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Abstract

Widely used in many industrial applications, the induction motors represent the starting point when

an electrical drive system has to be designed. In modern control theory, the induction motor is
described by different mathematical models, according to the employed control method. In the

symmetrical three-phase version or in the unsymmetrical two-phase version, this electrical motor
type can be associated with vector control strategy. Through this control method, the induction
motor operation can be analysed in a similar way to a DC motor. The goal of this research is to

summarize the existing models and to develop new models, in order to obtain a unified approach on
modelling of the induction machines for vector control purposes. Starting from vector control

principles, the work suggests the d-q axes unified approach for all types of the induction motors.
However, the space vector analysis is presented as a strong tool in modelling of the symmetrical
induction machines. When an electrical motor is viewed as a mathematical system, with inputs and

outputs, it can be analysed and described in multiple ways, considering different reference frames
and state-space variables. All the mathematical possible models are illustrated in this report. The
suggestions for what model is suitable for what application, are defined as well. As the practical

implementation of the vector control strategies require digital signal processors (DSP), from the
continuos time domain models are derived the discrete time domain models. The discrete models

permit the implementation of the mathematical model of the induction motors, in order to obtain
high efficiency sensorless drives. The stability of these various models is analysed.
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List of principal symbols:

Scalar variables are denoted by plane letters. Vector variables are denoted by underlined letters.

Boldface symbols are used for matrix variables.

, , , , ,A B C D E F state-space coefficient matrix

ija coefficients for state-space variables

mB viscous friction coefficient

H relative inertia constant
H transfer function matrix

(a,b,c)sI instantaneous stator phase current for the three-phase induction machine

(a,b,c)rI instantaneous rotor phase current for the three-phase induction machine

(d,q)sIɶ complex stator phase currents in d-q co-ordinates for steady-state analysis

(a,b)sIɶ complex stator phase currents in physical co-ordinates for steady-state

analysis

(d,q)rIɶ complex rotor phase currents in d-q co-ordinates for steady-state analysis

(a,b)rIɶ complex rotor phase currents in physical co-ordinates for steady-state

analysis

sI stator current space vector

rI rotor current space vector

(a,b,c)si instantaneous stator phase currents for the three-phase induction machine

(a,b,c)ri instantaneous rotor phase currents for the three-phase induction machine

(a,b)si instantaneous stator phase currents for the single-phase induction machine

(a,b)ri instantaneous rotor phase currents for the single-phase induction machine

(A,B,C)si phase currents for a three-phase system

(X,Y)si phase currents for an orthogonal two-phase system

(d,q)si instantaneous stator phase currents in d-q co-ordinates

(d,q)r'i instantaneous referred rotor phase currents in d-q co-ordinates

(d,q)R'i Γ models instantaneous referred rotor phase currents in d-q co-ordinates

s( , )R Ii stator phase currents in complex co-ordinates and per unit system

r ( , )' R Ii rotor phase currents in complex co-ordinates and per unit system

si stator current space vector in per unit system

r'i referred rotor current space vector in per unit system

J inertia constant
j complex operator

p,iK proportional, respectively integrative constant for PI controllers
s,r

s,rK transformation matrix from abc co-ordinates to d-q co-ordinates

k turns ratio for the unsymmetrical single-phase machine

(a,b,c)(s,r)L self-inductance for stator phase, respectively rotor
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l(s,r)L leakage inductance for symmetrical stator phase, respectively rotor

l(m,a)L leakage inductance for unsymmetrical stator phase: main, respectively

auxiliary

Ml magnetisation inductance in per unit system

sl total stator inductance in per unit system

r'l total rotor inductance in per unit system

(a,b,c),(s,r)M mutual inductance for stator phase, respectively rotor

s,rN turns number for stator phase, respectively rotor

P number of poles
p derivative operator

sR per unit stator phase resistance for the three-phase induction machine

sr stator phase resistance for the symmetrical induction machine

mr main stator phase resistance for the unsymmetrical single-phase machine

ar auxiliary stator phase resistance for the unsymmetrical single-phase machine

rr rotor phase resistance for the symmetrical induction machine

r'r referred rotor phase resistance for the symmetrical induction machine

s Laplace operator

ms critical slip for the induction machine

T sampling period

eT instantaneous electromagnetic torque

LT load torque

t time

(a,b,c)sU instantaneous stator phase voltage for the three-phase induction machine

(a,b,c)rU instantaneous rotor phase voltage for the three-phase induction machine

s ( , )R IU stator phase voltage in complex co-ordinates and per unit system

°
(d,q)sU complex stator phase voltages in d-q co-ordinates for steady-state analysis

°
(a,b)sU complex stator phase voltages in physical co-ordinates for steady-state

analysis

sU stator voltage space vector

rU rotor voltage space vector

(d,q)su instantaneous stator phase voltages in d-q co-ordinates

(d,q)r'u instantaneous rotor phase voltages in d-q co-ordinates

su stator voltage space vector in per unit system

r'u referred rotor voltage space vector in per unit system

cW magnetic coenergy

bX base variable value for per unit system

x space vector variable

mx magnetisation reactance

lsx stator phase leakage reactance for the symmetrical induction machine
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l(m,a)x stator phase leakage reactance for the unsymmetrical induction machine:

main, respectively auxiliary

lr'x rotor leakage reactance

Lx Γ models equivalent leakage reactance for symmetrical induction machine

L(d,q)x Γ models equivalent leakage reactance for unsymmetrical induction machine

Mx Γ models equivalent magnetisation reactance for symmetrical induction

machine

M(d,q)x Γ models equivalent magnetisation reactance for unsymmetrical induction

machine
z discrete co-ordinate

α space vector operator

γ Γ models turns ratio for symmetrical induction machine

(d,q)γ Γ models turns ratio for unsymmetrical induction machine

,R I∆ real, respectively imaginary component of a matrix determinant

(d,q)sψ stator flux linkage in d-q co-ordinates and per unit system

(d,q)mψ magnetisating flux linkage in d-q co-ordinates and per unit system

(d,q)rψ rotor flux linkage in d-q co-ordinates and per unit system

s( , )R Iψ stator flux linkage in complex co-ordinates and per unit system

r( , )' R Iψ rotor flux linkage in complex co-ordinates and per unit system

(d,q)sλ stator flux linkage in d-q co-ordinates and flux linkage units per second.

(a,b,c)sλ stator flux linkage fluxes in abs or ab co-ordinates

(d,q)r'λ referred rotor linkage fluxes in d-q co-ordinates and flux linkage units per

second

(d,q)R'λ Γ models referred rotor linkage fluxes in d-q co-ordinates and flux linkage

units per second

(a,b,c)rλ rotor flux linkage in abs or ab co-ordinates

r'λ referred rotor flux linkage space vector for three-phase induction machine

sλ stator flux linkage space vector for three-phase induction machine

γλ arbitrarily flux linkage space vector for three-phase induction machine

mℜ magnetic reluctance

s,rσ leakage factor for stator phase, respectively rotor phase

rθ periferical displacement between stator and rotor space vectors

kθ periferical displacement between stator and arbitrary space vectors

Ω relative angular frequency in per unit system
ω angular frequency of the supply system

bω base angular frequency of the supply system

nω rated angular frequency of the induction machine in electrical degrees

rω rotor angular frequency in electrical degrees
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1. VECTOR CONTROL OF INDUCTION MOTORS - OVERVIEW

1.1.Introduction

The electrical DC drive systems are still used in a wide range of industrial applications,
although they are less reliable than the AC drives. Their advantage consists in simple and precise
command and control structures.

The AC drives, sometimes more expensive but far more reliable, (Rajashekara et al. 1996)
require complex modern control techniques. The design of a control system is realised in two

important steps:
1. The drive system has to be converted into a mathematical model, in order to accomplish the

analysis and the evaluation of the system.

2. The imposed response of the drive system is obtained through an optimal regulator, when
external perturbations are present.

The induction motors are relatively cheap and rugged machines because their construction is
realised without slip rings or commutators. These advantages have determined an important
development of the electrical drives, with induction machine as the execution element, for all

related aspects: starting, braking, speed reversal, speed change, etc. The dynamic operation of the
induction machine drive system has an important role on the overall performance of the system of

which it is a part.
There are two fundamental directions for the induction motor control:

• Analogue: direct measurement of the machine parameters (mainly the rotor speed), which are

compared to the reference signals through closed control loops;
• Digital: estimation of the machine parameters in the sensorless control schemes (without

measuring the rotor speed), with the following implementation methodologies:
• Slip frequency calculation method;

• Speed estimation using state equation;

• Estimation based on slot space harmonic voltages;

• Flux estimation and flux vector control;

• Direct control of torque and flux;

• Observer-based speed sensorless control;

• Model reference adaptive systems;

• Kalman filtering techniques;

• Sensorless control with parameter adaptation;

• Neural network based sensorless control;

• Fuzzy-logic based sensorless control.

Another classification of the control techniques for the induction machine is made by Holtz

(1998) from the point of view of the controlled signal:
a) Scalar control:
a.1 Voltage/frequency (or v/f) control;

a.2 Stator current control and slip frequency control. These techniques are mainly implemented
through direct measurement of the machine parameters.

b) Vector control:
b.1 Field orientation control (FOC): b.1.1. Indirect method; b.1.2. Direct method;
b.2 Direct torque and stator flux vector control. These techniques are realised both in analogue

version (direct measurements) and digital version (estimation techniques)
The development of accurate system models is fundamental to each stage in the design, analysis

and control of all electrical machines. The level of precision required of these models depends
entirely on the design stage under consideration. In particular, the mathematical description used in
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machine design requires very fine tolerance levels as stated by Nabae et al. (1980) and Murata et al
(1990). However, in the development of suitable models for control purposes, it is possible to make

certain assumptions that considerably simplify the resulting machine model. Nonetheless, these
models must incorporate the essential elements of both the electromagnetic and the mechanical

systems for both steady state and transient operating conditions (Nowotny and Lipo - 1996).
Additionally, since modern electric machines are invariably fed from switching power conversion
stages, the developed motor models should be valid for arbitrary applied voltage and current

waveforms. This work presents suitable models for use in digital current control of the induction
motors. In addition, the limits of the validity of these models are summarised and, in some cases,

the models are extended to account for some non-idealities of the machine.
Usually, the following assumptions are made (Lorenz et al. 1994):

• No magnetic saturation, i.e. machine inductance is not affected by current level.

• No saliency effects i.e. machine inductance are not functions of position.

• Negligible spatial mmf harmonics i.e. stator windings are arranged to produce sinusoidal mmf

distributions.

• The effects of the stator slots may be neglected.

• There is no fringing of the magnetic circuit.

• The magnetic field intensity is constant and radially directed across the air-gap.

• Eddy current and hysteresis effects are negligible.

The modern control theory for an electrical drive system requires the existence of a real-time,
stabile, and precise mathematical model for each component of the system. The analysis and the
design of the numerical command for such systems depend on the hardware and software resources.

If in communication techniques the real-time response of the system is not always compulsory, in
industrial processes the real-time response of the drive systems is essential.

The soft numerical command for the electrical drive systems is far more flexible to implement
than the hardware version. For the latter, lately there is an intense research effort for implementing
ASIC (application specific integrated circuit). The numerical command of the electrical drive

systems is a challenging task mainly due to the DSP (digital signal processing) technology. Now it
is possible to realise linear and non-linear techniques for implementing continuos and discrete

mathematical models of the entire element of an electrical drive system, including the electrical
machine (Xu and Nowotny - 1990, 1992).

For the AC drives there are several solutions for implementing the command and the control of

the system. A quick summary of the existing technologies already out there in the field is given
below:

DC Drives
Initially the DC drives were used for variable speed control because they could easily achieve a

good torque and speed response with high accuracy. Field orientation of the motor is achieved using

a mechanical commutator with brushes. In DC, torque is controlled using the armature current and
field current. The main drawback of this technique is the reduced reliability of the DC motor - the

fact that brushes and commutators wear down and need regular servicing; that DC motors can be
costly to purchase; and that they require encoders for positional feedback.
AC Drives

The evolution of AC variable speed drive technology has been partly driven by the desire to
emulate the performance of the DC drive, such as fast torque response and speed accuracy, while

using robust, cheap to purchase and relatively maintenance-free AC motors (Kelemen and Imecs -
1987).
AC Drives, frequency controlled using PWM

With this technique, sometimes known as scalar control, the field orientation of the motor is not
used. Instead, the frequency and the voltage are the main control variables and are applied to the
stator windings. The status of the rotor is ignored, meaning that no speed or position signal is fed
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back. The drive is therefore regarded as an open-loop drive. This type of drive is suitable for
applications such as pumps and fans, which do not require high levels of accuracy or precision.

AC Drives, flux vector control using PWM
Here, field orientation is achieved by mathematical modelling using microprocessors and

feedback of rotor speed and angular position relative to the stator field by means of an encoder (Vas
- 1990). This results in a drive with greater stability and capable of fast torque response and
accurate speed control. But the drawback is the need for the encoder, which reduces drive system

reliability and adds cost. The controlling variables in a DC drive for torque are armature current and
field current, and armature voltage for torque. AC drives using the PWM principle; however, use

voltage and frequency as the controlling variables and these are controlled by a device called a
modulator. A modulator adds considerable delay in the responsiveness of a motor to changes in
torque and speed. Furthermore, with flux vector AC drives, a tacho-generator or position encoder is

invariably needed to obtain any real degree of accuracy. Such devices are costly and compromise
the simplicity of the AC induction motor.

AC Drives, sensorless flux vector
The flux vector controlled drive with encoder feedback does offer very high levels of

performance across a wide power range and should not be confused with sensorless vector - or open

loop vector - drives, which offer performance only slightly superior to that of a standard inverter
using scalar control (Rajashekara et al. - 1996).

1.2.Algorithm of vector control

The induction motors are very common because they are inexpensive and robust, finding use in
everything from industrial applications such as pumps, fans, and blowers to home appliances.
Traditionally, induction motors have been run at a single speed, which was determined by the

frequency of the main voltage and the number of poles in the motor. Controlling the speed of an
induction motor is far more difficult than controlling the speed of a DC motor since there is no

linear relationship between the motor current and the resulting torque as there is for a DC motor.
The technique called vector control can be used to vary the speed of an induction motor over a

wide range. It was initially developed by Blaschke (1971-1973). In the vector control scheme, a

complex current is synthesised from two quadrature components, one of which is responsible for
the flux level in the motor, and another which controls the torque production in the motor.

Essentially, the control problem is reformulated to resemble the control of a DC motor. Vector
control offers a number of benefits including speed control over a wide range, precise speed
regulation, fast dynamic response, and operation above base speed.

The vector control algorithm is based on two fundamental ideas. The first is the flux and torque
producing currents. An induction motor can be modelled most simply (and controlled most simply)

using two quadrature currents rather than the familiar three phase currents actually applied to the
motor. These two currents called direct (Id) and quadrature (Iq) are responsible for producing flux
and torque respectively in the motor. By definition, the Iq current is in phase with the stator flux,

and Id is at right angles. Of course, the actual voltages applied to the motor and the resulting
currents are in the familiar three-phase system. The move between a stationary reference frame and

a reference frame, which is rotating synchronous with the stator flux, becomes then the problem.
This leads to the second fundamental idea behind vector control.

The second fundamental idea is that of reference frames. The idea of a reference frame is to

transform a quantity that is sinusoidal in one reference frame, to a constant value in a reference
frame, which is rotating at the same frequency. Once a sinusoidal quantity is transformed to a

constant value by careful choice of reference frame, it becomes possible to control that quantity
with traditional proportional integral (PI) controllers.
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Vector transforms
The Park and Clarke vector transforms are one of the keys to vector control of induction motors.

I) Clarke transform
The forward Clarke (1943) transform does a magnitude invariant translation from a three phase

system into two orthogonal components. If the neutral - ground connection is neglected, the
variables in a three-phase system (A, B, and C) sum is equal to zero, and there is a redundant
information. Therefore, the system can be reduced to two variables, called X and Y. The Clarke

transform is given by:

As

Xs

Bs

Ys

Cs

( )
( ) 1 cos( ) cos(2 )2

( )
( ) 0 sin( ) sin(2 )3

( )

i t
i t

i t
i t

i t

γ γ

γ γ

 
     = ⋅ ⋅          

                                                                               (1)

where:

2

3

π
γ =

Using the relation:

As Bs Cs( ) ( ) ( ) 0i t i t i t+ + =                                                                                                                 (2)

and the fact that:
2 4 1

cos c o s
3 3 2

π π   = = −   
   

                                                                                                           (3)

Thus, the Clarke transform can be simplified to:

( )

As

X s

As CsB s

( )
( )

1
( ) ( )( )

3

i t
i t

i t i ti t

 
   =   ⋅ −    

                                                                                                    (4)

The Clarke transform can also be understood using a vector diagram as shown in Fig. 1.1. In the
figure, A, B, and C are the axes of a three phase system, each offset 120° from the other. X and Y

are the axes of a two variable system where X is chosen to be coincident with A. To perform the
Clarke transform of a three variable system (iA, iB, iC), iX is equal to iA and iY is the scaled
projection of iB and iC onto the Y axis. The scaling is necessary to preserve the signal magnitudes

through the transform.

B
Y

i

C

A, X

0
i

X

i
B

i
C

i
Y

s

i
A

=

Fig. 1.1. Clarke Transform Vector Diagram

The Clarke transform preserves the magnitude, and realise a quadrature between the current

components.
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II) Park transform
The Park (1929) transform is a vector rotation, which rotates a vector (defined by its quadrature

components) through a specified angle. The Park transform function implements the following set
of equations:

x x

y y

Out ( ) In ( )cos( ) sin( )

Out ( ) In ( )sin( ) cos( )

t t

t t

θ θ

θ θ

  −   
= ⋅    

    
                                                                                    (5)

where θ is the angle to rotate the vector through. A reverse vector rotation can be accomplished

simply by changing the sign on the sin (θ) input value. The vector rotation is illustrated by Fig. 1.2.

Some references (Vas -1990, Nowotny and Lipo - 1996) describe the Park transform as a
combination of the Clark and Park transforms presented here. Breaking into a three-variable-to-two
transform (i.e. the Clarke transform) and a vector rotation is done for efficiency of calculation: with

separate Park and Clarke transforms, only two trigonometric calculations are required as opposed to
6 in the traditional Park transform.

Q
Y

i

D

X

0
i

X

i
Q i

D

i
Y

θ

s

Fig.1.2. Park transform vector diagram

1. 3. Field orientation control (FOC)

Vector control techniques have made possible the application of induction motors for high-

performance applications where traditionally only DC drives were applied (Holtz - 1995). The
vector control scheme enables the control of the induction motor in the same way as separately

excitation DC motors. As in the DC motor, torque control of induction motor is achieved by
controlling the torque current component and flux current component independently. The basic
schemes of indirect and direct methods of vector control are shown in Figs. 1.3 –1.5. The direct

vector control method depends on the generation of unit vector signals from the stator or air-gap
flux signals. The air-gap signals can be measured directly or estimated from the stator voltage and

current signals. The stator flux components can be directly computed from stator quantities. In these
systems, rotor speed is not required for obtaining rotor field angle information. In the indirect vector
control method, the rotor field angle and thus the unit vectors are indirectly obtained by summation

of the rotor speed and slip frequency.

Flux

Stator
θ
s

Fig. 1.3. Position of the rotor flux vector



14

FOC Inverter IM

Speed

sensor

Slip frequency

calculation

Flux
command

Torque
command

+ +

Voltage Current

ωω
rsr

1

s

θ
s

Fig. 1.4. Indirect vector control method

Flux

command

Torque

command

FOC Inverter

Voltage

Current
IM

Speed
sensor

Flux vector
measurement
or estimation

θ
s

Fig. 1.5. Direct vector control method

Fundamental requirements for the FOC are the knowledge of two currents (if the induction
motor is star connected) and the rotor flux position. Knowledge of the rotor flux position is the core
of the FOC. In fact if there is an error in this variable the rotor flux is not aligned with d-axis and

the current components are incorrectly estimated. In the induction machine the rotor speed is not
equal to the rotor flux speed (there is a slip speed; as such, a special method to calculate the rotor

flux position (angle) is needed. The basic method is the use of the current model.
Thanks to FOC it becomes possible to control, directly and separately, the torque and flux of the

induction motors. Field oriented controlled induction machines obtain every DC machine

advantage: instantaneous control of the separate quantities allowing accurate transient and steady-
state management.

1. 4. Direct torque control

The most modern technique is direct torque and stator flux vector control method (DTC). It has
been realised in an industrial way by ABB, by using the theoretical background proposed by
Blashke and Depenbrock during 1971-1985. This solution is based both on field oriented control

(FOC) as well as on the direct self-control theory.
Starting with a few basics in a variable speed drive the basic function is to control the flow of

energy from the mains to a process via the shaft of a motor. Two physical quantities describe the
state of the shaft: torque and speed. Controlling the flow of energy depends on controlling these
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quantities. In practice either one of them is controlled and we speak of "torque control" or "speed
control". When a variable speed drive operates in torque control mode the speed is determined by

the load. Torque is a function of the actual current and actual flux in the machine. Likewise when
operated in speed control the torque is determined by the load.

Variable speed drives are used in all industries to control precisely the speed of electric motors
driving loads ranging from pumps and fans to complex drives on paper machines rolling mills
cranes and similar drives.

The idea is that motor flux and torque are used as primary control variables which is contrary to
the way in which traditional AC drives control input frequency and voltage, but is in principle

similar to what is done with a DC drive, where it is much more straightforward to achieve. In
contrast, traditional PWM and flux vector drives use output voltage and output frequency as the
primary control variables but these need to be pulse width modulated before being applied to the

motor. This modulator stage adds to the signal processing time and therefore limits the level of
torque and speed response time possible from the PWM drive.

In contrast, by controlling motor torque directly, DTC provides dynamic speed accuracy
equivalent to closed loop AC and DC systems and torque response times that are 10 times faster. It
is also claimed that the DTC does not generate noise like that produced by conventional PWM AC

drives. And the wider spectrum of noise means that amplitudes are lower which helps to control
EMI and RFI emissions. The basic structure of direct torque and stator flux vector control is

presented in Fig. 1.6.

Flux

command

Torque

command

Flux

controller

Torque

controller

Voltage

vector

selection

Inverter

Voltage

Current

IM

Speed

sensor

Flux vector

measurement

or estimation

Fig. 1.6. Basic structure of direct torque and flux vector control

In DTC field orientation is achieved without feedback using advanced motor theory to calculate

the motor torque directly and stator flux without using a modulator or a requirement for a
tachogenerator or position encoder to feed back the speed or position of the motor shaft. Both

parameters are obtained instead from the motor itself. DTC's configuration also relies on two key
developments - the latest high-speed signal processing technology and a highly advanced motor
model precisely simulating the actual motor within the controller. A DSP (digital signal processor)

is used together with ASIC hardware to determine the switching logic of the inverter.
The motor model is programmed with information about the motor, which enables it to

determine parameters including stator resistance, mutual inductance saturation coefficients and
motor inertia. The model also encompasses temperature compensation, which is essential for good
static speed accuracy without encoder.
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In normal operation, measurements of the two motor phase currents and the drive DC link
voltage, together with information about the switching state of the inverter are fed into the motor

model . The motor model then outputs control signals, which are accurate estimates of the actual
motor torque and actual stator flux. All control signals are transmitted via optical links for high

speed. In this way, the semiconductor switching devices of the inverter are supplied with an
optimum switching pattern for reaching or maintaining an accurate motor torque.

Also, both shaft speed and electrical frequency are calculated within the motor model. There is

no need to feedback any shaft speed or position with tachometers or encoders to meet the demands
of 95% of industrial applications. However, there will always be some special applications where

even greater speed accuracy will be needed and when the use of an encoder improves the accuracy
of speed control in DTC. But even then, the encoder does not need to be as costly or as accurate as
the one used in traditional flux vector drives, as DTC only has to know the error in speed, not the

rotor position.
The drive will have a torque response time typically better than 5ms. This compares with

response for both flux vector PWM drives and DC drives fitted with encoders. The newer
sensorless flux vector drives now being launched by other drives manufacturers have a torque
response measured in hundreds of milliseconds.

DTC also provides exceptional torque control linearity. For the first time with an open loop AC
drive, torque control can be obtained at low frequencies, including zero speed, where the nominal

torque step can be increased in less than 1ms. The dynamic speed accuracy of DTC drives is better
than any open loop AC drives and comparable to DC drives, which use feedback.

DTC brings other special functions, not previously available with AC drives, including

automatic starting in all motor electromagnetic and mechanical states. There is no need for
additional parameter adjustments, such as torque boost or starting mode selection, such as flying
start. DTC control automatically adapts itself to the required condition. In addition, based on exact

and rapid control of the drive intermediate DC link voltage, DTC can withstand sudden load
transients caused by the process, without any overvoltage or overcurrent trip.
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2. CONTINUOUS-TIME DOMAIN LINEAR MODELS OF THE
THREE-PHASE INDUCTION MACHINE

2.1. Introduction

Until the last decades the three-phase induction machine was mainly used in constant speed
drives due to the control system performance,  not to the operating principle of the machine.

