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Multiparameter Inversion and Energy Source
Estimation for a Reflection Seismic Experiment

Susan E. Minkoff

Abstract

Reflection seismologists illuminate the subsurface by introducing energy into the
ground. These propagating waves encounter heterogeneities in the subsurface ma-
terial and are partly reflected back up to the surface where they are recorded as
seismograms. The seismic energy source in most cases cannot be reliably measured
in a laboratory but must be accurately estimated to allow one to extract the physical
parameters which characterize the subsurface (such as velocity and density). The
source and multiple earth parameters may be simultaneously successfully estimated
by inversion.

When the seismogram model is the plane-wave convolutional model derived from
the constant density, variable sound velocity acoustic wave equation, perturbations
in the seismic data stably determine perturbations in the source and reflectivity (the
high-frequency relative fluctuation in the velocity). The stability of this determination
improves as the angular range over which the data is defined increases.

A more realistic model for wave propagation in the earth is the plane-wave convo-
lutional model derived from the viscoelastic wave equation. Waveform inversion ap-
plied to field data from the Gulf of Mexico successfully estimates the long-wavelength
compressional velocity, three elastic parameter reflectivities, and the anisotropic seis-
mic source. The resulting reflectivities match measured well log data and agree with
commonly-accepted lithological relationships. These inversion results predict 70% of
the total seismic data and 90% of the data in an interval around the gas sand target.

The resolution matrix measures how close inversion-estimated reflectivities are to
the true parameters which generated the data and is useful when independent infor-
mation such as well logs is unavailable. However, computing the resolution matrix
from the singular value decomposition of the forward map (the usual technique) is

prohibitive for real seismic inverse problems. Instead we approximate the resolution



i

matrix from Lanczos estimates of the eigenvectors of the normal matrix. The res-
olution matrix indicates that our inversion-estimated source provides well resolved
reflectivities in the depth interval of interest.



Chapter 1

Introduction

1.1 Overview

In exploration seismology, scientists illuminate the subsurface by grenerating a dis-
turbance in the earth (for example by detonating an air gun in water or explosives
on land). This man-made disturbance propagates down into the earth where hetero-
geneities in subsurface materials cause portions of the waves to be reflected back to
the surface. Equipment set up on the surface captures this returning energy and cre-
ates a record of this activity as a function of time which is called a seismogram. This
thesis deals with seismic inversion by which we mean one chooses a physical model
to describe the propagation of waves through the medium and attempts to improve
the fit of the model to the given data by successively updating the parameters in the
model. As seismologists have long known, the seismic source or “system wavelet is one
of the undesirable components of the raw seismic data”, ([35] p. 164). The seismic
source’s signature (time history) and radiation pattern (direction-dependence) are of
little use in themselves. However, the seismic source must be separated from the data
in some way so that geophysicists can estimate and analyze the material properties
of the subsurface which are of interest (for example, velocity and density).
Estimating and removing the source from the seismic data is a task which seis-
mologists have been studying for at least the last forty years. Classic techniques
related to communication theory and signal processing were adapted for geophysics
by Robinson and Treitel in the 1950’s and 1960’s (see [42], (43], and [45]). Another
group led by the scientist Ziolkowski advocates measuring the source directly in a
laboratory or in the experimental environment (see (64], [65], and [66]). This idea
works well in settings where one has control over the input source such as in electrical
impedance imaging (for example see [26]). However, in the case of reflection seis-
mology, direct measurement of the source wavelet is not only extremely unrealistic
(especially for land seismology), but also very unreliable. Both linear and nonlinear

inversion methods for estimating the air gun source array in marine seismic work



are described in [32]. Their methods rely, however, on having data which has been
recorded on a ministreamer of receivers towed a few meters below the source array;
in some sense they have measured the source.

In Chapter 4 we discuss how our source estimate is an “effective source” which
is quite useful for estimating other physical parameters in the model but is clearly
not the uncontaminated source one would get from measuring the air gun pressure
pulse in a laboratory. The source is affected by the medium surrounding it (such as
the rocks around the hole in which explosives are placed for land experiments). The
source we obtain for the real field data discussed in Chapter 4 has absorbed into its
description information about the receiver array and possibly an inadequacy in our
model for wave propagation in this part of the subsurface. This interesting flexibility
of the source still allows very stable estimates of the physical parameters.

This source is estimated directly from the data using least squares inversion at the
same time that we are estimating the other earth parameters. The references [7], (33],
(46] appear to be the first mathematical papers on the use of least squares inversion
to estimate the source. This thesis is likely the only work in which the source for field
data is estimated using inversion.

The results described in Chapter 4 have led to natural questions about how much
trust we can place in the multiple physical parameters we estimate at the time the
source is being estimated. These questions arise because of the high degree of interest
over the last ten years in the topic of Amplitude Versus Offset (or AVO) analysis. As
recently as 1983 geophysicists were satisfied with estimating only one elastic param-
eter. In [44] p.19, Robinson explains:

Usually, only the P-waves are considered useful in seismic exploration.
We try to avoid recording S-waves and surface waves; when they are
recorded, they are relegated to the category of noise. Exceptions to this
rule are now being made, however, and in the future S-waves may pro-

vide invaluable lithologic information that we cannot obtain from P-waves
alone.

We define the amplitude of a normally incident seismic wave reflected from an

interface between two materials as being governed by the reflection coefficient R
where
R = Pav2 —val.
P2v2 + ;11
The densities p, and p, and velocities v, and v, correspond to the top and bottom

sides of the interface respectively. When the incident compressional waves (P-waves)



hit an interface at non-normal angles, shear wave (S-wave) motion is induced causing
the amplitudes of reflected P-waves to vary significantly with angle ((14] pp.357-358,
378).

Drilling wells is costly and detrimental to the environment, sd exploration seis-
mologists need to be able to distinguish between changes in the reflection coefficient
caused by hydrocarbons and changes due to other factors or materials. Ostrander
had a significant impact on the current exploration seismology community when he
showed that Poisson’s ratio (an elastic parameter related to the ratio between P-
and S-wave velocities) tends to be very low for high-porosity gas sands ([37] and
(10]). Reflection seismologists are now concerned with accurately estimating more
than just the P-wave velocity.

The source estimate affects one’s ability to estimate more than one of these phys-
ical parameters accurately. As noted by the authors in (14] (p. 379),

The primary data inputs to offset-amplitude analyses are amplitude
values as functions of offset, but variation in the subsurface P and shear
velocities and densities are not the sole parameters that can cause such
changes. Other factors include source directivity and array effects, near
surface velocity variations,. .. For land data, one of the variables that is
least known but most important is the lateral variability in coupling be-
tween source and earth, and receiver and earth,. . . Some adequate account-
ing or control must be given for each of these effects in order to relate the
remaining amplitude variation to the reflectivity change effects.

Although more work in this area needs to be done to make strong assertions
concerning the success of using the inversion techniques described in this thesis to
estimate multiple elastic parameters, we give one very successful example for real
marine data from the Gulf of Mexico. The thesis is divided into three main sections.
Chapter 3 describes a theoretical result for separate source-reflectivity estimation
- (where the reflectivity is the high-frequency relative fluctuation in the velocity in this
case). Chapter 4 contains the real data inversion results. Chapter 6 describes a
practical tool for analyzing how close the inversion results are to the true parame-
ters which generated the data. The remaining chapters provide background for the
mathematical model used and discuss some other experiments conducted on the real
data (Chapters 2 and 5 respectively). The main points discussed in this thesis are
summarized below.



1.2 The Convolutional Model for the Seismogram

The model used throughout this thesis is the convolutional model for the seismogram
so called because it is the time convolution of the seismic sourge with the high-
frequency relative fluctuation in the physical parameters in the model. Chapter 2
gives the derivation of this model for the acoustic wave equation with variable sound
velocity and density.

There are three main assumptions on the model common to all work in this thesis.
The first assumption is that we may model the earth as a layered medium. In other
words, we assume the parameters in the wave equation model depend only on one
spatial variable, depth z. This assumption allows us to Radon transform or integrate
part of the solution of the wave equation along planes in the two remaining hori-
zontal directions. The end result of this process is a family of 1-D wave equations
parametrized by the slowness parameter p which is related to the plane-wave angle

of incidence 6 by
_ siné
e

where ¢(z) is the velocity.

The second assumption we make is that we can separate the parameters in the
wave equation model into short and long wavelength pieces or linearize the wave
equation. This linearized equation means we model only the seismic energy which has
been reflected once off a subsurface layer (primary reflections as opposed to multiples).
The long-wavelength portion of the model parameters determines the kinematics of
wave propagation and we term these functions “background”. The short-scale relative
fluctuations in the model parameters determine the reflections and we call these
functions the “reflectivities”. Both the assumption that the earth is layered and that
multiple reflections may be neglected are made fairly often although geophysicists feel
these simplifications do not adequately describe some areas of the subsurface. Finally,
to arrive at the convolutional model for the seismogram, we apply geometric optics
which assumes the source is high-frequency (i.e., the peak frequency corresponds to
a wavelength which is much shorter than that of a typical record, see (56] and [13]
Ch.6).

The theoretical stability result in Chapter 3 applies to the primaries-only, plane-
wave, layered-medium constant density acoustic wave equation. The model for the
seismogram is

S(t,p) = f(t) * f(t,p)



(t,p) & /A(z,t,p)r(Z)dz

The isotropic source is f(t), and the relative fluctuation in the sound velocity is r(z).
A(z,t,p) is the geometric optics reflectivity amplitude. b

Similarly, the real data numerical experiments described in Chapters 4-6 assume
a primaries-only, plane-wave, layered-medium, viscoelastic wave equation with an
antsotropic source.

S(t,p) = f(t,p) * #(t,p)
f(t’ p) ~ /[AP(z>ta p)rp(z) + AS(Z) t,p)T‘s(z) + Ad(zv t, p)rd(z)]dz

Here rp is the relative short-scale fluctuation in the P-wave velocity, rs the fluctuation
in the S-wave velocity and r; the fluctuation in density. Ap, As, and A, are the

respective geometric optics reflectivity amplitudes.

1.3 Stable Determination of the Source and Reflectivity for
the Acoustic Wave Equation

In Chapter 3 we extend work begun by R. M. Lewis in his PhD thesis ([33]). Lewis
assumed that the long-wavelength background velocity in the acoustic model is con-
stant. He then showed that one could stably determine perturbations in the source
and reflectivity from perturbations in the data.

The extension we make in Chapter 3 drops the restriction that the background
velocity be constant. Constant background velocities do not accurately describe the
kinematics of wave propagation in the earth. Proving a direct result such as Lewis’ was
made difficult in this case by the change of variables from time to depth via velocity.
We, therefore, show that the normal operator is continuous in the background velocity
allowing us to extend the stability result at constant velocity to velocities close to
constant. The stability depends on the frequency content of the source, how close to
“white” (containing all frequencies) the reflectivity series is, and the range of slowness
values (angles) in the data. Unfortunately, it is clear that the theoretical result

described in Chapter 3 applies to a model which still does not accurately describe
real data.



1.4 Full Waveform Inversion of Gulf of Mexico Field Data
Using a Viscoelastic Model

We were interested to see how well we could invert for the seismic source which
generated field data. This idea was the beginning of a large inversion study of a
particular marine data set from the Gulf of Mexico. In fact all of the numerical
experiments described in this thesis were performed on this real data or on synthetic
data sets derived from this marine data. In Chapter 4 the model, techniques, and
main results are described. Chapter 5 contains some additional experiments worth
mentioning but which are somewhat less conclusive. We chose to invert for the P-
wave background velocity, anisotropic seismic source, and three combinations of the
elastic parameter reflectivities (P-wave velocity, S-wave velocity, and density) using
a viscoelastic model for wave propagation.

An algorithm for successfully inverting real data eventually emerged from this
study. The P-wave background velocity has a nonlinear (and therefore significant)
influence on the data and is the most important parameter to estimate accurately. We
inverted first for this parameter and the reflectivities. Once we were satisfied with our
background velocity estimate, we alternated between re-estimating the reflectivities
and estimating the seismic source. Each of these parameters separately has a linear
influence on the data. We found that although the source has a major impact on how
well the reflectivities are estimated, it has little effect on how well the background
velocity is estimated. The other model parameters (attenuation factors, background
S-wave velocity and density) were not estimated in the inversion.

Our best model estimates allowed us to predict all but 29% of the real seismic
data, a rather remarkable result. This same data was studied in the PhD thesis of Igel
([25]). He used an elastic 2D modeler and did not invert for the seismic source. He was
able to fit all but 45% of the data inverting for short-scale fluctuations (reflectivities)
in the P-wave impedance and Poisson’s ratio.

Data misfit is one mathematical indicator of accuracy for inversion results. Comparison
to a priori geologic knowledge of the region of the subsurface is, however, a more
common measure. We, therefore, also compared our reflectivity results to detrended
well-log measurements of the high-frequency parts of the P-wave velocity and density,
and we checked whether our results were in agreement with some common lithological
laws governing the relation between different elastic parameters.



One of the most interesting aspects of this study involved understanding what
role our source estimate played in the inversion. We found that the condition number
(ratio of largest to smallest eigenvalues) of the source subproblem was orders of mag-
nitude worse than the condition of the single-reflectivity subproblem (in which we
only inverted for the P-wave impedance reflectivity). When we were inverting for all
three reflectivities, however, the condition of the reflectivity subproblem was about
the same as the condition of the source subproblem.

In truth, this data set did not agree with one of our modeling assumptions —
namely, that the subsurface was layered. Even after pre-processing the data, there
were obvious near-surface heterogeneities. Our source estimate, however, may have

accounted for some of this modeling inaccuracy. Heiner Igel noted in his thesis ([25)
p. 132):

An initial inversion for P-impedance gave a reasonable fit for the part
of the seismogram following the waterbottom reflection which was not well
modeled. I currently do not understand the problems with the waterbot-
tom. Most likely they are due to lack of knowledge of the source function
and/or the structure of the waterbottom which may not well be modeled
by an elastic modeling [sic] which does not take into account attenuation.

1.5 Resolution of the Model Parameters

Finally, we contrast the resolution as a function of depth of the elastic parameter
reflectivity estimates for two different sources. There was no measured shear log
for this area which could be used for comparison to inversion results. Moreover, it
1s conceivable that in many instances one would not be able to compare inversion
results to logged wells. Chapter 6 provides a practical way of trying to quantify how
close the inversion results are to the true parameters which generated the data.

In a now classic paper, Backus and Gilbert (4] describe how seismic inverse prob-
lems with non-unique solutions may have unique solutions in an average sense. They
also describe how to determine the shortest length scale which the given data can re-
solve at a particular depth. (Related references include (17], [29], and [27].) The model
resolution matrix is one way to quantify how close the model estimates are to the true
model as a function of the independent variable (such as depth). Wiggins [62] defines
this matrix in terms of the singular value decomposition (SVD) and applies this tech-
nique to a very small problem (less than ten unknowns). He comments in the abstract

to the paper that “computation of parameter and information resolution is such a



simple extension of any inversion procedure based on perturbation parameters that
such inversion studies are incomplete without considering resolution.” Forming the
resolution matrix does not seem to have become common practice, however, because
it is computationally prohibitive to implement the idea directly oh large problems.
Papers by Martinez and McMechan (35, Assous and Collino [3), and Bishop et al. (6]
are attempts to use the SVD to compute the well and poorly-determined parameters.
All of these attempts are restricted by the cost of computing the SVD. Martinez and
McMechan use a viscoelastic simulator to invert for velocities, density, and quality
factors. They examine model resolution for a simple geometry experiment of a tar-
get layer located between two homogeneous half-spaces. For field data experiments
they do not compute resolution. Bishop et al. estimate reflector depth and seismic
velocities from tomography data. They analyze the determination of components of
a simplified model analytically and substantiate their conclusions with a small nu-
merical experiment performed on real data. Finally, Assous and Collino determine
resolution for a more complicated problem by storing the full normal matrix and
calling an IMSL generalized eigenvalue problem solver.

