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INTRODUCTION

Introduction

Welcome to the Third Edition of the Handbook of Biological Statistics! This textbook
evolved from a set of notes for my Biological Data Analysis class at the University of
Delaware. My main goal in that class is to teach biology students how to choose the
appropriate statistical test for a particular experiment, then apply that test and interpret
the results. In my class and in this textbook, I spend relatively little time on the
mathematical basis of the tests; for most biologists, statistics is just a useful tool, like a
microscope, and knowing the detailed mathematical basis of a statistical test is as
unimportant to most biologists as knowing which kinds of glass were used to make a
microscope lens. Biologists in very statistics-intensive fields, such as ecology,
epidemiology, and systematics, may find this handbook to be a bit superficial for their
needs, just as a biologist using the latest techniques in 4-D, 3-photon confocal microscopy
needs to know more about their microscope than someone who’s just counting the hairs
on a fly’s back. But I hope that biologists in many fields will find this to be a useful
introduction to statistics.

I have provided a spreadsheet to perform many of the statistical tests. Each comes
with sample data already entered; just download the spreadsheet, replace the sample data
with your data, and you'll have your answer. The spreadsheets were written for Excel, but
they should also work using the free program Calc, part of the OpenOffice.org suite of
programs. If you're using OpenOffice.org, some of the graphs may need re-formatting,
and you may need to re-set the number of decimal places for some numbers. Let me know
if you have a problem using one of the spreadsheets, and I'll try to fix it.

I've also linked to a web page for each test wherever possible. I found most of these
web pages using John Pezzullo’s excellent list of Interactive Statistical Calculation Pages
(www.statpages.org), which is a good place to look for information about tests that are
not discussed in this handbook.

There are instructions for performing each statistical test in SAS, as well. It’s not as
easy to use as the spreadsheets or web pages, but if you're going to be doing a lot of
advanced statistics, you're going to have to learn SAS or a similar program sooner or later.

Printed version

While this handbook is primarily designed for online use
(www .biostathandbook.com), you can also buy a spiral-bound, printed copy of the whole
handbook for $18 plus shipping at

www.lulu.com/ content/ paperback-book /handbook-of-biological-statistics / 3862228
I've used this print-on-demand service as a convenience to you, not as a money-making
scheme, so please don’t feel obligated to buy one. You can also download a free pdf of the
whole book from www .biostathandbook.com /HandbookBioStatThird.pdf, in case you’'d
like to print it yourself or view it on an e-reader.
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If you use this handbook and want to cite it in a publication, please cite it as:

McDonald, J.H. 2014. Handbook of Biological Statistics, 3rd ed. Sparky House Publishing,
Baltimore, Maryland.

It's better to cite the print version, rather than the web pages, so that people of the future
can see exactly what were citing. If you just cite a web page, it might be quite different by
the time someone looks at it a few years from now. If you need to see what someone has
cited from an earlier edition, you can download pdfs of the first edition
(www.biostathandbook.com /HandbookBioStatFirst.pdf) or the second edition
(www.biostathandbook.com /HandbookBioStatSecond.pdf).

I am constantly trying to improve this textbook. If you find errors, broken links, typos,
or have other suggestions for improvement, please e-mail me at mcdonald@udel.edu. If
you have statistical questions about your research, I'll be glad to try to answer them.
However, I must warn you that I'm not an expert in all areas of statistics, so if you're
asking about something that goes far beyond what’s in this textbook, I may not be able to
help you. And please don’t ask me for help with your statistics homework (unless you're
in my class, of course!).
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Step-by-step analysis of
biological data

Here I describe how you should determine the best way to analyze your biological
experiment.

How to determine the appropriate statistical test

I find that a systematic, step-by-step approach is the best way to decide how to analyze
biological data. I recommend that you follow these steps:

1. Specify the biological question you are asking.

2. Put the question in the form of a biological null hypothesis and alternate hypothesis.
3. Put the question in the form of a statistical null hypothesis and alternate hypothesis.
4. Determine which variables are relevant to the question.

5. Determine what kind of variable each one is.

6. Design an experiment that controls or randomizes the confounding variables.

7. Based on the number of variables, the kinds of variables, the expected fit to the
parametric assumptions, and the hypothesis to be tested, choose the best statistical
test to use.

8. If possible, do a power analysis to determine a good sample size for the experiment.
9. Do the experiment.

10. Examine the data to see if it meets the assumptions of the statistical test you chose
(primarily normality and homoscedasticity for tests of measurement variables). If it
doesn’t, choose a more appropriate test.

11. Apply the statistical test you chose, and interpret the results.
12. Communicate your results effectively, usually with a graph or table.

As you work your way through this textbook, you'll learn about the different parts of
this process. One important point for you to remember: “do the experiment” is step 9, not
step 1. You should do a lot of thinking, planning, and decision-making before you do an
experiment. If you do this, you’ll have an experiment that is easy to understand, easy to
analyze and interpret, answers the questions you’'re trying to answer, and is neither too
big nor too small. If you just slap together an experiment without thinking about how
you're going to do the statistics, you may end up needing more complicated and obscure
statistical tests, getting results that are difficult to interpret and explain to others, and
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maybe using too many subjects (thus wasting your resources) or too few subjects (thus
wasting the whole experiment).

Here’s an example of how the procedure works. Verrelli and Eanes (2001) measured
glycogen content in Drosophila melanogaster individuals. The flies were polymorphic at the
genetic locus that codes for the enzyme phosphoglucomutase (PGM). At site 52 in the
PGM protein sequence, flies had either a valine or an alanine. At site 484, they had either a
valine or a leucine. All four combinations of amino acids (V-V, V-L, A-V, A-L) were
present.

1. One biological question is “Do the amino acid polymorphisms at the Pgm locus have

an effect on glycogen content?” The biological question is usually something about
biological processes, often in the form “Does changing X cause a change in Y?”
You might want to know whether a drug changes blood pressure; whether soil pH
affects the growth of blueberry bushes; or whether protein Rab10 mediates
membrane transport to cilia.

2. The biological null hypothesis is “Different amino acid sequences do not affect the

biochemical properties of PGM, so glycogen content is not affected by PGM
sequence.” The biological alternative hypothesis is “Different amino acid
sequences do affect the biochemical properties of PGM, so glycogen content is
affected by PGM sequence.” By thinking about the biological null and alternative
hypotheses, you are making sure that your experiment will give different results
for different answers to your biological question.

3. The statistical null hypothesis is “Flies with different sequences of the PGM enzyme

have the same average glycogen content.” The alternate hypothesis is “Flies with
different sequences of PGM have different average glycogen contents.” While the
biological null and alternative hypotheses are about biological processes, the
statistical null and alternative hypotheses are all about the numbers; in this case,
the glycogen contents are either the same or different. Testing your statistical null
hypothesis is the main subject of this handbook, and it should give you a clear
answer; you will either reject or accept that statistical null. Whether rejecting a
statistical null hypothesis is enough evidence to answer your biological question
can be a more difficult, more subjective decision; there may be other possible
explanations for your results, and you as an expert in your specialized area of
biology will have to consider how plausible they are.

4. The two relevant variables in the Verrelli and Eanes experiment are glycogen

content and PGM sequence.

5. Glycogen content is a measurement variable, something that you record as a

number that could have many possible values. The sequence of PGM that a fly has
(V-V, V-L, A-V or A-L) is a nominal variable, something with a small number of
possible values (four, in this case) that you usually record as a word.

6. Other variables that might be important, such as age and where in a vial the fly

pupated, were either controlled (flies of all the same age were used) or randomized
(flies were taken randomly from the vials without regard to where they pupated).
It also would have been possible to observe the confounding variables; for
example, Verrelli and Eanes could have used flies of different ages, and then used
a statistical technique that adjusted for the age. This would have made the analysis
more complicated to perform and more difficult to explain, and while it might
have turned up something interesting about age and glycogen content, it would
not have helped address the main biological question about PGM genotype and
glycogen content.

7. Because the goal is to compare the means of one measurement variable among

groups classified by one nominal variable, and there are more than two categories,
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the appropriate statistical test is a one-way anova. Once you know what variables
you're analyzing and what type they are, the number of possible statistical tests is
usually limited to one or two (at least for tests I present in this handbook).

8. A power analysis would have required an estimate of the standard deviation of
glycogen content, which probably could have been found in the published
literature, and a number for the effect size (the variation in glycogen content
among genotypes that the experimenters wanted to detect). In this experiment, any
difference in glycogen content among genotypes would be interesting, so the
experimenters just used as many flies as was practical in the time available.

9. The experiment was done: glycogen content was measured in flies with different
PGM sequences.

10. The anova assumes that the measurement variable, glycogen content, is normal
(the distribution fits the bell-shaped normal curve) and homoscedastic (the
variances in glycogen content of the different PGM sequences are equal), and
inspecting histograms of the data shows that the data fit these assumptions. If the
data hadn’t met the assumptions of anova, the Kruskal-Wallis test or Welch’s test
might have been better.

11. The one-way anova was done, using a spreadsheet, web page, or computer
program, and the result of the anova is a P value less than 0.05. The interpretation
is that flies with some PGM sequences have different average glycogen content
than flies with other sequences of PGM.

12. The results could be summarized in a table, but a more effective way to
communicate them is with a graph:

glycogen, g

'A% AL AV
Glycogen content in Drosophila melanogaster. Each bar represents the mean glycogen content (in

micrograms per fly) of 12 flies with the indicated PGM haplotype. Narrow bars represent 95%
confidence intervals.

Reference

Verrelli, B.C., and W.F. Eanes. 2001. The functional impact of PGM amino acid
polymorphism on glycogen content in Drosophila melanogaster. Genetics 159: 201-210.
(Note that for the purposes of this web page, I've used a different statistical test than
Verrelli and Eanes did. They were interested in interactions among the individual
amino acid polymorphisms, so they used a two-way anova.)
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Types of biological variables

There are three main types of variables: measurement variables, which are expressed
as numbers (such as 3.7 mm); nominal variables, which are expressed as names (such as
“female”); and ranked variables, which are expressed as positions (such as “third”). You
need to identify the types of variables in an experiment in order to choose the correct
method of analysis.

Introduction

One of the first steps in deciding which statistical test to use is determining what kinds
of variables you have. When you know what the relevant variables are, what kind of
variables they are, and what your null and alternative hypotheses are, it's usually pretty
easy to figure out which test you should use. I classify variables into three types:
measurement variables, nominal variables, and ranked variables. You’ll see other names
for these variable types and other ways of classifying variables in other statistics
references, so try not to get confused.

You'll analyze similar experiments, with similar null and alternative hypotheses,
completely differently depending on which of these three variable types are involved. For
example, let’s say you've measured variable X in a sample of 56 male and 67 female
isopods (Armadillidium vulgare, commonly known as pillbugs or roly-polies), and your null
hypothesis is “Male and female A. vulgare have the same values of variable X.” If variable
X is width of the head in millimeters, it's a measurement variable, and you’d compare
head width in males and females with a two-sample t-test or a one-way analysis of
variance (anova). If variable X is a genotype (such as AA, Aa, or aa), it's a nominal variable,
and you’d compare the genotype frequencies in males and females with a Fisher’s exact
test. If you shake the isopods until they roll up into little balls, then record which is the
first isopod to unroll, the second to unroll, etc., it’s a ranked variable and you’d compare
unrolling time in males and females with a Kruskal-Wallis test.

Measurement variables

Measurement variables are, as the name implies, things you can measure. An
individual observation of a measurement variable is always a number. Examples include
length, weight, pH, and bone density. Other names for them include “numeric” or
“quantitative” variables.

Some authors divide measurement variables into two types. One type is continuous
variables, such as length of an isopod’s antenna, which in theory have an infinite number
of possible values. The other is discrete (or meristic) variables, which only have whole
number values; these are things you count, such as the number of spines on an isopod’s
antenna. The mathematical theories underlying statistical tests involving measurement
variables assume that the variables are continuous. Luckily, these statistical tests work
well on discrete measurement variables, so you usually don’t need to worry about the
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difference between continuous and discrete measurement variables. The only exception
would be if you have a very small number of possible values of a discrete variable, in
which case you might want to treat it as a nominal variable instead.

When you have a measurement variable with a small number of values, it may not be
clear whether it should be considered a measurement or a nominal variable. For example,
let’s say your isopods have 20 to 55 spines on their left antenna, and you want to know
whether the average number of spines on the left antenna is different between males and
females. You should consider spine number to be a measurement variable and analyze
the data using a two-sample f—test or a one-way anova. If there are only two different
spine numbers—some isopods have 32 spines, and some have 33—you should treat spine
number as a nominal variable, with the values “32” and “33,” and compare the
proportions of isopods with 32 or 33 spines in males and females using a Fisher’s exact
test of independence (or chi-square or G—test of independence, if your sample size is really
big). The same is true for laboratory experiments; if you give your isopods food with 15
different mannose concentrations and then measure their growth rate, mannose
concentration would be a measurement variable; if you give some isopods food with 5
mM mannose, and the rest of the isopods get 25 mM mannose, then mannose
concentration would be a nominal variable.

But what if you design an experiment with three concentrations of mannose, or five, or
seven? There is no rigid rule, and how you treat the variable will depend in part on your
null and alternative hypotheses. If your alternative hypothesis is “different values of
mannose have different rates of isopod growth,” you could treat mannose concentration
as a nominal variable. Even if there’s some weird pattern of high growth on zero mannose,
low growth on small amounts, high growth on intermediate amounts, and low growth on
high amounts of mannose, a one-way anova could give a significant result. If your
alternative hypothesis is “isopods grow faster with more mannose,” it would be better to
treat mannose concentration as a measurement variable, so you can doa regression. In my
class, we use the following rule of thumb:

—a measurement variable with only two values should be treated as a nominal
variable;

—a measurement variable with six or more values should be treated as a measurement
variable;

—a measurement variable with three, four or five values does not exist.

Of course, in the real world there are experiments with three, four or five values of a
measurement variable. Simulation studies show that analyzing such dependent variables
with the methods used for measurement variables works well (Fagerland et al. 2011). I am
not aware of any research on the effect of treating independent variables with small
numbers of values as measurement or nominal. Your decision about how to treat your
variable will depend in part on your biological question. You may be able to avoid the
ambiguity when you design the experiment—if you want to know whether a dependent
variable is related to an independent variable that could be measurement, it’s a good idea
to have at least six values of the independent variable.

Something that could be measured is a measurement variable, even when you set the
values. For example, if you grow isopods with one batch of food containing 10 mM
mannose, another batch of food with 20 mM mannose, another batch with 30 mM
mannose, etc. up to 100 mM mannose, the different mannose concentrations are a
measurement variable, even though you made the food and set the mannose
concentration yourself.

Be careful when you count something, as it is sometimes a nominal variable and
sometimes a measurement variable. For example, the number of bacteria colonies on a
plate is a measurement variable; you count the number of colonies, and there are 87
colonies on one plate, 92 on another plate, etc. Each plate would have one data point, the
number of colonies; that’s a number, so it's a measurement variable. However, if the plate
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has red and white bacteria colonies and you count the number of each, it is a nominal
variable. Now, each colony is a separate data point with one of two values of the variable,
“red” or “white”; because that’s a word, not a number, it's a nominal variable. In this case,
you might summarize the nominal data with a number (the percentage of colonies that are
red), but the underlying data are still nominal.

Ratios

Sometimes you can simplify your statistical analysis by taking the ratio of two
measurement variables. For example, if you want to know whether male isopods have
bigger heads, relative to body size, than female isopods, you could take the ratio of head
width to body length for each isopod, and compare the mean ratios of males and females
using a two-sample t—test. However, this assumes that the ratio is the same for different
body sizes. We know that’s not true for humans—the head size/body size ratio in babies
is freakishly large, compared to adults—so you should look at the regression of head
width on body length and make sure the regression line goes pretty close to the origin, as
a straight regression line through the origin means the ratios stay the same for different
values of the X variable. If the regression line doesn’t go near the origin, it would be better
to keep the two variables separate instead of calculating a ratio, and compare the
regression line of head width on body length in males to that in females using an analysis
of covariance.

Circular variables

One special kind of measurement variable is a circular variable. These have the
property that the highest value and the lowest value are right next to each other; often, the
zero point is completely arbitrary. The most common circular variables in biology are time
of day, time of year, and compass direction. If you measure time of year in days, Day 1
could be January 1, or the spring equinox, or your birthday; whichever day you pick, Day
1 is adjacent to Day 2 on one side and Day 365 on the other.

If you are only considering part of the circle, a circular variable becomes a regular
measurement variable. For example, if you're doing a polynomial regression of bear
attacks vs. time of the year in Yellowstone National Park, you could treat “month” as a
measurement variable, with March as 1 and November as 9; you wouldn’t have to worry
that February (month 12) is next to March, because bears are hibernating in December
through February, and you would ignore those three months.

However, if your variable really is circular, there are special, very obscure statistical
tests designed just for circular data; chapters 26 and 27 in Zar (1999) are a good place to
start.

Nominal variables

Nominal variables classify observations into discrete categories. Examples of nominal
variables include sex (the possible values are male or female), genotype (values are AA,
Aa, or aa), or ankle condition (values are normal, sprained, torn ligament, or broken). A
good rule of thumb is that an individual observation of a nominal variable can be
expressed as a word, not a number. If you have just two values of what would normally
be a measurement variable, it's nominal instead: think of it as “present” vs. “absent” or
“low” vs. “high.” Nominal variables are often used to divide individuals up into
categories, so that other variables may be compared among the categories. In the
comparison of head width in male vs. female isopods, the isopods are classified by sex, a
nominal variable, and the measurement variable head width is compared between the
sexes.
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Nominal variables are also called categorical, discrete, qualitative, or attribute
variables. “Categorical” is a more common name than “nominal,” but some authors use
“categorical” to include both what I'm calling “nominal” and what I'm calling “ranked,”
while other authors use “categorical” just for what I'm calling nominal variables. I'll stick
with “nominal” to avoid this ambiguity.

Nominal variables are often summarized as proportions or percentages. For example,
if you count the number of male and female A. vulgare in a sample from Newark and a
sample from Baltimore, you might say that 52.3% of the isopods in Newark and 62.1% of
the isopods in Baltimore are female. These percentages may look like a measurement
variable, but they really represent a nominal variable, sex. You determined the value of
the nominal variable (male or female) on 65 isopods from Newark, of which 34 were
female and 31 were male. You might plot 52.3% on a graph as a simple way of
summarizing the data, but you should use the 34 female and 31 male numbers in all
statistical tests.

It may help to understand the difference between measurement and nominal variables
if you imagine recording each observation in a lab notebook. If you are measuring head
widths of isopods, an individual observation might be “3.41 mm.” That is clearly a
measurement variable. An individual observation of sex might be “female,” which clearly
is a nominal variable. Even if you don’t record the sex of each isopod individually, but just
counted the number of males and females and wrote those two numbers down, the
underlying variable is a series of observations of “male” and “female.”

Ranked variables

Ranked variables, also called ordinal variables, are those for which the individual
observations can be put in order from smallest to largest, even though the exact values are
unknown. If you shake a bunch of A. vulgare up, they roll into balls, then after a little while
start to unroll and walk around. If you wanted to know whether males and females
unrolled at the same time, but your stopwatch was broken, you could pick up the first
isopod to unroll and put it in a vial marked “first,” pick up the second to unroll and put it
in a vial marked “second,” and so on, then sex the isopods after they’ve all unrolled. You
wouldn’t have the exact time that each isopod stayed rolled up (that would be a
measurement variable), but you would have the isopods in order from first to unroll to
last to unroll, which is a ranked variable. While a nominal variable is recorded as a word
(such as “male”) and a measurement variable is recorded as a number (such as “4.53”), a
ranked variable can be recorded as a rank (such as “seventh”).

You could do a lifetime of biology and never use a true ranked variable. When I write
an exam question involving ranked variables, it's usually some ridiculous scenario like
“Imagine you're on a desert island with no ruler, and you want to do statistics on the size
of coconuts. You line them up from smallest to largest....” For a homework assignment, I
ask students to pick a paper from their favorite biological journal and identify all the
variables, and anyone who finds a ranked variable gets a donut; I've had to buy four
donuts in 13 years. The only common biological ranked variables I can think of are
dominance hierarchies in behavioral biology (see the dog example on the Kruskal-Wallis
page) and developmental stages, such as the different instars that molting insects pass
through.

The main reason that ranked variables are important is that the statistical tests
designed for ranked variables (called “non-parametric tests”) make fewer assumptions
about the data than the statistical tests designed for measurement variables. Thus the most
common use of ranked variables involves converting a measurement variable to ranks,
then analyzing it using a non-parametric test. For example, let’s say you recorded the time
that each isopod stayed rolled up, and that most of them unrolled after one or two
minutes. Two isopods, who happened to be male, stayed rolled up for 30 minutes. If you
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analyzed the data using a test designed for a measurement variable, those two sleepy
isopods would cause the average time for males to be much greater than for females, and
the difference might look statistically significant. When converted to ranks and analyzed
using a non-parametric test, the last and next-to-last isopods would have much less
influence on the overall result, and you would be less likely to get a misleadingly
“significant” result if there really isn’t a difference between males and females.

Some variables are impossible to measure objectively with instruments, so people are
asked to give a subjective rating. For example, pain is often measured by asking a person
to put a mark on a 10-cm scale, where 0 cm is “no pain” and 10 cm is “worst possible
pain.” This is not a ranked variable; it is a measurement variable, even though the
“measuring” is done by the person’s brain. For the purpose of statistics, the important
thing is that it is measured on an “interval scale”; ideally, the difference between pain
rated 2 and 3 is the same as the difference between pain rated 7 and 8. Pain would be a
ranked variable if the pains at different times were compared with each other; for
example, if someone kept a pain diary and then at the end of the week said “Tuesday was
the worst pain, Thursday was second worst, Wednesday was third, etc....” These rankings
are not an interval scale; the difference between Tuesday and Thursday may be much
bigger, or much smaller, than the difference between Thursday and Wednesday.

Just like with measurement variables, if there are a very small number of possible
values for a ranked variable, it would be better to treat it as a nominal variable. For
example, if you make a honeybee sting people on one arm and a yellowjacket sting people
on the other arm, then ask them “Was the honeybee sting the most painful or the second
most painful?”, you are asking them for the rank of each sting. But you should treat the
data as a nominal variable, one which has three values (“honeybee is worse” or
“yellowjacket is worse” or “subject is so mad at your stupid, painful experiment that they
refuse to answer”).

Categorizing

It is possible to convert a measurement variable to a nominal variable, dividing
individuals up into a two or more classes based on ranges of the variable. For example, if
you are studying the relationship between levels of HDL (the “good cholesterol”) and
blood pressure, you could measure the HDL level, then divide people into two groups,
“low HDL” (less than 40 mg/dl) and “normal HDL” (40 or more mg/dl) and compare the
mean blood pressures of the two groups, using a nice simple two-sample t-test.

Converting measurement variables to nominal variables (“dichotomizing” if you split
into two groups, “categorizing” in general) is common in epidemiology, psychology, and
some other fields. However, there are several problems with categorizing measurement
variables (MacCallum et al. 2002). One problem is that you'd be discarding a lot of
information; in our blood pressure example, you’d be lumping together everyone with
HDL from 0 to 39 mg/dl into one group. This reduces your statistical power, decreasing
your chances of finding a relationship between the two variables if there really is one.
Another problem is that it would be easy to consciously or subconsciously choose the
dividing line (“cutpoint”) between low and normal HDL that gave an “interesting” result.
For example, if you did the experiment thinking that low HDL caused high blood
pressure, and a couple of people with HDL between 40 and 45 happened to have high
blood pressure, you might put the dividing line between low and normal at 45 mg/dl
This would be cheating, because it would increase the chance of getting a “significant”
difference if there really isn’t one.

To illustrate the problem with categorizing, let’s say you wanted to know whether tall
basketball players weigh more than short players. Here’s data for the 2012-2013 men’s
basketball team at Morgan State University:
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Height Weight

(inches) (pounds) 290
69 180
72 185 270 °
74 170
74 190 - 250 -
74 220 2
76 200 2 230 ¢
77 190 ot
77 225 B 210°
78 215 T 190 -
78 225
80 210 170 1
81 208
81 220 150 . . , .
86 270 65 70 75 80 85 90

Weight (pounds)

Height and weight of the Morgan State University men’s basketball players.

If you keep both variables as measurement variables and analyze using linear regression,
you get a P value of 0.0007; the relationship is highly significant. Tall basketball players
really are heavier, as is obvious from the graph. However, if you divide the heights into
two categories, “short” (77 inches or less) and “tall” (more than 77 inches) and compare
the mean weights of the two groups using a two-sample t-test, the P value is 0.043, which
is barely significant at the usual P<0.05 level. And if you also divide the weights into two
categories, “light” (210 pounds and less) and “heavy” (greater than 210 pounds), you get 6
who are short and light, 2 who are short and heavy, 2 who are tall and light, and 4 who
are tall and heavy. The proportion of short people who are heavy is not significantly
different from the proportion of tall people who are heavy, when analyzed using Fisher’s
exact test (P=0.28). So by categorizing both measurement variables, you have made an
obvious, highly significant relationship between height and weight become completely
non-significant. This is not a good thing. I think it’s better for most biological experiments
if you don’t categorize.

Likert items

Social scientists like to use Likert items: they’ll present a statement like “It’s important
for all biologists to learn statistics” and ask people to choose 1=Strongly Disagree,
2=Disagree, 3=Neither Agree nor Disagree, 4=Agree, or 5=Strongly Agree. Sometimes
they use seven values instead of five, by adding “Very Strongly Disagree” and “Very
Strongly Agree”; and sometimes people are asked to rate their strength of agreement on a
9 or 11-point scale. Similar questions may have answers such as 1=Never, 2=Rarely,
3=Sometimes, 4=Often, 5=Always.

Strictly speaking, a Likert scale is the result of adding together the scores on several
Likert items. Often, however, a single Likert item is called a Likert scale.

There is a lot of controversy about how to analyze a Likert item. One option is to treat
it as a nominal variable with five (or seven, or however many) items. The data would then
be summarized by the proportion of people giving each answer, and analyzed using chi-
square or G—tests. However, this ignores the fact that the values go in order from least
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agreement to most, which is pretty important information. The other options are to treat it
as a ranked variable or a measurement variable.

Treating a Likert item as a measurement variable lets you summarize the data using a
mean and standard deviation, and analyze the data using the familiar parametric tests
such as anova and regression. One argument against treating a Likert item as a
measurement variable is that the data have a small number of values that are unlikely to
be normally distributed, but the statistical tests used on measurement variables are not
very sensitive to deviations from normality, and simulations have shown that tests for
measurement variables work well even with small numbers of values (Fagerland et al.
2011).

