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We review the laws of thermodynamics and some of the techniques for derivation of thermodynamic 
relationships.

Introduction

Equilibrium thermodynamics is the branch of physics which studies the equilibrium properties of bulk matter using 
macroscopic variables.  The strength of the discipline is its ability to derive general relationships based upon a few funda-
mental postulates and a relatively small amount of empirical information without the need to investigate microscopic 
structure on the atomic scale.  However, this disregard of microscopic structure is also the fundamental limitation of the 
method.  Whereas it is not possible to predict the equation of state without knowing the microscopic structure of a system, 
it is nevertheless possible to predict many apparently unrelated macroscopic quantities and the relationships between them 
given the fundamental relation between its state variables.  We are so confident in the principles of thermodynamics that 
the subject is often presented as a system of axioms and relationships derived therefrom are attributed mathematical 
certainty without need of experimental verification.

Statistical mechanics is the branch of physics which applies statistical methods to predict the thermodynamic 
properties of equilibrium states of a system from the microscopic structure of its constituents and the laws of mechanics or 
quantum mechanics governing their behavior.  The laws of equilibrium thermodynamics can be derived using quite general 
methods of statistical mechanics.  However, understanding the properties of real physical systems usually requires applica-
tion of appropriate approximation methods.  The methods of statistical physics can be applied to systems as small as an 
atom in a radiation field or as large as a neutron star, from microkelvin temperatures to the big bang, from condensed 
matter to nuclear matter.  Rarely has a subject offered so much understanding for the price of so few assumptions.

In this chapter we provide a brief review of equilibrium thermodynamics with particular emphasis upon the tech-
niques for manipulating state functions needed to exploit statistical mechanics fully.  Another important objective is to 
establish terminology and notation.  We assume that the reader has already completed an undergraduate introduction to 
thermodynamics, so omit proofs of many propositions that are often based upon analyses of idealized heat engines.



Macroscopic description of thermodynamic systems

A thermodynamic system is any body of matter or radiation large enough to be described by macroscopic parame-
ters without reference to individual (atomic or subatomic) constituents.  A complete specification of the system requires a 
description not only of its contents but also of its boundary and the interactions with its environment permitted by the 
properties of the boundary.  Boundaries need not be impenetrable and may permit passage of matter or energy in either 
direction or to any degree.  An isolated system exchanges neither energy nor mass with its environment.  A closed system 
can exchange energy with its environment but not matter, while open systems also exchange matter.  Flexible or movable 
walls permit transfer of energy in the form of mechanical work, while rigid walls do not.  Diathermal walls permit the 
transfer of heat without work, while adiathermal walls do not transmit heat.  Two systems separated by diathermal walls 
are said to be in thermal contact and as such can exchange energy in the form of either heat or radiation. Systems for 
which the primary mode of work is mechanical compression or expansion are considered simple compressible systems.  
Permeable walls permit the transfer of matter, perhaps selectively by chemical species, while impermeable walls do not 
permit matter to cross the boundary.  Two systems separated by a permeable wall are said to be in diffusive contact.  Also 
note that permeable walls usually permit energy transfer, but the traditional distinction between work and heat can become 
blurred under these circumstances.

Thermodynamic parameters are macroscopic variables which describe the macrostate of the system.  The mac-
rostates of systems in thermodynamic equilibrium can be described in terms of a relatively small number of state variables.  
For example, the macrostate of a simple compressible system can be specified completely by its mass, pressure, and 
volume.  Quantities which are independent of the mass of the system are classified as intensive, whereas quantities which 
are proportional to mass are classified as extensive.  For example, temperature (T ) is intensive while internal energy (U ) is 
extensive.  Quantities which are expressed per unit mass are described as specific, whereas similar quantities expressed per 
mole are described as molar.  For example, the specific (molar) heat capacities measure the amount of heat required to 
raise the temperature of a gram (mole) of material by one degree under specified conditions, such as constant volume or 
constant pressure.

A system is in thermodynamic equilibrium when its state variables are constant in the macroscopic sense.  The 
condition of thermodynamic equilibrium does not require that all thermodynamic parameters be rigorously independent of 
time in a mathematical sense.  Any thermodynamic system is composed of a vast number of microscopic constituents in 
constant motion.  The thermodynamic parameters are macroscopic averages over microscopic motion and thus exhibit 
perpetual fluctuations.  However, the relative magnitudes of these fluctuations is negligibly small for macroscopic systems 
(except possibly near phase transitions).

The intensive thermodynamic parameters of a homogeneous system are the same everywhere within the system, 
whereas an inhomogeneous system exhibits spatial variations in one or more of its parameters.  Under some circumstances 
an inhomogeneous system may consist of several distinct phases of the same substance separated by phase boundaries such 
that each phase is homogeneous within its region.  For example, at the triple point of water one finds in a gravitational field 
the liquid, solid, and vapor phases coexisting in equilibrium with the phases separated by density differences.  Each phase 
can then be treated as an open system in diffusive and thermal contact with its neighbors.  Neglecting small variations due 
to gravity, each subsystem is effectively homogeneous.  Alternatively, consider a system in which the temperature or 
density has a slow spatial variation but is constant in time.  Although such systems are not in true thermodynamic equilib-
rium, one can often apply equilibrium thermodynamics to analyze the local properties by subdividing the system into small 
parcels which are nearly uniform.  Even though the boundaries for each such subsystem are imaginary, drawn somewhat 
arbitrarily for analytical purposes and not representing any significant physical boundary, thermodynamic reasoning can 
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still be applied to these open systems.  The definition of a thermodynamic system is quite flexible and can be adjusted to 
meet the requirements of the problem at hand.

The central problem of thermodynamics is to ascertain the equilibrium condition reached when the external con-
straints upon a system are changed.  The appropriate external variables are determined by the nature of the system and its 
boundary.  To be specific, suppose that the system is contained within rigid, impermeable, adiathermal walls.  These 
boundary conditions specify the volume V , particle number N , and internal energy U .  Now suppose that the volume of 
the system is changed by moving a piston that might comprise one of the walls.  The particle number remains fixed, but the 
change in internal energy depends upon how the volume changes and must be measured.  The problem is then to determine 
the temperature and pressure for the final equilibrium state of the system.  The dependence of internal variables upon the 
external (variable) constraints is represented by one or more equations of state.

An equation of state is a functional relationship between the parameters of a system in equilibrium.  Suppose that 
the state of some particular system is completely described by the parameters p , V , and T .  The equation of state then 
takes the form f @p, V , TD = 0 and reduces the number of independent variables by one.  An equilibrium state may be 
represented as a point on the surface described by the equation of state, called the equilibrium surface.  A point not on this 
surface represents a nonequilibrium state of the system.  A state diagram is a projection of some curve that lies on the 
equilibrium surface.  For example, the indicator diagram represents the relationship between pressure and volume for 
equilibrium states of a simple compressible system.

The figure below illustrates the equilibrium surface U = 3ÅÅÅÅ2  p V  for an ideal gas with fixed particle number.  The 
pressure and energy can be controlled using a piston and a heater, while the volume of the gas responds to changes in these 
variables in a manner determined by its internal dynamics.  For example, if we heat the system while maintaining constant 
pressure, the volume will expand.  Any equilibrium state is represented by a point on the equilibrium surface, whereas 
nonequilibrium states generally require more variables (such as the spatial dependence of density) and cannot be repre-
sented simply by a point on this surface.  A sequence of equilibrium states obtained by infinitesimal changes of the macro-
scopic variables describes a curve on the equilibrium surface.  Thus, much of the formal development of thermodynamics 
entails studying the relationships between the corresponding curves on surfaces constructed by changes of variables. 

A Quasistatic Transformation
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Reversible and Irreversible Transformations

A thermodynamic transformation is effected by changes in the constraints or external conditions which result in a 
change of macrostate.  These transformations may be classified as reversible or irreversible according to the effect of 
reversing the changes made in these external conditions.  Any transformation which cannot be undone by simply reversing 
the change in external conditions is classified as irreversible.  If the system returns to its initial state, the transformation is 
considered reversible.  Although irreversible transformations are the most common and general variety, reversible transfor-
mations play a central role in the development of thermodynamic theory.  A necessary but not sufficient condition for 
reversibility is that the transformation be quasistatic.  A quasistatic (or adiabatic) transformation is one which occurs so 
slowly that the system is always arbitrarily close to equilibrium.  Hence, quasistatic transformations are represented by 
curves upon the equilibrium surface.  More general transformations depart from the equilibrium surface and may even 
depart from the state space because nonequilibrium states generally require more variables than equilibrium states.

For example, consider two equal volumes separated by a rigid impenetrable wall.  Initially one partition contains a 
gas of red molecules and the other a gas of blue molecules.  The two subsystems are in thermal equilibrium with each 
other.  If the partition is removed, the two species will mix throughout the combined volume as a new equilibrium condi-
tion is reached.  However, the original state is not restored when the partition is replaced.  Hence, this transformation is 
irreversible.

An Irreversible Transformation

Thermodynamic transformations often are irreversible because the constraints are changed too rapidly.  Suppose 
that an isolated volume of gas is confined to an insulated vessel equipped with a movable piston.  If the piston is suddenly 
moved outwards more rapidly than the gas can expand, the gas does no work on the piston.  Because the insulating walls 
allow no heat to enter the vessel, the internal energy of the system is unchanged by such a rapid expansion of the volume, 
but the pressure and temperature will change.  If the piston is now returned to its original position, it must perform work 
upon the gas.  Therefore, the internal energy of the final state is different from that of the initial state even though the 
constraints have been returned to their initial conditions.  Such a transformation is again irreversible.  On the other hand, if 
the piston were to be moved slowly enough to allow the gas pressure to equalize throughout the volume during the entire 
process, the gas will return to its initial state when returned to its initial volume.  For this system, reversibility can be 
achieved by varying the volume sufficiently slowly to ensure quasistatic conditions.

The necessity of the requirement that a reversible transformation be quasistatic follows from the requirement that 
the state of the system be uniquely described by the thermodynamic parameters that describe its equilibrium state.  Nonequi-
librium states are not fully described by this restricted set of variables.  We must be able to represent the history of the 
system by a trajectory upon its equilibrium surface.  However, the insufficiency of quasistatis can be illustrated by a 
familiar example: the magnetization M of a ferromagnetic material subject to a magnetizing field H exhibits the phenome-
non of hysteresis.
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It is generally observed that a system not in equilibrium will eventually reach equilibrium if the external conditions 
remain constant long enough.  The time required to reach equilibrium is call the relaxation time.  Relaxation times are 
extremely variable and can be quite difficult to estimate.  For some systems, it might be as short as 10-6  s, while for other 
systems it might be a century or longer.  In the examples above, the relaxation time for the gas and piston system is proba-
bly milliseconds, while the relaxation time for the ferromagnet might be many years.  In this sense, hysteresis occurs when 
the relaxation time is much longer than our patience, such that "slow" fails to coincide with "quasistatic".

Laws of Thermodynamics

à 0th  Law of Thermodynamics

Consider two isolated systems, A and B, which have been allowed to reach equilibrium separately.  Now bring 
these systems into thermal contact with each other.  Initially, they need not be in equilibrium with each other.  Eventually, 
the combined system, A+B, will reach a new equilibrium state.  Some changes in both A and B will generally have 
occurred, usually including a transfer of energy.  In the final equilibrium state of the combined system we say that the 
subsystems are in equilibrium with each other.  If a third system, C, can now be brought into thermal contact with A 
without any changes occurring in either A or C, then C is in equilibrium with not only with A but with B also.  This postu-
late may be expressed as:
0th  Law of Thermodynamics:

If two systems are separately in equilibrium with a third, then they must also be in equilibrium with each 
other.

The zeroth law may be paraphrased to say the equilibrium relationship is transitive.  The transitivity of equilibrium condi-
tions does not depend upon the nature of the systems involved and can obviously be extended to an arbitrary number of 
systems.

The converse of the 0th  law
Converse of 0th  Law of Thermodynamics:

If three or more systems are in thermal contact with each other and all are in equilibrium together, then 
any pair is separately in equilibrium.

is easily demonstrated.  If the state of the combined system is in equilibrium, its properties are constant; but if a pair of 
subsystems is not in equilibrium with each other and are allowed to interact, their states will change.  This result contra-
dicts the initial hypothesis, thereby proving the equivalence between the 0th  law and its converse.

The concept of temperature is based upon the 0th  law of thermodynamics. For simplicity, consider three systems 
(A,B,C) each described by the variables 8pi, Vi, i œ 8A, B, C<< .  The condition of equilibrium between systems A and C 
may be expressed as an equation of the form

F1@pA, VA, pC, VCD = 0
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which may be solved for pC  as

pC = f1@pA, VA, VCD = 0

Similarly, the equilibrium between systems B and C yields

pC = f2@pB, VB, VCD = 0

so that

f1@pA, VA, VCD = f2@pB, VB, VCD
Finally, the equilibrium between A and B can be expressed as

F3@pA, VA, pB, VBD = 0

If these last two equations are to express the same equilibrium condition, we must be able to eliminate VC  from the former 
equation to obtain

fA@pA, VAD = fB@pB, VBD
where fA  or fB  depend only upon the state variables of systems A or B  independently.  The democracy amongst the three 
systems can then be used to extend the argument to fC , such that

fA@pA, VAD = fB@pB, VBD = fC@pC, VCD
for three systems in mutual equilibrium.

Therefore, there must exist a state function that has the same value for all systems in thermal equilibrium with each 
other.  For each system, this state function depends only upon the thermodynamic parameters of that system and is indepen-
dent of the process by which equilibrium was achieved and is also independent of the environment. This function will, of 
course, be different for dissimilar systems.

An empirical temperature scale can now be established by selecting a convenient thermometric property of a 
standard system, S, and correlating its equilibrium states with an empirical temperature q  in the form f@8xS<D = q , where 8xS<  represents a complete set of thermodynamic parameters (other than temperature) for the standard system.  The equa-
tion of state of any test system, A, can now be determined.  Maintaining the standard system in a constant state, we vary the 
parameters of the test system in such a way as to maintain equilibrium between S and A.  This set of variations then deter-
mines f@8xA<D = q  as an equilibrium surface of A.  The locus of all points HpA, VAL  which remain in equilibrium with S at 
an empirical temperature q  describes a curve in the pV  diagram called an isotherm.  Several such isotherms for an ideal 
gas are sketched and labelled by their empirical temperatures in the indicator diagram below.
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The 0th  law of thermodynamics requires that the form of the isotherms be independent of the nature of the standard 
system S.  If we had chosen a different standard system, S£ , at the same empirical temperature as determined by equilib-
rium between S and S£ , it would also have to be in equilibrium with A for all states along the isotherm.  Therefore, the 
isotherms describe a property of the system of interest and are independent of subsidiary systems.

Several examples of suitable thermometric properties come readily to mind.  First, consider the height of a mercury 
column in an evacuated tube, a common household thermometer.  The mercury expands when heated and contracts when 
cooled.  We may define an empirical temperature scale as a linear function of the height of the column.  Second, Boyle's 
law states that the isotherms of a dilute gas may be described by pV ên = constant, where n is the number of moles.  
Therefore, a suitable temperature scale can be defined by any function f @qD  associated with these isotherms by 
pV = n f @qD .  The simplest and most convenient choice, pV = nRq , is known as the ideal gas law.  With a suitable choice 
of the gas constant, R, this empirical temperature scale is identical, in the limit p Ø 0, with the absolute temperature scale 
to be discussed shortly.

It is important to realize that an empirical temperature scale bears no necessary relationship to any scale of hotness.  
A rigorous macroscopic concept of heat depends upon the first law of thermodynamics while the relationship between the 
direction of heat flow and temperature depends upon the second law.

à 1st  Law of Thermodynamics

The first law of thermodynamics represents an adaptation of the law of conservation of energy to thermodynamics, 
where energy can be stored in internal degrees of freedom.  For thermodynamic purposes, it is convenient to define the 
internal energy, U, as the energy of the system in the rest frame of its center-of-mass.  The kinetic energy of the center-of-
mass is a problem in mechanics that we will generally ignore.

Ordinarily, one states energy conservation in the form of some variant of the statement: The energy of any isolated 
system is constant.  However, applications of this law must include the concept of heat, which has not yet been developed.  
Therefore, it is conceptually clearer to proceed by a more circuitous route.  Taking the concept of mechanical work as the 
foundation, we state the first law as
First Law of Thermodynamics:

The work required to change the state of an otherwise isolated system depends solely upon the initial and 
final states involved and is independent of the method used to accomplish this change.

The stipulation that the system interacts with the environment only through a measurable source of work is crucial — no 
other source of energy, such as heat or radiation, is permitted by the thermodynamic transformation described.

An immediate consequence of the first law is the existence of a state function we identify as the internal energy, U.  
It is customary to denote the work performed upon the system as W.  The first law states that the work performed upon the 
system during any adiathermal transformation depends only upon the change of states effected and is independent of the 
intermediate states through which the system passes.  Equilibrium conditions are not required.  Therefore, the internal 
energy is a state function whose change during an adiathermal transformation is given by DU = W .

We now consider a more general transformation during which the system may exchange energy with its environ-
ment without the performance of work.  Although DU  is then no longer equal to W, the internal energy is still a state 
function.  The ability to change the energy of a system without performing mechanical work does not represent a defect in 
the law of conservation of energy.  Rather, it demonstrates that energy may be transferred in more than one form.  This 
observation leads to the definition of heat as:
Definition of heat:
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The quantity of heat Q absorbed by a system is the change in its internal energy not due to work.

With this definition, energy conservation can be expressed in the form

DU = Q + W

These considerations have thus produced a quantitative concept of heat that is similar to our commonplace notions.

At first glance, the argument presented above may appear circular.  We stated that energy is conserved, but then 
defined heat in a manner that guarantees that this is true.  However, this circularity is illusory.  The crux of the matter is 
that internal energy is postulated to be a state function.  This is a physical statement subject to experimental verification, 
rather than merely a definition.  Suppose that the state of some system is changed in an arbitrary manner from state A to 
state B.  In principle, we can now insulate the system and return to state A by performing a measurable quantity of work.  
The first stage of this cycle can now be repeated in some other arbitrary fashion.  However, the quantity of work required 
to repeat the insulated return portion of the cycle must be the same if the first law is valid.