In all cases these authors assume one had computed and stored the entire forward
or normal matrices during the inversion. The in-core storage of these large matrices
1s unnecessary. We use a version of the conjugate gradient and Lanczos algorithms
which allows us to estimate the eigenvalues and eigenvectors of the normal matrix
with almost no additional cost over solving the inverse problem. The approximate
resolution matrix we obtain gives preliminary evidence that the reflectivity estimates
from the inversion-estimated source are slightly better resolved than are reflectivity

estimates from an independently estimated air gun model source.



Chapter 2

b

Derivation of the Convolutional Model for the
Acoustic Wave Equation

2.1 Introduction

In this chapter we explain the steps in the derivation of the convolutional model for
the seismogram (extracted from the more complete treatment given in [56]). The
convolutional model described here comes from assuming the earth is an acoustic
layered fluid where the parameters in the equation (velocity and density) depend
only on depth. The wave equation model we are assuming in this chapter is slightly
more complicated than the model used in Chapter 3 (the constant density acoustic
wave equation) and much less complicated than the model used in Chapters 4-6
(the viscoelastic wave equation). Nonetheless, the process one goes through to derive
the convolutional model for the seismogram from these different wave equations is
the same. Moreover, in Chapters 3 and 4 the convolutional model appropriate for
those applications is defined explicitly. Fewer or more terms may be added to the
“reflectivity” term, but the general model remains very similar.

Because the derivation is long, 1 will indicate here (and by section headings
throughout the chapter) the basic steps which one must go through to arrive at
the convolutional model. The first assumption one makes is that the parameters in
the wave equation model (in this case sound velocity and density) depend on only one
spatial variable, depth. The Radon transform can therefore be applied to reduce the
3-D equation to a family of 1-D equations parametrized by a quantity called slowness.
Secondly, if one assumes that multiply reflected energy may be neglected, one is able
to linearize the wave equation. Finally, one applies high-frequency asymptotics or
geometric optics to this linearized equation to arrive at the final convolutional model.
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2.2 The Model

In [47] this model is defined in more detail. The model we use for wave propagation

in the earth is the 3-D acoustic wave equation: \

1 &P 1 .
p—(z‘)cz—(;)“at_z'v'mvp'”z’t) (2.1)

Here P(t,Z) = P(t,z,y,z > 0) is the excess pressure; p(z) and c(z) are the depth-
dependent density and sound velocity respectively. The time-dependent, anisotropic
source is denoted F. We assume the source is causal, i.e., that

t) =
; t<<0

Physical boundary conditions are imposed as well (for example, in marine geophysics,
from the ocean surface). These are not discussed here.

The inverse problem may now be stated as given recordings of the pressure
P(z,,t,) at the receiver locations z, and times t, and for sources F(Z,t), estimate
the coefficients density p(z) and sound velocity c(z).

The geometry of the reflection seismology experiment allows us to assume the
coefficients p(z) and ¢(z) are known for depths above z;. In this setting depth z
increases downward into the earth with the experimental surface denoted z,. The
source locations {z,} and receiver locations {z,} in the experiment are assumed to
lie on the plane z = z5. We also can realistically only measure the reflected signal
over a finite time interval 0 < ¢t < T. The sampling rate is assumed to be the same
for all receivers.

We assume the source has point support, i.e., that it has spatial extent much
smaller than a seismic wavelength. In Chapter 3 we will make use of an isotropic
source. For the real data experiments described in Chapters 4-6, the source is allowed
to be anisotropic. We see in the experiments in Chapters 4-6 how important the
anisotropy of the source is for fitting real seismic data. However, this complication
has no impact on our current calculations and so will be avoided. Our sources will,
therefore, have the form: F(Z,t) = f(t)6(z — z,) where z, is the point source location
and f(t) is the time series for the source signal. One extremely important aspect of all
sources discussed in this thesis is that they are band-limited, usually with frequency
content in the range of 10-90 Hz. The frequency content of the source indicates to
what scale inhomogeneities in the earth will be resolved.
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For marine experiments, the measured seismic data is
P(tvxvyaz = 0) = S(t1 zvy)'

For land experiments, the measured data is the time derivative of the particle dis-
placement.

2.3 Application of the Radon Transform

We first introduce the slowness parameter p € R which is related to the plane-wave
angle of incidence 6 by the relation

siné
T o(2)’

Then the Radon-transformed solution to the acoustic wave equation is given by

u(t,z,p)=/_O;/_°;P(t+p-r,x,z)dx

(2.2)

where here x = (z,y). The Radon-transformed field u(t, z,p) is a plane-wave compo-

nent of P and satisfies the 1-D wave equation:

1 ( 1 2) Q*u(t,z,p) 0 1 8u(t,2»P)= (2.3)

- = t)o(z — z,
p(z) \ c*(2) ot? 0zp(z) Oz f(0)8(z = 2,)
With boundary conditions:

And the seismic data is now:
u(t’z = O»P) = S(tvp)

We will work with this set of simpler 1-D equations rather than with the original 3-D
equation. We make the assumption of pre-criticality throughout this thesis, namely,
that we only consider slowness values p such that cmaz(2)|p| < 1. Then the apparent
velocity
c(z)
1~ c(z)p?

is always real and equation 2.3 is hyperbolic.

v(z,p) =
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2.4 Linearization of the Wave Equation

We consider the formal linearization of the wave equation 2.3 with respect to the
parameters velocity and density. Substitute p + ép in for the dengjity and c + éc for
the sound velocity. The solution u becomes u + éu. In general terms, this formal
linearization to the acoustic wave equation is a good approximation to the derivative
of the forward map (model for the seismogram) if
1. The coefficients describing the background medium, p and c, are slowly-varying
(smooth) relative to a typical data wavelength.
2. The perturbations, §p and éc, are high-frequency or “rough”.
The formal linearization has been studied for the 1-D problem in references [33], [55],
and {57].
If in this modified version of equation 2.3 we write the perturbed density (and

similarly the velocity) so that

11 ( 1 )
p+ép  p\l+dp/p
then we can use the Binomial series ([2], p. 244):

T _ll)c = f: ( ;C ) (=1)kz¥, if-l<z<l.

The linearized equation for éu is found by simplifying the resulting equation and

dropping terms of order greater than one in the perturbed quantities:

L( 1 2) 0%*u(p,z,t) 9 1 3éu(p,z,t)

p(z) \ c*(2) at? - Ep(z) 0z = (2:4)

_L((L_ 2) 5p(z)) Bzu(p,z,t)+ 20c(z) azu(p,z,t)_i <5p(z)) Ou(p, z,t)
p(z) \\c*(z) p(z) ot? p(z)c3(z)  Ot? 0z \ p?(2) 0z

2.5 Application of High Frequency Asymptotics to the
Linearized Equation
2.5.1 Approximation of the Perturbed Green’s Function

Rather than solving for éu directly, we note that we may solve instead for the per-
turbed Green's function G and then write 6u = f *, §G. The process described in
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this section allows us to derive an approximation containing the most significant por-
tion of the perturbed Green’s function. We assume that the source function is “high
frequency”, and therefore the most singular part of 6G (corresponding to large high
frequency Fourier coefficients) will give the greatest contribution to the convolution
solution Su. One necessary assumption is that of simple ray geometry. This assump-
tion basically states that the reflected ray cannot be a continuation of the incident
ray, and we have ruled out the possibility of caustics. The calculations in this section
are presented completely formally. For a more detailed version of this derivation, see
[56].
We start by noting that

G (24,2, t,) = Adz/dt&G(z,,z,t)&(z,. —2)8(t, —t)

3 _ 1 1 0*G 9 1 9G(z,,2,t, 1)
= /ydz/dtéG(z,,;.,t) [m (m ) 6t2 (Z,-,Z t t) - aZ p(z) 62 ]

because G satisfies the wave equation with & right hand side. We will now formally

integrate these singular terms by parts.
2 . .
=/ dz/dt[ L ( 1 2) 0°%6G(2,,2,t) 0 1 06G(z,,2,t)
® p(z) )

at? C dzp(z) 0z
Note that this formal calculation is somewhat Justified in that we have chosen as our

] G(zr, 2,8, — t)

second term G(z,, z,¢, —t) an “advanced fundamental solution” to keep the products
of supports of the Green’s functions bounded. We now substitute the right-hand side
of the linearized model (equation 2.4) into the expression above to get

: _ 1 1 2\ 00(2)\ 0°G(z,, 2,t) 5 ‘
saten st = e [t 55 (g -7 ) 55) o (23

20c(z) 0*G(z,,z,t) O 6p(z) 0G(z,, z,t)
pz)(z) O Bz pi(z) 0z
We will integrate expression 2.5 by parts. We start by integrating the first term
in the integrand with respect to ¢. The resulting expression is

1 8p(z)\ 9*G(z,,2,t)
/na’z/dt [;)(_z_) <<c2(z) ..pz) p(z)) Gz, 7t — 1) (2.6)

/ /dt 1 2 6,0(2) 6G(z,,z,t) aG(Zr,Z,t,. - t)
) az) P ) o2 ot ot

] G(zr,2,t, — t)
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Here we have assumed that the boundary term can be neglected since the Green’s
functions G(z,, 2,t) and G(z,, z,t, — t) have bounded support.

The second term in integral 2.5 is also integrated by parts with respect to ¢. In
]

28c(z) 0*G(z,,2z,t)
Lda/ﬁﬂﬂéﬁ) S Gz, 2t = 1) (2.7)

20c(z) 0G(z,,2,t) 0G(z,,2,t, ~ t)
= [ dz [ dt 2
Az/ 0(2)3(z) ot ot
Again, the boundary term goes to 0. Finally, the third term in the integral 2.5 is
integrated by parts with respect to z.

d ép(z) 0G(z,, z,t)
_A&/ﬁgf@) =Gz, 2t — 1) (2.8)

_ 0p(2) 0G(2,, 2,t) 0G(2,,2,t, — t)
T /;:dz/dt (pz(z) 0z 0z )

We now define the Progressing Wave Expansion (for a thorough explanation see

this case we get:

reference [13] Ch.6). We will approximate our Green’s function solution by the sin-

gular series

N
G(z,t) = Z an(z)Sn(t — ¢(2)) + R(z,¢)
n=0
where S/ (t) = S,_(t) for n = 0,1,2,.... Here, the prime denotes differentiation

with respect to t. Thus, the most singular term is the first term in the series, and
specifically, the remainder term R is smoother than the smoothest term in the sum,
Sn. The phase is denoted ¢(z) and the a,(z) are the transport coefficients. We
will defer calculating the phase ¢ and first transport coefficient ao until later. For
now we return to arriving at an expression for the Green’s function itself. Since the
fundamental solution of the 1-D acoustic wave equation in homogeneous medium is
given by
G(z,,z,t) = pH(ct — |z — z,|)

We take as our progressing wave expansion for the Green’s function the series
G(z,t) = ao(2)H(t — ¢(2)) + R(z,1) (2.9)
where H(t — ¢(z)) is the Heaviside function defined so that

H={0iu<aa

1 otherwise
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We substitute the progressing wave expansion expression 2.9 into the expression
for 6G gotten by combining 2.6, 2.7, 2.8.

(z 3 _ 2\ 6n(z) | 26¢(2)
nint) /d / {[ <02 () p) o(5) T (2)A(z) (2.10)
0

d
E[GO(Z" 2)H(t — ¢(24,2)) + R(z,, 2, t)]gf[ao(z,, z)H(t, —t — ¢(2r,2)) + R(z,, 2, t, — t)]

ép(z) 0 9
_m—‘a;[ao(zu z)H(t - ¢(z,,2)) + R(z,, z,t)]E[ao(z,., z)H(t, —t — ¢(z,,2))

+R(z,z,t, — t)]}

This expression is meaningful so long as the hypersurfaces defined by 0 = ¢, — ¢ —
&(z,,2z) and 0 = t — ¢(z,, =) intersect transversely (with normals not parallel at points
of intersection). The transversality condition is violated when the assumption of sim-
ple ray geometry which we assumed earlier is also violated. (For further explanation
see [56].)

If we carry the differentiations throughout the integrand now and drop all terms
except the most singular we arrive at the expression:

0G (24, 2,y t,) = (2.11)
1 6p(z) o e ai s
/Rdz/dt [-_(_( ) oy 0ol )8t = oz, 2))ao(z, 2Bt — t = (2, 2)
de(z
- (2 ( ()z O(Za» )5(t - ¢(Z,, ~))aO(~rv )6(tr —-t- ¢(er z))]
‘5"((2)) [ o(2s, 2)6(t — o(z,, z))ai(a’iz”—z)ao(z,, 2)8(t, — t — WN))W]

We now need to use explicit expressions for the phase ¢ and first transport coef-
ficient ao. Rather than calculating those terms at this time, we jump ahead to the
results themselves so we can finish the derivation of the convolutional model. We find
in Subsection 2.5.2 that if we define the vertical velocity of the plane-wave of slowness
p by

v(z,p) = =) (2.12)

1 - c¥(z)p?
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then

TR 1 _

¢(z)—v(z)— () p? | (2.13)
We also find that

ao(z) = ao(0)(p(z)v(2)) 2. (2.14)

If we substitute the expression for ¢’ into the last term in the integrand of expres-
sion 2.11, we have that

(zozots) ~ [ ds L a) 2z
st = fos [ |0 (o -p) - o] 9

X ag(zs, 2)a0(2r,2)0(t — 9(2,,2))8(t, — t — (2,,2))

To evaluate the integrals, change variables. Let X =t — ¢(z,,z) and Y =t, —t —
o(zy,z). Then

I(X,Y) ( 1 —l/v(z))

atz) |\ -1 -1/v(z)
atz) L -1 1
AX,Y) 2\ v(z) v(2)
And,
a(t. z) _ —v(z)
det |3 X Y)| = 2

Applying this change of variables to expression 2.15 gives that

26p 2) 26¢
Gz, 20 t,) / /dXdY{ [ (;3 —p?) - 5| @08 | (216)
ép 2 : b 2 - 2
- BG-) E(-)
X=Y=0
Now, X =0=t =¢(z,,z) and Y =0 = z = ¢~1(1/2t,). From expressions 2.12 and
2.14 we have that

(2.17)
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= [_6_;) + ﬁvz(z)] ao(0)?

p ¢ X=Y=0
The approximation to the perturbed Green’s function is, therefore, given by
i
bp ¢ 1
~ 2 -1
(5G(Z,,Z,-, t,-) ~ (10(0) {—p— + —C'- (1 _ p2cz)} (¢ (1/2t,-)) (218)

Therefore, the perturbed solution éu = f * §G.

2.5.2 Calculation of the Phase Function and First Transport Coefficient
We first calculate the phase function ¢. We substitute the progressing wave expansion
N
u(p.z.t) = 3 an(2)Salt - 6(2)) + R(z,1) (2.19)
n=0

into the acoustic wave equation

1 1 0? 0 1 0
(which hold for = # z,). We chose the terms in the singular series S, sothat S/, = S,_,
so
92 N 9*R(z.
Eg = Z an(Z)Sn-‘Z(t - é(z)) + —-a(t—i—t")' (221)
And
al OR(z,
% =D [ap(2)Sa(t = 6(2)) = an(2)6'(2)Sacn(t — o(2))] + (;z d (2.22)
d*u N
507 = 2 [an(2)Sa(t = é(2)) — 20, (2)¢'(2) Sacn (t — &(2)) (2.23)
0*R(z,
=n(2)0"(2)Sn-1(t = 8(2)) + an(2)(¢'(2)) Sn-alt — 8(2))] + j‘%

Expressions 2.20, 2.21, 2.22, and 2.23 give that

N 1 1 1
Y Saca(t = ¢(2)) [m (Cz(z) - PZ) an(z) - man(z)(df(z»’ (2.24)
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£ 3 Suma(t - 8(2) [— PL2) o (2)8(2) + —2—al (2)9/(2) + ——a ¢"(z>]
LS p(z) " p(z)" o(z)"

N
+ Y Sa(t - ¢(2))

n=0

ﬂz—)a' z —La" 2)| =
[pZ(z) n( ) p(z) n( )] 0

To find the phase function we solve for the coefficient of the S,_; term (the most

(&t 7) -] e =0

This equation is the eikonal equation of geometric optics. The solution to this equa-

singular):

tion for heterogeneous media may be computed numerically via the method of char-
acteristics (as described in [56]). We find that

[z - e = o02) (2.25)

To recover the first transport coefficient, namely ao, we must solve the equation

p'(2)
p(z)

¢'(2)ao(z) + 2¢'(2)ag(z) + ¢"(z)ao(z) = 0

We rewrite this equation as

o L2
=5 (55 - 515 et

And make use of the expression for the phase we just derived (expression 2.25). Then

)

((log p(2))" + (log v(z))')

)

&

/ __l o Y - | lo
ag(z) = 5 ((1 g p(z)) (1 g v(2)

((1og p(2))’ + (log v(z))) dz

= ao(0)(p(2)v(2))"/?