A bigger issue is that the answers on a Likert item are just crude subdivisions of some
underlying measure of feeling, and the difference between “Strongly Disagree” and
“Disagree” may not be the same size as the difference between “Disagree” and “Neither
Agree nor Disagree”; in other words, the responses are not a true “interval” variable. As
an analogy, imagine you asked a bunch of college students how much TV they watch in a
typical week, and you give them the choices of 0=None, 1=A Little, 2=A Moderate
Amount, 3=A Lot, and 4=Too Much. If the people who said “A Little” watch one or two
hours a week, the people who said “A Moderate Amount” watch three to nine hours a
week, and the people who said “A Lot” watch 10 to 20 hours a week, then the difference
between “None” and “A Little” is a lot smaller than the difference between “A Moderate
Amount” and “A Lot.” That would make your 0-4 point scale not be an interval variable.
If your data actually were in hours, then the difference between 0 hours and 1 hour is the
same size as the difference between 19 hours and 20 hours; “hours” would be an interval
variable.

Personally, I don’t see how treating values of a Likert item as a measurement variable
will cause any statistical problems. It is, in essence, a data transformation: applying a
mathematical function to one variable to come up with a new variable. In chemistry, pH is
the base-10 log of the reciprocal of the hydrogen activity, so the difference in hydrogen
activity between a ph 5 and ph 6 solution is much bigger than the difference between ph 8
and ph 9. But I don’t think anyone would object to treating pH as a measurement variable.
Converting 25-44 on some underlying “agreeicity index” to “2” and converting 45-54 to
“3” doesn’t seem much different from converting hydrogen activity to pH, or
micropascals of sound to decibels, or squaring a person’s height to calculate body mass
index.

The impression I get, from briefly glancing at the literature, is that many of the people
who use Likert items in their research treat them as measurement variables, while most
statisticians think this is outrageously incorrect. I think treating them as measurement
variables has several advantages, but you should carefully consider the practice in your
particular field; it’s always better if you're speaking the same statistical language as your
peers. Because there is disagreement, you should include the number of people giving
each response in your publications; this will provide all the information that other
researchers need to analyze your data using the technique they prefer.

All of the above applies to statistics done on a single Likert item. The usual practice is
to add together a bunch of Likert items into a Likert scale; a political scientist might add
the scores on Likert questions about abortion, gun control, taxes, the environment, etc. and
come up with a 100-point liberal vs. conservative scale. Once a number of Likert items are
added together to make a Likert scale, there seems to be less objection to treating the sum
as a measurement variable; even some statisticians are okay with that.

Independent and dependent variables

Another way to classify variables is as independent or dependent variables. An
independent variable (also known as a predictor, explanatory, or exposure variable) is a
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variable that you think may cause a change in a dependent variable (also known as an
outcome or response variable). For example, if you grow isopods with 10 different
mannose concentrations in their food and measure their growth rate, the mannose
concentration is an independent variable and the growth rate is a dependent variable,
because you think that different mannose concentrations may cause different growth
rates. Any of the three variable types (measurement, nominal or ranked) can be either
independent or dependent. For example, if you want to know whether sex affects body
temperature in mice, sex would be an independent variable and temperature would be a
dependent variable. If you wanted to know whether the incubation temperature of eggs
affects sex in turtles, temperature would be the independent variable and sex would be
the dependent variable.

As you'll see in the descriptions of particular statistical tests, sometimes it is important
to decide which is the independent and which is the dependent variable; it will determine
whether you should analyze your data with a two-sample t-test or simple logistic
regression, for example. Other times you don’t need to decide whether a variable is
independent or dependent. For example, if you measure the nitrogen content of soil and
the density of dandelion plants, you might think that nitrogen content is an independent
variable and dandelion density is a dependent variable; you'd be thinking that nitrogen
content might affect where dandelion plants live. But maybe dandelions use a lot of
nitrogen from the soil, so it's dandelion density that should be the independent variable.
Or maybe some third variable that you didn’t measure, such as moisture content, affects
both nitrogen content and dandelion density. For your initial experiment, which you
would analyze using correlation, you wouldn’t need to classify nitrogen content or
dandelion density as independent or dependent. If you found an association between the
two variables, you would probably want to follow up with experiments in which you
manipulated nitrogen content (making it an independent variable) and observed
dandelion density (making it a dependent variable), and other experiments in which you
manipulated dandelion density (making it an independent variable) and observed the
change in nitrogen content (making it the dependent variable).
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Probability

Although estimating probabilities is a fundamental part of statistics, you will rarely
have to do the calculations yourself. It's worth knowing a couple of simple rules about
adding and multiplying probabilities.

Introduction

The basic idea of a statistical test is to identify a null hypothesis, collect some data,
then estimate the probability of getting the observed data if the null hypothesis were true.
If the probability of getting a result like the observed one is low under the null hypothesis,
you conclude that the null hypothesis is probably not true. It is therefore useful to know a
little about probability.

One way to think about probability is as the proportion of individuals in a population
that have a particular characteristic. The probability of sampling a particular kind of
individual is equal to the proportion of that kind of individual in the population. For
example, in fall 2013 there were 22,166 students at the University of Delaware, and 3,679
of them were graduate students. If you sampled a single student at random, the
probability that they would be a grad student would be 3,679 / 22,166, or 0.166. In other
words, 16.6% of students were grad students, so if you’d picked one student at random,
the probability that they were a grad student would have been 16.6%.

When dealing with probabilities in biology, you are often working with theoretical
expectations, not population samples. For example, in a genetic cross of two individual
Drosophila melanogaster that are heterozygous at the vestigial locus, Mendel’s theory
predicts that the probability of an offspring individual being a recessive homozygote
(having teeny-tiny wings) is one-fourth, or 0.25. This is equivalent to saying that one-
fourth of a population of offspring will have tiny wings.

Multiplying probabilities

You could take a semester-long course on mathematical probability, but most
biologists just need to know a few basic principles. You calculate the probability that an
individual has one value of a nominal variable and another value of a second nominal
variable by multiplying the probabilities of each value together. For example, if the
probability that a Drosophila in a cross has vestigial wings is one-fourth, and the
probability that it has legs where its antennae should be is three-fourths, the probability
that it has vestigial wings and leg-antennae is one-fourth times three-fourths, or 0.25 x 0.75,
or 0.1875. This estimate assumes that the two values are independent, meaning that the
probability of one value is not affected by the other value. In this case, independence
would require that the two genetic loci were on different chromosomes, among other
things.
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Adding probabilities

The probability that an individual has one value or another, mutually exclusive, value is
found by adding the probabilities of each value together. “Mutually exclusive” means that
one individual could not have both values. For example, if the probability that a flower in
a genetic cross is red is one-fourth, the probability that it is pink is one-half, and the
probability that it is white is one-fourth, then the probability that it is red or pink is one-
fourth plus one-half, or three-fourths.

More complicated situations

When calculating the probability that an individual has one value or another, and the
two values are not mutually exclusive, it is important to break things down into
combinations that are mutually exclusive. For example, let’s say you wanted to estimate
the probability that a fly from the cross above had vestigial wings or leg-antennae. You
could calculate the probability for each of the four kinds of flies: normal wings/normal
antennae (0.75 x 0.25 = 0.1875), normal wings/leg-antennae (0.75 x 0.75 = 0.5625), vestigial
wings/normal antennae (0.25 x 0.25 = 0.0625), and vestigial wings/leg-antennae (0.25 x
0.75 = 0.1875). Then, since the last three kinds of flies are the ones with vestigial wings or
leg-antennae, you'd add those probabilities up (0.5625 + 0.0625 + 0.1875 = 0.8125).

When to calculate probabilities

While there are some kind of probability calculations underlying all statistical tests, it
is rare that you’ll have to use the rules listed above. About the only time you’ll actually
calculate probabilities by adding and multiplying is when figuring out the expected
values for a goodness-of-fit test.
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Basic concepts of hypothesis
testing

One of the main goals of statistical hypothesis testing is to estimate the P value, which
is the probability of obtaining the observed results, or something more extreme, if the null
hypothesis were true. If the observed results are unlikely under the null hypothesis, your
reject the null hypothesis. Alternatives to this “frequentist” approach to statistics include
Bayesian statistics and estimation of effect sizes and confidence intervals.

Introduction

There are different ways of doing statistics. The technique used by the vast majority of
biologists, and the technique that most of this handbook describes, is sometimes called
“frequentist” or “classical” statistics. It involves testing a null hypothesis by comparing
the data you observe in your experiment with the predictions of a null hypothesis. You
estimate what the probability would be of obtaining the observed results, or something
more extreme, if the null hypothesis were true. If this estimated probability (the P value) is
small enough (below the significance value), then you conclude that it is unlikely that the
null hypothesis is true; you reject the null hypothesis and accept an alternative hypothesis.

Many statisticians harshly criticize frequentist statistics, but their criticisms haven't
had much effect on the way most biologists do statistics. Here I will outline some of the
key concepts used in frequentist statistics, then briefly describe some of the alternatives.

Null hypothesis

The null hypothesis is a statement that you want to test. In general, the null hypothesis
is that things are the same as each other, or the same as a theoretical expectation. For
example, if you measure the size of the feet of male and female chickens, the null
hypothesis could be that the average foot size in male chickens is the same as the average
foot size in female chickens. If you count the number of male and female chickens born to
a set of hens, the null hypothesis could be that the ratio of males to females is equal to a
theoretical expectation of a 1:1 ratio.

The alternative hypothesis is that things are different from each other, or different
from a theoretical expectation. For example, one alternative hypothesis would be that
male chickens have a different average foot size than female chickens; another would be
that the sex ratio is different from 1:1.

Usually, the null hypothesis is boring and the alternative hypothesis is interesting. For
example, let’s say you feed chocolate to a bunch of chickens, then look at the sex ratio in
their offspring. If you get more females than males, it would be a tremendously exciting
discovery: it would be a fundamental discovery about the mechanism of sex
determination, female chickens are more valuable than male chickens in egg-laying
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breeds, and you’d be able to publish your result in Science or Nature. Lots of people have
spent a lot of time and money trying to change the sex ratio in chickens, and if you're
successful, you'll be rich and famous. But if the chocolate doesn’t change the sex ratio, it
would be an extremely boring result, and you’d have a hard time getting it published in
the Eastern Delaware Journal of Chickenology. It’s therefore tempting to look for patterns in
your data that support the exciting alternative hypothesis. For example, you might look at
48 offspring of chocolate-fed chickens and see 31 females and only 17 males. This looks
promising, but before you get all happy and start buying formal wear for the Nobel Prize
ceremony, you need to ask “What'’s the probability of getting a deviation from the null
expectation that large, just by chance, if the boring null hypothesis is really true?” Only
when that probability is low can you reject the null hypothesis. The goal of statistical
hypothesis testing is to estimate the probability of getting your observed results under the
null hypothesis.

Biological vs. statistical null hypotheses

It is important to distinguish between biological null and alternative hypotheses and
statistical null and alternative hypotheses. “Sexual selection by females has caused male
chickens to evolve bigger feet than females” is a biological alternative hypothesis; it says
something about biological processes, in this case sexual selection. “Male chickens have a
different average foot size than females” is a statistical alternative hypothesis; it says
something about the numbers, but nothing about what caused those numbers to be
different. The biological null and alternative hypotheses are the first that you should think
of, as they describe something interesting about biology; they are two possible answers to
the biological question you are interested in (“What affects foot size in chickens?”). The
statistical null and alternative hypotheses are statements about the data that should follow
from the biological hypotheses: if sexual selection favors bigger feet in male chickens (a
biological hypothesis), then the average foot size in male chickens should be larger than
the average in females (a statistical hypothesis). If you reject the statistical null hypothesis,
you then have to decide whether that’s enough evidence that you can reject your
biological null hypothesis. For example, if you don’t find a significant difference in foot
size between male and female chickens, you could conclude “There is no significant
evidence that sexual selection has caused male chickens to have bigger feet.” If you do
find a statistically significant difference in foot size, that might not be enough for you to
conclude that sexual selection caused the bigger feet; it might be that males eat more, or
that the bigger feet are a developmental byproduct of the roosters’ combs, or that males
run around more and the exercise makes their feet bigger. When there are multiple
biological interpretations of a statistical result, you need to think of additional experiments
to test the different possibilities.

Testing the null hypothesis

The primary goal of a statistical test is to determine whether an observed data set is so
different from what you would expect under the null hypothesis that you should reject the
null hypothesis. For example, let’s say you are studying sex determination in chickens. For
breeds of chickens that are bred to lay lots of eggs, female chicks are more valuable than
male chicks, so if you could figure out a way to manipulate the sex ratio, you could make
a lot of chicken farmers very happy. You've fed chocolate to a bunch of female chickens
(in birds, unlike mammals, the female parent determines the sex of the offspring), and you
get 25 female chicks and 23 male chicks. Anyone would look at those numbers and see
that they could easily result from chance; there would be no reason to reject the null
hypothesis of a 1:1 ratio of females to males. If you got 47 females and 1 male, most people
would look at those numbers and see that they would be extremely unlikely to happen
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due to luck, if the null hypothesis were true; you would reject the null hypothesis and
conclude that chocolate really changed the sex ratio. However, what if you had 31 females
and 17 males? That's definitely more females than males, but is it really so unlikely to
occur due to chance that you can reject the null hypothesis? To answer that, you need
more than common sense, you need to calculate the probability of getting a deviation that
large due to chance.

P values
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= 008 - 17 or fewer males - - 31 or more males
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£V — — — —
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Number of males
Probability of getting different numbers of males out of 48, if the parametric proportion of males is
0.5.

In the figure above, I used the BINOMDIST function of Excel to calculate the
probability of getting each possible number of males, from 0 to 48, under the null
hypothesis that 0.5 are male. As you can see, the probability of getting 17 males out of 48
total chickens is about 0.015. That seems like a pretty small probability, doesn’t it?
However, that’s the probability of getting exactly 17 males. What you want to know is the
probability of getting 17 or fewer males. If you were going to accept 17 males as evidence
that the sex ratio was biased, you would also have accepted 16, or 15, or 14... males as
evidence for a biased sex ratio. You therefore need to add together the probabilities of all
these outcomes. The probability of getting 17 or fewer males out of 48, under the null
hypothesis, is 0.030. That means that if you had an infinite number of chickens, half males
and half females, and you took a bunch of random samples of 48 chickens, 3.0% of the
samples would have 17 or fewer males.

This number, 0.030, is the P value. It is defined as the probability of getting the
observed result, or a more extreme result, if the null hypothesis is true. So “P=0.030" is a
shorthand way of saying “The probability of getting 17 or fewer male chickens out of 48
total chickens, IF the null hypothesis is true that 50% of chickens are male, is 0.030.”

False positives vs. false negatives

After you do a statistical test, you are either going to reject or accept the null
hypothesis. Rejecting the null hypothesis means that you conclude that the null
hypothesis is not true; in our chicken sex example, you would conclude that the true
proportion of male chicks, if you gave chocolate to an infinite number of chicken mothers,
would be less than 50%.

When you reject a null hypothesis, there’s a chance that you're making a mistake. The
null hypothesis might really be true, and it may be that your experimental results deviate
from the null hypothesis purely as a result of chance. In a sample of 48 chickens, it’s
possible to get 17 male chickens purely by chance; it’s even possible (although extremely
unlikely) to get 0 male and 48 female chickens purely by chance, even though the true

18



BASIC CONCEPTS OF HYPOTHESIS TESTING

proportion is 50% males. This is why we never say we “prove” something in science;
there’s always a chance, however miniscule, that our data are fooling us and deviate from
the null hypothesis purely due to chance. When your data fool you into rejecting the null
hypothesis even though it’s true, it’s called a “false positive,” or a “Type I error.” So
another way of defining the P value is the probability of getting a false positive like the
one you've observed, if the null hypothesis is true.

Another way your data can fool you is when you don’t reject the null hypothesis, even
though it’s not true. If the true proportion of female chicks is 51%, the null hypothesis of a
50% proportion is not true, but you're unlikely to get a significant difference from the null
hypothesis unless you have a huge sample size. Failing to reject the null hypothesis, even
though it’s not true, is a “false negative” or “Type Il error.” This is why we never say that
our data shows the null hypothesis to be true; all we can say is that we haven’t rejected the
null hypothesis.

Significance levels

Does a probability of 0.030 mean that you should reject the null hypothesis, and
conclude that chocolate really caused a change in the sex ratio? The convention in most
biological research is to use a significance level of 0.05. This means that if the P value is
less than 0.05, you reject the null hypothesis; if P is greater than or equal to 0.05, you don't
reject the null hypothesis. There is nothing mathematically magic about 0.05, it was chosen
rather arbitrarily during the early days of statistics; people could have agreed upon 0.04,
or 0.025, or 0.071 as the conventional significance level.

The significance level (also known as the “critical value” or “alpha”) you should use
depends on the costs of different kinds of errors. With a significance level of 0.05, you
have a 5% chance of rejecting the null hypothesis, even if it is true. If you try 100 different
treatments on your chickens, and none of them really change the sex ratio, 5% of your
experiments will give you data that are significantly different from a 1:1 sex ratio, just by
chance. In other words, 5% of your experiments will give you a false positive. If you use a
higher significance level than the conventional 0.05, such as 0.10, you will increase your
chance of a false positive to 0.10 (therefore increasing your chance of an embarrassingly
wrong conclusion), but you will also decrease your chance of a false negative (increasing
your chance of detecting a subtle effect). If you use a lower significance level than the
conventional 0.05, such as 0.01, you decrease your chance of an embarrassing false
positive, but you also make it less likely that you’ll detect a real deviation from the null
hypothesis if there is one.

The relative costs of false positives and false negatives, and thus the best P value to
use, will be different for different experiments. If you are screening a bunch of potential
sex-ratio-changing treatments and get a false positive, it wouldn’t be a big deal; you'd just
run a few more tests on that treatment until you were convinced the initial result was a
false positive. The cost of a false negative, however, would be that you would miss out on
a tremendously valuable discovery. You might therefore set your significance value to 0.10
or more for your initial tests. On the other hand, once your sex—ratio-changing treatment is
undergoing final trials before being sold to farmers, a false positive could be very
expensive; you'd want to be very confident that it really worked. Otherwise, if you sell the
chicken farmers a sex-ratio treatment that turns out to not really work (it was a false
positive), they’ll sue the pants off of you. Therefore, you might want to set your
significance level to 0.01, or even lower, for your final tests.

The significance level you choose should also depend on how likely you think it is that
your alternative hypothesis will be true, a prediction that you make before you do the
experiment. This is the foundation of Bayesian statistics, as explained below.

You must choose your significance level before you collect the data, of course. If you
choose to use a different significance level than the conventional 0.05, people will be
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skeptical; you must be able to justify your choice. Throughout this handbook, I will
always use P<0.05 as the significance level. If you are doing an experiment where the
cost of a false positive is a lot greater or smaller than the cost of a false negative, or an
experiment where you think it is unlikely that the alternative hypothesis will be true, you
should consider using a different significance level.

One-tailed vs. two-tailed probabilities

The probability that was calculated above, 0.030, is the probability of getting 17 or
fewer males out of 48. It would be significant, using the conventional P<0.05 criterion.
However, what about the probability of getting 17 or fewer females? If your null
hypothesis is “The proportion of males is 0.5 or more” and your alternative hypothesis is
“The proportion of males is less than 0.5,” then you would use the P=0.03 value found by
adding the probabilities of getting 17 or fewer males. This is called a one-tailed
probability, because you are adding the probabilities in only one tail of the distribution
shown in the figure. However, if your null hypothesis is “The proportion of males is 0.5”,
then your alternative hypothesis is “The proportion of males is different from 0.5.” In that
case, you should add the probability of getting 17 or fewer females to the probability of
getting 17 or fewer males. This is called a two-tailed probability. If you do that with the
chicken result, you get P=0.06, which is not quite significant.

You should decide whether to use the one-tailed or two-tailed probability before you
collect your data, of course. A one-tailed probability is more powerful, in the sense of
having a lower chance of false negatives, but you should only use a one-tailed probability
if you really, truly have a firm prediction about which direction of deviation you would
consider interesting. In the chicken example, you might be tempted to use a one-tailed
probability, because you're only looking for treatments that decrease the proportion of
worthless male chickens. But if you accidentally found a treatment that produced 87%
male chickens, would you really publish the result as “The treatment did not cause a
significant decrease in the proportion of male chickens”? I hope not. You'd realize that this
unexpected result, even though it wasn’t what you and your farmer friends wanted,
would be very interesting to other people; by leading to discoveries about the
fundamental biology of sex-determination in chickens, in might even help you produce
more female chickens someday. Any time a deviation in either direction would be
interesting, you should use the two-tailed probability. In addition, people are skeptical of
one-tailed probabilities, especially if a one-tailed probability is significant and a two-tailed
probability would not be significant (as in our chocolate-eating chicken example). Unless
you provide a very convincing explanation, people may think you decided to use the one-
tailed probability after you saw that the two-tailed probability wasn’t quite significant,
which would be cheating. It may be easier to always use two-tailed probabilities. For this
handbook, I will always use two-tailed probabilities, unless I make it very clear that
only one direction of deviation from the null hypothesis would be interesting.

Reporting your results

In the olden days, when people looked up P values in printed tables, they would
report the results of a statistical test as “P<0.05”, “P<0.01”, “P>0.10", etc. Nowadays,
almost all computer statistics programs give the exact P value resulting from a statistical
test, such as P=0.029, and that’s what you should report in your publications. You will
conclude that the results are either significant or they’re not significant; they either reject
the null hypothesis (if P is below your pre-determined significance level) or don’t reject
the null hypothesis (if P is above your significance level). But other people will want to
know if your results are “strongly” significant (P much less than 0.05), which will give
them more confidence in your results than if they were “barely” significant (P=0.043, for
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example). In addition, other researchers will need the exact P value if they want to
combine your results with others into a meta-analysis.

Computer statistics programs can give somewhat inaccurate P values when they are
very small. Once your P values get very small, you can just say “P<0.00001"” or some other
impressively small number. You should also give either your raw data, or the test statistic
and degrees of freedom, in case anyone wants to calculate your exact P value.

Effect sizes and confidence intervals

A fairly common criticism of the hypothesis-testing approach to statistics is that the
null hypothesis will always be false, if you have a big enough sample size. In the chicken-
feet example, critics would argue that if you had an infinite sample size, it is impossible
that male chickens would have exactly the same average foot size as female chickens.
Therefore, since you know before doing the experiment that the null hypothesis is false,
there’s no point in testing it.

This criticism only applies to two-tailed tests, where the null hypothesis is “Things are
exactly the same” and the alternative is “Things are different.” Presumably these critics
think it would be okay to do a one-tailed test with a null hypothesis like “Foot length of
male chickens is the same as, or less than, that of females,” because the null hypothesis
that male chickens have smaller feet than females could be true. So if you're worried about
this issue, you could think of a two-tailed test, where the null hypothesis is that things are
the same, as shorthand for doing two one-tailed tests. A significant rejection of the null
hypothesis in a two-tailed test would then be the equivalent of rejecting one of the two
one-tailed null hypotheses.

A related criticism is that a significant rejection of a null hypothesis might not be
biologically meaningful, if the difference is too small to matter. For example, in the
chicken-sex experiment, having a treatment that produced 49.9% male chicks might be
significantly different from 50%, but it wouldn’t be enough to make farmers want to buy
your treatment. These critics say you should estimate the effect size and put a confidence
interval on it, not estimate a P value. So the goal of your chicken-sex experiment should
not be to say “Chocolate gives a proportion of males that is significantly less than 50%
(P=0.015)" but to say “Chocolate produced 36.1% males with a 95% confidence interval of
25.9 to 47.4%.” For the chicken-feet experiment, you would say something like “The
difference between males and females in mean foot size is 2.45 mm, with a confidence
interval on the difference of +1.98 mm.”

Estimating effect sizes and confidence intervals is a useful way to summarize your
results, and it should usually be part of your data analysis; you'll often want to include
confidence intervals in a graph. However, there are a lot of experiments where the goal is
to decide a yes/ no question, not estimate a number. In the initial tests of chocolate on
chicken sex ratio, the goal would be to decide between “It changed the sex ratio” and “It
didn’t seem to change the sex ratio.” Any change in sex ratio that is large enough that you
could detect it would be interesting and worth follow-up experiments. While it’s true that
the difference between 49.9% and 50% might not be worth pursuing, you wouldn’t do an
experiment on enough chickens to detect a difference that small.

Often, the people who claim to avoid hypothesis testing will say something like “the
95% confidence interval of 25.9 to 47.4% does not include 50%, so we the plant extract
significantly changed the sex ratio.” This is a clumsy and roundabout form of hypothesis
testing, and they might as well admit it and report the P value.

Bayesian statistics

Another alternative to frequentist statistics is Bayesian statistics. A key difference is
that Bayesian statistics requires specifying your best guess of the probability of each
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possible value of the parameter to be estimated, before the experiment is done. This is
known as the “prior probability.” So for your chicken-sex experiment, you're trying to
estimate the “true” proportion of male chickens that would be born, if you had an infinite
number of chickens. You would have to specify how likely you thought it was that the
true proportion of male chickens was 50%, or 51%, or 52%, or 47.3%, etc. You would then
look at the results of your experiment and use the information to calculate new
probabilities that the true proportion of male chickens was 50%, or 51%, or 52%, or 47.3%,
etc. (the posterior distribution).

I'll confess that I don’t really understand Bayesian statistics, and I apologize for not
explaining it well. In particular, I don’t understand how people are supposed to come up
with a prior distribution for the kinds of experiments that most biologists do. With the
exception of systematics, where Bayesian estimation of phylogenies is quite popular and
seems to make sense, [ haven’t seen many research biologists using Bayesian statistics for
routine data analysis of simple laboratory experiments. This means that even if the cult-
like adherents of Bayesian statistics convinced you that they were right, you would have a
difficult time explaining your results to your biologist peers. Statistics is a method of
conveying information, and if you're speaking a different language than the people you're
talking to, you won’t convey much information. So I'll stick with traditional frequentist
statistics for this handbook.

Having said that, there’s one key concept from Bayesian statistics that is important for
all users of statistics to understand. To illustrate it, imagine that you are testing extracts
from 1000 different tropical plants, trying to find something that will kill beetle larvae. The
reality (which you don’t know) is that 500 of the extracts kill beetle larvae, and 500 don’t.
You do the 1000 experiments and do the 1000 frequentist statistical tests, and you use the
traditional significance level of P<0.05. The 500 plant extracts that really work all give you
P<0.05; these are the true positives. Of the 500 extracts that don’t work, 5% of them give
you P<0.05 by chance (this is the meaning of the P value, after all), so you have 25 false
negatives. So you end up with 525 plant extracts that gave you a P value less than 0.05.
You’'ll have to do further experiments to figure out which are the 25 false positives and
which are the 500 true positives, but that’s not so bad, since you know that most of them
will turn out to be true positives.

Now imagine that you are testing those extracts from 1000 different tropical plants to
try to find one that will make hair grow. The reality (which you don’t know) is that one of
the extracts makes hair grow, and the other 999 don’t. You do the 1000 experiments and
do the 1000 frequentist statistical tests, and you use the traditional significance level of
P<0.05. The one plant extract that really works gives you P<0.05; this is the true positive.
But of the 999 extracts that don’t work, 5% of them give you P<0.05 by chance, so you
have about 50 false negatives. You end up with 51 P values less than 0.05, but almost all of
them are false positives.

