
Cracking Credit Card Number Tokenization

Li-Hsiang Kuo
University of Wisconsin-Madison

lorderic@cs.wisc.edu

Abstract

As the popularity of online shopping grows, online pay-
ment security becomes an important issue. There are
third-party service providers who aim to handle sensi-
tive personal data for the merchants. Tokenization is one
of the commonly use technology. The service providers
take care of sensitive cardholder information, while to-
kens are stored in the merchants storage. In this paper we
point out the weaknesses in tokenization nowaday, both
in standard and in implementation. We study the stan-
dards defined by payment card industry. We study the to-
ken system of an online payment service provider called
Sage Pay. From weak standard and flawed token system
implementation, we provide a possible attack that can re-
trieve credit card number by its token, which breaks the
goal of tokenization. We conclude that the payment card
industry should strengthen their standards and the secure
payment service providers also should avoid flawed im-
plementation.

1 Introduction

As the popularity of online shopping grows, online
payment security becomes an important issue. Millions
of credit card numbers are stored and sent on the
internet everyday. However, it leads to a great danger if
these sensitive data are keep or transmitted insecurely.
Malicious ones might break into a merchants server
and obtain thousands of credit card numbers as well
as corresponding information, e.g. cardholders name,
expiry date, card verification value, etc. The payment
card industries (PCI) foreseen this problem. They setup
a standard called PCI Data Security Standards (PCI
DSS) [1], which provides a framework for developing
a robust payment card data security process. All en-
tities involved in payment card processing, including
merchants, processors, acquirers, issuers, and service
providers, are asked to meet the standard. This increases

the security of payment card transactions.

However, it is quite expensive for each merchant to
maintain a PCI DSS compliance server. It is also risky if
the server has security flaws. Therefore, new enterprises
arise. They provide services for secure online payment
gateway, which meets the requirement of PCI DSS.
Instead of building its own secure server, the merchants
rely on these service providers. The online transaction
goes this way: While a customer shops online, the
service provider deals with sensitive personal data.
Instead of the payment card number, a token is generated
by service provider and returned to the merchant for
further transaction. Tokens are stored in the merchants
system while the actual cardholder data are stored in a
secure token storage system.

One should not be able to compute the actual payment
card number by its token. However, we figure out that
the standard does not meet the security level. Whats
more, bad implementation in tokenization might also be
harmful. In this paper we will point out these weak-
nesses. In section 2 we give a brief overview of tok-
enization standards. We focus on Visa best practices for
tokenization[2] and discuss its vulnerability. Section 3
provides a case study of a secure online payment ser-
vice provider called Sage Pay[3]. We indicate its proto-
col flaws and try to mount a possible attack. We discuss
some related work in section 4, and this paper is con-
cluded in section 5.

2 Tokenization Standard

2.1 PCI DSS
Payment Card Industry Data Security Standard (PCI
DSS) [1] is a standard for entities that handle payment
card information. It is defined by the Payment Card In-
dustry Security Standards Council. The current version



of the standard is version 2.0, released on 26 October
2010. The standard specifies 12 requirements for com-
pliance. Specifically, requirement #3 defines protecting
stored cardholders data. The main idea is that primary
account number (e.g. credit card number) should be un-
readable in the storage. It could only be stored in the
following approaches:

• One-way hashes based on strong cryptography

• Truncation

• Index tokens and pads

• Strong cryptography with associated key manage-
ment processes and procedures

Requirement #4 defines encrypting transmission of
cardholders data across open, public networks. It
is required to use strong cryptography and security
protocols (e.g. SSL/TLS, IPSEC, SSH) to safeguard
sensitive cardholder data during transmission over public
networks.

PCI DSS does not specify the security level on crypto-
graphic systems. However, the payment card industries
do have some practice on protecting cardholders data.
The following section gives what Visa recommends for
tokenization.

2.2 Visa Best Practices For Tokenization
Visa best practices for tokenization [2] version 1.0 is re-
leased on 14 July 2010. Two token generation methods
are recommended:

• A known strong cryptographic algorithm

• A one-way irreversible function

Also tokens can be generated as a single- or multi-use
value, the choice of which depends on business pro-
cesses. For single-use token, it recommends hashing of
the primary account number with a transaction-unique
salt value using a unique sequence number, or encrypting
with an ISO- or ANSI-approved encryption algorithm
using a transaction-unique key. For multi-use token, it
recommends hashing of the data using a fixed but unique
salt value per merchant.

If a hash function is used to generate a token, the salt
value should have minimum length of 64 bits. If an en-
cryption algorithm is used, the minimum key length is
defines as following:

• Two-key TDES: 112 bit

• AES: 128 bit

• RSA: 2048 bit

• ECC: 224 bit

• SHA: 224 bit

Moreover, while the number of transactions is more than
1 million, two-key TDES is not suitable. Instead, three-
key TDES or AES is suggested.

2.3 Vulnerability
Since hash function is deterministic, in order to avoid
dictionary attacks, a salt should be added to increase se-
curity. But for multi-use token, VISA recommends using
the same salt per merchant. Re-use the same salt does
not improve any computational complexity. If the salt for
a merchant has been discovered, it is feasible to compute
any payment card number by its hash value using dic-
tionary attack. We will discuss more detail in section 3.3.

