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Abstract  A set of 24 halogen containing hydroxy and amino substituted aromatic compounds were subjected to 
2D- and 3D-QSAR studies. 3D-QSAR was studied at a 2.0 Ǻ 3D grid spacing using molecular interaction fields 
(MIFs) analysis. The best predictive models by MIFs gave the cross-validated correlation coefficient, Q2 of 0.668 
and squared correlation coefficient, R2 of 0.979 and the models by MLR, PCR and PLSR methods for 2D-QSAR 
provided a highly significant squared correlation coefficient (R2) values of 0.904, 0.785, 0.903 and cross-validated 
correlation coefficients (Q2) of 0.824, 0.662 and 0.718 respectively. The statistically significant model was 
established from a training set of 18 molecules, which were validated by evaluation of test set of 6 compounds. The 
calculated cytotoxic activities through MIFs model showed a very good agreement with experimental values. The 
information provided by QSAR analysis may give valuable clues to design and find the new potential drugs. 
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1. Introduction 
Aromatic halides are a crucial step in the preparation of 

various synthetic intermediates or final products. Brominated 
and chlorinated aromatic compounds are widely used as 
intermediates in the manufacture of pharmaceuticals, 
agrochemicals and other chemical products [1]. The 
manufacture of a range of bulk and fine chemicals, 
including flame retardants, disinfectants, antibacterial and 
antiviral drugs, involve halogenations [2]. The halogen 
containing aromatic amines are also important building 
blocks in synthetic organic chemistry for the synthesis of a 
number of natural and bio-active substances. Numerous 
biologically active molecules and a large number of 
industrially valuable products such as pesticides, 
insecticides, herbicides, fire retardants, and other firsthand 
materials carry amino and halogen functionalized aromatic 
units in their structure [3]. These amino halides are 
involved in many famous organic reactions such as Stille, 
Suzuki, Heck, and Sonogashira and contribute access to 
accumulation of amino functionalized intermediates of 
enormous synthetic utility [4]. As well as halogenated 
phenol compounds are toxic and their most general 
property toxicity is useful. These compounds and their 
derivatives are used as a bactericide and fungicide and 
preservative. Due to the vast uses of phenolic compounds 
for industry productions, these compounds can spread 
through air and water, with strong carcinogenicity, 

teratogenicity and mutagenicity [5,6], which will cause a 
great damage to environment and also for living 
organisms. Again heterocyclic compounds are abundant in 
nature and are of great significance to life because their 
structural subunits exist in many natural products such as 
vitamins, hormones, and antibiotics [7]; hence, they have 
attracted considerable attention in the design of 
biologically active molecules [8] and advanced organic 
chemistry. Specially nitrogen containing heterocyclic 
aromatic compounds are an important class of compounds 
in the medicinal chemistry and also contributed to the 
society from biological and industrial point which helps to 
understand life processes [9]. 

Taking into consideration of this biological activity, we 
have synthesized some halogen containing hydroxy and 
amino substituted aromatic compounds and those were 
tested for cytotoxic activity. Though experimental 
procedure is the direct way to measure the cytotoxicity of 
organic compounds but it has many limitations, such as 
requirement of myriads of trial organisms, high expense 
and time consuming [10]. Consequently, development of 
drugs is lengthy, laborious and expensive process. So 
computer aided drug design (CADD) can help us to 
predict the toxicity quickly and almost exactly. The most 
important step is to find the possible structural feature of 
the compounds with desired biological activity. In this 
work, two dimensional quantitative structure-activity 
relationship (2D-QSAR) and three dimensional quantitative 
structure-activity relationship (3D-QSAR) were carried 
out to study the biological activity for the synthesized 
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compounds. With the rapid development of computational 
chemistry; many methods, algorithms and techniques have 
been discovered and applied in QSAR studies [11,12]. 
QSAR can predict the bioactivity based on structural 
parameters of compounds, and so now QSARs are being 
applied in many disciplines for designing drugs. It is a 
mathematical model that was used to evaluate the 
biological activity of a compound from its physiochemical 
properties of molecular structures. 

2. Experimental 

2.1. General Methods 
A new method was employed for bromination and 

chlorination of some amino and hydroxy substituted aromatic 
compounds by the polymer-supported trimethylammonium 
dichlorobromide reagent at solid/solution phase system. 
This method was developed from the pioneering work by 
Merrifield [13] polymer-supports. The polymer could be 
recycled for the repeated reactions. All the reactions have 
been done under inert conditions at room temperature. All 
the reagents and solvents used in these experiments were 
pure, dried and purchased from E-Merck (Germany) and 
Fluka. Thin layer chromatographic analysis was performed 
on E-Merck 60 F 254 pre-coated aluminum thin layer 

chromatographic plates and column chromatography was 
done for separation of the products using silica gel (0.040-
0.063 nm). Melting points were determined on a Fisher-
John’s electrochemical melting point apparatus and these 
were uncorrected. All the products were characterized by 
IR, 1H-NMR, 13C-NMR, 13C-DEPT NMR spectroscopic 
and Mass spectrophotometric analysis. The IR spectra 
were recorded with KBr (Potassium Bromide) disk or thin 
film on DR-8001, Shimadzu FT-IR spectrometer and 
NMR spectra were also recorded in CDCl3 on a Bruker 
400 MHz spectrometer using TMS (Trimethylsilane) as an 
internal standard. 

