 provide a basis for the two dimensional space

T 21w
aé) + féey = asmf —|—6smT
The plane is the set of all linear combinations of the two vectors, and for a general vector not in this
plane, the shortest distance to the plane defines the vector in the plane that is the best fit to the given
vector. It's the one that's closest. Because the vectors €] and €, are orthogonal it makes it easy to find
the closest vector. You require that the difference, U — €] — €5 has only an €3 component. That is
Fourier series.

Hessian

In this example leading to Fourier components, it's pretty easy to see that you are dealing with a
minimum and not anything else. In other situations it may not be so easy. You may have a lot of
variables. You may have complicated cross terms. Is z? + zy + ¥ a minimum at the origin? s
2% + 3xy + y*? (Yes and No respectively.)

When there's just one variable there is a simple rule that lets you decide. Check the second
derivative. If it's positive you have a minimum; if it's negative you have a maximum. If it's zero you
have more work to do. Is there a similar method for several variables? Yes, and I'll show it explicitly for
two variables. Once you see how to do it in two dimensions, the generalization to N is just a matter
of how much work you're willing to do (or how much computer time you can use).

The Taylor series in two variables, Eq. (2.16), is to second order

f(@+de,y +dy) = f(x,y) + 8fdx+gf o'

0*f 02f .
52 da? +2aadxdy+—dy +-

dy + 02
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Write this in a more compact notation in order to emphasize the important parts.
fr+dry— f(r)y=Vf-dr+ <d’F,HdF>+--~

The part with the gradient is familiar, and to have either a minimum or a maximum, that will have to
be zero. The next term introduces a new idea, the Hessian, constructed from all the second derivative
terms. Write these second order terms as a matrix to see what they are, and in order to avoid a lot of
clumsy notation use subscripts as an abbreviation for the partial derivatives.

(dF H d7) = (dz dy) (j‘;m ;wy) (Zz) where  dif = &dx + §dy (8.31)
yr vy

This matrix is symmetric because of the properties of mixed partials. How do | tell from this
whether the function f has a minimum or a maximum (or neither) at a point where the gradient of f
is zero? Eq. (8.31) describes a function of two variables even after I've fixed the values of  and y by
saying that Vf = 0. It is a quadratic function of dz and dy. Expressed in the language of vectors this
says that f has a minimum if (8.31) is positive no matter what the direction of dr’is — H is positive
definite.

Pull back from the problem a step. This is a 2 X 2 symmetric matrix sandwiched inside a scalar

product.
)= o (5 1) (5) (8.32)

Is h positive definite? That is, positive for all x, y? If this matrix is diagonal it's much easier to see
what is happening, so diagonalize it. Find the eigenvectors and use those for a basis.

(Z g) <§>:)\<‘;> requires det(az)\ C_b)\)zo

N XNa+tc)+ac—b =0 = A= {(a%—c)i (a—c)2+62}/2 (8.33)

For the applications here all the a, b, ¢ are the real partial derivatives, so the eigenvalues are real
and the only question is whether the As are positive or negative, because they will be the (diagonal)
components of the Hessian matrix in the new basis. If this is a double root, the matrix was already
diagonal. You can verify that the eigenvalues are positive if a > 0, ¢ > 0, and 4ac > b?, and that will
indicate a minimum point.

Geometrically the equation z = h(z,y) from Eq. (8.32) defines a surface. If it is positive definite
the surface is a paraboloid opening upward. If negative definite it is a paraboloid opening down. The
mixed case is a hyperboloid — a saddle.

In this 2 x 2 case you have a quadratic formula to fall back on, and with more variables there are
standard algorithms for determining eigenvalues of matrices, but I'll leave those to some other book.

8.12 Lagrange Multipliers
This is an incredibly clever method to handle problems of maxima and minima in several variables when
there are constraints.

An example: “What is the largest rectangle?” obviously has no solution, but “What is the largest
rectangle contained in an ellipse?” does.