= ao(z) = cexp (

~ N~ N -
—

= ao(Z
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Chapter 3

)

A Stability Result for Estimation of the Source
and Reflectivity

3.1 Introduction

In his 1954 thesis, Enders Robinson stated that “the seismic trace is the response of
the system consisting of the earth and recording apparatus to the impulsive source,
the explosion.” Further, he said “in the final analysis one is interested in the various
components of this total response; for example, one wishes to separate components
of reflected energy from those of non-reflected energy” [42]. One of the most basic
tasks in seismology (and the one which Robinson devoted much time to) is removal of
the input energy source from the seismic data. In the last four decades, seismologists
have devised numerous methods for estimating and removing the source from the
selsmic data.

Robinson, for example, suggested separating the “dynamic component” or wavelet
shape from the “random components” (arrival times and strengths of the wavelets)
in a method known today as predictive deconvolution. This method assumes the
wavelet is minimum phase. Another technique for removing the energy source from
the seismic data is homomorphic deconvolution. The seismic data is approximated
by convolving the source wavelet with the impulse response. By Fourier transforming
the data, the convolution becomes multiplication which is then replaced by addition
when the log is taken. An assumed dichotomy of the frequency content between the
source and reflectivity allows these quantities to be determined separately from the
sum [61]. A third idea is to measure the direct wave and then try to figure the input
energy source from this measurement [64].

In this chapter we suggest using inversion to estimate the energy source at the
same time the earth parameters are being estimated. In seismic inversion one chooses
a physical model to describe the propagation of waves through the medium and at-
tempts to improve the fit of the model to the given data by successively updating the
parameters which characterize the model. The problem of determining the velocity
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and quasi-impulsive source via inversion is analyzed in papers by Bube et al. 7] and
Sacks [46]. Lewis analyzed a similar problem. He assumed the earth is a constant
density acoustic layered fluid with pressure measured at the earth’s surface. The
propagating waves are assumed to be plane waves and only primiry reflections are
recorded. He did not require the source to be impulsive but did require the back-
ground velocity in this linearized model to be constant. He showed that perturbations
in the seismic data stably determine corresponding perturbations in the source and
reflectivity [33].

Starting from the same model Lewis used, we sought to relax the unrealistic
assumption of a constant background velocity medium. We give a second proof of
the stability result for constant background velocities and prove that the normal
operator is continuous with respect to velocity. Thus for background velocities which
vary slowly and smoothly with depth (i.e., are close to constant), changes in the source
and reflectivity must cause proportional changes in the seismic data. The ability to
separately determine the two parameters improves with increasing slowness aperture.

Section 3.2 of this chapter details the mathematical model we consider. Section 3.3
provides the mathematical results, namely, a new proof of stability for the constant
case and the theorem showing that the normal operator is continuous with respect
to velocity. Finally, in Section 3.4 we apply inversion to 7 — p transformed synthetic
marine data generated with a variable background velocity model, estimating both
the energy source and reflectivity functions. Four experiments are described. In
each case the starting reflectivity is the same (zero) and the starting guess for the
source is an isotropic Ricker wavelet with the correct peak frequency but incorrect
temporal distribution. We use output least squares inversion to estimate the source
and reflectivity. The four models differ in that the data for each successive experiment
is defined over a smaller and smaller slowness aperture. In each case we are able to
find parameters which allow the model to fit the data equally well. However, the
original source and reflectivity parameters are only correctly recovered (including the
time location of the source) when the data is defined over a sufficiently large slowness
aperture.

3.2 Model and Problem Specifications

We model the earth as an acoustic fluid with constant density and depth-dependent
variable sound velocity ¢(z). The velocity is assumed to vary slowly on the scale
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of a seismic wavelength and to determine the kinematics of wave propagation. The
short-scale heterogeneities are modeled by the relative perturbation in the velocity,
or the reflectivity, r(z) = éc(z)/c(z). The source is assumed to be isotropic and to
have point support. The layered medium assumption above (that the velocity de-
pends only on depth) allows us to apply the Radon integral transform (or plane-wave
decomposition) to the normal displacement gotten from the solution to the acoustic
wave equation. Thus one can reduce the three-dimensional problem to a family of
one-dimensional equations [60]. These equations are parametrized by slowness, p.
By assuming a primaries only or single-scattering approximation and by using high-
frequency asymptotics, we can write the convolutional equation for the seismogram,

S(t,p) = f(t) = F(t,p).

denotes convolution in time ¢, and f is the isotropic source. The expression
for the reflectivity as a function of time, 7 (or perturbation of the Green’s function for
the acoustic wave equation) is given by 7(t,p) =~ [ dz[A(z)r(z,p)]6(t — 27) where A
is the reflectivity amplitude from geometric optics. The vertical (plane-wave) veloc-
ity changes form when we Radon transform, becoming v(z,p) = ¢(2)/y/1 — ¢*(z)p?.
Similarly, the reflectivity r(z, p) is now the relative perturbation in this transformed

velocity. We may write the travel-time function

won
*

Here,

1
v(¢,p)

We shall also need the inverse of the travel-time function, which we denote by z(t, p);

7(z,p) =/0de

thus r(z(t.p),p) = t and z(7(¢,p),p) = ¢. This primaries-only, plane-wave, layered
medium, constant density acoustic model is likely the simplest model of seismic wave -
propagation which one can use to describe real seismograms. For an example of its

use in modeling seismic field data see the paper by Symes and Carazzone [58].

3.3 Mathematical Results

3.3.1 Background

In his thesis, Lewis analyzed the effect of small perturbations in the source and
reflectivity on the seismogram, in the case that the background velocity is constant
(33]. From the plane-wave convolutional model for the seismogram, we may write the
perturbed seismogram as



22

6S(t,p) = 6f(t) »7(t,p) + f(t) * 67(t, p). (3.1)

Lewis showed that the perturbed seismogram determines both‘ the perturbation
in the source and the perturbation in the reflectivity uniquely. For instance, if the
perturbation in the data is equal to zero, then the perturbations in both the source
and reflectivity must also be identically zero. Obvious nonuniqueness due to scale
ambiguities between the two parameters (source and reflectivity) is ruled out by an
added constraint which fixes the scale of one of the two quantities.

Further, he showed that perturbations in the seismic data stably determine corre-
sponding perturbations in the source and reflectivity. This determination for source
perturbations is valid within the passband of the source itself. Similarly, determina-
tion of reflectivity perturbations is constrained to a corresponding spatial frequency
passband for the reflectivity. The stability improves as the range of slowness values
increases. Conversely, as the range is reduced to a single trace, the ability to sep-
arately determine the perturbations in the source and reflectivity simultaneously is
lost. The numerical examples in Section 3.4 show that although it may be easy to
find model parameters which explain a small aperture (or single trace) set of data,
these parameters will not necessarily be the ones which generated the data originally.

As is realistic, in this work Lewis assumed that both the source and reflectivity
have compact support in time. Thus, the source cannot mathematically be truly
band-limited. It is reasonable, however, to assume that outside of some frequency
band the source has small enough contribution to be considered negligible and ignored
[52].

In an effort to generalize the above result to the case in which the background ve-
locity need not be constant, we have arrived at a new proof of Lewis’ result (Theorem
3.1 below). We show in Theorem 3.2 that the normal operator corresponding to the
convolutional forward model for the seismogram is continuous in the velocity. Thus,
having established stability at one point in velocity model space, namely for constant
background velocity media, the continuity result implies that in a small neighborhood
of this point (i.e., for background velocities which don’t stray too far from constant),
the seismic data stably determines corresponding perturbations in the source and
reflectivity.
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3.3.2 Notation

In the following theory section we make use of the symbols “§”, “G”, and “§” where
g will generally be the source or reflectivity functions. The symbol ,“g” is the Fourier
transform of g with respect to either time or depth depending on the domain of the
function. The symbol “§” implies a change of variables from depth to time has been
applied, and “g" is the conjugate of g.

3.3.3 Theory

Given the nature of the statistical deconvolution theory as described in the introduc-
tion, it is hardly surprising that a measure of “whiteness” turns up in the stability
result to follow. For an interval [(min, (max] € R and 0 < A( < (max — {min, define for
re L*(R),r#0

LV(ijnsCmax»AC; T‘) = (32)

1 fC+ ,:2
inf{—“—“_c‘ -

HrHiZ(R)

1
:ijnSC—<<+SCmavaACSC‘*——C—SAC}

That is, W measures the uniformity of distribution of Fourier components aver-
aged over frequency intervals of length roughly A¢. Note that W > 0 for any r of
compact support. Evidently if f (and perhaps r) are band-limited, it is only possible
to determine band-limited information about 6 f, §r from the perturbational relation
3.1. For n > 0, we define an 7n-passband for f € L*(R) to be a symmetric frequency

interval [~wmax, ~Wmin] U [Wmin,@max) Over which

lw ()] = 21l fll 2 gy (3.3)

Theorem 3.1 Suppose that 0 < pmin < Pmax, 0 < Wnin < Whax, 7 > 0,
and Qf = [~wmax, ~Wmin] U [Wmin, Wmax] is an 7-passband for f € L0, T).
Fix the size of the source, i.e., ||f||L:(9,) = 1. Suppose also that r €
L?[0,Z]. Then for any 6f € L*[0,T] which satisfies the linearization of
the fixed size constraint above, namely that,
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_—

dwbf(w)f(w) =0 (3.4)

Qy

and ér € L?[0, Z],

&7

|67

L3(Qy) + “ Lz(QIX[Pmilvau]) S K ||6S||Lz([O'T]X[PmiIvau])

where K depends on Pmin; Pmaxs €y Wmin, Wmax, 7, and

W .= W( “Wmin , “max ,‘-‘)min (1 + v(Pmax)) ;T)
V(Pmax) U(Prm'n) 2 U(ijn)

Proof Set v(p) = v(z,p) = (¢™? — p?)~%. Then Fw,p) = v(p)f (w/v(p)). Write
¢(w,p) = w/v(p). Then Fourier transformation of the expression for S (expression
3.1) and a little algebra yield

F(¢) 85(w.p) _ [?f(w)
f(w)
The map p — ((w,p) is smooth and invertible. Viewed as an identity in w and (¢,

expression 3.5 holds over the ¢ interval [(min(w), (max(w)], where (min(w) = wW/v(Pmax),

and (max(w) = w/v(Pmin). A calculation shows that

] HOP + FOFC) (3.5)

[Cmin(a“")v Cmax(w)] C [Cmin(“’)a Cmax(w)] N [Cmin(d“")v Cmax(o'w)] (3.6)

ifl <o < %(l + %%”ﬂ)l). Therefore we can subtract equation 3.5 at the point

ow from the same expression at the point w so long as ¢ remains in the range ¢ €

[¢min(0w), {max(w)]- We obtain

Ao [0 Bowten )] _[to) _ oo
f(W)v(P(w,C)) f(UW)U(P(aw,C)) f(w) f(a-w)

Integrate both sides of 3.7 to get

|67(w) 6f(ow)
f@)  flow)
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min(oW)

(max(w) . b man(w) - 6’3‘(&), p(LU, C)) 53’(0(4, P(UW‘ C)) ]
= d¢ |7 3 ¢ r = - ==
|</<<> CHOF) [T (O[f(w)v(p(w,C)) flow)o(p(ow, ) ’

b

T B fﬁmm [( / dplﬁ”(w,p)l’f + ( / " dp |5*5(w,p)|z) %] (3.8)

The expression 3.8 is derived from the line above it through application of the “pass-

band” and “whiteness” hypotheses 3.2 and 3.3 as well as the Cauchy-Schwarz and
triangle inequalities. Thus, we arrive at the expression,

6f(w) _ §f(ow)
flw)  flow)

K stands for a quantity depending only on ¢, pmin, and pmax, Which may vary from

K
nWilrll L2,z

||5S”L2([0,T]X[Pminvpmu]) (39)

expression to expression. Denote by N the smallest integer greater than

Wmax — Wmin

2 v(Pmin)

Expression 3.9 holds for an w in one of these N intervals. To generalize to any

W € [Wmin,wmax| we employ a telescoping sum

g?(w) _ ‘gz(wmin)
f@)  f(wmin)

i 6f(a"wm,~n) 6f( wmm)

n=1 f:(an“-’min) f(a'n_lumin)

NK

L - 3.10
S TWirlons (3.10)

185122 0.17) < prmnmac)

Evidently the same inequality holds for the negative part of the passband {;, with
Wmin replaced by —wpnin. Set k = 6f(umm)/f(wm,,,) Because 6f is orthogonal to f
over {1y,

157 dw §7(w) (5F(w) ~ kf(w))

L) - Ja,

™ o T o (1) Sf(wm)) T (S?(w) Ff(wm))
= dw é f(w)f(w) { = - = + dw 6 f(w)f(w) | = -z
/ (w) f(w) < fw) f(Wrmin) -/—wm.. f(w) f(wWmin)
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NK

<1 Vi) 77T 15001

The last inequality above came from substitution of the expression 3.10. Thus we
have established the required bound for §f. The corresponding bound for é7 follows
from the definition of 65 and the passband inequality 3.3.

o

Corollary 3.1 For any spatial frequency interval ({-,{;) contained in
the interior of

[—umax —wmir [ “min “Wmax ]
U(Pmin)’ U(Pmax, v(Pmax)? V{Pmin) ,

there exists a constant K((-,(4+) depending also on the quantities men-
tioned in the theorem, so that

187 o o < K 16S 1 cag0 11xpmmpmech

Note. The constant K in the corollary is not uniform in (_, (4 but depends on the
size of the neighborhood of [(_,({}] contained in the band defined above.