Now instead of testing 1000 plant extracts, imagine that you are testing just one. If you
are testing it to see if it kills beetle larvae, you know (based on everything you know about
plant and beetle biology) there’s a pretty good chance it will work, so you can be pretty
sure that a P value less than 0.05 is a true positive. But if you are testing that one plant
extract to see if it grows hair, which you know is very unlikely (based on everything you
know about plants and hair), a P value less than 0.05 is almost certainly a false positive. In
other words, if you expect that the null hypothesis is probably true, a statistically
significant result is probably a false positive. This is sad; the most exciting, amazing,
unexpected results in your experiments are probably just your data trying to make you
jump to ridiculous conclusions. You should require a much lower P value to reject a null
hypothesis that you think is probably true.

A Bayesian would insist that you put in numbers just how likely you think the null
hypothesis and various values of the alternative hypothesis are, before you do the
experiment, and I'm not sure how that is supposed to work in practice for most
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experimental biology. But the general concept is a valuable one: as Carl Sagan
summarized it, “Extraordinary claims require extraordinary evidence.”

Recommendations

Here are three experiments to illustrate when the different approaches to statistics are
appropriate. In the first experiment, you are testing a plant extract on rabbits to see if it
will lower their blood pressure. You already know that the plant extract is a diuretic
(makes the rabbits pee more) and you already know that diuretics tend to lower blood
pressure, so you think there’s a good chance it will work. If it does work, you’ll do more
low-cost animal tests on it before you do expensive, potentially risky human trials. Your
prior expectation is that the null hypothesis (that the plant extract has no effect) has a
good chance of being false, and the cost of a false positive is fairly low. So you should do
frequentist hypothesis testing, with a significance level of 0.05.

In the second experiment, you are going to put human volunteers with high blood
pressure on a strict low-salt diet and see how much their blood pressure goes down.
Everyone will be confined to a hospital for a month and fed either a normal diet, or the
same foods with half as much salt. For this experiment, you wouldn’t be very interested in
the P value, as based on prior research in animals and humans, you are already quite
certain that reducing salt intake will lower blood pressure; you're pretty sure that the null
hypothesis that “Salt intake has no effect on blood pressure” is false. Instead, you are very
interested to know how much the blood pressure goes down. Reducing salt intake in half
is a big deal, and if it only reduces blood pressure by 1 mm Hg, the tiny gain in life
expectancy wouldn’t be worth a lifetime of bland food and obsessive label-reading. If it
reduces blood pressure by 20 mm with a confidence interval of £5 mm, it might be worth
it. So you should estimate the effect size (the difference in blood pressure between the
diets) and the confidence interval on the difference.

In the third experiment, you are going to put magnetic hats on guinea pigs and see if
their blood pressure goes down (relative to guinea pigs wearing the kind of non-magnetic
hats that guinea pigs usually wear). This is a really goofy experiment, and you know that
it is very unlikely that the magnets will have any effect (it's not impossible—magnets
affect the sense of direction of homing pigeons, and maybe guinea pigs have something
similar in their brains and maybe it will somehow affect their blood pressure—it just
seems really unlikely). You might analyze your results using Bayesian statistics, which
will require specifying in numerical terms just how unlikely you think it is that the
magnetic hats will work. Or you might use frequentist statistics, but require a P value
much, much lower than 0.05 to convince yourself that the effect is real.
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Confounding variables

A confounding variable is a variable other than the independent variable that you're
interested in, that may affect the dependent variable. This can lead to erroneous
conclusions about the relationship between the independent and dependent variables.
You deal with confounding variables by controlling them; by matching; by randomizing;
or by statistical control.

Introduction

Due to a variety of genetic, developmental, and environmental factors, no two
organisms, no two tissue samples, no two cells are exactly alike. This means that when
you design an experiment with samples that differ in independent variable X, your
samples will also differ in other variables that you may or may not be aware of. If these
confounding variables affect the dependent variable Y that you're interested in, they may
trick you into thinking there’s a relationship between X and Y when there really isn’t. Or,
the confounding variables may cause so much variation in Y that it’s hard to detect a real
relationship between X and Y when there is one.

As an example of confounding variables, imagine that you want to know whether the
genetic differences between American elms (which are susceptible to Dutch elm disease)
and Princeton elms (a strain of American elms that is resistant to Dutch elm disease) cause
a difference in the amount of insect damage to their leaves. You look around your area,
find 20 American elms and 20 Princeton elms, pick 50 leaves from each, and measure the
area of each leaf that was eaten by insects. Imagine that you find significantly more insect
damage on the Princeton elms than on the American elms (I have no idea if this is true).

It could be that the genetic difference between the types of elm directly causes the
difference in the amount of insect damage, which is what you were looking for. However,
there are likely to be some important confounding variables. For example, many American
elms are many decades old, while the Princeton strain of elms was made commercially
available only recently and so any Princeton elms you find are probably only a few years
old. American elms are often treated with fungicide to prevent Dutch elm disease, while
this wouldn’t be necessary for Princeton elms. American elms in some settings (parks,
streetsides, the few remaining in forests) may receive relatively little care, while Princeton
elms are expensive and are likely planted by elm fanatics who take good care of them
(fertilizing, watering, pruning, etc.). It is easy to imagine that any difference in insect
damage between American and Princeton elms could be caused, not by the genetic
differences between the strains, but by a confounding variable: age, fungicide treatment,
fertilizer, water, pruning, or something else. If you conclude that Princeton elms have
more insect damage because of the genetic difference between the strains, when in reality
it's because the Princeton elms in your sample were younger, you will look like an idiot to
all of your fellow elm scientists as soon as they figure out your mistake.

On the other hand, let’s say you're not that much of an idiot, and you make sure your
sample of Princeton elms has the same average age as your sample of American elms.
There’s still a lot of variation in ages among the individual trees in each sample, and if that
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affects insect damage, there will be a lot of variation among individual trees in the amount
of insect damage. This will make it harder to find a statistically significant difference in
insect damage between the two strains of elms, and you might miss out on finding a small
but exciting difference in insect damage between the strains.

Controlling confounding variables

Designing an experiment to eliminate differences due to confounding variables is
critically important. One way is to control a possible confounding variable, meaning you
keep it identical for all the individuals. For example, you could plant a bunch of American
elms and a bunch of Princeton elms all at the same time, so they’d be the same age. You
could plant them in the same field, and give them all the same amount of water and
fertilizer.

It is easy to control many of the possible confounding variables in laboratory
experiments on model organisms. All of your mice, or rats, or Drosophila will be the same
age, the same sex, and the same inbred genetic strain. They will grow up in the same kind
of containers, eating the same food and drinking the same water. But there are always
some possible confounding variables that you can’t control. Your organisms may all be
from the same genetic strain, but new mutations will mean that there are still some genetic
differences among them. You may give them all the same food and water, but some may
eat or drink a little more than others. After controlling all of the variables that you can, it is
important to deal with any other confounding variables by randomizing, matching or
statistical control.

Controlling confounding variables is harder with organisms that live outside the
laboratory. Those elm trees that you planted in the same field? Different parts of the field
may have different soil types, different water percolation rates, different proximity to
roads, houses and other woods, and different wind patterns. And if your experimental
organisms are humans, there are a lot of confounding variables that are impossible to
control.

Randomizing

Once you've designed your experiment to control as many confounding variables as
possible, you need to randomize your samples to make sure that they don’t differ in the
confounding variables that you can’t control. For example, let’s say you're going to make
20 mice wear sunglasses and leave 20 mice without glasses, to see if sunglasses help
prevent cataracts. You shouldn’t reach into a bucket of 40 mice, grab the first 20 you catch
and put sunglasses on them. The first 20 mice you catch might be easier to catch because
they're the slowest, the tamest, or the ones with the longest tails; or you might
subconsciously pick out the fattest mice or the cutest mice. I don’t know whether having
your sunglass-wearing mice be slower, tamer, with longer tails, fatter, or cuter would
make them more or less susceptible to cataracts, but you don’t know either. You don’t
want to find a difference in cataracts between the sunglass-wearing and non-sunglass-
wearing mice, then have to worry that maybe it’s the extra fat or longer tails, not the
sunglasses, that caused the difference. So you should randomly assign the mice to the
different treatment groups. You could give each mouse an ID number and have a
computer randomly assign them to the two groups, or you could just flip a coin each time
you pull a mouse out of your bucket of mice.

In the mouse example, you used all 40 of your mice for the experiment. Often, you will
sample a small number of observations from a much larger population, and it’s important
that it be a random sample. In a random sample, each individual has an equal probability
of being sampled. To get a random sample of 50 elm trees from a forest with 700 elm trees,
you could figure out where each of the 700 elm trees is, give each one an ID number, write
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the numbers on 700 slips of paper, put the slips of paper in a hat, and randomly draw out
50 (or have a computer randomly choose 50, if you're too lazy to fill out 700 slips of paper
or don’t own a hat).

You need to be careful to make sure that your sample is truly random. I started to
write “Or an easier way to randomly sample 50 elm trees would be to randomly pick 50
locations in the forest by having a computer randomly choose GPS coordinates, then
sample the elm tree nearest each random location.” However, this would have been a
mistake; an elm tree that was far away from other elm trees would almost certainly be the
closest to one of your random locations, but you’d be unlikely to sample an elm tree in the
middle of a dense bunch of elm trees. It's pretty easy to imagine that proximity to other
elm trees would affect insect damage (or just about anything else you’d want to measure
on elm trees), so I almost designed a stupid experiment for you.

A random sample is one in which all members of a population have an equal
probability of being sampled. If you're measuring fluorescence inside kidney cells, this
means that all points inside a cell, and all the cells in a kidney, and all the kidneys in all
the individuals of a species, would have an equal chance of being sampled.

A perfectly random sample of observations is difficult to collect, and you need to think
about how this might affect your results. Let’s say you've used a confocal microscope to
take a two-dimensional “optical slice” of a kidney cell. It would be easy to use a random-
number generator on a computer to pick out some random pixels in the image, and you
could then use the fluorescence in those pixels as your sample. However, if your slice was
near the cell membrane, your “random” sample would not include any points deep inside
the cell. If your slice was right through the middle of the cell, however, points deep inside
the cell would be over-represented in your sample. You might get a fancier microscope, so
you could look at a random sample of the “voxels” (three-dimensional pixels) throughout
the volume of the cell. But what would you do about voxels right at the surface of the cell?
Including them in your sample would be a mistake, because they might include some of
the cell membrane and extracellular space, but excluding them would mean that points
near the cell membrane are under-represented in your sample.

Matching

Sometimes there’s a lot of variation in confounding variables that you can’t control;
even if you randomize, the large variation in confounding variables may cause so much
variation in your dependent variable that it would be hard to detect a difference caused by
the independent variable that you're interested in. This is particularly true for humans.
Let’s say you want to test catnip oil as a mosquito repellent. If you were testing it on rats,
you would get a bunch of rats of the same age and sex and inbred genetic strain, apply
catnip oil to half of them, then put them in a mosquito-filled room for a set period of time
and count the number of mosquito bites. This would be a nice, well-controlled
experiment, and with a moderate number of rats you could see whether the catnip oil
caused even a small change in the number of mosquito bites. But if you wanted to test the
catnip oil on humans going about their everyday life, you couldn’t get a bunch of humans
of the same “inbred genetic strain,” it would be hard to get a bunch of people all of the
same age and sex, and the people would differ greatly in where they lived, how much
time they spent outside, the scented perfumes, soaps, deodorants, and laundry detergents
they used, and whatever else it is that makes mosquitoes ignore some people and eat
others up. The very large variation in number of mosquito bites among people would
mean that if the catnip oil had a small effect, you’d need a huge number of people for the
difference to be statistically significant.

One way to reduce the noise due to confounding variables is by matching. You
generally do this when the independent variable is a nominal variable with two values,
such as “drug” vs. “placebo.” You make observations in pairs, one for each value of the
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independent variable, that are as similar as possible in the confounding variables. The
pairs could be different parts of the same people. For example, you could test your catnip
oil by having people put catnip oil on one arm and placebo oil on the other arm. The
variation in the size of the difference between the two arms on each person could be a lot
smaller than the variation among different people, so you won’t need nearly as big a
sample size to detect a small difference in mosquito bites between catnip oil and placebo
oil. Of course, you'd have to randomly choose which arm to put the catnip oil on.

Other ways of pairing include before-and-after experiments. You could count the
number of mosquito bites in one week, then have people use catnip oil and see if the
number of mosquito bites for each person went down. With this kind of experiment, it’s
important to make sure that the dependent variable wouldn’t have changed by itself
(maybe the weather changed and the mosquitoes stopped biting), so it would be better to
use placebo oil one week and catnip oil another week, and randomly choose for each
person whether the catnip oil or placebo oil was first.

For many human experiments, you'll need to match two different people, because you
can’t test both the treatment and the control on the same person. For example, let’s say
you've given up on catnip oil as a mosquito repellent and are going to test it on humans as
a cataract preventer. You're going to get a bunch of people, have half of them take a
catnip-oil pill and half take a placebo pill for five years, then compare the lens opacity in
the two groups. Here the goal is to make each pair of people be as similar as possible in
confounding variables that you think might be important. If you're studying cataracts,
you’d want to match people based on known risk factors for cataracts: age, amount of time
outdoors, use of sunglasses, blood pressure. Of course, once you have a matched pair of
individuals, you'd want to randomly choose which one gets the catnip oil and which one
gets the placebo. You wouldn’t be able to find perfectly matching pairs of individuals, but
the better the match, the easier it will be to detect a difference due to the catnip-oil pills.

One kind of matching that is often used in epidemiology is the case-control study.
“Cases” are people with some disease or condition, and each is matched with one or more
controls. Each control is generally the same sex and as similar in other factors (age,
ethnicity, occupation, income) as practical. The cases and controls are then compared to
see whether there are consistent differences between them. For example, if you wanted to
know whether smoking marijuana caused or prevented cataracts, you could find a bunch
of people with cataracts. You’d then find a control for each person who was similar in the
known risk factors for cataracts (age, time outdoors, blood pressure, diabetes, steroid use).
Then you would ask the cataract cases and the non-cataract controls how much weed
they’d smoked.

If it's hard to find cases and easy to find controls, a case-control study may include
two or more controls for each case. This gives somewhat more statistical power.

Statistical control

When it isn’t practical to keep all the possible confounding variables constant, another
solution is to statistically control them. Sometimes you can do this with a simple ratio. If
you're interested in the effect of weight on cataracts, height would be a confounding
variable, because taller people tend to weigh more. Using the body mass index (BMI),
which is the ratio of weight in kilograms over the squared height in meters, would remove
much of the confounding effects of height in your study. If you need to remove the effects
of multiple confounding variables, there are multivariate statistical techniques you can
use. However, the analysis, interpretation, and presentation of complicated multivariate
analyses are not easy.
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Observer or subject bias as a confounding variable

In many studies, the possible bias of the researchers is one of the most important
confounding variables. Finding a statistically significant result is almost always more
interesting than not finding a difference, so you need to constantly be on guard to control
the effects of this bias. The best way to do this is by blinding yourself, so that you don’t
know which individuals got the treatment and which got the control. Going back to our
catnip oil and mosquito experiment, if you know that Alice got catnip oil and Bob didn't,
your subconscious body language and tone of voice when you talk to Alice might imply
“You didn’t get very many mosquito bites, did you? That would mean that the world will
finally know what a genius I am for inventing this,” and you might carefully scrutinize
each red bump and decide that some of them were spider bites or poison ivy, not
mosquito bites. With Bob, who got the placebo, you might subconsciously imply “Poor
Bob—TI'll bet you got a ton of mosquito bites, didn’t you? The more you got, the more of a
genius I am” and you might be more likely to count every hint of a bump on Bob’s skin as
a mosquito bite. Ideally, the subjects shouldn’t know whether they got the treatment or
placebo, either, so that they can’t give you the result you want; this is especially important
for subjective variables like pain. Of course, keeping the subjects of this particular
imaginary experiment blind to whether they’re rubbing catnip oil on their skin is going to
be hard, because Alice’s cat keeps licking Alice’s arm and then acting stoned.
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Exact test of goodness-of-fit

You use the exact test of goodness-of-fit when you have one nominal variable, you
want to see whether the number of observations in each category fits a theoretical
expectation, and the sample size is small.

Introduction

The main goal of a statistical test is to answer the question, “What is the probability of
getting a result like my observed data, if the null hypothesis were true?” If it is very
unlikely to get the observed data under the null hypothesis, you reject the null hypothesis.

Most statistical tests take the following form:

1. Collect the data.

2. Calculate a number, the test statistic, that measures how far the observed data
deviate from the expectation under the null hypothesis.

3. Use a mathematical function to estimate the probability of getting a test statistic as
extreme as the one you observed, if the null hypothesis were true. This is the P
value.

Exact tests, such as the exact test of goodness-of-fit, are different. There is no test
statistic; instead, you directly calculate the probability of obtaining the observed data
under the null hypothesis. This is because the predictions of the null hypothesis are so
simple that the probabilities can easily be calculated.

When to use it

You use the exact test of goodness-of-fit when you have one nominal variable. The
most common use is a nominal variable with only two values (such as male or female, left
or right, green or yellow), in which case the test may be called the exact binomial test. You
compare the observed data with the expected data, which are some kind of theoretical
expectation (such as a 1:1 sex ratio or a 3:1 ratio in a genetic cross) that you determined
before you collected the data. If the total number of observations is too high (around a
thousand), computers may not be able to do the calculations for the exact test, and you
should use a G—test or chi-square test of goodness-of-fit instead (and they will give almost
exactly the same result).

You can do exact multinomial tests of goodness-of-fit when the nominal variable has
more than two values. The basic concepts are the same as for the exact binomial test. Here
I'm limiting most of the explanation to the binomial test, because it’s more commonly
used and easier to understand.
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Null hypothesis

For a two-tailed test, which is what you almost always should use, the null hypothesis
is that the number of observations in each category is equal to that predicted by a
biological theory, and the alternative hypothesis is that the observed data are different
from the expected. For example, if you do a genetic cross in which you expect a 3:1 ratio of
green to yellow pea pods, and you have a total of 50 plants, your null hypothesis is that
there are 37.5 plants with green pods and 12.5 with yellow pods.

If you are doing a one-tailed test, the null hypothesis is that the observed number for
one category is equal to or less than the expected; the alternative hypothesis is that the
observed number in that category is greater than expected.

How the test works

Let’s say you want to know whether our cat, Gus, has a preference for one paw or uses
both paws equally. You dangle a ribbon in his face and record which paw he uses to bat at
it. You do this 10 times, and he bats at the ribbon with his right paw 8 times and his left
paw 2 times. Then he gets bored with the experiment and leaves. Can you conclude that
he is right-pawed, or could this result have occurred due to chance under the null
hypothesis that he bats equally with each paw?

The null hypothesis is that each time Gus bats at the ribbon, the probability that he
will use his right paw is 0.5. The probability that he will use his right paw on the first time
is 0.5. The probability that he will use his right paw the first time AND the second time is
0.5x 0.5, or 0.5, or 0.25. The probability that he will use his right paw all ten times is 0.5,
or about 0.001.

For a mixture of right and left paws, the calculation of the binomial distribution is
more complicated. Where 7 is the total number of trials, k is the number of “successes”
(statistical jargon for whichever event you want to consider), p is the expected proportion
of successes if the null hypothesis is true, and Y is the probability of getting k successes in
n trials, the equation is:

y_Pa=p) " n!
kl(n-k)!

Fortunately, there’s a spreadsheet function that does the calculation for you. To calculate
the probability of getting exactly 8 out of 10 right paws, you would enter

=BINOMDIST(2, 10, 0.5, FALSE)

The first number, 2, is whichever event there are fewer than expected of; in this case, there
are only two uses of the left paw, which is fewer than the expected 5. The second number,
10, is the total number of trials. The third number is the expected proportion of whichever
event there were fewer than expected of, if the null hypothesis were true; here the null
hypothesis predicts that half of all ribbon-battings will be with the left paw. And FALSE
tells it to calculate the exact probability for that number of events only. In this case, the
answer is P=0.044, so you might think it was significant at the P<0.05 level.

However, it would be incorrect to only calculate the probability of getting exactly 2 left
paws and 8 right paws. Instead, you must calculate the probability of getting a deviation
from the null expectation as large as, or larger than, the observed result. So you must
calculate the probability that Gus used his left paw 2 times out of 10, or 1 time out of 10, or
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0 times out of ten. Adding these probabilities together gives P=0.055, which is not quite
significant at the P<0.05 level. You do this in a spreadsheet by entering

=BINOMDIST(2, 10, 0.5, TRUE)

The “TRUE” parameter tells the spreadsheet to calculate the sum of the probabilities of the
observed number and all more extreme values; it’s the equivalent of

=BINOMDIST(2, 10, 0.5, FALSE)+BINOMDIST(1l, 10, 0.5, FALSE)
+BINOMDIST(0, 10, 0.5, FALSE)

There’s one more thing. The above calculation gives the total probability of getting 2, 1, or
0 uses of the left paw out of 10. However, the alternative hypothesis is that the number of
uses of the right paw is not equal to the number of uses of the left paw. If there had been 2,
1, or 0 uses of the right paw, that also would have been an equally extreme deviation from
the expectation. So you must add the probability of getting 2, 1, or 0 uses of the right paw,
to account for both tails of the probability distribution; you are doing a two-tailed test.
This gives you P=0.109, which is not very close to being significant. (If the null hypothesis
had been 0.50 or more uses of the left paw, and the alternative hypothesis had been less
than 0.5 uses of left paw, you could do a one-tailed test and use P=0.054. But you almost
never have a situation where a one-tailed test is appropriate.)

0.25 —

0.20 ] ]

Probability under null
hypothesis

0.05 - |_|
0.00 A
1 2 3

0

HERA-
4 5 6 7 8 9

Number of uses of right paw

10

Graph showing the probability distribution for the binomial with 10 trials.

The most common use of an exact binomial test is when the null hypothesis is that
numbers of the two outcomes are equal. In that case, the meaning of a two-tailed test is
clear, and you calculate the two-tailed P value by multiplying the one-tailed P value times
two.

When the null hypothesis is not a 1:1 ratio, but something like a 3:1 ratio, statisticians
disagree about the meaning of a two-tailed exact binomial test, and different statistical
programs will give slightly different results. The simplest method is to use the binomial
equation, as described above, to calculate the probability of whichever event is less
common that expected, then multiply it by two. For example, let’s say you've crossed a
number of cats that are heterozygous at the hair-length gene; because short hair is
dominant, you expect 75% of the kittens to have short hair and 25% to have long hair. You
end up with 7 short haired and 5 long haired cats. There are 7 short haired cats when you
expected 9, so you use the binomial equation to calculate the probability of 7 or fewer
short-haired cats; this adds up to 0.158. Doubling this would give you a two-tailed P value
of 0.315. This is what SAS and Richard Lowry’s online calculator
(faculty.vassar.edu/lowry/binomialX.html) do.

31



HANDBOOK OF BIOLOGICAL STATISTICS

The alternative approach is called the method of small P values (see
http:/ / www.quantitativeskills.com/sisa/ papers/paper5.htm), and I think most
statisticians prefer it. For our example, you use the binomial equation to calculate the
probability of obtaining exactly 7 out of 12 short-haired cats; it is 0.103. Then you calculate
the probabilities for every other possible number of short-haired cats, and you add
together those that are less than 0.103. That is the probabilities for 6, 5, 4 ... 0 short-haired
cats, and in the other tail, only the probability of 12 out of 12 short-haired cats. Adding
these probabilities gives a P value of 0.189. This is what my exact binomial spreadsheet
does. I think the arguments in favor of the method of small P values make sense. If you are
using the exact binomial test with expected proportions other than 50:50, make sure you
specify which method you use (remember that it doesn’t matter when the expected
proportions are 50:50).

Sign test

One common application of the exact binomial test is known as the sign test. You use
the sign test when there are two nominal variables and one measurement variable. One of
the nominal variables has only two values, such as “before” and “after” or “left” and
“right,” and the other nominal variable identifies the pairs of observations. In a study of a
hair-growth ointment, “amount of hair” would be the measurement variable, “before” and
“after” would be the values of one nominal variable, and “Arnold,” “Bob,” “Charles”
would be values of the second nominal variable.

The data for a sign test usually could be analyzed using a paired t—test or a Wilcoxon
signed-rank test, if the null hypothesis is that the mean or median difference between
pairs of observations is zero. However, sometimes you're not interested in the size of the
difference, just the direction. In the hair-growth example, you might have decided that
you didn’t care how much hair the men grew or lost, you just wanted to know whether
more than half of the men grew hair. In that case, you count the number of differences in
one direction, count the number of differences in the opposite direction, and use the exact
binomial test to see whether the numbers are different from a 1:1 ratio.

You should decide that a sign test is the test you want before you look at the data. If
you analyze your data with a paired t-test and it’s not significant, then you notice it
would be significant with a sign test, it would be very unethical to just report the result of
the sign test as if you’d planned that from the beginning.

Exact multinomial test

While the most common use of exact tests of goodness-of-fit is the exact binomial test,
it is also possible to perform exact multinomial tests when there are more than two values
of the nominal variable. The most common example in biology would be the results of
genetic crosses, where one might expect a 1:2:1 ratio from a cross of two heterozygotes at
one codominant locus, a 9:3:3:1 ratio from a cross of individuals heterozygous at two
dominant loci, etc. The basic procedure is the same as for the exact binomial test: you
calculate the probabilities of the observed result and all more extreme possible results and
add them together. The underlying computations are more complicated, and if you have a
lot of categories, your computer may have problems even if the total sample size is less
than 1000. If you have a small sample size but so many categories that your computer
program won’t do an exact test, you can use a G-test or chi-square test of goodness-of-fit,
but understand that the results may be somewhat inaccurate.
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Post-hoc test

If you perform the exact multinomial test (with more than two categories) and get a
significant result, you may want to follow up by testing whether each category deviates
significantly from the expected number. It’s a little odd to talk about just one category
deviating significantly from expected; if there are more observations than expected in one
category, there have to be fewer than expected in at least one other category. But looking
at each category might help you understand better what’s going on.

For example, let’s say you do a genetic cross in which you expect a 9:3:3:1 ratio of
purple, red, blue, and white flowers, and your observed numbers are 72 purple, 38 red, 20
blue, and 18 white. You do the exact test and get a P value of 0.0016, so you reject the null
hypothesis. There are fewer purple and blue and more red and white than expected, but is
there an individual color that deviates significantly from expected?

To answer this, do an exact binomial test for each category vs. the sum of all the other
categories. For purple, compare the 72 purple and 76 non-purple to the expected 9:7 ratio.
The P value is 0.07, so you can’t say there are significantly fewer purple flowers than
expected (although it's worth noting that it’s close). There are 38 red and 110 non-red
flowers; when compared to the expected 3:13 ratio, the P value is 0.035. This is below the
significance level of 0.05, but because you're doing four tests at the same time, you need to
correct for the multiple comparisons. Applying the Bonferroni correction, you divide the
significance level (0.05) by the number of comparisons (4) and get a new significance level
of 0.0125; since 0.035 is greater than this, you can’t say there are significantly more red
flowers than expected. Comparing the 18 white and 130 non-white to the expected ratio of
1:15, the P value is 0.006, so you can say that there are significantly more white flowers
than expected.