Another: Particles are to be placed into states of specified energies. You know the total number
of particles; you know the total energy. All else being equal, what is the most probable distribution of
the number of particles in each state?
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I'll describe this procedure for two variables; it's the same for more. The problem stated is that
| want to find the maximum (or minimum) of a function f(x,y) given the fact that the coordinates x
and y must lie on the curve ¢(x,y) = 0. If you can solve the ¢ equation for y in terms of x explicitly,
then you can substitute it into f and turn it into a problem in ordinary one variable calculus. What if
you can't?

Analyze this graphically. The equation ¢(x,y) = 0 represents one curve in the plane. The
succession of equations f(x,y) = constant represent many curves in the plane, one for each constant.
Think of equipotentials.

Look at the intersections of the ¢-curve and the f-curves. Where they intersect, they will usually
cross each other. Ask if such a crossing could possibly be a point where f is a maximum. Clearly the
answer is no, because as you move along the ¢-curve you're then moving from a point where f has one
value to where it has another.

The one way to have f be a maximum at a point on the ¢-curve is for the two curves to touch
and not to cross. When that happens the values of f will increase as you approach the point from one
side and decrease on the other. That makes it a maximum. In this sketch, the values of f decrease
from 4 to 3 to 2 and then back to 3, 4, and 5. This point where the curve f = 2 touches the ¢ = 0
curve is then a minimum of f along ¢ = 0.

To implement this picture so that you can compute with it, look at the gradient of f and the
gradient of ¢. The gradient vectors are perpendicular to the curves f =constant and ¢ =constant
respectively, and at the point where the curves are tangent to each other these gradients are in the
same direction (or opposite, no matter). Either way one vector is a scalar times the other.

Vf=AVo (8.34)
In the second picture, the arrows are the gradient vectors for [ and for ¢». Break this into components

and you have 5 5 5 5
f ¢ _ [\ 09 _ _
%—/\%—07 @ A@—Oa P(z,y) =0

There are three equations in three unknowns (x,y, \), and these are the equations to solve for the
position of the maximum or minimum value of f. You are looking for x and y, so you'll be tempted to
ignore the third variable A and to eliminate it. Look again. This parameter, the Lagrange multiplier,
has a habit of being significant.

Examples of Lagrange Multipliers

The first example that | mentioned: What is the largest rectangle that you can inscribe in an ellipse?
Let the ellipse and the rectangle be centered at the origin. The upper right corner of the rectangle is
at (x,y), then the area of the rectangle is

Area = f(z,y) = 4zy,
2

2
with constraint ¢(z,y) = % + %2 —1=0 +
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The equations to solve are now

V(f—Xp)=0, and ¢ =0, which become
22
2 e

2 2
4y—Aa—f:0, 4r—2Y —¢ 1=0 (8.35)

b2 ’
The solutions to these three equations are straight-forward. They are z = a/\@, Y= b/\@ A = 2ab.
The maximum area is then 4xy = 2ab. The Lagrange multiplier turns out to be the required area.
Does this reduce to the correct result for a circle?

The second example said that you have several different allowed energies, typical of what happens
in quantum mechanics. If the total number of particles and the total energy are given, how are the
particles distributed among the different energies?

If there are N particles and exactly two energy levels, 'y and Fj,

N =nq+ na, and E=n1E +ngFEs

you have two equations in two unknowns and all you have to do is solve them for the numbers 1, and
N9, the number of particles in each state. If there are three or more possible energies the answer isn't
uniquely determined by just two equations, and there can be many ways that you can put particles into
different energy states and still have the same number of particles and the same total energy.

If you're dealing with four particles and three energies, you can perhaps count the possibilities
by hand. How many ways can you put four particles in three states? (400), (310), (301), (220), 211),
etc. There's only one way to get the (400) configuration: All four particles go into state 1. For (310)
there are four ways to do it; any one of the four particles can be in the second state and the rest in the
first. Keep going. If you have 102" particles you have to find a better way.