2.2. Synthesis 
Twenty four (24) compounds were synthesized according 

to the literature procedure of Andreas Kirschning [14] and 
have been published by our research group [15]. All the 
synthesized compounds illustrated in Table 1 were 
confirmed with m.p. (melting point), IR, 1H-NMR, 13C-
NMR, 13C-DEPT NMR and Mass spectrophotometric analysis. 
Subsequently, cytotoxic activity of all synthesized 
compounds has been estimated with brine shrimps 
lethality bio-assay. The synthetic portion is not included in 
this manuscript due to the main focus on 2D- and 3D-
QSAR study. 

Table 1. List of the synthesized compounds with biological activities, logLC50 (1-24) 

Y

X

R2R6

R3

R4

R5

R1  
1-21 

Y R2

R3

R4R5

R6

R7

R8 R1  
22-24 

Comp. ID X Y R1 R2 R3 R4 R5 R6 R7 R8 log LC50 
1 C C H OH CH3CO H Br H - - 1.24 
2 C C Br OH CH3CO H H H - - 1.25 
3 C C Br OH CH3CO H Br OH - - 0.39 
4 C C Br OH CH3CO OH Br H - - 0.49 
5 C C Br H CH3CO H Br OH - - 0.73 
6 C C Br H CH2ClCO H Br OH - - 0.03 
7 C C Br H Cl H Cl OH - - 0.49 
8 C C Br H CH3CO H Br NH2 - - 1.10 
9 C C Br H CH2ClCO H Br NH2 - - 0.30 

10 C C Br H Cl H Br NH2 - - 0.48 
11 C C H Br OH Br H Br - - 0.27 
12 C C H Br OH Br H NO2 - - 1.12 
13 C C H Br OH H H NO2 - - 0.98 
14 C C H Br NH2 Br H Br - - 0.60 
15 C C H Br NH2 Cl H Br - - 0.83 
16 C C H Br NH2 Br H NO2 - - 1.74 
17 C C H Br NH2 Cl H NO2 - - 1.79 
18 C N - OH Br H Br CH3 - - 1.01 
19 N N - NH2 - H Br H - - 0.26 
20 C N - NH2 Br H H NH2 - - 0.54 
21 C N - NH2 Cl H Cl H - - 0.65 
22 - C Cl H Cl OH H H H H 2.37 
23 - N - H H H Br H Cl OH 1.61 
24 - N - H Cl H Cl H H OH 2.60 
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2.3. Cytotoxicity Calculation 
The median lethal concentration (LC50) with 95% 

confidence intervals of the test samples in Table 3 and 
reference standard (Vincristine Sulfate) in Table 4 were 
calculated using the probit analysis program [16,17] of 
IBM SPSS Statistics20 software packages. According to 
the research methodology for QSAR analysis, all the 
experimental LC50 values (µg/mL) were converted to the 
tenth based logarithm of LC50, i.e., logLC50. 

2.4. Test Animal 
Brine shrimps were used as test animal for the 

investigation of cytotoxic activity [18,19,20] and its 
scientific name is Artemia Salina. 

2.5. Hatching of Shrimp 
Brine shrimp (A. Salina) eggs were hatched in a vessel 

containing sterile artificial seawater prepared by 
dissolving 38 g of table salt in 1L distilled water. The 
vessel was kept under an inflorescent bulb and facilitated 
with good aeration for 48 h at room temperature. After 
hatching, nauplii released from the egg shells were 
collected at the bright side of the vessel (near the light 
source) by using micropipette. The larvae were isolated 
from the eggs by aliquoting them in small beaker 
containing the seawater. 

2.6. Brine Shrimp Lethality Bioassay 
The brine shrimp lethality bioassay was used to predict 

the cytotoxic activity [21,22] of the compounds. For the 

experiments, 4 mg of each test sample was dissolved in 
dimethylsulfoxide (DMSO) and solutions of varying 
concentrations (400, 100, 50, 10, 5, and 2 µg/mL) were 
obtained by the serial dilution technique using simulated 
seawater. The solutions were then added to the pre-
marked glass vials containing 20–25 live brine shrimp 
nauplii in 10 mL simulated seawater. After 24 h, the vials 
were inspected using a magnifying glass, and the number 
of survived nauplii in each vial was counted. The 
mortality endpoint of this bioassay was defined as the 
absence of controlled forward motion during 30 s of 
observation [23]. From this data, the percent of lethality of 
the brine shrimp nauplii for each concentration and control 
was calculated. Vincristine Sulfate (reference standard) 
and DMSO were used as positive control and negative 
control respectively. All the procedures were replicated 
three times. 