Second, a 64-bit salt might not be sufficient. NIST
recommended a minimum security strength in 2010 is
80 bits [4]. ECRYPT II also comments 64 bit security
should not be used for confidentially in new systems [5].
Since the computation power increases rapidly, it is pos-
sible that in a few years 64-bit security can be attacked
in real-time by highly parallel systems.

3 Case Study

3.1 Sage Pay
Sage Pay [3] is a online payment service provider in
United Kingdom. They deal with thousands of busi-
nesses by supporting online payment gateway that is PCI
DSS compliance. They also provide token system for
online merchants. Everyone can sign up on their website
and download the development kit. Their protocol im-
plementation documents are also available online. From
these resource we discuss their token system protocol in
the following.

3.2 Sage Pay Token System Protocol
Here is the step-by-step process of token registration in
Sage Pay system.

1. While Shopper visit Merchants website, Shopper
selects some product and checks out.

2. Merchant makes a HTTP POST to Sage Pay server,
which includes information such as Merchant ID,
type = TOKEN and a NotificationURL in either http
or https header.

2



3. Sage Pay checks the message. If the message is ver-
ified, sends back an HTTP response to Merchant
with status = OK, a key to generate further signa-
ture, and a NextURL which Merchant must redirect
Customer to enter card details.

4. Customer is redirected to NextURL and enter sen-
sitive personal information.

5. Sage Pay validates the entry of these data. If the data
are valid, then Sage Pay will store the card number,
expiry date, card verification value and generate a
token.

6. Sage Pay sends a Notification POST to Notifica-
tionURL. Message includes status = OK, token,
card type, last 4 digits, expiry date, and a signature
of the message using the key in step 3.

7. Merchant replies with a RedirectURL.

8. Sage Pay redirects Customer to the RedirectURL.

When Customer makes a payment in the future, Mer-
chant fetches the token in database and sends to Sage
Pay. Sage pay will retrieve the card information corre-
sponding to the token and continue the transaction with
Merchants bank. We omit the step-by-step token using
process here.

3.3 Possible Attack
Observe that a NotificationURL provided by Merchant
can be either http or https. Which means the message
including token, payment card type, last 4 digit of
card number, expiry date could be all sent in plaintext.
Although Sage Pay do not specify what mechanism
they are using to generate a token, its possible that they
follow VISA best practices for tokenization, i.e. hashing
the data using a fixed salt value per merchant.

Hence an attacker can work this way: He registers his
card information on Merchants website. By listening
to the traffic of Merchant, he is able to get the token
generated by Sage Pay. Once he has the payment card
number, the hash function Sage Pay is using, and token
generated by hashing with a Merchant unique salt, he
can exhausted search for the 64-bit salt value using
highly parallel system. It might take months or even
years for now, but its possible be done in days in a near
future.

After the Merchant unique salt is found, the attacker
can crack any token for Merchant. A credit card number
is in between 15-16 numerical digits. Last 4 digit could
be known by Notification message, first 1-2 digits could

be know by payment card type, and 1 digit is determined
by checksum. That leads to less than 10 digits computing
complexity, approximate 32 bits security. It can be easily
cracked in real-time. [5]

4 Related Work

4.1 Breaking Point-of-Service Device
Murdoch et al. [6] found a vulnerability in the EMV
point-of-service (POS) devices. They mount a man-in-
the-middle attack between POS device and EMV card.
The attacker tells the POS device that the PIN entered is
correct, while on the other hand the attacker tells the card
that the POS device does not have PIN verification. Since
EMV support offline transaction, i.e. it is not connected
to card issuer so that the transaction is not verified at the
time payment happens, the attacker can cheat both POS
device and the card and shop for free.

4.2 Breaking Protocol
Wang et al. [7] found that theres inconsistencies be-
tween the states of the online cashier service provider
and the merchant. They present several attacks against
real-world merchant applications, online stores and on-
line cashier service provider. The result shows that by ex-
ploit these flaws an attacker can either purchase an item
at a lower price, shop for free after paying for one item
and even avoid payment.

5 Conclusion

In this paper we gave a brief overview of current stan-
dards for payment card industry. We discussed the vul-
nerability of Visa best practices of tokenization. We stud-
ied a real-world token system and pointed out its weak-
ness. At the end we constructed a possible attack against
this system. Our result showed that from weak standard
and flawed token system, it is possible to crack one credit
card token in months, afterwards break the rest in real-
time. The payment card industry should strengthen their
standards and the secure payment service providers also
should avoid flawed implementation.

References

[1] PCI Security Standards Council. Payment card in-
dustry data security standards.

[2] VISA. Visa best practices for tokenization.

[3] Sage Pay. Sage pay. http://www.sagepay.com.

[4] NIST. Nist special publication 800-131a.

3



[5] ECRYPT II. Ecrypt ii yearly report on algorithms
and keysizes, 2009-2010.

[6] Steven Murdoch, Saar Drimer, Rose Anderson, and
Mike Bond. Chip and pin is broken. In IEEE Sym-
posium on Security and Privacy, 2010.

[7] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz
Qadeer. How to shop for free online. In IEEE Sym-
posium on Security and Privacy, 2011.

4