Nowadays, this situation is completely changed. With the technical progress in power electronics
and microelectronics, the three-phase induction machine control becomes very flexible and highly
efficient. Since 1983, the year when the digital signal processor (DSP) appeared, the control theory

for this type of machine was permanently improved.
New mathematical models have to be implemented for the three-phase induction machine in

order to analyse its  operation both dynamically and in steady-state.

2.2. Voltage and flux linkage equations

The first mathematical model for the dynamic analysis of the induction machine was based on

the two real axis reference frame, developed initially by Park (1929) for the synchronous machine.
Using the symmetric configuration of the induction machine, Kovacs and Racz (1959) have
elaborated the space complex vector theory, and obtained a model for the steady-state analysis of

the machine. Both theories are used for modelling the three-phase induction machine. The
following assumptions are made when a complete equations system is written to describe the

continuous-time linear model of the induction machine (Krause et al. 1995):
• Geometrical and electrical machine configuration is symmetrical;

• Space harmonics of the stator and rotor magnetic flux are negligible;

• Infinitely permeable iron;

• Stator and rotor windings are sinusoidally distributed in space and replaced by an equivalent

concentrated winding;

• Saliency effects, the slotting effects are neglected;

• Magnetic saturation, anisotropy effect, core loss and skin effect are negligible;

• Windings resistance and reactance do not vary with the temperature;

• Currents and voltages are sinusoidal terms.

• End and fringing effects are neglected

All these assumptions do not alter in a serious way the final result for a wide range of induction

machines.
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Fig. 2.1. The real model of the three-phase induction machine
with three stator windings and three rotor windings

For the machine stator in Fig.2.1 if we choose the stator reference frame, the voltage equations are
as follows:

as
as s as

bs
bs s bs

cs
cs s cs

d
U r I

dt

d
U r I

dt

d
U r I

dt

λ

λ

λ

= +

= +

= +

                                                                                                                       (6-8)

where
a s bs cs, ,U U U  are the instantaneous stator voltages, 

as bs c s, ,I I I  are the instantaneous stator

currents, s as bs csr r r r= = =  is the stator winding resistance and as bs cs, ,λ λ λ are the total magnetic

fluxes for the three stator windings.
The flux-current relations are determined after detailing the total flux of a stator winding. For the

other two windings, there are valid similar relations:

as asas bsas csas aras bras crasλ λ λ λ λ λ λ= + + + + +                                                                                     (9)

where the flux components are:

asasλ  the magnetic flux produced by stator phase current as in the stator phase winding as

bsasλ  the magnetic flux produced by stator phase current bs in the stator phase winding as

csasλ the magnetic flux produced by stator phase current cs in the stator phase winding as

arasλ  the magnetic flux produced by rotor phase current ar in the stator phase winding as

brasλ the magnetic flux produced by rotor phase current br in the stator phase winding as

crasλ the magnetic flux produced by rotor phase current cr in the stator phase winding as

These components are computed with the expressions:

asas as as

bsas bsas bs

csas csas cs

L I

M I

M I

λ

λ

λ

=

=

=

aras aras ar

bras bras br

cras cras cr

M I

M I

M I

λ

λ

λ

=

=

=
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Self-inductance Las has two components, one created by the linkage magnetic flux Lmas and the
second created by the leakage magnetic flux Llas:

lasmasas LLL +=                                                                                                                             (10)

The mutual inductance, which is considered to be equal due to the machine symmetry, can also be
split in two components. However, the leakage flux created component in the mutual inductance

can be neglected. It results that:

asbs bsas ascs csas mas

1

2
M M M M L= = = = −                                                                                        (11)

The mutual inductance within the stator and rotor windings varies with the relative space position

between them. The stator flux created by current from rotor phase ar in stator phase as depend on
the angle value θ:

2 w 2

aras asar mas mas

s w t

1
cos cos

s

w k
M M L L

w k k
θ θ= = ⋅ ⋅ = ⋅ ⋅                                                                     (12)

where kt represents the turn ratio multiplied by the winding factor ratio. In a similar way the

relations for the others mutual inductances can be written:

bras asbr mas

t

cras ascr mas

t

1 2
cos

3

1 4
cos

3

M M L
k

M M L
k

π
θ

π
θ

 = = ⋅ ⋅ + 
 

 = = ⋅ ⋅ + 
 

                                                                                       (13-

14)

Due to the symmetrical configuration of the induction machine, we can deduce the total magnetic
flux for the stator phase winding as expressed as follows:

( )as mas las as mas bs mas cs mas ar

t

mas br mas cr

t t

1 1 1
cos

2 2

1 2 1 4
cos cos

3 3

L L I L I L I L I
k

L I L I
k k

λ θ

π π
θ θ

= + ⋅ − ⋅ − ⋅ + ⋅ +

   ⋅ + + ⋅ +   
   

                                            (15)

For the rotor windings, by using a rotor reference frame, it can be developed a similar equation
system to the stator case:

ar

ar r ar

bar
br r br

cr

r crcr

d
U r I

dt

d
U r I

dt

d
U r I

dt

λ

λ

λ

= +

= +

= +

                                                                                                                 (16-18)

where: ar br cr, ,U U U  are the instantaneous rotor voltages, ar br cr, ,I I I  are the instantaneous rotor

currents, r ar br crr r r r= = =  is the rotor winding resistance and ar br cr, ,λ λ λ are the total magnetic

fluxes for the three rotor windings.
The total rotor magnetic flux for the winding ar is described by:

ar arar brar crar asar bsar csar

ar ar brar br crar cr asar as bsar bs csar csL I M I M I M I M I M I

λ λ λ λ λ λ λ= + + + + + =

= + + + + +
                                                       (19)

In this case the mutual inductance is:
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brar arbr mar

crar arcr mar

1

2

1

2

M M L

M M L

= = −

= = −

                                                                                                          (20-21)

asar aras t mar

bsar arbs t mar

csar arcs t mar

cos

2
cos

3

4
cos

3

M M k L

M M k L

M M k L

θ

π
θ

π
θ

= = ⋅

 = = ⋅ + 
 

 = = ⋅ + 
 

                                                                                    (22-24)

Due to the symmetrical windings and motor configuration, one can write the following relation:

mas t mar m

t

1
L k L L

k
⋅ = ⋅ =                                                                                                                (25)

Through a similar algorithm as that one for the stator and rotor phase as, respectively ar, it is

possible to obtain another four equations: two for the stator phases bs, and cs, and two for the rotor
phases br and cr. All six final equations can be grouped in a matrix form as follows:

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ]

s

s s s

r

r r r

s s s s r

r r r r s

d
U r I

dt

d
U r I

dt

L I M I

L I M I

λ

λ

λ

λ

= +

= +

= ⋅ + ⋅

= ⋅ + ⋅

                                                                                                   (26-29)

where: [ ] [ ] [ ] [ ] [ ] [ ]s r s r s r, , , , ,U U I I λ λ  represent the transpose matrix for the stator and rotor

voltage, current, respectively flux vectors. As an example are given the flux matrix:

[ ] [ ]T

s as bs cs
λ λ λ λ= [ ] [ ]T

r ar br cr
λ λ λ λ=                                                                  (30-31)

So we get:

[ ]

mas las mas mas s

s mas mas las mas mas s

mas mas mas las s

1 1 1 1
1

2 2 2 2

1 1 1 1
1

2 2 2 2

1 1 1 1
1

2 2 2 2

L L L L

L L L L L L

L L L L

σ

σ

σ

   + − − + − −   
   
   = − + − = ⋅ − + −
   
   
   − − + − − +
      

                            (32)

[ ]

mar lar mar mar r

r mar mar lar mar mar r

mar mar mar lar r

1 1 1 1
1

2 2 2 2

1 1 1 1
1

2 2 2 2

1 1 1 1
1

2 2 2 2

L L L L

L L L L L L

L L L L

σ

σ

σ

   + − − + − −   
   
   = − + − = ⋅ − + −
   
   
   − − + − − +
      

                            (33)
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[ ]s mas

t

2 4
cos cos cos

3 3

1 4 2
cos cos cos

3 3

2 4
cos cos cos

3 3

M L
k

π π
θ θ θ

π π
θ θ θ

π π
θ θ θ

    
+ +    

    
    

= ⋅ ⋅ + +    
    

    + +    
     

                                              (34)

[ ]r t mar

4 2
cos cos cos

3 3

2 4
cos cos cos

3 3

4 2
cos cos cos

3 3

M k L

π π
θ θ θ

π π
θ θ θ

π π
θ θ θ

    + +    
    

    
= ⋅ ⋅ + +    

    
    

+ +         

                                               (35)

Note:

1) [ ] [ ]T

s rM M=  the mutual stator inductance matrix equals the transpose matrix of the mutual rotor

inductance;

2) las as lar ar

s r

mas mas mar mar

1; 1
L L L L

L L L L
σ σ= = − = = −  are the stator, respectively rotor leakage factors.

3) The matrix system determined above represents the flux-current equations set for the three-phase

induction machine in a reference frame attached separately to each armature.

2.3. Space vector equations for three-phase induction machines

Considering the assumptions made in the previous paragraph, the space vector notation and

concepts introduced by Racz and Kovacs (1959) are particularly useful. In this approach, all
variables are represented by polar vectors indicating the magnitude and angular position for the
rotating sinusoidal distribution.

A three-phase variable system can be uniquely described through a space vector, which is a
complex term and time dependent x(t) and a real homopolar component x0(t):

( )

( )

2

a b c

0 a b c

2
( ) 1

3

1
( )

3

x t x x x

x t x x x

α α= ⋅ ⋅ + ⋅ + ⋅

= ⋅ + +

                                                                                               (36)

where:

2

3

2

1

2

3

2

1

3

4
2

3

2

je

je

j

j

−−==

+−==

⋅

⋅

π

π

α

α

and xa, xb, xc are the phase variables.

The real axis direction coincides with that one of phase a. Usually, the neutral connection for a
three-phase system is open, so that the homopolar component equals zero. The phase variables can
be easily obtained from the space vector notations:

[ ] 2

a b c( ) ( ) ( ) Re 1 ( )
TT

x t x t x t x tα α = ⋅ 
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The phase voltage for the induction machine can be expressed with the help of the space vector
transformation:

( )

( ) ( )

2

s as bs cs

2 2

as bs cs s as bs cs

2
1

3

2 2
1 1

3 3

U U U U

d
I I I r

dt

α α

α α λ α λ α λ

= ⋅ ⋅ + ⋅ + ⋅ =

= ⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ + ⋅

                                           (37)

or in a condensed form:

s
ss s

d
U r I

dt

λ
= +                                                                                                                           (38)

where ss s, ,U I λ  are space vectors for stator voltage, current and flux. Similarly, we get the rotor

equation:

r

rr r

d
U r I

dt

λ
= +                                                                                                                            (39)

where rr r, ,U I λ  are space vectors for rotor voltage, current and flux, respectively.

Since the machine is considered magnetically linear, the stator and flux linkage will be determined

as follows, making the notation:

[ ] [ ]2
1

3

2

3

2
αα⋅=Α⋅

we get:

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]s rs s s

2 2 2

3 3 3
L I M IΑ λ Α Α⋅ ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

where:

[ ] [ ] [ ]

s

2

s mas s mas s

s

1 1
1

2 2

1 1 3
1 1

2 2 2

1 1
1

2 2

L L L

σ

Α α α σ σ Α

σ

 
+ − − 

 
   ⋅ = ⋅ ⋅ − + − = ⋅ + ⋅      

 
 − − +
  

[ ] [ ] [ ]2

s m m

2 4
cos cos cos

3 3

4 2 3
1 cos cos cos

3 3 2

2 4
cos cos cos

3 3

jM L L e θ

π π
θ θ θ

π π
Α α α θ θ θ Α

π π
θ θ θ

    
+ +    

    
     ⋅ = ⋅ ⋅ + + = ⋅ ⋅ ⋅          
    

+ +    
     

The condensed stator flux-current equation results from the last three equations:

s rs mas s m

3 3

2 2

j
L I L I e

θλ σ
 

= ⋅ + ⋅ + ⋅ ⋅ ⋅ 
 

                                                                                      (40)

where: s rs , ,I Iλ  are space vectors notations for stator flux linkage, current and rotor current.

Similarly, the rotor flux linkage-current equation is deductible:

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]r r sr r

2 2 2

3 3 3
L I M IΑ λ Α Α⋅ ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅                                                                  (41)

where:
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[ ] [ ] [ ]

r

2

r m r mar r

r

1 1
1

2 2

1 1 3
1 1

2 2 2

1 1
1

2 2

L L L

σ

Α α α σ σ Α

σ

 + − − 
 

   ⋅ = ⋅ ⋅ − + − = ⋅ + ⋅      
 
 − − +
  

[ ] [ ] [ ]2

r m m

4 2
cos cos cos

3 3

2 4 3
1 cos cos cos

3 3 2

4 2
cos cos cos

3 3

jM L L e θ

π π
θ θ θ

π π
Α α α θ θ θ Α

π π
θ θ θ

−

    + +    
    

     ⋅ = ⋅ ⋅ + + = ⋅ ⋅ ⋅          
    + +         

Finally, we get the condensed form of the rotor flux linkage-current equation:

r sr mar r m

3 3

2 2

j
L I L I e

θλ σ − = ⋅ + ⋅ + ⋅ ⋅ ⋅ 
 

                                                                                     (42)

where r sr , ,I Iλ  are the space vector notations for rotor flux linkage, current and stator current

respectively.
For an easier manipulation of the equations we make the notations:

s mas s

r mar r

mas t mar

t

3

2

3

2

3 1 3

2 2

L L

L L

M L k L
k

σ

σ

 = ⋅ + 
 

 = ⋅ + 
 

= ⋅ ⋅ = ⋅ ⋅

The general set of voltage and flux linkage equations, written in space vector notations, is:

s
ss s

r
rr r

s rs s

r sr r

j

j

d
U r I

dt

d
U r I

dt

L I M e I

L I M e I

θ

θ

λ

λ

λ

λ −

= +

= +

= + ⋅ ⋅

= + ⋅ ⋅

                                                                                                         (43-46)

Some important conclusions have to be drawn regarding this mode of describing the machine

equations, through space vector notations:
• The 12 scalar equations system written in natural reference frame is transformed in a 4 vector

equations system. This form is equivalent to  substituting the real induction machine equipped
with three-phase windings on stator and rotor with a fictive machine equipped with single phase
winding on stator and rotor;

• An inconvenience of the developed system is that the stator equations system is written in stator

reference frame, and the rotor equations system is written in rotor reference frame, making the

analysis of the machine difficult;
• The mutual inductance depends on the relative rotor position.

In Fig. 2.2 is illustrated the new fictive model of the induction machine from the space vector point
of view theory.
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Fig. 2.2.Model of the three-phase induction machine
with fictive one stator winding and one rotor winding

(space vector notations)

2.4. Vectorial equations system in a common reference frame

The analysis of an induction machine drive system has to be made when the stator and rotor
variables are represented in a common reference frame. When using the same space vector

notations, we can define an arbitrary reference frame, which rotates with the angular velocity ωk ,

and according to Fig. 3, the following relation is valid:
( )

( ) ( ) k
k j t

x t x t e
θ−= ⋅                                                                                                                      (47)

where: θk(t) is the time variable relative angle between the new reference frame and the stationary

reference frame initially considered.; xk(t) represents the space vector for the new reference frame.

The reverse transformation relation is:
)()()( tjk

ketxtx θ⋅=                                                                                                                      (48)

The homopolar component being a scalar variable, is independent from the chosen reference frame.
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Fig. 2.3. Transformation into an arbitrary reference frame

In an arbitrary common reference frame, the vectorial voltage and flux linkage equations become:
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where ωω ,k  are the angular velocity of the arbitrary reference frame, respectively the angular

velocity of the induction machine. Finally, if we consider P the number of poles for the induction
machine, the electrical angular velocity of the rotor is ω)2/(P  and the vectorial equations of the

induction machine written in a common arbitrary reference frame which rotates with angular
velocity

k
ω  are:
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                                                                                        (51-54)

The above equations system represent the mathematical model of the induction machine with stator

and rotor equipped with one fictive windings each in a common arbitrary reference frame. It has to
be highlighted that the mutual inductance does not depend on the relative rotor position (Kovacs -
1984).
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Fig. 2.4.Model of the three-phase induction machine
with fictive one stator winding and one rotor winding

(space vector notations) represented in a common
arbitrary reference frame
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2.5. Induction machine equations with stator referred rotor variables

A complete unified equations system for the induction machine is obtained when both stator and

rotor variables are expressed in a common reference frame and the rotor variables are also stator
referred. Using the turns ratio and the winding factor ratio we obtain:
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                                                                                                                            (55-58)

Now the stator and rotor flux linkage equations can be written as:
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If the following notations are introduced:

ls s masL Lσ= ⋅   the stator leakage inductance
2

lr t r mar'L k Lσ= ⋅ ⋅  the rotor leakage inductance

2

M t mas t mar
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I I I= +  the magnetisation current space vector
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lr lr r' ' 'k kL Iλ = ⋅  the rotor leakage flux

The flux linkage equations get the following form:
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or in referred variables we obtain:
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where Ls and L’r are the total stator, respectively rotor self-inductance.

The referred rotor voltage is given now by the relation:
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                                                            (65)

Finally we can write a complete equations system, in a common arbitrary reference frame, with
rotor variables referred to the stator, which define the induction machine. The result is a

mathematical model of the three-phase induction machine equipped with two fictive windings,
rotating with angular velocity ωk. The simplified representation of this system is given in Fig. 2.5.
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Fig. 2.5. Model of the three-phase induction machine with
fictive one stator winding and one rotor winding (space vector
notations) represented in a common arbitrary reference frame,

and referred rotor variables

2.6. Instanteous electromagnetic torque

The input power for a three-phase induction machine with wounded rotor is:

{ } { }* *
s ri s r

1 1
( ) Re Re ' '

2 2

k kk kP t m U I m U I= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅                                                                        (70)

where m is the phase number (3), s r, '
k k

U U  are the stator and rotor voltage space vectors, 
* *

s r, '
k kI I

are the conjugate stator and rotor current space vectors.

Using a detailed relation for the space vectors with rotor variables referred to the stator, we get:
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From the complete equations system of the induction machine, the following expressions can be
obtained for the input power of the machine:
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                 (73)

The first two terms from the power equation represent the Joule effect loss, the following two terms

represent the electromagnetic power due to the time variation of the magnetic energy, and the last
term stands for the mechanical power available at the machine shaft, if the hysterezis loss, eddy

current loss and the stray losses are neglected. The mechanical power will be:
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Using the flux linkage relations, three expressions are deductible for the induction machine
mechanical power:
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where:
2

s r M'L L L∆ = −
which gives four expressions for the instantaneous electromagnetic torque if the mechanical power

is divided by the rotor angular velocity:
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                                       (76)

The torque and the rotor speed a related by the mechanical equation:
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                                                                                                                   (77)

where: J is the inertia of the rotor and in some cases the connected load. The first term on the right-
hand side of the equation is the inertial torque. The load torque TL is positive for a torque load on

the shaft of the induction machine.
Considering the voltage, flux linkage and mechanical equations, the complete relations system of

the induction machine can be written:
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                                   (78-82)

The above set of equations is valid for the following conditions:
• All the equations are written in a common reference frame, which rotates with the arbitrary

angular velocity ωk.

• The rotor variables are referred to the stator;

• The stator and rotor variables are described by the space vector notations;

• The machine parameters are constant in a common reference frame for both armatures;

• The mechanical equation is written in real domain, and is independent of the chosen reference

frame.
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2.7. General equations of the induction machine in different reference frames

When the mathematical model of the induction machine is established, several reference frames
can be employed depending on application and the chosen strategy control. There are several main

reference frames: stationary fixed to the stator, synchronously fixed to the rotor, and revolving with
an angular velocity equal to: the air-gap flux, the rotor flux, the stator voltage, the rotor current
space vectors. The transformation from one reference frame to another is made by keeping constant

the value of the m.m.f. as all the reference frames are energetically equivalent. For the induction
machine, the phasorial diagram of the main space vectors is illustrated in Fig. 2.6. The significance

of the index is as follows:
s – stationary reference frame linked to phase as of the stator windings
r – rotating reference frame linked to the rotor shaft

m – air-gap flux reference frame
ss – stator total synchronous reference frame

rs – rotor flux synchronous reference frame
k – arbitrary synchronous reference frame
The angles depicted in Fig. 2.6 are in electrical degrees.
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Fig. 2.6. Definitions of the electrical angles between different reference frames

2.7.1. Per unit system

It is often convenient to express machine parameters and variables as per unit quantities. The
mathematical model in per unit representation of the induction machine has some main features
(Krause et al. 1995):

• All parameters have maximum value equal to unit;

• Two similar systems can be compared easier;

• The digital control is readily implemented;

When using the per unit system for writing the machine equations, the following observations have

to be made:
a) The base torque is not the rated one. As the rated power output generally occurs at a speed

(rated speed) slightly less than synchronous, the base torque Tb will be less than rated torque by
the ratio of rated speed to synchronous speed of the machine.

b) In per unit system, the inductance value is equal to the reactance value.
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c) If the flux linkage per second is used in the induction machine equations, it is per unitised by
dividing by base voltage.

The following values of the machine parameters are used as base variables:
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The stator voltage equation in per unit system becomes:
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                                                                                        (83-84)

Similarly we obtain the rotor voltage equation:
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where the relative angular velocity is: 
b

ω
Ω

ω
=

In the previous per unit expressions we should note that the multiplying coefficient of the time flux
derivative is necessary, as the time is not referred. The relative time, defined as follows, can be

used:

relative sb sn

sn

2
t

t t t
T

ω ω π= = = ⋅                                                                                                        (86)

where Tsn represent the stator voltage supply period.

Finally the complete equations set in per unit system for the induction machine is:
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2.7.2. Stationary reference frame equations. Block diagram

If the stator voltages are unbalanced or discontinuous and the rotor-applied voltages are balanced

or zero, the most appropriate choice for the reference frame is  the one fixed to the stator. This
stationary reference frame was first employed by Stanley (1938). In a stationary reference frame,

fixed to the stator, the arbitrary angular velocity is zero, (ωk = 0) and the induction machine

equations system becomes:
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                                                                                    (92-96)

The total leakage factor is described by relation 
2

M
t

s r

1
x

x x
σ = −  and if we note: 2

s r M
x x xδ = −  the

following relations are deductible:

r M

s rs

s M

r r s

'

' '

k k k

kk k

x x
i

x x
i

ψ ψ
δ δ

ψ ψ
δ δ

= −

= −
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A new equation system can be written in the two-axis co-ordinates system:
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                                                                                 (99-107)

If the induction machine is equipped with cage rotor, then the rotor voltage is zero. A complete

block diagram for the induction machine in stationary reference frame using as inputs stator voltage
and currents and load torque, and as output the speed, is illustrated in Fig. 2.7.
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Fig. 2.7. Block diagram of the induction machine in stationary reference frame

2.7.3. Rotor reference frame equations. Block diagram

The choice of the reference frame for the dynamic analysis of the induction machine, especially
when the rotor circuits are unbalanced, is more convenient to be fixed to the rotor frame. This

reference frame is in fact the Park’s transformation, initially developed for synchronous machine
and than applied to the induction machine by Brereton (Fitzgerald et al -1990). The method of
referring the machine variables to a rotor reference frame is most useful for field oriented control
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systems. Transformation from the arbitrary frame to the rotor frame is made by substituting

kΩ Ω= , or from the stationary frame with the matrix relations:
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                                                                                         (108-109)

where rθ  is the electrical angle between the magnetic axis of the stator flux and the magnetic axis

of the rotor flux.

The complete equations set results as follows:
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Or expressed in orthogonal two-axis co-ordinate system:
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                                                                           (115-123)

The block diagram of the induction machine model in rotor reference frame is presented in Fig.
2.8. The input variables are stator currents and load torque, and as output variable is chosen the

angular velocity of the rotor. Also, the rotor voltages are considered zero (case of squirrel-cage
rotor). It has to be observed that two algebraic loops appear in this diagram. This inconvenient leads

to a limited use of this reference frame to the wound rotor induction machine, when the block
diagram is similar to that from Fig. 2.8, where inputs will be rotor voltages and currents.
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2.7.4. Synchronous reference frame equations. Block diagram

The synchronously rotating reference frame, with angular velocity equal to that one of the
power supply system, is particularly convenient when incorporating the dynamic characteristics of
an induction machine into a digital computer program used to study the transient and dynamic

stability of power systems. The synchronously rotating reference frame may also be useful in
variable frequency applications if we may assume that the stator voltages are a sinusoidal balanced

set. It was systematically developed by Kovacs (1984) and Krause et al (1995), or Lorenz et al.
(1994).
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When a two-axis co-ordinates reference frame is employed, it has to be fixed to different variables
of the machine. The main configurations are the synchronously reference frame fixed to: stator flux,

air-gap flux and rotor flux.
I) Stator flux fixed synchronous reference frame.