3. Computational Details 

3.1. Data Set 
2D- and 3D-QSAR modelling were applied to a set of 

24 molecules, which were divided into a training set [24] 
of 18 molecules, and a test set of 6 molecules in a random 
manner (the test set is marked by * in Table 7). According 
to research methodology, all experimental LC50 values 
(µg/mL) were converted to the tenth-based logarithm of 
LC50, i.e., logLC50 and used as the dependent variable in 
QSAR studies. The structures of these compounds and 
their experimental biological activities are shown in Table 1. 

Table 2. Stepwise multi-linear regression (MLR) was employed to select the best  QSAR model 
Model No Descriptor (s) used in the model R2 RMSE Coefficient t-stat p-value Status of descriptor 

1 XLogP 0.627 0.469 -0.518592 -6.5431 0.0000  

2 
LUMO 

0.773 0.348 
0.544693 1.7268 0.1047 ns 

XLogP -0.582043 -.9870 0.0000  

3 
IP 

0.822 0.321 
0.394681 1.9627 0.0699 ns 

LUMO 0.863928 2.6042 0.0208  
XLogP -0.511907 -6.0719 0.0000  

4 

IP 

0.904 0.244 

0.666700 3.8302 0.0021  
LUMO 0.991600 3.8702 0.0019  
PPSA1 0.005200 3.3182 0.0056  
XLogP -0.355600 -4.4583 0.0006  

5 

HF 

0.905 0.251 

-0.001380 -0.5300 0.6058 ns 
IP 0.639900 3.4397 0.0049  

LUMO 0.975800 3.6778 0.0032  
PPSA1 0.005030 3.0354 0.0104  
XLogP -0.374600 -4.1837 0.0013  

6 

HF 

0.906 0.262 

-0.001420 -0.5154 0.6165 ns 
TE 0.000032 0.0907 0.9294 ns 
IP 0.634200 3.1028 0.0101  

LUMO 0.941800 2.0219 0.0682 ns 
PPSA1 0.005000 2.8941 0.0146  
XLogP -0.372100 -3.8121 0.0029  

7 

HF 

0.906 0.262 

-0.001420 -0.5154 0.6165 ns 
TE 0.000032 0.0907 0.9294 ns 
IP 0.634200 3.1028 0.0101  

HOMO 0.000024 0.0691 0.9613 ns 
LUMO 0.941800 2.0219 0.0682 ns 
PPSA1 0.005000 2.8941 0.0146  
XLogP -0.372100 -3.8121 0.0029  

ns: not significant (p-value>0.05). 
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3.2. Calculating Descriptors 
At first all the 3D-structures of the compounds were 

generated by Gauss View03 software, and minimization of 
3D- structure was performed by the MOPAC-2012 
software [25] using the semi-empirical (PM6) method [26]. 
All geometric variables were finally optimized for each 
compound using a Gaussian03W program [27] (ver. 6.0) 
at B3LYP/6-31G(d,p) level of theory [28] and the low-
energy conformers were ensured with all real frequencies 
by the frequency calculations, and these lowest energy 
conformers were selected for descriptors calculation. 
Briefly, the CDK Descriptor calculator [29] (v1.3.4) was 
employed to calculate the molecular descriptors and 
overall, more than 180 theoretical descriptors were 

calculated. These descriptors can be classified into several 
groups, including: (i) constitutional, (ii) geometrical, (iii) 
topological, (iv) electronic, (v) BCUT (Burden–CAS-
University of Texas) and vi) WHIM (Weighted Holistic 
Invariant Molecular). QM (Quantum chemical) descriptors 
like HOMO and LUMO energies, heat of formation, 
dipole moment, square dipole moment, surface area, 
surface volume, energy gap and total energy were further 
calculated using Gaussian03W (ver. 6.0) program [27] at 
B3LYP/6-31G(d,p) level of theory [28]. From 210 
different descriptors including quantum chemical 
descriptors which having less than 0.7 correlations were 
retained for further analyses and finally 7 descriptors were 
selected for 2D-QSAR study (Table 2). 