Often it is important to distinguish between proper and improper differentials.  Consider a fixed quantity of gas 
contained within a piston.  If the gas is expanded or compressed by moving the piston sufficiently slowly so that the 
pressure equalizes throughout the volume, the differential work done on the gas by a infinitesimal quasistatic displacement 
of the piston can be expressed as

quasistatic ï dW = - p „ V

On the other hand, if the piston is withdrawn so rapidly that there is no gas in contact with the piston during its motion, 
then the gas performs no work on the piston, such that dW Ø 0 even though the volume changes.  Therefore, we use „  to 
indicate a proper differential that depends only upon the change of state or d  to indicate an improper differential that also 
depends upon the process used to change the state.  The change in internal energy

„ U = dQ + dW

is a proper differential because U is a state function even though both the heat absorbed by and work done on the system 
are improper or process-dependent differentials. 

à 2nd  Law of Thermodynamics

Although the first law greatly restricts the thermodynamic transformations that are possible, it is a fact of common 
experience that many processes consistent with energy conservation never occur in nature.  For example, suppose that an 
ice cube is placed in a glass of warm water.  Although the first law permits the ice cube to surrender some of its internal 
energy so that the water is warmed while the ice cools, such an event in fact never occurs.  Similarly, if we mix equal parts 
of two gases we never find the two gases to have separated spontaneously at some later time.  Nor do we expect scrambled 
eggs to reintegrate themselves.  The fact that these types of transformations are never observed to occur spontaneously is 
the basis of the second law of thermodynamics.

The second law can be formulated in many equivalent ways.  The two statements generally considered to be the 
most clear are those due to Clausius and to Kelvin.  
Clausius statement:

There exists no thermodynamic transformation whose sole effect is to transfer heat from a colder 
reservoir to a warmer reservoir.

Kelvin statement:
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There exists no thermodynamic transformation whose sole effect is to extract heat from a reservoir and 
to convert that heat entirely into work.

Paraphrasing, the Clausius statement expresses the common experience that heat naturally flows downhill from hot to cold, 
whereas the Kelvin statement says that no heat engine can be perfectly efficient.  Both statements merely express facts of 
common experience in thermodynamic language.  It is relatively easy to demonstrate that these alternative statements are, 
in fact, equivalent to each other.  Although these postulates may appear somewhat mundane, their consequences are quite 
profound; most notably, the second law provides the basis for the thermodynamic concept of entropy.

One might be inclined to regard the Kelvin statement as more fundamental because it does not require that an 
empirical temperature scale be related directly to direction of heat flow or to the notion of hotness.  However, such a 
relationship is easily established in practice and is so basic to our intuitive notions of heat and temperature that such a 
criticism is regarded as merely pedantic.  There are also more abstract formulations of the second law, notably that of 
Caratheodory, that can be used to establish the existence and properties of entropy with fewer assumptions, but less 
obvious connection to physical phenomena.

Perhaps the most common derivation of entropy is based upon an analysis of heat engines, which are also used to 
demonstrate that the Kelvin and Clausius statements are equivalent.  This approach can be found in any undergraduate 
thermodynamics text.  We prefer to employ a somewhat different argument that is closer to our main topic of statistical 
mechanics.  This approach is based upon an alternative statement of the second law.
Maximum entropy principle:

There exists a state function of the extensive parameters of any thermodynamic system, called entropy S, 
with the following properties:

1. the values assumed by the extensive variables are those which maximize S consistent with the 
external constraints; and

2. the entropy of a composite system is the sum of the entropies of its constituent subsystems.

Using similar arguments based upon heat engines, one can show that the maximum entropy principle is equivalent to the 
Kelvin and Clausius statements, but we shall not digress to provide that demonstration.  Instead, we take the maximum 
entropy principle as our primary statement of the second law.

Consider two systems separated by a rigid diathermal wall; in other words, the two systems are in thermal contact 
and can exchange heat but cannot perform work on each other.  Further, suppose that the combined system is isolated, so 
that U1 + U2 = constant.  Suppose that the two systems exchange an infinitesimally small quantity of heat, such that 
„ U2 = -„ U1 .  Since no work is done, this energy exchange must be in the form of heat, „ Ui = dQi , where we use „ x  to 
represent a proper differential and dx  to represent an improper differential that is infinitesimally small but depends upon 
the nature of the process.  The net change in entropy during this process is

„ S = „ S1 + „ S2 = ikjj ∑S1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑U1

y{zzV1,N1

 „ U1 + ikjj ∑S2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑U2

y{zzV2,N2

 „ U2 = J 1
ÅÅÅÅÅÅÅÅ
t1

-
1

ÅÅÅÅÅÅÅÅ
t2

N dQ1

where we have defined
1
ÅÅÅÅÅ
t

= ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑U

y{zzV ,N

for each system in terms of the partial derivative of entropy with respect to energy holding all other extensive variables 
(volume, particle numbers, etc.) constant.  Maximization of entropy at equilibrium then requires

„ S = 0 ï t1 = t2
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for arbitrary (nonzero) values of „ U1 .  However, equilibrium also requires that the temperatures of the two systems be 
equal. Therefore, we are inclined to identify t  with temperature T; after all, we have the existence of empirical temperature 
scales but have not yet made a definition of absolute temperature.  To demonstrate that this identification is consistent with 
more primitive notions of temperature, suppose that t1 > t2 .  We then expect that heat will flow spontaneously from the 
hotter to the cooler system, such that dQ1 < 0.  We then find that

t1 > t2, dQ1 < 0 ï „ S > 0

demonstrates that the net entropy increases when heat flows in its natural direction from hot to cold.  Heat continues to 
flow until the temperatures become equal, equilibrium is reached, and entropy is maximized.  Therefore, this relationship 
between temperature and entropy is consistent with the second law of thermodynamics.

Now suppose that system 1 is the working substance of a heat engine while system 2 consists of a collection of heat 
reservoirs that can be used to supply or accept heat at constant temperature.  Imagine a cycle in which system 1 starts in a 
well-defined initial state in equilibrium with a reservoir at temperature Ti  and is then manipulated such that at the end of 
the cycle it once again returns to the same initial state at final temperature T f = Ti .  Hence, the internal energy and entropy 
return to their initial values when the system is returned to its initial state.  Intermediate states of system 1 need not be in 
equilibrium and may require a larger set of variables for complete characterization.  Although such states do not have a 
unique temperature, we imagine that any exchange of heat with the external environment is made by thermal contact with a 
reservoir that does have a well-defined temperature at every stage of the cycle and that the reservoirs are large enough to 
make the necessary exchange with negligible change of temperature.  If necessary, we could imagine that a large collection 
of reservoirs is used for this purpose.  According to the maximum entropy principle, the change in entropy is nonnegative, 
such that

DS = DS1 + DS2 ¥ 0

Thus, having stipulated a closed cycle for system 1, requiring its initial and final entropies to be identical, we conclude that 
the entropy of the environment cannot decrease when system 1 executes a closed cycle, such that

DS1 = 0 ï DS2 ¥ 0

The entropy change for the environment is related to the heat absorbed by the system according to

dS2 = -
dQ1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T2

ï ‡ dQ1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T2

§ 0

Focussing upon the system of interest, which undergoes a closed cycle, we can express this result in the form® dQ
ÅÅÅÅÅÅÅÅÅÅÅ
T

§ 0

where we interpret dQ  as the heat absorbed by the system and T  as the temperature of the reservoir that supplies that heat; 
the temperature of the system need not be the same as that of the reservoir and is often not even unique.  In the special case 
that the reservoir also undergoes a closed cycle, such that DS2 = 0, we find® dQ

ÅÅÅÅÅÅÅÅÅÅÅ
T

= 0 if and only if the cycle is reversible

where, according to the preceding analysis, reversible heat exchange requires the temperatures of both bodies must be the 
same.

These results are summarized by Clausius' theorem
Clausius' theorem

10 ReviewThermodynamics.nb



For any closed cycle, ò dQÅÅÅÅÅÅÅÅT §0, where d Q is the heat absorbed at temperature T.  Equality holds if and 
only if the cycle is reversible.

If a closed cycle consists only of reversible transformations, we can use® dQrevÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T

= 0

to associate changes „ S  in the state function S  to reversible heat exchange according to

„ S =
dQrevÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T
ï T  „ S = dQrev

This identification does not apply to irreversible heat exchange.  Suppose that a reversible transformation between states A 
and B is followed by an irreversible return from B to A, such that® dQ

ÅÅÅÅÅÅÅÅÅÅÅ
T

§ 0 ï ‡
A

B dQrevÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T

+ ‡
B

A
„ S § 0 ï ‡

A

B
„ S ¥ ‡

A

B dQrevÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T

Thus, a reversible transformation entails the smallest possible change in entropy.  If the states A and are taken as infinitesi-
mally close together, then the differentials satisfy the same relationship, such that

„ S ¥
dQrevÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T

where equality applies only to reversible transformations.  This relationship can now be used to provide an experimental 
definition for the change in entropy of a system.  The entropy of state A can be related to that of a standard or reference 
state R by measuring reversible heat exchanges according to

SA = SR + ‡
R

A dQrevÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T

The heat capacity subject to specified constraints can now defined by 

Cx = J dQrevÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
dT

N
x

where x describes the process and dQrev = T  „ S  is the heat absorbed during a reversible process in which the temperature 
change is dT .  However, because the second law postulates that S is a state function that is independent of process, be it 
reversible or irreversible, the form

Cx = T  ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzx

is more fundamental — it does not depend upon the details of process, just the change in state that is actually accom-
plished.  Therefore changes in the entropy of a system can be deduced from heat capacity measurements using

DS = ‡ C@TD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T
 „ T

where the heat capacity generally depends upon temperature.

Changes in the internal energy of a simple compressible system can be expressed in the form „ U = dQ + dW  
where we identify dQrev = T  „ S  as the heat absorbed and dW = - p „ V  as the work performed upon the system during an 
infinitesimal reversible process.  Therefore, we can express the energy differential as

„ U = T  „ S - p „ V
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where the use of state functions liberates us from the restriction to reversible process; in other words, by expressing the 
energy differential in terms of state function, it becomes a perfect differential that applies to any process, reversible or not.  
We can now define the isochoric heat capacity as the heat absorbed for an infinitesimal temperature change under condi-
tions of constant volume as

„ V = 0 ï T  „ S = „ U ï CV = T  ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
= ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV

where the final expression in terms of state functions is considered the fundamental definition.  Similarly, the isobaric heat 
capacity under conditions of constant pressure is easily obtained by defining enthalpy

H = U + pV ï „ H = T  „ S + V  „ p

such that

„ p = 0 ï T  „ S = „ H ï Cp = T  ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
= ikjj ∑ H

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp

à 3rd  Law of Thermodynamics

For most applications of thermodynamics it is sufficient to analyze changes in entropy rather than entropy itself, 
but determination of absolute entropy requires an integration constant or, equivalently, knowledge of the absolute entropy 
for a standard or reference state of the system.  Historically, attempts to formulate a general principle for determination of 
absolute entropy were motivated to a large extent by the need of chemists to calculate equilibrium constants for chemical 
reactions from thermal data alone.  Several similar, but not quite equivalent, statements of the third law have been 
proposed.

The Nernst heat theorem states: a chemical reaction between pure crystalline phases that occurs at absolute zero 
produces no entropy change.  This formulation was later generalized in the form of the Nernst-Simon statement of the third 
law.
Nernst-Simon statement of third law:

The change in entropy that results from any isothermal reversible transformation of a condensed system 
approaches zero as the temperature approaches zero.

The Nernst-Simon statement can be represented mathematically by the limit

lim
TØ0

HDSLT = 0

An immediate consequence of the Nernst-Simon statement is that the entropy of any system in thermal equilibrium must 
approach a unique constant at absolute zero because isothermal transformations are assumed not to affect entropy at 
absolute zero.  This observation forms the basis of the Planck statement of the third law.
Planck statement of third law:

As TØ0, the entropy of any system in equilibrium approaches a constant that is independent of all other 
thermodynamic variables.

Planck actually generalized this statement even further by hypothesizing that limTØ0 S = 0.  However, this strong form of 
the Planck statement requires that the quantum mechanical degeneracy of the ground state of any system must be unity.  
Thus, the strong form implicitly assumes that there always exist interactions that split the degeneracy of the ground state, 
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but the energy splitting might be so small as to be irrelevant at any attainable temperature.  Therefore, we will not require 
the strong form and will content to apply the weaker form stated above.

Finally, the third law is often presented in the form of the unattainability theorem.
Unattainability theorem:

There exists no process, no matter how idealized, capable of reducing the temperature of any system to 
absolute zero in a finite number of steps.

For the purposes of this theorem, a step is interpreted as either an isentropic or an isothermal transformation.  The follow-
ing figure illustrates the meaning of the unattainability theorem (the temperature and entropy units are arbitrary).  Suppose 
that entropy S@T , xD  depends upon temperature and an external variable x , with the upper curve corresponding to x = 0 and 
the lower curve to a large value of x .  For example, increasing the external magnetic field applied to a paramagnetic 
material increases the alignment of atomic magnetic moments and reduces the entropy of the material.  Suppose that the 
sample is initially in thermal equilibrium at x = 0 with a reservoir at temperature T0 .  We slowly increase x  while maintain-
ing thermal equilibrium at constant temperature.  Next we adiabatically reduce x  back to zero, thereby cooling the sample.  
Consider the right side of the figure, in which the entropy at T Ø 0 depends upon x .  In this case an idealized sequence of 
alternating isothermal and isentropic steps appears to be capable of reaching zero temperature, but the dependence 
∑S@0,xDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∫ 0 violates the third law.  Therefore, the third law asserts that the entropy for physical systems must approach a 

constant as T Ø 0 that is independent of any external variable.  In the figure on left, an infinite number of steps would be 
needed to reach absolute zero because the entropy at zero temperature is independent of external variables, such that 
∑S@0,xDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x = 0, and is consistent with the third law.

Unattainability Theorem

T

S

Allowed

T

S

Not Allowed

Adiabatic demagnetization is an important technique for reaching low temperatures that relies on a process similar 
to that sketched above.  A paramagnetic salt is a crystalline solid in which some of the ions possess permanent magnetic 
dipole moments.  In a typical sample the magnetic ions constitute a small fraction of the material and are well separated so 
that the spin-spin interactions are very weak and the Curie temperature very low.  (The Curie temperature marks the phase 
transition at which spontaneous magnetization is obtained as a paramagnetic material is cooled.)  For the purposes of 
thermodynamic analysis, we can consider the magnetic dipoles to constitute one subsystem while the nonmagnetic degrees 
of freedom constitute a second subsystem, even though both subsystems are composed of the same atoms.  These interpene-
trating systems are in thermal contact with each other, but the interaction between magnetic and nonmagnetic degrees of 
freedom is generally quite weak so that equilibration can take a relatively long time.  The first step is to cool the sample 
with B = 0 by conventional thermal contact.  In a typical demagnetization cell the sample is surrounded by helium gas.  
Around that is a dewar containing liquid helium boiling under reduced pressure at a temperature of about 1 kelvin.  The 
gas serves to exchange heat between the sample and the liquid, maintaining the system at constant temperature.  Next, the 
external magnetic field is increased, aligning the magnetic dipoles and reducing the entropy of the sample under isothermal 
conditions.  The helium gas is then removed and the system is thermally isolated.  The field is then reduced under essen-
tially adiabatic conditions, reducing the temperature of the magnetic subsystem while the coupling between magnetic and 
nonmagnetic subsystems cools the lattice.  This step must be slow enough for heat to be transferred reversibly between 
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nonmagnetic and magnetic subsystems.  Nevertheless, it is possible to reach temperatures in the millikelvin range using 
adiabatic demagnetization that exploits ionic magnetic moments, limited by the atomic Curie temperature Tc .  Even lower 
temperature, in the microkelvin range, can be reached by adding a nuclear demagnetization step; the Curie temperature is 
lower by the ratio of nuclear and atomic magnetic moments, which is approximately the ratio me ê mp  between electron and 
proton masses.

Thermodynamic Potentials

Suppose that the macrostates of a thermodynamic system depend upon r extensive variables 8Xi, i = 1, r< .  There 
are then r + 1 independent extensive variables consisting of the set 8Xi<  supplemented by either S or U, such that the 
fundamental relation for the system can be expressed in either entropic form,

S = S@U , X1, ∫, XrD
or energetic form

U = U@S, X1, ∫, XrD
These relationships describe all possible equilibrium states of the system.  Changes in these state functions can then be 
expressed in terms of total differentials

„ U = T „ S + ‚
i

Pi „ Xi

„ S =
1
ÅÅÅÅÅÅ
T

„ U + ‚
i

Qi „ Xi

where for reversible transformations variations of the external constraints via „ Xi  perform work Pi „ Xi  upon the system 
(which may be negative, of course) while T  „ S  represents energy supplied to hidden internal degrees of freedom in the 
form of heat.  However, by expressing the total differential solely in terms of state variables, the fundamental relation 
applies to any change of state, reversible or not, independent of the path by which that change was made.  Therefore, we 
can identify the coefficients with partial derivatives, whereby

T = ikjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑S

y{zzXi

= ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑U

y{zzXi

-1

Pi = ikjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ Xi

y{zzS,X j∫Xi

Qi = ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ Xi

y{zzU ,X j∫Xi

are intensive parameters which satisfy equations of state of the form

T = T@S, X1, ∫, XrD
Pi = Pi@S, X1, ∫, XrD
Qi = Qi@U , X1, ∫, XrD

The equation for T is called the thermal equation of state while the equations for Pi  or Qi  are mechanical and/or chemical 
equations of state depending upon the physical meaning of the conjugate variable Xi .  Note that the sets of Pi  and Qi  are 
not independent because there are only r + 1 independent equations of state which completely determine the fundamental 
relation.  If we choose to employ the energy representation, U = U@S, 8Xi<D , the appropriate choice of intensive parameters 
would be HT , 8Pi<L  and any Qi  can be expressed in terms of HT , 8Pi<L .