In order to link the d-axis of the synchronous reference frame to the stator flux space vector, the q-
component of this flux vector is defined equal to zero:
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The following equations set is obtainable:
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                                                                  (125-133)

The block diagram from Fig. 2.10 presents the induction machine model in synchronous reference
frame linked to the stator flux, with inputs stator voltages and currents, and load torque. The outputs
are synchronous and rotor angular velocity.
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II) Rotor flux fixed synchronous reference frame.

In order to link the d-axis of the synchronous reference frame to the rotor flux space vector, the q-
component of this flux vector is defined equal to zero:
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The induction machine characteristics can be analysed with the equation system:
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                                   (135-143)

The block diagram from Fig. 2.11 presents the induction machine model in synchronous
reference frame linked to the rotor flux, with inputs stator currents, and load torque. The outputs are

synchronous and rotor angular velocity. The rotor voltages are considered equal to zero (case of the
cage rotor).
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III) Air-gap flux fixed synchronous reference frame.
In order to link the d-axis of the synchronous reference frame to the air-gap flux space vector, the q-

component of this flux vector is defined equal to zero:
m m

dmm

m

qm 0

ψ ψ

ψ

=

=
                                                                                                                                  (144)

The system is described by the relations:
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                                                      (145-155)

Fig. 2.12 illustrates the induction machine model in synchronous reference frame linked to the air-

gap flux, with inputs stator voltages and currents, synchronous angular velocity and load torque.
The output is rotor angular velocity.
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IV) Stator current space vector fixed synchronous reference frame.
In order to link the d-axis of the synchronous reference frame to the stator current space vector, the

q-component of this space vector is defined equal to zero:
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This reference frame realises a special control of the machine torque and speed, by using only one

current component and the stator voltage. De-coupling circuits are needed for an independent
control of the speed and torque. The complete set of equations which describes the dynamic and

steady-state operation of the induction machine is.
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                                                      (157-165)

The block diagram from Fig. 2.13, uses as inputs the stator voltage space vector, the d-axis stator

current component, the load torque, and the synchronous angular velocity. As output is considered
the rotor angular velocity (speed).
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V) Rotor current space vector fixed synchronous reference frame.
In order to link the d-axis of the synchronous reference frame to the rotor current space vector, the

q-component of this space vector is defined equal to zero:
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Applying the above conditions, a complete equations system for the induction machine expressed in

this particularly reference frame can be deduced:
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                                     (167-175)

In Fig. 2.14, the block diagram that describes the induction machine model has as inputs the d-axis
stator voltage component and current space vector, the load torque, and the synchronous angular
velocity. As output is considered the rotor angular velocity (speed).
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VI) Magnetising current space vector fixed synchronous reference frame.
In order to link the d-axis of the synchronous reference frame to the magnetising current space

vector, the q-component of this space vector is defined equal to zero:
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Considering the above conditions for a synchronous reference frame, the complete set of equation

for the three-phase induction machine can be obtained:
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A block diagram for the mathematical model of the induction machine in this reference frame is
presented in Fig. 2.15. As inputs are chosen the stator current space vector, the d-axis component of

the stator voltage space vector, the synchronous angular velocity and the load torque. The output is
the machine (rotor) angular velocity. The similarity to the synchronous reference frame linked to
the air-gap flux space vector can be observed, as the magnetising current is directly proportional

with the air-gap flux, through the magnetising inductance.
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2.8. D-Q Axes models of the three-phase induction machine

The three-phase induction machine can be modelled by using different state-space variables and
keeping as inputs the stator voltages and the load torque, and as outputs the electromagnetic torque

and the rotor angular velocity. The possible set of currents and flux linkages per second space
vectors are defined as follows (Nowotny and Lipo - 1996):
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The d-q axes are orthogonal and fixed to the stator, d axis coincides to the magnetic axis of the as
winding.

As there are four voltage equations, it is necessary to consider two of the space vectors as state-
variables in order to obtain a solution for the equations system. Let the selected pair of state-space

variables be denoted as 21 , xx . The set of six state-space variables will be expressed in terms of the

two selected state-space variables:
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                                                   (193)

Only fourteen out of the fifteen state-space possibilities represent valid mathematical models for
the three-phase induction machine (the pair of state-space variables that comprises airgap flux

linkage per second space vector and the magnetising current space vector cannot be selected as
these vectors have the same direction). There are three types of models:
1. current state-space variables models;

2. flux linkages state-space variables models;
3. mixed currents-flux linkages state-space variable models.

In conjunction with the mechanical equation:

( )r e L
2

P
p T T

J
ω = ⋅ −                                                                                                                 (194)

we obtain a complete version of the three-phase induction machine model, viewed as the key for a

motion control system.
The starting point for the state-variable models is given by the voltage equations system written in

stationary reference frame:
p= ⋅ + ⋅u L x R x                                                                                                                        (195)

where: x is the selected set of state-variables and represents also the output of the model, u is the
input vector (stator voltages), L is the coefficients matrix (it can be formed by reactance values, or
non-dimensional elements) for multiplying the time derivative of the state-variables, R is the

coefficients matrix (it can be formed by resistances and reactances values or non-dimensional
elements) for multiplying the state-variables and p stands for the differential operator (d/dt).
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It results the general form of the state-variables system:

p = ⋅ + ⋅x A x B u                                                                                                                     (196)

where:
1

1

−

−

= − ⋅

=

A L R

B L
All the following mathematical models permit a discretisation for the implementation of

controllers in the drive systems with three-phase induction machines. Classically, the current state-

space and the flux state-space models are the chosen options for the manufacturers of drive systems.
The original vector orientation scheme was based on the alignment of the synchronous reference

frame to the rotor flux linkage space vector. Then the vector control strategy was extended by
considering as well the stator and air-gap flux space vectors, as alignment of the reference frame.
However, for a complete analysis of the vector control strategies, each of the six space vectors that

can be selected as state-space variables represents a possible basis for a reference frame. If the
magnetising current space vector selection as alignment gives similar results to the air-gap flux

space vector case, the stator and rotor current space vectors are still to be further analysed as new
options for vector control.

An easy to follow steps algorithm for implementing vector oriented control systems is obtained

as follows:
1. A complete mathematical model of the three-phase induction machine is developed in stationary

reference frame, according to the chosen set of state-space variables;
2. The rotor based variables are completely expressed in the new state-variable system;

3. The rotor angular velocity ωr term is substituted with (ω r - ω k) where ω k is the angular

velocity of the synchronous frame;
4. The synchronous reference frame is selected linked to one of the space vectors, which means

that the q-axis component of the reference space vector is null;
5. The torque equation is computed according to the selected flux or current space vector in the

synchronous reference frame.
The block diagram of modelling an induction motor for vector control purpose is detailed in Fig.
2.16.

u
x=Ax+Bup [a   ]

ij
e

-j

T
e

(open loop)

T
e

(closed loop)

stationary frame

x

synchronous frame

θ

T
l

+
-

+

2J
P

ω
r

Fig. 2.16. Block diagram form of the induction machine mathematical model

Fig. 2.17 shows the general two-axis equivalent circuit for the induction machine, in an arbitrary
reference frame. This equivalent circuit represents the starting point for determining the matrix
equations, which will be derived further.
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Fig. 2.17. Arbitrary reference-frame equivalent circuits for a three-phase,

symmetrical induction machine

Note: For compactness, the elements from Fig. 2.17. have to be transformed in terms of reactances,

while the flux linkage has to be expressed in flux linkage units per second, or volts.

2.8.1. Models with currents space vectors state-space variables

I) As complex state variables, the currents space vectors
T

qs ds qr dr, , ' , 'i i i i =  x are usually

assumed. The stator current space vector is considered generally as the right choice, because it

corresponds to directly measurable quantities. This model is readily available from voltages and
flux linkages per second equations, and it can be expressed in a matrix form as follows:

2
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where: 2

s r m'D x x x= −
If the stator, rotor and total leakage factor definitions are used:

s ls m s m

r lr m r m

s r

(1 )

' ' (1 )

1
1

(1 )(1 )

x x x x

x x x x

σ

σ

σ
σ σ

= + = +

= + = +

= −
+ +

we obtain:

2 2

m s r s r m( )
1

D x x
σ

σ σ σ σ
σ

= ⋅ + + = ⋅
−
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The electromagnetic torque can be computed as:

( )m

e qs dr ds qr

b

3
' '

4

xP
T i i i i

ω
= ⋅ ⋅ −                                                                                                      (198)

II) The stator and the magnetising space vector currents as state-space variables
T

qs ds qm dm, , ,i i i i =  x represent another mathematical d-q axis model based on currents space

vectors. By selecting the magnetising current space vector among the state-space variables, it is

possible to include the saturation effect in modelling the induction motor. Also, the stator current
space vector is a measurable quantity, and determines a precise and accurate option for

implementing controllers. The state matrix elements are all non-zero, which implies a
computational effort similar to the previously analysed model.
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The instantaneous electromagnetic torque may be expressed in terms of the state-space variables:

( )m

e q s d m d s q m

b

3

4

xP
T i i i i

ω
= ⋅ ⋅ −                                                                                                    (200)

III) The third possible combination of current space vectors as state-space variables is obtained

by selecting magnetising and rotor currents 
T

qr dr qm dm' , ' , ,i i i i =  x . When compared to the other

currents space vector models, the similar computational burden for obtaining the outputs of the
system is obvious. The main difference between them is the presence of the global parameters (self-

reactances) in the stator and rotor current state-space variables model, while in the other two models
an accurate determination of the leakage reactances or leakage factors is necessary. A complete

description of the state-variables in matrix notation is given below:
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The instantaneous electromagnetic torque is expressed as follows:

( )m

e dr qm qr dm

b

3
' '

4

xP
T i i i i

ω
= ⋅ ⋅ −                                                                                                 (202)

2.8.2. Models with flux linkages as state-space varaibles

I) When flux linkages per second are selected as state-space variables, the models are less
computationally demanding than in the currents state-space variables version. As each flux contains

information about two currents space vectors components, the state matrix contains zero elements.

One option is to select the stator and rotor flux linkages space vectors 
T

qs ds qr dr, , ' , 'λ λ λ λ =  x  for

describing the mathematical model of the machine. For this system the matrix equations are as
follows:
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The electromagnetic torque is determined with the equivalent relation:

( )m

e qs dr ds qr

b

3
' '

4

xP
T

D
λ λ λ λ

ω
= ⋅ ⋅ −

⋅
                                                                                           (204)

By comparison with the current models, it can be observed that the computational burden is
essentially lower. Due to this important feature, this model is the most suitable for discretisation in
motion control strategies.

II) An alternative to model the three-phase induction machine with flux space vectors as state-
variable system, is the selection of air-gap flux space vector among the set of independent variables.

This choice presents the advantage of an easier saturation effect modelling, but the disadvantage of
an increased computational burden. The air-gap flux is a measurable quantity, and this advantage
imposes it in many practical solutions for vector control schemes.
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A first approach is given by the stator and air-gap flux space vectors selected as state-space

variables
T

qs ds qm dm, , ,λ λ λ λ =  x .
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The electromagnetic torque expression depends on stator leakage factor:
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III) The third option of selecting flux space vectors as state-space variables is similar to the
previous model. It comprises the air-gap (magnetising) flux and rotor flux space vectors

T

qm dm qr dr, , ' , 'λ λ λ λ =  x in the set of independent variables. The same computational effort is

required, and the electromagnetic torque is determined in a suitable form for vector control if the

rotor leakage factor is known:
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The resulting relation for computing the instantaneous electromagnetic torque is as follows:
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2.8.3. Models with mixed currents – flux space vectors state-space variables

I) For obtaining an acceptable computational effort as well as measurable output quantities, the

general accepted solutions are the mixed currents-flux state-space variable models. If the stator
variables are chosen for modelling the three-phase induction machine system, then a mixed flux

linkages-currents state-space variables model 
T

qs ds qs ds, , ,i iλ λ =  x is developed. This mathematical

model is selected when stator flux oriented strategy is implemented. The matrix equations and the
electromagnetic torque relation are:
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The instantaneous electromagnetic torque relation depends only on the magnitude of the output
vector components.

( )e ds qs qs ds

b

3 1

4

P
T i iλ λ

ω
= ⋅ ⋅ −                                                                                                       (210)

II) Another important mixed flux linkages-currents state-space variables model
T

qr dr qr dr' , ' , ' , 'i iλ λ =  x is that expressed in rotor quantities. This model represents the optimum

solution for rotor flux oriented control strategy in a drive system with an induction machine.
However, as it is impossible to measure the rotor currents if the machine is equipped with cage

rotor, there are limitations in using this model for vector control strategies. The state-space
variables system is detailed below:
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The electromagnetic torque expression depends only on the magnitude of the output vector
components:

( )e qr dr dr qr

b

3 1
' ' ' '
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T i iλ λ

ω
= ⋅ −                                                                                                 (212)

III) The most used alternative model for rotor flux oriented control strategies is that which

comprises the stator current and rotor flux linkage 
T

qr dr qs ds' , ' , ,i iλ λ =  x as state-space variables. It

contains the advantages of measurable output quantities (stator currents) and acceptable

computational burden. The matrix equation and the electromagnetic torque relation are presented
below:
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and

( )m
e qs dr ds qr

r b

3
' '

4 '

xP
T i i

x
λ λ

ω
= ⋅ ⋅ −                                                                                                (214)

IV) A theoretical mathematical model is that with mixed rotor currents space vector and stator

flux linkages space vector as state-space variables 
T

qs ds qr dr, , ' , 'i iλ λ =  x . It should be noted that

the advantage of this model is that only the stator winding parameter is necessary and as such the

influence of rotor parameters is minimised. This model can be used for an unconventional stator
flux oriented control with rotor current components producing the torque and the flux. The

expressions for implementing this model are:
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and

( )m

e qs dr ds qr

s

3
' '

4 b

xP
T i i

x
λ λ

ω
= ⋅ ⋅ −                                                                                                    (216)

V) The mixed stator current space vector and air-gap flux space vector 
T

qm dm qs ds, , ,i iλ λ =  x as

state-space variables belongs to one of the most complex types of models. It preserves information

regarding both stator and rotor parameters. This mathematical model is the suitable choice for the
air-gap flux orientation control strategy. The greatest advantage of this model is that by using Hall

sensors or tapped stator windings, all the output vector components are measurable. Due to its
versatility, this model is widely used in controllers implementation, especially for medium speed
applications. It permits also the simulation or modelling of the saturation effect. By comparison to

the previous mixed models, the state-space matrix contains only non-zero elements, which leads to
greater computational effort.
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The electromagnetic torque is computed as:

( )e qs dm ds qm

b

3 1

4

P
T i iλ λ

ω
= ⋅ ⋅ −                                                                                                   (218)

VI) Another theoretical model, similar in form to the precedent one, is the mixed rotor current

space vector and air-gap flux space vector as state-space variables 
T

qm dm qr dr, , ' , 'i iλ λ =  x Its main

shortcoming is the presence of the unmeasurable rotor currents among the state-space variables.
The matrix equation of the system is given below:
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The electromagnetic torque relation becomes:

( )e dr qm qr dm

b

3 1

4

P
T i iλ λ

ω
= ⋅ ⋅ −                                                                                                     (220)

VII) If the magnetising current space vector is selected as state-space variable together with one

of the flux linkages space vectors (i.e. stator flux linkages)
T

qm dm qs ds, , ,i i λ λ =  x , the computation

of the state matrix elements gives several null results. This choice for a set of state-space variables
presents only theoretical importance, as the output vector components are unmeasurable. Also the

computational demand of the model does not make it a practical option for vector control
implementation.
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                                (221)

The electromagnetic torque relation:

( )m
e dm qs qm ds

b ls

3

4

xP
T i i

x
λ λ

ω
= ⋅ ⋅ −                                                                                                (222)

VIII) One other model analysed for theoretical reasons, is the mixed current-flux linkages space
vector model which realises a the connection between the magnetising current space-vector and the

rotor flux linkage space vector, selected as state-space variables 
T

qm dm qr dr, , ' , 'i i λ λ =  x  As the

output vector components cannot be measured, this model, like the previous one, is prohibitive for
implementation in vector control strategies. However, from computational effort, the state matrix
contains the same number of zero elements (four) and the instantaneous electromagnetic torque is

determined in a suitable form comparable to the classical vector control implementations.
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The electromagnetic torque is determined as follows:

( )m
e qm dr dm qr

b lr
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4 '

xP
T i i

x
λ λ

ω
= ⋅ ⋅ −                                                                                             (224)

2.9. Vector control startegies for three-phase induction machine

The aim of vector control is usually to decouple the stator current is into its flux producing and
torque producing components (ids, iqs respectively) in order to obtain a decoupled control of the flux

and the electromagnetic torque. For this reason a special reference frame is selected fixed to
different space vector variables. The reference frame has to be synchronous, as all the space vectors

have the same angular velocity given by the supply voltage frequency (Vas - 1990, 1992), (Slemon
- 1994), (Kelemen and Imecs - 1987).

Generally, the term of vector control is associated with field orientation control. This means that

the special synchronous reference frame is linked to one of the flux linkages space vectors. The
original field orientation sheme, developed more than twenty five years ago,  was based on the

alignement of the reference frame to the rotor flux. After 1985, (DeDoncker and Nowotny - 1988),
(Erdman and Hoft - 1990) this control strategy was extented to the air-gap flux and to the stator flux
alignement of the synchronuous reference frame. However, for vector control schemes there are two

more possibilities, related to the currents space vectors: stator and rotor currents. All of these
control strategies are investigated in this chapter, according to the modelling point of view of the

induction machine. An easy to follow steps algorithm for implementing vector oriented control
systems is obtained as follows (Lai - 1999):
1. A complete mathematical model of the three-phase induction machine is developed in stationary

reference frame, according to the chosen set of state-space variables;
2. The rotor based variables are completely expressed in the new state-variable system;

3. The rotor angular velocity ωr term is substituted with (ω r - ω k) where ω k is the angular

velocity of the synchronous frame;

4. The synchronous reference frame is selected linked to one of the space vectors, which means
that the q-axis component of the reference space vector is null;

5. The torque equation is computed according to the selected flux or current space vector in the

synchronous reference frame.
The transformation of reference frames for the induction motor vector control can be summarised as

shown in Fig. 2.18.
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Drive

Controller
Inverse 2/3 Clark/ Park

Transformation

3/2 Clark/ Park

Transformation

Induction

motor

Stationary reference frameSynchronuous reference frame

Two-axis co-ordinate system
Three-phase system

Fig. 2.18. Block diagram of transformation of frames and co-ordinate systems
for induction motor vector control

2.9.1. Stator flux field orientation (SFO)

For this vector control strategy, the set of state-space variables formed by stator flux linkage and

current space vectors 
T

qs ds qs ds, , ,i iλ λ =  x is selected. The mathematical model is given in the

chapter dedicated to d-q models of the three-phase induction machine.
The rotor based variables expressed in state-space variables terms are:
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                                                                                                  (225-228)

To obtain the machine equations in the synchronuous stator flux reference frame, one has to

eliminate the rotor flux from the rotor voltage equations and then force the q component of the
stator flux to be zero. The stator voltages equations remain unchanged. If a cage rotor is considered,

the resultant equations are as follows:

( )s s s ss
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b b b

s s s ss s
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                                           (229-230)

where the definition used for the slip speed is: s e rω ω ω= − .

If the special reference frame is fixed to the stator flux linkage vector, the q-component of this
flux vector is defined equal to zero:

s

qs

s s

s ds

0λ

λ λ

=

=
                                                                                                                                       (231)

From stator flux linkage equations, the q-current components are given by:
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The electromagnetic torque relation and slip speed can be derived in stator field orientation control
as:
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                                                                                                     (233-234)

The second dynamic equation of the machine, shows that there is a coupling between the stator

current components. Consequently, any change in the torque producing component 
s

qsi  without

changing s

dsi  accordingly will cause a transient in the stator flux. A decoupler is necessary to

overcome this disadvantage. Therefore the command current of the d-axis component of the stator
current can be calculated as follows:
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ds p ds dq
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                                                                                                   (235-236)

where Kp and Ki are proportional, respectively integral coefficients of the flux controller. This

controller can be PI type or soft computing technique type (fuzzy, neural-network) as demonstrated
by Xu and Nowotny (1988).

Steady-state perfomance of a stator flux oriented system
Letting the derivative operator p = 0, one can obtain the steady-state voltage equations of the

induction machine. After several manipulations of the system equations, the d current components
are given by:
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                                                                            (237)

it yields the slip speed equation:
2 s 2 2 s 2 2 s

s qs s b r m s b r s qs' ( ' ) 0i D r x r x iω ω ω λ ω− + =                                                                                (238)

The solutions of the above equations have to be real, for a given stator flux linkage. This means that

the determinant of the second order equation satisfy the condition:

( ) ( ) ( )2 222 s 2 s

m b r s b r s qs
' 4 ' 0x r D r x i∆ ω λ ω= − ≥                                                                           (239)

The maximum values for the q component of the stator current, the slip speed and the
electromagnetic torque (pull-out torque) are:
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If the angular slip velocity is larger than ( )s max
ω static instability will arise. This maximum

value depends only on machine parameters and not on stator flux level. Neveretheless, the pull-out
torque depends on the square of the flux magnitude. The pull-out torque determines the limit for the

system stability operation zone, when the stator flux oriented control is employed. It is possible to
limit the torque command not to exceed the pull out torque for a given stator flux. Some important
conclusions cand be drawn for this vector control strategy:

• The electromagnetic torque and stator flux producing components of the stator current are not

decoupled;

• A parameter dependent decoupling network has to be included;

• Torque and flux control does not require speed feed back;

• For operation at low speed it is difficult to estimate the stator flux;

• It is a good alternative for medium performance drive.

2.9.2. Rotor flux field orientation (RFO)

For this vector control strategy, the set of state-space variables formed by rotor flux linkage and

stator current space vectors 
T

qr dr qs ds' , ' , ,i iλ λ =  x is selected. If the induction motor is equipped

with wound rotor, as the rotor currents are also measurable, the rotor current space vector can be

also selected as state-space variables together with the rotor flux linkage space vector
T

qr dr qr dr' , ' , ' , 'i iλ λ =  x . The mathematical model is given in the chapter dedicated to d-q models

of the three-phase induction machine. The first case will be analysed, for the second one the

algoritm is similar.
The stator flux linkage and rotor current space vectors components expressed as functions in

terms of state-space variables are:
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The voltage equations re-written in terms of the state-space variables become:
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If the special reference frame is fixed to the rotor flux linkage vector, the q-component of this
flux vector is defined equal to zero:
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From stator flux linkage equations, the q-current components are given by:
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The flux producing component of the stator current is determined as follows:
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The above relation shows that there is no need of a current decoupler in rotor field orientation
scheme. Both stator current components (torque and flux producing) can be controlled

independently.

Steady-state perfomance of a rotor flux oriented system
Letting the derivative operator p =0, one can obtain the steady-state voltage equations of the

induction machine. After several manipulations of the system equations, the d current components

are given by:
rr
qsr dr b r

ds

m s r

r

dr

' '

'

0

ir
i

x x

i

λ ω

ω
= = ⋅

=

                                                                                                                (254)

It yields the slip speed equation:
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which for a given rotor flux has always real solution. Thus the resulting current controlled slip
speed and the electromagnetic torque are:
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                                                                  (256-257)

The most important features of rotor field oriented (RFO) vector control are:
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• As it is the original vector control strategy developed by Blashke (1971), the RFO represents the

most popular approach in vector control strategies;

• It provides complete decoupling of the torque and flux producing components of the stator

current;

• There are possible direct vector control strategy (the usage of sensors or model to provide

feedback of the flux magnitude and orientation) and indirect vector control strategy (the usage

of assumed slip frequency relationship to achieve field orientation);
• The direct vector control strategy is the optimum choice for medium and high-speed

applications;
• The indirect vector control strategy is the optimum choice for low-speed applications;

2.9.3. Air-gap flux field orientation (AFO)

For this vector control strategy, the set of state-space variables formed by air-gap flux linkage

and stator current space vectors 
T

qm dm qs ds, , ,i iλ λ =  x is selected. If the induction motor is equipped

with wound rotor, as the rotor currents are also measurable, the rotor current space vector can be

also selected as state-space variables together with the air-gap flux linkage space vector
T

qm dm qr dr, , ' , 'i iλ λ =  x . The mathematical model is given in the chapter dedicated to d-q models of

the three-phase induction machine. As both cases are similar to analyse, only the first case will be
detailed.