Table 3. Cytotoxic activity of the synthesized compounds against brine shrimp nauplii 

Table 4. Cytotoxicity of the reference standard (Vincristine Sulfate) on brine shrimp nauplii 
Concentration tested (µg/mL) Probit LC50 (µg/mL) logLC50 95% Confidence limit 

2 4.75 

4.71 0.67 2.88-6.92 

5 5.00 

10 5.25 

50 5.67 

100 6.04 

400 6.41 

Comp ID Concentration of the test solution (µg/mL) Probit values LC50 logLC50 
95% confidence limit 

Lower Upper 

1 2, 5, 10, 50, 100, 400 4.33, 4.64, 4.87, 5.36, 5.55, 5.77 17.47 1.24 11.75 25.70 

2 2, 5, 10, 50, 100, 400 4.29, 4.64, 4.87, 5.36, 5.55, 5.77 17.83 1.25 12.02 25.70 

3 2, 5, 10, 50, 100, 400 4.95, 5.13, 5.13, 5.67, 5.77, 6.08 2.467 0.39 1.10 4.68 

4 2, 5, 10, 50, 100, 400 4.90, 5.05, 5.28, 5.58, 5.71, 5.92 3.12 0.49 1.15 5.89 

5 2, 5, 10, 50, 100, 400 4.82, 4.95, 5.13, 5.41, 5.55, 5.67 5.39 0.73 1.95 10.47 

6 2, 5, 10, 50, 100, 400 5.08, 5.20, 5.36, 5.67, 5.67, 5.84 1.08 0.03 0.13 3.02 

7 2, 5, 10, 50, 100, 400 4.87, 5.08, 5.31, 5.58, 5.71, 5.92 3.06 0.49 1.12 5.89 

8 2, 5, 10, 50, 100, 400 4.75, 4.87, 4.98, 5.18, 5.31, 5.44 12.64 1.10 4.47 26.92 

9 2, 5, 10, 50, 100, 400 5.00, 5.15, 5.25, 5.50, 5.67, 5.84 2.01 0.30 0.83 4.21 

10 2, 5, 10, 50, 100, 400 4.87, 5.08, 5.31, 5.61, 5.71, 5.92 3.03 0.48 1.10 5.75 

11 2, 5, 10, 50, 100, 400 5.03, 5.15, 5.25, 5.47, 5.64, 5.84 1.87 0.27 0.35 4.57 

12 2, 5, 10, 50, 100, 400 4.75, 4.85, 4.98, 5.18, 5.31, 5.44 13.17 1.12 4.90 28.18 

13 2, 5, 10, 50, 100, 400 4.77, 4.90, 5.03, 5.23, 5.36, 5.50 9.51 0.98 3.24 19.95 

14 2, 5, 10, 50, 100, 400 4.82, 5.03, 5.25, 5.52, 5.71, 5.92 4.00 0.60 1.70 7.24 

15 2, 5, 10, 50, 100, 400 4.80, 4.92, 5.08, 5.33, 5.50, 5.61 6.77 0.83 2.51 13.18 

16 2, 5, 10, 50, 100, 400 4.62, 4.72, 4.80, 5.00, 5.10, 5.20 54.71 1.74 22.91 213.80 

17 2, 5, 10, 50, 100, 400 4.59, 4.70, 4.77, 5.00, 5.10, 5.18 62.06 1.79 26.30 251.19 

18 2, 5, 10, 50, 100, 400 4.75, 4.90, 5.03, 5.20, 5.36, 5.50 10.26 1.01 3.72 20.89 

19 2, 5, 10, 50, 100, 400 5.03, 5.15, 5.25, 5.52, 5.64, 5.84 1.83 0.26 0.35 4.37 

20 2, 5, 10, 50, 100, 400 4.85, 5.05, 5.28, 5.55, 5.74, 5.92 3.50 0.54 1.38 6.46 

21 2, 5, 10, 50, 100, 400 4.80, 5.00, 5.23, 5.52, 5.71, 5.88 4.43 0.65 1.95 7.76 

22 2, 5, 10, 50, 100, 400 4.42, 4.50, 4.64, 4.80, 4.92, 5.05 232.60 2.37 85.11 2089.30 

23 2, 5, 10, 50, 100, 400 4.59, 4.70, 4.80, 5.03, 5.15, 5.31 40.78 1.61 19.50 102.33 

24 2, 5, 10, 50, 100, 400 4.42, 4.53, 4.56, 4.75, 4.87, 5.00 395.10 2.60 120.23 8709.64 
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3.3. Molecular Modelling and Alignment 
The molecules were superimposed using the atom-

based alignment by the open3DALIGN tools [30,31] 
given in Figure 6. From the data set, the compound, 6 
shown in Figure 5 was selected as template to construct 
other compounds because of its high biological activity 
and the alignment was completed by open3DALIGN 
workstation. Except for some special notes, default values 
were chosen. Then their geometries were optimized by the 
RMS gradient [32] criterion method on MMFF94s force-
field implemented in TINKER by using command option 
of open3DALIGN. The energy convergence criterion in 
alignment is 0.01 kcal/mol.  