14 ReviewThermodynamics.nb



For example, a simple compressible system is characterized completely by its energy (or entropy), volume, and 
particle number for a single species.  The fundamental relation in the energy representation then takes the form

U = U@S, V , ND ï „ U = T  „ S - p„ V + m„ N

where the intensive parameter conjugate to -V  is clearly the pressure and the intensive parameter conjugate to N  is 
identified as the chemical potential m, such that

T = ikjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑S

y{zzV ,N
p = -ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzS,N
m = ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ N

y{zzS,V

Alternatively, in the entropy representation we write

S = S@U , V , ND ï T  „ S = „ U + p„ V - m„ N

such that
1
ÅÅÅÅÅÅ
T

= ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑U

y{zzV ,N

p
ÅÅÅÅÅÅ
T

= ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzU ,N

m
ÅÅÅÅÅÅ
T

= -ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ N

y{zzU ,V

where we have employed the customary definitions for the energetic and entropic intensive parameters.  More complex 
systems require a greater number of extensive variables and associated intensive parameters.  A pair of variables, xi  and 
Xi , are said to be conjugate when Xi  is extensive, xi  intensive, and the product xi „ Xi  has dimensions of energy and 
appears in the fundamental relation for „ U  or „ S .

It is straightforward to generalize these developments for systems with different or additional modes of mechanical 
work.  For example, the conjugate pair H- p, V L  for a compressible system might be replaced by Hg, AL  for a membrane 
with area A subject to surface tension g .  A change „ Xi  in one of the extensive variables requires work Pi „ Xi  where 
Pi = ∑UÅÅÅÅÅÅÅÅÅ∑Xi

 can be interpreted as a thermodynamic force.  [Note that the absence of a negative sign is related to the conven-
tion that positive work is performed upon the system, increasing its internal energy.]  Thus, the fundamental relation for an 
elastic membrane is written in the form „ U = T  „ S + g „ A , where the surface tension g = ∑UÅÅÅÅÅÅÅÅÅ∑A  plays the role of a thermody-
namic force acting through generalized displacement „ A  to perform work g „ A  upon the membrane.

The fundamental relation must be expressed in terms of its proper variables to be complete.  Thus, the energy 
features entropy, rather than temperature, as one of its proper variables.  However, entropy is not a convenient variable 
experimentally — there exists no meter to measure nor knob to vary entropy directly.  Therefore, it is often more conve-
nient to construct other related quantities in which entropy is a dependent instead of an independent variable.  This goal 
can be accomplished by means of the Legendre transformation in which a quantity of the form ≤ xi Xi  is added to the 
fundamental relationship in order to interchange the roles of a pair of conjugate variables.  For example, we define the 
Helmholtz free energy as F = U - T S  so that for a simple compressible system we obtain a complete differential of the 
form

F = U - T S ï „ F = -S „ T - p „ V + m „ N

in which T is now the independent variable and S the dependent variable.  The fundamental relation now assumes the form 
F = F@T , V , ND  where

S = -ikjj ∑ F
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV ,N
p = -ikjj ∑ F

ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzT ,N
m = ikjj ∑ F

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ N

y{zzT ,V

This state function is clearly much more amenable to experimental manipulation than the internal energy even if U occu-
pies a more central role in our thinking.  On the other hand, a simple intuitive interpretation of F is available also.  Con-
sider a simple compressible system enclosed by impermeable walls equipped with a movable piston and suppose that the 
system is in thermal contact with a heat reservoir that maintains constant temperature.  The change in Helmholtz free 
energy when the volume is adjusted isothermally is then
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„ T = 0, „ N = 0 ï „ F = - p „ V

If the change of state is performed reversibly and quasistatically, the change in free energy is equal to the work performed 
upon the system, such that „ F = dW .  Therefore, the Helmholtz free energy can be interpreted as the capacity of the 
system to perform work under isothermal conditions.  The free energy is less than the internal energy because some of the 
internal energy must be used to maintain constant temperature and is not available for external work.  Hence, the free 
energy is often more relevant experimentally than the internal energy.

State functions obtained by means of Legendre transformation of a fundamental relation are called thermodynamic 
potentials because the roles they play in thermodynamics are analogous to the role of the potential energy in mechanics.  
Each of these potentials provides a complete and equivalent description of the equilibrium states of the system because 
they are all derived from a fundamental relation that contains all there is to know about those states.  However, the function 
that provides the most convenient packaging of this information depends upon the selection of independent variables that is 
most appropriate to a particular application.  For example, it is often easier to control the pressure upon a system that its 
volume, especially if it is nearly incompressible.  Under those conditions it might be more convenient to employ enthalpy

H = U + pV ï „ H = T  „ S + V  „ p + m „ N

or the Gibbs free enthalpy

G = F + pV ï „ G = -S „ T + V  „ p + m „ N

than the corresponding internal or free energies.  The dependent variables are then identified in terms of the coefficients 
that appear in the differential forms of the fundamental relation chosen.  Thus, for the Gibbs representation we identify 
entropy, volume, and chemical potential as

S = -ikjj ∑G
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp,N
V = ikjj ∑G

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT ,N
m = ikjj ∑G

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ N

y{zzT ,p

Note that the Helmholtz free energy or Gibbs free enthalpy are often referred to as Helmholtz or Gibbs potentials, some-
what more palatable appellations.  More complicated systems with additional work modes require additional terms in the 
fundamental relation and give rise to a correspondingly greater number of thermodynamic potentials.  Similarly, if it is 
more natural in some application to control the chemical potential than the particle number, a related set of thermodynamic 
potentials can be constructed by subtracting mi Ni  from any of the potentials which employ Ni  as one of its independent 
variables.  

If any of the thermodynamic potentials is known as a function of its proper variables, then complete knowledge of 
the equilibrium properties of the system is available because any thermodynamic parameter can be computed from the 
fundamental relation.  For example, suppose we have G@T , pD .  The internal energy U = G + T S - pV  can then be 
expressed in terms of temperature and pressure as

U = G@T , pD - T  ikjj ∑G
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
- p ikjj ∑G

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
 

where S and V are obtained as appropriate partial derivatives of G.  An almost limitless variety of similar relationships can 
be developed easily using these techniques.  In fact, much of the formal development of thermodynamics is devoted to 
finding relationships between the quantities desired and those that are most accessible experimentally.  Thus, the skilled 
thermodynamicist must be able to manipulate related rates of change subject to various constraints.  Several useful tech-
niques are developed in the next section. 
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Thermodynamic Relationships

à Maxwell relations

An important class of thermodynamic relationships, known as Maxwell relations, can be developed using the 
completeness of fundamental relations to examine the derivatives of one member of a conjugate pair with respect to a 
member of another pair.  Consider a simple compressible system with fundamental relation

„ U = ikjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑S

y{zzV
 „ S + ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzS
 „ V = T  „ S - p „ V

The completeness of the total differential „ U  requires the two mixed second partial derivatives to be equal, such that 
∑2 U

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V  ∑S

=
∑2 U

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑S ∑V

ï ikjj ∑
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzS
 ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑S

y{zzV
= ikjj ∑

ÅÅÅÅÅÅÅÅÅÅ
∑S

y{zzV
 ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzS

Therefore, upon identification of the temperature and pressure with appropriate first derivatives, we obtain the Maxwell 
relation ikjj ∑T

ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzS
= -ikjj ∑ p

ÅÅÅÅÅÅÅÅÅÅÅ
∑S

y{zzV

The power of this relationship stems from the fact that it depends only upon the statement that the internal energy is a 
function solely of S and V; hence, its validity is independent of any other specific properties of the system.

Similar Maxwell relations can be developed from each of the thermodynamic potentials expressed as functions of a 
different pair of independent variables.  The four Maxwell relations below are easily derived (verify!) for simple compress-
ible systems.

U = U@S, V D ï ikjj ∑T
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzS
= -ikjj ∑ p

ÅÅÅÅÅÅÅÅÅÅÅ
∑S

y{zzV

H = H@S, pD ï ikjj ∑T
ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzS
= ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑S

y{zzp

F = F@T , V D ï ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzT
= ikjj ∑ p

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV

G = G@T , pD ï ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
= -ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp

Each of these relationships is an essential consequence of the completeness of the fundamental relation and several of these 
relationships impose constraints upon the behavior of quantities of practical, experimental significance.  In each relation-
ship two independent variables appear in the denominators, one as for differentiation and the other as a constraint, while in 
each derivative the dependent variable from the opposite conjugate pair appears in the numerator.  The sign is determined 
by the relative sign that appears in the fundamental relation for the thermodynamic potential appropriate to the chosen pair 
of independent variables.  Any remaining independent variables (such as particle number, N) should appear in the con-
straints for both sides, but are often left implicit.
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To illustrate the usefulness of Maxwell relations, consider the derivative of the isobaric heat capacity, Cp , with 
respect to pressure for constant temperature.  This quantity is directly accessible to measurement.  Expressing Cp  in terms 
of S and using the commutative property of partial derivatives, we findikjjj ∑Cp

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzzT
= ikjj ∑

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
 ikjjT

∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
= T  ikjj ∑

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
 ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT

Use of Maxwell relation now yields ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
= -ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
ï ikjjj ∑Cp

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzzT
= -T  

ikjjj ∑2 V
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑T2

y{zzzp

Similarly, with the aid of another Maxwell relation, the volume dependence of the isochoric heat capacity becomesikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzT
= ikjj ∑ p

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
ï ikjj ∑CVÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑V
y{zzT

= T  
ikjjj ∑2 p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑T2

y{zzzV

Note that both of these derivatives vanish for an ideal gas but in general will be finite for real gases.  Hence, the principal 
heat capacities for an ideal gas depend only upon temperature and are independent of pressure and volume, whereas for 
real gases one can use the empirical equation of state to evaluate the pressure and volume dependencies of these quantities.  
The beauty of thermodynamics is that many useful relationships between apparently unrelated properties of a system can 
be developed from general principles without detailed knowledge of the dynamics of the system on a microscopic level.

Similar, but more complicated, relationships can also be developed by treating one of the thermodynamic potentials 
as an independent variable.  For example, we can use the completeness of

„ S =
1
ÅÅÅÅÅÅ
T

 „ U +
p

ÅÅÅÅÅÅ
T

 „ V

to identify
1
ÅÅÅÅÅÅ
T

= ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑U

y{zzV

p
ÅÅÅÅÅÅ
T

= ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzU

and thereby obtain the Maxwell relation

S = S@U , V D ï ikjj ∑
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

 
1
ÅÅÅÅÅÅ
T

y{zzU
= ikjj ∑

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑U

 
p

ÅÅÅÅÅÅ
T

y{zzV

à Chain and cyclic rules for partial derivatives

Consider the set of state variables 8x, y, z< , of which any two may be considered independent.  The differentials „ x  
and „ y  then become

„ x = ikjj ∑ x
ÅÅÅÅÅÅÅÅÅÅ
∑ y

y{zzz
 „ y + ikjj ∑ x

ÅÅÅÅÅÅÅÅÅÅ
∑ z

y{zzy
 „ z

„ y = ikjj ∑ y
ÅÅÅÅÅÅÅÅÅÅ
∑ x

y{zzz
 „ x + ikjj ∑ y

ÅÅÅÅÅÅÅÅÅÅ
∑ z

y{zzx
 „ z

so that

„ x = ikjj ∑ x
ÅÅÅÅÅÅÅÅÅÅ
∑ y

y{zzz
 ikjj ∑ y

ÅÅÅÅÅÅÅÅÅÅ
∑ x

y{zzz
 „ x +

ÄÇÅÅÅÅÅÅÅÅikjj ∑ x
ÅÅÅÅÅÅÅÅÅÅ
∑ z

y{zzy
+ ikjj ∑ x

ÅÅÅÅÅÅÅÅÅÅ
∑ y

y{zzz
 ikjj ∑ y

ÅÅÅÅÅÅÅÅÅÅ
∑ z

y{zzx

ÉÖÑÑÑÑÑÑÑÑ „ z

This relationship applies to any 8„ x, „ y< .  In particular, if we choose to make „ z = 0, then the coefficients of „ x  must be 
equal.  Hence, we obtain the familiar chain rule
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ikjj ∑ x
ÅÅÅÅÅÅÅÅÅÅ
∑ y

y{zzz
 ikjj ∑ y

ÅÅÅÅÅÅÅÅÅÅ
∑ x

y{zzz
= 1

which can be extended to an arbitrary number of derivatives, all evaluated with the same constraints, simply by linking 
each denominator with the next numerator until the chain is closed upon itself; e.g.ikjj ∑w

ÅÅÅÅÅÅÅÅÅÅÅ
∑ x

y{zzy
 ikjj ∑ x

ÅÅÅÅÅÅÅÅÅÅ
∑ z

y{zzy
 ikjj ∑ z

ÅÅÅÅÅÅÅÅÅ
∑s

y{zzy
 ikjj ∑s

ÅÅÅÅÅÅÅÅÅ
∑ t

y{zzy
 ikjj ∑ t

ÅÅÅÅÅÅÅÅÅÅÅ
∑w

y{zzy
= 1

Alternatively, if we choose „ x = 0, then the coefficient of „ z  must vanish, so thatikjj ∑ x
ÅÅÅÅÅÅÅÅÅÅ
∑ y

y{zzz
 ikjj ∑ y

ÅÅÅÅÅÅÅÅÅÅ
∑ z

y{zzx
 ikjj ∑ z

ÅÅÅÅÅÅÅÅÅÅ
∑ x

y{zzy
= -1

This less familiar relationship is called the cyclic rule and can neither be shortened nor extended, but additional spectator 
variables common to all three partial derivatives may be appear in the constraints.  These two rules often come in handy 
when we need to connect dependencies with respect to different variables.

More generally, if one set of variables 8yi, i = 1, n<  is expressed in terms of an alternative set 8xi, i = 1, n< , the 
transformation Jacobian is given by the determinant

∑ 8y<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑8x< =

∑ 8y1, y2, ∫, yn<ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8x1, x2, ∫, xn< =

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
∑y1ÅÅÅÅÅÅÅÅÅ∑x1

∑y1ÅÅÅÅÅÅÅÅÅ∑x2
∫ ∑y1ÅÅÅÅÅÅÅÅÅ∑xn

∑y2ÅÅÅÅÅÅÅÅÅ∑x1

∑y2ÅÅÅÅÅÅÅÅÅ∑x2
∫ ∑y2ÅÅÅÅÅÅÅÅÅ∑xn

ª ª ∏ ª
∑ynÅÅÅÅÅÅÅÅÅ∑x1

∑ynÅÅÅÅÅÅÅÅÅ∑x2
∫ ∑ynÅÅÅÅÅÅÅÅÅ∑xn

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
where each variable in one set is a function of the variables in the other, such that yi = yi@8x<D .  The generalized chain rule 
takes the form

∑ 8z<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8y< =

∑ 8z<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8x<  

∑ 8x<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8y< =

∑ 8z<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8x< ì ∑ 8y<

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8x<

Familiar partial derivatives may be expressed in terms of Jacobians by
∑ 8u, y, z, …<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8x, y, z, …< = ikjj ∑u

ÅÅÅÅÅÅÅÅÅÅ
∑ x

y{zzy,z,…

where the numerator and denominator differ in just one term at the same position within both lists.  Note that the determi-
nant is antisymmetric with respect to odd permutations of its rows or columns, such that

∑8u, v, ∫<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8x, y, ∫< = -

∑8v, u, ∫<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8x, y, ∫< = -

∑ 8v, u, ∫<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8y, x, ∫<

where the ellipses are maintained with constant ordering.  Thus, a more compact derivation of the cyclic rule uses
∑8x, z<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8y, z<  

∑ 8y, z<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ 8y, x< =

∑ 8x, z<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑8y, x< ï ikjj ∑ x

ÅÅÅÅÅÅÅÅÅÅ
∑ y

y{zzz
 ikjj ∑ z

ÅÅÅÅÅÅÅÅÅÅ
∑ x

y{zzy
= -ikjj ∑ z

ÅÅÅÅÅÅÅÅÅÅ
∑ y

y{zzx
ï ikjj ∑ x

ÅÅÅÅÅÅÅÅÅÅ
∑ y

y{zzz
 ikjj ∑ y

ÅÅÅÅÅÅÅÅÅÅ
∑ z

y{zzx
 ikjj ∑ z

ÅÅÅÅÅÅÅÅÅÅ
∑ x

y{zzy
= -1

More importantly, the Jacobian method can be applied to larger sets of variables than the elementary chain and cyclic rules.
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à Euler relations

In the absence of long-range interactions between distant parts of a system, a postulate of thermodynamics stipu-
lates that energy and entropy are extensive functions of the extensive parameters of the system.  Hence, U and S must be 
homogeneous first-order functions of the extensive variables, such that

U@lS, lX1, ∫, lXrD = lU
S@lU , lX1, ∫, lXrD = lS

for any positive value of l.  However, the extensivity postulate may fail for very small systems (lØ0) or for very large 
systems (lØ¶) in danger of gravitational collapse or subject to other significant long-range interactions.  Considerable 
care must be exercised when applying thermodynamic reasoning under such circumstances; we will neglect those situa-
tions and assume that the extensivity postulate pertains.

An important consequence of the extensivity postulate is based upon the observation that for a first-order homoge-
neous function

U@S, X1, ∫, XrD =
∑U@lS, lX1, ∫, lXrDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ HlSL  S + ‚
i=1

r ∑U@lS, lX1, ∫, lXrDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ HlXiL  Xi

for any l, including l=1.  Hence, we obtain the Euler relation

U@S, X1, ∫, XrD = T S + ‚
i=1

r

Pi Xi

where 

Pi = ikjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ Xi

y{zzS,X j∫Xi

are the intensive variables conjugate to Xi .  Furthermore, comparing the differential

„ U = T „ S + ‚
i

Pi „ Xi + S „ T + ‚
i

Xi „ Pi

with the fundamental relation

„ U = T „ S + ‚
i

Pi „ Xi

we conclude that the intensive parameters are not independent, but are constrained by the Gibbs-Duhem relation

S „ T + ‚
i

Xi „ Pi = 0

Actually, the existence of a relationship of this type could have been anticipated from the zeroth law which establishes 
temperature as an arbiter of equilibrium, whereby all systems at a common temperature are in thermal equilibrium with 
each other.  Hence, there must exist isothermal surfaces which relate variations among the 8Xi, i = 1, r<  that are compatible 
with equilibrium at a common temperature.