The stator and rotor flux linkages and rotor current space vectors components expressed as
functions in terms of state-space variables are:
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The voltage equations of the machine expressed in state-variables terms, are readily deductible

now:
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    (264-267)
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If the special reference frame is fixed to the air-gap flux linkage vector, the q-component of this
flux vector is defined equal to zero:

m

qm

m m

m dm

0λ

λ λ

=

=
                                                                                                                                    (268)

From air-gap flux linkage equations, the q-current components are given by:
m m

qs qs

m m
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i i

i i

=

= −
                                                                                                                                    (269)

The flux producing component of the stator current is determined as follows:

m m msr r

r r m ds dm r m qs

b m m b b
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                                               (270)

One can note that the d-axis component of stator current for AFO is not only controllled by the d-
axis air-gap flux componennt, but also by the q-axis (torque producing) component of the stator

current. It is necessary to decouple the stator current components, in order to achieve a linear
control. For this reason, the command of current of the d-axis component is computed as follows:
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                                                                                                  (271-272)

The electromagnetic torque relation and slip speed can be derived in air-gap field orientation
control as:
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                                                                                            (273-274)

Steady-state perfomance of an air-gap flux oriented system
Letting the derivative operator p =0, the steady-state voltage equations of the induction machine

are readily determined. After several manipulations of the system equations,  the d current
components are given by:
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                                                                                      (275)

It yields the slip speed equation:
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s qs s dm r b q s

r b
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i r i
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ω ω λ ω

ω
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⋅ ⋅ − + =                                                                                  (276)

The solutions of the above equations have to be real, for a given stator flux linkage. This means that

the determinant of the second order equation satisfy the condition:

( ) ( ) ( )2 22m m

dm r m qs4 ' 0x x i∆ λ= − − ⋅ ≥                                                                                          (277)

The maximum values for the q component of the stator current, the slip speed and the
electromagnetic torque (pull-out torque) are:
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                                                                                                        (278-280)

When the angular slip velocity is larger than ( )s max
ω instability will occur. One should note that

the maximum (pull-out) angular slip velocity depends only on the rotor parameters and does not

depends on the air-gap flux. However, the maximum (pull-out) torque is proportional to the square
of the air-gap flux magnitude and thus a small increment of air-gap flux will detetmine a significant
increment of the electromagnetic torque.

Some important conclusions cand be drawn for the air-gap field orientation (AFO) control
strategy:

• The electromagnetic torque and air-gap flux producing components of the stator current are not

decoupled;

• A parameter dependent decoupling network has to be included;

• Torque and flux control does not require speed feed back;

• No sophisticated parameter estimation methods or model based observers is required;

• It is a good alternative for low and medium performance drives as the air-gap flux can be

measured directly;

2.9.4. Stator current orientation (SCO)

If the field orientation control is well established with multiple practical solutions for different

industrial applications, an unconventional method of controlling the speed and torque for the
induction machine, is given by the selection of currents space vectors as linking basis for the
synchronuous reference frame. The set of state-space variables is identical with the stator flux field

orientation control (SFO): the stator flux and current space vectors
T

qs ds qs ds, , ,i iλ λ =  x . The

mathematical model is identical to that used in SFO case.
The rotor based variables expressed in state-space variables terms are:
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                                                                                                (281-284)

To obtain the machine equations in the synchronuous stator current reference frame, one has to

eliminate the rotor flux from the rotor voltage equations and then force the q component of the
stator current to be zero. The stator voltages equations remain unchanged. If a cage rotor is
considered, the resultant equations are as follows:
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                                   (285-286)

If the special reference frame is fixed to the stator current space vector, the q-component of this
current vector is defined equal to zero:
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=
                                                                                                                                         (287)

Different from the SFO case, we have to express the q-flux components, by considering the flux
linkages equations:
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The electromagnetic torque relation and slip speed can be derived in stator current orientation

control as:
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                                                                                                 (289-290)

From the second dynamic equation of the machine, a relation between the d-axis component of the

stator current and stator flux linkage space vector components can be deduced:
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                                                             (291)

The previous dynamic equation of the machine, shows that there is a coupling between the stator

flux linkage components. Consequently, any change in the torque producing component sc

dsλ

without changing 
sc

qsλ  accordingly will cause a trensient in the stator flux. A decoupler is necessary

to overcome this disadvantage. Therefore the command current of the d-axis component of the
stator current can be calculated as follows:
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                                                                                                 (291-292)

where Kp and Ki are proportional, respectively integral coefficients of the current controller. This

controller can be PI type or soft computing technique type (fuzzy, neural-network).

Steady-state perfomance of a stator current oriented system
Letting the derivative operator p =0, one can obtain the steady-state voltage equations of the

induction machine. After several manipulations of the system equations, the d current components

are given by:
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it yields the slip speed equation:
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The solutions of the above equations have to be real, for a given stator current. This means that the

determinant of the second order equation satisfy the condition:
22 2 scsc

qsds r

2
r r m

'
4 0

' '

i x

r r x

λ
∆

    
= − ≥          

                                                                                             (295)

The maximum values for the q component of the stator flux linkage, the slip speed and the
electromagnetic torque (pull-out torque) are:
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If the angular slip velocity is larger than ( )s max
ω static instability will arise. This maximum value

depends only on machine parameters and not on stator current or flux level. Nevertheless, the pull-

out torque depends on the square of the stator current magnitude. The pull-out torque determines
the limit for the system stability operation zone, when the stator current space vector oriented

control is employed. It is possible to limit the torque command not to exceed the pull out torque for
a given stator current. Some important conclusions can be drawn for the stator current orientation
(SCO) vector control strategy:

• The electromagnetic torque and stator current related components of the stator flux linkage are

not decoupled;

• A parameter dependent decoupling network has to be included;

• Torque and flux control does not require speed feed back;

• An operation at low speed is easy to realise as there is no need to estimate the stator flux;

• It is a good alternative for wide range speed drives.

2.9.5. Rotor current orientation (RCO)

Another unconventional vector control strategy is the one wich comprises a synchronuous
reference frame linked to the rotor current space vector. The rotor current orientation control

strategy (RCO) is analysed for a cage rotor induction motor. The selected set of state-space
variables is given by two options if we consider the criteria of direct measurable quantities:

I) The stator flux linkage and rotor current space vectors: 
T

qs ds qr dr, , ' , 'i iλ λ =  x ;

When the stator flux and and the rotor current are selected as state-space variables, one can derive
the rotor flux and stator current functions in terms of state variables as follows:
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To obtain the machine equations in the synchronuous rotor current reference frame, one has to
eliminate the rotor flux from the rotor voltage equations and then force the q component of the rotor
current to be zero. The stator voltages equations are re-written also. The resultant equations have

the following form:
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                                          (305-308)

If the special reference frame is fixed to the rotor current space vector, the q-component of this

current vector is defined equal to zero:
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Different from the RFO case, we have to express the q-flux components, by considering the flux
linkages equations:
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The electromagnetic torque relation and slip speed can be derived in stator current orientation

control as:
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From the second dynamic equation of the machine, a relation between the d-axis component of the

rotor current and stator flux linkage space vector components can be deduced:
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                                                                       (313)

A coupling between the stator flux linkage components appears, as can be deduced from the
previous dynamic equation of the machine. Consequently, any change in the torque producing
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component rc

dsλ  without changing 
rc

qsλ  accordingly, will cause a transient in the stator flux. The

command current of the d-axis component of the stator current can be calculated in order to
overcome this disadvantage:
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                                                                                                 (314-315)

where Kp and Ki are proportional, respectively integral coefficients of the current controller. This
controller can be PI type or soft computing technique type (fuzzy, neural-network).

Steady-state perfomance of a rotor current oriented system
After several manipulations of the system equations if we let the derivative operator p = 0, the d

current components are obtained from the steady-state voltage equations of the induction machine:
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It yields the slip angular velocity equation:
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which for a given rotor flux has always real solution. Thus the slip speed and the electromagnetic
torque are:
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The most important features of rotor current oriented (RCO) vector control with mixed flux and
current state-space variables are:
• The electromagnetic torque and rotor current related components of the stator flux linkage are

not decoupled;
• The decoupling network that has to be included is parameter independent and easy to

implement;
• Torque and flux control require speed feed back;

• There is no stability limit as there is no pull-out slip speed or electromagnetic torque,

• An operation at low speed is easy to realise as there is no need to estimate the stator flux;

• It is a good alternative for wide range speed drives.

II) The stator and rotor currents 
T

qs ds qr dr, , ' , 'i i i i =  x . When the stator and the rotor current are

selected as state-space variables, one can derive the stator and rotor flux as functions in terms of
state variables from the classical flux linkage equations.

To obtain the machine equations in the synchronuous rotor current reference frame, one has to
eliminate the rotor flux from the rotor voltage equations and then force the q component of the rotor
current to be zero. The stator voltages equations are re-written also. The resultant equations have

the following form:
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                                                (320-323)

If the special reference frame is fixed to the rotor current space vector, the q-component of this

current vector is defined equal to zero:
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Different from the (I) case of RCO control strategy, for the (II) case we have to express the stator

flux linkage q-components, by considering the flux linkages equations:
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From the second dynamic equation of the machine, a relation between the d-axis component of the
rotor current and stator current space vector components can be deduced:
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The electromagnetic torque relation and slip speed can be derived in stator current orientation
control as:
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A coupling between the d-axis and q-axis stator current components appears, as can be deduced
from the previous dynamic equation of the machine. Consequently, any change in the torque

producing component rc

dsi  without changing 
rc

qsi  accordingly, will cause a transient in the stator flux.

The command current of the d-axis component of the stator current can be calculated in order to

overcome this disadvantage:

rc rc r ci

ds p dr dq

rc sc

dq s q s

'

1

K
i K i i

p

i i
p

∆

ω

 
= + + 

 

= ⋅

                                                                                                    (329-330)

where Kp and Ki are proportional, respectively integral coefficients of the current controller. This
controller can be PI type or soft computing technique type (fuzzy, neural-network).

Steady-state perfomance of a rotor current oriented system
After several manipulations of the system equations if we let the derivative operator p = 0, the d

flux components are obtained from the steady-state voltage equations of the induction machine:
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It yields the slip angular velocity equation:
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which for a given rotor flux has always real solution. Thus the slip speed and the electromagnetic
torque are:
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The rotor current oriented (RCO) vector control with currents state-space variables presents the

same features as the mixed flux-current state variables model. However the current model is easier
to be implemented as it provides directly the estimated values for the two-axis co-ordinate stator

current. Thus the command for a current PWM inverter is readily obtainable. Also, as feedback
measurements, the stator currents sensors are more reliable and cheaper than the flux sensors.
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3. CONTINUOS-TIME DOMAIN LINEAR MODELS OF THE
SINGLE- PHASE INDUCTION MACHINE

3.1. Introduction

The induction machine is used in a wide range of applications as an electrical to mechanical
energy converter. The single-phase induction machine is the most used converter in home

appliances.
The analysis of the induction machine is essentially the same for a three-phase, two-phase or

single-phase machine. An accurate mathematical model for the induction machine is necessary to
be determined in vector control operation. This model has to be suitable for the analysis of both the
steady-state operation and the dynamic operation of the system. If the double-revolving field

(Veinott - 1959), or the symmetrical component theories (Fortescue - 1918) permit a detailed
simulation and modelling of the single-phase induction machine in steady-state operation, for the

dynamic analysis of the machine a different mathematical approach has to be found.. Starting from
the reference frame theory, with voltages, currents and fluxes referred to a two-axis quadrature co-
ordinates system, a general model for the single-phase induction machine is developed according to

Krause (1965) and Krause et al (1995). Different from the three-phase induction machine, where
two approaches are valid (d-q axes and space vector theory), the single-phase induction machine is

completely described only by a two-axis quadrature axis.

3.2. Voltage and flux-current equations of the single-phase induction machine

In Fig. 3.1 is illustrated a single-phase induction machine. The following assumptions have been

made:
a) electrically orthogonal stator windings with sinusoidal distribution;
b) only the fundamental-space-harmonic-component of the air-gap flux distribution will be

considered;
c) magnetic-saturation effects, core loss and stray load losses are negligible;

d) magnetic-diffusion (i.e. deep-bar) effects in the rotor will be ignored. This assumption is
typically valid in small induction machine. It is further justified by the fact that under most
operating conditions, the single-phase induction motor will be operating at low slips and hence

the rotor currents will be at frequencies sufficiently low that magnetic-diffusion effects are
insignificant.

e) temperature effect on windings resistance and reactance value is negligible;
f) the lamination magnetic permeability is considered infinite;
g) in steady-state operation, the voltages and currents are sinusoidal.
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Fig.3.1. The real model of the symmetrical single-phase induction machine with
squirrel-cage rotor represented by two identical windings

The machine rotor is described by two identical magnetically orthogonal windings. Considering
an arbitrarily reference frame, the spatial position of the stator winding is characterised by the

electrical angle Φ s and the spatial position of the rotor winding is characterised by the electrical

angle Φ r. The angular speed of the rotor is ω r and the displacement between stator and rotor

windings is θ r. These angles are linked through the relation:

s r rΦ Φ θ= + (335)

The voltage equations related to the machine from Fig.3.1, can be expressed as follows:
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bs s
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= +
                                                                                                      (336-337)
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                                                                                                               (338-342)

As the machine is magnetically linear, the fluxes are easily determined from the currents and
inductance values. Particularly, it can be written:
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as asas as asbs bs asar ar asbr br
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                                                                       (343-346)

The mutual inductances given in the above relations are defined by the subscripts. Applying the
reciprocity principle, the following identities are valid:

asbs bsas asar arasM M M M= =

For further development of the model, the terms from the previously equations are grouped in a
matrix form:

abs s abs sr abr

T

abr sr abs r abr( )

λ

λ

= +

= +

L i L i

L i L i
                                                                                                       (347-348)

The indexes denote stator fluxes (as, bs), respectively rotor fluxes (ar, br). The self-inductance can

be written by including a leakage inductance caused by the leakage flux and a magnetisation
(mutual) inductance caused by the magnetic flux which links the stator and rotor core:

ss ls ms

rr lr mr

L L L

L L L

= +

= +
                                                                                                                      (349-350)

where the first term stands for the leakage inductance, and the second one for the mutual inductance

between stator and rotor windings. The mutual inductance can be determined:
2

s(r)

ss(rr)

m

N
L =

ℜ
                                                                                                                               (351)

where: Ns(r) is the turns number and ℜm the magnetic reluctance depending on the air-gap value and

on the magnetic core dimensions.
As the magnetic axis of the stator, respectively rotor windings are orthogonal, it results in null

mutual inductance between the stator and rotor windings. This is one of the main differences from
the three-phase induction machine where the stator (rotor) windings are placed at 1200 electrical
space angle, which determines mutual linkage among the same armature windings.

Due to the relative movement between stator and rotor windings a magnetic linkage will appear.
The following defining relations for the mutual inductance can be expressed:
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                                                                                                                       (352)

The electromagnetic torque of the single-phase induction machine can be determined from the

generalised forces law:
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W iP
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∂
= ⋅

∂
                                                                                                             (353)

where Wc represents the conenergy which is equal to the magnetic energy of the linkage field as
follows:

2 2 2 2
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In the above relation, the superscript (’) stands for referred rotor windings to the stator according to
the expressions:
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abr abr
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                                                                                                                  (356-357)

The electromagnetic torque relation can be simplified and presented in the following form:

( ) ( )e ms as ar bs br r as br bs ar r' ' sin ' ' cos
2

P
T L i i i i i i i iθ θ = − + + −                                                         (358)

This relation shows that there are two components of the instantaneous electromagnetic torque:

an average component with constant value for a given value of the rotor speed and a pulsating
component with a frequency double of the currents frequency (ω e). The pulsating torque

component determines an important magnetic noise for the single-phase induction machine
compared to the three-phase induction machine. The mechanical equation that links the torque and

the rotor speed is:

r

e m r L

2 2d
T J B T

P dt P

ω
ω= ⋅ + +                                                                                                   (359)

where J is the rotor inertia, B is the viscous friction coefficient associated to the rotational system of
the machine and with the mechanical load, and P represents the number of poles for the analysed
machine.

3.3. Analysis of the single-phase induction machine in stationary reference frame

In order to eliminate the time dependence of the voltage and flux equations terms, a variables
transformation into a new reference frame is necessary. This transformation is given by the

following relations (Krause et al - 1995):
s
sqds abs=f K f                                                                                                                              (360)
s
rqdr abr' '=f K f                                                                                                                           (361)
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− − 
=  − − − 

K                                                                                             (363)

where f can be fluxes, voltages, currents in new co-ordinates (d-q) or in classical co-ordinates (a-b).

Index (s) stands for statoric terms and index (r) stands for the rotoric terms. One should note that the
two transformation matrixes depend on the generalised co-ordinate θ  which expresses the

periferical displacement of the chosen reference frame.
Reference frames linked to stator, rotor or arbitrarily can be chosen for the polyphase induction

machine. As for the single-phase induction machine, the stator windings are not identical, the only

transformation that maintains the windings parameters (resistance, inductance) unchanged is the
stationary reference frame transformation (θ =0).

The voltage and linkage flux equations are expressed for the previous assumptions made at the
beginning of this chapter.
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Note: For compactness, the flux linkages will be further described by flux linkage units per
second or volts, and the inductance equivalent circuit elements will be transformed in reactance

elements.
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ω
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In the reference frame systems theory we have to note that the parameters do not depend on the
relative position between the stator and the rotor. The time derivative (d/dt) in the above equations

is denoted as p, and ω b andω r represent the angular base speed given by the supply frequency,

respectively the electrical rotor speed. The qr terms are referred to the qs winding and the dr terms

are referred to the ds winding. It is important to observe that stator windings of the single-phase
induction machine physically represent the d-q co-ordinates windings, different from the three-

phase induction machine where the two-axis co-ordinate equivalent windings are fictive.
The dynamic analysis of the symmetrical single-phase induction machine can be accomplished

by using the equivalent circuit from Fig. 3.2. The only modification that has to be done in order to

obtain the real value of the terminal quantities (voltage, current) is the multiplication by (-1) factor
for the auxiliary (ds) winding parameters.

                    rs              xs                        x’r                   (ωr/ωb)λ’dr

    +                                                                                +          -

          iqs                                  xm                   iqr r’r

uqs

      _

                    rs              xs                          x’r            (ωr/ωb)λ’QR

    +                                                                             -        +

            ids                               xm                   i’dr r’r

uds

     _

Fig. 3.2. Equivalent circuit of the symmetrical single-phase induction machine
conform to reference frame system theory
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3.4. Analysis of the steady-state operation for the symmetrical single-phase induction machine

In a wide range of applications the single-phase induction machine is equipped with a cage rotor.
During the steady-state operation, the stator parameters are variable with the stator voltage

frequency ω , and the rotor parameters are variable with the slip frequency ω - ω r. From the

stationary reference frame equations, by letting the differential operator p be replaced by the

complex operator jω , the following matrix relation is established (Krause and Thomas - 1965):
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where
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A symmetrical two-phase system is defined by the identities:
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ɶ ɶ

ɶ ɶ
                                                                                                                       (376-377)

where
~
F  represents a complex variable with current or voltage significance. The four equations

from the above matrix relation are interdependent. If it is used, the variable slip s is defined as:

r
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ω ω

ω

−
=                                                                                                                                 (378)

and also through the inverse transformation from the stationary reference frame (d-q) to the
physical one (a-b), the relations for the steady-state operation analysis of the symmetrical single-
phase induction machine can be written:
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The above equations suggest the equivalent circuit from Fig. 3.3.
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Fig. 3.3. Equivalent circuit of the symmetrical single-phase induction machine

for the steady-state operation analysis
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With slight modifications (xm becomes 3/2xm) it can be observed that the equivalent circuit from
Fig. 3.3 can be used also for the three-phase induction machine performance in steady-state

operation.
The electromagnetic torque equation is:

2
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It is important to highlight that the positive values of the torque are obtainable when the slip s is
positive (motor operation) and the negative values when the slip s is negative (generator operation).

By setting the torque/slip derivative equal to zero, the relation for the critical slip can be obtained:
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The positive value corresponds to motor operation, and the negative one to generator operation.

If at start-up (s = 1) the torque is directly dependent to the variation of rotor resistance, as the
magnetisation reactance value is considered to be much higher than the stator or rotor resistance
value, the maximum torque value is not dependent to the rotor resistance value:
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3.5. Analysis of the unsymmetrical single-phase induction machine

A new equations set and a new equivalent circuit for the unsymmetrical single-phase induction

machine can be obtained by eliminating from the initial assumptions the one referring to identical
stator windings (Krause - 1965):
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Flux equations:
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The electromagnetic torque equation is:



72

m

e qs dr ds qr

b

( ' ' )
2

xP
T k i i i i

ω
= ⋅ ⋅ ⋅ −                                                                                                     (394)

The mathematical model presented in Fig. 3.4 permits the analysis of steady state as well as
dynamic operation of the unsymmetrical single-phase induction machine. This model is also
suitable for implementing non-linearities effects such as: core loss or saturation of the main or

leakage inductance.
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r/
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     _

                     ra              xla                  k
2 x’sr          k (ωr/ωb)λ’qr

    +                                                                               -      +

          ids                                                        i’dr k 2 r’r
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     _

xm

k2 xm

Fig. 3.4. Equivalent circuit of the unsymmetrical single-phase induction machine

3.6. Linear models for single-phase induction motors

The analysis of the induction machine-drives is generally made using a conventional linear

mathematical machine model, either in the form of  self and mutual inductances, or the familiar T-
form of equivalent circuit. This type of model has been developed in the previous paragraph,

dedicated to symmetrical and single-phase induction machines.
When the vector control of these machines is implemented, such kind of models is adequate for

many situations, especially for air-gap flux orientation control strategy. However, they are more

complex than necessary for the analysis of most linear machines.
If for the polyphased induction machine two approaches are valid related to vector control

analysis, i.e. the space vector notation and the two-axis co-ordinates reference frame, the single-
phase induction machine can be completely described only by the latter approach in stationary
reference frame. As for the polyphased induction machines, the single-phase version can be

controlled with a scheme which maintains correct angular relationship between the stator current
vector and one flux vector (stator, air-gap or rotor flux), by either direct or indirect methods. All the

field-oriented methods suffer from specific theoretical and practical problems. The indirect methods
are highly dependent on the machine rotor parameters (varying with load and temperature), and
have good speed control performance only if  precise shat encoders are used to calculate the

electrical frequency. The direct methods present minor dependency on rotor parameters, but are not
able to measure the selected flux vector at low speed, i.e. zero frequency. This is why only

estimations of the selected flux vector can make possible the total control of the speed in direct
methods. For estimation, usually the terminal quantities are measured and a mathematical model
with related parameters is used. Thus, the correct estimation of the machine parameters is essential

for all types of field oriented control schemes.



73

The original field orientation scheme, developed for the three-phase induction machine, was
based on the alignment of the rotor flux linkage because the torque and the rotor flux are related to

each other in a straightforward manner, without any de-coupling circuit. To calculate the rotor flux,
the stator and rotor leakage inductance and the main inductance are necessary. If some other

equivalent circuits are implemented, it can be obtained a Γ model like that one illustrated by

Slemon (1989), where the stator and rotor leakage inductance are viewed as a total measurable

inductance.

3.6.1. Linear Γ model of the symmetrical single-phase induction machine

The classical T-form circuit model can be transformed into simpler models with no loss of

information or accuracy. Since rotor variables can be seen from the stator reference frame as
referred variables depending on the transformation turn ratio, we can choose a value such that the

magnetisation inductance is equal to the total stator inductance. This would give the following set
of rotor variables related to those from the T-form equivalent circuit:
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                                                                                       (395)

where m s m/( )x x xγ = + . The above relation combined with the voltage equations gives the

equivalent d-q modified model for the symmetrical single-phase induction machine presented in

Fig. 3.5. This configuration has been denoted as the Γ form model due to its inductance structure.

The parameters of this equivalent circuit are related to those of the T-form d-q mathematical model
through the relations:
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Fig. 3.5. Equivalent linear d-q Γ form circuit for the

symmetrical single-phase induction machine
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These parameters can be derived directly from the usual no load and standstill measurements on the
machine.