If you have a total of IV particles and you place n; of them in the first state, the number
of ways that you can do that is N for the first particle, (N — 1) for the second particle, etc. =
N(N —=1)(N —2)---(N —ny +1) = N!/(N —ny)!. This is over-counting because you don't care
which one went into the first state first, just that it's there. There are ny! rearrangements of these ny
particles, so you have to divide by that to get the number of ways that you can get this number of
particles into state 1: N!/nj!(IN —ny)! For example, N =4, ny = 4 as in the (400) configuration in
the preceding paragraph is 4!/0!4! = 1, or 4!/3!1! = 4 as in the (310) configuration.

Once you've got n particles into the first state you want to put ny into the second state (out
of the remaining N — n1). Then on to state 3.

The total number of ways that you can do this is the product of all of these numbers. For three
allowed energies it is

NI (N —ny)! (N=ni—ng)! N (5.36)
nl'(N —nl)! TLQ'(N — N1 —ng)! ngl(N — N1 — Ny —ng)! N nl!nglng! '

There's a lot of cancellation and the final factor in the denominator is one because of the constraint
ny+ng +ng=N.

Lacking any other information about the particles, the most probable configuration is the one for
which Eq. (8.36) is a maximum. This calls for Lagrange multipliers because you want to maximize a
complicated function of several variables subject to constraints on NV and on E. Now all you have to
do is to figure out out to differentiate with respect to integers. Answer: If N is large you will be able
to treat these variables as continuous and to use standard calculus to manipulate them.

For large n, recall Stirling's formula, Eq. (2.20),

nl ~V2mnn"e " or its log: In(n!) ~Inv2rn+nlnn —n (8.37)



8—Multivariable Calculus 199

This, | can differentiate. Maximizing (8.36) is the same as maximizing its logarithm, and that's easier
to work with.

maximize f = In(/N!) —In(nq!) — In(ns!) — In(ng!)

subject to ny +ng +n3 =N and mE1 +n9Fy+nsks=F
There are two constraints here, so there are two Lagrange multipliers.

V(f — /\1(711 + No + N3y — N) — )\g(nlEl +noly +nsgFEs — E)) =0

For f, use Stirling’s approximation, but not quite. The term In+/27n is negligible. For n as small as
106, it is about 6 x 107 of the whole. Logarithms are much smaller than powers. That means that |
can use

3
\Y <Z ( —nyln(ny) + ng) — My — )\ﬂlﬁEﬁ) =0
=1

This is easier than it looks because each derivative involves only one coordinate.

0

——>—lnn1—1+1—/\1—/\2E1:O, etc.
(3711

This is
ng=eM"ME p—1 93

There are two unknowns here, A\; and \y. There are two equations, for N and E, and the parameter
A1 simply determines an overall constant, e~ = (.

3 3
CZ e~ b = N, and C Z Eje B = |
(=1 (=1

The quantity Ao is usually denoted (3 in this type of problem, and it is related to temperature by
f = 1/kT where as usual the Lagrange multiplier is important on its own. It is usual to manipulate
these results by defining the “partition function”

3
Z(B) = e Pl (8.38)
/=1

In terms of this function Z you have

N dzZ

For a lot more on this subject, you can refer to any one of many books on thermodynamics or statistical
physics. There for example you can find the reason that [3 is related to the temperature and how the
partition function can form the basis for computing everything there is to compute in thermodynamics.
Especially there you will find that more powerful versions of the same ideas will arise when you allow
the total energy and the total number of particles to be variables too.
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8.13 Solid Angle

The extension of the concept of angle to three dimensions is called “solid angle.” To explain what this
is, I'll first show a definition of ordinary angle that’s different from what you're accustomed to. When
you see that, the extension to one more dimension is easy.

Place an object in the plane somewhere not at the origin. You are at the origin and look at it. |
want a definition that describes what fraction of the region around you is spanned by this object. For
this, draw a circle of radius R centered at the origin and draw all the lines from everywhere on the
object to the origin. These lines will intersect the circle on an arc (or even a set of arcs) of length s.
Define the angle subtended by the object to be § = s/R.

Now step up to three dimensions and again place yourself at the origin. This time place a sphere
of radius R around the origin and draw all the lines from the three dimensional object to the origin.
This time the lines intersect the sphere on an area of size A. Define the solid angle subtended by the
object to be 2 = A/R?. (If you want four or more dimensions, s