For a simple compressible system, the Euler relation takes the form

U = T S - pV + mN

such that the Gibbs free enthalpy reduces to
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G = U - T S + pV = mN

Thus, we find that the chemical potential for a single-component system can be interpreted as the free enthalpy per particle 
or per mole, depending upon the choice of N .  Notice that G must be extensive and is proportional to N, but that its natural 
variables are 8T , p, N< .  Therefore, the chemical potential m = m@T , pD  is an intensive function of two intensive variables 
that depends upon concentration or density implicitly through its dependence upon T  and p , but m has no explicit depen-
dence upon the size of the system or N.  It is also instructive to express

m = ikjj ∑ F
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ N

y{zzT ,V
= ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ N

y{zzT ,V
- T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ N

y{zzT ,V

in terms of the competition between the energy needed to add a particle and the associated change in entropy under condi-
tions of constant temperature and volume.  At low temperature one might obtain either a positive or negative change in 
energy depending upon the interparticle interaction, but at sufficiently large temperature the increase in entropy that results 
from an increase in the complexity of the system will tend to dominate.  Thus, one expects large negative m  in the high-
temperature limit.

Simple Compressible Systems

à Construction of the equation of state

The mechanical equation of state for a simple compressible system can be expressed in the form V = V @T , pD  
where the particle number is treated here as a constant parameter.  Experimental exploration of the equation of state 
involves measuring the changes in volume (or density) produced by variation of the temperature and pressure, whereby

„ V = ikjj ∑V
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
 „ T + ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
 „ p

It is useful to define response functions which measure relative changes in volume due to changes in either temperature or 
pressure.  Thus, the isobaric expansivity is defined as

a =
1

ÅÅÅÅÅÅÅ
V

 ikjj ∑V
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp

and the isothermal compressibility as

kT = -
1

ÅÅÅÅÅÅÅ
V

 ikjj ∑V
ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT

where the negative sign is included to ensure that this thermodynamic coefficient will generally be positive.  Thus, the 
mechanical equation of state can be constructed from

„ V
ÅÅÅÅÅÅÅÅÅÅÅÅ
V

= a „ T - kT  „ p

while construction of the fundamental relation „ U = T  „ S - p „ V  also requires measurement of one of the principal heat 
capacities
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CV = ikjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
= T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV

Cp = ikjj ∑ H
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
= T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp

It is important to recognize that Cp  and CV  are not independent, but are related through the mechanical equation of state.

The completeness of „ S  allows us to express T  „ S  in the two alternative forms

T  „ S = T  ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
 „ T + T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzT
 „ V =  T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
 „ T + T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
 „ p

Thus, the difference between the two heat capacities becomesHCp - CV L „ T = T  ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzT
 „ V - T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
 „ p

The derivative of entropy with respect to pressure can now be eliminated in favor of quantities which are more directly 
accessible experimentally through the use of a Maxwell relationikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
= -ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
= -aV

Similarly, the derivative of entropy with respect to pressure can be expressed asikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzT
= ikjj ∑ p

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV

and then related to more accessible quantities with the aid of the cyclic ruleikjj ∑ p
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
 ikjj ∑T

ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzp
 ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
= -1 ï ikjj ∑ p

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
=

a
ÅÅÅÅÅÅÅÅÅ
kT

Substituting these quantities, we obtain HCp - CV L „ T = T
a

ÅÅÅÅÅÅÅÅÅ
kT

 „ V + T V a „ p

Finally, we relate „ V  and „ p  to „ T  using

„ V = ikjj ∑V
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
 „ T + ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
 „ p = V  Ha „ T - kT  „ pL

to finally obtain

Cp - CV = V T
a2
ÅÅÅÅÅÅÅÅÅ
kT

Note that the right-hand side can be evaluated from the mechanical equation of state without reference to the internal 
energy or entropy of the system.  This is an excellent example of the kind of relationship between quantities with no 
obvious connection that can be derived using thermodynamic reasoning based upon the fact that state functions are com-
pletely specified by a limited number of variables.

Although it is often quite difficult to measure CV  directly, particularly for nearly incompressible condensed phases 
such as liquids or solids, it can nevertheless be obtained indirectly from Cp  and measurements of a and kT , which are 
usually much easier.  No ambiguities are encountered because the relationship between these quantities is a general 
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thermodynamic theorem that is independent of the properties of the particular material at hand.  Also note that the fact that 
the isothermal compressibility is virtually always positive implies that Cp  is greater than CV :

kT ¥ 0 ï Cp ¥ CV

Finally, the fact that most solids and liquids are almost incompressible suggests that Cp  is usually only a little larger than 
CV  for condensed phases.  However, the difference generally increases with temperature and the dependence upon a2 ê kT  
can provide a fairly wide range of variation.

à Example: ideal gas

Isentropic transformations

The mechanical equation of state for an ideal gas is

pV = nRT ï a =
nR

ÅÅÅÅÅÅÅÅÅÅÅÅ
pV

=
1
ÅÅÅÅÅÅ
T

kT =
nRT
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p2V

=
1
ÅÅÅÅÅÅ
p

such that

V T
a2
ÅÅÅÅÅÅÅÅÅ
kT

=
pV

ÅÅÅÅÅÅÅÅÅÅÅÅ
T

ï Cp - CV = nR

The thermal equation of state then gives

U =
3
ÅÅÅÅÅ
2

 nRT ï CV =
3
ÅÅÅÅÅ
2

 nR Cp =
5
ÅÅÅÅÅ
2

 nR

Note that the same result for Cp  is obtained from 

H = U + pV =
5
ÅÅÅÅÅ
2

 nRT ï Cp = ikjj ∑ H
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
=

5
ÅÅÅÅÅ
2

 nR

It is also useful to develop an equation which describes isentropes, lines of constant entropy in the pV diagram.  
Returning to the completeness relationships

T  „ S = T  ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
 „ T + T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzT
 „ V =  T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
 „ T + T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
 „ p

and using Maxwell relations

„ S = 0 ï
CVÅÅÅÅÅÅÅÅÅÅÅ
T

 „ T = -ikjj ∑ p
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
 „ V

Cp
ÅÅÅÅÅÅÅÅÅÅ
T

 „ T = ikjj ∑V
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
 „ p

we recognize that

g =
Cp
ÅÅÅÅÅÅÅÅÅÅÅ
CV

= -
H∑V ê ∑TLp
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH∑ p ê ∑TLV

 
„ p
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ V

ï
„ p
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ V

= -g
p

ÅÅÅÅÅÅÅ
V

Therefore, if g  is constant, lines of constant entropy satisfy

„ S = 0 ï pV g = constant

where g = Cp ê CV  is the ratio between the principal heat capacities.  For a simple ideal gas with no internal molecular 
degrees of freedom, U = 3ÅÅÅÅ2  nRT ï g = 5ÅÅÅÅ2 , but the isentropic relation is more general and applies whenever CV  is 
constant.  For example, at high temperatures CV Ø 7ÅÅÅÅ2  nR ï Cp Ø 9ÅÅÅÅ2  nR  for a gas of diatomic molecules, such that g = 9ÅÅÅÅ7 .
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Fundamental relation

Next we construct the fundamental relation for an ideal gas using the completeness relation

„ S = ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
 „ T + ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
 „ p =

Cp
ÅÅÅÅÅÅÅÅÅÅ
T

 „ T - ikjj ∑V
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
 „ p

If we assume that the heat capacity is independent of temperature and write Cp = gÅÅÅÅÅÅÅÅÅÅg-1  nR  where g = Cp ê CV , then

„ S =
g nR

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g - 1

„ T
ÅÅÅÅÅÅÅÅÅÅÅÅ
T

-
„ p
ÅÅÅÅÅÅÅÅÅÅÅ

p

We can now integrate the change in entropy relative to a standard state with temperature T0  and pressure p0  to obtain

S@T , p, nD = ns0 + nR Log
ÄÇÅÅÅÅÅÅÅÅÅÅJ T

ÅÅÅÅÅÅÅÅÅ
T0

N gÅÅÅÅÅÅÅÅÅÅÅg-1

 ikjj p0ÅÅÅÅÅÅÅÅÅ
p

y{zzÉÖÑÑÑÑÑÑÑÑÑÑ
where, using the extensivity of entropy, the constant of integration S@T0, p0, nD = n s0  must be proportional to the standard 
molar entropy s0 = s0@T0, p0D .  The chemical potential is now obtained from the Euler relation

nm = U - T S + pV ï m = T  ikjj gR
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g - 1

- s0
y{zz - RT Log

ÄÇÅÅÅÅÅÅÅÅÅÅJ T
ÅÅÅÅÅÅÅÅÅ
T0

N gÅÅÅÅÅÅÅÅÅÅÅg-1

 ikjj p0ÅÅÅÅÅÅÅÅÅ
p

y{zzÉÖÑÑÑÑÑÑÑÑÑÑ
Identifying m0 = T0I gRÅÅÅÅÅÅÅÅÅÅg-1 - s0M  as the chemical potential for the standard state, the molar Gibbs potential becomes

m@T , pD =
T

ÅÅÅÅÅÅÅÅÅ
T0

 m0 - RT Log
ÄÇÅÅÅÅÅÅÅÅÅÅJ T

ÅÅÅÅÅÅÅÅÅ
T0

N gÅÅÅÅÅÅÅÅÅÅÅg-1

 ikjj p0ÅÅÅÅÅÅÅÅÅ
p

y{zzÉÖÑÑÑÑÑÑÑÑÑÑ
We can now express entropy in terms of its natural variables as

S@U , V , nD = ns0 + nR Log
ÄÇÅÅÅÅÅÅÅÅÅÅÅJ U

ÅÅÅÅÅÅÅÅÅÅ
U0

N 1ÅÅÅÅÅÅÅÅÅÅÅg-1

 J V
ÅÅÅÅÅÅÅÅÅ
V0

N J n
ÅÅÅÅÅÅÅÅ
n0

N- gÅÅÅÅÅÅÅÅÅÅÅg-1

ÉÖÑÑÑÑÑÑÑÑÑÑÑ
Notice that the entropy satisfies the extensivity postulate8U = lU0, V = lV0, n = ln0< ï S = ln0 s0

but that the standard molar entropy s0@T0, p0D  remains an undetermined function of temperature and pressure that is related 
to the chemical potential

s0 =
gR

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
g - 1

-
m0ÅÅÅÅÅÅÅÅÅ
T0

for the standard state.  Now that we have S  or G  in terms of their natural variables, it is a simple exercise to verify that the 
mechanical and thermal equations of state are recovered from suitable partial derivatives or to evaluate any of the other 
thermodynamic potentials in terms of their natural variables, up to the additive constant of integration describing the 
standard state.

It is interesting to observe that as the temperature approaches zero, the entropy of an ideal gas approaches -¶ .

T Ø 0 or p Ø ¶ ï S Ø -¶

Evidently the ideal gas law cannot be applied to very low temperature or very high pressure.  Classical physics fails in 
these circumstances and we must employ quantum statistical mechanics to calculate entropy for cold dense systems.
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Fugacity

The temperature and pressure dependencies of the chemical potential 

m@T , pD =
T

ÅÅÅÅÅÅÅÅÅ
T0

 m0 - RT Log
ÄÇÅÅÅÅÅÅÅÅÅÅJ T

ÅÅÅÅÅÅÅÅÅ
T0

N gÅÅÅÅÅÅÅÅÅÅÅg-1

 ikjj p0ÅÅÅÅÅÅÅÅÅ
p

y{zzÉÖÑÑÑÑÑÑÑÑÑÑ
merit a second look.  Note that for a dilute gas

T p T0 or p ` p0 ï m Ø -¶

becomes large and negative, whereas if the ideal gas equation of state remains valid the chemical potential becomes large 
and positive for a dense gas

T ` T0 or p p p0 ï m Ø +¶

However, at high density intermolecular interactions become important and the system might condense.  Furthermore, at 
low temperature quantum mechanical effects limit the validity of the classical equations of state.  Therefore, the chemical 
potential tends to be limited at low temperature and/or high density, but the dilute limit of large negative chemical potential 
still applies to quantum systems.  At sufficiently large temperature the gain in entropy dominates over the increase energy, 
resulting in a large negative chemical potential.

For applications to chemistry and other multicomponent systems, it is useful to express the chemical potential in 
terms of fugacity, f , using

m = RT  Log@ f D + B@TD
where B@TD  is an unknown function of temperature.  The term fugacity is derived from the same Latin root as fugitive 
because it provides a measure of the volatility of a substance, or its tendency to flee.  For an ideal gas we find that fugacity 
reduces to the ratio between the pressure of the system and that of the arbitrarily chosen standard state.  Since one normally 
chooses the standard pressure to be 1 atm, the fugacity reduces to pressure in units of atmospheres.  Fugitive tendencies are 
clearly larger at higher pressure.  Notice that for fixed N  and T , pressure provides a measure of the concentration the gas.  
In general, one finds that fugacity depends upon the concentration of a substance but does not depend explicitly upon 
temperature.  For small (large) fugacity we find large negative (positive) chemical potential.

Magnetic Systems

à Magnetic work

The response of materials to magnetic fields offers a rich menu of phenomena for which relatively simple models 
can be used to demonstrate applications of the methods of statistical physics.  Unfortunately, different conventions are 
sometimes used for thermodynamics and statistical mechanics.  The thermodynamic definition of magnetic susceptibility is 
also different from that normally used in electrodynamics.  Therefore, in this section we present the terminology and 
notation used in this course in the hope that some confusion can be avoided.

When analyzing electromagnetic systems we must be particularly careful to distinguish clearly between the system 
and its environment because electromagnetic fields can couple charges and currents separated by large distances.  Thus, it 
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is frequently difficult to define the physical borders of an electromagnetic system.  Furthermore, the work performed in 
establishing a system of charges and currents resides in fields distributed throughout space.  Therefore, the energy that 
would have been carried by electromagnetic fields in the absence of polarizable media should be associated with the 
batteries or other external devices used to establish the field.  The thermodynamic energy associated with a finite sample of 
some material is identified with the difference between the electromagnetic fields within the volume of the material that are 
produced by a specified configuration of external charges and currents with and without the presence of the sample.  The 
analysis of the general case is quite difficult, but for our purposes it will suffice to motivate the thermodynamic definition 
of magnetic work using two simple systems. 

First, consider a cylindrical sample that fills a long solenoid or a sample that fills a toroidal solenoid.  In either case 
the magnetizing field has uniform strength throughout the volume of the material.  Assume for simplicity that the magnetiza-
tion of the sample is also uniform and is parallel to H”÷÷÷÷

 so that vectors can be replaced by scalars.  A simple model for 
magnetization postulates a dense array of tiny current loops whose sum can be represented by a surface current density, 
K = Mc .  Faraday's law tells us that variation of the magnetic flux F  produces an electromotive force 

E = -
1
ÅÅÅÅÅ
c

 
∑ F
ÅÅÅÅÅÅÅÅÅÅÅ
∑ t

= -
A
ÅÅÅÅÅÅÅ
c

 
∑H
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ t

so that the work performed upon the surface current becomes

dW = { K E „ t = -
K
ÅÅÅÅÅÅÅ
c

{ „ F = -V M „H

where the factor {  accounts for the length of the cylindrical current sheet.  This model describes the diamagnetic response 
of a nonpolar material, for which Lenz's law suggests that the induced current opposes the applied field.  Although we 
represented the magnetization of the sample using a surface current, this surface current is not subject to resistive dissipa-
tion because it is actually composed of changes to atomic structure rather than to macroscopic motion of charges. 

Next, suppose that we assemble a thermally isolated collection of permanent magnetic dipoles in the absence of an 
external magnetic field.  We now ask how much the energy of this arrangement changes when an external magnetic field is 
applied.  The interaction between a collection of magnetic dipoles m”÷ i  and an external magnetic field H”÷÷÷÷

 takes the form

U = -‚
i

m”÷ i ÿH”÷÷÷÷
such that there are two contributions 

„ U = -‚
i

IH”÷÷÷÷
ÿ „ m”÷ i + m”÷ i ÿ „H”÷÷÷÷ M = -V  IH”÷÷÷÷

ÿ „M”÷÷÷÷
+ M”÷÷÷÷

ÿ „H”÷÷÷÷ M
to variation of the magnetic energy that we must classify either as heat or work.  From a microscopic point of view, 
changes in the orientation of the elementary dipoles are considered to be changes in the population of quantum states and 
the resultant energy change is classified as heat whereas changes to the energy of a quantum state with constant orientation 
due to variation of the external field is classified as work.  Thus, the work done on a system of fixed magnetic dipoles 
becomes

dW = -‚
i

m”÷ i ÿ „H”÷÷÷÷
= -V  M”÷÷÷÷

ÿ „H”÷÷÷÷
We will soon find that this allocation of energy changes is consistent with the statistical interpretation of heat altering the 
distribution of energy among quantum states and work changing the energy of quantum states.

For both models we find that magnetic work is represented by dW = -V M”÷÷÷÷
ÿ „H”÷÷÷÷

 where M”÷÷÷÷
 is the magnetization 

density and H”÷÷÷÷
 is the external or applied magnetic field.  Defining a simple magnetic system as one in which magnetization 

is the only work mode, we can now define the internal energy density of the sample using

„ U = dQ + dW = T  „ S - M”÷÷÷÷
ÿ „H”÷÷÷÷
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without need for a more general analysis of the electrodynamics of polarizable media.  Recognizing that there are usually 
additional internal degrees of freedom that can receive energy from heat exchange, we express the heat transfer as 
dQ = T  „ S  rather than limit that term to the magnetic contribution alone.  From a thermodynamic point of view it is 
sufficient to define the independent variables in terms of quantities which can be manipulated externally and then to 
analyze the response of the sample to variations of those variables.  Notice that we have changed notation — here U and S 
represent energy and entropy per unit volume.  