This Γ model represents an appropriate solution for the analysis of scalar control and vector

control (stator flux oriented) single-phase induction machine (Slemon - 1994). The following

equations describe the complete operation of the system:
Stator and rotor voltage:
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Stator and rotor flux linkage:
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Electromagnetic torque:
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In the steady-state (p = 0) the torque expression becomes:
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where the slip s is given by: b r b
( ) /s ω ω ω= −

3.6.2. Linear inverse Γ model of the symmetrical single-phase induction machine

If the arbitrarily turns ratio of referring the rotor parameters to the stator is chosen such that the
magnetisation inductance is equal to the total rotor inductance, a new set of variables is obtainable:
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where: m m r'' /( )x x xγ = + . Using the voltage equations given for T-form equivalent circuit, it will

result a new configuration denoted as inverse Γ form model shown in Fig.3.6 in which:
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                                                                                (408)

The inverse Γ form mathematical model of the single-phase induction machine is particularly

appropriate to analyse the vector-controlled machine in rotor field oriented systems.

                    rs                     x’L                                  (ωr/ωb)λ’’dR

    +                                                                                +          -

          iqs                                  x’M                   i’’qR r’’R

uqs

     _

                    rs                     x’L                                (ωr/ωb)λ’’qR

    +                                                                             -        +

            ids                               x’M                   i’’dR r’’R

uds

     _

Fig. 3.6. Equivalent linear d-q inverse Γ form circuit for the symmetrical

single-phase induction machine

The following equations can be written to describe the operation of the machine:
Stator and rotor voltage:
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                                                                                       (409-412)

Stator and rotor flux linkage:

qs L qs M qs qR M L qs M qR

ds L ds M ds dR M L ds M dR
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dR M dM M ds dR
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                                                       (413-416)

Electromagnetic torque:
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e qs dR ds qR qs dR ds qR dR qR qR dR

b

'
' ' ' ' '' '' '' ' ' '' ''
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xP P P
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ω

      = ⋅ − = ⋅ − = ⋅ −      
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     (417)

In steady-state operation the torque becomes:
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                                                                                              (418)

where s denotes the slip for the analysed machine.

3.6.3. Universal model of the symmetrical single-phase induction machine

The modern theory of the vector controlled induction machine demonstrates that several
reference flux vectors can be chosen for an independent control of the torque and flux in the

machine (DeDoncker et al - 1995). A unified theory simplifies and unifies the calculations of the
machine parameters and makes a change of the reference vector flux more flexible. The idea is to
link the stationary reference frame (the only valid option for single-phase induction machine) to an

arbitrary flux vector γλ which can be derived from the flux linkage equations given at the previous

analysed models (T-form, Γ-form, inverse Γ-form) by means of a turn ratio transformation.

An arbitrary turn ratio γ is used to multiply the real rotor vector flux r dr qrjλ λ λ= + ⋅ and

defining the flux linkage equations as:
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                                                                   (419-420)
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                                                  (421-423)

The transformed rotor current d(q)R'i  equals:

qrdr
dR qR
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' ; '

ii
i i

γ γ
= =                                                                                                              (423)

The flux linkage equations reduce to:
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(424-427)
This flux linkage can be represented by the equivalent circuit given in Fig. 3.7.
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Fig. 3.7. Flux linkage equivalent circuit with arbitrary turn ratio

The rotor quantities are now calculated with the equations:
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                                                                                            (428-430)

Through variation of the arbitrary turn ratio “γ” the appropriate reference vector flux for controlling

the machine can be selected. Table 3.I summarise the choices that have to be made:

TABLE 3.I . Specific choices of the turn ratio “γ”

Turn ratio Mathematical model λd(q)γ Flux selected

m

m r

x

x x
γ =

+
Inverse Γ-form λd(q)r Rotor flux

1=γ T-form λd(q)m Air-gap flux

m s

m

x x

x
γ

+
=

Γ-form λd(q)s Stator flux

The universal mathematical model given in Fig. 3.7 permits a choice between different flux vectors

by selecting only one parameter “γ” , denoted the arbitrary turn ratio. All other basic machine

parameters remain unaffected.

3.6.4. Linear Γ model of the unsymmetrical single-phase induction machine

Usually the single-phase induction machine is equipped with non-identical sinusoidally
distributed windings arranged in space quadrature. From the T-form equivalent circuit developed
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for this type of machine in previous paragraphs, it can be developed a linear Γ-form equivalent

circuit as shown in Fig. 3.8.
Since rotor variables can be seen from the stator reference frame as referred variables depending

on the transformation turn ratio, we can choose a value such that the magnetisation inductance is

equal to the total stator inductance on each of the two-axis co-ordinates. This would give the
following set of rotor variables related to those from the T-form equivalent circuit:
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                                                                                    (431)

where

q m lm m

2 2

d m la m

/( )

/( )

x x x

k x x k x

γ

γ

= +

= +
                                                                                                      (432-433)

For an identical distribution of the windings, we have with a good approximation 2

la lmx k x= , and

this gives equal turn ratio for each axis ( d qγ γ= ).

The above relations combined with the voltage equations give the equivalent d-q modified model

for the unsymmetrical single-phase induction machine. The parameters of the Γ-form model are

related to those of the T-form d-q mathematical model through the relations:
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                                    (434-438)
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Fig. 3.8. Equivalent linear d-q Γ form circuit for the

unsymmetrical single-phase induction machine

It results an equations system as follows:
Stator and rotor voltage:
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Flux linkage:
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                                   (443-447)

Electromagnetic torque:
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                                                        (448)

This Γ-form model represents an appropriate solution for the analysis of scalar control and vector

control (stator flux oriented) of the unsymmetrical single-phase induction machine drives.

3.6.5. Linear inverse Γ model of the unsymmetrical single-phase induction machine

Another possible approach on analysing  the unsymmetrical single-phase induction machine is

the one when an arbitrary turn ratio is used such that the magnetisation inductance in each axis is
equal to the correspondent total rotor inductance. The following set of variables is readily
obtainable:

d

dR q

qR

dr qr dr qr

ddR

qR

q

'

'' '

'' 1
' ' ' '

'''

'' 1

'

i i
i

i

γ

λ γ

λ
λ λ

γ

γ

 
          = ⋅             
  

                                                                              (449)

where:
2
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q d q2

r m r m
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x k x

x x k x x
γ γ γ= = =

+ +
                                                                            (450)

The linear inverse Γ-form model of the unsymmetrical single-phase induction machine is

presented in Fig. 3.9. This configuration is deductible from the T-form model using the above
expressions and new equivalent machine parameters defined as follows:
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Fig.3.9. Equivalent linear d-q inverse Γ form circuit for the

unsymmetrical single-phase induction machine

The complete equations system is detailed below:
Stator and rotor voltage:
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Flux linkage:
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                                              (460-463)

Electromagnetic torque:
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The circuit model from Fig. 3.9, is particularly suitable for analysis and understanding the vector

control systems with single-phase induction machine when the rotor flux vector is chosen as
reference.

3.6.6. Universal model of the unsymmetrical single-phase induction machine

All the developed mathematical models for the unsymmetrical induction machine can be
generically presented with a universal model that preserves the characteristics for each of the
equivalent form circuits.

The basic idea is to calculate in the stationary reference frame (the only valid option for single-
phase induction machine that maintains constant parameters) an arbitrary flux vector. The flux
vector is determined from the flux linkage equations given in various forms of equivalent circuits

(T-form, Γ-form, inverse Γ-form) by using an arbitrary turn ratio transformation.

This turn ratio, that characterises the two-axis reference frame, has two values: γq and γd. By

multiplying the real rotor vector flux r dr qrjλ λ λ= + ⋅ with the turn ratio we can define the flux

linkage equations as:
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The transformed rotor current Rqdi )('  equals:
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The flux linkage equations reduce to:
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                                    (470-473)

This flux linkage can be represented by the equivalent circuit given in Fig. 3.10. The rotor
quantities are now calculated with the equations:
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                                                                                  (474-476)

Through variation of the arbitrary turn ratios “γq” and “γd” there are several options to select the

appropriate reference vector flux for controlling the single-phase induction machine. Table 3.II

summarises the available choices:
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Fig. 3.10. Flux linkage equivalent circuit with arbitrary turn ratio
for unsymmetrical single-phase induction machine

TABLE 3.II

Specific choices of the turn ratio “γq” and “γd”

Turn ratio Mathematical

model
λd(q)γ Flux selected
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The universal mathematical model given in Fig. 3.10 permits a choice between different flux

vectors by selecting only two parameters “γq” and “γd” that have practically equal values, and

denote the arbitrary turn ratio for each axis of the system. As in the symmetrical single-phase
induction machine case, all other basic machine parameters remain unaffected.

3.7. D-Q axes models of the single-phase induction machine

The single-phase induction machine can be modelled by using different state-space variables,
keeping as inputs the stator voltages and the load torque, and as outputs the electromagnetic torque

and rotor angular velocity. Let us define the possible set of currents and flux linkages per second
space vectors as follows:
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Two-space vectors have to be selected from the six available vectors. Let the selected pair of

state-space variables be denoted as 21 , xx . It is possible to express the set of six state-space

variables in terms of the two selected state-space variables as follows:
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                                               (484)

where the coefficients aij, depend on the chosen set of state-space variables.
Out of fifteen possible state-space versions obtained from combining two space vectors from the

total of six, only fourteen represent valid mathematical models for the single-phase induction
machine. Please note that the pair of state-space variables that comprise the airgap flux linkage
space vector and the magnetising current space vector cannot be selected as these vectors have the

same direction. These models can be classified in three types: currents space vectors, flux linkages
space vectors and mixed currents-flux linkages space vectors models.

In conjunction with the mechanical equation:

( )r e L
2

P
p T T

J
ω = ⋅ −                                                                                                                  (485)

we obtain a complete version of the single-phase induction machine model, viewed as the key for a

motion control system.
For an unitary approach on all the possible models, and considering that the magnetising

reactance has generally much greater value than the leakage reactance, the following approximation

is made without altering the final results:
2 2 2

la m lm m s( )x k x k x x k x+ ≅ + =                                                                                                 (486)
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The starting point for the state-variable models is given by voltage equations system written in
stationary reference frame:

p= ⋅ + ⋅u L x R x                                                                                                                         (487)

where: x is the selected set of state-variables and represent also the output of the model, u is the

input vector (stator voltages), L is the coefficients matrix (it can be formed by reactance values, or
non-dimensional elements) for multiplying the time derivative of the state-variables, R is the

coefficients matrix (it can be formed by resistances and reactances values or non-dimensional
elements) for multiplying the state-variables and p stand for the differential operator (d/dt). It results
the general form of the state-variables system:

p = ⋅ + ⋅x A x B u                                                                                                                        (488)

where:
1

1

−

−

= − ⋅

=

A L R

B L
                                                                                                                     (489-490)

All the following mathematical models can theoretically be discretised and used for

implementation of controllers in the drive systems with single-phase induction machines. However,
practically only few of them are suitable for this purpose as the computational effort, and implicitly

the cost of the hardware, is a decisive factor to be considered.
When the vector control strategy has to be chosen, each of the six space vectors that can be

selected as state-space variables represents a possible basis for a reference frame. The algorithm for

implementing field oriented control systems is obtained as follows:
1. The rotor flux space vector is expressed as function of state-variables;

2. The rotor angular velocity ω r term is substituted with (ω r - ω k) where ω k is the angular

velocity of the synchronous frame;

3. The dynamic equations that relates the rotor angular velocity to rotor flux linkages and voltages
are deduced in the new state-variable system;

4. The synchronous reference frame is selected linked to one of the space vectors, which means

that the q-axis component of the reference space vector is null;
5. The torque equation is computed according to the selected flux or current space vector in the

synchronous reference frame.

3.7.1. Models with currents space vectors as state-space variables

I) The most used model of the single-phase induction machine is the currents space vectors state-

space variables 
T

qs ds qr dr, , ' , 'i i i i =  x . An important feature of this model is that the stator and

leakage reactance, arbitrarily considered equal in many implementations, are now included in the

stator and self-reactance values. As the stator currents are easily measurable quantities, a controller
based on these state variables gives good performance accuracy. The model is readily available

from the equations of voltages and flux linkages per second, and it can be expressed in a matrix
form as follows:
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2

r m m r m r m r r

b b
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2
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qrsm

dr

2 2

m s

'
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'
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'
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i
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i

x x
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u
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  
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
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   ⋅
  −       

 −
  

                    (491)

where:
2

s r m'D x x x= −
The electromagnetic torque can be computed as:

( )m

e qs dr ds qr

b

' '
2

xP
T k i i i i

ω
= ⋅ ⋅ ⋅ −                                                                                                    (492)

As it can be observed, a shortcoming for this model is the full system matrix, with all 16 elements

non-zero values.

II) Another mathematical d-q axis model based on currents space vectors is the one which
comprises the stator and the magnetising space vector currents as state-space variables

T

qs ds qm dm, , ,i i i i =  x . The state matrix elements are all non-zero, which implies a computational

effort similar to the previously analysed model.
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m r r m m lr r m r m r
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 
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−   
   + ⋅
   
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

(493)
where:

1 lm r m lr

2 2

2 m lr la r

' '

' '

A x x x x D

A k x x x x k D

= + =

= + ≅
The instantaneous electromagnetic torque may be expressed in terms of the state-space variables:

( )m

e qs dm ds qm

b
2

xP
T k i i i i

ω
= ⋅ ⋅ ⋅ −                                                                                                    (494)

III) The third possible combination of current space vectors as state-space variables is obtained

by selecting magnetising and rotor currents 
T

qr dr qm dm' , ' , ,i i i i =  x . When compared to the other

current space vector models, the similar computing burden for obtaining the outputs of the system is

obvious. The main difference between them is the presence of the global parameters (self-
reactances) in the first model, while in the other two models an accurate determination of the

leakage reactance is necessary. A complete description of the state-variables in matrix notation is
given below:
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m m r s s lr s mr m m r
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A A A Aip
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A A A Ai

x x r x

A k

ω ω

ω ω
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−   
   + ⋅
   
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 
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  

(495)
where:

DkxxkxxA

DxxxxA

slrmla

slrmlm

22

2

1

'

'

≅+=

=+=

The instantaneous electromagnetic torque is expressed as follows:

( )m

e dr qm qr dm

b

' '
2

xP
T k i i i i

ω
= ⋅ ⋅ ⋅ −                                                                                               (496)

3.7.2. Models with flux linkages as state-space variables

I) In this case the flux linkages space vectors, 
T

qs ds qr dr, , ' , 'λ λ λ λ =  x are used for describing the

mathematical model of the machine. The matrix equations for this system are as follows:

m r m m

qs qs qsa r a m

2 2

ds ds ds

r sr m rqr qr qrb

b
dr dr dr

r sr m r

b

'
0 0

'
0 0

''' ' '
0

' ' '

''
0

r x r x

D D

ur x r x

k D k D up
r xr x u

D D k u

r xr x k

D D
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λ λ

ωλ λω
ωλ λ

ω

ω
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 
 

−      
      
      ⋅ = ⋅ +−      
                 

− −
  

                                 (497)

where D has the same significance as in the previous cases.

The electromagnetic torque is determined with the equivalent relation:

( )m

e qs dr ds qr

b

' '
2

xP
T

k D
λ λ λ λ

ω
= ⋅ ⋅ −

⋅
                                                                                  (498)

As opposed to the current models, it can be observed that the computational burden is substantially

lower. Due to this important feature, this model is the most suitable for discretisation in motion
control strategies.
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II) An alternative to model the single-phase induction machine with flux space vectors as state-
variable system, is the selection of air-gap flux space vector among the set of independent variables.

A first approach is given by the stator and air-gap flux space vectors selected as state-space

variables
T

qs ds qm dm, , ,λ λ λ λ =  x .

m m
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ds

2
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where:

1 lm m lr s

2 2

2 la m lr s

'

'

A x x x x D

A x x k x x k D

= + =

= + ≅
The electromagnetic torque expression shows that this model is prohibitive for implementation for

modelling the single-phase induction machine in a vector control system and becomes:

e qs ds qs dm dm qm

b lm la la lm

1 1 1

2

P k k
T

kx x x kx
λ λ λ λ λ λ

ω

  
= ⋅ ⋅ ⋅ − + −  

  
                                                  (500)

which can be simplified only if the approximation 2

la lmx k x=  is reasonable to be made:

e qs dm dm qm

lm b

1

2

P
T

kx
λ λ λ λ

ω
 = ⋅ ⋅ −                                                                                              (501)

III) The third option of selecting flux space vectors as state-space variables is the one which

comprises the air-gap (magnetising) flux and rotor flux space vectors 
T

qm dm qr dr, , ' , 'λ λ λ λ =  x . By

comparison to the previously analysed model, this one presumes the same computational effort, but
the electromagnetic torque is determined in a suitable form for vector control, without any

supplementary approximations.
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where:

1 m lr lm r
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2 m lr lm r

' '

' '

A x x x x D

A k x x x x k D

= + =

= + ≅
The resulting relation for computing instantaneous electromagnetic torque is as follows:

( )e qm dr dm qr

lr b

1
' '

2 '

P
T

kx
λ λ λ λ

ω
= ⋅ ⋅ −                                                                                           (503)

3.7.3. Models with mixed currents – flux space vectors state-space variables

I) If the stator variables are chosen for modelling the single-phase induction machine system,

then a mixed flux linkages-currents state-space variables model 
T

qs ds qs ds, , ,i iλ λ =  x  is developed.

The matrix equations and the electromagnetic torque relation are:
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(504)

e ds qs qs ds

b

1 1

2

P
T i k i

k
λ λ

ω

 = ⋅ − 
 

                                                                                                      (505)

II) Another important mixed flux linkages-currents state-space variables model
T

qr dr qr dr' , ' , ' , 'i iλ λ =  x is that expressed in rotor quantities. This model can be easily used for the

rotor flux oriented control of the machine. We can describe the system as follows:
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The electromagnetic torque relation is given below:

e qr dr dr qr
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                                                                                           (507)

III) A similar model to the previous one is that with stator current and rotor flux linkage
T

qr dr qs ds' , ' , ,i iλ λ =  x as state-space variables. It represents an alternative model for rotor flux

oriented control strategies. The matrix equation and electromagnetic torque relation are presented

below:
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and torque expression is:
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IV) A rarely used mathematical model is that with mixed rotor currents space vector and stator

flux linkages space vector as state-space variables 
T

qs ds qr dr, , ' , 'i iλ λ =  x . However, the advantage

of this model is that merely only stator winding parameters are necessary, so the influence of rotor

parameters is minimised. It can be used for an unconventional stator flux oriented control with rotor
current components producing the torque and the flux. The expressions for implementing this

model are:
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where the significance of D was already stated.

The main system output, the electromagnetic torque, can be computed as:
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V) The mixed stator current space vector and air-gap flux space vector as state-space variables
T

qm dm qs ds, , ,i iλ λ =  x belongs to one of the more complex model types. It preserves information

regarding both stator and rotor parameters. Different from the previous mixed models, the state-

space matrix contains only non-zero elements, which leads to greater computational effort.
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where:
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The electromagnetic torque is computed as:
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VI) A similar model to the precedent one, is the mixed rotor current space vector and air-gap flux

space vector as state-space variables 
T

qm dm qr dr, , ' , 'i iλ λ =  x . The matrix equation of the system is

given below:
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where:
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The electromagnetic torque relation becomes:
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VII) If the magnetising current space vector is selected as state-space variable together with one

of flux linkages space vectors 
T

qm dm qs ds, , ,i i λ λ =  x , the state matrix computation gives several

null elements. Nevertheless, the torque expression is more complicated and the final relation can be

written in the same form as in previous cases only through some new assumptions,.
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                                 (517)

The presence of oscillating terms given by the product between flux linkages, makes this model
prohibitive for implementing in vector control strategies.

VIII) The last mixed current-flux linkages space vector model realises the connection between

the magnetising current space-vector and the rotor flux linkage space vector
T

qm dm qr dr, , ' , 'i i λ λ =  x , selected as state-space variables. The state matrix contains the same

number of zero elements (four) and the instantaneous electromagnetic torque is determined in a
suitable form for vector control implementation.
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The electromagnetic torque is determined as follows:
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3.8. Vector control strategies for single-phase induction machine

The aim of vector control is usually to decouple the stator current is into its flux producing and
torque producing components (ids, iqs respectively) in order to obtain a decoupled control of the flux
and the electromagnetic torque. For this reason a special reference frame is selected fixed to

different space vector variables. The reference frame has to be synchronous, as all the space vectors
have the same angular velocity given by the supply voltage frequency.

As the stator windings of the single-phase induction motor are usually unsymmetrical, the vector
control principles have to be implemented in a special way. The machine parameters differ from
axis d to axis q. The waveform of the electromagnetic torque demonstrates the unbalance of the

system. Even for equal amplitude, orthogonal stator currents iqS and idS, the torque contains AC
terms. A new torque relation has to be developed for each case of vector control strategy of single-

phase induction machine (Correa et al. - 1998, 1999).
Generally, the considerations made for the three-phase induction machine when the vector

control sheme has to be developed, are valid. An easy to follow steps algorithm for implementing

vector oriented control systems is obtained as follows:
1. A complete mathematical model of the single-phase induction machine is developed in

stationary reference frame,  the only reference frame that maintains constant parameters,
according to the chosen set of state-space variables;

2. A suitable torque expression is determined, in order to eliminate the influence of AC terms;

3. The rotor based variables are completely expressed in the new state-variable system;
4. The rotor angular velocity ωr term is substituted with ωs = (ωr - ωk) where ωk and ωs are the

angular velocity of the synchronous frame, respectively the slip angular velocity;
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5. The synchronous reference frame is selected linked to one of the space vectors, which means
that the q-axis component of the reference space vector is null;

6. The torque equation is computed according to the selected flux or current space vector in the
synchronous reference frame.

The transformation of reference frames for the induction motor vector control can be summarised as
shown in Fig. 3.11.

Drive

Controller
Inverse 2/2 Clark/ Park

Transformation

2/2 Clark/ Park

Transformation

Induction

motor

Stationary reference frameSynchronuous reference frame

Two-axis co-ordinate system
Single-phase system

Fig. 3.11. Block diagram of transformation of frames and co-ordinate systems
for single-phase induction motor vector control

3.8.1. Stator field orientation (SFO)

For this vector control strategy, the set of state-space variables formed by stator flux linkage and

current space vectors 
T

qs ds qs ds, , ,i iλ λ =  x is selected. The mathematical model is given in the

chapter dedicated to d-q models of the single-phase induction machine.

The rotor based variables expressed in state-space variables terms are:
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                                                                                             (520-523)

To obtain the machine equations in the synchronuous stator flux reference frame, one has to
eliminate the rotor flux from the rotor voltage equations and then force the q component of the
stator flux to be zero. The stator voltages equations remain unchanged. If a cage rotor is considered,

the resultant equations are as follows:
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                                (524-525)
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where the definition used for the slip speed is: s e rω ω ω= − . The electromagnetic torque expression

has to be re-written:
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If we make the notation:
s 2 s

qs qs1i k i=  the above torque relation may be expressed as for the

symmetrical induction machine:
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If the special reference frame is fixed to the stator flux linkage vector, the q-component of this flux

vector is defined equal to zero:
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From stator flux linkage equations, the q-current components are given by:
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The electromagnetic torque relation and slip speed can be derived in stator field orientation control

as:
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                                                                                               (530-531)

The second dynamic equation of the machine, shows that there is a coupling between the stator

current components. Consequently, any change in the torque producing component 
s

qs1i  without

changing s

dsi  accordingly will cause a transient in the stator flux. A decoupler is necessary to

overcome this disadvantage. Therefore the command current of the d-axis component of the stator
current can be calculated as follows:
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                                                                                                  (532-533)

where Kp and Ki are proportional, respectively integral coefficients of the flux controller. This
controller can be PI type or soft computing technique type (fuzzy, neural-network).

Steady-state perfomance of a stator flux oriented system

Letting the derivative operator p = 0, one can obtain the steady-state voltage equations of the
induction machine. After several manipulation of the system equations, the d current components
are given by:
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it yields the slip speed equation:
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The solutions of the above equations have to be real, for a given stator flux linkage. This means that

the determinant of the second order equation satisfy the condition:

( )
2

2 s
2

4 2 sm s

qs1

s

4 0
x

k D i
kx

λ
∆

 
= − ≥ 

 
The maximum values for the q component of the stator current, the slip speed and the

electromagnetic torque (pull-out torque) are:
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                                                                                               (537-539)

The problems related to static stability of the single-phase induction machine when this vector
control strategy is applied, are similar to the polyphase machine case. It has to pointed out that the
critical values for current q-component, slip angular velocity and electromagnetic torque depend

also on the turns ratio k of the unsymmetrical stator windings. If we detail this consideration, it can
be observed that having a motor equipped with a main stator winding with fixed parameters

(resistance, reactance) the pull out torque and critical rotor speed are such that (Popescu -2000):
• A maximum torque value and minimum rotor speed are obtained if the turns ratio k < 1, which

is the case of the usual split-phase motors configuration;
• The medium values are obtained if the turns ratio k = 1, which is the case of the symmetrical

motors configuration;

• A minimum torque value and maximum rotor speed are obtained if the turns ratio k > 1, which

is the case of the capacitor run motors configuration;

Some important conclusions can be drawn for this vector control strategy, besides those ones
valid for the polyphase motor:

• The estimated equivalent value for the torque component of the stator current has to be

corrected by dividing to the square of the turns ratio value;

• There is no need for changing the number of co-ordinates from the real machine system to the

control system.

3.8.2. Rotor flux orientation (RFO)

For this vector control strategy, the set of state-space variables formed by rotor flux linkage and

stator current space vectors 
T

qr dr qs ds' , ' , ,i iλ λ =  x is selected. The mathematical model is given in

the chapter dedicated to d-q models of the single-phase induction machine.