Theorem 3.2 The conclusion of Theorem 1 continues to hold, under
the same hypotheses, for ¢ € C'{0, Z], provided that lldc/dz||copo, 7 is
sufficiently small. Specifically, there exist o, K > 0 depending on the

same quantities as in the statement of Theorem 1 so that

de

—_ <
dz

cof0,2)

implies that for arbitrary 6 f € L2[0,T], ér € L?[0, Z],

—_—

|é7

PRd

Lz(n!x[]’minvpmu]) S I{ ||5S”L2(Rx{Pmin-Pmax])

Proof Evidently, the assertion of the theorem boils down to a statement about

6f 6f
[EX S r— =< )’N )> o
L2(RxX[pmin Pmax]) Sr or L2[0,T)xL3[0,2]

where N is the normal operator.
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Explicitly,
v 8 — [ Nerbf 4+ Npbr
6r |\ N.j6f + Nysér

Pdp/d31 /d32 r(z(s1,p)) r(2(s2,p)) 6 f(t + 31 — s2)

j
where

Pmax

N, 6f(t) = /,,

ma

Pmax
Ny br(t) = / pdp/dsl /d32 f(s1) 7(2(s2,p)) 6r(2(t + 81 — s2,p))

Pmin

Nesf(s) = [ pdpo [ 152 F51) r(2(52,2)) 65(7(2,p) + 31 = 52)
Nygor(s) = [ pdpoy [ dsa (1) £(s2) br(a((z,p) + 91 = 52,p))

N = Nlc] is a self-adjoint operator on the Hilbert space L2[0,T] x L*[0, Z] for each
positive smooth velocity profile c(z). We will show that N is continuous in ¢, in an
appropriate sense. Then the conclusion of the theorem will follow from the perturba-
tion theory of bounded self-adjoint operators [28]. All four components of N may be
treated the same way, so we show the calculations explicitly only for N,;. Denote by
N2, = N,4[c(0)] the operator .V,; for the constant velocity ¢ = ¢(0). Then a change

of variables of integration yields

(Nessf = N2 f) (=) = /”"'"pdp{ 7 ] [ dzids r(2) 859 (s + 7(21.p) = 7(2.p)

Pmin "

(s)f(s + mo(z1,p) — TO(Z’P))}

where the zero subscripts denote quantities associated with the constant velocity c(0).
This last is

min v, P) ‘Uo(p)

= /pp;dp{( (1 -2 )//dz,dsr(zl)éf(s)f(s+1'(zl,p)—-T(z,p))

dsr(20)8f(s) [f(s + 7(z1,p) = 7(2,p)) = f(s + 70(21,p) — TO(Z»P))]}
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Now

f(s +7(21,p) = 7(z,p)) = f(s + 70(21,) = 70(2,p))

s+(7(21,p)=7(2.p))=(ro(21.P)=70(2,p)) '
/ dof'(o + o(21,9) = 7o(z,p))

s

1 {6 /H—(T(Zxvp)*f(zvp))—éfo(;t,P)-To(lv(P)) ) ( ))}
= —-—— — ofio + mol21,p) — 7ol 2,
(z = z1)ve(p)p | 8p Js oVEn Py TolE, P

+ (7 d'pu(z') = valp))) (5 + 7(21,8) = 7(2,8))

Substituting this last expression into the integral and integrating by parts with respect
to p, we obtain a lengthy expansion for the kernel of the Hilbert-Schmidt operator

N,¢, each term in which consists of

1. a factor of r(z;)

2. either f(-) or ,_lz, [t f, where the interval of integration I has length = O(]z —
z1])

3. a coeflicient function of z,z; and p which is uniformly bounded by a function

of Pmins Pmax and HC - C(O)“C‘[O,Z]

hence in turn by |]dc/dz||co[0z]. Thus the Hilbert-Schmidt norm, or N,y — N7, is
bounded by
dc

K Il 2o, 27 | Fll 2.y 7

C%[0.2]
where K is a function of Z,||c|lcij0.2]y Pmin, and Pmax- The other three components
may be treated the same way, so

dc

"N - NOH <K ||T‘||L2[o_z] “f“LZ[O.T] dz

¢°l0.2]
To link this continuity result to Theorem 3.1, use expression 3.11 which ties the
normal operator to the square of the norm of the perturbed seismogram. Recall the

first part of the conclusion of Theorem 3.1 gives that “57 sa@,) < K165 Lo, 11x [prnim pmas])

which may now be expressed as:

1V0> SEQf 0
- 0 0
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where € > 0 and Eq; is the operator of Fourier transformation (of f), followed by
multiplication by the bandpass filter (1 inside Qf, 0 outside), followed by the inverse
Fourier transform. The continuity estimate above now implies the same bound for
N: '

x’VZ EEQf 0
0 0

where ¢ is uniform over ||f|| ;2017 = 1 and L*-bounded sets of r € L?[0, Z] subject
to the “pseudowhiteness” constraint expressed in Theorem 3.1. Thus the result has
been proved for the §f term, and the complete conclusion of Theorem 3.2 follows
from the normal equations as before.
a
To summarize, we have shown that perturbations in the source and reflectivity
functions are both well-determined by the corresponding perturbations of the seismo-
gram, within their passbands, so long as the rate of change of velocity with depth is
sufficiently small, and so long as the reference reflectivity has a “whiteness” property.
These conditions are merely sufficient for “well-posedness within the passband” of the
linearized problem. Their necessity is far from obvious. Moreover, our results imply
only that a reasonable misfit criterion, suitably regularized, will be convex near the
global minimizer for noise-free data. In particular our result says little directly about

the global behavior of misfit functions or algorithms to minimize them.

3.4 A Numerical Example

To test the theoretical results discussed above numerically, we performed experiments
on 7 — p transformed synthetic data generated from real data. The examples shown
here were based on data provided by Exxon Production Research Company. All tests
were done on a Sun Sparcstation 2 using the Differential Semblance Optimization
package, a seismic simulation and inversion code under development at Rice University.
We began with one common-midpoint data gather taken from a marine seismic
survey. The Radon transform was applied to yield 48 plane-wave traces with slowness
values ranging from pmin = .1158 ms/m t0 Pz = .36468 ms/m. We were also given
an estimate of the anisotropic air gun source in the form of a 31-term Legendre
expansion in slowness. The coefficients in the series were functions of time only.
The procedure used to generate the target model for our experiment was the
following. The target isotropic source is the first term of the 31-term source estimate
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(which represents the isotropic component of the air gun source). This isotropic
source has been filtered to have a peak frequency of roughly 15 Hz and a peak in
time at 110 ms. To generate a realistic target reflectivity, we inverted the plane-wave
field data for the reflectivity using an inversion-estimated background velocity. The
output of the (least squares) inversion was an estimate of the reflectivity (the relative
perturbation in the velocity in this case).

For the experiments reported here (in each case, determination of both the source
and reflectivity) we chose the variable background velocity shown in Figure 3.1. We
generated four new sets of data (each with a different slowness aperture) for our
synthetic experiments using the reflectivity from the field data inversion as input.
The seismic data was also filtered by the 15 Hz Ricker wavelet and consisted of 13
traces each of about 3 seconds time duration.

We successively updated the source and reflectivity estimates by minimizing the
mean squared difference between the actual data and the data predicted by our model
(Output Least Squares inversion). The method we used (coordinate search or alter-
nation) requires the source parameters be fixed, and the reflectivities estimated by
output least squares inversion. Then the reflectivities are updated and held fixed and
the source parameters estimated by OLS inversion. The source is updated and this
cycle is repeated until convergence.

Alternation, although notoriously inefficient, is attractive for initial experiments
because it requires only successive solution of simple linear least-squares problems.
Obviously, quasi-Newton methods could be applied to the problem and would likely
reduce the number of iterations dramatically.

The initial estimate of the reflectivity used for the inversions was r = 0. For the
initial source estimate, we chose a Ricker wavelet also with peak frequency of 15 Hz
but which had its peak centered in time at 0 ms (Figure 3.2). The source location was
of interest to us in this experiment. In practice, one might reasonably expect to be
able to estimate the power spectrum of the source. However, one would not expect to
be able to guess at the location of the peak in time (i.e., the phase). Each inversion
round included an estimation of the source and an estimation of the reflectivity.

In experiment 1 we attempted to find source and reflectivity parameters to explain
the data shown in Figure 3.3. This synthetic data was generated with the full slowness
aperture range of the original plane wave data, namely from ppnin = .1158 ms/m to
Pmaz = .36468 ms/m. The 7 — p transformed seismogram used in experiment 2 is
shown in Figure 3.6. For this experiment, the slowness interval between consecutive
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traces was cut in half, but the total number of traces remained the same . The
resulting aperture range was from pmin = .1158 ms/m to pmasz = -2402 ms/m. The
slowness interval between neighboring traces was halved once more for experiment
3, yielding a slowness range from pmin = .1158 ms/m to pmar = 1780 ms/m. The
corresponding data is displayed in Figure 3.9. Finally, a slowness interval of 0 ms/m
was used, i.e., all thirteen traces in experiment 4 were the same. The data to be
matched is the single-trace plane-wave seismogram of Figure 3.12.

Figures 3.4, 3.7, 3.10, and 3.13 display the target isotropic source (dashed line) and
an inversion-estimated source (solid line) from the corresponding data (3.3, 3.6, 3.9,
and 3.12 respectively). Similarly, Figures 3.5, 3.8, 3.11, and 3.14 display the target
reflectivity (dashed line) and estimated reflectivity (solid line) for each experiment.
Recall that using the convolutional model for the seismogram and determining both
the source and reflectivity, a scale ambiguity exists (which is why we fix the size of
the source function in the theoretical results). Thus, one may scale the source up by
a constant a and the reflectivity down by the constant 1/a and fit the data equally as
well as one would without the scaling. Multiplication by the constant -1 is, of course,
allowed as well. Thus, in each experiment, the graphs were designed to show the best
results for that case (which may have included polarity reversal). In experiments 1 and
2, the source and reflectivity inversion results were scaled by a factor of -1, whereas
in experiments 3 and 4 they were not. The inversion estimates plotted for the four
different experiments correspond to the point at which the inversion-estimated source
and reflectivity had reduced the root mean squared error to 7% of the data norm.
Each time we narrowed the slowness aperture, the convergence rate for the alternation
algorithm progressively worsened. For example, to reduce the error to 7% took only
eighteen rounds of alternation with the full aperture range of data (experiment 1). -
The half aperture range (experiment 2) took forty rounds; and finally, in experiment
3, one-hundred and fifty rounds of alternation were required to reduce the rms error to
7% of the data norm. The degenerate case of data with only a single trace converged
to less than 10% error in only two rounds of alternation. We note, however, that
the experiments with a wider range of slowness values allow determination of the
reflectivity and correctly locate the source peak at 110 ms. As the slowness range
narrows, the inversion scheme is no longer able to move the initial source guess to
its target location, although the fit to data is comparable across experiments. The

ability to separately determine the two parameters has been lost. v
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3.5 Conclusion

In order to estimate the mechanical parameters which describe a section of the subsur-
face, seismologists must take into account the energy they introduce into the ground
as an imaging device. Rather than removing the energy source from the data, one
can invert for this source while simultaneously estimating the earth parameters. In
this chapter we examine a simple seismogram model, namely the plane-wave convolu-
tional model derived from the constant density, variable sound velocity acoustic wave
equation. We invert for the energy source and a high-frequency perturbation of the
velocity (or reflectivity). Theoretically we find that for slowly varying background ve-
locities, the corresponding seismic data stably determines perturbations in the source
and reflectivity. Numerically we describe four inversion experiments performed on
T — p transformed synthetic data generated from real marine data. The initial source
guess was located at the time origin whereas the true source was peaked at 110ms.
A.though we are able to determine both parameters quite accurately for data defined
over a wide range of slownesses, as this range narrows to the single trace limit, we

can no longer separately recover the original source (and its correct time location)
and the reflectivity.
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Figure 3.10 Source inversion result at alternation round 150 for the data
shown in Figure 3.9. The rms error/data norm = 7%. Solid line: estimated-
source (scaled). Dashed line: target source.
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Chapter 4

Full Waveform Inversion of Marine Reflection
Data in the Plane-Wave Domain

4.1 Introduction

This chapter reports the full-waveform inversion of a small marine data set. The data
used in this work are derived from a marine survey over a bright reflecting horizon
embedded in essentially flat-lying layers. Little evidence of either multiply reflected
energy or mode conversion is observable in the data. Accordingly, the inversion
technique used a plane-wave viscoelastic model for P-wave propagation and primary
reflections in a layered earth. A multistage iterative algorithm adjusted model compo-
nents to minimize the mean-squared misfit between predicted plane-wave data gathers
and those extracted by p — 7 transform from field midpoint gathers. Inversion was
used to estimate the compressional (or P-wave) background velocity, the anisotropic
seismic source, and-three elastic reflectivities (or short-scale relative fluctuations in
combinations of the P-wave velocity, S-wave velocity, and density). This choice of
inversion targets includes the background velocity which has a nonlinear effect on the
data and thus can have a very large influence on the accuracy of the final answer.
It also includes parameters which have a linear influence on the data (the elastic
reflectivities and seismic source).

In order to gauge the accuracy of our results we used several tests. First, well
logs provided an independent estimate of two of the three elastic parameters. The
background velocity’s ability to place the significant events in the reflectivities at
the same depth independent of plane-wave slowness (p) provided us with a second,
internal measure of consistency. This test is very similar to the use of “coherency” or
“common image” panels in migration velocity analysis. Lastly, we used the relative
misfit of the observed to predicted data to compare the inversion results. An initial
estimate of the P-wave background velocity obtained by layer stripping in the p — 7
domain proved inferior to the background velocity obtained from waveform inversion.

Similarly, an initial estimate of the seismic source obtained from modeling the data
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collection geometry and air gun apparatus was less successful in explaining the data
than was the inversion result. Finally, we determined that a reasonably accurate
quality factor estimate (Qp and @s) is necessary to achieve an acceptable data fit.

In particular, elastic inversion does not explain the dominant amplitude-versus-angle
(AVA) trend observed in the data.

To rank earth models according to their ability to fit data (as we do here) is a
radical proposition, not altogether conforming to contemporary geophysical practice,
and so requiring justification. We compare estimates of small-scale features in the
elastic parameters based on inversion for velocity model and source to estimates
obtained from other velocity analysis and source parametrization techniques. We
find that the inversion-based estimates conform more closely both to independent
measurements (well logs) and to commonly-accepted lithological relationships.

Evidently, this justification of inversion is preliminary: it rests on analysis of a
single-small data set. In fact most of our analysis is performed on a single midpoint
gather. This small data set is extracted from a high-quality survey conducted in a
region which conforms reasonably well to the modeling assumptions underlying the
inversion. Multiparameter waveform inversion is a noise-sensitive process, and the va-
lidity of conclusions based on it could only become clear from analysis of considerably
more evidence than is presented here. The present work shows that such analysis is
possible, and that inversion can produce very reasonable results.

The prior work perhaps closest in spirit to our approach is that of Martinez and
McMechan who use a viscoelastic simulator to forward model seismic data as the basis
for an inversion algorithm [34] and [35]. Part 1 of their paper shows three synthetic
examples which contrast elastic and viscoelastic modeling. The modeling technique
is layer-based and produces p — 7 (plane-wave) seismograms, as does the modeling -
technique used in this chapter.

In part 2 of their paper, Martinez and McMechan apply linearized inversion to
estimate the quality factors, shear and compressional wave velocities, and density.
They test the inversion on both synthetic and field data. Furthermore, eigenvalue
analysis is performed on a simple single-layer model problem indicating the best and
least well-determined of the estimated parameters. In contrast to the work reported
here, however, Martinez and McMechan do not determine the energy source as part
of their inversion.

The results presented in [25] are also very closely related to those described in
this chapter. In fact, the experiments discussed in this chapter used data from the
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same Gulf of Mexico survey. Igel employed a two-dimensional elastic finite difference
simulator to invert for the P-wave impedance and Poisson’s ratio. He did not invert
for either the source or background compressional-wave velocity, relying on other
techniques to provide these parameters. By inverting near offset'traces for the P-
impedance and then using this result to invert all the traces for Poisson’s ratio,
he was able to obtain a final misfit error of 44.7%. An excellent reference list for
viscoelastic modeling can be found in Igel’s thesis.

Other recent references for elastic full waveform inversion include [63] and (38].
Wood estimates the shear velocity, compressional velocity, and density via inversion.
Pan et al. include the layer thickness as the fourth parameter sought in the inversion.
In all of the above inversion references, however, the source wavelet is either assumed
known exactly ([63]) or is estimated via statistical techniques and initially extracted
from the data ([34], [35], and [38]). Martinez and McMechan make mention of the fact
that inversion could be used to estimate the energy source as well, but no examples
are given.

Along with well-known source signature deconvolution techniques such as predic-
tive deconvolution [43] and homomorphic deconvolution (see [61], [54], [8]), several
authors have discussed estimating the energy source and other parameters via inver-
sion. The references include a talk given by Canadas and Kolb [9], and mathematical
justification for the idea of using inversion to estimate the energy source is given in
(7], [46], and [33]. Lewis showed that band-limited sources and reflectivities could
be estimated by simultaneous inversion. In Chapter 3 we extended Lewis’ results to
nonconstant background velocities and introduced the numerical technique used in
this chapter. None of these references, however, combine viscoelastic modeling with
energy source estimation.