It is possible that an overall significant P value could result from moderate-sized
deviations in all of the categories, and none of the post-hoc tests will be significant. This
would be frustrating; you’d know that something interesting was going on, but you
couldn’t say with statistical confidence exactly what it was.

I doubt that the procedure for post-hoc tests in a goodness-of-fit test that I've
suggested here is original, but I can’t find a reference to it; if you know who really
invented this, e-mail me with a reference. And it seems likely that there’s a better method
that takes into account the non-independence of the numbers in the different categories (as
the numbers in one category go up, the number in some other category must go down),
but I have no idea what it might be.

Intrinsic hypothesis

You use exact test of goodness-of-fit that I've described here when testing fit to an
extrinsic hypothesis, a hypothesis that you knew before you collected the data. For
example, even before the kittens are born, you can predict that the ratio of short-haired to
long-haired cats will be 3:1 in a genetic cross of two heterozygotes. Sometimes you want to
test the fit to an intrinsic null hypothesis: one that is based on the data you collect, where
you can’t predict the results from the null hypothesis until after you collect the data. The
only example I can think of in biology is Hardy-Weinberg proportions, where the number
of each genotype in a sample from a wild population is expected to be p: or 2pq or ¢: (with
more possibilities when there are more than two alleles); you don’t know the allele
frequencies (p and g) until after you collect the data. Exact tests of fit to Hardy-Weinberg
raise a number of statistical issues and have received a lot of attention from population
geneticists; if you need to do this, see Engels (2009) and the older references he cites. If you
have biological data that you want to do an exact test of goodness-of-fit with an intrinsic
hypothesis on, and it doesn’t involve Hardy-Weinberg, e-mail me; I'd be very curious to
see what kind of biological data requires this, and I will try to help you as best as I can.
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Assumptions

Goodness-of-fit tests assume that the individual observations are independent,
meaning that the value of one observation does not influence the value of other
observations. To give an example, let’s say you want to know what color of flowers that
bees like. You plant four plots of flowers: one purple, one red, one blue, and one white.
You get a bee, put it in a dark jar, carry it to a point equidistant from the four plots of
flowers, and release it. You record which color flower it goes to first, then re-capture it and
hold it prisoner until the experiment is done. You do this again and again for 100 bees. In
this case, the observations are independent; the fact that bee #1 went to a blue flower has
no influence on where bee #2 goes. This is a good experiment; if significantly more than
1/4 of the bees go to the blue flowers, it would be good evidence that the bees prefer blue
flowers.

Now let’s say that you put a beehive at the point equidistant from the four plots of
flowers, and you record where the first 100 bees go. If the first bee happens to go to the
plot of blue flowers, it will go back to the hive and do its bee-butt-wiggling dance that tells
the other bees, “Go 15 meters southwest, there’s a bunch of yummy nectar there!” Then
some more bees will fly to the blue flowers, and when they return to the hive, they’ll do
the same bee-butt-wiggling dance. The observations are NOT independent; where bee #2
goes is strongly influenced by where bee #1 happened to go. If “significantly” more than
1/4 of the bees go to the blue flowers, it could easily be that the first bee just happened to
go there by chance, and bees may not really care about flower color.

Examples

Roptrocerus xylophagorum is a parasitoid of bark beetles. To determine what cues these
wasps use to find the beetles, Sullivan et al. (2000) placed female wasps in the base of a Y-
shaped tube, with a different odor in each arm of the Y, then counted the number of wasps
that entered each arm of the tube. In one experiment, one arm of the Y had the odor of
bark being eaten by adult beetles, while the other arm of the Y had bark being eaten by
larval beetles. Ten wasps entered the area with the adult beetles, while 17 entered the area
with the larval beetles. The difference from the expected 1:1 ratio is not significant
(P=0.248). In another experiment that compared infested bark with a mixture of infested
and uninfested bark, 36 wasps moved towards the infested bark, while only 7 moved

towards the mixture; this is significantly different from the expected ratio (P=9x 10-).

Yukilevich and True (2008) mixed 30 male and 30 female Drosophila melanogaster from
Alabama with 30 male and 30 females from Grand Bahama Island. They observed 246
matings; 140 were homotypic (male and female from the same location), while 106 were
heterotypic (male and female from different locations). The null hypothesis is that the flies
mate at random, so that there should be equal numbers of homotypic and heterotypic
matings. There were significantly more homotypic matings (exact binomial test, P=0.035)
than heterotypic.

As an example of the sign test, Farrell et al. (2001) estimated the evolutionary tree of
two subfamilies of beetles that burrow inside trees as adults. They found ten pairs of sister
groups in which one group of related species, or “clade,” fed on angiosperms and one fed
on gymnosperms, and they counted the number of species in each clade. There are two
nominal variables, food source (angiosperms or gymnosperms) and pair of clades
(Corthylina vs. Pityophthorus, etc.) and one measurement variable, the number of species
per clade.
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The biological null hypothesis is that although the number of species per clade may
vary widely due to a variety of unknown factors, whether a clade feeds on angiosperms or
gymnosperms will not be one of these factors. In other words, you expect that each pair of
related clades will differ in number of species, but half the time the angiosperm-feeding
clade will have more species, and half the time the gymnosperm-feeding clade will have
more species.

Applying a sign test, there are 10 pairs of clades in which the angiosperm-specialized
clade has more species, and 0 pairs with more species in the gymnosperm-specialized
clade; this is significantly different from the null expectation (P=0.002), and you can reject
the null hypothesis and conclude that in these beetles, clades that feed on angiosperms
tend to have more species than clades that feed on gymnosperms.

Angiosperm-feeding Spp. Gymnosperm-feeding Spp.
Corthylina 458  Pityophthorus 200
Scolytinae 5200 Hylastini+Tomacini 180
Acanthotomicus+Premnobious 123 Orhotomicus 11
Xyleborini/Dryocoetini 1500  Ipini 195
Apion 1500  Antliarhininae 12
Belinae 150 Allocoryninae+Oxycorinae 30
Higher Curculionidae 44002  Nemonychidae 85
Higher Cerambycidae 25000 Aseminae + Spondylinae 78
Megalopodinae 400  Palophaginae 3
Higher Chrysomelidae 33400  Aulocoscelinae + 26
Orsodacninae

Mendel (1865) crossed pea plants that were heterozygotes for green pod/yellow pod;
pod color is the nominal variable, with “green” and “yellow” as the values. If this is
inherited as a simple Mendelian trait, with green dominant over yellow, the expected ratio
in the offspring is 3 green: 1 yellow. He observed 428 green and 152 yellow. The expected
numbers of plants under the null hypothesis are 435 green and 145 yellow, so Mendel
observed slightly fewer green-pod plants than expected. The P value for an exact binomial
test using the method of small P values, as implemented in my spreadsheet, is 0.533,
indicating that the null hypothesis cannot be rejected; there is no significant difference
between the observed and expected frequencies of pea plants with green pods. (SAS uses
a different method that gives a P value of 0.530. With a smaller sample size, the difference
between the “method of small P values” that I and most statisticians prefer, and the cruder
method that SAS uses, could be large enough to be important.)

Mendel (1865) also crossed peas that were heterozygous at two genes: one for yellow
vs. green, the other for round vs. wrinkled; yellow was dominant over green, and round
was dominant over wrinkled. The expected and observed results were:

expected expected observed

ratio number number
yellow-+round 9 312.75 315
green+round 3 104.25 108
yellow+wrinkled 3 104.25 101
round+wrinkled 1 34.75 32
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This is an example of the exact multinomial test, since there are four categories, not
two. The P value is 0.93, so the difference between observed and expected is nowhere near
significance.

Graphing the results

You plot the results of an exact test the same way would any other goodness-of-fit test.

Similar tests

A G-test or chi-square goodness-of-fit test could also be used for the same data as the
exact test of goodness-of-fit. Where the expected numbers are small, the exact test will
give more accurate results than the G-test or chi-squared tests. Where the sample size is
large (over a thousand), attempting to use the exact test may give error messages
(computers have a hard time calculating factorials for large numbers), so a G-test or chi-
square test must be used. For intermediate sample sizes, all three tests give approximately
the same results. I recommend that you use the exact test when 7 is less than 1000; see the
chapter on small sample sizes for further discussion.

If you try to do an exact test with a large number of categories, your computer may not
be able to do the calculations even if your total sample size is less than 1000. In that case,
you can cautiously use the G-test or chi-square goodness-of-fit test, knowing that the
results may be somewhat inaccurate.

The exact test of goodness-of-fit is not the same as Fisher’s exact test of independence.
You use a test of independence for two nominal variables, such as sex and location. If you
wanted to compare the ratio of males to female students at Delaware to the male:female
ratio at Maryland, you would use a test of independence; if you want to compare the
male:female ratio at Delaware to a theoretical 1:1 ratio, you would use a goodness-of-fit
test.

How to do the test
Spreadsheet

I have set up a spreadsheet that performs the exact binomial test for sample sizes up to
1000 (www .biostathandbook.com/exactbin.xls). It is self-explanatory. It uses the method
of small P values when the expected proportions are different from 50:50.

Web page

Richard Lowry has set up a web page that does the exact binomial test
(faculty.vassar.edu/lowry /binomialX.html). It does not use the method of small P values,
so I do not recommend it if your expected proportions are different from 50:50. I'm not
aware of any web pages that will do the exact binomial test using the method of small P
values, and I'm not aware of any web pages that will do exact multinomial tests.

SAS

Here is a sample SAS program, showing how to do the exact binomial test on the Gus
data. The “P=0.5" gives the expected proportion of whichever value of the nominal
variable is alphabetically first; in this case, it gives the expected proportion of “left.”

The SAS exact binomial function finds the two-tailed P value by doubling the P value
of one tail. The binomial distribution is not symmetrical when the expected proportion is
other than 50%, so the technique SAS uses isn’t as good as the method of small P values. I
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don’t recommend doing the exact binomial test in SAS when the expected proportion is
anything other than 50%.

DATA gus;
INPUT paw $;
DATALINES;

right

left

right

right

right

right

left

right

right

right

I

PROC FREQ DATA=gus;
TABLES paw / BINOMIAL(P=0.5);
EXACT BINOMIAL;

RUN;

Near the end of the output is this:

Exact Test
One-sided Pr <= P 0.0547
Two-sided = 2 * One-sided 0.1094

The “Two-sided=2*One-sided” number is the two-tailed P value that you want.

If you have the total numbers, rather than the raw values, you'd use a WEIGHT
parameter in PROC FREQ. The ZEROS option tells it to include observations with counts
of zero, for example if Gus had used his left paw 0 times; it doesn’t hurt to always include
the ZEROS option.

DATA gus;
INPUT paw $ count;
DATALINES;

right 10

left 2

14
PROC FREQ DATA=gus;
WEIGHT count / ZEROS;
TABLES paw / BINOMIAL(P=0.5);
EXACT BINOMIAL;
RUN;

This example shows how do to the exact multinomial test. The numbers are Mendel’s
data from a genetic cross in which you expect a 9:3:3:1 ratio of peas that are round+yellow,
round+green, wrinkled+yellow, and wrinkled+green. The ORDER=DATA option tells
SAS to analyze the data in the order they are input (rndyel, rndgrn, wrnkyel, wrnkgrn, in
this case), not alphabetical order. The TESTP=(0.5625 0.1875 0.0625 0.1875) lists the
expected proportions in the same order.
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DATA peas;
INPUT color $ count;
DATALINES;

rndyel 315

rndgrn 108

wrnkyel 101

wrnkgrn 32

PROC FREQ DATA=peas ORDER=DATA;
WEIGHT count / ZEROS;
TABLES color / CHISQ TESTP=(0.5625 0.1875 0.1875 0.0625);
EXACT CHISQ;

RUN;

The P value you want is labeled “Exact Pr >= ChiSq”:

Chi-Square Test
for Specified Proportions

Chi-Square 0.4700
DF 3
Asymptotic Pr > ChiSqg 0.9254
Exact Pr >= ChiSqg 0.9272

Power analysis

Before you do an experiment, you should do a power analysis to estimate the sample
size you'll need. To do this for an exact binomial test using G*Power, choose “Exact”
under “Test Family” and choose “Proportion: Difference from constant” under “Statistical
test.” Under “Type of power analysis”, choose “A priori: Compute required sample size”.
For “Input parameters,” enter the number of tails (you'll almost always want two), alpha
(usually 0.05), and Power (often 0.5, 0.8, or 0.9). The “Effect size” is the difference in
proportions between observed and expected that you hope to see, and the “Constant
proportion” is the expected proportion for one of the two categories (whichever is
smaller). Hit “Calculate” and you'll get the Total Sample Size.

As an example, let’s say you wanted to do an experiment to see if Gus the cat really
did use one paw more than the other for getting my attention. The null hypothesis is that
the probability that he uses his left paw is 0.50, so enter that in “Constant proportion”.
You decide that if the probability of him using his left paw is 0.40, you want your
experiment to have an 80% probability of getting a significant (P<0.05) result, so enter 0.10
for Effect Size, 0.05 for Alpha, and 0.80 for Power. If he uses his left paw 60% of the time,
you’'ll accept that as a significant result too, so it’s a two-tailed test. The result is 199. This
means that if Gus really is using his left paw 40% (or 60%) of the time, a sample size of 199
observations will have an 80% probability of giving you a significant (P<0.05) exact
binomial test.

Many power calculations for the exact binomial test, like G*Power, find the smallest
sample size that will give the desired power, but there is a “sawtooth effect” in which
increasing the sample size can actually reduce the power. Chernick and Liu (2002) suggest
finding the smallest sample size that will give the desired power, even if the sample size is
increased. For the Gus example, the method of Chernick and Liu gives a sample size of
210, rather than the 199 given by G*Power. Because both power and effect size are usually
just arbitrary round numbers, where it would be easy to justify other values that would
change the required sample size, the small differences in the method used to calculate
desired sample size are probably not very important. The only reason I mention this is so
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that you won’t be alarmed if different power analysis programs for the exact binomial test
give slightly different results for the same parameters.

G*Power does not do a power analysis for the exact test with more than two
categories. If you have to do a power analysis and your nominal variable has more than
two values, use the power analysis for chi-square tests in G*Power instead. The results
will be pretty close to a true power analysis for the exact multinomial test, and given the
arbitrariness of parameters like power and effect size, the results should be close enough.
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Power analysis

Before you do an experiment, you should perform a power analysis to estimate the
number of observations you need to have a good chance of detecting the effect you're
looking for.

Introduction

When you are designing an experiment, it is a good idea to estimate the sample size
you’'ll need. This is especially true if you're proposing to do something painful to humans
or other vertebrates, where it is particularly important to minimize the number of
individuals (without making the sample size so small that the whole experiment is a waste
of time and suffering), or if you're planning a very time-consuming or expensive
experiment. Methods have been developed for many statistical tests to estimate the
sample size needed to detect a particular effect, or to estimate the size of the effect that can
be detected with a particular sample size.

In order to do a power analysis, you need to specify an effect size. This is the size of
the difference between your null hypothesis and the alternative hypothesis that you hope
to detect. For applied and clinical biological research, there may be a very definite effect
size that you want to detect. For example, if you're testing a new dog shampoo, the
marketing department at your company may tell you that producing the new shampoo
would only be worthwhile if it made dogs’ coats at least 25% shinier, on average. That
would be your effect size, and you would use it when deciding how many dogs you
would need to put through the canine reflectometer.

When doing basic biological research, you often don’t know how big a difference
you're looking for, and the temptation may be to just use the biggest sample size you can
afford, or use a similar sample size to other research in your field. You should still do a
power analysis before you do the experiment, just to get an idea of what kind of effects
you could detect. For example, some anti-vaccination kooks have proposed that the U.S.
government conduct a large study of unvaccinated and vaccinated children to see whether
vaccines cause autism. It is not clear what effect size would be interesting: 10% more
autism in one group? 50% more? twice as much? However, doing a power analysis shows
that even if the study included every unvaccinated child in the United States aged 3 to 6,
and an equal number of vaccinated children, there would have to be 25% more autism in
one group in order to have a high chance of seeing a significant difference. A more
plausible study, of 5,000 unvaccinated and 5,000 vaccinated children, would detect a
significant difference with high power only if there were three times more autism in one
group than the other. Because it is unlikely that there is such a big difference in autism
between vaccinated and unvaccinated children, and because failing to find a relationship
with such a study would not convince anti-vaccination kooks that there was no
relationship (nothing would convince them there’s no relationship—that’s what makes
them kooks), the power analysis tells you that such a large, expensive study would not be
worthwhile.
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Parameters

There are four or five numbers involved in a power analysis. You must choose the
values for each one before you do the analysis. If you don’t have a good reason for using a
particular value, you can try different values and look at the effect on sample size.

Effect size

The effect size is the minimum deviation from the null hypothesis that you hope to
detect. For example, if you are treating hens with something that you hope will change the
sex ratio of their chicks, you might decide that the minimum change in the proportion of
sexes that you're looking for is 10%. You would then say that your effect size is 10%. If
you're testing something to make the hens lay more eggs, the effect size might be 2 eggs
per month.

Occasionally, you'll have a good economic or clinical reason for choosing a particular
effect size. If you're testing a chicken feed supplement that costs $1.50 per month, you're
only interested in finding out whether it will produce more than $1.50 worth of extra eggs
each month; knowing that a supplement produces an extra 0.1 egg a month is not useful
information to you, and you don’t need to design your experiment to find that out. But for
most basic biological research, the effect size is just a nice round number that you pulled
out of your butt. Let’s say you're doing a power analysis for a study of a mutation in a
promoter region, to see if it affects gene expression. How big a change in gene expression
are you looking for: 10%? 20%? 50%? It's a pretty arbitrary number, but it will have a huge
effect on the number of transgenic mice who will give their expensive little lives for your
science. If you don’t have a good reason to look for a particular effect size, you might as
well admit that and draw a graph with sample size on the X-axis and effect size on the Y-
axis. G*Power will do this for you.

Alpha

Alpha is the significance level of the test (the P value), the probability of rejecting the
null hypothesis even though it is true (a false positive). The usual value is alpha=0.05.
Some power calculators use the one-tailed alpha, which is confusing, since the two-tailed
alpha is much more common. Be sure you know which you’re using.

Beta or power

Beta, in a power analysis, is the probability of accepting the null hypothesis, even
though it is false (a false negative), when the real difference is equal to the minimum effect
size. The power of a test is the probability of rejecting the null hypothesis (getting a
significant result) when the real difference is equal to the minimum effect size. Power is 1-
beta. There is no clear consensus on the value to use, so this is another number you pull
out of your butt; a power of 80% (equivalent to a beta of 20%) is probably the most
common, while some people use 50% or 90%. The cost to you of a false negative should
influence your choice of power; if you really, really want to be sure that you detect your
effect size, you'll want to use a higher value for power (lower beta), which will result in a
bigger sample size. Some power calculators ask you to enter beta, while others ask for
power (1-beta); be very sure you understand which you need to use.

Standard deviation

For measurement variables, you also need an estimate of the standard deviation. As
standard deviation gets bigger, it gets harder to detect a significant difference, so you'll
need a bigger sample size. Your estimate of the standard deviation can come from pilot
experiments or from similar experiments in the published literature. Your standard
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deviation once you do the experiment is unlikely to be exactly the same, so your
experiment will actually be somewhat more or less powerful than you had predicted.

For nominal variables, the standard deviation is a simple function of the sample size,
so you don’t need to estimate it separately.

How it works

The details of a power analysis are different for different statistical tests, but the basic
concepts are similar; here I'll use the exact binomial test as an example. Imagine that you
are studying wrist fractures, and your null hypothesis is that half the people who break
one wrist break their right wrist, and half break their left. You decide that the minimum
effect size is 10%; if the percentage of people who break their right wrist is 60% or more, or
40% or less, you want to have a significant result from the exact binomial test. I have no
idea why you picked 10%, but that’s what you'll use. Alpha is 5%, as usual. You want
power to be 90%, which means that if the percentage of broken right wrists really is 40%
or 60%, you want a sample size that will yield a significant (P<0.05) result 90% of the time,
and a non-significant result (which would be a false negative in this case) only 10% of the
time.
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The first graph shows the probability distribution under the null hypothesis, with a
sample size of 50 individuals. If the null hypothesis is true, you'll see less than 36% or
more than 64% of people breaking their right wrists (a false positive) about 5% of the time.
As the second graph shows, if the true percentage is 40%, the sample data will be less than
36 or more than 64% only 21% of the time; you’d get a true positive only 21% of the time,
and a false negative 79% of the time. Obviously, a sample size of 50 is too small for this
experiment; it would only yield a significant result 21% of the time, even if there’s a 40:60
ratio of broken right wrists to left wrists.
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The next graph shows the probability distribution under the null hypothesis, with a
sample size of 270 individuals. In order to be significant at the P<0.05 level, the observed
result would have to be less than 43.7% or more than 56.3% of people breaking their right
wrists. As the second graph shows, if the true percentage is 40%, the sample data will be
this extreme 90% of the time. A sample size of 270 is pretty good for this experiment; it
would yield a significant result 90% of the time if there’s a 40:60 ratio of broken right
wrists to left wrists. If the ratio of broken right to left wrists is further away from 50:50,
you’ll have an even higher probability of getting a significant result.

Examples

You plan to cross peas that are heterozygotes for Yellow / green pea color, where
Yellow is dominant. The expected ratio in the offspring is 3 Yellow: 1 green. You want to
know whether yellow peas are actually more or less fit, which might show up as a
different proportion of yellow peas than expected. You arbitrarily decide that you want a
sample size that will detect a significant (P<0.05) difference if there are 3% more or fewer
yellow peas than expected, with a power of 90%. You will test the data using the exact
binomial test of goodness-of-fit if the sample size is small enough, or a G—test of goodness-
of-fit if the sample size is larger. The power analysis is the same for both tests.

Using G*Power as described for the exact test of goodness-of-fit, the result is that it
would take 2190 pea plants if you want to get a significant (P<0.05) result 90% of the time,
if the true proportion of yellow peas is 78 or 72%. That's a lot of peas, but you're reassured
to see that it’s not a ridiculous number. If you want to detect a difference of 0.1% between
the expected and observed numbers of yellow peas, you can calculate that you'll need
1,970,142 peas; if that's what you need to detect, the sample size analysis tells you that
you're going to have to include a pea-sorting robot in your budget.

The example data for the two-sample t-test shows that the average height in the 2 p.m.
section of Biological Data Analysis was 66.6 inches and the average height in the 5 p.m.
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section was 64.6 inches, but the difference is not significant (P=0.207). You want to know
how many students you’d have to sample to have an 80% chance of a difference this large
being significant. Using G*Power as described on the two-sample t-test page, enter 2.0 for
the difference in means. Using the STDEV function in Excel, calculate the standard
deviation for each sample in the original data; it is 4.8 for sample 1 and 3.6 for sample 2.
Enter 0.05 for alpha and 0.80 for power. The result is 72, meaning that if 5 p.m. students
really were two inches shorter than 2 p.m. students, you’d need 72 students in each class
to detect a significant difference 80% of the time, if the true difference really is 2.0 inches.

How to do power analyses

G*Power

G*Power (www.gpower.hhu.de/) is an excellent free program, available for Mac and
Windows, that will do power analyses for a large variety of tests. I will explain how to use
G*Power for power analyses for each of the tests in this handbook.

SAS

SAS has a PROC POWER that you can use for power analyses. You enter the needed
parameters (which vary depending on the test) and enter a period (which symbolizes
missing data in SAS) for the parameter you're solving for (usually ntotal, the total
sample size, or npergroup, the number of samples in each group). I find that G*Power is
easier to use than SAS for this purpose, so I don’t recommend using SAS for your power
analyses.
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Chi-square test of goodness-
of-fit

You use the chi-square test of goodness-of-fit when you have one nominal variable,
you want to see whether the number of observations in each category fits a theoretical
expectation, and the sample size is large.

When to use it

Use the chi-square test of goodness-of-fit when you have one nominal variable with
two or more values (such as red, pink and white flowers). You compare the observed
counts of observations in each category with the expected counts, which you calculate
using some kind of theoretical expectation (such as a 1:1 sex ratio or a 1:2:1 ratioin a
genetic cross).

If the expected number of observations in any category is too small, the chi-square test
may give inaccurate results, and you should use an exact test instead. See the web page on
small sample sizes for discussion of what “small” means.

The chi-square test of goodness-of-fit is an alternative to the G—test of goodness-of-fit;
each of these tests has some advantages and some disadvantages, and the results of the
two tests are usually very similar. You should read the section on “Chi-square vs. G-test”
near the bottom of this page, pick either chi-square or G—test, then stick with that choice
for the rest of your life. Much of the information and examples on this page are the same
as on the G—test page, so once you've decided which test is better for you, you only need
to read one.

Null hypothesis

The statistical null hypothesis is that the number of observations in each category is
equal to that predicted by a biological theory, and the alternative hypothesis is that the
observed numbers are different from the expected. The null hypothesis is usually an
extrinsic hypothesis, where you knew the expected proportions before doing the
experiment. Examples include a 1:1 sex ratio or a 1:2:1 ratio in a genetic cross. Another
example would be looking at an area of shore that had 59% of the area covered in sand,
28% mud and 13% rocks; if you were investigating where seagulls like to stand, your null
hypothesis would be that 59% of the seagulls were standing on sand, 28% on mud and
13% on rocks.

In some situations, you have an intrinsic hypothesis. This is a null hypothesis where
you calculate the expected proportions after you do the experiment, using some of the
information from the data. The best-known example of an intrinsic hypothesis is the
Hardy-Weinberg proportions of population genetics: if the frequency of one allele in a
population is p and the other allele is g, the null hypothesis is that expected frequencies of
the three genotypes are p:, 2pg, and ¢ This is an intrinsic hypothesis, because you estimate
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p and g from the data after you collect the data, you can’t predict p and g before the
experiment.

How the test works

Unlike the exact test of goodness-of-fit, the chi-square test does not directly calculate
the probability of obtaining the observed results or something more extreme. Instead, like
almost all statistical tests, the chi-square test has an intermediate step; it uses the data to
calculate a test statistic that measures how far the observed data are from the null
expectation. You then use a mathematical relationship, in this case the chi-square
distribution, to estimate the probability of obtaining that value of the test statistic.

You calculate the test statistic by taking an observed number (O), subtracting the
expected number (E), then squaring this difference. The larger the deviation from the null
hypothesis, the larger the difference between observed and expected is. Squaring the
differences makes them all positive. You then divide each squared difference by the
expected number, and you add up these standardized differences. The test statistic is
approximately equal to the log-likelihood ratio used in the G—test. It is conventionally
called a “chi-square” statistic, although this is somewhat confusing because it’s just one of
many test statistics that follows the theoretical chi-square distribution. The equation is

oni* = 3O E

As with most test statistics, the larger the difference between observed and expected,
the larger the test statistic becomes. To give an example, let’s say your null hypothesis is a
3:1 ratio of smooth wings to wrinkled wings in offspring from a bunch of Drosophila
crosses. You observe 770 flies with smooth wings and 230 flies with wrinkled wings; the
expected values are 750 smooth-winged and 250 wrinkled-winged flies. Entering these
numbers into the equation, the chi-square value is 2.13. If you had observed 760 smooth-
winged flies and 240 wrinkled-wing flies, which is closer to the null hypothesis, your chi-
square value would have been smaller, at 0.53; if you’d observed 800 smooth-winged and
200 wrinkled-wing flies, which is further from the null hypothesis, your chi-square value
would have been 13.33.