à Thermodynamic description of magnetization

The fundamental thermodynamic relation for a simple magnetic system, for which magnetization is the only work 
mode, can be expressed in the form

„ U = T  „ S - M”÷÷÷÷
ÿ „H”÷÷÷÷

where U , S , and M”÷÷÷÷
 are the energy, entropy, and magnetic moment.  These extensive quantities are often expressed in 

volumetric (per unit volume), molar (per mole), or specific (per unit mass) forms without changing notation.  The magnetiz-
ing field produced by free currents in coils outside the thermodynamic system is denoted H”÷÷÷÷

, which must not be confused 
with similar symbols for enthalpy or Hamiltonian.  It is unfortunate that similar symbols are used for very different quanti-
ties, but introduction of new notation would probably lead to more confusion; the proper interpretation should be clear 
from the context.  The principal magnetic heat capacities are now defined as 

CM = T  ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzM CH = T  ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzH
The magnetization of the sample is obtained from the dependence of the internal energy upon external magnetic field 
according to

M”÷÷÷÷
= -

ikjjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑H”÷÷÷÷ y{zzzS

which, in more conventional notation, should be interpreted as

Mi = -ikjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑Hi

y{zzS,H j∫i

where the ith  component of M”÷÷÷÷
 is obtained by differentiation with respect to the ith  component of H”÷÷÷÷

 holding other compo-
nents, and S , fixed.  Similarly, in thermodynamics we define the isothermal magnetic susceptibility as

c =
ikjjjjj ∑M”÷÷÷÷

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑H”÷÷÷÷ y{zzzzzT

ó ci, j =
ikjjj ∑MiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑H j

y{zzzT

For most systems the magnetization will be parallel to the external magnetic field so that the susceptibility tensor reduces 
to a scalar and we may replace  M”÷÷÷÷

ÿ „H”÷÷÷÷
Ø M „H , but for some crystalline or ferromagnetic materials it is necessary to 

consider the tensorial properties of the magnetic susceptibility.  Note that the thermodynamic definition of magnetic 
susceptibility is different from that used in electrodynamics where one writes M”÷÷÷÷

= c ÿH”÷÷÷÷
.  These definitions are the same if 

the response to the applied field is linear, but can be appreciably different for strongly magnetized samples or near 
saturation.

The volumetric magnetic susceptibility c  is dimensionless in the cgs or electrostatic system, but because of the 
large variation among densities of common substances it is often more convenient to present susceptibility data in molar 
form

cè =
A
ÅÅÅÅÅÅÅ
r

 c
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where A  the molecular weight in g ê mole and r  is density in g ê cm3 , such that the units of cè  become cm3 ê mole.  

Many thermodynamic relationships can now be derived for magnetic systems using the same techniques applied 
above to compressible systems.  Some of these relationships are developed in the problems at the end of this notebook.

à Alternative form for magnetic work

We have chosen the formulation of the first law for magnetic systems that is most convenient formulation for 
statistical mechanics, but many textbooks on thermodynamics offer an alternative form

„ U
è

= T  „ S + H”÷÷÷÷
ÿ „M”÷÷÷÷

In this form U
è

= U
è @S, MD  and S = S@Uè , MD  are extensive functions of extensive variables, consistent with the postulates 

and methodology of thermodynamics.  The external magnetic field H is treated as an intensive variable, analogous to p , 
that is conjugate to the extensive variable M , analogous to V .  However, one need not be enslaved by this formal analogy 
— these two versions of the first law are related by a simple Legendre transformation U = U

è
- H”÷÷÷÷

ÿM”÷÷÷÷
.  Therefore, the 

thermodynamic consequences of either formulation are identical: the same change in external conditions produces the same 
change of state.  In one formulation we refer to U  as energy and U

è
 as enthalpy while in the other formulation these names 

are simply interchanged.

The origin of the difference between these forms of the first law is the assignment of the field energy to the system 
or to the environment.  To demonstrate this relationship, let us return to the example of a polarizable material filling a 
toroidal solenoid.  The variation of the magnetic flux linking the solenoid produces a back emf upon the external coils

E = -
1
ÅÅÅÅÅ
c

 
∑ F
ÅÅÅÅÅÅÅÅÅÅÅ
∑ t

= -
A
ÅÅÅÅÅÅÅ
c

 
∑ B
ÅÅÅÅÅÅÅÅÅÅÅ
∑ t

where B = H + 4 pM  is the total magnetic field within the coils.  The work performed by the current source is 

d W
è

= -N I E „ t = N A I  „ B

where N  is the number of turns.  Recognizing that the current is related to the magnetizing field by

I =
{

ÅÅÅÅÅÅÅ
N

c
ÅÅÅÅÅÅÅÅÅÅÅ
4 p

 H ï d
êê

 W £ =
V

ÅÅÅÅÅÅÅÅÅÅÅ
4 p

 H  „ B

we find that the magnetic work

dW
è

= V  „
ikjjj H2

ÅÅÅÅÅÅÅÅÅÅÅÅ
8 p

y{zzz + VH  „M

contains two contributions.  The first can be attributed to the work needed to establish the vacuum field H  that would be 
present in the absence of the magnetic material — it is the energy of the magnetic field.  The second is the work needed to 
magnetize the sample given that the current in the coils is specified by H .  If we attribute the first contribution to the 
vacuum field and the second to the sample, we would conclude that the thermodynamic definition of the internal energy of 
the sample should be

„ U
è

= T  „ S + H”÷÷÷÷
ÿ „M”÷÷÷÷

Our derivation of dW  computed the work done on the magnetization of the sample, as represented by the surface 
current K , while the derivation of d W

è
 computed the work on the current I  in the external coils.  Thus, the sample ana-

lyzed by the former consists of the sample itself, with coils and their field energy assigned to the environment, while the 
system analyzed by the latter also includes these coils and their field energy and limits the external environment to the 
current source (battery).  Therefore, these two derivations obtain different results because they analyze different systems.  
Should we assign the field energy to the sample or to the environment?  This is largely a philosophical question because 

28 ReviewThermodynamics.nb



the field pervades the sample and the energy cannot be located unambiguously.  Like most philosophical questions, this 
one causes a lot of confusion but has no dynamical consequences!

à Survey of magnetic phenomena

All atoms exhibit some degree of diamagnetism in which there is a negative temperature-independent contribution 
to the magnetic susceptibility.  A simple model of diamagnetic susceptibility suggests

cè º -
Z e2 Xr2\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
6 me c2  NA

where NA  is Avogadro's number, Z  is the atomic number, and Xr2\  is the atomic mean square charge radius.  This model is 
most applicable to noble gases, which are monatomic, nonpolar, inert, and dilute.  One finds that diamagnetic susceptibili-
ties for noble gases at STP range from -1.9 µ 10-6 cm3 ê mole for helium to -43 µ 10-6 cm3 ê mole for xenon and are 
roughly consistent with the Langevin model.  However, quantitative understanding of diamagnetism in condensed matter 
requires more sophisticated models.  For example, atomic bismuth and lead differ by only one electron but the diamagnetic 
susceptibilities for solid bismuth and lead differ by a factor of about 23.

Many atoms and molecules possess permanent magnetic dipole moments, m , which contribute a positive tempera-
ture-dependent paramagnetic susceptibility arising from their alignment with an applied field.  The temperature depen-
dence of the paramagnetic susceptibility is governed by the ratio mH ê kB T  between magnetic and thermal energies.  At 
"high" temperature, kB T p mH , paramagnetic susceptibility is described well by Curie's law 

kB T p mH ï cè º
NA m2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kB T

=
c0ÅÅÅÅÅÅÅÅÅÅ
T

where the Curie constant, c0 , depends upon the microscopic structure of the material.  Assuming that the magnetic 
moment is similar to the Bohr magneton, we may estimate the typical scale for c0  as

m ~ mB =
e Ñ

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 me c

= 9.27 µ 10-27 erg ê gauss ï c0 ~ 0.375 cm3 kelvin ê mole

but must recognize that real materials exhibit a broad range of magnetic susceptibilities.  For example, at STP we find 
paramagnetic cè = 3.45 µ 10-3 cm3 ê mole for O2  compared with diamagnetic cè = -1.22 µ 10-5 cm3 ê mole for N2 .

As the temperature is reduced below a critical value Tc , many paramagnetic materials will experience a sudden 
phase transition as spontaneous magnetization develops in the absence of an external magnetic field.  At high temperatures 
these materials revert to paramagnetism and obey an empirical equation of state known as the Curie-Weiss law

T > Tc ï cè =
c0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T - Tc

in which temperature is measured relative to Tc .  At lower temperatures interatomic spin-spin interactions favorable to the 
alignment of neighboring magnetic moments overcome the randomizing influence of  lattice vibrations leading to an 
ordered ferromagnetic state with spontaneous magnetization that does not require an external magnetic field.  The degree 
of magnetization increases as the sample is cooled, or as the external field is increased, until the sample is saturated at its 
maximum magnetization Ms .  Iron is a typical ferromagnet with Curie temperature Tc = 1043 kelvin and room temperature 
saturation Ms = 1707 gauss.  Although the saturated magnetization is easy to estimate using the density and atomic 
magnetic moment, the Curie temperature is more subtle.  The temperature scale for magnetic spin-spin interactions, ¶ ê kB , 
can be estimated using the Bohr magneton and an interatomic spacing of about one angstrom to be 

¶
ÅÅÅÅÅÅÅÅÅ
kB

~
mB

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r3 kB

~ 0.62 kelvin

and is far too small to account for room-temperature ferromagnetism.  The interaction responsible for ferromagnetism is 
actually electrostatic in nature, with characteristic temperature scale
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¶
ÅÅÅÅÅÅÅÅÅ
kB

~
e2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
r kB

~ 1.7 µ 105 kelvin

for the same one angstrom separation.  The apparent spin dependence of this electrostatic interaction arises from the 
exchange term required by the Pauli exclusion principle — it is a purely quantum mechanical consequence of permutation 
symmetry for identical particles that is without classical analog.

The interatomic spin-spin interaction can take either sign, favoring parallel spins for ferromagnetic systems or 
antiparallel spins for antiferromagnetic systems.  At high temperatures and zero field the spins are oriented randomly, but 
for temperatures below a critical temperature, TN , named after Néel, antiferromagnetic systems experience a phase transi-
tion to an ordered state that remains macroscopically unmagnetized but with local order due to alternating spins.  At higher 
temperatures the paramagnetic susceptibility can be parametrized by

T > TN ï cè =
c0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T + TP

where TP  is comparable, but not necessarily equal, to TN .  For example, iron oxide (FeO) is antiferromagnetic with 
TN = 198 kelvin and TP = 507 kelvin.  Clearly, these temperatures are determined by electrostatic rather than magnetostatic 
interactions also.

Finally, superconductors also display interesting magnetic properties.  Provided that the applied field is not too 
strong, type-I superconductors exhibit the Meissner effect in which surface currents shield their volumes from magnetic 
fields, such that

T < Tc and H < Hc@TD ï M = -
H

ÅÅÅÅÅÅÅÅÅÅÅ
4 p

ï B = 0

Stronger fields destroy the superconducting phase.  Experimentally one finds that the boundary between superconducting 
and normal phases can be parametrized by

Hc@TD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

H0
= 1 - J T

ÅÅÅÅÅÅÅÅ
Tc

N2

Type-II superconductors, on the other hand, permit quantized magnetic flux tubes to penetrate their volume.  Often these 
flux tubes are pinned by impurities or defects, but sometimes they are free to move, forming a kind of two-dimensional 
vortex gas.  If the vortex density is high, a lattice structure may be found.  The magnetic behavior of superconductors 
remains a very active research topic.

Constrained equilibrium

The principle of maximum entropy requires that any spontaneous transformation of an isolated system increases its 
entropy.  Thus, if a system begins in some arbitrary nonequilibrium condition, internal changes tend to accumulate until the 
entropy reaches the maximum possible value compatible with the external constraints, which finally becomes the state of 
thermodynamic equilibrium.  For the present purposes, we can consider a system to be isolated if all of its extensive 
quantities (such as energy, volume, and particle number) are fixed.  However, the distribution of these extensive quantities 
is generally nonuniform in some arbitrary initial configuration.  Suppose that an isolated system is divided into two sub-
systems which share the total internal energy, volume, particle number, and any other extensive quantities needed to 
characterize its state, such that
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U = U1 + U2
V = V1 + V2
N = N1 + N2

ª

If the system is isolated, these extensive quantities are conserved, such that

„ U = 0 ï „ U1 = -„ U2
„ V = 0 ï „ V1 = -„ V2
„ N = 0 ï „ N1 = -„ N2

ª

represent the constraints.  Thus, variations of the total entropy S = S1 + S2  can then be expressed as

„ S =
ikjjj ikjj ∑S1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑U1

y{zzV1,N1

- ikjj ∑S2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑U2

y{zzV2,N2

y{zzz „ U1 +ikjjj ikjj ∑S1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V1

y{zzU1,N1

- ikjj ∑S2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V2

y{zzU2,N2

y{zzz „ V1 +
ikjjj ikjj ∑S1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ N1

y{zzV1,U1

- ikjj ∑S2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ N2

y{zzV2,U2

y{zzz „ N1 + ∫

Thermal equilibrium between the two subsystems requires that „ S  be stationary with respect to first-order variations of 
each variable independently, such that

„ S = 0 ï T1 = T2 p1 = p2 m1 = m2

where the fundamental relations 

Ti „ Si = „ Ui + pi „ Vi - mi „ Ni + ∫

are used to identify the intensive parameters 8T , p, m, ∫<  conjugate to the extensive variables 8U , V , N , ∫<  for each 
subsystems.  Therefore, thermal equilibrium between two systems requires equality between their intensive parameters.  
These intensive parameters govern the sharing of a conserved extensive quantity between interacting subsystems.  Further-
more, by choosing one of the systems to be a small but macroscopic portion of a larger system, we conclude that equilib-
rium requires the intensive parameters like temperature, pressure, and chemical potential to be uniform throughout the 
system.  Any local fluctuations in these parameters would induce unbalanced forces that tend to restore equilibrium by 
eliminating gradients in the intensive parameters.  Obviously, temperature or pressure gradients would induce heat or mass 
flows that tend to homogenize the system.

The maximum entropy principle can also be applied to systems that are in thermal, mechanical, or chemical contact 
with an environment that constrains one or more of its intensive parameters.  For example, we often seek to determine the 
equilibrium state for a system with fixed temperature and pressure instead of fixed energy and volume.  Under these 
conditions it is useful to consider a small subsystem with energy U1  and volume V1  in thermal and mechanical contact 
with a much larger reservoir.  If the initial configuration is not in equilibrium there will be exchanges of energy and 
volume between the subsystem and the reservoir.  We assume that the reservoir is sufficiently large that small transfers of 
energy or volume do not change the temperature T0  or pressure p0  of the reservoir.  The net change in entropy for the 
combined system can be expressed as 

„ S = „ S0 + „ S1 ¥ 0

where

„ S0 = -
dQ
ÅÅÅÅÅÅÅÅÅÅÅ
T0

is the entropy change for the reservoir when a quantity of heat dQ  is transferred to the subsystem.  (The negative sign 
occurs because heat absorbed by the subsystem came from the reservoir.)  The principle of maximum entropy then requires
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„ S ¥ 0 ï „ S1 ¥ T0 „ S0

such that the increase in the entropy of the subsystem is at least as large as the decrease of the entropy of the reservoir that 
occurs when heat is transferred from the reservoir to the subsystem.  The change in the internal energy of the subsystem 
can be expressed as  

„ U1 = dQ + dW = -T0 „ S0 - p0 „ V1 + dW £ = T0 H„ S1 - „ SL - p0 „ V1 + dW £

where it is convenient to divide the work into two contributions, dW = - p0 „ V1 + dW £ , where dW £  is nonmechanical 
work performed upon the subsystem in some form other than mechanical work against the constant external pressure p0 .  
The requirement that the total entropy increases can now be expressed as

„ S ¥ 0 ï „ A § dW £

where the availability A is defined as

A = U1 - T0 S1 + p0 V1 ï „ A = „ U1 - T0 „ S1 + p0 „ V1

Although this availability function strongly resembles the Gibbs free enthalpy G1 for the subsystem, it is important to 
recognize that we do not require the temperature and pressure of the subsystem to match those of the environment; hence, 
T0  and p0  appear as fixed parameters in A .

Notice that availability describes an interaction between a system and its environment and, hence, involves external 
parameters T0  and p0  in addition to the thermodynamic variables of the system itself.  Thus, there may be several variables 
describing internal degrees of freedom which remain implicit within U1  and S1 .  Nevertheless, changes in availability can 
be expressed in terms of changes of internal state coupled to the external parameters through

DA = DU1 - T0 DS1 + p0 DV1

If no external work W £  is performed, spontaneous changes of state reduce the availability („ A § 0) until a state of mini-
mum availability compatible with the external parameters is reached.  This then is the state of constrained equilibrium.  
The net change in availability must be negative, DA § 0.  

We illustrate this principle by deriving stability conditions for a closed simple compressible system; more compli-
cated systems can be analyzed using similar methods.  Consider a large homogeneous sample of a pure substance.  We can 
imagine that any small element constitutes a separate system in thermal contact with a reservoir at temperature T0  and 
pressure p0 .  Equilibrium for this subsystem requires that its availability A = U - T0 S + p0 V  be minimized, where the 
subscripts identifying the subsystem can now be dropped.  At equilibrium, the first derivatives of availability with respect 
to any of the system parameters must vanish.  Furthermore, if the equilibrium is to be stable, the second derivatives must 
all be positive.  Applying these observations to temperature and pressure, we requireikjj ∑ A

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
= 0

ikjjj ∑2 A
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑T2

y{zzzp
¥ 0ikjj ∑ A

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
= 0 ikjjj ∑2 A

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p2

y{zzzT
¥ 0

The conditions on the first derivatives giveikjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
- T0 ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
+ p0 ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
= 0ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
- T0 ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
+ p0 ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
= 0

where T0  and p0  are constant.  It is helpful to compare these equations with corresponding derivatives of G .
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ikjj ∑G
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
= -S ï ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
- T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
+ p ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
= 0ikjj ∑G

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
= V ï ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
- T  ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
+ p ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
= 0

Thus, we can eliminate the internal energy by subtracting corresponding pairs of equations, with the result:HT - T0L ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
- Hp - p0L ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
= 0

HT - T0L ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
- Hp - p0L ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
= 0

Expressing the remaining derivatives in terms of standard thermodynamic coefficients, we findHT - T0L Cp
ÅÅÅÅÅÅÅÅÅÅ
T

- Hp - p0L V a = 0HT - T0L a - Hp - p0L kT = 0

Given that the coefficients of HT - T0L  and Hp - p0L  are independent, and that V  can be chosen arbitrarily, the only solution 
to this system of equations is

T = T0 and p = p0

The fact that equilibrium requires equalization of temperature and pressure was obvious a priori.