In short, the work reported here differs from all prior work discussed in the refer-

ences above on at least one of the following four counts:
® use of waveform inversion to estimate velocities
e modeling of attenuation (viscoelastic wave propagation)
o estimation of energy source parameters via inversion
® correct treatment of three-dimensional amplitudes.

Section 4.2 of this chapter explains the viscoelastic, plane-wave, primary-reflection

model and the inversion methods based on it used in our work. Section 4.3 provides
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details about the marine data set used in all the experiments shown in this chapter.
The remainder of the chapter details the experiments we performed starting with the
background or long-wavelength velocity inversions and continuing with the source
and elastic parameter inversions enumerated in Table 4.1 and didcussed in Section

4.4. Finally, some conclusions are drawn in Section 4.5.

4.2 The Method
4.2.1 Modeling

We model the earth as a viscoelastic medium. We do not give the full derivation of the
convolutional solution approximation to the viscoelastic model here. The viscoelastic
simulator we used was built on the solution approximation given in 1] pp.153-155.
One of the few references which gives a detailed derivation of the viscoelastic equations
from physical laws is [41]. See also references cited therein.

The mechanical parameters in the model include the density, p, the shear and
compressional wave velocities, vs and vp, and the shear and compressional quality
factors, gs and ¢p. The time-dependent, anisotropic source is assumed to have,
approximately, point support.

Assume that the earth is a layered medium. Thus the parameters in our model
vary only with depth, z = z;. By applying the Radon integral transform (or plane-
wave decomposition) to the solution of the viscoelastic wave equation (and to common
midpoint gathers of the data) we reduce the three-dimensional model to a family of
one-dimensional models (see [60]). In effect, we have synthesized incident plane wave
“shot” records parametrized by slowness, p, and by midpoint. Use of the plane-wave
approach is justified by the fact that the reflection angles of interest for inversion
were well sampled by the recording arrangement for the frequencies produced by the
source.

Neither mode conversion nor multiply reflected energy appear to be important in
the data set used for the experiments in this chapter (most likely because of the soft
water-bottom materials in this part of the subsurface). Thus we were able to assume
a primaries only, or single-scattering, approximation. The mechanical parameters are
separated into the long-wavelength (smooth) background velocities and density vp, vs,
and p, and short-wavelength relative perturbations of these parameters (reflectivities)
rp = bvp/vp, rs = bvs/vs, and rq = §p/p. High-frequency asymptotics, leads to the
convolutional model prediction of the P-wave seismogram (see [5]),
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SPred(t,p) = f(t,p) * 7(t, p).
b
In the above expression, S is the seismogram, f the source wavelet; p denotes slowness,

and t time. The “*” symbol is convolution in time. The reflectivity 7 may be written

F(t, p) = /dz[Ap(z, t,p)rp(z) + As(z,t,p)rs(z) + Au(z, t, p)ra(z))].

The geometric optics reflectivity amplitude Ap is

Ap(z,t.p) = /_Z dwFp(z,p)exp [iw(t = 27(z,p)) - || (1 + ?n_iln

i) etepl]

The vertical travel time of plane waves with slowness, p, is

r(z.p) /dy Pvf)’( ))’

and

1
en) = [y

is the corresponding attenuation factor. An algebraic combination of background
parameters vp(z), vs(z), and p(z), and slowness p gives Fp(z,p). The temporal
frequency variable is denoted w; zq is the source depth, and gp is the P-wave attenu-
ation factor. Similar expressions define the geometric optics amplitudes As and Aj.
The reference frequency wo calibrates the (frequency-dependent) velocity. Waves at
frequency wp move with the P-wave velocity vp.

The integrals described above are approximated by the trapezoidal rule in the
modeling code. For use in the optimization, both the linearizations of the above
expressions and their adjoints are required. These are computed by applying first
order perturbation theory to the discretized integral transforms.
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4.2.2 Inversion

The predicted seismogram SP™¢ is linear in each of the parameters f (the seismic
source) and rp, rs, rqy (the elastic reflectivities). It is very nonlingar in the P-wave
velocity v,. This chapter discusses inversion for these five parameters. The predicted
seismogram also depends on the (background) S-wave velocity vs and density p, and
on the quality factors Qp and Qs. We have assumed here that vs and p are known
with sufficient accuracy from logs and regional relationships which hold on the average
over long scales. The quality factors were estimated by roughly matching the rate of
energy decay in the data with predictions from log-derived synthetics.

The basic inversion principle embodied in our algorithms is Output Least Squares
(or OLS). This method requires that we adjust the inversion parameters f, rp, rg, rq

and vp to minimize the mean-squared error

tmal
’]OLS = /t dt

Pmax

dp 4(t, p) |t p) — 5°(t, p)|

Pmin

where S°™(¢.p) is the “observed” p — r data, and +(t,p) is a conditioning weight
factor.

The production of the p — 7 data set S°® will be discussed in Section 4.3 (data
characteristics and preparation). The conditioning factor (¢, p) enhances the resolu-
tion of deeper events. It is a model-based gain. The desired outcome of conditioning

permits considerable freedom in the design of the weight. We have used

7(t,p) = exp(|wola(z, p))

where t = 7(z, p) in this formula. In the elastic limit (@, — o0) no conditioning is
necessary.
We have used several algorithms to invert for various combinations of parameters.

These choices are outlined in the following paragraphs.

Elastic Reflectivities

The influence of the elastic reflectivities (rp, rs, and r4) on SP™d is linear, so the
mean-squared error is quadratic in these parameters. As the number of samples is
moderately large (approximately 2000 total for the experiments described here), it
is natural to use an iterative minimization method. We used the conjugate residual

method which monotonically reduces the normal residual (see [15]). While the choice
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of source wavelet influenced the rate of convergence, generally 20-50 iterations of the
conjugate residual algorithm were required to reduce the normal residual to 1% of its
starting value. In all cases, the initial estimates of the reflectivities were zero.

]

Elastic Reflectivities and Source Parameters

The source parameters alone have a linear influence on the data, so the same technique
was applied to invert for them, namely, conjugate residual iteration. Typically more
iterations are required to satisfy the convergence criterion (reduction of the normal
residual) than is the case with the elastic reflectivities. This slower convergence
appears to reflect the poorer numerical condition of the source inversion problem.

The elastic reflectivities and source parameters together have a nonlinear (bilin-
ear) influence, so quadratic minimization algorithms cannot be used directly. Instead,
we used a method known as coordinate search or alternation. This method of simul-
taneous inversion for source and reflectivities is introduced in Chapter 3. We will
hereafter refer to a “round of alternation” to be one pass through the four steps of
the following algorithm.

Repeat until convergence:

1. Given the current source, f., and current reflectivity, ., invert for a new esti-

mate of the reflectivity r.

o

Replace r. by r,.

3. Given the current source and reflectivity guesses, feyT4, invert for a new esti-

mate of the source f,.

4. Replace f,. by f,.

Alternation, although notoriously inefficient, is attractive for initial experiments
because it requires only successive solution of simple linear least-squares problems.
Obviously, quasi-Newton methods could be applied to the problem and would likely
reduce the number of iterations dramatically. While further algorithmic developinent
for source-reflectivity inversion is definitely needed, we were able to obtain usable

results in many cases with 2-3 rounds of alternation.
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Elastic Reflectivities and P-Wave Velocity

The P-wave velocity has a strongly nonlinear influence on the data. Therefore the
output least squares objective function Jors tends to be very complex. Gradient-
based optimization algorithms typically have difficulty converging to useful estimates
of velocity and reflectivity ([18], [59]).

A modification of the OLS approach appears to make it much more amenable to
gradient-based optimization. The essential changes are these:

1. Split the optimization into Stages: i.e., for each velocity estimate, invert first
for the elastic reflectivities in an inner optimization. Then treat the remaining

error (reduced objective) as a function of velocity, and optimize over velocity.

2. Relaz the model by permitting the reflectivity components rp, rs and rq to
depend on the slowness (“shot” parameter) as well. This modified inversion
will produce a reflectivity “volume” quite analogous to the image volume of
prestack depth migration.

3. Penalize the variation of reflectivity components with slowness by adding a
fferential semblance term to Jors:

2
Joso := Jous + 0'2//dp dt { }

The semblance weight o? regulates the emphasis on semblance. As ¢ — oo, the

2 2

Ors
dp

dry

dre Orq
dp

dp

objective functions Jpso and Jors become equivalent:

min Jors = lim min Jpso

(rp.rs.ra) TR (rp.ry,rq)

On the other hand, the opposite limit ¢ — 0 completely decouples the reflectivity
inversions for various slownesses. In effect, minimization of Jpso for & ~ 0 (“low DSO
weight” below) produces independent inversions for each p. This amplitude corrected
image volume is a useful diagnostic tool for velocity quality control, like its analogue
in conventional migration velocity analysis.

The choice of the semblance weight o2 regulates the shape of the objective function
Jpso. This weight is best viewed as a Lagrange multiplier for a certain constrained
formulation of inversion velocity analysis. In the experiments reported here o was set
by trial and error.
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The reduction of the OLS objective function (step (1) above) already appears to
eliminate most of the irregular behavior reported in the literature on output least
squares inversion, and suggests that the use of very costly stochastic optimization
methods, as has been advocated by a number of authors (for ekample [48], [50],
[49]) can safely be avoided. The relaxation and differential semblance steps (2) and
(3) tend to enhance considerably the convexity of the objective. For discussion and
examples, see (58], [53], and, [19], and references cited therein. The algorithm just
described has been given the name differential semblance optimization or DSO. This
algorithm consists of two stages: (1) an inner optimization for elastic reflectivities rp,
rs, r4, which for the examples in this chapter was performed via conjugate residual
iteration (2) an outer optimization over P-wave velocity vp of a reduced objective
produced by the inner optimization. We have used a version of (nonlinear) conjugate
gradient optimization described in [16] to perform the outer optimization. See [30]

for a complete description of the algorithmic details of DSO.

4.3 Seismic Field Data — Geometry of the Geophysical
Experiment and Preprocessing

The data used in this work was derived from a marine survey in the Gulf of Mexico.
The survey line consisted of 511 shots recorded with 301 hydrophone groups. The
group interval was 15m with a minimum source-receiver separation of 148m. The shot
interval was 22.5m. Each group contained 17 equally spaced and equally weighted
hydrophones. The data was recorded without a low-cut filter. A 110 Hz high-cut
filter was applied. The sampling rate was 2ms, and the total record length was 5s.

This area of the Gulf contains a strong gas-sand-related direct hydrocarbon indi- -
cator readily visible in the stack at about 2.3s (see Figure 4.1). The stack shows this
target horizon to be embedded in a sequence of nearly horizontal strata, beginning
at roughly 1.5s. Therefore, layered medium modeling appeared to be a plausible tool
for target-oriented inversion. Very little evidence of multiply-reflected energy appears
above or near the target event, suggesting the viability of a primaries-only approach.
Similarly, the apparent absence of mode converted events justifies restriction of the
propagation model to P-waves.

The data was Radon transformed, respecting 3D cylindrical symmetry, to yield 48
plane-wave traces per midpoint gather. Slowness values range from pmi,=.1158ms/m
t0 Pmaz=.36468ms/m. To remove diffraction artifacts originating in the shallow sub-
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surface, the plane-wave data were time migrated in the midpoint dip domain, then
modeled to pmia = 0. This last step collapses diffractions while still preserving lay-
ered reflection amplitudes. The stack shown in Figure 4.1 is constructed from this
migrated and remodeled p — r data. While the diffracting structures are still clearly
visible in the upper 1.5s, the diffraction tails are largely removed and no longer in-
terfere with the lower, layered structure in the stack. The same is largely true of the
prestack p — 7 data (see Figures 4.3 and 4.7).

Techniques other than inversion supplied alternate estimates of several parameters.
A layer stripping method produced a piecewise constant velocity by flattening p —
migrated events in selected windows. This approach to velocity analysis is the p —
analogue of a common method for estimation of interval velocities using prestack
migration. The result of this layer-stripping velocity analysis is shown as the dashed
line in Figure 4.4.

Also, air gun modeling software gave an a priori estimate of the source signature
and radiation pattern. Figure 4.9 shows this air gun model source over the range of
slowness values used in the data with every fourth trace displayed for clarity.

In order to lighten the computational burden of inversion, we performed most of
our calculations on a low-pass filtered version of the p — 7 data which resulted from
convolving all the traces with a 15 Hz zero-phase Ricker wavelet. A single midpoint
gather of the filtered data is shown in Figure 4.3. This same unfiltered gather is
shown in Figure 4.7.

All of the numerical experiments described in this chapter were performed on one
or more of eleven selected midpoint gathers. The midpoints were spaced 37.5m apart,
so the total distance from the first to the last midpoint in this subset was 375m. We
label these midpoint gathers CMP1-CMP11. A logged well is near CMP6, and most
of our results concern this single midpoint gather.

For the well near CMP6, we obtained block sonic and density (gamma ray) logs
in the 1.4-2.6s (two-way time) interval. The logs are shown in Figure 4.2 plotted as
a function of depth and not frequency filtered. We have used these logs in assessing
the accuracy of the inversions (see Figures 4.10, 4.11, 4.15, 4.16, 4.19, 4.20).
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4.4 Numerical Experiments — Viscoelastic Inversion in the

Plane-Wave Domain

4.4.1

Table of Experimental Inputs

Numerical Inversion Experiments

-

Experiment type DSO OLS
Experiment no. 1 [ 2 3 [ 4 [ 5 [ 6 [ 7
Model viscoelastic ~ viscoelastic elastic
Data gather no. 6 6 6 6 6 1,5,7,11 { 6
Data frequency
filtered? Y N Y Y Y Y Y
Data conditioned? Y Y Y Y Y Y N
Velocity inversion? Y N
Yes, initial velocity Fig. 4.4

dash/dot line
No, fixed velocity Fig. 4.4

dark solid line

Reflectivity
inversion? Y Y
Initial reflectivities zeros zeros
Source inversion? - N [N N Y Y [Y |Y
Yes, initial source isotropic 15 Hz Ricker
Yes, final source isotropic | anisotropic
No, fixed source air gun air gun
DSO weight 1074 oo
Damping weight 10-8 10-3
Relative residual
tolerance 5% 1%
Alternation rounds N/A N/A 2 2 2 2
Relative rms error 55% 53% 29 % | 30% 33%
Cost function reduction [[ 35% [ 67%

Table 4.1 DSO and OLS plane-wave inversion
experiments performed on Gulf of Mexico field data.
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4.4.2 Discussion of Results

1. The inversion-estimated P-wave background velocity places the significant events in
the inverted reflectivities at the same depth location across different slowness values.

In Experiment 1, DSO inversion was used to estimate the P-wave background
velocity shown in Figure 4.4 (dark solid line) from the frequency filtered data shown
in Figure 4.3. The reflectivities, also estimated in this experiment, are allowed to
depend on slowness, p (as described in Subsection 4.2.2). One measure of accuracy
for the background velocity is its ability to place the significant events in the in-
verted reflectivities at the same depth location across traces. In order to gauge the
background velocity’s effectiveness at flattening these events, we set the differential
semblance weight very low (107°). The differential semblance term tends to force
consistent reflectivities from record to record. The main feature in Figure 4.5 (the
P-wave impedance panel) is located between 2100m and 2200m and appears quite
flat. For comparison, the background velocity derived via layer stripping in the p— 7
domain is shown in Figure 4.4 (dashed line). The associated P-wave impedance gotten
from performing an inversion with this background velocity and a very low semblance
weight is shown in Figure 4.6. The visual “flatness” appears to be equally as good
with the inverted background velocity as with the background velocity gotten from
layer stripping.

2. The depth of the most significant event in the inverted reflectivity is close to
the depth of this event on the sonic well log.

The gas-sand feature is located at about 2100m on the logs (Figure 4.2). The
inverted background velocity places this event closer to 2150m (Figure 4.5); whereas
the background velocity generated by layer stripping moves it towards 2200m (Figure -
1.6).