The distribution of the test statistic under the null hypothesis is approximately the
same as the theoretical chi-square distribution. This means that once you know the chi-
square value and the number of degrees of freedom, you can calculate the probability of
getting that value of chi-square using the chi-square distribution. The number of degrees
of freedom is the number of categories minus one, so for our example there is one degree
of freedom. Using the CHIDIST function in a spreadsheet, you enter =CHIDIST(2.13,
1) and calculate that the probability of getting a chi-square value of 2.13 with one degree
of freedom is P=0.144.

The shape of the chi-square distribution depends on the number of degrees of
freedom. For an extrinsic null hypothesis (the much more common situation, where you
know the proportions predicted by the null hypothesis before collecting the data), the
number of degrees of freedom is simply the number of values of the variable, minus one.
Thus if you are testing a null hypothesis of a 1:1 sex ratio, there are two possible values
(male and female), and therefore one degree of freedom. This is because once you know
how many of the total are females (a number which is “free” to vary from 0 to the sample
size), the number of males is determined. If there are three values of the variable (such as
red, pink, and white), there are two degrees of freedom, and so on.

An intrinsic null hypothesis is one where you estimate one or more parameters from
the data in order to get the numbers for your null hypothesis. As described above, one
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example is Hardy-Weinberg proportions. For an intrinsic null hypothesis, the number of
degrees of freedom is calculated by taking the number of values of the variable,
subtracting 1 for each parameter estimated from the data, then subtracting 1 more. Thus
for Hardy-Weinberg proportions with two alleles and three genotypes, there are three
values of the variable (the three genotypes); you subtract one for the parameter estimated
from the data (the allele frequency, p); and then you subtract one more, yielding one
degree of freedom. There are other statistical issues involved in testing fit to Hardy-
Weinberg expectations, so if you need to do this, see Engels (2009) and the older references
he cites.

Post-hoc test

If there are more than two categories and you want to find out which ones are
significantly different from their null expectation, you can use the same method of testing
each category vs. the sum of all other categories, with the Bonferroni correction, as I
describe for the exact test. You use chi-square tests for each category, of course.

Assumptions

The chi-square of goodness-of-fit assumes independence, as described for the exact
test.

Examples: extrinsic hypothesis

European crossbills (Loxia curvirostra) have the tip of the upper bill either right or left
of the lower bill, which helps them extract seeds from pine cones. Some have
hypothesized that frequency-dependent selection would keep the number of right and
left-billed birds at a 1:1 ratio. Groth (1992) observed 1752 right-billed and 1895 left-billed
crossbills.

Calculate the expected frequency of right-billed birds by multiplying the total sample
size (3647) by the expected proportion (0.5) to yield 1823.5. Do the same for left-billed
birds. The number of degrees of freedom when an for an extrinsic hypothesis is the
number of classes minus one. In this case, there are two classes (right and left), so there is
one degree of freedom.

The result is chi-square=5.61, 1 d.f., P=0.018, indicating that you can reject the null
hypothesis; there are significantly more left-billed crossbills than right-billed.

Shivrain et al. (2006) crossed clearfield rice, which are resistant to the herbicide
imazethapyr, with red rice, which are susceptible to imazethapyr. They then crossed the
hybrid offspring and examined the F. generation, where they found 772 resistant plants,
1611 moderately resistant plants, and 737 susceptible plants. If resistance is controlled by a
single gene with two co-dominant alleles, you would expect a 1:2:1 ratio. Comparing the
observed numbers with the 1:2:1 ratio, the chi-square value is 4.12. There are two degrees
of freedom (the three categories, minus one), so the P value is 0.127; there is no significant
difference from a 1:2:1 ratio.

Mannan and Meslow (1984) studied bird foraging behavior in a forest in Oregon. In a
managed forest, 54% of the canopy volume was Douglas fir, 40% was ponderosa pine, 5%
was grand fir, and 1% was western larch. They made 156 observations of foraging by red-
breasted nuthatches; 70 observations (45% of the total) in Douglas fir, 79 (51%) in
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ponderosa pine, 3 (2%) in grand fir, and 4 (3%) in western larch. The biological null
hypothesis is that the birds forage randomly, without regard to what species of tree
they’re in; the statistical null hypothesis is that the proportions of foraging events are
equal to the proportions of canopy volume. The difference in proportions is significant
(chi-square=13.59, 3 d.f., P=0.0035).

The expected numbers in this example are pretty small, so it would be better to
analyze it with an exact test. I'm leaving it here because it's a good example of an extrinsic
hypothesis that comes from measuring something (canopy volume, in this case), not a
mathematical theory; I've had a hard time finding good examples of this.

Example: intrinsic hypothesis

McDonald (1989) examined variation at the Mpi locus in the amphipod crustacean
Platorchestia platensis collected from a single location on Long Island, New York. There
were two alleles, Mpi» and Mpi~ and the genotype frequencies in samples from multiple
dates pooled together were 1203 Mpi=~, 2919 Mpi=, and 1678 Mpi~=. The estimate of the
Mpi» allele proportion from the data is 5325/11600=0.459. Using the Hardy-Weinberg
formula and this estimated allele proportion, the expected genotype proportions are 0.211
Mpi»=, 0.497 Mpi==, and 0.293 Mpi»w. There are three categories (the three genotypes) and
one parameter estimated from the data (the Mpi~allele proportion), so there is one degree
of freedom. The result is chi-square=1.08, 1 d.f., P=0.299, which is not significant. You
cannot reject the null hypothesis that the data fit the expected Hardy-Weinberg
proportions.

Graphing the results

If there are just two values of the nominal variable, you shouldn’t display the result in
a graph, as that would be a bar graph with just one bar. Instead, just report the
proportion; for example, Groth (1992) found 52.0% left-billed crossbills.

With more than two values of the nominal variable, you should usually present the
results of a goodness-of-fit test in a table of observed and expected proportions. If the
expected values are obvious (such as 50%) or easily calculated from the data (such as
Hardy-Weinberg proportions), you can omit the expected numbers from your table. For a
presentation you'll probably want a graph showing both the observed and expected
proportions, to give a visual impression of how far apart they are. You should use a bar
graph for the observed proportions; the expected can be shown with a horizontal dashed
line, or with bars of a different pattern.

If you want to add error bars to the graph, you should use confidence intervals for a
proportion. Note that the confidence intervals will not be symmetrical, and this will be
particularly obvious if the proportion is near 0 or 1.
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Habitat use in the red-breasted nuthatch.. Gray bars are observed percentages of foraging events in
each tree species, with 95% confidence intervals; black bars are the expected percentages.

Some people use a “stacked bar graph” to show proportions, especially if there are
more than two categories. However, it can make it difficult to compare the sizes of the
observed and expected values for the middle categories, since both their tops and bottoms
are at different levels, so I don’t recommend it.

Similar tests

You use the chi-square test of independence for two nominal variables, not one.

There are several tests that use chi-square statistics. The one described here is formally
known as Pearson’s chi-square. It is by far the most common chi-square test, so it is
usually just called the chi-square test.

You have a choice of three goodness-of-fit tests: the exact test of goodness-of-fit, the G—
test of goodness-of-fit,, or the chi-square test of goodness-of-fit. For small values of the
expected numbers, the chi-square and G-tests are inaccurate, because the distributions of
the test statistics do not fit the chi-square distribution very well.

The usual rule of thumb is that you should use the exact test when the smallest
expected value is less than 5, and the chi-square and G-tests are accurate enough for larger
expected values. This rule of thumb dates from the olden days when people had to do
statistical calculations by hand, and the calculations for the exact test were very tedious
and to be avoided if at all possible. Nowadays, computers make it just as easy to do the
exact test as the computationally simpler chi-square or G—test, unless the sample size is so
large that even computers can’t handle it. I recommend that you use the exact test when
the total sample size is less than 1000. With sample sizes between 50 and 1000 and
expected values greater than 5, it generally doesn’t make a big difference which test you
use, so you shouldn’t criticize someone for using the chi-square or G-test for experiments
where I recommend the exact test. See the web page on small sample sizes for further
discussion.

Chi-square vs. G-test

The chi-square test gives approximately the same results as the G—test. Unlike the chi-
square test, the G values are additive; you can conduct an elaborate experiment in which
the G values of different parts of the experiment add up to an overall G value for the
whole experiment. Chi-square values come close to this, but the chi-square values of
subparts of an experiment don’t add up exactly to the chi-square value for the whole
experiment. G-tests are a subclass of likelihood ratio tests, a general category of tests that
have many uses for testing the fit of data to mathematical models; the more elaborate
versions of likelihood ratio tests don’t have equivalent tests using the Pearson chi-square
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statistic. The ability to do more elaborate statistical analyses is one reason some people
prefer the G—test, even for simpler designs. On the other hand, the chi-square test is more
familiar to more people, and it’s always a good idea to use statistics that your readers are
familiar with when possible. You may want to look at the literature in your field and use
whichever is more commonly used.

Of course, you should not analyze your data with both the G-test and the chi-square
test, then pick whichever gives you the most interesting result; that would be cheating.
Any time you try more than one statistical technique and just use the one that give the
lowest P value, you're increasing your chance of a false positive.

How to do the test
Spreadsheet

I have set up a spreadsheet for the chi-square test of goodness-of-fit
(www .biostathandbook.com/chigof.xls). It is largely self-explanatory. It will calculate the
degrees of freedom for you if you're using an extrinsic null hypothesis; if you are using an
intrinsic hypothesis, you must enter the degrees of freedom into the spreadsheet.

Web pages

There are web pages that will perform the chi-square test
(www.graphpad.com/quickcalcs/chisquared1l/ and vassarstats.net/ csfit.html). None of
these web pages lets you set the degrees of freedom to the appropriate value for testing an
intrinsic null hypothesis.

SAS

Here is a SAS program that uses PROC FREQ for a chi-square test. It uses the Mendel
pea data from above. The “WEIGHT count” tells SAS that the “count” variable is the
number of times each value of “texture” was observed. The ZEROS option tells it to
include observations with counts of zero, for example if you had 20 smooth peas and 0
wrinkled peas; it doesn’t hurt to always include the ZEROS option. CHISQ tells SAS to do
a chi-square test, and TESTP=(75 25); tells it the expected percentages. The expected
percentages must add up to 100. You must give the expected percentages in alphabetical
order: because “smooth” comes before “wrinkled,” you give the expected frequencies for
75% smooth, 25% wrinkled.

DATA peas;
INPUT texture $ count;
DATALINES;
smooth 423
wrinkled 133
14
PROC FREQ DATA=peas;
WEIGHT count / ZEROS;
TABLES texture / CHISQ TESTP=(75 25);
RUN;

Here’s a SAS program that uses PROC FREQ for a chi-square test on raw data, where

you’ve listed each individual observation instead of counting them up yourself. I've used
three dots to indicate that I haven’t shown the complete data set.
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DATA peas;
INPUT texture $;
DATALINES;

smooth

wrinkled

smooth

smooth

wrinkled

smooth

smooth
smooth

14
PROC FREQ DATA=peas;

TABLES texture / CHISQ TESTP=(75 25);
RUN;

The output includes the following:

Chi-Square Test
for Specified Proportions

Chi-Square 0.3453
DF 1
Pr > Chisqg 0.5568

You would report this as “chi-square=0.3453, 1 d.f., P=0.5568.”"

Power analysis

To do a power analysis using the G*Power program, choose “Goodness-of-fit tests:
Contingency tables” from the Statistical Test menu, then choose “Chi-squared tests” from
the Test Family menu. To calculate effect size, click on the Determine button and enter the
null hypothesis proportions in the first column and the proportions you hope to see in the
second column. Then click on the Calculate and Transfer to Main Window button. Set
your alpha and power, and be sure to set the degrees of freedom (Df); for an extrinsic null
hypothesis, that will be the number of rows minus one.

As an example, let’s say you want to do a genetic cross of snapdragons with an
expected 1:2:1 ratio, and you want to be able to detect a pattern with 5% more
heterozygotes that expected. Enter 0.25, 0.50, and 0.25 in the first column, enter 0.225, 0.55,
and 0.225 in the second column, click on Calculate and Transfer to Main Window, enter
0.05 for alpha, 0.80 for power, and 2 for degrees of freedom. If you've done this correctly,
your result should be a total sample size of 964.
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G—test of goodness-of-fit

You use the G—test of goodness-of-fit (also known as the likelihood ratio test, the log-
likelihood ratio test, or the G: test) when you have one nominal variable, you want to see
whether the number of observations in each category fits a theoretical expectation, and the
sample size is large.

When to use it

Use the G-test of goodness-of-fit when you have one nominal variable with two or
more values (such as male and female, or red, pink and white flowers). You compare the
observed counts of numbers of observations in each category with the expected counts,
which you calculate using some kind of theoretical expectation (such as a 1:1 sex ratio or a
1:2:1 ratio in a genetic cross).

If the expected number of observations in any category is too small, the G—test may
give inaccurate results, and you should use an exact test instead. See the web page on
small sample sizes for discussion of what “small” means.

The G—test of goodness-of-fit is an alternative to the chi-square test of goodness-of-fit;
each of these tests has some advantages and some disadvantages, and the results of the
two tests are usually very similar. You should read the section on “Chi-square vs. G-test”
near the bottom of this page, pick either chi-square or G—test, then stick with that choice
for the rest of your life. Much of the information and examples on this page are the same
as on the chi-square test page, so once you've decided which test is better for you, you
only need to read one.

Null hypothesis

The statistical null hypothesis is that the number of observations in each category is
equal to that predicted by a biological theory, and the alternative hypothesis is that the
observed numbers are different from the expected. The null hypothesis is usually an
extrinsic hypothesis, where you know the expected proportions before doing the
experiment. Examples include a 1:1 sex ratio or a 1:2:1 ratio in a genetic cross. Another
example would be looking at an area of shore that had 59% of the area covered in sand,
28% mud and 13% rocks; if you were investigating where seagulls like to stand, your null
hypothesis would be that 59% of the seagulls were standing on sand, 28% on mud and
13% on rocks.

In some situations, you have an intrinsic hypothesis. This is a null hypothesis where
you calculate the expected proportions after the experiment is done, using some of the
information from the data. The best-known example of an intrinsic hypothesis is the
Hardy-Weinberg proportions of population genetics: if the frequency of one allele in a
population is p and the other allele is g, the null hypothesis is that expected frequencies of
the three genotypes are p:, 2pg, and ¢ This is an intrinsic hypothesis, because you estimate
p and g from the data after you collect the data, you can’t predict p and g before the
experiment.
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How the test works

Unlike the exact test of goodness-of-fit, the G—test does not directly calculate the
probability of obtaining the observed results or something more extreme. Instead, like
almost all statistical tests, the G—-test has an intermediate step; it uses the data to calculate a
test statistic that measures how far the observed data are from the null expectation. You
then use a mathematical relationship, in this case the chi-square distribution, to estimate
the probability of obtaining that value of the test statistic.

The G—test uses the log of the ratio of two likelihoods as the test statistic, which is why
it is also called a likelihood ratio test or log-likelihood ratio test. (Likelihood is another
word for probability.) To give an example, let’s say your null hypothesis is a 3:1 ratio of
smooth wings to wrinkled wings in offspring from a bunch of Drosophila crosses. You
observe 770 flies with smooth wings and 230 flies with wrinkled wings. Using the
binomial equation, you can calculate the likelihood of obtaining exactly 770 smooth-
winged flies, if the null hypothesis is true that 75% of the flies should have smooth wings
(L..); itis 0.01011. You can also calculate the likelihood of obtaining exactly 770 smooth-
winged flies if the alternative hypothesis that 77% of the flies should have smooth wings
(L.); it is 0.02997. This alternative hypothesis is that the true proportion of smooth-winged
flies is exactly equal to what you observed in the experiment, so the likelihood under the
alternative hypothesis will be higher than for the null hypothesis. To get the test statistic,
you start with L,,/L,; this ratio will get smaller as L,., gets smaller, which will happen as
the observed results get further from the null expectation. Taking the natural log of this
likelihood ratio, and multiplying it by -2, gives the log-likelihood ratio, or G statistic. It
gets bigger as the observed data get further from the null expectation. For the fly example,
the test statistic is G=2.17. If you had observed 760 smooth-winged flies and 240 wrinkled-
wing flies, which is closer to the null hypothesis, your G value would have been smaller,
at 0.54; if you’d observed 800 smooth-winged and 200 wrinkled-wing flies, which is
further from the null hypothesis, your G value would have been 14.00.

You multiply the log-likelihood ratio by —2 because that makes it approximately fit the
chi-square distribution. This means that once you know the G statistic and the number of
degrees of freedom, you can calculate the probability of getting that value of G using the
chi-square distribution. The number of degrees of freedom is the number of categories
minus one, so for our example (with two categories, smooth and wrinkled) there is one
degree of freedom. Using the CHIDIST function in a spreadsheet, you enter
=CHIDIST(2.17, 1) and calculate that the probability of getting a G value of 2.17 with
one degree of freedom is P=0.140.

Directly calculating each likelihood can be computationally difficult if the sample size
is very large. Fortunately, when you take the ratio of two likelihoods, a bunch of stuff
divides out and the function becomes much simpler: you calculate the G statistic by taking
an observed number (O), dividing it by the expected number (E), then taking the natural
log of this ratio. You do this for the observed number in each category. Multiply each log
by the observed number, sum these products and multiply by 2. The equation is

G = 22[0 x In(0/E)]

The shape of the chi-square distribution depends on the number of degrees of
freedom. For an extrinsic null hypothesis (the much more common situation, where you
know the proportions predicted by the null hypothesis before collecting the data), the
number of degrees of freedom is simply the number of values of the variable, minus one.
Thus if you are testing a null hypothesis of a 1:1 sex ratio, there are two possible values
(male and female), and therefore one degree of freedom. This is because once you know
how many of the total are females (a number which is “free” to vary from 0 to the sample
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size), the number of males is determined. If there are three values of the variable (such as
red, pink, and white), there are two degrees of freedom, and so on.

An intrinsic null hypothesis is one where you estimate one or more parameters from
the data in order to get the numbers for your null hypothesis. As described above, one
example is Hardy-Weinberg proportions. For an intrinsic null hypothesis, the number of
degrees of freedom is calculated by taking the number of values of the variable,
subtracting 1 for each parameter estimated from the data, then subtracting 1 more. Thus
for Hardy-Weinberg proportions with two alleles and three genotypes, there are three
values of the variable (the three genotypes); you subtract one for the parameter estimated
from the data (the allele frequency, p); and then you subtract one more, yielding one
degree of freedom. There are other statistical issues involved in testing fit to Hardy-
Weinberg expectations, so if you need to do this, see Engels (2009) and the older references
he cites.

Post-hoc test

If there are more than two categories and you want to find out which ones are
significantly different from their null expectation, you can use the same method of testing
each category vs. the sum of all categories, with the Bonferroni correction, as I describe for
the exact test. You use G—tests for each category, of course.

Assumptions

The G—test of goodness-of-fit assumes independence, as described for the exact test.

Examples: extrinsic hypothesis

Red crossbills (Loxia curvirostra) have the tip of the upper bill either right or left of the
lower bill, which helps them extract seeds from pine cones. Some have hypothesized that
frequency-dependent selection would keep the number of right and left-billed birds at a
1:1 ratio. Groth (1992) observed 1752 right-billed and 1895 left-billed crossbills.

Calculate the expected frequency of right-billed birds by multiplying the total sample
size (3647) by the expected proportion (0.5) to yield 1823.5. Do the same for left-billed
birds. The number of degrees of freedom when an extrinsic hypothesis is used is the
number of classes minus one. In this case, there are two classes (right and left), so there is
one degree of freedom.

The result is G=5.61, 1 d.f., P=0.018, indicating that the null hypothesis can be rejected;
there are significantly more left-billed crossbills than right-billed.

Shivrain et al. (2006) crossed clearfield rice, which are resistant to the herbicide
imazethapyr, with red rice, which are susceptible to imazethapyr. They then crossed the
hybrid offspring and examined the F. generation, where they found 772 resistant plants,
1611 moderately resistant plants, and 737 susceptible plants. If resistance is controlled by a
single gene with two co-dominant alleles, you would expect a 1:2:1 ratio. Comparing the
observed numbers with the 1:2:1 ratio, the G value is 4.15. There are two degrees of
freedom (the three categories, minus one), so the P value is 0.126; there is no significant
difference from a 1:2:1 ratio.

Mannan and Meslow (1984) studied bird foraging behavior in a forest in Oregon. In a
managed forest, 54% of the canopy volume was Douglas fir, 40% was ponderosa pine, 5%
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was grand fir, and 1% was western larch. They made 156 observations of foraging by red-
breasted nuthatches; 70 observations (45% of the total) in Douglas fir, 79 (51%) in
ponderosa pine, 3 (2%) in grand fir, and 4 (3%) in western larch. The biological null
hypothesis is that the birds forage randomly, without regard to what species of tree
they’re in; the statistical null hypothesis is that the proportions of foraging events are
equal to the proportions of canopy volume. The difference in proportions between
observed and expected is significant (G=13.14, 3 d.f., P=0.0043).

The expected numbers in this example are pretty small, so it would be better to
analyze it with an exact test. I'm leaving it here because it’s a good example of an extrinsic
hypothesis that comes from measuring something (canopy volume, in this case), not a
mathematical theory; I've had a hard time finding good examples of this.

Example: intrinsic hypothesis

McDonald (1989) examined variation at the Mpi locus in the amphipod crustacean
Platorchestia platensis collected from a single location on Long Island, New York. There
were two alleles, Mpi» and Mpi~ and the genotype frequencies in samples from multiple
dates pooled together were 1203 Mpi»~, 2919 Mpi~=, and 1678 Mpi=. The estimate of the
Mpi» allele proportion from the data is 5325/11600=0.459. Using the Hardy-Weinberg
formula and this estimated allele proportion, the expected genotype proportions are 0.211
Mpi»=, 0.497 Mpi==, and 0.293 Mpi»w. There are three categories (the three genotypes) and
one parameter estimated from the data (the Mpi~allele proportion), so there is one degree
of freedom. The result is G=1.03, 1 d.f., P=0.309, which is not significant. You cannot reject
the null hypothesis that the data fit the expected Hardy-Weinberg proportions.

Graphing the results

If there are just two values of the nominal variable, you shouldn’t display the result in
a graph, as that would be a bar graph with just one bar. Instead, just report the
proportion; for example, Groth (1992) found 52.0% left-billed crossbills.

With more than two values of the nominal variable, you should usually present the
results of a goodness-of-fit test in a table of observed and expected proportions. If the
expected values are obvious (such as 50%) or easily calculated from the data (such as
Hardy-Weinberg proportions), you can omit the expected numbers from your table. For a
presentation you’ll probably want a graph showing both the observed and expected
proportions, to give a visual impression of how far apart they are. You should use a bar
graph for the observed proportions; the expected can be shown with a horizontal dashed
line, or with bars of a different pattern.

Some people use a “stacked bar graph” to show proportions, especially if there are
more than two categories. However, it can make it difficult to compare the sizes of the
observed and expected values for the middle categories, since both their tops and bottoms
are at different levels, so I don’t recommend it.

Similar tests

You use the G-test of independence for two nominal variables, not one.

You have a choice of three goodness-of-fit tests: the exact test of goodness-of-fit, the G—
test of goodness-of-fit, or the chi-square test of goodness-of-fit. For small values of the
expected numbers, the chi-square and G-tests are inaccurate, because the distribution of
the test statistics do not fit the chi-square distribution very well.

The usual rule of thumb is that you should use the exact test when the smallest
expected value is less than 5, and the chi-square and G-tests are accurate enough for larger
expected values. This rule of thumb dates from the olden days when people had to do
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statistical calculations by hand, and the calculations for the exact test were very tedious
and to be avoided if at all possible. Nowadays, computers make it just as easy to do the
exact test as the computationally simpler chi-square or G—test, unless the sample size is so
large that even computers can’t handle it. I recommend that you use the exact test when
the total sample size is less than 1000. With sample sizes between 50 and 1000 and
expected values greater than 5, it generally doesn’t make a big difference which test you
use, so you shouldn’t criticize someone for using the chi-square or G-test for experiments
where I recommend the exact test. See the web page on small sample sizes for further
discussion.

Chi-square vs. G-test

The chi-square test gives approximately the same results as the G—test. Unlike the chi-
square test, the G values are additive; you can conduct an elaborate experiment in which
the G values of different parts of the experiment add up to an overall G value for the
whole experiment. Chi-square values come close to this, but the chi-square values of
subparts of an experiment don’t add up exactly to the chi-square value for the whole
experiment. G-tests are a subclass of likelihood ratio tests, a general category of tests that
have many uses for testing the fit of data to mathematical models; the more elaborate
versions of likelihood ratio tests don’t have equivalent tests using the Pearson chi-square
statistic. The ability to do more elaborate statistical analyses is one reason some people
prefer the G—test, even for simpler designs. On the other hand, the chi-square test is more
familiar to more people, and it’s always a good idea to use statistics that your readers are
familiar with when possible. You may want to look at the literature in your field and use
whichever is more commonly used.

Of course, you should not analyze your data with both the G-test and the chi-square
test, then pick whichever gives you the most interesting result; that would be cheating.
Any time you try more than one statistical technique and just use the one that give the
lowest P value, you're increasing your chance of a false positive.

How to do the test

Spreadsheet

I have set up a spreadsheet that does the G-test of goodness-of-fit
(www .biostathandbook.com/ gtestgof.xls). It is largely self-explanatory. It will calculate
the degrees of freedom for you if you're using an extrinsic null hypothesis; if you are
using an intrinsic hypothesis, you must enter the degrees of freedom into the spreadsheet.

Web pages

I'm not aware of any web pages that will do a G—test of goodness-of-fit.

SAS

Surprisingly, SAS does not have an option to do a G-test of goodness-of-fit; the
manual says the G-test is defined only for tests of independence, but this is incorrect.

Power analysis

To do a power analysis using the G*Power program, choose “Goodness-of-fit tests:
Contingency tables” from the Statistical Test menu, then choose “Chi-squared tests” from
the Test Family menu. (The results will be almost identical to a true power analysis for a
G—-test.) To calculate effect size, click on the Determine button and enter the null
hypothesis proportions in the first column and the proportions you hope to see in the
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second column. Then click on the Calculate and Transfer to Main Window button. Set
your alpha and power, and be sure to set the degrees of freedom (Df); for an extrinsic null
hypothesis, that will be the number of rows minus one.

As an example, let’s say you want to do a genetic cross of snapdragons with an
expected 1:2:1 ratio, and you want to be able to detect a pattern with 5% more
heterozygotes that expected. Enter 0.25, 0.50, and 0.25 in the first column, enter 0.225, 0.55,
and 0.225 in the second column, click on Calculate and Transfer to Main Window, enter
0.05 for alpha, 0.80 for power, and 2 for degrees of freedom. If you've done this correctly,
your result should be a total sample size of 964.
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Chi-square test of
independence

Use the chi-square test of independence when you have two nominal variables and
you want to see whether the proportions of one variable are different for different values
of the other variable. Use it when the sample size is large.