The stator flux linkage and rotor current space vectors components expressed as functions in
terms of state-space variables are:
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( )

( )

( )

r r r
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r r r
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'
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'
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 

                                                                                                (540-543)

The rotor voltage equations re-written in terms of the state-space variables become:

r r r rsr r

qr m qs qr dr

r r b b

r 2 r r rsr r
dr m ds dr qr

r r b b

' ' 1
' 0 ' '

' '

' '
' 0 ' '

' '

r r p
u x i

x x k

r r p
u k x i k

x x

ω
λ λ

ω ω

ω
λ λ

ω ω

 
= = − + + + ⋅ 

 

 
= = − + + − 

 

                                                          (544-545)

The electromagnetic torque expression has to be re-written:

r r r rm

e dr qs qr ds

r b

1
' '

2 '

xP
T i k i

x k
λ λ

ω

 = ⋅ − 
 

                                                                                          (546)

If we make the notation:
r 2 r

qs qs1i k i=  the above torque relation may be expressed as for the

symmetrical induction machine:

( )r r r sm

e dr qs1 qr ds

r b

' '
2 '

xP k
T i i

x
λ λ

ω
= ⋅ −                                                                                               (547)

If the special reference frame is fixed to the rotor flux linkage vector, the q-component of this

flux vector is defined equal to zero:
r

qr

r r

dr r

' 0

' '

λ

λ λ

=

=
                                                                                                                                  (548)

From rotor flux linkage equations, the q-current components are given by:
r r
qs1 qs1

2
r rm
qr qs1

r

'
'

i i

k x
i i

x

=

= − ⋅
                                                                                                                        (549)

The flux producing component of the stator current is determined as follows:

rr

dr

r br

ds 2

m

'
1 '

'

x p

r
i

k x

λ
ω

 
+ ⋅ 

 =                                                                                                               (550)

The above relation shows that there is no need of a current decoupler in rotor field orientation

scheme. Both stator current components (torque and flux producing) can be controlled
independently.

Steady-state perfomance of a rotor flux oriented system
Letting the derivative operator p =0, one can obtain the steady-state voltage equations of the

induction machine. After several manipulation of the system equations, the d current components
are given by:



99

rr
r qs1r dr b

ds 2

s rm

r
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'

' 0

k r i
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xk x
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λ ω

ω

⋅
= = ⋅

=

                                                                                                          (551)

It yields the slip speed equation:

r

rs dr m
b r qs12

r

'
' 0

'

x
k r i

xk

ω λ
ω− ⋅ ⋅ =                                                                                                        (552)

which for a given rotor flux has always real solution. Thus the resulting current controlled slip
speed and the electromagnetic torque are:

( ) ( )

3 r r

m r b q s 1 m r b qs

s r r

r dr r dr

2 2
4 2

2 2
r r r rm m r m r

e dr qs1 qs1 qs

r b r s r s
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x x k r x k rP P P
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ω ω
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= =

   
= ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅   

   

                  (553-554)

By comparison with the three-phase induction motor, for the rotor field orientation control

strategy, three differences have been highlighted by Popescu and Navrapescu (2000):
• The stady-state values for the slip angular velocity and torque are proportional with the turns

ratio value, respectively the square of turns ratio k which determines the option for k > 1, as the
torque response is the determinant factor in an electrical drive system;

• The estimated equivalent value for the torque component of the stator current has to be

corrected by dividing to the square of the turns ratio value;
• There is no need for changing the number of co-ordinates from the real machine system to the

control system;
• The problem of the stator windings asymmetrical configuration is overcome by using the value

of turns ratio k in computing the estimated value for the torque and flux producing components
of the stator current.

3.8.3. Air-gap flux field orientation (AFO)

For this vector control strategy, the set of state-space variables formed by air-gap flux linkage

and stator current space vectors 
T

qm dm qs ds, , ,i iλ λ =  x is selected. The mathematical model is given

in the chapter dedicated to d-q models of the single-phase induction machine.

The stator and rotor flux linkages and rotor current space vectors components expressed as
functions in terms of state-space variables are:

( )
( )

( )
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m m m

qs qm s m qs

m m 2 m

ds dm s m ds
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x
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x
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= − −
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                                                                                         (555-558)

r m m

qr qm qs

m

r m m

dr dm ds2

m

1
'

1
'

i i
x

i i
k x

λ

λ

= −

= −

                                                                                                            (559-560)
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The voltage equations of the machine expressed in state-variables terms, are readily deductible
now:

m m m m msr r r

qr r r m qs qm dm r m ds

b m m b b m

m 2 m m m msr r r
dr r r m ds dm qm r m qs

b m m b b m
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' ' '
' 0 ' ( ' ) ( ' )

r x xp p
u r x x i k x x i
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ω
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(561-562)

The electromagnetic torque expression has to be re-written:

m m m m

e dm qs qm ds

b

1 1

2

P
T i k i

k
λ λ

ω

 = ⋅ − 
 

                                                                                                 (563)

If we make the notation:
m 2 m

qs qs1i k i=  the above torque relation may be expressed as for the

symmetrical induction machine:

( )m m m m

e dm qs1 qm ds

b2

P k
T i iλ λ

ω
= ⋅ −                                                                                                      (564)

If the special reference frame is fixed to the air-gap flux linkage vector, the q-component of this
flux vector is defined equal to zero:

m

qm

m m

dm m

0λ

λ λ

=

=
                                                                                                                                   (565)

From the air-gap flux linkage equations, the q-current components are given by:
m m

qs1 qs1

m 2 m

qr qs1'

i i

i k i

=

= − ⋅
                                                                                                                            (566)

The flux producing component of the stator current is determined as follows:

2 m m 3 msr r

r r m ds dm r m qs1

b m m b b

' '
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                                    (567)

When an air-gap field orientation control is employed, it is necessary to decouple the stator

current components, in order to achieve a linear control. For this reason, the command of current of
the d-axis component is computed as follows:

m m mi

ds p dm dq

m

s r m qs1m

dq

b r r m
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⋅ − ⋅
=
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                                                                                                 (568-569)

The electromagnetic torque relation and slip speed can be derived in air-gap field orientation
control as:

[ ]

m m
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b

2 m
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ω
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=

⋅ − ⋅ − ⋅

                                                                                    (570-571)
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Steady-state perfomance of a air-gap flux oriented system
Letting the derivative operator p = 0, the steady-state voltage equations of the induction machine

are readily determined. After several manipulation of the system equations, the d current
components are given by:

m m mb sr

ds r qs1 r m qs1

m s r b

m
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                                                                            (572)

It yields the slip speed equation:
2 m2

m ms s dmr m
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                                                                 (573)

The solutions of the above equations have to be real, for a given stator flux linkage. This means that
the determinant of the second order equation satisfy the condition:
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4 ' 0k x x i
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 
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                                                                                   (574)

The maximum values for the q component of the stator current, the slip speed and the
electromagnetic torque (pull-out torque) are:

( )

( )

( )
( )
( )

m
m dm
qs1 3max

r m

r

s max
r m

2
m

dm

e 2max
b r m

2 ( ' )

'

'

1

2 2 '

i
k x x

r

x x

P
T

k x x

λ

ω

λ

ω

=
−

=
−

= ⋅ ⋅
−

                                                                                        (575-577)

For the air-gap field orientation control strategy, there have to be pointed out several important

features:
• The turns ratio k determines the effects on the critical value of the electromagnetic torque of the

single-phase machine: lower torque for k > 1, and higher torque for k < 1, when the main stator
winding parameters are kept constant;

• The pull-out value of the slip speed does not depend on the unsymetrical configuration of the

stator windings, and it is expressed with an identical relation to that deduced for the three-phase
induction machine;

• The estimated equivalent value for the torque component of the stator current has to be

corrected by dividing to the square of the turns ratio value;

• There is no need for changing the number of co-ordinates from the real machine system to the

control system;

• The problem of the stator windings asymmetrical configuration is overcome by using the value

of turns ratio k in computing the estimated value for the torque and flux producing components

of the stator current.

3.8.4. Stator current orientation control (SCO)

For a complete comparison to the vector control strategies applied to three-phase induction

motor, the current orientation control shemes have to be analysed as well. One option is if the set of
state-space variables is identical with the stator flux field orientation control (SFO): the stator flux
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and current space vectors 
T

, , ,qs ds qs dsi iλ λ =  x . The mathematical model is identical to that used in

SFO case.
The rotor based variables expressed in state-space variables terms are:
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                                                                                               (578-581)

To obtain the machine equations in the synchronuous stator current reference frame, one has to

eliminate the rotor flux from the rotor voltage equations and then force the q component of the
stator current to be zero. The stator voltages equations remain unchanged. If a cage rotor is

considered, the resultant equations are as follows:
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b b b
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                              (582-583)

The electromagnetic torque expression has to be re-written:
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                                                                                                  (584)

If we make the notation: sc sc

qs qs12

1

k
λ λ=  the above torque relation may be expressed as for the

symmetrical induction machine:
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If the special reference frame is fixed to the stator current space vector, the q-component of this
current vector is defined equal to zero:
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s sc
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0i

i i

=

=
                                                                                                                                        (586)

Different from the SFO case, we have to express the q-flux components, by considering the flux
linkages equations:
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The electromagnetic torque relation and slip speed can be derived in stator current orientation
control as:
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                                                                                                   (588-589)
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The relation between the d-axis component of the stator current and stator flux linkage space vector
components can be deduced as follows:

2 sc sc scs
r s ds r r ds r qs1

b b b
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                                             (590)

Similarly to the SFO case, there is a coupling, but between the stator flux linkage components

used as control variables. Consequently, any change in the torque producing component sc

dsλ

without changing 
sc

qsλ  accordingly, will cause a transient in the stator flux. A decoupler is necessary

to overcome this disadvantage:
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                                                                                                  (591-592)

where Kp and Ki are proportional, respectively integral coefficients of the current controller. This

controller can be PI type or soft computing technique type (fuzzy, neural-network).

Steady-state perfomance of a stator current oriented system

Letting the derivative operator p = 0, one can obtain the steady-state voltage equations of the
induction machine:

sc sc scs s r br

ds qs1 qs12 2

r b sm m

sc scbr

dr qs1

m s

''

'

'

x rx D

kr x kx

r

kx

ω ω
λ λ λ

ω ω

ω
λ λ

ω

= − ⋅ ⋅ ⋅ − ⋅ ⋅

= − ⋅

                                                                               (593)

it yields the slip speed equation:
2 2
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                                                         (594)

The solutions of the above equations have to be real, for a given stator current. This means that the
determinant of the second order equation satisfy the condition:
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                                                                                        (595)

The maximum values for the q component of the stator flux linkage, the slip speed and the

electromagnetic torque (pull-out torque) are:
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                                                                                              (596-598)

The analysis of this vector control strategy leads to the same conclusions as for the three-phase
induction machine case, but with the differences imposed by the asymmetrical motor configuration

and the number of phases for the supply voltage:
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• The turns ratio k determines different effects on the critical values of the rotor speed and

electromagnetic torque response of the single-phase machine: the electromagnetic torque critical

values reaches a maximum for k > 1, while the rotor speed reaches a maximum for k < 1, when
the main stator winding parameters are kept constant;

• The estimated equivalent value for the torque component of the stator flux has to be corrected

by multypling with the square of the turns ratio value k;

• There is no need for changing the number of co-ordinates from the real machine system to the

control system;

3.8.5. Rotor current orientation control (RCO)

If the synchronuous reference frame is linked to the rotor current space vector it results another
unconventional vector control strategy. The rotor current orientation control strategy (RCO) is

analysed for a cage rotor induction motor. There are two options in selecting the set of state-space
variables, if we consider the criteria of direct measurable quantities:

I. The state-space variables are the stator flux linkage and rotor current space vectors:
T

qs ds qr dr, , ' , 'i iλ λ =  x . When the stator flux and and the rotor current are selected as state-space

variables, one can derive the rotor flux and stator current functions in terms of state variables as
follows:
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                                                                                                     (599-602)

To obtain the machine equations in the synchronuous rotor current reference frame, one has to

eliminate the rotor flux from the rotor voltage equations and then force the q component of the rotor
current to be zero:
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                                    (603-604)

The electromagnetic torque expression has to be re-written:
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                                                                                              (605)

If we make the notation: rc rc

qs qs12

1

k
λ λ=  the above torque relation may be expressed as for the

symmetrical induction machine:
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ω
= ⋅ −                                                                                                (606)

If the special reference frame is fixed to the rotor current space vector, the q-component of this

current vector is defined equal to zero:
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Different from the RFO case, we have to express the q-flux components, by considering the flux

linkages equations:
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The electromagnetic torque relation and slip speed can be derived in stator current orientation
control as:
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                                                                                                     (609-610)

A relation between the d-axis component of the rotor current and stator flux linkage space vector
components can be deduced:
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                                                                 (611)

Due to the coupling between the stator flux linkage components, any change in the torque

producing component rc

dsλ  without changing 
rc

qsλ  accordingly, will cause a trensient in the stator

flux. To overcome this disadvantage, the command current of the d-axis component of the stator
current is expressed as follows:

rc rc rci

ds p dr dq

sc

qs1rc

dq s

'

1

K
K i

p

p k

λ ∆ λ

λ
λ ω

 
= + + 

 

= ⋅ ⋅

                                                                                                  (612-613)

where Kp and Ki are proportional, respectively integral coefficients of the current controller. This
controller can be PI type or soft computing technique type (fuzzy, neural-network).

Steady-state perfomance
After several manipulation of the system equations if we let the derivative operator p = 0, the d

current components are obtained from the steady-state voltage equations of the induction machine:

rc rcs

ds qs1

s r b

rc

dr

'

' 0

D

kx r

ω
λ λ

ω

λ

= − ⋅

=

                                                                                                                (614)

It yields the slip angular velocity equation:
2

rc rcsm
dr qs12

s bs r

0
'

x Dk D
i

x kx r

ω
λ

ω
⋅ − ⋅ =                                                                                                     (615)

which for a given rotor flux has always real solution. Thus the slip speed and the electromagnetic

torque are:
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3 rc rc

s r b dr s r b dr

s rc rc

m qs1 m qs

rc rc rc rcm m

e qs1 dr qs dr

s b s b

' ' ' '

' '
2 2

k x r i kxr i

x x

x kxP P
T i i

kx x

ω ω
ω

λ λ

λ λ
ω ω

= =

= ⋅ = ⋅

                                                                              (616-617)

The rotor current oriented (RCO) vector control with mixed flux and current state-space
variables differs from the variant applied to the three-phase induction machine by the following:

• The transformation between the reference frames (stationary to synchronous and vice-versa) is

easier as there is no need of changing the number of variables;
• The asymmetry of the stator windings is modeled only by using a supplementary parameter, the

turns ratio k;
• In steady-state operation, the torque and slip speed response are influenced by the unsymmetrical

configuration of the motor: higher torque and slip speed for k < 1.

II. The state-space variables are stator and rotor currents 
T

qs ds qr dr, , ' , 'i i i i =  x . When the stator

and the rotor current are selected as state-space variables, one can derive the stator and rotor flux as
functions in terms of state variables from the classical flux linkage equations.

To obtain the machine equations in the synchronuous rotor current reference frame, one has to

eliminate the rotor flux from the rotor voltage equations and then force the q component of the rotor
current to be zero. The stator voltages equations are re-written also. The resultant equations have

the following form:

rc rc rc rcs s

m qs r r qr m ds r dr

b b b b

rc rc 2 rc 2 rcs s
m qs r qr m ds r r dr

b b b b

0 ' ' ' ' '

0 ' ' ' ' '

p p
x i r x i kx i kx i

p p
kx i kx i k x i k r x i

ω ω

ω ω ω ω

ω ω

ω ω ω ω

 
= + + + + 

 

 
= − − + + + 

 

                                         (618-619)

The electromagnetic torque expression has the expression:

( )rc rc rc rcm

e qs dr ds qr

b

' '
2

kxP
T i i i i

ω
= ⋅ −                                                                                                          (620)

It can be observed that the above relation is readily available for implementing a vector control

strategy.
When linking the special synchronuous reference frame to the rotor current space vector, the q-

component of this current vector is defined equal to zero:
rc

qr

rc rc

dr r

' 0

' '

i

i i

=

=
                                                                                                                                     (621)

Different from the (I ) case of RCO control strategy, for the (II ) case we have to express the stator

flux linkage q-components, by considering the flux linkages equations:
rc rc

qs s qs

rc sc rcm

qr m qs qs

s

'

x i

x
x i

x

λ

λ λ

=

= =
                                                                                                                  (622)

The electromagnetic torque relation and slip speed can be derived in this type of rotor current
orientation control as:
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( )

rc rcm

e qs dr

b

rc

m qs

s rc rc

m ds r dr

'
2

' '

kxP
T i i

x pi

k x i x i

ω

ω

= ⋅ ⋅

⋅
= −

+

                                                                                                    (623-624)

From the second dynamic equation of the machine, a relation between the d-axis component of the
rotor current and stator current space vector components can be expressed as:

2 rc rc 2 rcs
m ds m qs r r dr

b b b

' ' '
p p

k x i kx i k r x i
ω

ω ω ω

 
= − + 

 
                                                                          (625)

A coupling between the d-axis and q-axis stator current components appears, and consequently,

any change in the torque producing component rc

dsi  without changing 
rc

qsi  accordingly, will cause a

transient in the stator flux. To overcome this disadvantage the command current of the d-axis
component of the stator current has to be expressed in the following form:

rc rc rci

ds p dr dq

sc

qsrc

dq s

'

1

K
i K i i

p

i
i

p k

∆

ω

 
= + + 

 

= ⋅ ⋅

                                                                                                   (626-627)

where Kp and Ki are proportional, respectively integral coefficients of the current controller. This
controller can be PI type or soft computing technique type (fuzzy, neural-network).

Steady-state perfomance
By letting the derivative operator p = 0, the d flux components are obtained from the steady-state

voltage equations of the induction machine:

rc rcs

ds qs

r b

rc

dr

'

' 0

kD
i

r

ω
λ

ω

λ

= − ⋅

=

                                                                                                                     (628)

It yields the slip angular velocity equation:
2

rc rcsm
dr qs

s s r b

' 0
'

x kDk D
i i

x x r

ω

ω
⋅ − ⋅ =                                                                                                     (629)

which for a given rotor flux has always real solution. Thus the slip speed and the electromagnetic

torque are:
rc

r b dr

s rc

m qs

rc rcm

e qs dr

b

' '

'
2

kr i

x i

kxP
T i i

ω
ω

ω

=

= ⋅

                                                                                                              (630-631)

A comparison with the rotor current orientation control detailed for the three-phase induction
machine permits to highlight the same conclusions. However, there has to be pointed out the

necessary corrections:
• The transformation between synchronous reference frame and the stationary reference frame is

made without changing the number of variables;
• The influence of the unsymmetrical stator windings configuration can be evidenced by using the

turns ratio k, and it determines different effect over the rotor speed and torque response of the
motor: higher electromagnetic torque and lower rotor speed for k > 1, respectively lower torque
and higher rotor speed for k < 1.
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4. MATHEMATICAL DISCRETE MODELS FOR THE
THREE-PHASE INDUCTION MACHINE

4.1. Introduction

Advances in very-large-scale integration (VLSI) technology made possible the real-time

modelling for many industrial applications. Real-time simulation is used increasingly in the
automatic control field. One important application  is the advanced AC motor control, i.e. vector

control, where the immeasurable quantities, like the cage rotor parameters (flux, current), can be
estimated by a simulator operating in parallel with the real motor. The simulation became an
important alternative against the measurement, as the latter is complex, noise sensitive, and

expensive. It has to be also mentioned that the approximate simulation always introduces some
error between the true dynamic behaviour and the modelled behaviour (Vainio et al - 1992).

The continuous and discrete models of the induction machine are equivalent if their time
response is similar for typical inputs (step or sinusoidal input). However, there are several discrete
mathematical models equivalent to the continuous model. Iron loss and saturation can be omitted if

the stator and rotor fluxes are limited to stay below the wide saturation border of the iron core,
which is the case in most practical applications. For this equivalence, the approximation mode of

the response for two consecutive sampling rates is determinant. Usually, when a time continuous
system is discretized, the designer has to chose the properties of the system that will be maintained:
the zero and pole number, the response characteristics for pulse, step and linear input, the DC

amplify, the frequency response.
In Table 4.I there are presented several possible discretization methods for the time continuous

systems.

TABLE 4.I

No Discretization method Continuous–discrete equivalence equation

1 Forward-difference method (Euler)
1

1
1

−

−

⋅
−

=
zT

z
s

2 Backward-difference method

T

z
s

11 −−
=

3 Bilinear transformation method
(Tustin)

1

1

1

12
−

−

+

−
⋅=

z

z

T
s

4 Frequency prewarping method

2
tan

2
,

1

12
1

1 T

Tz

z

T
s D

A

⋅
⋅=

+
−

⋅=
−

− ω
ω

5 Pulse invariance method [ ]{ })()(
1

sGLZTzGD
−⋅=

6 Step invariance method ( )













⋅−= −−

s

sG
LZzzG D

)(
1)( 11

7 Matched zero-pole method Zero/pole from s=-a is placed in discrete to z=e-aT .

Zero/pole from ±∞ is placed in discrete to z=-1

All of the above discretization methods are compared for the induction machine seen as a discrete
system. The assumptions valid for the continuous model are also valid  for the discrete systems. The

results of the discretization are analysed from the point of view of computation complexity and the
response stability for a step input signal. The analysis of the different models is essential for the

design of electrical drive system with numerical command. A special attention is given to torque
estimation from the data acquisition process (voltage or current quantities).
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The synchronous reference frame is used for determining the discrete model of the induction
machine. The following parameters can be defined:

s s rkω ω ω ω ω= − =

For an easy to follow analysis, the index k will be omitted in the machine equations. The general
form equations used to determine the discrete mathematical induction machine in arbitrary

synchronuos reference frames and per unit system are:

s
s s s s s

n

( )1
( ) ( ) ( )

d t
U t r i t j t

dt

ψ
ω ψ

ω
= + +                                                                                     (632)

r

r r r r

n

' ( )1
0 ' ' ( ) ' ( )

d t
r i t j t

dt

ψ
ω ψ

ω
= + +                                                                                      (633)

s s M rs
( ) ( ) ' ( )t l i t l i tψ γ= ⋅ + ⋅ ⋅                                                                                                    (634)

2

r r M sr
( ) ' ' ( ) ( )t l i t l i tψ γ γ= ⋅ ⋅ + ⋅ ⋅                                                                                              (635)

2r
r r r rr
' ; ' ; '

i
i r rψ γ ψ γ

γ
= = ⋅ = ⋅                                                                                            (636)

( )e l

M

1d
t t

dt T

ω
= ⋅ −                                                                                                                     (637)

Depending on the synchronuous reference frame the following relations are valid:
a) Stator reference frame:

{ }

s

M

*

e ss

3
Im

2

l

l

t P i

γ

ψ

=

= ⋅

                                                                                                                  (638)

b) Rotor reference frame:

{ }

M

r

*M
e sr

r

'

3
Im

2

l

l

l
t P i

l

γ

ψ

=

 
= ⋅ 

 

                                                                                                        (639)

c) Airgap reference frame:

{ }*

e sm

M s rm

1

3
Im

2

( ' )

t P i

l i i

γ

ψ

ψ

=

= ⋅

= +

                                                                                                                (640)

If the determinant of the flux system equations is noted with δ and with d its inverse, the voltage

equations are re-written as follows:

s
s s r M r ss s

n

( )1
( ) ( ' ' ) ( )

d t
U t r d l l j t

dt

ψ
γ ψ ψ ω ψ

ω
= ⋅ ⋅ ⋅ ⋅ − ⋅ + + ⋅ ⋅                                                (641)

r

r s r M s r r

n

' ( )1
0 ' ( ' ) ' ( )

d t
r d l l j t

dt

ψ
ψ γ ψ ω ψ

ω
= ⋅ ⋅ ⋅ − ⋅ ⋅ + + ⋅ ⋅                                                     (642)

For zero initial conditions, if the Laplace transformation is applied, it results the matrix system:

s r s s M sss

r M r s rn r r

'

' ' 0' '

r l d j r l d Us

r l d r l d j

ψψ γ ω

γ ωω ψ ψ

   − ⋅ −   
⋅ = ⋅ +      ⋅ − −         

                                               (643)
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or in synthetisized form:
( ) ( ) ( )s s s s⋅ = ⋅ + ⋅Y A Y B U                                                                                                        (644)

One can note that by comparing with the state variable system described by the equations:

( ) ( ) ( )

( ) ( ) ( )

s s s s

s s s

⋅ = ⋅ + ⋅


= ⋅ + ⋅

X A X B U

Y C X D U
                                                                                                    (645)

the state variable vector is identical to the output vector (fluxes vector in this case). The input vector
is the voltage vector. Through identification we obtain:

s r s s M

n

r M r s r

n

'

' '

r l d j r l d

r l d r l d j

γ ω
ω

γ ω

ω

− ⋅ − 
= ⋅  ⋅ − − 
=

A

B

                                                                              (646)

4.2. Bilinear transformation method (Tustin)

The relation (3) from the Table I is known as bilinear transformation or Tustin and it makes the
connection between continuous to discrete domain. This method gives better results than the
trapezoidal approximation, or other discretization method illustrated in Table 4.II, by considering

first four order of integration operators. The describing system relation becomes:
2 1

( ) ( ) ( )
1

z
z z z

T z

−
⋅ ⋅ = ⋅ + ⋅

+
Y A Y B U                                                                                           (647)

where T is the signal sampling period for continuous domain, and f is the sampling frequency.