Stable equilibrium requires the second derivatives of availability to be positive, from which we deduceikjjj ∑2 U
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑T2

y{zzzp
- T0 

ikjjj ∑2 S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑T2

y{zzzp
+ p0 

ikjjj ∑2 V
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑T2

y{zzzp
¥ 0ikjjj ∑2 U

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p2

y{zzzT
- T0 

ikjjj ∑2 S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p2

y{zzzT
+ p0 

ikjjj ∑2 V
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p2

y{zzzT
¥ 0

Similarly, by differentiating G  twice we findikjjj ∑2 U
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑T2

y{zzzp
- T  

ikjjj ∑2 S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑T2

y{zzzp
+ p 

ikjjj ∑2 V
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑T2

y{zzzp
= ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzpikjjj ∑2 U
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p2

y{zzzT
- T  

ikjjj ∑2 S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p2

y{zzzT
+ p 

ikjjj ∑2 V
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ p2

y{zzzT
= -ikjj ∑V

ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT

Hence, by comparing these expressions for T = T0  and p = p0 , we discover that stable equilibrium requires

Cp ¥ 0 kT ¥ 0

In retrospect, these conditions should also be obvious.  First, if any stable equilibrium existed for which removing heat 
resulted in an increase in temperature, we could exploit this fictitious substance to produce an engine that violated the 
Clausius statement of the second law.  Second, if a material would contract as the pressure upon it is reduced, it would 
collapse spontaneously into a state of extraordinary density.  Obviously, such behavior is incompatible with stability.

Once equilibrium is reached, the availability for a system in thermal and mechanical contact with a reservoir with 
constant temperature and pressure becomes equal to the Gibbs free enthalpy for that system.  Hence, the state of minimum 
availability is also the state of minimum free enthalpy for constant HT , pL .  Alternatively, if the volume of the system is 
fixed, we would define Helmholtz availability as A = U - T0 S  and find that equilibrium with minimum availability is 
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achieved by minimizing F  for constant HT , V L .  Therefore, application of the maximum entropy principle to system with 
constraints on variables Hx, y, ∫L  requires extremizing the thermodynamic potential obtained from U  by a Legendre 
transformation with respect to Hx, y, ∫L .  Some of the most common choices are listed below, but others can be developed 
by straightforward generalization or analogy.

constraints equilibrium condition

U , V , N  maximize S  

T , V , N  minimize F = U - T S 

U , p, N  minimize H = U + pV  

T , p, N  minimize G = U - T S + pV  

Stability

à Local stability

Although thermodynamic equilibrium is often defined as the state for which macroscopic parameters are effectively 
constant, fluctuations are an inevitable aspect of the behavior of bulk matter, especially when interactions with the environ-
ment, such as heat transfer, are considered.  Thus, for any state to represent a true equilibrium, the state must be stable 
against small perturbations of its parameters.  In other words, small changes induced by interactions with the environment 
or with various parts of the system must experience restoring forces which tend to return those parameters to their equilib-
rium values.  This property of equilibrium is known as Le Chatelier's principle.
Le Chateliers' principle:

If a system is in stable equilibrium, any perturbation produces processes which tend to restore the system 
to its original equilibrium state.

In this section we use the stability requirement that perturbations produce restoring forces to derive constraints upon the 
response functions.

Suppose that a large system is subdivided into subsystems or cells such that the extensive quantities are obtained by 
summation over cells according to

S = ‚
i

Si , U = ‚
i

Ui , V = ‚
i

Vi, ∫

Let 8Uè i, Vi
è

, ∫<  represent equilibrium values for each cell and let S0  be the state of maximum entropy.  The principle of 
maximum entropy requires that „ S = 0 and „2 S § 0 for arbitrary infinitesimal fluctuations about the equilibrium configura-
tion.  Thus, the difference in entropy S - S0  resulting from infinitesimal fluctuations of cell variables about their equilib-
rium values can be computed using a Taylor expansion of the form

„2 S º
1
ÅÅÅÅÅ
2

 „
i

ikjjj ∑2 SiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑Ui

2  H„ Ui L2 +
∑2 SiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑Ui ∑Vi
 „ Ui „ Vi +

∑2 SiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑Vi

2  H„ ViL2y{zzz

34 ReviewThermodynamics.nb



where „2 S  indicates a second-order variation and where the derivatives are evaluated at the equilibrium state for each cell.  
In the interests of minimizing clutter, we consider only two degrees of freedom per cell and omit the constraints when 
writing partial derivatives.  Recognizing that

„ ikjj ∑SiÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑Ui

y{zz =
∑2 SiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑Ui

2  „ Ui +
∑2 SiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑Vi ∑Ui
 „ Vi

„ ikjj ∑SiÅÅÅÅÅÅÅÅÅÅÅÅ
∑Vi

y{zz =
∑2 SiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑Ui ∑Vi
 „ Ui +

∑2 SiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑Vi

2  „ Vi

the variation of S  can be expressed as

„2 S º
1
ÅÅÅÅÅ
2

 ‚
i

ikjj „ ikjj ∑SiÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑Ui

y{zz „ Ui + „ ikjj ∑SiÅÅÅÅÅÅÅÅÅÅÅÅ
∑Vi

y{zz „ Vi
y{zz =

1
ÅÅÅÅÅ
2

 ‚
i

J „ J 1
ÅÅÅÅÅÅÅÅ
Ti

N „ Ui + „ J piÅÅÅÅÅÅÅÅ
Ti

N „ Vi N
where ikjj ∑SiÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑Ui

y{zzVi

=
1

ÅÅÅÅÅÅÅÅ
Ti

ikjj ∑SiÅÅÅÅÅÅÅÅÅÅÅÅ
∑Vi

y{zzUi

=
piÅÅÅÅÅÅÅÅ
Ti

Finally, using 

„ Ui = Ti „ Si - pi „ Vi

we find that fluctuations in the total entropy due to local fluctuations in the thermodynamic properties can be computed 
using the deceptively simple formula

„2 S º -
1
ÅÅÅÅÅ
2

 ‚
i

1
ÅÅÅÅÅÅÅÅ
Ti

 H „ Ti „ Si - „ pi „ Vi L
Stability of the equilibrium state requires that any arbitrary set of local fluctuations must decrease the total entropy, 

such that „2 S § 0.  Suppose that we assume that „ Vi = 0 and express fluctuations in the local entropy in terms of tempera-
ture fluctuations, such that

„ Vi = 0 ï „ Si = CV ,i 
„ TiÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ti

ï „2 S º -
1
ÅÅÅÅÅ
2

 „
i

CV ,i J „ TiÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ti

N2
ï CV ¥ 0

Therefore, thermal stability requires

Cp ¥ CV ¥ 0

Similarly, if we assume that „ Ti = 0 and express local density fluctuations in volume in terms of pressure fluctuations, we 
find 

„ Ti = 0 ï „ Vi = -Vi kT ,i „ pi ï „2 S º -
1
ÅÅÅÅÅ
2

 ‚
i

Vi kT ,i
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Ti
 H„ piL2 ï kT ¥ 0

Conversely, if we assume „ Si = 0 then

„ Si = 0 ï „ Vi = -Vi kS,i „ pi ï „2 S º -
1
ÅÅÅÅÅ
2

 ‚
i

Vi kS,i
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Ti
 H„ piL2 ï kS ¥ 0

where
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kS = -
1

ÅÅÅÅÅÅÅ
V

 ikjj ∑V
ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzS

is the adiabatic compressibility.  One can easily show that kT ¥ kS .  Therefore, mechanical stability requires

kT ¥ kS ¥ 0

It should be obvious by now that many other conditions upon thermodynamic response functions can be derived by 
generalizing these stability requirements to systems with different or larger sets of independent variables.

à Global stability

There is a simple geometrical interpretation of the local stability condition „2 S § 0.  Suppose that a uniform system 
is divided into two equal parts and consider the sharing of an extensive quantity X  between the subsystems.  For example, 
the total entropy ST @U1, U2D = S1@U1D + S2@U2D  for an isolated system consisting of two systems that share energy but 
have fixed volumes and particle numbers can be expressed a a function of a single variable 

U1 =
U
ÅÅÅÅÅÅÅÅ
2

+ DU , U2 =
U
ÅÅÅÅÅÅÅÅ
2

- DU ï ST @U1, U2D ö ST @X D = S1B U
ÅÅÅÅÅÅÅÅ
2

+ X F + S2B U
ÅÅÅÅÅÅÅÅ
2

- X F
The figure below illustrates the change in entropy that results from a transfer DX  from one subsystem to the other.  The 
central point represents the equilibrium state for the composite system.  If SHUL  is a concave function, a transfer DU  from 
system 1 to system 2 reduces the entropy of system 1 more than it increases the entropy of system 2; hence, there is a net 
decrease of entropy.  On the other hand, if S@UD  is a convex function, the same transfer results in a net increase of entropy.  
Therefore, the concave entropy function is consistent with the maximum entropy principle, but the convex function is not.  
A convex entropy function cannot represent a stable equilibrium state because the system can increase its entropy by 
redistributing one or more of its extensive quantities.  
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These arguments can clearly be extended to finite displacements of energy or other extensive quantities.  There, 
global stability requires entropy to be concave with respect to arbitrarily large displacements, such that

S@U + DU , V D § S@U , V D + H ∑SÅÅÅÅÅÅÅÅÅ∑U L DU

S@U - DU , V D § S@U , V D - H ∑SÅÅÅÅÅÅÅÅÅ∑U L DU

|oo}~ooo S@U + DU , V D + S@U - DU , V D § 2 S@U , V D
even for finite displacements of energy.  However, sometimes a model produces thermodynamic functions that are stable in 
some ranges of its variables but unstable in others.  Under these conditions a system that is local stable may be able to 
increase its entropy by means of a large change even though small changes reduce the entropy.  
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Consider the hypothetical entropy function sketched above.  The entropy is locally stable is the concave regions 
abc and efg where it lies below its tangent lines, but is unstable in the convex region cde where it lies above its tangent 
lines.  Suppose that the system starts near point b and that we add heat, increasing the internal energy beyond point c.  
What will be state of the system for energies between Uc  and Ue ?  This type of system can reach a stable state if it sepa-
rates into two phases, with some fraction xb  near point b and the rest near point f such that

Ub § U § U f ï

U = xb Ub + x f  U f

S = xb  S@UbD + x f  S@U f D
x f = 1 - xb

|oooo}~oooo xb =
U - UbÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
U f - Ub

, x f =
U f - U

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
U f - Ub

describes an interpolation between two phases.  The entropy of such a binary mixture is clearly higher than the entropy of 
any pure state on the entropy curve between points b and f.  In particular, even though the system is locally stable on the 
segments bc and ef, the entropy of the mixed configuration is higher.  Thus, those segments contain metastable states 
which appear stable for small perturbations, but the mixed configurations with the same energy represent more stable states 
with higher entropy.  Even if the metastable state persists for some finite time, eventually one expects that a sufficiently 
large fluctuation will inform the system that a more stable configuration is available.  The closer one approaches the 
unstable region, the more rapid should be the transition to the stable mixture.  Therefore, the equilibrium states are repre-
sented by ab, the straight line bf, and then fg.  
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Phase transitions

As noted many times, most systems can exist in several phases distinguished by some internal order parameter, 
such as magnetization or crystalline structure.  For simplicity, consider a simple compressible system with only one 
thermal and one mechanical degree of freedom.  The chemical potential mi@T , pD  for each phase describes an equilibrium 
surface in the pV T  state space.  If T  and p  are kept fixed, the stable equilibrium state is found on the surface with lowest 
chemical potential (Gibbs potential).  Although other phases with higher potentials are not true equilibrium states, it is 
often possible to maintain the system in a metastable state on a higher surface for a long time.  Under such circumstances 
one can extend equilibrium surfaces for metastable phases well beyond their stable regions.  For example, graphite is the 
stable state of carbon at standard temperature and pressure, but there is little danger that metastable diamonds will soon 
revert to graphite!  These phases are distinguished by their crystalline structures and have different chemical potentials, but 
there is a very large potential barrier that requires geologic time scales to overcome.  Thus, graphite and diamond can be 
maintained in thermal contact without reaching equilibrium in any conceivable experimental period — thermodynamics 
governs the properties of equilibrium states but does not predict equilibration rates.

Under some conditions, two or more phases may coexist with each other in equilibrium.  Coexistence between two 
phases then requires equality between the chemical potentials for these phases, such that the equation

m1@T , pD = m2@T , pD
describes a curve in the pT plane representing the intersection of two equilibrium surfaces.  Such a coexistence curve is a 
function of a single independent variable, usually taken to be temperature.  A third phase can coexist with the first two at 
most a single point

m1@Ttp, ptpD = m2@Ttp, ptpD = m3@Ttp, ptpD
where two equations can be solved for two unknowns, known as the triple point HTtp, ptpL .  This analysis can be easily 
generalized to multicomponent systems.  Suppose that r  components exist in j  phases and, for simplicity, suppose that the 
chemical potentials for each phase of each component depend upon only one mechanical variable, such as pressure, and 
one thermal variable (temperature).  Equilibrium states are then specified by Hr - 1L j  variables describing the chemical 
composition of each phase plus two mechanical and thermal variables, for a total of Hr - 1L j + 2 intensive variables.  
Subtracting r Hj - 1L  constraints among the chemical potentials for each phase of each component leaves f = r - j + 2 
degrees of freedom.  This result is known as Gibb's phase rule.  The requirement that f ¥ 0 limits coexistence to 
jmax = r + 2 phases for an r-component system; thus, at most three phases can coexist at a triple point for a single-compo-
nent system.  A coexistence line represents phase equilibrium for a system with one remaining degree of freedom.

The figure below displays portions of the equilibrium surfaces for common pure substances with solid, liquid, and 
gas phases.  Water is somewhat unusual in expanding upon freezing, such that the solid-liquid coexistence curve has a 
negative slope in the pT plane.  The equilibrium surface and representative isotherms and isobars for a more typical 
substance which contracts upon freezing are shown in the lower portion of the figure, together with projections upon the 
pT and pV planes.  The pT projection displays the coexistence curves where two distinct phases are in equilibrium at the 
same pressure and temperature but different densities.  At low pressure and temperature, the sublimation curve separates 
pure solid and vapor phases, ending at the triple point where three phases (solid, liquid, vapor) coexist.  At higher tempera-
tures the fusion curve separates solid and liquid phases while the vaporization curve separates liquid and vapor phases.  
The vaporization curve ends at a critical point where the critical isotherm (BCD) has an inflection point.  Beyond this 
temperature there is no practical distinction between liquid and vapor phases, which coalesce into a single gaseous phase.  
Thus, one distinguishes between vapor and gas according to whether the system can be liquefied, with the appearance of 
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droplets, by applying sufficient pressure at constant temperature: a vapor with T < Tc  can be liquefied in this manner 
whereas a gas with T > Tc  cannot be liquefied without cooling no matter how high the pressure.  The absence of a critical 
point on the fusion curve demonstrates that there is a greater physical distinction between solid and liquid phases than there 
is between liquid and gas phases — neither liquid nor gas phases display long-range order while crystalline solids do.

Reproduced, with permission, from Fig. 23-7 of Physics for Science and Engineering by J.B. Marion and W.F. Hornyak (Saunders College 
Publishing, Philadelphia, 1982).

Consider a typical isobar, abcdef, representing a process in which heat is added at constant pressure.  The pure 
solid is gradually heated from Ta  to Tb  and expands slightly until the melting point is reached.  Further heating does not 
increase the temperature, but rather melts the internal order until the solid has been entirely converted to liquid at the same 
temperature, Tc = Tb .  The heat required to convert a mole of solid to a mole a liquid at constant temperature and pressure 
is known as the latent heat of melting (or fusion for freezing).  Adding more heat to the pure liquid increases its tempera-
ture and reduces its density, somewhat more rapidly than for the solid, until the point Td  on the vaporization curve is 
reached.  Additional heating vaporizes the liquid at constant temperature and greatly reduces the density.  Once all the 

40 ReviewThermodynamics.nb



liquid has been converted to vapor at constant temperature Te = T f , which requires a latent heat of vaporization, additional 
heating of the pure vapor increases its temperature and rapidly expands its volume.  At temperatures above the critical 
temperature, it is possible to make a continuous transition between liquid and gas phases without crossing the coexistence 
curve and without latent heat.  For pressures above the critical pressure, isobars contain only one phase transition in the 
range displayed, but many substances possess several distinct crystalline phases.

The figure below correlates the coexistence curves with typical isotherms.  Consider the isotherm marked {de.  The 
system is liquid at {.  As the pressure and density are reduced, the liquid-vapor coexistence region is reached at point d 
where the system is described as a saturated liquid.  Heating vaporizes some of the liquid, causing the density to decrease 
while the temperature remains constant.  No liquid remains at point e, which is described as a saturated vapor.  The heat 
required to vapor the liquid under conditions of constant pressure and temperature is the latent heat of vaporization.  
Suppose that liquid is introduced into a sealed container, occupying a relatively small fraction of its volume.  Some of the 
liquid will evaporate.  If both liquid and vapor are present when equilibrium is reached, the system must be found some-
where in the coexistence region.  Apart from a small correction for the surface tension of the liquid, the liquid and vapor 
phases will at the same pressure, referred to as the saturated vapor pressure, which depends only upon temperature.  
Boiling occurs in an open container when the vapor pressure becomes equal to the atmospheric pressure, permitting gas 
bubbles to form.  When there are two or more gases that do not react chemically, their partial pressures add directly 
(Dalton's law).  Relative humidity is the ratio between partial pressure and saturated vapor pressure at the specified 
temperature.

Reproduced, with permission, from Fig. 23-8 of Physics for Science and Engineering by J.B. Marion and W.F. Hornyak (Saunders College 
Publishing, Philadelphia, 1982).