3.4. MIFs Study 
The Molecular Interaction Fields (MIFs) are the 

interaction energies between a probe atom (or a molecule) 
and a set of aligned molecules. To generate the MIFs, a 
probe atom is systematically moved from one point to 
another for each aligned molecule within a defined 3D 
grid [33]. At each grid point, the interaction energy is 
calculated between the probe and the target molecule. In 
this study, the 24 aligned molecules were placed in 
various 3D cubic lattice spacing. The steric (van der 
Waals) and electrostatic (Coulombic) interaction energies 
were calculated for each molecule at the respective grid 
point using an alkyl carbon probe (default) with automatically 
assigned charges using OpenBabel utilities. Energies 
lower than -40.0 kcal/mol and greater than 40.0 kcal/mol 
were cut off because a few high values in the dataset may 

severely bias the model. After alignment, the molecules 
were put to 2.0 Å of 3D grid [33] spacing. The steric and 
electrostatic fields were then calculated using a ‘CR’ 
Alkyl Carbon atom with default charge and the cutoff 
energy was set between -40 to 40 kcal/mol. Regression 
analysis of the resulting field matrix was performed by 
Partial Least Squares regression (PLSR) [34] technique. 
To obtain the 3D-QSAR models, PLS analysis was 
performed using both steric and electrostatic fields. Cross-
validation in PLS was carried out using the leave-one-out 
method (LOO) [35,36] to check the predictive ability of 
the models and to determine the optimal number of 
components to be used in the final 3D-QSAR models. 

3.5. Statistical Methods 
For 2D-QSAR study, preliminary model selection was 

performed by BuildQSAR (version 2.1.0.0) [37] software 
program. Next, the MATLAB (ver. 7.6.0.324) software 
package [38] was applied for detailed statistical analysis 
of the QSAR models. 3D-QSAR analysis by MIFs study 
was performed on an open3DQSAR tools [39] using 
Partial Least Square (PLS) technique through the NIPALS 
algorithm methodology [40]. Statistical calculations 
allowed for the selection of the models with the following 
characteristics: high squared correlation coefficient (R2), 
high cross-validated correlation coefficient (Q2), high 
Fischer’s value (F-test), low standard deviation (s), 
correlation matrix (Table 5) among the parameters and the 
least number of descriptors involved. 

Table 5. Correlation matrix among the descriptors 

 EIP ELUMO PPSA1 XLogP 

EIP 1.000    

ELUMO 0.613 1.000   

PPSA1 0.089 0.105 1.000  

XLogP 0.571 0.441 0.441 1.000 

Table 6. Statistical results of training and test set by MLR, PCR, PLSR regression methods (2D-QSAR) and MIFs studies (3D-QSAR) 

Model No. Method 
Training set (18)   Test set (6) 

Optimal no of variables used 3D-Grid spacing 
Fields Contribution 

R2 Q2
LOO s F test  R2

pred SDEP Electro-static Steric 

2D-QSAR            

1 MLR 0.904 0.824 0.207 30.479  0.867 0.245 4 Des - - - 

2 PCR 0.785 0.662 0.310 23.422  0.784 0.312 3 PCs    

3 PLSR 0.903 0.718 0.208 43.556  0.873 0.239 3 LVs - - - 

3D-QSAR (atom-based alignment)         

4 MIFs 0.979 0.668 0.097 111.639  0.795 0.304 5 PLSC 2.0 Å 0.436 0.564 

MLR: Multi linear regression, PCR: Principle component regression, PLSR: Partial least square regression, LOO: Leave one out, s: Standard deviation, 
SDEP: Standard error of prediction, F test: Fischer’s statistics, MIFs: Molecular interaction energy fields, Des: Descriptors, PC: Principle components, 
PLSC: PLS Components (LVs), LVs: Latent variables. 
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4. Results and Discussions 

4.1. 2D-QSAR Analysis 
The correlation between various descriptors [41] with 

biological activity is the most important means of 
structure–activity relationship (SAR) study. Thus the 
equation should use the minimum number of descriptors 
to obtain the best fit. To achieve this, a popular procedure 
is used to find out the saturation point, a point beyond 
which there is no considerable improvement in regression 
coefficient (R2) values has been observed. By interpreting 
the resulting descriptors, it is possible to gain some insight 
into factors that are likely to govern the cytotoxic activity. 
The best QSAR model constructed with stepwise multiple 
linear regression (MLR) method is shown by the 
following equation: 
Model-1 (MLR) 

 50 1log 0.0052 0.6667 0.9916
0.3556 log 4.9968

IP

LUMO

LC PPSA E
E X P

= × + × +

× − × −
 (1) 

 

2

2 2

18; 0.904; 0.207;
30.479; 0.0001;

0.824; 6; 0.867; 0.245

train

test pred

n R s
Ftest p

Q n R SDEP

= = =

= <

= = = =

 

where, n is the number of observations, R2 is the squared 
correlation coefficient, s is the standard deviation, p is the 
statistical significance >99.9% with Fisher’s statistic F, Q2 

is the cross-validated square correlation coefficient 
(internal validation), predictive correlation coefficient 
(External validation) is indicated by R2

pred and SDEP is the 
standard deviation error of prediction. 