TABLE 4.II

Method

s

1
2

1

s 3
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s 4

1
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+
⋅
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+
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+
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+
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+
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+++
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16626

120 −

+++
⋅
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( 1) ( ) ( 1) ( ) ( 1) ( )z z z z z z

T
⋅ − ⋅ = + ⋅ ⋅ + + ⋅ ⋅Y A Y B U

1 1

1

1

2 2
( ) ( ) ( ) ( ) ( 1) ( )

2 2
( ) ( ) ( 1) ( )

2 2 2
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2 2
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z z z z z z z z
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z z z z z
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z z z z z
T T T

z z
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− −

−
−

⋅ − ⋅ = ⋅ ⋅ + ⋅ + + ⋅ ⋅

   
⋅ − ⋅ ⋅ = ⋅ + ⋅ + + ⋅ ⋅   

   

     ⋅ = ⋅ − ⋅ ⋅ + ⋅ + ⋅ − ⋅ ⋅ + ⋅     
     

   
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   

Y Y A Y A Y B U
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Y I A I A Y

1

1

1 1

2
( ) (1 ) ( )

1 1
( ) ( ) (1 ) ( )

z z z
T

z z z z z
∆ ∆

−
−

− −

 
+ ⋅ − ⋅ ⋅ + ⋅ 

 

= ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅

I A B U

Y C Y D U

                   (648)

where ∆ is the matrix determinant: 
2

T

 
⋅ −  
I A :
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[ ]

2 2 2

n s r n r s n s r M r s

n r n s r s r s

(2 ' ) (2 ' ) ( ' )

(2 ' ) (2 ' )

R Ij f r l d f r l d r r l d

j f r l d f r l d

∆ ∆ ∆ ω γ ω ω γ ω ω

ω ω ω γ ω ω
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[ ]

2 2 2
11 n s r n r s n s r M r s

n r n s r s n r s

12 n s M

21 n r M

2 2 2
22 n s r n r s n s r M r s

n r
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j

ω γ ω ω γ ω ω
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21 r M n
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d f r l d j
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ω
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= ⋅ + + ⋅

=

                          (650)

Observation: d12, and d22 are not calculated as the induction machine is considered to have cage
rotor.

[ ]

[ ]

11 12 r 11 s ss s

r 21 22 r 21 s ss

1 1
( ) ( 1) ' ( 1) ( 1) ( )

1 1
' ( ) ( 1) ' ( 1) ( 1) ( )

n c n c n d U n U n

n c n c n d U n U n

ψ ψ ψ
∆ ∆

ψ ψ ψ
∆ ∆

  = ⋅ ⋅ − + ⋅ − + ⋅ ⋅ − +  

  = ⋅ ⋅ − + ⋅ − + ⋅ ⋅ − + 

                            (651)

where n and n – 1 are two consecutive sampling periods in discrete domain.

The induction machine discrete model is presented in Fig. 4.1. For this model the stator voltage
represents the input vector and the fluxes are the expressed as output vector.
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Fig. 4.1. The induction machine discrete model

The blocks with thicker lines denote complex multipliers. The following matrix relation is
obtained from  the separation of the real and  the imaginary parts of the flux equations.
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ψ ψ∆ ∆ ∆ ∆
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E F                            (652)

where:
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                                                                                               (653)

The complete discrete model of the induction machine, based on the bilinear method is given in Fig.

4.2. The electromagnetic torque expressed in relative units is considering different reference frames
for the induction machine:
a) Stator reference frame

{ } { } ( )
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*

e s s s s s s s s ss
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3 3 3
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(654)

b) Rotor reference frame:
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2 2 2

3 3
' ( ' ' ) ' ( ' ' ) ' ( ' ' )

2 2

3
' '

2

R I R I R I I R

R I I I R R I R R I

I R R I

t P i P j i j i P i i

P l d l d l d l d P l d
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(655)
c) Airgap reference frame:
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(656)

From the torque equations, written in stator, rotor and air-gap reference frames, one can note that

the same general relation can be implemented, though the equivalent rotor flux stands for different
significance, i.e. only in air-gap reference frame it has the real physical rotor flux.



113

As it can be observed by studying the block diagram of the discrete model of the induction
machine, for a complete implementation there are necessary 31 multiplier blocks, 23 summing

blocks and 4 delay blocks. However, this model can be simplified further. The total number of
multiplier blocks can vary from one implementation to another, due to the place of this operation in

the block diagram. Also the frequency response is variable according to the implementation version
(Vainio et al - 1992).
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Fig. 4.2. Complete discrete induction machine model based on

bilinear transformation method (Tustin)

4.3. Forward-differences method (Euler)

In this method the continuous-time derivative is approximated by the relation (1) from Table 4.I

or by a scaled difference of two successive samples:

T

nXnX

dt

dX )()1( −+
=                                                                                                               (657)

where T is the sampling period. The discrete-time model is in this case defined by the following

equations:

( ) s s
s s r M r ss s

n

( 1) ( 1)1
( ) ' ( ) ' ( ) ( )

n n
U n r l d n l d n j n

T

ψ ψ
γ ψ ψ ω ψ

ω

+ − +
= ⋅ ⋅ ⋅ − ⋅ + ⋅ + ⋅ ⋅               (658)

( ) r r
r s r M rs r

n

' ( 1) ( 1)1
0 ' ' ( ) ( ) ( )

n n
r l d n l d n j n

T

ψ ψ
ψ γ ψ ω ψ

ω

+ − +
= ⋅ ⋅ − ⋅ ⋅ + ⋅ + ⋅ ⋅                      (659)

In matrix form it results:
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After separating  the real and the imaginary components, it will result:
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             (661)
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(663)
or:

n( 1) ( ) ( )n n T n+ = ⋅ + ⋅A Uψ ψ ω                                                                                       (664)

For the current vector is valid the following relation:

( ) ( )n n= ⋅i B ψ                                                                                                                          (665)

or the matrix form equation:
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                                                        (666)

For this case the complete discrete model of the induction machine is described in Fig. 4.3.
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Fig. 4.3. Complete discrete induction machine model based on
forward-differences method (Euler)

4.4. Backward-differences method

This simple method produces a stabile discrete system for a stabile time continuous system.
Even some unstable continuous systems can be transformed to stabile version through this

discretization method. However, a higher sampling frequency has to be adopted in order to avoid
the frequency response distortions of the system. With relation (2) from Table 4.I the following

equations can be implemented:
1

1

1

( )

z

T

T z T

−

−

−
⋅ = ⋅ + ⋅

− ⋅ ⋅ = ⋅ + ⋅ ⋅
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I A Y Y B U

                                                                                              (667)
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I A                        (670)

By substituting vectors Y and U with the flux vector, respectively stator voltage, it follows that:
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When the real and the imaginary parts are separated, it results that:
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The complete discrete mathematical model of the machine, obtained through the backward-
difference method is presented in Fig. 4.4. A similar analysis was made for the step and pulse
invariance methods by Vainio et al (1992). The results permit some important conclusions to be

drawn:
• The pulse invariance method and backward-difference method determine similar and very

resembling discrete mathematical model for the machine;
• The step invariance method and the forward-difference method determine similar and very

resembling mathematical discrete model for the machine.
Nevertheless, although the methods are very similar in results, the frequency characteristics of the
model differ from one method to another.

The computational burden for the three described methods is summarised in Table 4.III. As the
DSP-ASIC implementation is an important cost issue, the designer has to choose a compromise

between the complexity and the accuracy of the model. When the comparison is made, one can note
the advantage of the forward-difference method (Euler) for less computing time. When accuracy is
the determining factor, the bilinear transformation method (Tustin) has to be chosen for the

implementation of the mathematical discrete model of the machine. It is also possible to apply a
hybrid approach where the stator equation is discretized using the forward-difference (Euler)

method, whereas the rotor equation is converted using the bilinear transformation (Tustin) or vice-
versa. As one might expect, the resulting response and computational complexity are between those
of the complete methods. This could be exploited when implementing the discretized model with a

programmable signal processor.
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TABLE 4.III

Method \ Real operation Additions Multiplications Delays

Forward-difference method (Euler) 11 17 6

Backward-difference method 21 27 4

Bilinear transformation method (Tustin) 23 31 4
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Fig. 4.4. Complete discrete induction machine model based on
backward-differences method

4.5. Z-domain transfer functions

The general form of a state-variable system using matrix notation in z-domain is:

[ ]

s s s

s s s
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s 1

( 1) ( ) ( )

( ) ( ) ( )

( ) ( ), ..., ( )
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n n n

n n n

n x n x n
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=

x A x B u

y C x D u

x

                                                                                               (674)

where xs(n) is the vector for the state variables, us (n) and ys(n) are the input, respectively the output
vectors, and A is the state matrix. The impulse response sequence in terms of the state-variable
description is given by the relation:

1

, for 0
( )

, for 0k

k
k

k−

=
= 

⋅ >

D
h

C A
                                                                                               (675)
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and the transfer function matrix:

1
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( ) ( ) ( )k
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z k z zψ

∞
− −
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= ⋅ = + ⋅ − ⋅∑H h D C I A B                                                                   (676)

For the induction machine model case, there are four real outputs (the stator and rotor fluxes)

and two real inputs (stator voltage). Also, the state variables are the outputs directly. We can
establish the notation:
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x y

The state matrix A, the input vector us and the coefficients matrix B, C, and D have different
element according to the transformation method used for implementing the discrete mathematical

machine model.

I) Bilinear transformation method (Tustin):
The state matrix A is calculated as follows:
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where:
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The input vector is determined with the relation:
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The coefficients matrix are:
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By identification, we establish the other coefficients matrix:
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From the transfer function matrix relation, we obtain a 4 X 2 matrix giving the transfer function
from both inputs to the four outputs:
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II) Forward-difference method (Euler)
The state matrix A is described by the relation:

n s r n s n s M

n s n s r n s M

n r M n r s n r

n r M n n r s

1 ' 0

1 ' 0

' 0 1 '

0 ' 1 '

T r l d T T r l d

T T r l d T r l d

T r l d T r l d T

T r l d T T r l d

ω γ ω ω ω

ω ω ω γ ω

ω γ ω ω ω

ω γ ω ω ω

− ⋅ ⋅ ⋅ 
 − ⋅ − ⋅ ⋅ ⋅ =
 ⋅ ⋅ − ⋅ ⋅
 

⋅ ⋅ − ⋅ − ⋅  

A                (684)

The input vector and the corespondent matrix coefficient are:

s

s

s

( )
( )

( )

R

I

U n
n

U n

 
=  

 
u

n

n

0

0

0 0

0 0

T

T

ω

ω

 
 
 =
 
 
 

B                                                                         (685-686)

The other matrix C and D have the same value as for the bilinear transformation case. It results the

transfer function matrix as follows:
1

n s r n s n s M n

n s n s r n s M n

n r M n r s n r

n r M n n r s

1 ' 0 0

1 ' 0 0
( )

' 0 1 ' 0 0

0 ' 1 ' 0 0

z T rl d T T rl d T

T z T rl d T rl d T
z

T r l d z T r l d T

T r l d T z T r l d

ψ

ω γ ω ω ω ω

ω ω ω γ ω ω

ω γ ω ω ω

ω γ ω ω ω

−
− + ⋅ ⋅ − − ⋅   

   ⋅ − + ⋅ ⋅ − ⋅   = ⋅
   − ⋅ ⋅ − + ⋅ − ⋅
   

− ⋅ ⋅ ⋅ − + ⋅    

H

(687)
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III) The backward-difference method
The state matrix A and coefficients matrix B can be calculated with the expressions:

11 11 11 11 12 12

11 11 11 11 12 12

2 2

21 21 22 22 22 22

21 21 22 22 22 22

1

R R I I R I I R R I

R I I R R R I I I R

R I R R I I R I I RR I

I R R I I R R R I I

g g g g g g

g g g g g g

g g g g g g

g g g g g g

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

+ − 
 − + + − =
 + −+
 

− − + +  

A               (688)

where:

( ) n r s r n n s M11 11 12

n r M n s r s n21 22 22

n r s r n r n n r s n s M n s M

n r M n

1 '

' 1 '

(1 ' ) ( (1 ' ))

'

R I

R I

R I

R I R I R I

R I

Tr ld j T Trl dg jg g
j

T r l d T rl d j Tg g g

Tr ld T j T Tr l d Trl d j Trl d

T r l d j T

ω ωω ω
∆ ∆

ω γ ω γ ωω

∆ ω ∆ωω ∆ωω ∆ ω ∆ω ∆ω

∆ω γ ∆ω γ

+ ++   
= = − ⋅ =   ⋅ + ⋅ ++   

+ + + − + −
=

⋅ − ⋅

G

r M n s r s n s n n s r' (1 ) ( (1 ' ))R I R Ir l d T rld T j T T rl d∆ ω γ ∆ωω ∆ωω ∆ ω γ

 
 + ⋅ + + − + ⋅ 

(689)

and:

11 11 11 11

11 11 11 11

2 2
21 21

21 21

1

R R I I R I I R

R I I R R R I I

R IR I

I R

h h h h

h h h h

h h

h h

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆∆ ∆

∆ ∆

+ − 
 − + + = ⋅
 +
 

−  

B                                                                    (690)

where:

n r s r n n s M11 11 12

n

n r M n s r s n21 22 22

1 '

' 1 '

R I

R I

Tr l d j T Trl dh jh h
T

T r l d T rl d j Th h jh

ω ωω ω
ω

ω γ ω γ ωω

+ ++   
= = ⋅   ⋅ + ⋅ ++   

H                   (691)

As the input vector is 
s

s

( )

( )

R

s

I

U n

U n

 
=  

 
u  and the coefficients matrix C and D are calculated in a similar

way to the previous cases, it results the following transfer function matrix for two inputs (voltage)
and four outputs (fluxes):

11 11 11 11 12 12

2 2 2 2 2 2 2 2

11 11 11 11 12 12

2 2 2 2 2 2 2 2

21 21 22 22 22

2 2 2 2 2 2

( )

R R I I R I I R R I

R I R I R I R I

R I I R R R I I I R

R I R I R I R I

R I R R I I R I

R I R I R I

g g g g g g
z

g g g g g g
z

z
g g g g g

z

ψ

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

+ −
− − − −

+ + + +

− + +
− − −

+ + + +
=

+ −
− − − −

+ + +

H

1

22

2 2

21 21 22 22 22 22

2 2 2 2 2 2 2 2

11 11 11 11

11 11 11 11

2 2
21 21

21 21

1

I R

R I

I R R I I R R R I I

R I R I R I R I

R R I I R I I R

R I I R R R I I

R IR I

I R

g

g g g g g g
z

h h h h

h h h h

h h

h h

∆

∆ ∆

∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆∆ ∆

∆ ∆

−
 
 
 
 
 
  ⋅ 
 

+ 
 − + + − − −
 + + + + 

+ −
− + +⋅ ⋅
+

−






 
 

(692)
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4.6. Stability analysis

If the resulting discrete-time system is unstable, it can be transformed in a stable one by
decreasing the sampling rate. It is possible to select the the sampling rate such that the discrete-time

system is always stable, assuming that the pole locations in the continuos s domain are known.
However, this presumes an increased computing burden, as there are processed more sampling rates
in a time unit. Therefore it is important to analyse the value for the minimum sampling rate and to

determine an optimum value as stated by Franklin et al (1997).
The z-domain transfer function is obtained from an analog prototype transfer function by using

the following substitutions according to the approximation method:

T

z
s

1−
=  forward-difference method (Euler)

Tz

z
s

⋅
−

=
1  backward-difference method

1

12

+
−

⋅=
z

z

T
s  biliniar transformation method (Tustin)

Thus the interdependence between an s-domain pole and the corresponding z-domain pole is:

Tsz polepole 1 +=  forward-difference method (Euler)

Ts
z

pole

pole
1

1

−
=  backward-difference method

Ts

Ts
z

pole

pole

pole
2

2

−

+
=  biliniar transformation method (Tustin)

For a stable s-domain pole (i.e., α < 0):

βα js +=pole

A z-domain pole is stable if it is located inside the unit circle, i.e., its modulus is less than the unit

(one in relative units):
2 2

pole

2 2 2 2

2 2

1 (1 ) ( ) 1

2
1 2 1

z T T

T T T T

α β

α
α α β

α β

 < ⇒ + + <



+ + + < ⇒ < −
+

 forward-difference method (Euler)            (693)

pole 2 2

2 2 2 2

2 2

1
1 1

(1 ) ( )

2
1 2 1

z
T T

T T T T

α β

α
α α β

α β


< ⇒ <

− +

 − + + > ⇒ >
 +

 backward-difference method                           (694)

2 2

pole 2 2

(2 ) ( )
1 1

(2 ) ( )

0

T T
z

T T

T

α β

α β

 + +
< ⇒ <

− +
 >

   biliniar transformation method (Tustin)                    (695)

Expressed in terms of the sampling frequency (fsample =1/T), the above conditions are:

α

βα

2

22

sample

+
−>f   forward-difference method (Euler)                                                       (696)

α

βα

2

22

sample

+
<f   backward-difference method                                                                  (697)

0sample >f   biliniar transformation method (Tustin)                                                             (698)
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These expressions prove that the sampling rate can always be selected such that the discrete-time
system is stable if the original continuos-time system is stable as well.

The poles position may be variable due to three important factors:
• The simplified assumptions for linearity of the continuous-time model;

• The parameters variation due to environmental effects: temperature, humidity;

• The implementation of the system using fixed-point digital signal processors. The fixed point

determines round errors and scaling or quantification errors.
So, even for poles placed inside the unit circle, there is a possibility of unstable operation of the

system. A pole location very near to the unit location can be problematic, mainly in environments
with short word length of the DSP. Therefore it may be desirable to maximise the distance between
the critical pole and the unit circle and set the sampling rate accordingly.

The derivative of the modulus of the pole gives the relations:

2222

22
pole

21

222

TTT

TT

dT

zd

βαα

βαα

+++

++
=  forward-difference method (Euler)                              (699)

32222

22
pole

)21(

222

TTT

TT

dT

zd

βαα

βαα

++−

++−
=  backward-difference method                                    (700)

[ ]

22

22

22222
pole

)()2(

)()2(

4)(4)(4

TT

TT

TT

dT

zd

βα

βα

αβαβαα

+−
++

++−+
=  biliniar transformation method (Tustin)    (701)

By setting the derivative equal to zero it is obtained an expression for the optimum sampling

frequency:

β

βα 22

optsample,

+
−=f   forward-difference method (Euler)                                                      (702)

β

βα 22

optsample,

+
=f  backward-difference method                                                                    (703)

0optsample, >f   biliniar transformation method (Tustin) as the derivative is always positive.     (704)

One should notice that the above sampling rate values do not optimise the resemblance between

time-domain or frequency-domain responses of the continuos-time and the discrete-time system.
The stable methods (forward-differences, backward-differences and biliniar transformation) map

an s-domain point βα j+  into the z domain as follows:

a) Forward-difference method (Euler)

βα

βα

j

jm
z

−
−−

=
)1(

                                                                                                                  (705)

where m=1 for the ”optimum” sampling rate; m=2 for the minimum sampling rate

b) Backward-difference method

αβ

αβ

)1( mj

j
z

−−
+

=                                                                                                                (706)

where m=1 for the ”optimum” sampling rate; m=2 for the minimum sampling rate

c) Biliniar transformation method (Tustin)
1=z  the unit circle,                                                                                                              (707)

i.e. the system is stable for any stable s-domain poles (α < 0)
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5. MATHEMATICAL DISCRETE MODELS FOR
THE SINGLE-PHASE INDUCTION MACHINE

5.1. Introduction

Discrete-time computational models have to be derived for an advanced motor control of

squirrel-cage type single-phase induction machine. The real-time vector control analysis for the
single-phase induction machine can be realised using mathematical discrete models, in a similar

way to the three-phase induction machine. Some differences will appear due to the asymmetry of
the single-phase induction machine stator configuration.

The same general considerations regarding the discretisation process, valid for the three-phase

machine, apply.
The starting point for converting the continuous-time model of the single-phase machine into a

discrete one is the system of voltage and flux linkage equations. However, by comparison with the
three-phase induction machine discretisation two main differences have to be highlighted:

• The reference system is stationary, fixed to the stator;

• The asymmetrical configuration of the stator windings permits only the analysis in two-axis co-

ordinates system. The space vector notation cannot be used.
The complete set of equations for an unsymmetrical single-phase induction machine using the
universal mathematical model, with flux linkage per second units and reactance elements, is as

follows:
Stator voltage equations:

qs m qs qs

b

ds a ds ds

b

1

1

d
u r i

dt

d
u r i

dt

λ
ω

λ
ω

= + ⋅

= + ⋅

                                                                                                        (708-709)

Flux linkages equations:

( )( ) ( )

( )( )
( )( ) ( )
( )( )

( )( ) ( )
( )( )

d

q

d

2 2

ds la d m ds d m ds dR

2

la d m ds d

qs lm q m qs q m qs qR

lm q m qs q

2 2

dR d d r d m dR d m ds dR

2

d d d r d m dR

1 '

1 '

1 '

1 '

' ' 1 ' '

' ' 1 '

'

x k x i k x i i

x k x i

x x i x i i

x x i

k x x i k x i i

k x x i

γ

γ

γ

λ γ γ

γ λ

λ γ γ

γ λ

λ γ γ γ γ

λ γ γ γ

λ

= + − ⋅ ⋅ + ⋅ ⋅ + =

= + − ⋅ ⋅ +

= + − ⋅ ⋅ + ⋅ ⋅ + =

= + − ⋅ ⋅ +

= ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅ + =

= + ⋅ ⋅ + − ⋅ ⋅

( )( ) ( )
( )( )q

qR q q r q m qR q m qs qR

q q q r q m qR

' 1 ' '

' 1 '

x x i x i i

x x iγ

γ γ γ γ

λ γ γ γ

= ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅ + =

= + ⋅ ⋅ + − ⋅ ⋅

                                         (710-713)

Rotor voltage equations (cage rotor case):

r
R dR dR qR

b b

2 r
R qR qR dR

b b

2

R q(d) r

0 ' ' ' '

1
0 ' ' ' '

' '

p
r i k

p
k r i

k

r r

ω
λ λ

ω ω

ω
λ λ

ω ω

γ

= + + ⋅

= + − ⋅

= ⋅

                                                                                (714-716)
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The transformed rotor current d(q)R'i  equals:

qrdr

dR qR

d q

''
' ; '

ii
i i

γ γ
= =                                                                                                                  (717)

The electromagnetic torque equation is:

( )

m
e d qs dR q ds qR qR dR dR qR ds qs qs ds

b b b

m
qs dR ds qR2

d qb s r m

1 1 1 1
( ' ' ) ' ' ' '

2 2 2

1 1
' '

2 '

xP P P
T k i i i i k i i i k i

k k

xP

k x x x

γ γ λ λ λ λ
ω ω ω

λ λ λ λ
γ γω

   = ⋅ ⋅ ⋅ ⋅ − ⋅ = ⋅ ⋅ − = ⋅ − =   
   

 
= ⋅ ⋅ ⋅ − ⋅  ⋅ −  

(718)
If the flux linkages are chosen as independent variables, the currents can be deduced from the
expressions:

qs r qR m

q

qs

ds r dR m

d

ds 2

qR s qs m

q

qR

q

dR s ds m

d
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d

1
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1
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1
'

'

1
'

'

x x

i
D
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i
k D

x x

i
D
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i
k D
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γ

λ λ
γ
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γ

γ

λ λ
γ
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− ⋅
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−

=

                                                                                                 (719-722)

where:

s lm m

r lr m

2

s r m

' '

'

x x x

x x x

D x x x

= +

= +

= −
Recapping from the continuous linear mathematical models for the unsymmetrical single-phase

induction machine, there are three specific choices of the turn ratio “γq” and “γd”:

a) The rotor flux is selected as reference (inverse Γ-form model):

m

q

m r

2

m

d q2

m r

'

( ' )

x

x x

k x

k x x

γ

γ γ

=
+

= =
+

                                                                                                              (723)

b) The air-gap flux is selected as reference (T-form model):

q d 1γ γ= =                                                                                                                               (724)

c) The stator flux is selected as reference (Γ-form model):

m lm

q

m

2

m la

d q2

m

x x

x

k x x

k x

γ

γ γ

+
=

+
= ≅

                                                                                                                  (725)