The conditions which permit coexistence of two phases in equilibrium can be ascertained using the availability 
A = U - T0 S + p0 V .  Consider a pure substance in contact with a reservoir with constant temperature T0  and pressure p0 .  
If two phases coexist, we can divide A  into two contributions

A = n1 m1 + n2 m2

where ni  is the number of moles for phase i and mi  is the molar free enthalpy for that phase.  Note that mi = mi@T0, p0D  
depends upon the temperature and pressure established by the reservoir, but is independent of ni .  Recognizing that the 
total mass is constant, we can minimize A  with respect to variations of ni  according to
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n1 + n2 = n ï „ A = m1 „ n1 + m2 „ n2 = Hm1 - m2L „ n1 = 0

Thus, coexistence requires the chemical potentials to be equal for both phases; otherwise, the stable phase will be the one 
with lower m .  Therefore, the coexistence line m1 = m2  separates two regions of the state diagram with pure phases.

For each phase, we can express the fundamental relation as

„ mi = ikjj ∑ miÅÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzp
 „ T + ikjj ∑ miÅÅÅÅÅÅÅÅÅÅÅÅ

∑ p
y{zzT

 „ p = -si „ T + vi „ p

where si  and vi  are the molar entropy and volume for each phase.  Along the coexistence line, equality between chemical 
potentials requires

-s1 „ T + v1 „ p = -s2 „ T + v2 „ p

such that
„ p
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ T

=
s2 - s1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
v2 - v1

=
Ds
ÅÅÅÅÅÅÅÅÅÅ
Dv

Finally, identifying the enthalpy of transformation (or latent heat) as

Dh = h2 - h1 = T Ds

we obtain the Clapeyron equation
„ p
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ T

=
Dh

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
T Dv

relating the slope of the coexistence line to the heat required to change the phase of a substance under conditions of 
constant temperature and pressure.  For example, the heat of vaporization Dh  is the heat needed to transform a mole from 
the liquid to the vapor phase while Dv  is the difference between the molar volumes of the vapor and liquid phases at 
coexistence.

The Clapeyron equation is one of the most important relationships in thermodynamics.  From a fundamental point 
of view, the validity of the Clapeyron equation provides one of the most important tests of the second law.  From a practi-
cal point of view, the Clapeyron equation permits prediction of the effects of pressure upon transition temperatures and is 
instrumental to measurements of latent heat.

An immediate consequence of this relationship is that the slope „ p ê „ T  of the solid-liquid coexistence curve is 
positive for substances which expand when melting and is negative for those which contract when melting.  A second 
application can be made to the temperature dependence of vapor pressure, which is the pressure of a vapor in coexistence 
with its liquid phase in equilibrium.  Suppose that a vessel contains a liquid in coexistence with its own vapor.  Unless the 
pressure is very large, the molar volume vg  for the gas is usually much larger than the molar volume v{  for the liquid, so 
that Dv º vg .  Furthermore, if we assume that the gas is ideal, the Clapeyron equation becomes

„ p
ÅÅÅÅÅÅÅÅÅÅÅ

p
=

Dh
ÅÅÅÅÅÅÅÅÅÅ
R

 
„ T
ÅÅÅÅÅÅÅÅÅÅÅÅ
T2

Finally, if we assume that the latent heat is independent of temperature, this equation can be integrated to yield the Clau-
sius-Clapeyron equation

p = p0 ‰-DhêRT

where p0  is a normalization constant.

Phase transitions which require finite enthalpy of transformation are traditionally described as first-order, accord-
ing to a classification scheme introduced by Ehrenfest, but a more descriptive term is discontinuous because the difference 
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between the molar entropies for the two phases represents a finite discontinuity in entropy as a function of temperature 
(holding other variables constant).  Conversely, continuous phase transitions do not require latent heat and are traditionally 
classified as nth  order, where ∑nGÅÅÅÅÅÅÅÅÅÅ∑Tn is the first discontinuous derivative of G .  For example, a second-order transition does 
not involve latent heat, but displays a discontinuous heat capacity at the coexistence curve.  Important examples include the 
superfluid transition in liquid 4He and spontaneous magnetization.  Often a new phase that appears below a critical tempera-
ture can be described in terms of an order parameter which vanishes above and increases smoothly as the temperature is 
reduced below the critical temperature.  For example, the order parameter for ferromagnetic systems is the degree of 
spontaneous magnetization, sêêê , for T < Tc .  The figure below shows the spontaneous magnetization and the magnetic 
contribution to the heat capacity predicted by the Weiss model of ferromagnetism.  In this model, a continuous phase 
transition occurs at a critical temperature driven by the appearance of a long-range order parameter that measures the 
alignment of the spins in the system.  The alignment vanishes at Tc , but grows quickly as the temperature is reduced.  
Nevertheless, the relative probability that neighboring spins are aligned with the average magnetization is simply the 
square of the probability for each spin individually, indicating the absence of short-range order in this model.  The mag-
netic contribution to the heat capacity displays a discontinuity at the critical temperature that is characteristic of continuous 
phase transitions (the nonmagnetic contributions are continuous, but have been suppressed in this figure).  Although both 
short-range order and wave phenomena modify these pictures for real materials, this simple model describes important 
features of ferromagnetism surprisingly well.

Weiss model of spontaneous magnetization
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Chemical equilibrium

Consider a system that contains several species Ai  described by chemical equations of the form‚
i=1

r

ni Ai = 0

where the ni  are stoichiometric coefficients enforcing charge and mass balance.  For example, the dissociation of water is 
described by a chemical equation H2O ¨ 2 H+ + O-2  containing three species 8H2O,H+,O-2<  with stoichiometric coeffi-
cients 8-1, 2, 1< .  Phase equilibrium can be included in this formulation if different phases of the same substance are 
treated as distinct species.  Thus, evaporation of water would be represented by the reaction H2OH{L¨H2OHgL .  By conven-
tion, we read the reaction equation from left to right, reactants to products, and assign positive ni  to products and negative 
ni  to reactants.  The heat of reaction DH =⁄ ni Hi  is then computed from the enthalpies for the products minus reactants.  
An exothermic reaction with DH < 0 releases heat whereas an  endothermic reaction with DH > 0 absorbs heat.  The 
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quantity of heat depends upon how the stoichiometric equation is written through its normalization factor and upon the 
state of the reactants.  One normally studies chemical reactions under conditions of constant temperature and pressure for 
which the equilibrium concentrations minimize free enthalpy.  Therefore, it will be useful to define the free enthalpy of 
reaction as DG =⁄ ni mi  where mi  is the chemical potential for each species present. 

According to Hess' law of heat summation, the heat of a reaction that can be written as a series of steps can be 
obtained algebraically using the same stoichiometric coefficients as the charge and mass balance.  Because it is usually 
impossible to determine enthalpies in an absolute sense, we normally compare enthalpy and related quantities to those of a 
conveniently chosen standard state.  Ordinarily one defines the standard state of a gas to have a partial pressure of 1 
atmosphere, pure liquids or pure solids at pressures of 1 atmosphere, all at a temperature usually chosen as 298 kelvins.  
The standard state of a solute in solution is sometimes chosen to be very dilute (aqueous solution) or sometimes chosen to 
be 1 mole per liter (1-molar solution).  Consider, for example, the reaction 2 SO2HgL+ O2HgL¨ 2 SO3HgL .  The table below 
shows a calculation of the heat of reaction from tabulated heats of formation.  Note that because step 1) is written in 
reverse, we invert the sign of DH0 for it; also note that the standard state for sulfur at 298 kelvins is a solid with rhombic 
crystalline structure while the other reactants are gaseous, as indicated.

step reaction ∆H0  HkcalL ∆G0  HkcalL
1 2 SO2 HgL → 2 S HsL + 2 O2 HgL −2× −70.76 −2× −71.79
2 2 S HsL + 3cccc2  O2 HgL → 2 SO3 HgL 2× −94.45 2× −88.52
net 2 SO2 HgL + O2 HgL → 2 SO3 HgL −47.38 −33.46

We find that the reaction is exothermic and that if the initial concentration of products is small the reaction will proceed in 
the forward direction at room temperature because the change in free enthalpy is negative.

The Gibbs potential for some set of mole numbers 8ni, i = 1, r<  can be expressed in the form

G = ‚
i=1

r

ni mi = n ‚
i=1

r

mi xi

where n  is the total number of moles present and 8xi = ni ê n, i = 1, r<  represent mole fractions for each species

n = ‚
i=1

r

ni = n ‚
i=1

r

xi

For most initial choices of 8xi<  the reaction will proceed to a new equilibrium condition of maximum entropy with different 
final mole numbers 8ni<  which depend upon the external constraints imposed as well as the energetics of the chemical 
reaction.  The change in free enthalpy due to small changes in the concentration of each species is

„ G = ‚
i=1

r

mi „ ni

Using the stoichiometric relationships, we can express changes in mole numbers as „ ni = ni „ z  where „ z  represents the 
progress of the reaction parametrically.  Changes in the Gibbs potential now take the form

„ G = -A „ z

where

A = - ‚
i=1

r

mi ni

is the affinity of the reaction.  If the affinity is positive (negative), the reaction proceeds in the forward (backward) direc-
tion as specified by the stoichiometric equation.  The final equilibrium state which minimizes the Gibbs potential is then 
defined by
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„ G = 0 ï A = 0 ï ‚
i=1

r

mi ni = 0

Here we assume, for simplicity, that no species is entirely depleted and leave more detailed considerations to chemistry 
texts.

It is useful to express the chemical potential in terms of fugacity, f , using

mi = RT  Log@ fiD + Bi@TD
where Bi@TD  is an unknown function of temperature.  Recall that the term fugacity is derived from the same Latin root as 
fugitive and provides a measure of the volatility of a substance, or its tendency to flee.  Alternatively, in chemistry fugacity 
is usually called absolute activity.  The fugacity or absolute activity depends upon the concentration of a species but does 
not depend explicitly upon temperature.  If we now compare mi  for the desired pressure and concentration with mi

0  for the 
standard state of a substance at the same temperature, then

mi = mi
0 + RT Log@aiD

where ai = fi ê fi0  is known as the activity of that substance.  For example, upon examination of our earlier results for an 
ideal gas, one finds that the fugacity of an ideal gas is simply its pressure so that its activity is its partial pressure in atmo-
spheres.  Similarly, the activities of substances in an ideal mixture are simply their mole fractions.  The affinity of the 
reaction relative to the standard states now becomes

DA = -RT LogQ

where

Q =

ÄÇÅÅÅÅÅÅÅÅÅÅ‰i=1

r

ai
ni

ÉÖÑÑÑÑÑÑÑÑÑÑ
is the reaction quotient.  Therefore, we obtain the law of mass action in the form

Q = ExpB-
DA
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
RT

F
Note that although affinity is a measure of the thermodynamic drive for a reaction, it does not determine the rate at which 
the reaction proceeds.

Recognizing that activities have unit values in standard states while A Ø 0 at equilibrium, the standard enthalpy of 
reaction becomes 

DG0 = -RT ln K

where

K =

ÄÇÅÅÅÅÅÅÅÅÅÅ‰i=1

r

ai
ni

ÉÖÑÑÑÑÑÑÑÑÑÑeq

is the called the equilibrium constant for the reaction.  Note that the equilibrium constant is independent of pressure and 
concentration, but still depends upon temperature.  This temperature dependence

„ Hln KL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ T
= -

„
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ T

 
ikjjj DG0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
RT

y{zzz =
DG0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
RT2 -

1
ÅÅÅÅÅÅÅÅÅÅÅ
RT

 
ikjjj ∑ DG0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzzp
=

DG0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
RT2 +

DS0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
RT

can now be expressed in terms of enthalpy as the van't Hoff equation 
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„ Hln KL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ T
=

DH0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
RT2

which closely resembles the Clausius-Clapeyron equation.

Example: vapor pressure

Vapor pressure is the partial pressure for a vapor that coexists with its liquid form.  Coexistence between liquid 
water and water vapor is described by the reaction H2OH{L¨H2OHgL .  The standard chemical potentials are 
m0 = -56.960 kcal ê mole for pure water or m0 = -54.635 kcal êmolefor water vapor at STP (standard temperature and 
pressure of 1 atm and 298 kelvins).  Hence, the standard free enthalpy for evaporation is Dm = 2.055 kcal ê mole.  If we 
assume that the vapor is an ideal gas, its activity is simply its partial pressure in units of atmospheres.  Given unit activity 
for a pure liquid, we then deduce the activity of the vapor using

a = Exp
ÄÇÅÅÅÅÅÅÅÅÅ-

DG0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
RT

ÉÖÑÑÑÑÑÑÑÑÑ ï 0.031 at 298 kelvins

and conclude that the vapor pressure of water is 0.031 atmospheres at room temperature.  The vapor pressure increases 
with temperature until it reaches atmospheric pressure, at which point the liquid boils.

Now suppose that we add a nonvolatile solute, such as salt, to the liquid.  By nonvolatile we mean that very little of 
the solute escapes solution into the vapor phase.  Adding solute to the liquid reduces the concentration of the liquid and, 
hence, reduces its activity.  For an ideal dilute solution, we make a linear approximation to the activity, such that

a{ =
c{ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c{ + cs
º 1 - xs ï K º

ag
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - xs

where cs  and c{  are the concentrations of solute and solvent, xs  is the solute mole fraction, and ag  is the vapor pressure of 
the liquid.  The van't Hoff equation now becomes

„ T =
R T2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
DH0  

„ K
ÅÅÅÅÅÅÅÅÅÅÅÅ
K

º
R T2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
DH0  

ikjjj„ xs +
„ pg
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

pg

y{zzz
where DH  is the heat of vaporization, pg  is the vapor pressure, and where we have assumed that xs  is small.  First, sup-
pose that the temperature is held constant, such that 

„ T = 0 ï
„ pg
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

pg
= - „ xs ï

pg@xsD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
pg@0D º 1 - xs

shows that the presence of the solute reduces the vapor pressure, a result known as Raoult's law.  Alternatively, suppose 
that the vapor pressure is held constant at 1 atm, such that

„ pg = 0 ï „ T =
R T2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
DH0  „ xs ï DTbp º

R Tbp
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
DH0  xs

shows that the boiling temperature is raised by the solute because the vapor pressure is reduced.  Therefore, we can cook 
our spaghetti at a higher temperature by adding salt to the water.

Example: temperature dependence of a reaction

An important step in commercial production of sulfuric acid involves synthesis of sulfur trioxide in the reaction 
2 SO2+ O2¨ 2 SO3  with equilibrium constant

K =
aSO3

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
aSO2

2 aO2

= Exp
ÄÇÅÅÅÅÅÅÅÅÅ-

DG0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
R T

ÉÖÑÑÑÑÑÑÑÑÑ
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where DG0 = DH0 - T DS0  is the standard free enthalpy for the reaction.  At 298 kelvin, one finds DH0 = -47.38 kcal and 
DS0 = -45.36 cal êkelvin , such that DG0 = -33.86 kcal for 2 moles of SO3  produced by the reaction with an equilibrium 
constant of about 7 µ 1024 .  In most cases one can safely assume that both DH0  and DS0  are approximately independent of 
temperature, but the factor of T  increases the importance of entropy relative to the heat of the reaction (enthalpy) at high 
temperatures.  Thus, at 1500 kelvins we expect DG1500

0 ~ 21 kcal and K ~ 10-3 .  The equilibrium constant changes by 
about 27 orders of magnitude as the reaction shifts from strongly forward (production of SO3 ) at room temperature toward 
the backward direction (dissociation of SO3 ) at high temperature.  Such rapid variation of equilibrium concentrations and 
reaction rates with temperature is quite common.

Problems

ô Thermodynamics of blackbody radiation

The electromagnetic radiation within an empty box whose walls are maintained at temperature T  can be treated as a 
thermodynamic system.  Simple arguments give p = 1ÅÅÅÅ3  u@TD , where u = U ê V  is the energy density.  Use this result 
to obtain other thermodynamic properties.  (Note: a  remains an undetermined constant.)

a) Derive the Stefan-Boltzmann law, u = aT4 , where a  remains an undetermined constant.

b) Show that s = 4ÅÅÅÅ3  aT3  where s = S ê V .

c) Evaluate Cp  and interpret your result.

d) Show that pV 4ê3 = constant for an isentropic process.

e) Compute the chemical potential and explain the result.

ô Isentropes for van der Waals gas

Determine the relationships between T  and v  and between p  and v  that apply to isentropic transformations of a gas 
that obeys the van der Waals equation of state Jp +

a
ÅÅÅÅÅÅÅÅ
v2 N Hv - bL = RT

where v  is the volume per mole and a and b are constants related to the intermolecular interaction.  Assume that cv  is 
constant and that cp - cv º R  over the relevant ranges of T  and V  and express your results in terms of g = cp ê cv .

ô Response functions for van der Waals gas

Evaluate the isobaric expansivity, a = 1ÅÅÅÅv  H ∑vÅÅÅÅÅÅÅÅ∑T Lp , and isothermal compressibility, kT = - 1ÅÅÅÅv  I ∑vÅÅÅÅÅÅÅÅ∑p M
T

, in terms of 
temperature T  and molar volume v  for a gas that obeys the van der Waals equation of state
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Jp +
a

ÅÅÅÅÅÅÅÅ
v2 N Hv - bL = RT

where b  is related to the short-range repulsion and a  to the long-range attraction of the intermolecular interaction.  
Compare with the ideal gas and discuss the roles of the interaction parameters.  Make quantitative comparisons for 
O2  using a = 0.138 Pa m6 ê mole2  and b = 0.0318 m3 ê mole.

ô Some relationships for simple compressible system

Prove the following relationships for a simple compressible system.

a) H ∑CVÅÅÅÅÅÅÅÅÅÅÅ∑V LT = TI ∑ÅÅÅÅÅÅÅÅ∑T  I aÅÅÅÅÅÅÅkT
M M

V

b) I ∑CpÅÅÅÅÅÅÅÅÅÅ∑p M
T

= -TH ∑ÅÅÅÅÅÅÅÅ∑T  HaV L Lp

c) H ∑UÅÅÅÅÅÅÅÅÅ∑V LT = T2H ∑ÅÅÅÅÅÅÅÅ∑T  H pÅÅÅÅÅT L LV

d) I ∑HÅÅÅÅÅÅÅÅÅ∑p M
T

= -T2H ∑ÅÅÅÅÅÅÅÅ∑T  H VÅÅÅÅÅT L Lp

where a = 1ÅÅÅÅÅV  H ∑VÅÅÅÅÅÅÅÅ∑T Lp  is the isobaric expansivity and kT = - 1ÅÅÅÅÅV  I ∑VÅÅÅÅÅÅÅÅ∑p M
T

 is the isothermal compressibility, respectively.  
Discuss the implications of these relationships for a gas which satisfies the van der Waals equation of state and 
compare with an ideal gas.