The seven descriptors used in the stepwise multiple 
linear regression (MLR) methods can be classified as 
follows: partition coefficient by atom-additive method [42] 
(XlogP), the charged partial surface area, CPSA [43] 
(PPSA1) and quantum chemical [44-53] or QC (EHOMO, 
ELUMO, EIP, ∆HFORM and ET) which are shown in Table 2. 
The contribution of each descriptor can be validated by 
means of its p- and t-value since it reveals the significance 
of the parameter within the models. An important 
observation during generating QSAR models by stepwise 
multiple linear regression (MLR) method is the p-value. 
From Table 2, an excellent improvement of R2 and RMSE 
values are observed for model-4 than that of model-1, 2 
and 3 whereas a considerable improvement of R2 and 
RMSE are not observed for Model-5, 6, 7 than that of 
Model-4. In the meanwhile, the p-values of some 
descriptors for model-2, 3, 5, 6 and 7 are insignificant 
shown in Table 2. Therefore, model-1 and 4 are only valid 
models in this stepwise multiple regressions (MLR) 
method where model-4 is the best MLR model which is 
denoted above by Model-1 (MLR). The selection of 
descriptors is based on R2 and RMSE of one-parameter 
correlation, and the parameter’s t- and p- values, and inter-
correlation among the descriptors are also been considered 
for the descriptor selection in the best MLR model. A final 
model is obtained by four descriptors (PPSA1, EIP, ELUMO 
and XlogP) with optimal values of R2, Ftest, Q2 and lowest 
value of s. Next principle components regression (PCR) 
and partial least square regression (PLSR) were also 
applied to generate the models [54,55] for quantitative 

structure–activity relationship (QSAR) between a set of 
molecular descriptors used in the MLR method and 
experimental activity. 
Model-2 (PCR) 

 50 1log 0.0035 0.1541 0.0553
0.4073 log 0.5366

IP

LUMO

LC PPSA E
E X P

= × + × +

× − × −
 (2) 

2

2 2

18; 0.785; 0.310;
23.422; 0.0001;

0.662; 6; 0.784; 0.312

train

test pred

n R s
Ftest p

Q n R SDEP

= = =

= <

= = = =

 

Model-3 (PLSR) 

 50 1log 0.0050 0.6353 1.0017
0.3704 log 4.6286

IP

LUMO

LC PPSA E
E X P

= × + × +

× − × −
 (3) 

 

2

2 2

18; 0.903; 0.208;
43.556; 0.0001;

0.718; 6; 0.873; 0.239

train

test pred

n R s
Ftest p

Q n R SDEP

= = =

= <

= = = =

 

In the above MLR, PCR, PLSR models, R2 value 
multiplied by 100 gives explained variance in biological 
activity of the compounds. The CSPA descriptor (PPSA1) 
encodes features responsible for polar interactions 
between molecules. The definition by Jurs [43] of this 
descriptor (partial positive surface area) is represented as 

1 i
i

PPSA SA+= ∑ where iSA+  is the surface area of the 

positively charged atom i. It is positively correlated with 
the activity, indicating that increasing this value in 
molecules could increase biological activity. The molecule 
is considered as an assembling of hard spheres defined by 
the van der Waals radii of the atoms. The solvent- 
accessible surface area is traced out by the centre of a 
solvent sphere (usually water) that rolls over the van der 
Waals surface of the molecule. The Ionization Potential 
(EIP) is defined as the minimum energy required to 
removing an electron from an isolated molecule (or atom) 
in its ground state to form an ion in the gas phase [56]. 
The EIP parameter can be related to the electron transfer 
pathway, in which low values of EIP favor the electron 
transfer process in a molecule and high values of EIP 
decrease the electron donating capacity of a molecule 
rather increase electron accepting tendency of a molecule. 
Sjoberg et al. [57,58] extended their concept about 
ionization potential to the local electron affinity, which is 
the acceptor equivalent. These properties can also be 
described in terms of spherical harmonics in conjunction 
with a distance-dependent overlap term to calculate donor-
acceptor interactions. Thus, surface-based descriptors 
calculated from the local ionization potential and electron 
affinity are able to describe intermolecular donor/acceptor 
interactions [59]. The electronic parameter ELUMO, which 
denotes energy of the lowest unoccupied molecular orbital, 
directly related to the electron affinity and characterizes 
the susceptibility of the molecule towards attack by 
nucleophiles. An electron deficiency in the lowest 
unoccupied molecular orbital (LUMO), shows its low 
energy and low electron density, which gives a molecule a 
favorable condition for the acceptance of an electron. The 
positive slope of LUMO in this model indicates that the 
higher the ELUMO energy of the molecule, the higher the 
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biological activity of the molecules. XlogP is the atom 
type descriptor [60] used to characterize the hydrophobicity 
(logP) of molecules. The atomic contribution of individual 
atom types was proposed by Ghose and Crippen [61] 
toward the overall hydrophobicity of molecules where 
carbon, hydrogen, oxygen, nitrogen, sulfur and halogens 
were classified into atoms. Hydrogen and halogens are 