3. DSO inversion performed on full bandwidth data still produces a background
velocity which flattens significant events across p-dependent traces.

Using unfiltered CMP6 data shown in Figure 4.7, we ran a DSO inversion test for
the P-wave background velocity and reflectivities (Experiment 2). Although we were
not completely satisfied that we had pushed this inversion to its stopping point, the
resulting velocity estimate can be seen in the Figure 4.4 (solid line) and is very close
to the velocity derived from inverting the filtered data (dark solid line). Moreover, the
migrated section with this background velocity estimate indicates that the significant

events have been rendered relatively flat across traces. (see Figure 4.8).
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4. Although we initially assumed the air gun model source estimate (see Figure
4.9) to be a good guess for the wavelet, we found that we were able to greatly improve
the fit to data by deriving a new source via inversion.

Holding the P-wave background velocity fixed, we performed th?ee OLS inversions
for the elastic reflectivities. In Experiment 3, the energy source was not re-estimated
in the process of inverting the reflectivities. The normalized misfit between actual
and predicted data is 55% and the data residual is shown in Figure 4.12. The misfit
graphs were all plotted on the same scale as the actual data being fit. It is clear from
the graph of the residual that the reflectivities estimated using the air gun model
source do not accurately predict the target event for large slowness values.

Experiments 4 and 5 are identical to Experiment 3 except that we estimated both
the three elastic parameter reflectivities and the energy source using inversion. The
energy source in Experiment 4 was, however, constrained to be isotropic. The initial
guess for the isotropic wavelet is shown in Figure 4.13, and the final source wavelet
estimated in this experiment is shown in Figure 4.14. In two rounds of the alternation
algorithm applied to CMPS6, the normalized misfit error was reduced to 53%. The
residual graph makes manifest the fact that an isotropic source (even one gotten using
inversion) and the corresponding reflectivities do an inadequate job of matching the
target of the real data for large slowness values (see Figure 4.17).

Finally, in Experiment 5 we allowed the reflectivities and an anisotropic energy
source to be estimated via inversion. In two rounds of alternation, we reduced the
normalized misfit error to 29%. (In fact, in the time interval from 2200-2400ms, the
target interval, these inversion results predicted all but 11% of the actual data.) The
source estimate is shown in Figure 4.18, the residual in Figure 4.21. The residual
graph now looks like random noise with the main target in the actual data well
explained by data generated from the inversion-estimated parameters.

Similarly, we inverted the individual data gathers CMP1, CMP5, CMP7, and
CMP11 in four separate experiments and achieved data fit errors of at most 30%
after only two rounds of alternation (see the experiments described in Table 4.1 under
“Experiment 6”). Thus we see that we can explain 25% more of the seismogram by
allowing the earth parameters and the source to be estimated from the data. The air
gun modeling package source had been estimated independently of the seismic data.

5. Of the three sets of estimated reflectivities (Ezperiments 3-5), the reflectivities
from Ezperiment 5 which were generated by the inversion-estimated anisotropic energy
source most closely match independent measurements.
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The linearized inversion method assumes that a separation of frequency content
exists between the background (low-frequency) density and velocities and the (high-
frequency) reflectivities. To gauge the accuracy of our reflectivity estimates, we there-
fore found it necessary to detrend the well-logs. The logs had been detrended by
subtracting a smooth average of the log from the original log and turned into (dimen-
sionless) reflectivities by dividing this difference by the smooth average. Figure 4.10
compares the detrended sonic velocity log (dashed line) to the short-scale relative fluc-
tuation in the P-wave velocity calculated from inversion (solid line) for Experiment 3.
Figure 4.11 shows a similar comparison for the P-wave impedance. These reflectivity-
log comparisons are all plotted as a function of two-way time and filtered using a
zero-phase 8-32 Hz tapered Ormsby frequency filter (since the convolutional model
constrains these parameters to lie in the passband of the source). For this experiment
a shift of 20ms to the left was applied to the inversion result graphs in order that the
log and inversion result could be overlaid and their shapes compared. The inversion
result graphs were also scaled so that their peaks would be comparable to the well
log measurement graphs.

Figures 4.15 and 4.16 show the log comparison to the P-wave velocity and P-
wave impedance for Experiment 4. The inversion results in these graphs have been
scaled to match the peak amplitude of the sonic log and a shift of 67ms to the left
has been applied. A slightly larger time shift was needed here most likely because
our inversion algorithm (alternation) was not powerful enough to change the initial
(slightly erroneous) time location of the source by this small amount.

Finally, the parameter estimates versus logs for Experiment 5 are shown in Figures
4.19 and 4.20. Again, these inversion results were scaled and shifted 67ms to the left
in order to be compared to the log measurements. Clearly, the comparisons to the
logs improve with the addition of an inversion-estimated source and especially when
this source is allowed to be anisotropic.

There was, in fact, no shear log measurement performed. Although agreement of
the inversion-estimated parameters with the measured logs is generally good, none
of the experiments described do an adequate job of matching in detail the shear log
calculated from Castagna’s relation. (For a reference to Castagna’s relation see [11].)
Since the target is a gas sand, however, we should not see any change in the shear
modulus in this target range of 2200-2300ms. Figure 4.23 shows that the inversion
results for the shear modulus from Experiments 4 and 5 do a better job of conforming
to this expectation than does the modulus resulting from Experiment 3.
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6. Inversion results for the anisotropic inversion-estimated source and reflectivities
show that the V[V, reflectivity is relatively constant and near zero ezcept at the gas
sand where it is more negative than the V, reflectivity indicator.

[12] postulate that this V,/V, indicator is more dependable thah traditional AVO
gas sand indicators such as the P-wave velocity. Their hypothesis comes from ex-
amining velocity and density well log data from 25 different regions of the world.
The measurements were of adjacent shales, brine sands and gas sands. Our inver-
sion results agree with their hypothesis. See Figure 4.22 which compares six elastic
reflectivities from Experiment 5.

7. The viscoelastic model allows a better fit to this seismic data set than does an
elastic modeler.

To test the importance of modeling attenuation for this data set, we inverted
for a fully anisotropic energy source and the same three reflectivities using ungained
data and an elastic modeler. The background velocity was the velocity in Figure 4.4
(dark solid line). Inversion for source and elastic reflectivities using two rounds of
alternation reduced the root mean squared error to 33% of the data norm. However,
one notes from the residual (Figure 4.24) that the parameters estimated via inversion
do not generate data which fits the actual data well. For large slowness values, the
target event can still be seen clearly in the residual.

8. The inversion-estimated P-wave background velocity and inversion-estimated
anisotropic seismic source place the significant events in the inverted reflectivities at
the same depth location across different slowness values.

As one final check of the validity of the inversion source estimates described in the
previous subsection, we repeated the low DSO weight inversion experiments described
in item 1 above with the source shown in Figure 4.18 as input. The seismic data was
filtered common midpoint gather 6 (shown in Figure 4.3). The differential semblance
penalty parameter was set at 10~°. Figure 4.25 shows the P-wave impedance resulting
from this inversion where the background velocity used was the inversion result from
Experiment 1 shown in Figure 4.4 (dark solid line). Figure 4.26 only differs in that
the background velocity used for the inversion is the layer stripping estimate shown
in Figure 4.4 (dashed line). In both cases, the main events are quite flat.
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4.5 Conclusion

In this chapter we have shown that we were able to estimate quite accurately parame-
ters that affect real marine 7 —p transformed seismic data in both linear and nonlinear
ways by a completely deterministic approach. In a sequence of stei)s we inverted for
the P-wave background velocity, the seismic energy source, and three elastic parame-
ter reflectivities. The viscoelastic modeler used assumed a layered medium and single
scattering. The results were conclusively in favor of using the data directly (via in-
version) to estimate as much as possible about the model. We were able to match
the most significant event in the P-wave velocity well log accurately; the background
velocity estimate placed the events in the reflectivity panels at the same depth loca-
tion across traces. By inverting for the energy source as well we were able to fit 70%
of the seismic data. In fact, in a small window around the target, we were able to
fit 90% of the seismic data in a single CMP data gather. We obtained these results
despite a modeler which did not completely describe the real data. Although the data
was pre-processed, near surface heterogeneities remained which did not conform to
the assumptions of a layered model.
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Stack of ER85003 following Dip Domain Time Migration

NS

=
—

Figure 4.1 The stacked section of marine data. The diffracted energy
originating in the shallow subsurface was suppressed by prestack time
migration in the offset-midpoint slowness domain. Modeling recreated the
data with zero midpoint slowness. The location of the logged well referenced
in the text is marked. Note that the bright reflecting horizon, a gas sand at
2.3s, is embedded in a flat-lying sequence.
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Figure 4.2 The measured and extracted logs from a well near CMPS6.
Note that unlike the comparisons to the inversion results shown in Figures
4.10, 4.11, 4.15, 4.16, 4.19, 4.20, these logs are plotted as a function of depth
and not frequency filtered. The left panel shows the detrended measured
P-wave velocity log. The middle panel shows the detrended measured density
log. The right panel shows the shear wave velocity log estimated using
Castagna’s relation (see reference [11]) which did not prove to be reliable.
There was no S-wave velocity measurement made of this area.
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Figure 4.4 Dashed/dotted line: Initial estimate for P-wave background
velocity used for inversion of common midpoint data gather 6 (Experiments
1 and 2). Dashed line: Background velocity predicted for the same data set

using layer stripping in the p — 7 domain. Solid line: P-wave background
velocity determined via inversion for unfiltered CMP6 (Experiment 2). Dark

solid line: Background velocity estimate gotten from performing the same
inversion on filtered CMP6 data (Experiment 1).
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midpoint data gather 6 (used in Experiment 2).
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Figure 4.10 Comparison of the independent well-log measurement of the
relative short-scale fluctuation in the P-wave velocity with the result of
inversion done on CMP6 using the air gun model source estimate
(Experiment 3). The solid line shows the inversion result (scaled and shifted
left 20ms). The dashed line shows the detrended well log. Both graphs have
been plotted as a function of two-way time and filtered to match the
frequency content of the source.
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Figure 4.11 Comparison of the independent well-log measurement of the
relative short-scale fluctuation in the P-wave impedance with the result of
inversion done on CMP6 using the air gun model source estimate
(Experiment 3). The solid line shows the inversion result (scaled and shifted
left 20ms). The dashed line shows the detrended well log. Both graphs have
been plotted as a function of two-way time and filtered to match the
frequency content of the source.
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Figure 4.12 Difference between the actual data (CMP6) and the data
predicted by parameters gotten from inversion using the air gun source (fixed
background velocity) (Experiment 3). The data misfit is plotted on the same

scale as the CMP6 data.
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Figure 4.13 The initial source guess for the inversions described in
Experiments 4 and 5 (derivative of an isotropic Ricker wavelet) where only
every fourth trace is shown for clarity.
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Figure 4.14 The isotropic inversion-estimated source from a linear
source-reflectivity inversion job with every fourth trace shown (Experiment
4).
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relative short-scale fluctuation in the P-wave impedance with the result of
inversion done on CMP6 using an isotropic source estimate from inversion
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Figure 4.18 The estimated anisotropic source from the linear
source-reflectivity inversions where only every fourth trace is shown for
clarity (Experiment 5).
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Figure 4.19 Comparison of the independent well-log measurement of the
relative short-scale fluctuation in the P-wave velocity with the result of
inversion done on CMP6 using an anisotropic source estimate from inversion
(Experiment 5). The solid line shows the inversion result (scaled and shifted
left 67ms). The dashed line shows the detrended well log. Both graphs have
been plotted as a function of two-way time and filtered to match the
frequency content of the source.
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Figure 4.20 Comparison of the independent well-log measurement of the
relative short-scale fluctuation in the P-wave impedance with the result of
inversion done on CMP6 using an anisotropic source estimate from inversion
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been plotted as a function of two-way time and filtered to match the
frequency content of the source.
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Figure 4.22 Comparison of six estimated reflectivities from the linear
inversion job in which the reflectivities and an anisotropic source are
estimated (Experiment 5). The reflectivity estimates shown above are (from
left to right) the relative short-scale fluctuation in the P-wave impedance, the
P-wave velocity, the S-wave velocity, the ratio of P-wave velocity to S-wave
velocity, the shear modulus, and the combination of Lamé constants A + 2u.
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Figure 4.24 The difference between the filtered, ungained CMP6 data and
the data predicted by an elastic model. The data misfit is plotted on the
same scale as the ungained CMP6 data. The fixed background velocity is
shown in Figure 4.4 (dark solid line). The reflectivities and energy source

were gotten from inversion (Experiment 7).
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Chapter 5

A Few More Interesting Marine Data
Experiments

5.1 Introduction

Many numerical experiments were carried out to produce the real data inversion
picture painted in Chapter 4. In this chapter I will describe some of the other ex-
perimental results which helped us to analyze this data set and which allow us to
propose the process for doing inversion on real data outlined in the last chapter. The
mathematical model, seismic marine experiment (data set), and software package are
the same as those described in Chapter 4. Rather than repeat that information in
this chapter, I will immediately focus on the experimental results themselves.

In this chapter we start by showing a series of experiments which makes clear
that the energy source which generated this (and likely most) real data is anisotropic.
Although the idea that real seismic sources are anisotropic should not be a surprise
to exploration seismologists, it is worthwhile to highlight the large amount of misfit
which results when one assumes an isotropic source because many scientists still make
the assumption that an isotropic source will suffice. (Some recent references include
[51], [22], [35].) We also performed an inversion using an isotropic source estimated
via predictive deconvolution. Predictive deconvolution is a traditional signal process-
ing technique for estimating the source in a seismic experiment. In Section 5.3 we
compare the misfit graph gotten from this experiment to a misfit graph from the
series described in Section 5.2.

The series of experiments detailed in Section 5.2 also includes multi- and single-
parameter reflectivity inversions. We would like to compare this series of seven exper-
iments where in each subsequent experiment more “degrees of freedom” are added;
l.e., the source is allowed to be increasingly anisotropic and the reflectivity term con-
tains either one or three parts to be estimated. We would like to ascertain whether

misfit is enough for one to conclude that multiparameter inversion really gives ad-
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ditional information over single parameter inversion especially when one allows the
source to be anisotropic.

In the last chapter we showed that inverting single gathers CMP1, 5, 7, and 11 for
the three reflectivities and source we were able to fit the data with*about 30% misfit
(see Table 4.1 Experiment 6). In this chapter we invert the data set CMP1 for the
reflectivities only with the source and background velocity fixed at the CMP6 results.
In the course of performing the inversion experiments, we found that one assumption
we had made, that the data is well-described by a layered model, did not hold. Even
for this small subset of the total data set (where the distance between gathers CMP1
and CMP11 is 375m) one notes in Figure 5.19 that the difference between gathers
CMP1 and CMP6 (offset 187m) is nearly as large as the data itself. As discussed in
Chapter 4, some initial processing was applied in an effort to mitigate the nonlayered
effects, namely, time migration in the midpoint dip domain to collapse diffractions.
Nonetheless, lateral heterogeneities in the near surface layer still influence the data
used in the inversions. Re-estimation of the source for each gather is necessary to
compensate for this modeling deficiency.

Finally, we discuss briefly the importance of the initial source guess for this type
of inversion.