When to use it

Use the chi-square test of independence when you have two nominal variables, each
with two or more possible values. You want to know whether the proportions for one
variable are different among values of the other variable. For example, Jackson et al. (2013)
wanted to know whether it is better to give the diphtheria, tetanus and pertussis (DTaP)
vaccine in either the thigh or the arm, so they collected data on severe reactions to this
vaccine in children aged 3 to 6 years old. One nominal variable is severe reaction vs. no
severe reaction; the other nominal variable is thigh vs. arm.

No Percent
severe Severe severe
reaction reaction reaction
Thigh 4758 30 0.63%
Arm 8840 76 0.85%

There is a higher proportion of severe reactions in children vaccinated in the arm; a chi-
square of independence will tell you whether a difference this big is likely to have
occurred by chance.

A data set like this is often called an “RxC table,” where R is the number of rows and C

is the number of columns. This is a 2x2 table. If the results were divided into “no

/i

reaction”, “swelling,” and “pain”, it would have been a 2x3 table, or a 3x2 table; it doesn’t
matter which variable is the columns and which is the rows.

It is also possible to do a chi-square test of independence with more than two nominal
variables. For example, Jackson et al. (2013) also had data for children under 3, so you
could do an analysis of old vs. young, thigh vs. arm, and reaction vs. no reaction, all
analyzed together. That experimental design doesn’t occur very often in experimental
biology and is rather complicated to analyze and interpret, so I don’t cover it in this
handbook (except for the special case of repeated 2x2 tables, analyzed with the Cochran-
Mantel-Haenszel test).

Fisher’s exact test is more accurate than the chi-square test of independence when the
expected numbers are small, so I only recommend the chi-square test if your total sample
size is greater than 1000. See the web page on small sample sizes for further discussion of
what it means to be “small”.
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The chi-square test of independence is an alternative to the G-test of independence,
and they will give approximately the same results. Most of the information on this page is
identical to that on the G—test page. You should read the section on “Chi-square vs. G-
test”, pick either chi-square or G—test, then stick with that choice for the rest of your life.

Null hypothesis

The null hypothesis is that the relative proportions of one variable are independent of
the second variable; in other words, the proportions at one variable are the same for
different values of the second variable. In the vaccination example, the null hypothesis is
that the proportion of children given thigh injections who have severe reactions is equal to
the proportion of children given arm injections who have severe reactions.

How the test works

The math of the chi-square test of independence is the same as for the chi-square test
of goodness-of-fit, only the method of calculating the expected frequencies is different. For
the goodness-of-fit test, you use a theoretical relationship to calculate the expected
frequencies. For the test of independence, you use the observed frequencies to calculate
the expected. For the vaccination example, there are 4758+8840+30+76=13704 total
children, and 30+76=106 of them had reactions. The null hypothesis is therefore that
106/13704=0.7735% of the children given injections in the thigh would have reactions, and
0.7735% of children given injections in the arm would also have reactions. There are
4758+30=4788 children given injections in the thigh, so you expect 0.007735x4788=37.0 of
the thigh children to have reactions, if the null hypothesis is true. You could do the same
kind of calculation for each of the cells in this 2x2 table of numbers.

Once you have each of the four expected numbers, you could compare them to the
observed numbers using the chi-square test, just like you did for the chi-square test of
goodness-of-fit. The result is chi-square=2.04.

To get the P value, you also need the number of degrees of freedom. The degrees of
freedom in a test of independence are equal to (number of rows-1) x (number of
columns)-1. Thus for a 2x2 table, there are (2-1) x (2-1)=1 degree of freedom; for a 4x3
table, there are (4-1) x (3-1)=6 degrees of freedom. For chi-square=2.04 with 1 degree of
freedom, the P value is 0.15, which is not significant; you cannot conclude that 3-to-6-year-
old children given DTaP vaccinations in the thigh have fewer reactions that those given
injections in the arm. (Note that I'm just using the 3-to-6 year olds as an example; Jackson
et al. [2013] also analyzed a much larger number of children less than 3 and found
significantly fewer reactions in children given DTaP in the thigh.)

While in principle, the chi-square test of independence is the same as the test of
goodness-of-fit, in practice, the calculations for the chi-square test of independence use
shortcuts that don’t require calculating the expected frequencies.

Post-hoc tests

When the chi-square test of a table larger than 2x2 is significant (and sometimes when
itisn’t), it is desirable to investigate the data further. MacDonald and Gardner (2000) use
simulated data to test several post-hoc tests for a test of independence, and they found
that pairwise comparisons with Bonferroni corrections of the P values work well. To
illustrate this method, here is a study (Klein et al. 2011) of men who were randomly
assigned to take selenium, vitamin E, both selenium and vitamin E, or placebo, and then
followed up to see whether they developed prostate cancer:
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No Prostate  Percent

cancer  cancer cancer
Selenium 8177 575 6.6%
Vitamin E 8117 620 7.1%
Selenium and E 8147 555 6.4%
Placebo 8167 529 6.1%

The overall 4x2 table has a chi-square value of 7.78 with 3 degrees of freedom, giving a P
value of 0.051. This is not quite significant (by a tiny bit), but it's worthwhile to follow up
to see if there’s anything interesting. There are six possible pairwise comparisons, so you

can do a 2x2 chi-square test for each one and get the following P values:

P value
Selenium vs. vitamin E 0.17
Selenium vs. both 0.61
Selenium vs. placebo 0.19
Vitamin E vs. both 0.06
Vitamin E vs. placebo 0.007
Both vs. placebo 0.42

Because there are six comparisons, the Bonferroni-adjusted P value needed for significance
is 0.05/6, or 0.008. The P value for vitamin E vs. the placebo is less than 0.008, so you can
say that there were significantly more cases of prostate cancer in men taking vitamin E
than men taking the placebo.

For this example, I tested all six possible pairwise comparisons. Klein et al. (2011)
decided before doing the study that they would only look at five pairwise comparisons (all
except selenium vs. vitamin E), so their Bonferroni-adjusted P value would have been
0.05/5, or 0.01. If they had decided ahead of time to just compare each of the three
treatments vs. the placebo, their Bonferroni-adjusted P value would have been 0.05/3, or
0.017. The important thing is to decide before looking at the results how many comparisons
to do, then adjust the P value accordingly. If you don’t decide ahead of time to limit
yourself to particular pairwise comparisons, you need to adjust for the number of all
possible pairs.

Another kind of post-hoc comparison involves testing each value of one nominal
variable vs. the sum of all others. The same principle applies: get the P value for each
comparison, then apply the Bonferroni correction. For example, Latta et al. (2012) collected
birds in remnant riparian habitat (areas along rivers in California with mostly native
vegetation) and restored riparian habitat (once degraded areas that have had native
vegetation re-established). They observed the following numbers (lumping together the
less common bird species as “Uncommon”):
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Remnant Restored
Ruby-crowned kinglet 677 198
White-crowned sparrow 408 260
Lincoln’s sparrow 270 187
Golden-crowned sparrow 300 89
Bushtit 198 91
Song Sparrow 150 50
Spotted towhee 137 32
Bewick’s wren 106 48
Hermit thrush 119 24
Dark-eyed junco 34 39
Lesser goldfinch 57 15
Uncommon 457 125

The overall table yields a chi-square value of 149.8 with 11 degrees of freedom, which
is highly significant (P=2x10+=). That tells us there’s a difference in the species composition
between the remnant and restored habitat, but it would be interesting to see which species

are a significantly higher proportion of the total in each habitat. To do that, do a 2x2 table
for each species vs. all others, like this:

Remnant Restored
Ruby-crowned kinglet 677 198
All others 2236 960
This gives the following P values:
P value

Ruby-crowned kinglet 0.000017

White-crowned sparrow 5.2x10+

Lincoln’s sparrow 3.5x10~

Golden-crowned sparrow  0.011

Bushtit 0.23

Song Sparrow 0.27

Spotted towhee 0.0051

Bewick’s wren 0.44

Hermit thrush 0.0017

Dark-eyed junco 1.8x10«

Lesser goldfinch 0.15

Uncommon 0.00006

Because there are 12 comparisons, applying the Bonferroni correction means that a P
value has to be less than 0.05/12=0.0042 to be significant at the P<0.05 level, so six of the
12 species show a significant difference between the habitats.

When there are more than two rows and more than two columns, you may want to do
all possible pairwise comparisons of rows and all possible pairwise comparisons of
columns; in that case, simply use the total number of pairwise comparisons in your
Bonferroni correction of the P value. There are also several techniques that test whether a
particular cell in an RxC table deviates significantly from expected; see MacDonald and
Gardner (2000) for details.
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Assumptions

The chi-square test of independence, like other tests of independence, assumes that the
individual observations are independent.

Examples

Bambach et al. (2013) analyzed data on all bicycle accidents involving collisions with
motor vehicles in New South Wales, Australia during 2001-2009. Their very extensive
multi-variable analysis includes the following numbers, which I picked out both to use as

an example of a 2x2 table and to convince you to wear your bicycle helmet:

Percent
Head Other head
injury injury injury
Wearing helmet 372 4715 7.3%
No helmet 267 1391 16.1%

The results are chi-square=112.7, 1 degree of freedom, P=3x10+=, meaning that bicyclists
who were not wearing a helmet have a higher proportion of head injuries.

Gardemann et al. (1998) surveyed genotypes at an insertion/ deletion polymorphism
of the apolipoprotein B signal peptide in 2259 men. The nominal variables are genotype
(ins/ins, ins/del, del/del) and coronary artery disease (with or without disease). The data
are:

Coronary
No artery Percent
disease disease disease
ins/ins 268 807 24.9%
ins/del 199 759 0.8%
del/del 42 184 18.6%

The biological null hypothesis is that the apolipoprotein polymorphism doesn’t affect
the likelihood of getting coronary artery disease. The statistical null hypothesis is that the
proportions of men with coronary artery disease are the same for each of the three
genotypes.

The result is chi-square=7.26, 2 d.f., P=0.027. This indicates that you can reject the null
hypothesis; the three genotypes have significantly different proportions of men with
coronary artery disease.

Graphing the results

You should usually display the data used in a test of independence with a bar graph,
with the values of one variable on the X-axis and the proportions of the other variable on
the Y-axis. If the variable on the Y-axis only has two values, you only need to plot one of
them. In the example below, there would be no point in plotting both the percentage of
men with prostate cancer and the percentage without prostate cancer; once you know
what percentage have cancer, you can figure out how many didn’t have cancer.
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Prostate cancer (percent)

N W A OO N O

Selenium Vitamin E Selenium+E Placebo

A bar graph for when the nominal variable has only two values, showing the percentage of men on
different treatments who developed prostate cancer. Error bars are 95% confidence intervals.

If the variable on the Y-axis has more than two values, you should plot all of them.
Some people use pie charts for this, as illustrated by the data on bird landing sites from

the Fisher’s exact test page:

Herons Egrets

OVegetation
OShoreline
BWwater

B Structures

A pie chart for when the nominal variable has more than two values. The percentage of birds
landing on each type of landing site is shown for herons and egrets.

But as much as I like pie, I think pie charts make it difficult to see small differences in the
proportions, and difficult to show confidence intervals. In this situation, I prefer bar

graphs:

40

35 1

Landing site (percent)

30 1
25 1
20 1
15 1
10 1

Vegetation Shoreline Water  Structures

A bar graph for when the nominal variable has more than two values. The percentage of birds
landing on each type of landing site is shown for herons (gray bars) and egrets (black bars).
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Similar tests

There are several tests that use chi-square statistics. The one described here is formally
known as Pearson’s chi-square. It is by far the most common chi-square test, so it is
usually just called the chi-square test.

The chi-square test may be used both as a test of goodness-of-fit (comparing
frequencies of one nominal variable to theoretical expectations) and as a test of
independence (comparing frequencies of one nominal variable for different values of a
second nominal variable). The underlying arithmetic of the test is the same; the only
difference is the way you calculate the expected values. However, you use goodness-of-fit
tests and tests of independence for quite different experimental designs and they test
different null hypotheses, so I treat the chi-square test of goodness-of-fit and the chi-
square test of independence as two distinct statistical tests.

If the expected numbers in some classes are small, the chi-square test will give
inaccurate results. In that case, you should use Fisher’s exact test. I recommend using the
chi-square test only when the total sample size is greater than 1000, and using Fisher’s
exact test for everything smaller than that. See the web page on small sample sizes for
further discussion.

If the samples are not independent, but instead are before-and-after observations on
the same individuals, you should use McNemar’s test.

Chi-square vs. G-test

The chi-square test gives approximately the same results as the G—test. Unlike the chi-
square test, G values are additive, which means they can be used for more elaborate
statistical designs. G-tests are a subclass of likelihood ratio tests, a general category of
tests that have many uses for testing the fit of data to mathematical models; the more
elaborate versions of likelihood ratio tests don’t have equivalent tests using the Pearson
chi-square statistic. The G-test is therefore preferred by many, even for simpler designs.
On the other hand, the chi-square test is more familiar to more people, and it’s always a
good idea to use statistics that your readers are familiar with when possible. You may
want to look at the literature in your field and see which is more commonly used.

How to do the test
Spreadsheet

I have set up a spreadsheet that performs this test for up to 10 columns and 50 rows
(www .biostathandbook.com/chiind.xls). It is largely self-explanatory; you just enter you
observed numbers, and the spreadsheet calculates the chi-squared test statistic, the
degrees of freedom, and the P value.

Web page
There are many web pages that do chi-squared tests of independence, but most are

limited to fairly small numbers of rows and columns. A page that will do up to a 10x10
table is at www.quantpsy.org/ chisq/chisq.htm.

SAS

Here is a SAS program that uses PROC FREQ for a chi-square test. It uses the
apolipoprotein B data from above.
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DATA cad;
INPUT genotype $ health $ count;
DATALINES;

ins-ins no_disease 268

ins-ins disease 807

ins-del no_disease 199

ins-del disease 759

del-del no disease 42

del-del disease 184
PROC FREQ DATA=cad;
WEIGHT count / ZEROS;
TABLES genotype*health / CHISQ;
RUN;
The output includes the following:

Statistics for Table of genotype by health

Statistic DF Value Prob
Chi-Square 2 7.2594 0.0265
Likelihood Ratio Chi-Square 2 7.3008 0.0260
Mantel-Haenszel Chi-Square 1 7.0231 0.0080
Phi Coefficient 0.0567
Contingency Coefficient 0.0566
Cramer’'s V 0.0567

The “Chi-Square” on the first line is the P value for the chi-square test; in this case, chi-
square=7.2594, 2 d.f., P=0.0265.

Power analysis

If each nominal variable has just two values (a 2x2 table), use the power analysis for
Fisher’s exact test. It will work even if the sample size you end up needing is too big for a
Fisher’s exact test.

For a test with more than 2 rows or columns, use G*Power to calculate the sample size
needed for a test of independence. Under Test Family, choose chi-square tests, and under
Statistical Test, choose Goodness-of-Fit Tests: Contingency Tables. Under Type of Power
Analysis, choose A Priori: Compute Required Sample Size.

You next need to calculate the effect size parameter w. You can do this in G*Power if
you have just two columns; if you have more than two columns, use the chi-square
spreadsheet (www.biostathandbook.com/ chiind.xls). In either case, enter made-up
proportions that look like what you hope to detect. This made-up data should have
proportions equal to what you expect to see, and the difference in proportions between
different categories should be the minimum size that you hope to see. G*Power or the
spreadsheet will give you the value of w, which you enter into the "Effect Size w" box in
G*Power.

Finally, enter your alpha (usually 0.05), your power (often 0.8 or 0.9), and your degrees
of freedom (for a test with R rows and C columns, remember that degrees of freedom is
(R-1)x(C-1)), then hit Calculate. This analysis assumes that your total sample will be
divided equally among the groups; if it isn’t, you'll need a larger sample size than the one
you estimate.

As an example, let’s say you're looking for a relationship between bladder cancer and
genotypes at a polymorphism in the catechol-O-methyltransferase gene in humans. In the
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population you're studying, you know that the genotype frequencies in people without
bladder cancer are 0.36 GG, 0.48 GA, and 0.16 AA; you want to know how many people
with bladder cancer you’ll have to genotype to get a significant result if they have 6%
more AA genotypes. Enter 0.36, 0.48, and 0.16 in the first column of the spreadsheet, and
0.33, 0.45, and 0.22 in the second column; the effect size (w) is 0.10838. Enter this in the
G*Power page, enter 0.05 for alpha, 0.80 for power, and 2 for degrees of freedom. The
result is a total sample size of 821, so you'll need 411 people with bladder cancer and 411
people without bladder cancer.
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G—test of independence

Use the G-test of independence when you have two nominal variables and you want
to see whether the proportions of one variable are different for different values of the
other variable. Use it when the sample size is large.

When to use it

Use the G-test of independence when you have two nominal variables, each with two
or more possible values. You want to know whether the proportions for one variable are
different among values of the other variable. For example, Jackson et al. (2013) wanted to
know whether it is better to give the diphtheria, tetanus and pertussis (DTaP) vaccine in
either the thigh or the arm, so they collected data on severe reactions to this vaccine in
children aged 3 to 6 years old. One nominal variable is severe reaction vs. no severe
reaction; the other nominal variable is thigh vs. arm.

No Percent
severe Severe severe
reaction reaction reaction
Thigh 4758 30 0.63%
Arm 8840 76 0.85%

There is a higher proportion of severe reactions in children vaccinated in the arm; a G—test
of independence will tell you whether a difference this big is likely to have occurred by
chance.

A data set like this is often called an “RxC table,” where R is the number of rows and C
is the number of columns. This is a 2x2 table. If the results had been divided into “no

/i

reaction”, “swelling,” and “pain”, it would have been a 2x3 table, or a 3x2 table; it doesn’t
matter which variable is the columns and which is the rows.

It is also possible to do a G-test of independence with more than two nominal
variables. For example, Jackson et al. (2013) also had data for children under 3, so you
could do an analysis of old vs. young, thigh vs. arm, and reaction vs. no reaction, all
analyzed together. That experimental design doesn’t occur very often in experimental
biology and is rather complicated to analyze and interpret, so I don’t cover it here (except
for the special case of repeated 2x2 tables, analyzed with the Cochran-Mantel-Haenszel
test).

Fisher’s exact test is more accurate than the G-test of independence when the expected
numbers are small, so I only recommend the G-test if your total sample size is greater
than 1000. See the web page on small sample sizes for further discussion of what it means
to be “small”.

The G—test of independence is an alternative to the chi-square test of independence,
and they will give approximately the same results. Most of the information on this page is
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identical to that on the chi-square page. You should read the section on “Chi-square vs. G-
test”, pick either chi-square or G-test, then stick with that choice for the rest of your life.

Null hypothesis

The null hypothesis is that the relative proportions of one variable are independent of
the second variable; in other words, the proportions at one variable are the same for
different values of the second variable. In the vaccination example, the null hypothesis is
that the proportion of children given thigh injections who have severe reactions is equal to
the proportion of children given arm injections who have severe reactions.

How the test works

The math of the G-test of independence is the same as for the G—test of goodness-of-fit,
only the method of calculating the expected frequencies is different. For the goodness-of-
fit test, you use a theoretical relationship to calculate the expected frequencies. For the test
of independence, you use the observed frequencies to calculate the expected. For the
vaccination example, there are 4758+8840+30+76=13704 total children, and 30+76=106 of
them had reactions. The null hypothesis is therefore that 106/13704=0.7735% of the
children given injections in the thigh would have reactions, and 0.7735% of children given
injections in the arm would also have reactions. There are 4758+30=4788 children given
injections in the thigh, so you expect 0.007735x 4788=37.0 of the thigh children to have
reactions, if the null hypothesis is true. You could do the same kind of calculation for each
of the cells in this 2x2 table of numbers.

Once you have each of the four expected numbers, you could compare them to the
observed numbers using the G—test, just like you did for the G—test of goodness-of-fit. The
result is G=2.14.

To get the P value, you also need the number of degrees of freedom. The degrees of
freedom in a test of independence are equal to (number of rows-1)x (number of columns)-
1. Thus for a 2x2 table, there are (2-1)x(2-1)=1 degree of freedom; for a 4x3 table, there are
(4-1)x(3-1)=6 degrees of freedom. For G=2.14 with 1 degree of freedom, the P value is
0.14, which is not significant; you cannot conclude that 3-to-6-year-old children given
DTaP vaccinations in the thigh have fewer reactions that those given injections in the arm.
(Note that I'm just using the 3-to-6 year olds as an example; Jackson et al. [2013] also
analyzed a much larger number of children less than 3 and found significantly fewer
reactions in children given DTaP in the thigh.)

While in principle, the G—test of independence is the same as the test of goodness-of-
fit, in practice, the calculations for the G—test of independence use shortcuts that don’t
require calculating the expected frequencies.

Post-hoc tests

When the G—test of a table larger than 2x2 is significant (and sometimes when it isn’t
significant), it is desirable to investigate the data further. MacDonald and Gardner (2000)
use simulated data to test several post-hoc tests for a test of independence, and they found
that pairwise comparisons with Bonferroni corrections of the P values work well. To
illustrate this method, here is a study (Klein et al. 2011) of men who were randomly
assigned to take selenium, vitamin E, both selenium and vitamin E, or placebo, and then
followed up to see whether they developed prostate cancer:
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No Prostate  Percent
cancer  cancer cancer
Selenium 8177 575 6.6%
Vitamin E 8117 620 7.1%
Selenium and E 8147 555 6.4%
Placebo 8167 529 6.1%

The overall 4x2 table has a G value of 7.73 with 3 degrees of freedom, giving a P value of

0.052. This is not quite significant (by a tiny bit), but it's worthwhile to follow up to see if

there’s anything interesting. There are six possible pairwise comparisons, so you can do a
2x2 G-test for each one and get the following P values:

P value
Selenium vs. vitamin E 0.17
Selenium vs. both 0.61
Selenium vs. placebo 0.19
Vitamin E vs. both 0.06
Vitamin E vs. placebo 0.007
Both vs. placebo 0.42

Because there are six comparisons, the Bonferroni-adjusted P value needed for significance
is 0.05/6, or 0.008. The P value for vitamin E vs. the placebo is less than 0.008, so you can
say that there were significantly more cases of prostate cancer in men taking vitamin E
than men taking the placebo.

For this example, I tested all six possible pairwise comparisons. Klein et al. (2011)
decided before doing the study that they would only look at five pairwise comparisons (all
except selenium vs. vitamin E), so their Bonferroni-adjusted P value would have been
0.05/5, or 0.01. If they had decided ahead of time to just compare each of the three
treatments vs. the placebo, their Bonferroni-adjusted P value would have been 0.05/3, or
0.017. The important thing is to decide before looking at the results how many comparisons
to do, then adjust the P value accordingly. If you don’t decide ahead of time to limit
yourself to particular pairwise comparisons, you need to adjust for the number of all
possible pairs.

Another kind of post-hoc comparison involves testing each value of one nominal
variable vs. the sum of all others. The same principle applies: get the P value for each
comparison, then apply the Bonferroni correction. For example, Latta et al. (2012) collected
birds in remnant riparian habitat (areas along rivers in California with mostly native
vegetation) and restored riparian habitat (once degraded areas that have had native
vegetation re-established). They observed the following numbers (lumping together the
less common bird species as “Uncommon”):
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Remnant Restored
Ruby-crowned kinglet 677 198
White-crowned sparrow 408 260
Lincoln’s sparrow 270 187
Golden-crowned sparrow 300 89
Bushtit 198 91
Song Sparrow 150 50
Spotted towhee 137 32
Bewick’s wren 106 48
Hermit thrush 119 24
Dark-eyed junco 34 39
Lesser goldfinch 57 15
Uncommon 457 125

The overall table yields a G value of 146.5 with 11 degrees of freedom, which is highly
significant (P=7x10=). That tells us there’s a difference in the species composition between
the remnant and restored habitat, but it would be interesting to see which species are a

significantly higher proportion of the total in each habitat. To do that, do a 2x2 table for
each species vs. all others, like this:

Remnant Restored
Ruby-crowned kinglet 677 198
All others 2236 960
This gives the following P values:
P value

Ruby-crowned kinglet 0.000017

White-crowned sparrow 5.2x10+

Lincoln’s sparrow 3.5x10-

Golden-crowned sparrow  0.011

Bushtit 0.23

Song Sparrow 0.27

Spotted towhee 0.0051

Bewick’s wren 0.44

Hermit thrush 0.0017

Dark-eyed junco 1.8x10«

Lesser goldfinch 0.15

Uncommon 0.00006

Because there are 12 comparisons, applying the Bonferroni correction means that a P
value has to be less than 0.05/12=0.0042 to be significant at the P<0.05 level, so six of the
12 species show a significant difference between the habitats.

When there are more than two rows and more than two columns, you may want to do
all possible pairwise comparisons of rows and all possible pairwise comparisons of
columns; in that case, simply use the total number of pairwise comparisons in your
Bonferroni correction of the P value. There are also several techniques that test whether a
particular cell in an RxC table deviates significantly from expected; see MacDonald and
Gardner (2000) for details.
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Assumption

The G—test of independence, like other tests of independence, assumes that the
individual observations are independent.

Examples

Bambach et al. (2013) analyzed data on all bicycle accidents involving collisions with
motor vehicles in New South Wales, Australia during 2001-2009. Their very extensive
multi-variable analysis includes the following numbers, which I picked out both to use as

an example of a 2x 2 table and to convince you to wear your bicycle helmet:

Percent
Head Other head
injury injury injury
Wearing helmet 372 4715 7.3%
No helmet 267 1391 16.1%

The results are G=101.5, 1 degree of freedom, P=7x10+, meaning that bicyclists who were
not wearing a helmet have a higher proportion of head injuries.

Gardemann et al. (1998) surveyed genotypes at an insertion/deletion polymorphism
of the apolipoprotein B signal peptide in 2259 men. The nominal variables are genotype
(ins/ins, ins/del, del/del) and coronary artery disease (with or without disease). The data
are:

Coronary
No artery Percent
disease disease disease
ins/ins 268 807 24.9%
ins/del 199 759 0.8%
del/del 42 184 18.6%

The biological null hypothesis is that the apolipoprotein polymorphism doesn’t affect
the likelihood of getting coronary artery disease. The statistical null hypothesis is that the
proportions of men with coronary artery disease are the same for each of the three
genotypes.

The result of the G—test of independence is G=7.30, 2 d.f., P=0.026. This indicates that
the you can reject the null hypothesis; the three genotypes have significantly different
proportions of men with coronary artery disease.

Graphing the results

You should usually display the data used in a test of independence with a bar graph,
with the values of one variable on the X-axis and the proportions of the other variable on
the Y-axis. If the variable on the Y-axis only has two values, you only need to plot one of
them. In the example below, there would be no point in plotting both the percentage of
men with prostate cancer and the percentage without prostate cancer; once you know
what percentage have cancer, you can figure out how many didn’t have cancer.
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N W & OO0 O N O

Prostate cancer (percent)

Selenium Vitamin E Selenium+E Placebo

A bar graph for when the nominal variable has only two values, showing the percentage of men on
different treatments who developed prostate cancer. Error bars are 95% confidence intervals.