classified by the hybridization and oxidation state of the 
carbon they are bonded to, and carbon atoms are classified 
by their hybridization state and the chemical nature of 
their neighbouring atoms. The negative slope of XlogP in 
above models represents that biological activity increases 
with lowering of hydrophobicity i.e. decreases with an 
increase in lipophilicity. 

 

Figure 1. Graph of actual versus predicted activities for training and test set molecules by MLR method 

 

Figure 2. Graph of actual versus predicted activities for training and test set molecules by PCR method 
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In order to validate our results we have estimated the 
cytotoxic activity (logLC50) of training and test sets using 
the model expressed by Eq. (1), (2) and (3) and compared 
them with the observed values. The data presented in 
Table 7 shows that the observed and predicted activities 
are very close to each other. This was further supported by 
the plot of MLR predicted logLC50 values against the 
observed logLC50 values (Figure 1) and the lowest values 
of the statistical parameters s and SDEP estimated in 
Table 6 are also in the favor of linear model constructed 
with PPSA1, EIP, ELUMO and XlogP descriptors. Cross-
validated square correlation coefficient (Q2) by LOO 
technique was 0.824 which showed a good internal 
predictive ability of the model. Consequently Eq. (1) can 
be also considered as a perfect model for both high 
statistical significant and excellent predictive ability. It is 
observed that PPSA1, EIP, ELUMO and XlogP are the best 
descriptors in the establishment of the QSAR model for 

halogen containing hydroxy and amino substituted 
aromatic compounds. The correlation of the experimental 
activities with the MLR calculated ones is illustrated in 
Figure 1. The optimal number of principal components (3 
PCs) for PCR and optimal number of latent variables (3 
LVs) for PLSR are used in 2D-QSAR analysis shown in 
Figure 7 and Figure 8 respectively. The correlation of the 
experimental and calculated activities with the PCR and 
PLSR methods are also shown in Figure 2 and Figure 3 
respectively. The squared correlation coefficient R2, 
standard deviation s, and Fischer Statistics F obtained 
with PCR and PLSR methods (Table 6) indicate that the 
models proposed to predict activities are significant and 
pertinent to that of MLR method [62]. The biological 
activities predicted by MLR, PCR and PLSR methods 
with respect to their experimental values are shown in 
Table 7. 

Table 7. Predicted activities by MLR, PCR, PLSR and MIFs methods as well as experimental activities 