5.2 Comparison of a Series of Experiments for Source and
Reflectivity With Increasing Model Complexity

This section addresses two issues. First, we indicate how important an antsotropic
source is for fitting real data. Second, we examine the misfit between actual and
predicted data for single and multi-reflectivity inversions and show how difficult it is
to use only this crude measure for analyzing the accuracy of the parameter estimates.
Of the experiments described in this section, five are single-reflectivity inversions and
- two are multi-reflectivity. In each experiment all inputs are the same except for the
number of reflectivities estimated and the number of terms allowed in the Legendre
series describing the source. (An isotropic source is described by a one-term Legendre
series.) The experiments were all performed on the common midpoint gather 6, and
the background velocity is the inversion result for CMP6 data given in Figure 4.4,
the dark solid line. Figures 5.1-5.7 show the difference (misfit) between the actual
and predicted data gotten from inverting for the reflectivities and source as specified
in Table 5.1. Figures 5.8-5.14 show the misfit between actual and predicted data in



a zone around the target event. For the close to normal incidence record (p = .1158
ms/m), this interval is 2200-2400ms. As slowness (p) increases, this muted zone fol-
lows the main event upward in time, keeping the width of this envelope approximately
that of the original 200ms window. Note that all the data misfit pictures shown are
plotted on the same scale as the actual data. The percent data misfit for the whole

recording interval and for the mute zone are given in Table 5.1.

| Experiment number 11 J2 I3 T4 T5 T6 | 7
No. of reflectivities estimated || 1 1 1 1 1 3 3
No. of source components 1 3 10 31 40 1 31
Percent misfit 1% | 55% | 41% | 33% [ 30% | 51% | 27%
Percent misfit in target zone [ 64% [ 46% | 26% | 13% | 10% | 42% | 11%

Table 5.1 Misfit comparisons for seven experiments in which
single or multi- reflectivities and sources are estimated.

Discussion of Results:

1. Large slowness-value records are not well matched on the 7 — P seismogram

by sources which are isotropic or mildly anisotropic (having < 10 Legendre
components).

. From the misfit pictures and percentages alone it is extremely difficult to ascer-
tain how reliable the information derived from multiparameter inversion is over
single parameter inversion, especially with an anisotropic source. However,
Table 5.1 indicates that the inversion-estimated parameters in Experiment 7
(three reﬂectibitics and a 31-component source) give distinctly better fit to data
than do the parameters estimated by inversion in Experiment 4 (a single reflec-
tivity and 31-component source).

. The muted misfit pictures indicate that the single-reflectivity, 40-component
source in Experiment 5 does a good job of fitting the data in the target zone.
However, over the whole recording time interval, the multi-reflectivity, 31-
component source (Experiment 7) does a slightly better job of fitting the data.
The difference between the two misfits is subtle. The fact that the misfit for
the multi-reflectivity, 31-component source (Experiment 7) is overall smaller
than for the single-reflectivity, 40-component source (Experiment 5) implies
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more of the data in the zone above the target is being fit in Experiment 7.
For instance, the first noticeable event in the data (see Figure 4.3) is at about
1600ms. The multi-reflectivity, 31-component source result does a better job of
completely predicting this event than does the single-reflectivity, 4b-component
source. This observation is a small clue that in fact there is information about

the second and third reflectivities (not just P-wave impedance) in the data.

5.3 Comparison of a Source Generated by Traditional
Techniques with the Inversion-Estimated Isotropic
Source

We also used the commercial package, ProMAX, to estimate an isotropic minimum
phase (with energy concentrated at the front end of the pulse) seismic wavelet (source)
for this data. The technique ProMAX implements is called least squares Wiener
filtering (or predictive deconvolution). The general ideas are described in detail in
[45]. We define briefly the method and parameters for this particular use of the
package below.

For this data which is defined over a time interval from 0-3000ms with samples
taken every 2ms, let =, z,, fi,y:, t = 0,2,4,...,3000, be discrete time series. The
desired output (in this case a seismic trace filtered so the estimated source has been
removed) is represented by z,. The actual seismic trace is z,, and f; is a filter to be

determined. The cross-correlation of z; and f, is y,, or
yr = zk: SeZeyr.
Given the cross-correlation of the actual and desired traces
¢:z(7') = Zlk3k+r
k
and the autocorrelation of the actual trace with itself

2z(T) = D ThTher
k

we can determine the filter f; that minimizes the function ||z, — y:||? by solving the

normal equations

Zf‘¢II(T—t)=¢zz(T), r=40,1,2,....
t
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Once ProMAX finds the appropriate filter to deconvolve the source from the data, the
source itself is estimated by finding an inverse to the first filter. For our application,
the final output wavelet was defined over an interval of 1000ms. The filter function
ft was defined over an interval of 120ms. Finally, the discrete tonvolutions were
implemented so that the time gate for summation was k& = 500, .. .,2000ms.

The inversion for the three reflectivities using this predictive deconvolution source
allowed a fit to data with 57% rms error. The source estimate is shown in Figure
5.15. The associated data misfit is shown in Figure 5.16. For comparison, the isotropic
inversion-estimated source we derived as well as the associated data misfit for that
experiment (see Table 5.1 Experiment 6) are redisplayed in Figures 5.17 and 5.18.
This inversion-estimated source is clearly not minimum phase. The time gates in
the process described above determine the width of the estimated source pulse. The
inversion-estimated source appears to be higher frequency than the predictive decon-

volution estimate we obtained.

5.4 Comparison of Source-Reflectivity Inversions of Two
Different Common Midpoint Data Gathers

In this section we contrast three experiments. The first two experiments are inver-
sions for the source and three reflectivities for common midpoint data gathers 6 and
1 respectively. The third experiment is an inversion for the reflectivities which cor-
respond to CMP1 data. The source is not estimated. The source estimate from the
first experiment (CMP6 data) is used. The two sources used are shown in Figures
5.20 and 5.21.

Figures 5.22, 5.23, and 5.24 show the inverted reflectivities for the three experi-
ments described in the paragraph above. One sees again that the modeling assump-
tion of a layered earth cannot be correct as the results for the two different gathers
are so different. Also, a source estimated from one gather is not sufficient for one
to estimate reflectivities from another gather. Interestingly, the P-wave impedance
reflectivity is identical at the target for the three experiments. The shear wave veloc-
ity and P-wave velocity divided by density reflectivities are not so consistent across
experiments.
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5.5 The Impact of the Initial Guess on the Inversions

Finally, a source-reflectivity inversion starting from the anisotropic air gun model
source is contrasted with a source-reflectivity inversion starting from an 1sotropic
Ricker wavelet (Table 4.1 Experiment 5). Unfortunately, this experiment points out
some of the problems with using the alternation algorithm. OLS inversion coupled
with alternation is a somewhat inefficient local technique so it is not surprising that
the results are affected by the starting source guess. The air gun model used as a
starting source did not allow the alternation method to converge. The normal resid-
ual for the final source alternation experiment was 17% when the job terminated
(reached the iteration limit). We noted in Chapter 4 how well the inversion results
matched the well logs when we started the source estimation process with an isotropic
Ricker wavelet (an extremely reasonable initial source guess). We find that although
the data misfit for this second experiment is 31% after only two rounds of the al-
ternation algorithm described in Chapter 4, the final source looks very similar to
the initial air gun source and the final reflectivities deviate quite dramatically from
the reflectivities estimated in Experiment 5 Chapter 4 (and, therefore, from the well
logs). The initial source (air gun model) is shown in Figure 5.25 and the final source
estimate for this inversion may be seen in Figure 5.26. Figures 5.27 and 5.28 show
the P-wave impedance and P-wave velocity divided by density comparison between
the two experiments described in this paragraph (which differ by the initial source
guess). All reflectivities were shifted and scaled so the P-wave impedance results for

the two experiments would match.
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fixed at the CMP6 estimate.
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Figure 5.23 Comparison of three estimates for the short-scale relative
fluctuation in the S-wave velocity (reflectivity). The solid line comes from
inverting CMP6 data for the source and reflectivities. The dashed line comes
from inverting CMP1 data for the source and reflectivities. The dot/ dashed
line comes from inverting CMP1 data for the reflectivities only. The source is
fixed at the CMP6 estimate.



REFLECTIVITY (dimensionless)

118

1.5F .

.s 1 1 L 1 L 1 L 1 1
i500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
DEPTH (m)
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Chapter 6

b

An Application of Model Resolution to
Source-Reflectivity Inversions

6.1 Introduction

It is well known that seismic inverse problems have non-unique solutions. When we
solve a linear inverse problem, we cannot rely on the model estimates to be accurate
at each point. Least squares inversion, for example, gives a well-determined solution
in an average sense. This solution minimizes the distance from the data to the column
space of the forward operator.

The goal of this chapter is to quantify which parts of the model parameters are
well determined insofar as one can regard that part of the model estimate as being
very close to the true model. We first discuss the concept of model resolution for the
general linear inverse problem and then describe the tools which we used to estimate
this resolution. An explanation of the general linear inverse problem and model
resolution may be found in Menke’s book [36] and in the paper by Backus and Gilbert
[4]. For another complete description of the problem and concepts of model resolution
see [62] where these ideas are applied to surface waves and free oscillation observations.
The generalized inverse and model resolution matrix for this least squares problem
can be defined in terms of the singular value decomposition. Instead we estimate
the model solution and eigenvalues and eigenvectors of the normal matrix through
the conjugate gradient and Lanczos algorithms. These estimated eigenvectors of the
normal matrix give us a practical (although clearly approximate) way to compute the

model resolution matrix.

6.2 The Model Resolution Idea

We will now describe the normal equations for general data d € H" and model m € H*
where H™ and H* are the Sobolev spaces of order r and s respectively. We start by
defining the Sobolev space H* (see [40] Ch.2). Let A*(¢) = (1 + |€12)*/% for s € R and
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§ € R". Then we say that u € H* (the Sobolev space of exponent 3) if u € S’ and
A4 € L. In other words, u € H* if @ is a function satisfying

lull = @m)~ [(1+ 1P lae)de < 0.

Il - Il is the sth Sobolev norm, and (-,-), its associated inner product. We note that
H® = L Here S’ is the space of temperate distributions. The distribution u €S if

u is a semi-linear form ¢ — (u,¢) on S with two constants C € R and N € Z, such
that

l(u,¢)| < Cléln, forge ~

Here, the Schwartz Space S is the space of C* functions that are rapidly decreasing
at infinity. The norm on the S is defined by

|8l = sup{|z®8°¢(z)|; = € R"and|a + 8| < k).

Our forward operator G : H* — H". It is logical to assume throughout that
s 2 r 2 0. We generally asume that given data we can find a model such that
Gm = d. Suppose, however, that we cannot solve this equation exactly. Then
one approximate solution (the least squares solution) requires that we seek model
parameters m such that we have minimized the objective function

JoLs =||Gm = d|? = (Gm — d,Gm — d),. (6.1)

To find the normal equations for these general data and model spaces we require
that at the minimizer, m, the gradient of Jors vanish. Starting from the variational
formulation,

(G(m + &m) — d,G(m + 6m) — d), — (Gm - d,Gm — d),

and dropping terms in the perturbed quantity ém of order greater than 1, we get that
in order that our model minimize the misfit,

(Gm,Gém), = (G6m, d),
(A"Gm, A"GSm) = (A’ GSm, A"d)
(A" A" Gm, §m), = (A"G) A" d, m),
(A*(AG) AT Gm, A*6m) = (A*(A"G)T ATd, A*6m)
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A A G)TATGm = A (are)tard (6.2)

Where (A'G)T : L* — H*. We now need to determine a way to write (A’G)T in
terms of its L? adjoint (the transpose). Let u € L? and v € H". Again, the operator
G : H* — H™. Also, recall that we assumed at the start that s > r > 0. Thus,
H* C L2
(u, A"Gv) = (A"G) Ty, v),
(A"G)'u,v) = (A*(A"G)tu, v)

(A"G)t = A*(A7G)t
Or

ATPAG) = (Aot

Equation 6.2, therefore, becomes

ATGIAYGm = AT GHAY Y (6.3)

Moy = [ATGAY G A GIAY d = G9d. (6.4)

where G9d is the least squares generalized inverse.

Most geophysical inverse problems are of “mixed determined” type; i.e., these
problems are ones in which some model parameters are well determined and others
are not. When we perform an inversion, we should not think of the resulting model
parameters as being accurate at each discretized point. It is more reasonable to think
of the solution vector m as an average of the true model parameters (m) = a'm. The
easiest such models to interpret are ones which have an averaging vector a which is
only nonzero over a small interval in the domain of the model parameters. Then,
if the model parameters are discretely parametrized in a physically meaningful way,
one can interpret this average. In the experiments [ have described throughout the
previous chapters, the model parameters depend on one spatial coordinate only, depth
z, and the averaging vectors correspond to averages over depths.

We wish to quantify our ability to resolve the individual model parameters. In
other words, assuming that there is an estimate of the model parameters m'™¥¢ such
that Gm'™¢ = d°*, we would like to be able to decide how close our model estimate

m** is to these (unknown) true model parameters. Then
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mest = G—gdoba = G—gGmtruc = Rmtrue (65)

N
Where R € R"*" is the model resolution matriz. If R = I then m!™® = mest and the

model parameters are perfectly resolved in the inversion. In general, R # I, and then
the model estimates m*** are weighted averages of the true parameters m®** = g'm!rue,
One way to compute the model resolution matrix is to use the singular value

decomposition. The singular value decomposition is defined in [20], page 71, by the
following theorem:

Theorem 6.1

If A € R™*" matrix, then there exist orthogonal matrices U = [u,, ..., Unm| €
R™*™ and V = [vy,...,v,] € R**" such that UtAV = diag(oy,...,0,) €
R™*", p = min{m, n}, where o, > 022...20,20.

The columns of U are eigenvectors of AA! (the left singular vectors), and the columns
of V are the eigenvectors of A'A (the right singular vectors). Finally, the p singular
values on the diagonal of £ = diag(a,.. .,0p) are the square roots of the nonzero
eigenvalues of 44" and A'A (the singular values).

In this part of the discussion we assume for simplicity that the forward operator
G : L* — L? This assumption makes the representation of the resolution matrix in
terms of the SVD simpler. In our implementation, we do not ezplicitly compute the
SVD. Instead we calculate the eigenvalues and eigenvectors of the normal operator
through the Lanczos process directly (see Section 6.4). When the Lanczos process
is used to calculate these eigenvectors, the forward operator has been transformed
for computational purposes so that G : L? — L? rather than as originally defined
G:H* — H".

In our example, the forward operator G, can therefore be described in terms of
the singular value decomposition by G = USV*. In other words, the matrix U has
columns which are the eigenvectors spanning the data space D, and Vs columns
are the eigenvectors spanning the model space M. The singular value matrix ¥ can

be partitioned into a square submatrix ¥, of nonzero singular values and three zero

matrices;
X, 0
0 0
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We write G = UZV* = U,Z,V} (the truncated SVD) where U, and V} consist
of the first p columns of U and V respectively. We note that although V'V =/, in
general since the p right singular vectors do not span the whole space Ve Vt # 1.

The least squares generalized inverse G—9 may now be expressed using the singular

value decomposition as

G = V551U

and the model resolution matrix (from expression 6.5) is simply

R=G7G = (V,5; U)(U,5,V)) = V,V; (6.6)

6.3 Computation of the Resolution Matrix Using the
Conjugate Gradient and Lanczos Algorithms

One aspect of the Differential Semblance Optimization approach is that the model
parameters sought in the inversion are grouped according to the influence they have
on the data. The elements which have a nonlinear effect on the data are grouped
separately from those elements which have a linear influence on the data. For example,
at each step in velocity model space (the most common nonlinear parameter) an
inversion must be carried out to estimate the parameters which linearly influence
the data (such as the short-scale relative fluctuations in the elastic parameters or
reflectivities). This inversion involves computing and solving the normal equations.
(For a discussion of the algorithmic construction of DSO see (30])

Due to the large size of the normal matrices which are typical for seismic inverse
problems, we prefer to use iterative methods to solve these linear systems. Since
the normal operator is symmetric and positive definite, an obvious technique to use
to solve this system is the conjugate gradient algorithm. Moreover, the conjugate
gradient algorithm automatically generates the parameters needed to construct the
tridiagonal matrix which arises in the Lanczos iteration. The extreme eigenvalues
of this tridiagonal matrix approximate those of the original matrix (in our case, the
normal matrix). The corresponding eigenvectors of the normal matrix can also be
found from the eigenvectors of the tridiagonal matrix by multiplying by the Lanczos
matrix (changing bases). The eigenvalues provide information about the condition of
the normal matrix. The eigenvectors of the normal matrix (right singular vectors of
the forward operator) allow us to measure model resolution.
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The next section describes the conjugate gradient and Lanczos algorithms in gen-
eral terms. The classic references for these two algorithms are (31], [24], and [23]. The
paper [21] gives a bibliographical history of the two methods. The following general
description of the two algorithms may be found in expanded form %n [20].