ô Jacobian method for compressibility ratio

The isothermal and adiabatic compressibilities are defined by

kT = -
1

ÅÅÅÅÅÅÅ
V

 ikjj ∑V
ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzT
, kS = -

1
ÅÅÅÅÅÅÅ
V

 ikjj ∑V
ÅÅÅÅÅÅÅÅÅÅÅ
∑ p

y{zzS

Use the Jacobian method to express kT ê kS  in terms of heat capacities.

ô Adiabatic compressibility

The adiabatic compressibility is defined by kS = - 1ÅÅÅÅÅV  I ∑VÅÅÅÅÅÅÅÅ∑p M
S

.

a) Express the difference kT - kS  in terms of T , V , Cp , and a .  Evaluate this quantity for an ideal gas and comment.

b) Express kT ê kS  in terms of heat capacities.

c) Show that stable equilibrium requires CV ¥ 0 and kS ¥ 0.
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ô Plastic rod

Suppose that the tension t  required to alter the length L  of a plastic rod with relaxed length L0  at temperature T  is 
t = aT2HL - L0L  where a  is a positive constant.  Also suppose that when L = L0  the heat capacity at constant length 
is CL@L0, TD = bT  where b  is a positive constant.

a) Construct the fundamental thermodynamic relation for this system.

b) Use a Maxwell relation to find H ∑SÅÅÅÅÅÅÅ∑L LT .

c) Given S0 = S@L0, T0D , compute the entropy for any other length and temperature.

d) Suppose that the rod is quasistatically stretched from initial length Li  and temperature Ti  to final length L f  under 
conditions of thermal isolation.  Find an expression for the final temperature T f  and compare it to the initial 
temperature.

e) Calculate the heat capacity CL@L, TD  for arbitrary length and temperature.

ô Soap film

A soap film is supported by a thin wire frame with constant width w .  One end of the frame is a movable cross wire 
sliding on rails so that the length {  can be varied.  The surface tension g  produces a force 2 gw  on the movable cross 
wire, where the factor of 2 accounts for the two free surfaces.  The surface tension depends linearly upon 
temperature, such that g = g0 + g1 T  where g0  and g1  are constants independent of length and temperature.

a) Express the fundamental relation for changes in internal energy „ U  as a function of T  and { .  Identify the heat 
capacity C{ .

b) Compute the internal energy change DU = U@T , {D - U@T , 0D  for isothermal stretching of the film.

c) Compute the work and heat required for isothermal stretching of the film.

ô Throttling of van der Waals gas

 Suppose that a thermally insulated tube filled with a nonideal gas is fitted with pistons on both ends which exert 
pressures pi  on the left and p f  on the right.  In the center of the tube is a porous plug which allows gas to flow 
through the tube under a constant pressure difference, D p = pi - p f , between the two ends of the tube.  Under 
conditions of steady flow the gas on either side of the plug is in thermal equilibrium, at temperatures Ti  on the left 
and T f  on the right, but is clearly not in equilibrium within the plug itself.

a) Show that the molar enthalpy, h = u + pv , is conserved by this throttling process, such that hi = h f  where h , u , 
and v  are all expressed per mole of gas.

b) Show that for an ideal gas the molar enthalpy reduces to a simple function of temperature alone so that 
hi = h f fl Ti = T f  for an ideal gas.

c) For real gases the enthalpy also depends on pressure, such that h = h@T , pD , and there will usually be a 
temperature difference between the two sides.  These temperature changes are most conveniently gauged by the 
Joule-Thomson coefficient, defined as mh = I ∑TÅÅÅÅÅÅÅÅ∑p M

h
.  Given that the pressure decreases across the barrier, we expect 
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cooling when mh  is positive and heating when it is negative.  Show that the Joule-Thomson coefficient is given by 
mh = vÅÅÅÅÅÅÅcp

 HT a - 1L , where a = 1ÅÅÅÅv  H ∑vÅÅÅÅÅÅÅÅ∑T Lp  is the isobaric expansivity and cp = H ∑hÅÅÅÅÅÅÅÅ∑T Lp = TH ∑sÅÅÅÅÅÅÅÅ∑T Lp  is the isobaric specific 
heat.

d) Curves of constant enthalpy drawn in the Hp, TL  plane are called isenthalps.  Produce a diagram which shows 
isenthalps for the reduced form of van der Waals equation of state, Hp + 3ÅÅÅÅÅÅv2 L Hv - 1ÅÅÅÅ3 L = 8ÅÅÅÅ3  T , assuming that cV = 3ÅÅÅÅ2  R  
is constant.  Also plot the inversion curve, defined by the condition mh = 0, which separates the region of 
temperature and pressure in which the gas is heated by the throttling process from the cooling region.  Identify these 
regions and provide a physical explanation based upon the properties of the intermolecular interaction.

ô Heat capacity from an energetic equation of state

Suppose that the internal energy and entropy are related by U - U0@V D = aHS - S0Lg , where S0 , a , and g  are 
constants and where U0@V D  is an arbitrary function of volume.  Find an explicit expression for the heat capacity 
CV @TD  as a function of temperature.  Evaluate this function for the special case g = 4 ê 3, which applies to the Debye 
model of crystals.

ô Debye model

In the Debye theory of solids, the Helmholtz free energy take the form F = U0@V D + T f @q ê TD  where f @xD  is a 
universal function and where the Debye temperature q ∂ V -g  is a function only of volume (g  is constant).  Let f £  
and f ≥  denote derivatives of f @xD  with respect to the dimensionless variable x = q ê T .

a) Find expressions for the pressure and entropy.

b) Find expressions for the internal energy and heat capacity.

c) Express the expansivity a = V -1H∑V ê ∑TLp  in terms of the compressibility kT = -V -1H∑V ê ∑ pLT , heat capacity 
CV , g , and V .  [Hint: a cyclic relation may help.]

ô Latent heats for ammonia

Near the triple point, the vapor pressure of liquid ammonia is approximately Log@pD = 24.38 - 3063 ê T  where p  is 
expressed in pascals HN êm2L  and T in kelvins.  Similarly, the sublimation curve (solid-vapor coexistence) is 
Log@pD = 27.92 - 3754 ê T .

a) Compute the temperature and pressure at the triple point.

b) Compute the latent heats of sublimation, vaporization, and fusion (melting) assuming that molar volumes in 
condensed phases can be neglected and that the vapor can be treated as an ideal gas.

ô Entropy for gas leak

A leak in a tank of argon gas originally pressurized to 100 atm allows the gas to escape slowly at room temperature.  
Compute the entropy change per mole of escaped gas.
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ô Internal energy given isentropes p Vg

Suppose that the isentropes of a single-component system satisfy pV g = constant where g  is a positive constant.  
Demonstrate that the internal energy must have the form U = 1ÅÅÅÅÅÅÅÅÅÅg-1  pV + N f @pV g ê NgD  where f @xD  is an arbitrary 
function.

ô Constraints upon S µ Ua Vb Nc

Suppose that S ∂ Ua V b Nc .  Assume, without loss of generality, that U ¥ 0.  Deduce the requirements upon the 
constants a , b , and c  needed to ensure compatibility with the laws of thermodynamics.

ô Entropy representation of Gibbs-Duhem relation

Using the entropy representation, S = S@U , Xi, ∫ XrD , derive a Gibbs-Duhem relation of the form

U  „ H 1ÅÅÅÅÅT L + ⁄i=1
r Xi „ Qi = 0

where Qi = I ∑SÅÅÅÅÅÅÅÅÅ∑Xi
M
U ,X j∫i

 are the intensive parameters conjugate to the extensive variables Xi  in the entropy 

representation.  Then show that for a simple compressible system one obtains

„ H mÅÅÅÅÅT L = v „ H pÅÅÅÅÅT L + u „ H 1ÅÅÅÅÅT L
where u = U ê n  is the molar energy and v = V ê n  is the molar volume.  Finally, use this relationship to derive the 
chemical potential of an ideal gas.

ô Thermodynamics of type-I superconductor

The phase diagram for a typical type-I superconductor is sketched below.  
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Experimentally one finds that the coexistence curve separating the normal and superconducting phases is well-
approximated by the parabolic curve
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Hc@TD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

H0
= 1 - J T

ÅÅÅÅÅÅÅÅ
Tc

N2

where the parameters H0  and Tc  depend on the particular metal.  The metal is nonmagnetic in its normal phase but 
in its superconducting phase expels any applied magnetic field H  smaller than the critical field Hc@TD .  Thus, the 
magnetization per unit volume, M , satisfies

T > Tc or H > Hc@TD ï Mn = 0

T < Tc and H < Hc@TD ï Ms = -
H

ÅÅÅÅÅÅÅÅÅÅÅ
4 p

where the subscripts n and s denote normal and superconducting phases.  The fundamental thermodynamic relation 
for this system is

„ F = -S „ T - M  „ H

where F, S, and M are the free energy, entropy, and magnetization per unit volume.

a) Calculate Fs@T , HD - Fs@T , HcD  for the superconducting phase.

b) Show that the superconducting phase has lower free energy than the normal phase when H < Hc@TD .

c) Compute the latent heat of transformation between normal and superconducting phases.

d) Determine the temperature dependence of the difference between the constant-H specific heats for the normal and 
superconducting phases, DCH @T , HD = CH ,n@T , HD - CH ,s@T , HD , and show that there is a discontinuity in CH  at Tc .

ô Paramagnetic response functions

The fundamental thermodynamic relation for a simple magnetic system, for which magnetization is the only work 
mode, takes the form

„ U = T  „ S - M”÷÷÷÷
ÿ „H”÷÷÷÷

where H”÷÷÷÷
 is the external magnetic field and U , S , and M”÷÷÷÷

 are the energy, entropy, and magnetic moment per unit 
volume.  The principal magnetic heat capacities are defined as 

CM = T  ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzM CH = T  ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzH
For simplicity assume that M”÷÷÷÷

ÿ „H”÷÷÷÷
= M „H .

a) Evaluate CH - CM  in terms of the response functions H ∑MÅÅÅÅÅÅÅÅÅÅ∑T LH  and H ∑MÅÅÅÅÅÅÅÅÅÅ∑H LT .

b) Evaluate the adiabatic demagnetization coefficient H ∑TÅÅÅÅÅÅÅÅÅ∑H LS  in terms of H ∑MÅÅÅÅÅÅÅÅÅÅ∑T LH  and CH .  Compare the effects of 
adiabatic demagnetization upon temperature for diamagnetic versus paramagnetic materials.

c) The internal energy for a paramagnetic material takes the form

U@T , HD = U0@TD - MH

where U0  is independent of H  and M = f A HÅÅÅÅÅÅÅT E  is a function of the ratio H ê T .  Find simple expressions for CM , 
CH  and H ∑TÅÅÅÅÅÅÅÅÅ∑H LS .  Examine the high and low temperature limits and interpret your results.  
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d) Curie's law, M º c0 HÅÅÅÅÅÅÅT , is applicable when mH ` kB T , where m  is the atomic magnetic moment, provided that 
the temperature is not so low that the interatomic magnetic dipole interaction produces spontaneous magnetization in 
the absence of an applied field.  Under what conditions may CM  be neglected in comparison with CH ?  Compute 
CH  and H ∑TÅÅÅÅÅÅÅÅÅ∑H LS  assuming that CM  may be neglected and that Curie's law applies. 

ô Paramagnetic isentropes 

a) Derive a general relationship for „M ê „H  describing isentropic curves („ S = 0) in the M  versus H  plane in 
terms of the principal heat capacities and the isothermal magnetic susceptibility.

b) Evaluate „M ê „H  for a paramagnetic material satisfying Curie's law, M º c0 HÅÅÅÅÅÅÅÅÅÅÅÅÅT-Tc
.  Show that adiabats take 

the form HMg = constant if the ratio of heat capacities is constant.

c) Find approximate adiabats applicable in the high and low temperature limits.  [Hint: argue that CM º CH  for high 
temperatures and that CM ` CH  for very low temperatures.  Why?]

ô Adiabatic demagnetization using the Curie-Weiss law

The fundamental thermodynamic relation for a paramagnetic material takes the form

„ U = T  „ S - M „H

where H  is the external magnetic field and U , S , and M  are the energy, entropy, and magnetic moment per unit 
volume.  Assume that the magnetization can be expressed in the form

M@T , HD = H c@TD
a) Show that the constant-H heat capacity can then be expressed as

CH @T , HD = CH @T , 0D + H2 f @TD
and determine the relationship between f @TD  and c@TD .

b) CH @T , 0D  describes nonmagnetic contributions to the heat capacity which tend to be small at very low 
temperature.  Evaluate the adiabatic demagnetization coefficient H ∑TÅÅÅÅÅÅÅÅÅ∑H LS  assuming that CH @T , 0D  is negligible and 
that the magnetization for T > Tc  is described by the Curie-Weiss law

c@TD º
c0ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T - Tc

where c0  and Tc  are constants.

c) Evaluate the temperature change obtained by demagnetization Hi Ø H f .  Is your result plausible?  If not, why 
not?

ô Another model of adiabatic demagnetization

In the high-temperature limit, Curie's law gives M º aHÅÅÅÅÅÅÅÅÅÅT  where a  is constant.  Find a simple expression for T f ê Ti  
produced by adiabatic demagnetization Hi Ø H f  assuming that CM º bÅÅÅÅÅÅÅT2  where b  is constant.
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ô Magnetic refrigerator

A magnetic refrigerator employs a paramagnetic salt as the working material in a heat engine.  Here we 
develop the basic principle without dwelling on technical details of implementation.  An ideal heat engine performs 
the following cycle:

1) The working material is in thermal contact at temperature T1  with the sample to be refrigerated.  The magnetizing 
field is reduced from Ha  to Hb  as the paramagnetic salt draws heat from the sample at constant temperature.

2) The sample is isolated from the working material and the magnetizing field is increased adiabatically from Hb  to 
Hc .

3) The working material is placed in thermal contact with the reservoir at constant temperature T2 ; the reservoir is 
usually liquid helium boiling under reduced pressure so that T2 ~1 kelvin.  The magnetizing field is increased from 
Hc  to Hd  as the entropy of the working material is reduced and heat is expelled into the reservoir and removed by a 
"high"-temperature refrigerator.

4) The working material is isolated again and the magnetizing field is decreased from Hd  back to Ha , returning the 
working material to its original state in preparation for the next cycle.

The net result of this cycle is to transfer heat Q1  from the cold sample to the warmer reservoir by means of 
the magnetic work W  performed upon the paramagnetic salt during a reversible cycle.  In this problem we employ 
simple models to estimate the heat and work on each leg of the cycle.  In previous problems we proved that

T f - Tc
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Ti - Tc

=
H f
ÅÅÅÅÅÅÅÅÅÅÅÅHi

for adiabatic transformations for a paramagnet satisfying M = H c@TD  and CH p CM .  Assume for the present 
purposes that c@TD = c0ÅÅÅÅÅÅÅÅÅÅÅÅÅT-Tc

 where c0  and Tc  are constant.

a) Sketch the cycle in the T S  plane and relate the fields Ha  and Hc  to the extreme values Hb  and Hd .

b) Determine the heat and work for each step of the cycle.

c) The performance coefficient for a refrigerator is defined at the ratio between the heat absorbed from the sample 
and the work performed upon the working material per cycle.  Compute the performance coefficient for this 
refrigerator.

d) Compute the work per cycle performed on 1 cm3  of gadolinium sulfate and the heat removed from the sample 
assuming that the refrigerator operates between temperatures T1 = 0.1 kelvin and T2 = 1.0 kelvin using fields 
Hb = 10 Gauss and Hd = 1000 Gauss.  Assume that Curie's law is valid and neglect Tc .  The molar susceptibility of 
gadolinium sulfate measured at 285.5 kelvin is 5.42 µ 10-2 cm3 ê mole.  The density is 4.14 g ê cm3  and the molecular 
weight of Gd2HSO4L3  is 603 g/mole. 
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ô Piezoelectricity

Materials which develop a dielectric polarization in response to mechanical stress are widely used for sensors, 
switches, frequency stabilization and other applications.  For example, your digital clock probably relies on the 
piezoelectric effect in a quartz crystal.  In this problem we will examine some of the thermodynamic properties of 
such materials.  For simplicity, we consider only a single longitudinal stress mode and express the properties of the 
material per unit volume.  The energetic form of the fundamental relation then takes the form

„ u = T  „ s + s „ e + E „ P

where u and s are internal energy and entropy density, E is the electric field, P is the dipole moment per unit volume, 
s is the mechanical stress (force per area), and „ e = „ L ê L0  is the longitudinal strain where L0  is the normal length 
of the unstressed material.  It is customary to choose tensile stress as positive.  We wish to express thermodynamic 
properties in terms of the electrical, mechanical, and thermal polarizabilities defined by

cE = ikjj ∑ P
ÅÅÅÅÅÅÅÅÅÅÅ
∑ E

y{zzT ,s
cs = ikjj ∑ P

ÅÅÅÅÅÅÅÅÅÅÅ
∑ s

y{zzT ,E
cT = ikjj ∑ P

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzE,s

a) Find a simple relationship for the mechanical strain produced by an electric field under conditions of constant T  
and s , namely H∑ e ê ∑ ELT ,s .

b) Use the completeness of „ s  to express cE,s - cP,s  and aE - aP  in terms of the polarizabilities, where

cE,s = T  ikjj ∑s
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzE,s
cP,s = T  ikjj ∑s

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzP,s

are specific heats and

aE = ikjj ∑ e
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzE,s
aP = ikjj ∑ e

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzP,s

are coefficients of thermal strain under specific conditions.  Provide intuitive arguments for the signs of  cE,s - cP,s  
and aE - aP .
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