If the inverse of D is noted with d, the voltage equations will be re-written in a new form:
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qs m r qs m qR qs

b

a
ds r ds m dR ds2

b

r
R s qR m qs qR dR2

b b

r
R s dR m ds dR2

b b

1 1
' '

1 1
' '

1 1 1 1
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1 1 1
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u r x d x d

dt

r d
u x d x d
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d
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d
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γ ω
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ω
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γ ω ωγ

ω
λ λ λ λ

γ ω ωγ

 
= ⋅ ⋅ − ⋅ ⋅ + ⋅ 

 

 
= ⋅ ⋅ − ⋅ ⋅ + ⋅ 

 

 
= ⋅ ⋅ − ⋅ + ⋅ − ⋅ 

 

 
= ⋅ ⋅ − ⋅ + ⋅ + ⋅ 

 
qR'

                                        (726-729))

For null initial conditions, if the Laplace transformation is applied, it results a matrix system:

qs m r m m qs qs

2 2

ds a r a m ds ds

2

qR R m R s r b qRb

2

dR R m r b R s dR

' 0 / 0

0 ' / 0 /( )
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r x d r x d u
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λ γ λ

λ γ λ

λ γ γ ω ω λω
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−       
       − ⋅       ⋅ = ⋅ +
       −
       

−            

        (730)

or synthetically:

( ) ( ) ( )s s s s= ⋅ + ⋅Y A Y B U                                                                                                          (731)

By comparing to the general form of a state variable system:

( ) ( ) ( )

( ) ( ) ( )

s s s s

s s s

⋅ = ⋅ + ⋅


= ⋅ + ⋅

X A X B U

Y C X D U
                                                                                                   (732)

It can be observed that the state variable vector is identical to the output vector (in this case the flux
linkages per second vector). The inputs vector is the voltages vector (in this case only the stator
voltages, as the rotor is short-circuited). By identification, we obtain:

m r m m
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2
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A
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                           (733-734)

5.2. Bilinear transformation method (Tustin)

Recapping from the mathematical discrete model of three-phase induction machine analysis, the

following relation is the bilinear transformation (Tustin) from continuous to discrete domain:

1

1

1

12
−

−

+
−

⋅=
z

z

T
s

The matrix equation from continuous domain becomes in discrete:

2 1
( ) ( ) ( )

1

z
z z z

T z

−
⋅ ⋅ = ⋅ + ⋅

+
Y A Y B U                                                                                           (735)

which gives the relation for the inputs vector Y(z):

( ) ( ) ( ) ( )1 11 1
( ) 2 2 ( ) 2 1 ( )z f f z z f z z

− −− −= ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅Y I A I A Y I A B U                                    (736)

where:
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             (737)

The expression of the flux linkages per second in the discrete time domain is obtained when using
the bilinear transformation:

qs qs qs qs

ds ds ds ds

qR qR

dR dR
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C D                                                              (738)
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                                                                                                         (739)

The above relations lead to the mathematical discrete model of the single-phase induction

machine from Fig. 5.1.
The electromagnetic torque is computed using the stator and rotor flux linkages as independent
variables:

( )
( )m m
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' ' ' '
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= ⋅ ⋅ ⋅ − ⋅ = ⋅ ⋅ −  ⋅ −  

           (740)

Considering the continuous time domain and using the Laplace transformation, the rotor angular
velocity value is readily available from the torque expression:

( )r e L

1 1

2

P
T T

s J
ω

 = ⋅ ⋅ −  
                                                                                                                (741)

The currents vector can be determined according to the following matrix equation:

qs r m qs

2 2

ds r m ds

2
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                                        (742)

or in a condensed form:
( ) ( )n n= ⋅i F λ                                                                                                                           (743)
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Fig.5.1. Complete discrete single-phase induction machine model based on

bilinear transformation method (Tustin)

The analysis of the block diagram given in Fig. 1 shows that for a complete implementation of the
model 27 multipliers, 23 additions operations and 4 delay blocks are necessary. However, this
model can be simplified depending on the type of implementation. The general structure of the

physical implementation depends on the placement of the blocks and the system frequency response
will be modified accordingly.

5.3. Forward-differences method (Euler)

The system will become unstable if the sampling period for a discrete model is incorrectly
chosen. The transformation from the continuous-time to the discrete-time domain can be made

using the Euler method, which by definition is:

T

nxnx

dt

dx )()1( −+
=                                                                                                                    (744)

where T is the sampling period.

The voltage equations for the single-phase induction machine with cage rotor are transformed as
follows:
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  (745-748)

which gives the matrix relation for the flux linkages per second in discrete representation:
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(749)

or in a condensed form:

b( 1) ( ) ( )n n T n+ = ⋅ + ⋅E uλ λ ω                                                                                                    (750)

As the flux linkages per second vector is the independent variables vector, the currents are
determined according to the following matrix equation:

qs r m qs

2 2

ds r m ds

2

qR m s qR

2 2 2

dR m s dR

' 0 / 0
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                                        (751)

or in a condensed form:
( ) ( )n n= ⋅i F λ                                                                                                                            (752)

Similar to the bilinear transformation case, the electromagnetic torque is computed with the

relation:

( ) ( )m m

e qs dR ds qR qs dR ds qR2
d q bb s r m

1 1
' ' ' '

2 2'

x x dP P
T

kk x x x
λ λ λ λ λ λ λ λ

γ γ ω γω

 
= ⋅ ⋅ ⋅ − ⋅ = ⋅ ⋅ −  ⋅ −  

         (753)

For the forward-differences method (Euler), the mathematical discrete model of the single-phase
induction machine is described by the block diagram in Fig. 5.2. This model is characterised by the

following number of blocks requested for implementation: 9 additions, 15 multipliers and 6 delay
blocks. By comparison with the previous discretisation method, it is obviously the simpler

implementation structure for the forward-difference method. The computational burden is 1.8 times
greater with the bilinear transformation than it is with the forward-difference method.
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Fig.5.2. Complete discrete single-phase induction machine model based on
forward-difference method (Euler)

5.4. Backward-differences method

This simply to apply discretisation method allows the implementation of a stable discrete system
if the analogue version in continuous time domain is also stable. Using this method, even unstable

continuous models can be transformed in discrete stable systems. Nevertheless, it must be stated
that due to the distortions in the frequency response of the system, a lower sampling period has to

be used. The flux linkages per second vector can be obtained by applying the relation used for the
same transformation type from the three-phase induction machine to the single-phase induction
machine:

( )
1

11
( ) ( ) ( ) ( ) ( ) ( )
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z z z T z z z T z
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−
−−

⋅ = ⋅ + ⋅ ⇒ − ⋅ ⋅ = ⋅ + ⋅ ⋅Y A Y B U I A Y Y B U               (754)

or in a matrix form:
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or in a condensed form:
( ) ( 1) ( )n n n= ⋅ − + ⋅G H uλ λ                                                                                                      (756)

where:
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(757)

and:

bTω= ⋅H G                                                                                                                                (758)

The matrix elements gij , i,j = 1, 2, 3, 4 expressions are not detailed here, due to the space

limitations.
Like in the previous cases, the electromagnetic torque represents the output of the discrete

system:
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( )m m

e qs dR ds qR qs dR ds qR2
d q bb s r m

1 1
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           (759)

The discrete mathematical model obtained through the backward transformation method is
illustrated in Fig. 5.3. A comparative computational burden for different methods of discretisation is
given in Table 5.I.

TABLE 5.I

Method \ Real operation Additions Multiplications Delays

Forward-difference method (Euler) 9 15 6

Backward-difference method 21 27 4

Bilinear transformation method (Tustin) 23 27 4

The following conclusions can be drawn regarding different implementation options of a discrete

mathematical model for the single-phase induction machine:
• the pulse invariance method and backward-difference method determine similar discrete

mathematical model for the machine;
• the step invariance method and the forward-difference method determine similar mathematical

discrete model for the machine.
• the frequency characteristic of the model differs from one method to another.

• the forward-difference method (Euler) presents the minimum computing time.

• when accuracy is the determining factor, the bilinear transformation method (Tustin) has to be

chosen for the implementation of the mathematical discrete model of the machine.
• it is also possible to apply a hybrid approach where the stator and rotor equations are discretised

using different transformation methods.
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Fig. 5.3. Complete discrete single-phase induction machine model based on

backward-difference method

5.5. Z-domain transfer functions

Recapping some general considerations of linear algebra, a state-variable system using matrix
notation in z-domain is described as:

[ ]

s s s

s s
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s 1

( 1) ( ) ( )

( ) ( ) ( )

( ) ( ), ..., ( )
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m

n n n

n n n

n x n x n

+ = ⋅ + ⋅
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=

x A x B u

y C x D u

x

                                                                                                  (760)

where xs(n) is the vector for the state variables, us (n) and ys(n) are the input and the output vectors

respectively, and A is the state matrix. The impulse response sequence in terms of the state-variable
description is given by the relation:

1

, for 0
( )

, for 0
k

k
k

k
−

=
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⋅ >

D
h

C A
                                                                                                 (761)

and the transfer function matrix:

1

0

( ) ( ) ( )
k

k

z k z zλ

∞
− −

=

= ⋅ = + ⋅ − ⋅∑H h D C I A B                                                                          (762)

For the analysed system, i.e. single-phase induction machine, there are four real outputs (the
stator and rotor flux linkages per second) and two real inputs (stator voltages). Also, the state

variables are the outputs directly. We can establish the notation:
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The state matrix A, the input vector us and the coefficients matrix B, C, and D have different
elements according to the transformation method used for implementing the discrete mathematical

model for the single-phase induction machine.

I) Bilinear transformation method (Tustin):
By comparing the already established relations with the general form of a state-variable description,
for this transformation method we have the notation:
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The state matrix:
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The coefficients matrix is:
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(766)
The elements of the matrix A and B require too much space to be detailed here.
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We obtain the transfer function described by the 4 rows, 4 columns non-zero elements matrix:
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       (768)

where the elements hij of the transfer function matrix may be computed through linear algebraic
computation.

The transfer function for the currents vector considered as output in relation to the voltages
vector as input can be determined as well:
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The corresponding input vector will be:
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II) Forward-differences method (Euler)
The state matrix A is described by the relation:
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The input vector and the corespondent matrix coefficients are:
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u n

 
=  

 
u

b

b

0

0

0 0

0 0

T

T

ω

ω

 
 
 =
 
 
 

B                                                                          (771-772)

The other matrix C and D have the same value as for the bilinear transformation case. The transfer

function matrix results as follows:



134

1

m r b m m b b

2 2

a r b a m b b

2

R m b R s b r

2
R m b r R s b

' 1 0 / 0 0

0 ' / 1 0 /( ) 0
( )

' / 0 ' / 1 / 0 0

0 ' / ' / 1 0 0

z r x d T r x d T T

z r x d T k r x d T k T
z

r x d T z r x d T T k

r x d T k T z r x d T

λ

ω ω γ ω

ω ω γ ω

ω γ ω γ ω

ω γ ω ω γ

−
+ − −   

   + − −   = ⋅
   − + − −
   

− + −    

H

(773)
A detailed expression for each element of the matrix Hλ (z) with 4 rows, 2 columns of non-zero

elements, is beyond the scope of this work. The transfer function valid for considering currents
vector as outputs, when voltages vector represents the inputs, is identical in symbolic form with the
bilinear transformation method case.

III) Backward-differences method

Similar to the cases previously analysed, the state matrix A consists the main computational burden
when determining the transfer function matrix Hλ. By comparing the established relation for the

discrete domain model through this method, we get the following notation:

1

b m m

b m r

11 12 13 14b a r b a m

2 2

21 22 23 24

31 32 33 34b r m b r s r

2

41 42 43 44

b r m b r s
r 2

1 ' 0 0

'
0 1 0

' '
0 1

' '
0 1

Tr x d
Tr x d

a a a aTr x d Tr x d

a a a ak k

a a a aTr x d Tr x d T

k a a a a

Tr x d Tr x d
k T

ω
ω

γ

ω ω

γ

ω ω ω

γ γ

ω ω
ω

γ γ

−
 

+ − 
 
   

+ −   
   = =
   

− + −  
  

 
− + 

  

A




(774)
and the input vector us and the coefficients matrix B are:

qs

ds

s

( )

( )
( )

0

0

u n

u n
n

 
 
 =
 
 
 

u bTω= ⋅B A                                                                                          (775-776)

The matrix C and D are identical to that ones previously determined.

We obtain the transfer function matrix Hλ as 4 rows, 4 columns matrix with non zero elements:
1

11 12 13 14 11 12 13 14

21 22 23 24 21 22 23 24

b

31 32 33 34 31 32 33 34

41 42 43 44 41 42 43 44

( )

z a a a a a a a a

a z a a a a a a a
z T

a a z a a a a a a

a a a a a a a a

λ ω

−
− − − −   

   − − − −   = ⋅ ⋅
   − − − −
   − − − −      

H                              (777)

The complete expressions for computing the transfer function matrix elements require intense linear
algebra computation, and therefore it is recommended to determine these values according to the

concrete machine parameters. All the considerations made for the currents vector input case are also
valid.
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6. LINEARISATION OF THE INDUCTION MACHINE MATHEMATICAL
MODEL

6.1. Introduction

An important problem related to the modelling of the induction machine is the non-linearity of

the equations  that describe its operation. This phenomenon appears in the voltage equations and the
electromagnetic torque relation as well, due to the products between the state variables. When a

control system with induction machine is designed, it is very useful to linearise the machine
equations.

Basically, the linearised equations are obtainable in two ways (Krause et al - 1995), (Rogers -

1965). Firstly, the most used method is the Taylor series expansion of a particular variable (for
example voltage, current, flux linkage, or torque) around the steady-state operating point and then

by neglecting all second-order terms. Alternatively, it is possible to obtain the linearised equations
by expressing all the variables as the sum of their values in the operating point and their incremental
value, by neglecting the terms which comprise products of incremental values and by eliminating

the steady-state terms. This is called the small-signal form of the machine equations. The result is a
differential linearised equations set which describes the dynamic behaviour of the machine when

small displacements from the operation point are present. The induction machine can be analysed in
this way as a linear system, and it is possible to apply the basic linear system theory in order to
compute the eigenvalues and to establish transfer functions for use in the design of controls for

these machines.
By definition, the initial displacements of the state-variables are considered to be zero. That is,

any machine variable can be written as:

0x x x= + ∆                                                                                                                                  (778)

where 0x  is the value for the variable x in the fixed-operation point, and x∆ is an incremental value

from this value.
The equations set for the state-variables are:

( ) ( ) ( ) ( )

( ) ( ) ( )

p t t t t

t t t

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅

x A x B u E z

y C x D u
                                                                                     (779-780)

where x is the state-variables vector, u is the inputs vector, z is the perturbations vector, y is the

outputs vector, A the state system matrix, B the inputs matrix, C the outputs matrix, D the input-
output matrix, E the perturbations matrix.

If u is set to zero the general solution of the homogenous or force-free linear differential

equation becomes:
te= Ax K                                                                                                                                     (781)

where K is a vector formed by an arbitrary set of initial conditions. The exponential teA  represents
the unforced response of the system. It is defined as the state transition matrix. Small-signal

stability is assured if all elements of the transition matrix approach zero asymptotically as time
approaches infinity. For the stability analysis, the characteristic equation of A, defined as follows, is

used:

( )det 0λ− =A I                                                                                                                         (782)

In the previous equation I is the identity matrix and λ are the roots of the characteristic equation,

referred as eigenvalues, characteristic roots or latent roots.
The eigenvalues provide a simple means of predicting the behaviour of an induction machine at

any balanced operating conditions. For a real eigenvalue, the induction machine has an exponential

response, and signifies a movement away from the operating point. A real eigenvalue is positive
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over the positive-slope region of the torque-speed curve, and becomes negative after maximum
steady-state torque. When the eigenvalues are complex they occur as conjugate pairs and signify a

mode of oscillation of the state variables. Negative real parts correspond to oscillations, which
decrease exponentially with time, meaning a stable condition, while positive real parts correspond

to an exponential increase with time, an unstable condition.
Usually, the starting point for the machine system analysis is from the voltage equations,

combined with the mechanical equation. So, if the input vector is formed by the stator and rotor

voltages plus the load torque, the matrix equation of the system is written as follows:

[ ]p p= ⋅ + ⋅ = + ⋅u L x R x L R x                                                                                                 (783)

where [ ]p +L R  is denoted as the motional impedance matrix of the machine.

It is possible to obtain the eigenvalues by substituting the differential operator p with the roots

symbol λ, thus the eigen-motional impedance matrix Zm can be formed, and the characteristic

equation will be:

[ ]det ( ) 0m λ =Z                                                                                                                           (784)

The design and analysis of controls associated with machines (i.e. vector control) require the
transfer function of the actual electrical machines, viewed as a system. Using the previous state-
variable set of equations, and substituting the differential operator p with the Laplace operator s, the

input-output transfer function can be expressed as follows, considering no perturbations (z = 0):

[ ] 1( )
( )

( )

s
s s

s

−= = ⋅ − ⋅ +
y

H C I A B D
u

                                                                                         (785)

If the inputs vector is zero, the output-perturbation transfer function can be computed as:

[ ] 1( )
( )

( )
z

s
s s

s

−= = ⋅ − ⋅
y

H C I A E
z

                                                                                             (786)

6.2. Three-phase induction machine linearisation

In the concrete case of the symmetrical three-phase induction machine, the per unit version is
selected for compactness, and the input vector u is chosen to be the voltages vector. Practically, it

contains two terms for the stator voltages, and two terms for the rotor voltages expressed in two-
axis coordinate system. However, a single input variables or a linear combination of several input
variables can also be selected. In this formulation, we can express u as:

iu= ⋅ ∆u G                                                                                                                                  (787)

where G is a column matrix and ∆ui is an input variable such as a linear combination of several

input variables i.e. the amplitude of the terminal voltage.

The perturbations vector is usually given by the variation of the load torque:

LT= ∆z                                                                                                                                        (788)

Recapping from the d-q modelling of the three-phase induction machine, there are fourteen
possible sets of state-variables: currents, flux linkages or mixed flux linkages and currents pairs. Let

the selected pair of incremental state-space variables be denoted as 1 2,x x∆ ∆  and detailed as:

1 1d 1q

2 2d 2q

x x j x

x x j x

∆ = ∆ + ∆

∆ = ∆ + ∆
                                                                                                                    (789)

The small-signal expression for electromagnetic torque can be deduced from the large-signal torque
expression:

( )e 1q 2d 1d 2qT K x x x x= ⋅ −                                                                                                              (790)
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where K denotes a constant corresponding to the selected set of state-variables (i.e. mx
K

D
=  for flux

linkages as state-variables).
If we apply the small-displacement approach to the state-variables, it results:

( )e 1q0 2d 2d0 1q 1d0 2q 2q0 1dT K x x x x x x x x∆ = ⋅ ∆ + ∆ − ∆ − ∆                                                                   (791)

For a complete description of the linearised induction machine model, we have to include also the
mechanical equation, expressed in small-signal form:

( )r

e L

b

1

2
p T T

H

ω

ω

∆
= ⋅ ∆ − ∆                                                                                                        (791)

The starting point for the linearised state-variable models is given by voltage equations system

written in stationary reference frame:
p= ⋅ + ⋅u L x R x                                                                                                                        (792)

where: x is the selected set of state-variables and represent also the output of the model, u is the
previously detailed input vector, L is the coefficients matrix (it can be formed by reactance values,
or non-dimensional elements) for multiplying the time derivative of the state-variables, R is the

coefficients matrix (it can be formed by resistances and reactances values or non-dimensional
elements) for multiplying the state-variables.

Finally, the elements for the three-phase induction machine mathematical model in linearised
form will be:

( ) ( ) ( ) ( )

( ) ( ) ( )

p t t t t

t t t

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅

x A x B u E z

y C x D u
                                                                                      (793-794)

where:
T

1q 1d 2q 2d r( )t x x x x ω = ∆ ∆ ∆ ∆ ∆ x                                                                                   (795)

T

qs ds qr dr L( )t u u u u T = ∆ ∆ ∆ ∆ ∆ u                                                                                    (796)

and:

1

12

21

21 2d0 2q0 1d0 1q0

T

12 dr0 1d0 2d0 qr0 1q0 2q0

(4,1)

;1
(1,4) 0

2

0 0 ( , ) ( , ;

H

K x x x x

x x x xλ λ

−

−

= − ⋅

=

    = =   −    

 = ⋅ − − 

 = − 

1A M S

B M

L 0
R r

M S
0l

l

r

                                                                (797-798)

5 5

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

   
   
   
   = = = =
   
   
      

C I D 0                                                   (799-800)

The perturbations vector can be extracted from the inputs vector as:

L( )t T= ∆z                                                                                                                                    (801)

and:
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T
1

0 0 0 0
2H

 = −  
E                                                                                                      (802)

The eigenvalues can be determined from the characteristic equation. The other way of

determining the roots of this equation is by using the motional matrix impedance:

[ ] [ ]det ( ) det 0m λ λ= + =Z M S                                                                                                  (803)

In Fig. 6.1 is illustrated the small-signal equivalent circuit of the three-phase induction machine in
stationary reference frame:
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+ -
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− −

∆ω  λ dr0− '
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Fig. 6.1. Small-signal stationary reference-frame equivalent circuits for a

three-phase, symmetrical induction machine

6.3. Single-phase induction machine linearisation

In the concrete case of the unsymmetrical single-phase induction machine, the flux linkage per
second version is selected for compactness, and the input vector u is chosen to be the voltages
vector. Comparing with the symmetrical three-phase induction machine case, the same general

considerations are valid. The asymmetrical configuration of this induction machine type can be
included readily in the state-variable equations form by using the turns' ratio value k.

The small-signal expression for electromagnetic torque can be deduced from the large-signal
torque expression in two forms, depending on the selected set of state-variables:

I) Flux linkages models or currents models:

( )e 1q 2d 1d 2qT K x x x x= ⋅ −                                                                                                            (804)

II) Mixed flux linkages and currents models (x1 current space vector, x2 flux linkage space

vector):

e 1q 2d 1d 2q

1
T K x x kx x

k

 = ⋅ − 
 

                                                                                                     (805)

where K denotes a constant corresponding to the selected set of state-variables. For example:

m

b
2

xP
K

k Dω
= ⋅  if the stator and rotor flux linkages are selected as state-variables.

If we apply the small-displacement approach to the state-variables, it results:

I) Flux linkages models or currents models:
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( )e 1q0 2d 2d0 1q 1d0 2q 2q0 1dT K x x x x x x x x∆ = ⋅ ∆ + ∆ − ∆ − ∆                                                                   (806)

II) Mixed flux linkages and currents models (x1 current space vector, x2 flux linkage space

vector):

e 1q0 2d 2d0 1q 1d0 2q 2q0 1d

1 1
T K x x x x kx x kx x

k k

 ∆ = ⋅ ∆ + ∆ − ∆ − ∆ 
 

                                                       (807)

For a complete description of the linearised induction machine model, we have to include also the

mechanical equation, expressed in small-signal form:

( )r

e L

b
2

P
p T T

J

ω

ω

∆
= ⋅ ∆ − ∆                                                                                                          (808)

Following are the final elements , which describe the linearised model of the single-phase induction
machine:

( ) ( ) ( ) ( )

( ) ( ) ( )

p t t t t

t t t

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅

x A x B u E z

y C x D u
                                                                                    (809-810)

where:
T

1q 1d 2q 2d r( )t x x x x ω = ∆ ∆ ∆ ∆ ∆ x                                                                                  (811)

T

qs ds qr dr L( )t u u u u T = ∆ ∆ ∆ ∆ ∆ u                                                                                   (812)

1
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21 2d0 2q0 1d0 1q0 21 2d0 2qo 1d0 1q0

T

12 dr0 1d0 2d0 qr0 1q0 2q0

(4,1)

;2
(1,4) 0

1 1
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1
0 0 ( , ) ( , ) ;

J

P

K x x x x K x kx kx x
k k

x x k x x
k

λ λ

−

−

= − ⋅

=

    = =   −    

  = ⋅ − − = ⋅ − −    

 = −  

1A M S

B M

L 0
R r

M S
0l

l l

r

       (813-814)

5 5

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

   
   
   
   = = = =
   
   
      

C I D 0                                                  (815-816)

The perturbations vector can be extracted from the inputs vector as:

L( )t T= ∆z  and 

T

0 0 0 0
2

P

J

 = −  
E                                                                       (817-818)

The eigenvalues can be computed either from the characteristic equation or by using the motional

impedance matrix of the machine:

[ ] [ ]det ( ) det 0m λ λ= + =Z M S                                                                                                  (819)

In Fig. 6.2 is illustrated the small-signal equivalent circuit of the single-phase induction machine in
stationary reference frame:
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Fig. 6.2. Small-signal stationary reference-frame equivalent circuits for a
single-phase, unsymmetrical induction machine
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