6.4 Discussion of the Conjugate Gradient and Lanczos
Algorithms

6.4.1 The Conjugate Gradient Idea

The Hestenes-Stiefel conjugate gradient algorithm may be understood in the context
of minimizing the function ¢(z) defined by

¢(z) = éz'Ax - z'b (6.7)

where b € R", and A € R"*" is assumed to be positive definite and symmetric. The
minimizer of ¢ is z = A~'5. So, minimizing the function ¢ and solving the linear
system Az = b are seen to be equivalent problems.

One obvious choice for decreasing the function ¢ is to travel in the negative gra-
dient direction ~V¢(z.) = b — Az, from the current point z.. One notices that the
negative gradient direction is the residual direction r. of the system at the current
point. Unfortunately, as is well known, this method (steepest descent) may converge
extremely slowly if the condition of the system (or ratio of largest to smallest eigen-
values) is large. The conjugate gradient algorithm, therefore, chooses to minimize
o in a set of directions {p,, ps, ...} which do not necessarily correspond to the resid-
ual directions. One approach with obvious benefits is to choose linearly independent
directions p; so that each z, solves

' 6.8
xespa[x?{l: ..... Pk} é(z) (6.8)

This choice of search directions ensures finite termination of the algorithm in at

most n steps. We would like a vector py such that when we solve the one-dimensional
minimization problem

main ¢(.’L‘k..1 + apk) (69)
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we also solve the k-dimensional problem 6.8. Luckily, such a solution is possible if we
require the directions p; to be A-conjugate to the previous directions py, ..., Pk-1. The
vectors pi, ..., px are A-conjugate if P{_; Apy = 0. These requirements can be satisfied

and an algorithmic implementation is described in Subsection 6.4.3 below.

6.4.2 The Lanczos Idea and Connection to the Conjugate Gradient
Algorithm

Estimates of the eigenvalues and eigenvectors of the normal operator could be very
useful for analyzing the inversion results we obtain from DSO. The Lanczos algorithm
when applied to a symmetric matrix A € R, generates a sequence of tridiagonal
matrices T; € R7*7 with extreme eigenvalues which are progressively better estimates
of the extreme eigenvalues of A.

One way to motivate the Lanczos idea is to recall the Rayleigh quotient which can
be used to approximate the eigenvalues of a matrix A. Let A, be the largest eigenvalue
of A and A, the smallest. For Q; = [q1,...,¢,] a matrix in ®**/ with orthonormal
columns, we define the scalars M; and m; by

¥ (QLAQ;)y < M(4) (6.10)

M; = max
v#0 Yty

QAN - ) () (6.11)

™SR vy

The Lanczos algorithm provides a way to compute the ¢; so that the scalars M;

and m; are better and better estimates of \,(A4) and A.(A). Let ¢ = Q;y. Then

the Rayleigh quotient changes most rapidly in the direction of its gradient which is

a vector contained in span{z, Az}. For this reason, the Lanczos vectors {¢;}] are
chosen to be an orthonormal basis for the Krylov subspace

&(A,q1,j) = span{q, Aq, ..., A 'q1} = span{qi, ..., ¢;} (6.12)

At the jth iteration of the Lanczos algorithm we have a matrix Q (the Lanczos
matrix) whose columns are the normalized residuals resulting from the conjugate gra-

dient algorithm (which can be shown to be orthonormal) and a symmetric, tridiagonal
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matrix T € R/, In fact, the Lanczos matrix “tridiagonalizes” the matrix A up to
an error matrix.

b
AQ; = Q;T; +rje!. (6.13)

The entries in T are combinations of the parameters generated in the conjugate

gradient iteration (for details see the algorithm next section).

6.4.3 Algorithm

We present here a pseudocode version of the two algorithms (conjugate gradient and
Lanczos) which have been implemented in DSO.

Variables Used

A: normal operator

b: data

r: residual

Ig: starting solution

z: approximate solution

p: conjugate gradient direction

3: parameter used in computation of new direction p

a, step length in current direction p

a, step length in previous direction

rtr.: inner product of current residual with itself

rtry: inner product of previous residual with itself

tol: relative residual tolerance used for determining algorithm convergence
Q: Lanczos matrix

T tridiagonal matrix resulting from Lanczos process with eigenvalues

approximating those of A

N

matrix of eigenvectors of the tridiagonal matrix T

X matrix of approximate eigenvectors of the original matrix A

Algorithm: (Conjugate Gradient/Lanczos) If A € R"*" is symmetric and
positive definite and b € R" then the following algorithm computes £ € R" so that
Az = b. The algorithm also optionally approximates some of the eigenvalues and
eigenvectors of the matrix A.



initialize:
r= b— Al‘o
I =T

for £k =1 :iteration limit

if eigenvector flag = true

QG k) =r/lIr|l
end if
fk=1
B=0
p=r
rtre = (r,r)
else
3 =rtr./rtr,
p=r+23p
end if
ap = Ap
ptap = (p, ap)
if ptap < tol
break
end if
a. = rtr./ptap
I=z+ayp

r=r—a.ap

if eigenvalue flag = true

ifk=1
T(k,k)=1/a.
T(k,k-1)=0
T(k—-1,k)y=T(k,k-1)
else

T(k, k)= rtrc/(rtrpap) +1/a,

T(k,k—1)=—\/rtr.[rtr,]a,

Tk—1,k)y=T(k,k-1)
end if

Call LAPACK routine SSTEQR to get eigenvalues/vectors (Z) of T.
Compute error in approximate eigenvalue for normal operator.
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end if

rir, = rtr,

rtre = (r,r)

ap = Q.

if /rtr. < tol
break

end if

if eigenvector flag = true
QZ=X

end if

end

6.5 Application of Resolution to the Marine Data
Experiments

In this section we apply the conjugate gradient and Lanczos algorithms just described
to the linear inverse problem of estimating the three elastic parameter reflectivities
described in Chapter 4. We will compare the resolution obtained for the reflectivities
in Experiments 3 and 5 described in Table 4.1. These experiments were performed on
a real marine common midpoint data gather close to a logged well. The data is shown
in Figure 6.1 . The background velocity (shown in Figure 6.2) was the same for both
experiments and was not updated. In Experiment 3 the air gun model anisotropic _
source was used to estimate the three reflectivities (short-scale relative fluctuation in
the P-wave impedance, S-wave velocity and P-wave velocity divided by density). In
Experiment 5 an anisotropic inversion-estimated source was used. Here I reran these
experiments using the conjugate gradient and Lanczos procedures and L? norm.

Of course the Lanczos process only estimates the eigenvalues and eigenvectors.

The error in these estimates is given by the theorem repeated below from [20], p.

479:

Theorem 6.2 Suppose that j steps of the Lanczos algorithm have been
performed and that S!T;S; = diag(6,,...,0,) is the Schur decomposition
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of the tridiagonal matrix T;. If ¥; = [y1,...,y,] = Q;S; € R?*J then for
1 =1:7 we have ||Ay; — 0iyillz2 = |Bj||s;i| where S; = (s5q)-

In the theorem above, the matrix S contains the eigenvectors of the tridiagonal matrix
T which comes out of the Lanczos procedure. Q is the Lanczos matrix. Y is the matrix
of eigenvectors of the original matrix A; §; are the eigenvalues of T and approximate
eigenvalues of A. Finally, 3; is the last off-diagonal entry in the tridiagonal matrix
T;.

To compute our analogue of the SVD resolution matrix R = VV! for each of
the three experiments, we could not, therefore, rely on all the computed eigenvectors
of the normal operator (columns of V). Figures 6.4, and 6.10 show the approximate
eigenvalues graphed with the associated errors. Figures 6.5, and 6.11 show the relative
error in the eigenvalues plotted against eigenvalue number (where “1” is always the
smallest computed eigenvalue.)

The matrix V was then composed of the eigenvectors corresponding to the largest
eigenvalues (which were the best determined in these experiments) with approxima-
tion error < 30%.

A second well-known source of error in the Lanczos process comes from roundoff
and cancellation. These sources of error cause the Lanczos vectors to lose orthogo-
nality. Error analysis done on this problem has been the motivation behind newer
Lanczos procedures which attempt to minimize this loss of orthogonality (see [39]).
The approach we implemented does not take advantage of these newer methods and
is, therefore, subject to the problems of loss of orthogonality of the Lanczos vectors
after a large number of iterations of the conjugate gradient procedure have been per-
formed. We ran numerous experiments, therefore, to try to maximize the accuracy
of the eigenvalue approximations while minimizing the loss of orthogonality of the
Lanczos vectors. Trial and error indicated that about 30 iterations of the conjugate
gradient algorithm is optimal for this particular problem. If we let Q € R**’ be the
Lanczos matrix gotten after j iterations of the conjugate gradient algorithm, then
ideally we should have that Q' « Q = I with I the j x j identity matrix. Plots of
Q' * Q for the two Experiments are shown in Figures 6.6 and 6.12.

One of the main difficulties one has with trying to understand the resolution ma-
trix R is processing the information. The model resolution matrix R € R**™ may
be quite large. The closer this matrix is to the identity 7 € R™*", the better the

resolution. Various techniques have been devised for selecting interesting columns of



134

R to examine. Three columns of the parts of the resolution matrix corresponding to
the P-wave impedance reflectivity for the two experiments are shown in Figure 6.7.
The last pair of graphs corresponds to an area near the target for each experiment.
However, the top two pairs were chosen at random. If the model'parameter is per-
fectly resolved in the inversion at a certain depth, the plotted column should have a
unit spike at the depth corresponding to that column of the resolution matrix and
be zero elsewhere. For the three column comparisons shown, the top graph of the
pairs (corresponding to Experiment 5) is closer to a spike than the bottom graph
(Experiment 3). However, unsurprisingly, none of the columns shown is very close to
a delta pulse. We are after all only estimating 30 eigenvalues out of the total of 626
possible in these inversion experiments. Wiggins [62] advocates examining a more
intelligent choice of columns of the resolution matrix, namely those with the largest
diagonal elements in the resolution matrix (which he calls “delta vectors”). These
vectors should indicate the locations of well-determined components of the model.
Rather than plotting arbitrary columns of the large resolution matrix, one could
calculate a function of the matrix termed the resolution spread (see [4]). One ex-

ample is the Backus-Gilbert spread function which returns a single number for each

resolution matrix: .
22 (i=5)*

4 i=1 ;=1
Unfortunately, this function is attempting to convey a large amount of information
in a single number and is easily corrupted by lack of information in some parts of
the model domain or noise in the data. Another choice is the vector-valued spread
function:
Spi = = —11?22}22
' J=1 iJ

(6.14)

The idea is to weight more heavily the parts of the model estimate derived from
averaging the true model over wide intervals. The points on the resolution spread
curve closest to zero are the best resolved depths. More work needs to be done to
understand the meaning of the size of the elements in the spread vector for these
experiments.

We show various comparisons of resolution spread. Figure 6.8 overplots the res-
olution spread for each of the three reflectivities estimated in Experiment 3. These
curves give little information (increase rapidly) at the water bottom (where there is
no information in the data) and after the target located in the interval of 2100-2200m
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(due to noise). Nonetheless, one can use this graph to compare relative resolution for
the three different parameters estimated in one inversion experiment. The normaliza-
tion of the spread function prevents the P-wave impedance resolution (the part of the
resolution matrix with biggest norm) from overpowering the othet two parameters’
resolution information. Figure 6.13 plots the same spread functions for the three re-
flectivities estimated in Experiment 5. Figure 6.14 compares the resolution spread for
the P-wave impedance reflectivity for Experiment 3 (dashed line) and Experiment 5
(solid line). Figure 6.15 is a graph of the same resolution comparison for the S-wave
velocity reflectivity. Finally, 6.16 compares the resolution spread for the two exper-
iments for the P-wave velocity divided by density reflectivity. One notes that in all
three of these graphs, the interval of interest (1000-2300m depth) is better resolved in
Experiment 5 (the reflectivity estimation job using the anisotropic inversion-estimated
source) than in Experiment 3 (the air gun source experiment). At the target, how-
ever, the air gun source does slightly better than the anisotropic inversion-estimated
source. These resolution spread pictures agree with the well log comparisons given in
Chapter 4, Figures 4.10, 4.11, 4.15, 4.16, 4.19, 4.20. The inversion-estimated sources
tend to do a better job of agreeing with the well logs over the depth domain of inter-
est. However, at the target, the air gun source does a good job of matching the well
log.

6.6 Conclusion

Model resolution for seismic inverse problems was first described in classic papers by
Backus and Gilbert 25 years ago. The limited data obtained about the subsurface due
to measuring tools and computational discretization prevents the inversion process -
from being able to return model estimates that are the true parameters which gener-
ated the data. The singular value decomposition of the forward (seismogram) model
- and generalized inverse allow us to quantify to what extent the model estimates are
localized averages of the true model parameters. The smaller the averaging interval
(for example in depth) of the model estimates, the better the resolution. A number
of papers were written on this subject in the late 1960’s and early 1970’s when it
seemed a promising tool. However, computing the resolution matrix for inverse prob-
lems is still not common practice because it is prohibitive to calculate the SVD for
realistic experiments. We present here an inexpensive way to approximate the reso-

lution matrix. We solve the least squares inverse problem for the reflectivities using
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the conjugate gradient algorithm and simultaneously estimate some of the eigenval-
ues and eigenvectors of the normal matrix by the Lanczos procedure. The estimated
eigenvectors are used to form the resolution matrix for the reflectivities. We illustrate
this process on two reflectivity experiments with different sources. "The resulting res-
olution spread curves agree with the well log comparisons shown in Chapter 4 and

imply that resolution defined in this way could be useful for gauging the accuracy of
inversion results when well log information is not available.
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Figure 6.1 The common midpoint data gather (CMP6) used

for the three experiments contrasted in this chapter.
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Figure 6.2 The P-wave background velocity estimate used for both
inversion experiments. This background velocity was estimated from a DSQ
inversion described in chapter 4.
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misfit is plotted on the same scale as the actual data.
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middle two graphs are the column of the resolution matrices corresponding

to 1445m. The bottom two graphs correspond to depth 2185m (a region
between where the two experiments place the target). In each pair, the top
graph corresponds to Experiment 5 (reflectivity estimation with the
anisotropic inversion-estimated source). The bottom graph corresponds to
Experiment 3 (reflectivity estimation with the air gun model source).
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Figure 6.8 Graph of the spread of the resolution matrix for Experiment 3.
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reflectivity estimate. The dashed line describes the spread for the S-wave
velocity reflectivity. The dotted line is the spread for the P-wave velocity
divided by density reflectivity.
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Figure 6.10 The approximate eigenvalues of the normal operator for the
reflectivity inversion with an inversion-estimated anisotropic source
(Experiment 5 Table 4.1). The errors in the eigenvalues are shown as
errorbars.
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Figure 6.11 The relative error in the approximate eigenvalues of the
normal operator for the reflectivity inversion with an anisotropic
inversion-estimated source (Experiment 5 Table 4.1).
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Figure 6.13 Graph of the spread of the resolution matrix for Experiment
3. The solid line corresponds to the spread for the P-wave impedance
reflectivity estimate. The dashed line describes the spread for the S-wave
velocity reflectivity. The dotted line is the spread for the P-wave velocity
divided by density reflectivity.
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Figure 6.14 The graph of the resolution spread for two estimates of the
P-wave impedance reflectivity. The solid line corresponds to Experiment 5;
the dashed line to Experiment 3.
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Figure 6.15 The graph of the resolution spread for two estimates of the
S-wave velocity reflectivity. The solid line corresponds to Experiment 5; the
dashed line to Experiment 3.
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Experiment 5; the dashed line to Experiment 3.
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