If the variable on the Y-axis has more than two values, you should plot all of them.

Some people use pie charts for this, as illustrated by the data on bird landing sites from
the Fisher’s exact test page:

Herons Egrets

OVegetation
OShoreline
BWater

8B Structures

A pie chart for when the nominal variable has more than two values. The percentage of birds
landing on each type of landing site is shown for herons and egrets.

But as much as I like pie, I think pie charts make it difficult to see small differences in the

proportions, and difficult to show confidence intervals. In this situation, I prefer bar
graphs:

40

35 1
30 1
25 1
20 1
15 1
10 1

Landing site (percent)

Vegetation Shoreline Water  Structures

A bar graph for when the nominal variable has more than two values. The percentage of birds
landing on each type of landing site is shown for herons (gray bars) and egrets (black bars).
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Similar tests

You can use the G-test both as a test of goodness-of-fit (comparing frequencies of one
nominal variable to theoretical expectations) and as a test of independence (comparing
frequencies of one nominal variable for different values of a second nominal variable). The
underlying arithmetic of the test is the same; the only difference is the way you calculate
the expected values. However, you use goodness-of-fit tests and tests of independence for
quite different experimental designs and they test different null hypotheses, so I treat the
G-test of goodness-of-fit and the G—test of independence as two distinct statistical tests.

If the expected numbers in some classes are small, the G—test will give inaccurate
results. In that case, you should use Fisher’s exact test. I recommend using the G—test only
when the total sample size is greater than 1000, and using Fisher’s exact test for everything
smaller than that. See the web page on small sample sizes for further discussion.

If the samples are not independent, but instead are before-and-after observations on
the same individuals, you should use McNemar’s test.

Chi-square vs. G-test

The chi-square test gives approximately the same results as the G—test. Unlike the chi-
square test, G values are additive, which means they can be used for more elaborate
statistical designs. G-tests are a subclass of likelihood ratio tests, a general category of
tests that have many uses for testing the fit of data to mathematical models; the more
elaborate versions of likelihood ratio tests don’t have equivalent tests using the Pearson
chi-square statistic. The G-test is therefore preferred by many, even for simpler designs.
On the other hand, the chi-square test is more familiar to more people, and it’s always a
good idea to use statistics that your readers are familiar with when possible. You may
want to look at the literature in your field and see which is more commonly used.

How to do the test
Spreadsheet

I have set up an Excel spreadsheet that performs this test for up to 10 columns and 50
rows (www.biostathandbook.com / gtestind.xls). It is largely self-explanatory; you just
enter you observed numbers, and the spreadsheet calculates the G—test statistic, the
degrees of freedom, and the P value.

Web pages

I am not aware of any web pages that will do G-tests of independence.

SAS

Here is a SAS program that uses PROC FREQ for a G—test. It uses the apolipoprotein B
data from above.
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DATA cad;
INPUT genotype $ health $ count;
DATALINES;

ins-ins no_disease 268

ins-ins disease 807

ins-del no_disease 199

ins-del disease 759

del-del no disease 42

del-del disease 184

I
PROC FREQ DATA=cad;

WEIGHT count / ZEROS;

TABLES genotype*health / CHISQ;
RUN;

The output includes the following:

Statistics for Table of genotype by health

Statistic DF Value Prob
Chi-Square 2 7.2594 0.0265
Likelihood Ratio Chi-Square 2 7.3008 0.0260
Mantel-Haenszel Chi-Square 1 7.0231 0.0080
Phi Coefficient 0.0567
Contingency Coefficient 0.0566
Cramer’'s V 0.0567

The “Likelihood Ratio Chi-Square” is what SAS calls the G—test; in this case, G=7.3008, 2
d.f., P=0.0260.

Power analysis

If each nominal variable has just two values (a 2x2 table), use the power analysis for
Fisher’s exact test. It will work even if the sample size you end up needing is too big for a
Fisher’s exact test.

If either nominal variable has more than two values, use the power analysis for chi-
squared tests of independence. The results will be close enough to a true power analysis
for a G—test.
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Fisher’s exact test of
independence

Use Fisher’s exact test of independence when you have two nominal variables and you
want to see whether the proportions of one variable are different depending on the value
of the other variable. Use it when the sample size is small.

When to use it

Use Fisher’s exact test when you have two nominal variables. You want to know
whether the proportions for one variable are different among values of the other variable.
For example, van Nood et al. (2013) studied patients with Clostridium difficile infections,
which cause persistent diarrhea. One nominal variable was the treatment: some patients
were given the antibiotic vancomycin, and some patients were given a fecal transplant.
The other nominal variable was outcome: each patient was either cured or not cured. The
percentage of people who received one fecal transplant and were cured (13 out of 16, or
81%) is higher than the percentage of people who received vancomycin and were cured (4
out of 13, or 31%), which seems promising, but the sample sizes seem kind of small.
Fisher’s exact test will tell you whether this difference between 81 and 31% is statistically
significant.

A data set like this is often called an “RxC table,” where R is the number of rows and C
is the number of columns. The fecal-transplant vs. vancomycin data I'm using as an

example is a 2x2 table. van Nood et al. (2013) actually had a third treatment, 13 people

given vancomycin plus a bowel lavage, making the total data set a 2x3 table (or a 3x2
table; it doesn’t matter which variable you call the rows and which the columns). The most
common use of Fisher’s exact test is for 2x2 tables, so that’s mostly what I'll describe here.

Fisher’s exact test is more accurate than the chi-square test or G-test of independence
when the expected numbers are small. I recommend you use Fisher’s exact test when the
total sample size is less than 1000, and use the chi-square or G—test for larger sample sizes.
See the web page on small sample sizes for further discussion of what it means to be
“small”.

Null hypothesis

The null hypothesis is that the relative proportions of one variable are independent of
the second variable; in other words, the proportions at one variable are the same for
different values of the second variable. In the C. difficile example, the null hypothesis is
that the probability of getting cured is the same whether you receive a fecal transplant or
vancomycin.
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How the test works

Unlike most statistical tests, Fisher’s exact test does not use a mathematical function
that estimates the probability of a value of a test statistic; instead, you calculate the
probability of getting the observed data, and all data sets with more extreme deviations,
under the null hypothesis that the proportions are the same. For the C. difficile experiment,
there are 3 sick and 13 cured fecal-transplant patients, and 9 sick and 4 cured vancomycin
patients. Given that there are 16 total fecal-transplant patients, 13 total vancomycin
patients, and 12 total sick patients, you can use the “hypogeometric distribution” (please
don’t ask me to explain it) to calculate the probability of getting these numbers:

transplant vancomycin
sick 3 9
cured 13 3
P of these exact numbers: 0.00772

Next you calculate the probability of more extreme ways of distributing the 12 sick people:

transplant vancomycin
sick 2 10
cured 14 2
P of these exact numbers: 0.000661

transplant vancomycin
sick 1 11
cured 15 1
P of these exact numbers: 0.0000240

transplant vancomycin
sick 0 12
cured 16 0
P of these exact numbers: 0.000000251

To calculate the probability of 3, 2, 1, or 0 sick people in the fecal-transplant group, you
add the four probabilities together to get P=0.00840. This is the one-tailed P value, which
is hardly ever what you want. In our example experiment, you would use a one-tailed test
only if you decided, before doing the experiment, that you were only interested in a result
that had fecal transplants being better than vancomycin, not if fecal transplants were
worse; in other words, you decided ahead of time that your null hypothesis was that the
proportion of sick fecal transplant people was the same as, or greater than, sick
vancomycin people. Ruxton and Neuhauser (2010) surveyed articles in the journal
Behavioral Ecology and Sociobiology and found several that reported the results of one-
tailed Fisher’s exact tests, even though two-tailed would have been more appropriate.
Apparently some statistics textbooks and programs perpetuate confusion about one-tailed
vs. two-tailed Fisher’s tests. You should almost always use a two-tailed test, unless you
have a very good reason to use the one-tailed test.

For the usual two-tailed test, you also calculate the probability of getting deviations as
extreme as the observed, but in the opposite direction. This raises the issue of how to
measure “extremeness.” There are several different techniques, but the most common is to
add together the probabilities of all combinations that have lower probabilities than that of
the observed data. Martin Andrés and Herranz Tejedor (1995) did some computer
simulations that show that this is the best technique, and it’s the technique used by SAS
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and most of the web pages I've seen. For our fecal example, the extreme deviations in the
opposite direction are those with P<0.00772, which are the tables with 0 or 1 sick
vancomycin people. These tables have P=0.000035 and P=0.00109, respectively. Adding
these to the one-tailed P value (P=0.00840) gives you the two-tailed P value, P=0.00953.

Post-hoc tests

When analyzing a table with more than two rows or columns, a significant result will
tell you that there is something interesting going on, but you will probably want to test the
data in more detail. For example, Fredericks (2012) wanted to know whether checking
termite monitoring stations frequently would scare termites away and make it harder to
detect termites. He checked the stations (small bits of wood in plastic tubes, placed in the
ground near termite colonies) either every day, every week, every month, or just once at
the end of the three-month study, and recorded how many had termite damage by the end
of the study:

Percent
Damaged Undamaged damaged
Daily 1 24 4%
Weekly 5 20 20%
Monthly 14 11 56%
Quarterly 11 14 44%

The overall P value for this is P=0.00012, so it is highly significant; the frequency of
disturbance is affecting the presence of termites. That’s nice to know, but you’d probably
want to ask additional questions, such as whether the difference between daily and
weekly was significant, or the difference between weekly and monthly. You could do a

2x2 Fisher’s exact test for each of these pairwise comparisons, but there are 6 possible
pairs, so you need to correct for the multiple comparisons. One way to do this is with a
modification of the Bonferroni-corrected pairwise technique suggested by MacDonald
and Gardner (2000), substituting Fisher’s exact test for the chi-square test they used. You
do a Fisher’s exact test on each of the 6 possible pairwise comparisons (daily vs. weekly,
daily vs. monthly, etc.), then apply the Bonferroni correction for multiple tests. With 6
pairwise comparisons, the P value must be less than 0.05/6, or 0.008, to be significant at
the P<0.05 level. Two comparisons (daily vs. monthly and daily vs. quarterly) are
therefore significant

P value
Daily vs. weekly  0.189
Daily vs. monthly ~ 0.00010
Daily vs. quarterly ~ 0.0019
Weekly vs. monthly  0.019
Weekly vs. quarterly  0.128
Monthly vs. quarterly ~ 0.57

You could have decided, before doing the experiment, that testing all possible pairs
would make it too hard to find a significant difference, so instead you would just test each
treatment vs. quarterly. This would mean there were only 3 possible pairs, so each
pairwise P value would have to be less than 0.05/3, or 0.017, to be significant. That would
give you more power, but it would also mean that you couldn’t change your mind after
you saw the data and decide to compare daily vs. monthly.
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Assumptions

Independence

Fisher’s exact test, like other tests of independence, assumes that the individual
observations are independent.

Fixed totals

Unlike other tests of independence, Fisher’s exact test assumes that the row and
column totals are fixed, or “conditioned.” An example would be putting 12 female hermit
crabs and 9 male hermit crabs in an aquarium with 7 red snail shells and 14 blue snail
shells, then counting how many crabs of each sex chose each color (you know that each
hermit crab will pick one shell to live in). The total number of female crabs is fixed at 12,
the total number of male crabs is fixed at 9, the total number of red shells is fixed at 7, and
the total number of blue shells is fixed at 14. You know, before doing the experiment, what
these totals will be; the only thing you don’t know is how many of each sex-color
combination there are.

There are very few biological experiments where both the row and column totals are
conditioned. In the much more common design, one or two of the row or column totals
are free to vary, or “unconditioned.” For example, in our C. difficile experiment above, the
numbers of people given each treatment are fixed (16 given a fecal transplant, 13 given
vancomycin), but the total number of people who are cured could have been anything
from 0 to 29. In the moray eel experiment below, both the total number of each species of
eel, and the total number of eels in each habitat, are unconditioned.

When one or both of the row or column totals are unconditioned, the Fisher’s exact test
is not, strictly speaking, exact. Instead, it is somewhat conservative, meaning that if the
null hypothesis is true, you will get a significant (P<0.05) P value less than 5% of the time.
This makes it a little less powerful (harder to detect a real difference from the null, when
there is one). Statisticians continue to argue about alternatives to Fisher’s exact test, but
the improvements seem pretty small for reasonable sample sizes, with the considerable
cost of explaining to your readers why you are using an obscure statistical test instead of
the familiar Fisher’s exact test. I think most biologists, if they saw you get a significant
result using Barnard’s test, or Boschloo’s test, or Santner and Snell’s test, or Suissa and
Shuster’s test, or any of the many other alternatives, would quickly run your numbers
through Fisher’s exact test. If your data weren’t significant with Fisher’s but were
significant with your fancy alternative test, they would suspect that you fished around
until you found a test that gave you the result you wanted, which would be highly evil.
Even though you may have really decided on the obscure test ahead of time, you don't
want cynical people to think you're evil, so stick with Fisher’s exact test.

Examples

The eastern chipmunk trills when pursued by a predator, possibly to warn other
chipmunks. Burke da Silva et al. (2002) released chipmunks either 10 or 100 meters from
their home burrow, then chased them (to simulate predator pursuit). Out of 24 female
chipmunks released 10 m from their burrow, 16 trilled and 8 did not trill. When released
100 m from their burrow, only 3 female chipmunks trilled, while 18 did not trill. The two
nominal variables are thus distance from the home burrow (because there are only two
values, distance is a nominal variable in this experiment) and trill vs. no trill. Applying
Fisher’s exact test, the proportion of chipmunks trilling is significantly higher (P=0.0007)
when they are closer to their burrow.
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McDonald and Kreitman (1991) sequenced the alcohol dehydrogenase gene in several
individuals of three species of Drosophila. Varying sites were classified as synonymous (the
nucleotide variation does not change an amino acid) or amino acid replacements, and they
were also classified as polymorphic (varying within a species) or fixed differences
between species. The two nominal variables are thus substitution type (synonymous or
replacement) and variation type (polymorphic or fixed). In the absence of natural
selection, the ratio of synonymous to replacement sites should be the same for
polymorphisms and fixed differences. There were 43 synonymous polymorphisms, 2
replacement polymorphisms, 17 synonymous fixed differences, and 7 replacement fixed
differences.

Synonymous Replacement
Polymorphisms 43 2
Fixed differences 17 7

The result is P=0.0067, indicating that the null hypothesis can be rejected; there is a
significant difference in synonymous/replacement ratio between polymorphisms and
fixed differences. (Note that we used a G-test of independence in the original McDonald
and Kreitman [1991] paper, which is a little embarrassing in retrospect, since I'm now
telling you to use Fisher’s exact test for such small sample sizes; fortunately, the P value
we got then, P=0.006, is almost the same as with the more appropriate Fisher’s test.)

Descamps et al. (2009) tagged 50 king penguins (Aptenodytes patagonicus) in each of
three nesting areas (lower, middle, and upper) on Possession Island in the Crozet
Archipelago, then counted the number that were still alive a year later, with these results:

Alive  Dead
Lower nesting area 43 7
Middle nesting area 44 6
Upper nesting area 49 1

Seven penguins had died in the lower area, six had died in the middle area, and only
one had died in the upper area. Descamps et al. analyzed the data with a G—test of
independence, yielding a significant (P=0.048) difference in survival among the areas;
however, analyzing the data with Fisher’s exact test yields a non-significant (P=0.090)
result.

Young and Winn (2003) counted sightings of the spotted moray eel, Gymnothorax
moringa, and the purplemouth moray eel, G. vicinus, in a 150-m by 250-m area of reef in
Belize. They identified each eel they saw, and classified the locations of the sightings into
three types: those in grass beds, those in sand and rubble, and those within one meter of
the border between grass and sand /rubble. The number of sightings are shown in the
table, with percentages in parentheses:

Percent

G. moringa  G. vicinus  G. vicinus
Grass 127 116 47.7%
Sand 99 67 40.4%
Border 264 161 37.9%
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The nominal variables are the species of eel (G. moringa or G. vicinus) and the habitat
type (grass, sand, or border). The difference in habitat use between the species is
significant (G=6.23, 2 d.f., P=0.044).

Custer and Galli (2002) flew a light plane to follow great blue herons (Ardea herodias)
and great egrets (Casmerodius albus) from their resting site to their first feeding site at
Peltier Lake, Minnesota, and recorded the type of substrate each bird landed on.

Heron Egret

Vegetation 15 8
Shoreline 20 5
Water 14 7
Structures 6 1

Fisher’s exact test yields P=0.54, so there is no evidence that the two species of birds use
the substrates in different proportions.

Graphing the results

You plot the results of Fisher’s exact test the same way would any other test of
independence.

Similar tests

You can use the chi-square test of independence or the G-test of independence on the
same kind of data as Fisher’s exact test. When some of the expected values are small,
Fisher’s exact test is more accurate than the chi-square or G-test of independence. If all of
the expected values are very large, Fisher’s exact test becomes computationally
impractical; fortunately, the chi-square or G-test will then give an accurate result. The
usual rule of thumb is that Fisher’s exact test is only necessary when one or more expected
values are less than 5, but this is a remnant of the days when doing the calculations for
Fisher’s exact test was really hard. I recommend using Fisher’s exact test for any
experiment with a total sample size less than 1000. See the web page on small sample sizes
for further discussion of the boundary between “small” and “large.”

You should use McNemar’s test when the two samples are not independent, but
instead are two sets of pairs of observations. Often, each pair of observations is made on a
single individual, such as individuals before and after a treatment or individuals
diagnosed using two different techniques. For example, Dias et al. (2014) surveyed 62 men
who were circumcised as adults. Before circumcision, 6 of the 62 men had erectile
dysfunction; after circumcision, 16 men had erectile dysfunction. This may look like data
suitable for Fisher’s exact test (two nominal variables, erect vs. flaccid and before vs. after
circumcision), and if analyzed that way, the result would be P=0.033. However, we know
more than just how many men had erectile dysfunction, we know that 10 men switched
from normal function to dysfunction after circumcision, and 0 men switched from
dysfunction to normal. The statistical null hypothesis of McNemar’s test is that the
number of switchers in one direction is equal to the number of switchers in the opposite
direction. McNemar’s test compares the observed data to the null expectation using a
goodness-of-fit test. The numbers are almost always small enough that you can make this
comparison using the exact test of goodness-of-fit. For the example data of 10 switchers in
one direction and 0 in the other direction, McNemar’s test gives P=0.002; this is a much
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smaller P value than the result from Fisher’s exact test. McNemar’s test doesn’t always
give a smaller P value than Fisher’s. If all 6 men in the Dias et al. (2014) study with erectile
dysfunction before circumcision had switched to normal function, and 16 men had
switched from normal function before circumcision to erectile dysfunction, the P value
from McNemar’s test would have been 0.052.

How to do the test
Spreadsheet

I've written a spreadsheet to perform Fisher’s exact test for 2x2 tables
(www.biostathandbook.com/ fishers.xls). It handles samples with the smaller column total
less than 500.

Web pages

Several people have created web pages that perform Fisher’s exact test for 2x2 tables. I
like Pyvind Langsrud’s web page for Fisher’s exact test the best
(www.langsrud.com/ fisher.htm). Just enter the numbers into the cells on the web page,
hit the Compute button, and get your answer. You should almost always use the “2-tail P
value” given by the web page.

There is also a web page for Fisher’s exact test for up to 6x6 tables
(www.physics.csbsju.edu/stats / exact. NROW_NCOLUMN_form.html). It will only take
data with fewer than 100 observations in each cell.

SAS

Here is a SAS program that uses PROC FREQ for a Fisher’s exact test. It uses the
chipmunk data from above.

DATA chipmunk;
INPUT distance $ sound $ count;
DATALINES;

10m trill 16

10m notrill 8

100m trill 3

100m notrill 18

14
PROC FREQ DATA=chipmunk;

WEIGHT count / ZEROS;

TABLES distance*sound / FISHER;
RUN;

The output includes the following:

Fisher’'s Exact Test

Cell (1,1) Frequency (F) 18
Left-sided Pr <= F 1.0000
Right-sided Pr >= F 4.321E-04
Table Probability (P) 4.012E-04
Two-sided Pr <= P 6.862E-04

The “Two-sided Pr <= P” is the two-tailed P value that you want.
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The output looks a little different when you have more than two rows or columns.
Here is an example using the data on heron and egret substrate use from above:

DATA birds;
INPUT bird $ substrate $ count;
DATALINES;
heron vegetation 15
heron shoreline 20
heron water 14
heron structures 6
egret vegetation 8
egret shoreline 5
egret water 7
egret structures 1

14
PROC FREQ DATA=birds;

WEIGHT count / ZEROS;

TABLES bird*substrate / FISHER;
RUN;

The results of the exact test are labeled “Pr <= P”; in this case, P=0.5491.

Fisher’'s Exact Test

Table Probability (P) 0.0073
Pr <= P 0.5491

Power analysis

The G*Power program will calculate the sample size needed for a 2x2 test of
independence, whether the sample size ends up being small enough for a Fisher’s exact
test or so large that you must use a chi-square or G—test. Choose “Exact” from the “Test
family” menu and “Proportions: Inequality, two independent groups (Fisher’s exact test)”
from the “Statistical test” menu. Enter the proportions you hope to see, your alpha
(usually 0.05) and your power (usually 0.80 or 0.90). If you plan to have more observations
in one group than in the other, you can make the “Allocation ratio” different from 1.

As an example, let’s say you're looking for a relationship between bladder cancer and
genotypes at a polymorphism in the catechol-O-methyltransferase gene in humans. Based
on previous research, you're going to pool together the GG and GA genotypes and
compare these “GG+GA” and AA genotypes. In the population you're studying, you
know that the genotype frequencies in people without bladder cancer are 0.84 GG+GA
and 0.16 AA; you want to know how many people with bladder cancer you'll have to
genotype to get a significant result if they have 6% more AA genotypes. It’s easier to find
controls than people with bladder cancer, so you're planning to have twice as many
people without bladder cancer. On the G*Power page, enter 0.16 for proportion p1, 0.22
for proportion p2, 0.05 for alpha, 0.80 for power, and 0.5 for allocation ratio. The result is a
total sample size of 1523, so you'll need 508 people with bladder cancer and 1016 people
without bladder cancer.

Note that the sample size will be different if your effect size is a 6% lower frequency of
AA in bladder cancer patients, instead of 6% higher. If you don’t have a strong idea about
which direction of difference you're going to see, you should do the power analysis both
ways and use the larger sample size estimate.

If you have more than two rows or columns, use the power analysis for chi-square
tests of independence. The results should be close enough to correct, even if the sample
size ends up being small enough for Fisher’s exact test.
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Small numbers in chi-square
and G—tests

Chi-square and G-tests are somewhat inaccurate when expected numbers are small,
and you should use exact tests instead. I suggest a much higher definition of “small” than
other people.

The problem with small numbers

Chi-square and G-tests of goodness-of-fit or independence give inaccurate results
when the expected numbers are small. For example, let’s say you want to know whether
right-handed people tear the anterior cruciate ligament (ACL) in their right knee more or
less often than the left ACL. You find 11 people with ACL tears, so your expected
numbers (if your null hypothesis is true) are 5.5 right ACL tears and 5.5 left ACL tears.
Let’s say you actually observe 9 right ACL tears and 2 left ACL tears. If you compare the
observed numbers to the expected using the exact test of goodness-of-fit, you get a P value
of 0.065; the chi-square test of goodness-of-fit gives a P value of 0.035, and the G—test of
goodness-of-fit gives a P value of 0.028. If you analyzed the data using the chi-square or
G—test, you would conclude that people tear their right ACL significantly more than their
left ACL; if you used the exact binomial test, which is more accurate, the evidence would
not be quite strong enough to reject the null hypothesis.

When the sample sizes are too small, you should use exact tests instead of the chi-
square test or G—test. However, how small is “too small”? The conventional rule of thumb
is that if all of the expected numbers are greater than 5, it’s acceptable to use the chi-square
or G-test; if an expected number is less than 5, you should use an alternative, such as an
exact test of goodness-of-fit or a Fisher’s exact test of independence.

This rule of thumb is left over from the olden days, when the calculations necessary for
an exact test were exceedingly tedious and error-prone. Now that we have these new-
fangled gadgets called computers, it's time to retire the “no expected values less than 5”
rule. But what new rule should you use?

Here is a graph of relative P values versus sample size. For each sample size, I found a
pair of numbers that would give a P value for the exact test of goodness-of-fit (null
hypothesis, 1:1 ratio) that was as close as possible to P=0.05 without going under it. For
example, with a sample size of 11, the numbers 9 and 2 give a P value of 0.065. I did the
chi-square test on these numbers, and I divided the chi-square P value by the exact
binomial P value. For 9 and 2, the chi-square P value is 0.035, so the ratio is 0.035/0.065 =
0.54. In other words, the chi-square test gives a P value that is only 54% as large as the
more accurate exact test. The G-test gives almost the same results as the chi-square test.
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Plotting these relative P values vs. sample size, it is clear that the chi-square and G-
tests give P values that are too low, even for sample sizes in the hundreds. This means that
if you use a chi-square or G—test of goodness-of-fit and the P value is just barely
significant, you will reject the null hypothesis, even though the more accurate P value of
the exact binomial test would be above 0.05. The results are similar for 2x2 tests of
independence; the chi-square and G—tests give P values that are considerably lower than
that of the more accurate Fisher’s exact test.

Yates’ and William’s corrections

One solution to this problem is to use Yates’ correction for continuity, sometimes just
known as the continuity correction. To do this, you subtract 0.5 from each observed value
that is greater than the expected, add 0.5 to each observed value that is less than the
expected, then do the chi-square or G—test. This only applies to tests with one degree of
freedom: goodness-of-fit tests with only two categories, and 2x2 tests of independence. It
works quite well for goodness-of-fit, yielding P values that are quite close to those of the
exact binomial. For tests of independence, Yates’ correction yields P values that are too
high.

s Another correction that is sometimes used is Williams’ correction. For a goodness-of-
fit test, Williams’ correction is found by dividing the chi-square or G values by the
following:

(a’-1)
=1+ —>=
1 6nv

where a is the number of categories, n is the total sample size, and v is the number of
degrees of freedom. For a test of independence with R rows and C columns, there's a more
complicated formula for Williams' correction. Unlike Yates’ correction, it can be applied to
tests with more than one degree of freedom. For the numbers I've tried, it increases the P
value a little, but not enough to make it very much closer to the more accurate P value
provided by the exact test of goodness-of-fit or Fisher’s exact test.

Some software may apply the Yates’ or Williams’ correction automatically. When
reporting your results, be sure to say whether or not you used one of these corrections.