Comp ID 

logLC50  
Residual Errors  

Exp. 
2D-QSAR  3D-QSAR  

MLR PCR PLSR  MIFs  MLR PCR PLSR MIFs 

1 1.24 1.10 1.05 1.08  1.09  0.14 0.19 0.16 0.15 

2* 1.25 1.05 1.02 1.03  1.42  0.20 0.23 0.22 -0.17 

3 0.39 0.66 0.71 0.65  0.40  -0.27 -0.32 -0.26 -0.01 

4 0.49 0.28 0.47 0.27  0.64  0.21 0.02 0.22 -0.15 

5 0.73 0.90 0.83 0.89  0.62  -0.17 -0.10 -0.16 0.11 

6* 0.03 0.58 0.65 0.56  -0.10  -0.55 -0.62 -0.53 0.13 

7 0.49 0.38 0.28 0.39  0.35  0.11 0.21 0.10 0.14 

8 1.10 0.93 0.89 0.95  1.10  0.17 0.21 0.15 0.00 

9 0.30 0.62 0.73 0.64  0.37  -0.32 -0.43 -0.34 -0.07 

10 0.48 0.50 0.14 0.48  0.51  -0.02 0.34 0.00 -0.03 

11* 0.27 0.39 0.20 0.37  0.33  -0.12 0.07 -0.10 -0.06 

12 1.12 1.19 1.32 1.18  1.15  -0.07 -0.20 -0.06 -0.03 

13 0.98 1.40 1.68 1.40  1.00  -0.42 -0.70 -0.42 -0.02 

14* 0.60 0.66 0.42 0.65  0.96  -0.06 0.18 -0.05 -0.36 

15 0.83 0.77 0.50 0.76  0.91  0.06 0.33 0.07 -0.08 

16 1.74 1.42 1.53 1.42  1.76  0.32 0.21 0.32 -0.02 

17 1.79 1.53 1.62 1.53  1.71  0.26 0.17 0.26 0.09 

18* 1.01 0.99 0.81 1.00  1.49  0.02 0.20 0.01 -0.48 

19* 0.26 0.29 0.52 0.30  0.62  -0.03 -0.26 -0.04 -0.36 

20 0.54 0.51 0.92 0.51  0.55  0.03 -0.38 0.03 -0.01 

21 0.65 0.55 0.98 0.56  0.63  0.10 -0.33 0.09 0.02 

22 2.37 2.25 2.82 2.28  2.21  0.12 -0.45 0.09 0.16 

23 1.61 1.90 1.56 1.90  1.82  -0.29 0.05 -0.29 -0.21 

24 2.60 2.56 2.45 2.53  2.64  0.04 0.15 0.07 -0.04 

*Test set; Exp.: Experimental. 
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Figure 3. Graph of actual versus predicted activities for training and test 
set molecules by PLSR method 

 

Figure 4. Graph of actual versus predicted activities for training and test 
set molecules by MIFs analysis 

 

Figure 5. The most active compound, 6 used as a template for alignment 
of data set 

 

Figure 6. The atom-based alignment of the superimposed structure of all 
compounds used in the 3D-QSAR (MIFs) analysis 

4.2. 3D-QSAR Analysis 
To develop an effective 3D-QSAR model some 

parameters such as squared correlation coefficient (R2), 
cross-validated correlation coefficient (Q2), standard 
deviation (s) and F-statistic values have been taken under 
consideration. The squared correlation coefficient (R2) and 
standard deviation (s) were carried out first for 3D-QSAR 
model. Then the number of components identified during 
the squared correlation coefficient (R2) determination was 
used in the cross-validated PLS run. The optimal number 
of components was determined by selecting highest Q2 
value. A data set of 24 halogen containing hydroxy and 
amino substituted aromatic compounds was divided into a 
training set of 18 compounds for developing the MIFs 
model, and a test set of 6 compounds for evaluating the 
predictive ability of the model. The leave-one-out cross-
validated PLS analysis gave a Q2 of 0.668, using five PLS 
components (LVs), and the non-cross-validated PLS 
analysis yields a higher R2 of 0.979 with a low standard 
deviation (s) of 0.097 and high F-value of 111.639. The 
model was externally validated by high R2

pred of 0.795 
with the low standard error of prediction (SDEP) of 0.304 
for the test set. Both steric and electrostatic fields at 2.0Å 
3D grid spacing were used to construct the model and the 
contributions of steric and electrostatic fields in the model 
were 56.4% and 43.6% respectively. The experimental 
and calculated activities (logLC50) using the best 3D-
QSAR MIFs model for training and test (indicated by * 
marks) set are shown in Table 7. Figure 4 showed a plot of 
observed versus calculated activity of training and test set 
molecules through MIFs analysis [63]. So the derived 
model was satisfactory with respect to high statistical 
results and predictive ability. Our present studies have 
established that the model derived through MIFs studies is 
quite reliable and significant. We have investigated that 
the MIFs analysis at 2.0Å 3D grid spacing by 
Open3DQSAR tools has presented an excellent statistical 
results in terms of Q2 and R2 values for halogen containing 
hydroxy and amino substituted aromatic compounds 
analogues and showed a high degree of agreement with 
the experimental values. 



 World Journal of Organic Chemistry 25 

 

 

Figure 7. Optimal number of principal components (PCs) used in PCR 
for 2D-QSAR analysis 

 

Figure 8. Optimal number of Latent variables (LVs) used in PLSR for 
2D-QSAR analysis 

5. Conclusion 
The brine shrimp lethality bioassay is considered as a 

useful tool for rapid and preliminary assessment of 
toxicity of the compounds. Further studies are required to 
determine the more accurate bioactivity and, to find the 
mode of pharmacological activities. Significant regression 
equations were obtained by MLR, PCR, PLSR and MIFs 
methods with respect to their experimental cytotoxic 
activities. The best regression equation was obtained on 
the following descriptors: partial positive surface area 
(PPSA1), potential energy (EIP), lowest unoccupied 
molecular orbital energy (ELUMO) and partition coefficient 
by atom-additive method (XlogP). These variables 
allowed physical explanation of electronic molecular 
properties contributing to the cytotoxic activity as the 
electronic character relates directly to the electron 
distribution of interacting molecules. The predicted 
biological activities by MLR, PCR, PLSR and MIFs 
showed a very good agreement with experimental values 
but the activities obtained by MIFs analysis were 
relatively better among them. The LOO cross-validation 

indicates that the model is significant, robust and has a 
good predictive ability. 
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