Pooling
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When a variable has more than two categories, and some of them have small numbers,
it often makes sense to pool some of the categories together. For example, let’s say you
want to compare the proportions of different kinds of ankle injuries in basketball players
vs. volleyball players, and your numbers look like this:

basketball  volleyball

sprains 18 16

breaks 13 5

torn ligaments 9 7
cuts 3 5

puncture wounds 1 3
infections 2 0

The numbers for cuts, puncture wounds, and infections are pretty small, and this will
cause the P value for your test of independence to be inaccurate. Having a large number of
categories with small numbers will also decrease the power of your test to detect a
significant difference; adding categories with small numbers can’t increase the chi-square
value or G value very much, but it does increase the degrees of freedom. It would
therefore make sense to pool some categories:

basketball ~ volleyball

sprains 18 16

breaks 13 5

torn ligaments 9 7
other injuries 6 8

Depending on the biological question you're interested in, it might make sense to pool
the data further:

basketball  volleyball

orthopedic injuries 40 28
non-orthopedic 6 8

It is important to make decisions about pooling before analyzing the data. In this case,
you might have known, based on previous studies, that cuts, puncture wounds, and
infections would be relatively rare and should be pooled. You could have decided before
the study to pool all injuries for which the total was 10 or fewer, or you could have
decided to pool all non-orthopedic injuries because they’re just not biomechanically
interesting.

Recommendation

I recommend that you always use an exact test (exact test of goodness-of-fit, Fisher’s
exact test) if the total sample size is less than 1000. There is nothing magical about a
sample size of 1000, it’s just a nice round number that is well within the range where an
exact test, chi-square test and G—test will give almost identical P values. Spreadsheets,
web-page calculators, and SAS shouldn’t have any problem doing an exact test on a
sample size of 1000.

When the sample size gets much larger than 1000, even a powerful program such as
SAS on a mainframe computer may have problems doing the calculations needed for an
exact test, so you should use a chi-square or G—test for sample sizes larger than this. You
can use Yates’ correction if there is only one degree of freedom, but with such a large
sample size, the improvement in accuracy will be trivial.
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For simplicity, I base my rule of thumb on the total sample size, not the smallest
expected value; if one or more of your expected values are quite small, you should still try
an exact test even if the total sample size is above 1000, and hope your computer can
handle the calculations.

If you see someone else following the traditional rules and using chi-square or G-tests
for total sample sizes that are smaller than 1000, don’t worry about it too much. Old habits
die hard, and unless their expected values are really small (in the single digits), it probably
won’t make any difference in the conclusions. If their chi-square or G-test gives a P value
that’s just a little below 0.05, you might want to analyze their data yourself, and if an exact
test brings the P value above 0.05, you should probably point this out.

If you have a large number of categories, some with very small expected numbers, you
should consider pooling the rarer categories, even if the total sample size is small enough
to do an exact test; the fewer numbers of degrees of freedom will increase the power of
your test.
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Repeated G—tests of
goodness-of-fit

Use this method for repeated G—tests of goodness-of-fit when you have two nominal
variables; one is something you’d analyze with a goodness-of-fit test, and the other
variable represents repeating the experiment multiple times. It tells you whether there’s
an overall deviation from the expected proportions, and whether there’s significant
variation among the repeated experiments.

When to use it

Use this method for repeated tests of goodness-of-fit when you’ve done a goodness-of-
fit experiment more than once; for example, you might look at the fit to a 3:1 ratio of a
genetic cross in more than one family, or fit to a 1:1 sex ratio in more than one population,
or fit to a 1:1 ratio of broken right and left ankles on more than one sports team. One
question then is, should you analyze each experiment separately, risking the chance that
the small sample sizes will have insufficient power? Or should you pool all the data,
ignoring the possibility that the different experiments gave different results? This is when
the additive property of the G-test of goodness-of-fit becomes important, because you can
do a repeated G-test of goodness-of-fit and test several hypotheses at once.

You use the repeated G-test of goodness-of-fit when you have two nominal variables,
one with two or more biologically interesting values (such as red vs. pink vs. white
flowers), the other representing different replicates of the same experiment (different days,
different locations, different pairs of parents). You compare the observed data with an
extrinsic theoretical expectation (such as an expected 1: 2: 1 ratio in a genetic cross).

For example, Guttman et al. (1967) counted the number of people who fold their arms
with the right arm on top (R) or the left arm on top (L) in six ethnic groups in Israel:

Ethnic group R L Percent R
Yemen 168 174 49.1%
Djerba 132 195 40.4%

Kurdistan 167 204 45.0%
Libya 162 212 43.3%
Berber 143 194 42.4%
Cochin 153 174 46.8%

The null hypothesis is that half the people would be R and half would be L. It would be
possible to add together the numbers from all six groups and test the fit with a chi-square
or G—test of goodness-of-fit, but that could overlook differences among the groups. It
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would also be possible to test each group separately, but that could overlook deviations
from the null hypothesis that were too small to detect in each ethnic group sample, but
would be detectable in the overall sample. The repeated goodness-of-fit test tests the data
both ways.

I do not know if this analysis would be appropriate with an intrinsic hypothesis, such
as the p= 2pq: q: Hardy-Weinberg proportions of population genetics.

Null hypotheses

This technique actually tests four null hypotheses. The first statistical null hypothesis
is that the numbers within each experiment fit the expectations; for our arm-folding
example, the null hypothesis is that there is a 1:1 ratio of R and L folders within each ethnic
group. This is the same null hypothesis as for a regular G-test of goodness-of-fit applied to
each experiment. The second null hypothesis is that the relative proportions are the same
across the different experiments; in our example, this null hypothesis would be that the
proportion of R folders is the same in the different ethnic groups. This is the same as the
null hypothesis for a G—test of independence. The third null hypothesis is that the pooled
data fit the expectations; for our example, it would be that the number of R and L folders,
summed across all six ethnic groups, fits a 1:1 ratio. The fourth null hypothesis is that
overall, the data from the individual experiments fit the expectations. This null hypothesis
is a bit difficult to grasp, but being able to test it is the main value of doing a repeated G-
test of goodness-of-fit.

How to do the test

First, decide what you’re going to do if there is significant variation among the
replicates. Ideally, you should decide this before you look at the data, so that your decision
is not subconsciously biased towards making the results be as interesting as possible. Your
decision should be based on whether your goal is estimation or hypothesis testing. For the
arm-folding example, if you were already confident that fewer than 50% of people fold
their arms with the right on top, and you were just trying to estimate the proportion of
right-on-top folders as accurately as possible, your goal would be estimation. If this is the
goal, and there is significant heterogeneity among the replicates, you probably shouldn’t
pool the results; it would be misleading to say “42% of people are right-on-top folders” if
some ethnic groups are 30% and some are 50%; the pooled estimate would depend a lot on
your sample size in each ethnic group, for one thing. But if there’s no significant
heterogeneity, you'd want to pool the individual replicates to get one big sample and
therefore make a precise estimate.

If you're mainly interested in the knowing whether there’s a deviation from the null
expectation, and you're not as interested in the size of the deviation, then you're doing
hypothesis testing, and you may want to pool the samples even if they are significantly
different from each other. In the arm-folding example, finding out that there’s
asymmetry—that fewer than 50% of people fold with their right arm on top—could say
something interesting about developmental biology and would therefore be interesting,
but you might not care that much if the asymmetry was stronger in some ethnic groups
than others. So you might decide to pool the data even if there is significant heterogeneity.

After you've planned what you're going to do, collect the data and do a G—test of
goodness-of-fit for each individual data set. The resulting G values are the “individual G
values.” Also record the number of degrees of freedom for each individual data set; these
are the “individual degrees of freedom.” (Note: Some programs use continuity
corrections, such as the Yates correction or the Williams correction, in an attempt to make
G-tests more accurate for small sample sizes. Do not use any continuity corrections when
doing a replicated G—test, or the G values will not add up properly. My spreadsheet for G-
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tests of goodness-of-fit [www .biostathandbook.com / gtestgof.xls] can provide the
uncorrected G values.)

Ethnic group R L Percent R Gvalue d.f. P value

Yemen 168 174 49.1% 0.105 1 0.75
Djerba 132 195 40.4% 12.214 1 0.0005
Kurdistan 167 204 45.0% 3.696 1 0.055
Libya 162 212 43.3% 6.704 1 0.010
Berber 143 194 42.4% 7.748 1 0.005
Cochin 153 174 46.8% 1.350 1 0.25

As you can see, three of the ethnic groups (Djerba, Libya, and Berber) have P values less
than 0.05. However, because you're doing 6 tests at once, you should probably apply a
correction for multiple comparisons. Applying a Bonferroni correction leaves only the
Djerba and Berber groups as significant.

Next, do a G-test of independence on the data. This give a “heterogeneity G value,”
which for our example is G=6.750, 5 d.f., P=0.24. This means that the R:L ratio is not
significantly different among the 6 ethnic groups. If there had been a significant result,
you’d have to look back at what you decided in the first step to know whether to go on
and pool the results or not.

If you're going to pool the results (either because the heterogeneity G value was not
significant, or because you decided to pool even if the heterogeneity was significant), add
the numbers in each category across the repeated experiments, and do a G-test of
goodness-of-fit on the totals. For our example, there are a total of 925 R and 1153 L, which

gives G=25.067, 1 d.f., P=5.5x10-. The interpretation of this “pooled G value” is that
overall, significantly fewer than 50% of people fold their arms with the right arm on top.
Because the G-test of independence was not significant, you can be pretty sure that this is
a consistent overall pattern, not just due to extreme deviations in one or two samples. If
the G-test of independence had been significant, you’d be much more cautious about
interpreting the goodness-of-fit test of the summed data.

If you did the pooling, the next step is to add up the G values from the individual
goodness-of-fit tests to get the “total G value,” and add up the individual degrees of
freedom to get the total degrees of freedom. Use the CHIDIST function in a spreadsheet or
online calculator (www.fourmilab.ch/rpkp/experiments/analysis/chiCalc.html) to find
the P value for the total G value with the total degrees of freedom. For our example, the
total G value is 31.817 and the total degrees of freedom is 6, so enter =CHIDIST(31.817,
6) if you're using a spreadsheet. The result will be the P value for the total G; in this case,

P=1.8x10-. If it is significant, you can reject the null hypothesis that all of the data from the
different experiments fit the expected ratio. Usually, you'll be able to look at the other
results and see that the total G value is significant because the goodness-of-fit of the
pooled data is significant, or because the test of independence shows significant
heterogeneity among the replicates, or both. However, it is possible for the total G value to
be significant even if none of the other results are significant. This would be frustrating; it
would tell you that there’s some kind of deviation from the null hypotheses, but it
wouldn’t be entirely clear what that deviation was.

I've repeatedly mentioned that the main advantage of G—tests over chi-square tests is
“additivity,” and it’s finally time to illustrate this. In our example, the G value for the test
of independence was 6.750, with 5 degrees of freedom, and the G value for the goodness-
of-fit test for the pooled data was 25.067, with 1 degree of freedom. Adding those together
gives G=31.817 with 6 degrees of freedom, which is exactly the same as the total of the 6
individual goodness-of-fit tests. Isn’t that amazing? So you can partition the total
deviation from the null hypothesis into the portion due to deviation of the pooled data
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from the null hypothesis of a 1:1 ratio, and the portion due to variation among the
replicates. It’s just an interesting little note for this design, but additivity becomes more
important for more elaborate experimental designs.

Chi-square values are not additive. If you do the above analysis with chi-square tests,
the test of independence gives a chi-square value of 6.749 and the goodness-of-fit test of
the pooled data gives a chi-square value of 25.067, which adds up to 31.816. The 6
individual goodness-of-fit tests give chi-square values that add up to 31.684, which is close
to 31.816 but not exactly the same.

Example

Connallon and Jakubowski (2009) performed mating competitions among male
Drosophila melanogaster. They took the “unpreferred” males that had lost three
competitions in a row and mated them with females, then looked at the sex ratio of the
offspring. They did this for three separate sets of flies.

Daughters  Sons Gvalue d.f. P value
Trial 1 296 366 7.42 1 0.006
Trial 2 78 72 0.24 1 0.624
Trial 3 417 467 2.83 1 0.093
total G 10.49 3 0.015
pooled 791 905 pooled G 767 1 0.006
heterogeneity G 282 2 0.24

The total G value is significant, so you can reject the null hypotheses that all three trials
have the same 1:1 sex ratio. The heterogeneity G value is not significant; although the
results of the second trial may look quite different from the results of the first and third
trials, the three trials are not significantly different. You can therefore look at the pooled G
value. It is significant; the unpreferred males have significantly more daughters than sons.

Similar tests

If the numbers are small, you may want to use exact tests instead of G-tests. You’'ll lose
the additivity and the ability to test the total fit, but the other results may be more
accurate. First, do an exact test of goodness-of-fit for each replicate. Next, do Fisher’s exact
test of independence to compare the proportions in the different replicates. If Fisher’s test
is not significant, pool the data and do an exact test of goodness-of-fit on the pooled data.

Note that I'm not saying how small your numbers should be to make you
uncomfortable using G—tests. If some of your numbers are less than 10 or so, you should
probably consider using exact tests, while if all of your numbers are in the 10s or 100s,
you're probably okay using G-tests. In part this will depend on how important it is to test
the total G value.

If you have repeated tests of independence, instead of repeated tests of goodness-of-fit,
you should use the Cochran-Mantel-Haenszel test.
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Cochran—-Mantel-Haenszel
test for repeated tests of
independence

Use the Cochran—-Mantel-Haenszel test when you have data from 2x 2 tables that
you've repeated at different times or locations. It will tell you whether you have a
consistent difference in proportions across the repeats.

When to use it

Use the Cochran—Mantel-Haenszel test (which is sometimes called the Mantel-
Haenszel test) for repeated tests of independence. The most common situation is that you

have multiple 2x2 tables of independence; you're analyzing the kind of experiment that
you’d analyze with a test of independence, and you’'ve done the experiment multiple
times or at multiple locations. There are three nominal variables: the two variables of the

2x2 test of independence, and the third nominal variable that identifies the repeats (such
as different times, different locations, or different studies). There are versions of the
Cochran-Mantel-Haenszel test for any number of rows and columns in the individual
tests of independence, but they’re rarely used and I won't cover them.

For example, let’s say you've found several hundred pink knit polyester legwarmers
that have been hidden in a warehouse since they went out of style in 1984. You decide to
see whether they reduce the pain of ankle osteoarthritis by keeping the ankles warm. In
the winter, you recruit 36 volunteers with ankle arthritis, randomly assign 20 to wear the
legwarmers under their clothes at all times while the other 16 don’t wear the legwarmers,
then after a month you ask them whether their ankles are pain-free or not. With just the
one set of people, you’d have two nominal variables (legwarmers vs. control, pain-free vs.
pain), each with two values, so you’d analyze the data with Fisher’s exact test.

However, let’s say you repeat the experiment in the spring, with 50 new volunteers.
Then in the summer you repeat the experiment again, with 28 new volunteers. You could
just add all the data together and do Fisher’s exact test on the 114 total people, but it
would be better to keep each of the three experiments separate. Maybe legwarmers work
in the winter but not in the summer, or maybe your first set of volunteers had worse
arthritis than your second and third sets. In addition, pooling different studies together
can show a “significant” difference in proportions when there isn’t one, or even show the
opposite of a true difference. This is known as Simpson’s paradox. For these reasons, it’s
better to analyze repeated tests of independence using the Cochran-Mantel-Haenszel test.
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Null hypothesis

The null hypothesis is that the relative proportions of one variable are independent of
the other variable within the repeats; in other words, there is no consistent difference in
proportions in the 2x2 tables. For our imaginary legwarmers experiment, the null
hypothesis would be that the proportion of people feeling pain was the same for
legwarmer-wearers and non-legwarmer wearers, after controlling for the time of year. The
alternative hypothesis is that the proportion of people feeling pain was different for
legwarmer and non-legwarmer wearers.

Technically, the null hypothesis of the Cochran-Mantel-Haenszel test is that the odds
ratios within each repetition are equal to 1. The odds ratio is equal to 1 when the
proportions are the same, and the odds ratio is different from 1 when the proportions are
different from each other. I think proportions are easier to understand than odds ratios, so
I'll put everything in terms of proportions. But if you're in a field such as epidemiology
where this kind of analysis is common, you're probably going to have to think in terms of
odds ratios.

How the test works

If you label the four numbers in a 2x 2 test of independence like this:
a b
c d

and (a+b+c+d)=n, you can write the equation for the Cochran-Mantel-Haenszel test
statistic like this:

Sla-(@+b)a+ c)/n]‘—O.S}z
(a+b)a+c)b+d)(c+d)/(n-n®)
2

.2
CNiyy =

The numerator contains the absolute value of the difference between the observed
value in one cell (2) and the expected value under the null hypothesis, (a+b)(a+c)/n, so the
numerator is the squared sum of deviations between the observed and expected values. It

doesn’t matter how you arrange the 2x2 tables, any of the four values can be used as a.
You subtract the 0.5 as a continuity correction. The denominator contains an estimate of
the variance of the squared differences.

The test statistic, chi:,, gets bigger as the differences between the observed and
expected values get larger, or as the variance gets smaller (primarily due to the sample
size getting bigger). It is chi-square distributed with one degree of freedom.

Different sources present the formula for the Cochran-Mantel-Haenszel test in
different forms, but they are all algebraically equivalent. The formula I've shown here
includes the continuity correction (subtracting 0.5 in the numerator), which should make
the P value more accurate. Some programs do the Cochran-Mantel-Haenszel test without
the continuity correction, so be sure to specify whether you used it when reporting your
results.
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Assumptions

In addition to testing the null hypothesis, the Cochran-Mantel-Haenszel test also
produces an estimate of the common odds ratio, a way of summarizing how big the effect
is when pooled across the different repeats of the experiment. This require assuming that
the odds ratio is the same in the different repeats. You can test this assumption using the
Breslow-Day test, which I'm not going to explain in detail; its null hypothesis is that the
odds ratios are equal across the different repeats.

If some repeats have a big difference in proportion in one direction, and other repeats
have a big difference in proportions but in the opposite direction, the Cochran-Mantel-
Haenszel test may give a non-significant result. So when you get a non-significant

Cochran-Mantel-Haenszel test, you should perform a test of independence on each 2x2
table separately and inspect the individual P values and the direction of difference to see
whether something like this is going on. In our legwarmer example, if the proportion of
people with ankle pain was much smaller for legwarmer-wearers in the winter, but much
higher in the summer, and the Cochran-Mantel-Haenszel test gave a non-significant
result, it would be erroneous to conclude that legwarmers had no effect. Instead, you
could conclude that legwarmers had an effect, it just was different in the different seasons.

Examples

When you look at the back of someone’s head, the hair either whorls clockwise or
counterclockwise. Lauterbach and Knight (1927) compared the proportion of clockwise
whorls in right-handed and left-handed children. With just this one set of people, you'd
have two nominal variables (right-handed vs. left-handed, clockwise vs.
counterclockwise), each with two values, so you’d analyze the data with Fisher’s exact
test.

However, several other groups have done similar studies of hair whorl and
handedness (McDonald 2011):

Study group Handedness Right Left
white Clockwise 708 50
children Counterclockwise 169 13

percent CCW  19.3% 20.6%

British Clockwise 136 24
adults Counterclockwise 73 14
percent CCW  34.9% 38.0%

Pennsylvania Clockwise 106 32
whites Counterclockwise 17 4
percent CCW  13.8% 11.1%

Welsh men Clockwise 109 22
Counterclockwise 16 26
percent CCW  12.8% 54.2%

German Clockwise 801 102
soldiers Counterclockwise 180 25
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percent CCW

German Clockwise
children Counterclockwise
percent CCW

New York Clockwise
Counterclockwise

percent CCW

American Clockwise
men Counterclockwise
percent CCW

18.3% 19.7%
159 27
18 13
10.2% 32.5%
151 51
28 15
15.6% 22.7%
950 173
218 33
18.7% 16.0%

You could just add all the data together and do a test of independence on the 4463 total
people, but it would be better to keep each of the 8 experiments separate. Some of the
studies were done on children, while others were on adults; some were just men, while
others were male and female; and the studies were done on people of different ethnic
backgrounds. Pooling all these studies together might obscure important differences

between them.

Analyzing the data using the Cochran-Mantel-Haenszel test, the result is chi:,.=6.07, 1
d.f., P=0.014. Overall, left-handed people have a significantly higher proportion of
counterclockwise whorls than right-handed people.

McDonald and Siebenaller (1989) surveyed allele frequencies at the Lap locus in the
mussel Mytilus trossulus on the Oregon coast. At four estuaries, we collected mussels from
inside the estuary and from a marine habitat outside the estuary. There were three
common alleles and a couple of rare alleles; based on previous results, the biologically
interesting question was whether the Lap- allele was less common inside estuaries, so we
pooled all the other alleles into a “non-94" class.

There are three nominal variables: allele (94 or non-94), habitat (marine or estuarine),
and area (Tillamook, Yaquina, Alsea, or Umpqua). The null hypothesis is that at each area,
there is no difference in the proportion of Lap- alleles between the marine and estuarine

habitats.

This table shows the number of 94 and non-94 alleles at each location. There is a
smaller proportion of 94 alleles in the estuarine location of each estuary when compared
with the marine location; we wanted to know whether this difference is significant.
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Location Allele Marine Estuarine
Tillamook 94 56 69
non-94 40 77
percent 94  58.3% 47.3%
Yaquina 94 61 257
non-94 57 301
percent 94 51.7% 46.1%
Alsea 94 73 65
non-94 71 79
percent 94  50.7% 45.1%
Umpqua 94 71 48
non-94 55 48
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percent 94  56.3% 50.0%

The result is chi,.=5.05, 1 d.f., P=0.025. We can reject the null hypothesis that the
proportion of Lap~ alleles is the same in the marine and estuarine locations.

Duggal et al. (2010) did a meta-analysis of placebo-controlled studies of niacin and
heart disease. They found 5 studies that met their criteria and looked for coronary artery
revascularization in patients given either niacin or placebo:

Study Revascularization = No revasc. Percent revasc.
FATS Niacin 2 46 4.2%
Placebo 11 41 21.2%
AFREGS Niacin 4 67 5.6%
Placebo 12 60 16.7%
ARBITER 2 Niacin 1 86 1.1%
Placebo 4 76 5.0%
HATS Niacin 1 37 2.6%
Placebo 6 32 15.8%
CLAS1 Niacin 2 92 2.1%
Placebo 1 93 1.1%

There are three nominal variables: niacin vs. placebo, revascularization vs. no
revascularization, and the name of the study. The null hypothesis is that the rate of
revascularization is the same in patients given niacin or placebo. The different studies
have different overall rates of revascularization, probably because they used different
patient populations and looked for revascularization after different lengths of time, so it

would be unwise to just add up the numbers and do a single 2x2 test. The result of the
Cochran-Mantel-Haenszel test is chi:,.=12.75, 1 d.f., P=0.00036. Significantly fewer patients
on niacin developed coronary artery revascularization.

Graphing the results

To graph the results of a Cochran-Mantel-Haenszel test, pick one of the two values of
the nominal variable that you're observing and plot its proportions on a bar graph, using
bars of two different patterns.

0.7
0.6 - |

0.5 - | I + | || |
0.4 - | | I
0.3
0.2 |

0.1 1
0

Lap94 proportion

Tillamook Yaquina Alsea Umpqua

Lap~ allele proportions (with 95% confidence intervals) in the mussel Mytilus trossulus at four bays
in Oregon. Gray bars are marine samples and empty bars are estuarine samples.
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Similar tests

Sometimes the Cochran—-Mantel-Haenszel test is just called the Mantel-Haenszel test.
This is confusing, as there is also a test for homogeneity of odds ratios called the Mantel-
Haenszel test, and a Mantel-Haenszel test of independence for one 2x2 table. Mantel and
Haenszel (1959) came up with a fairly minor modification of the basic idea of Cochran
(1954), so it seems appropriate (and somewhat less confusing) to give Cochran credit in
the name of this test.

If you have at least six 2x2 tables, and you're only interested in the direction of the
differences in proportions, not the size of the differences, you could do a sign test.

The Cochran-Mantel-Haenszel test for nominal variables is analogous to a two-way
anova or paired f-test for a measurement variable, or a Wilcoxon signed-rank test for
rank data. In the arthritis-legwarmers example, if you measured ankle pain on a 10-point
scale (a measurement variable) instead of categorizing it as pain/no pain, you'd analyze
the data with a two-way anova.

How to do the test
Spreadsheet

I've written a spreadsheet to perform the Cochran—-Mantel-Haenszel test

(www .biostathandbook.com /cmh.xls). It handles up to 50 2x2 tables. It gives you the
choice of using or not using the continuity correction; the results are probably a little more
accurate with the continuity correction. It does not do the Breslow-Day test.

Web pages

I'm not aware of any web pages that will perform the Cochran-Mantel-Haenszel test.

SAS

Here is a SAS program that uses PROC FREQ for a Cochran-Mantel-Haenszel test. It
uses the mussel data from above. In the TABLES statement, the variable that labels the
repeats must be listed first; in this case it is “location”.

DATA lap;

INPUT location $ habitat $ allele $ count;

DATALINES;
Tillamook marine 94 56
Tillamook estuarine 94 69
Tillamook marine non-94 40
Tillamook estuarine non-94 77
Yaquina marine 94 61
Yaquina estuarine 94 257
Yaquina marine non-94 57
Yaquina estuarine non-94 301
Alsea marine 94 73
Alsea estuarine 94 65
Alsea marine non-94 71
Alsea estuarine non-94 79
Umpgqua marine 94 71
Umpqua estuarine 94 48
Umpqua marine non-94 55
Umpqua estuarine non-94 48
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PROC FREQ DATA=lap;
WEIGHT count / ZEROS;
TABLES location*habitat*allele / CMH;
RUN;

There is a lot of output, but the important part looks like this:

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
1 Nonzero Correlation 1 5.3209 0.0211
2 Row Mean Scores Differ 1 5.3209 0.0211
3 General Association 1 5.3209 0.0211

For repeated 2x2 tables, the three statistics are identical; they are the Cochran-Mantel-
Haenszel chi-square statistic, without the continuity correction. For repeated tables with
more than two rows or columns, the “general association” statistic is used when the
values of the different nominal variables do not have an order (you cannot arrange them
from smallest to largest); you should use it unless you have a good reason to use one of
the other statistics.

The results also include the Breslow-Day test of homogeneity of odds ratios:

Breslow-Day Test for
Homogeneity of the 0Odds Ratios

Chi-Square 0.5295
DF 3
Pr > ChiSq 0.9124

The Breslow-Day test for the example data shows no significant evidence for
heterogeneity of odds ratios (chi=0.53, 3 d.f., P=0.91).
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Statistics of central tendency

A statistic of central tendency tells you where the middle of a set of measurements is.
The arithmetic mean is by far the most common, but the median, geometric mean, and
harmonic mean are sometimes useful.

Introduction

All of the tests in the first part of this handbook have analyzed nominal variables. You
summarize data from a nominal variable as a percentage or a proportion. For example,
76.1% (or 0.761) of the peas in one of Mendel’s genetic crosses were smooth, and 23.9%
were wrinkled. If you have the percentage and the sample size (556, for Mendel's peas),
you have all the information you need about the variable.

The rest of the tests in this handbook analyze measurement variables. Summarizing
data from a measurement variable is more complicated, and requires a number that
represents the “middle” of a set of numbers (known as a “statistic of central tendency” or
“statistic of location”), along with a measure of the “spread” of the numbers (known as a
“statistic of dispersion”). The arithmetic mean is the most common statistic of central
tendency, while the variance or standard deviation are usually used to describe the
dispersion.

The statistical tests for measurement variables assume that the probability distribution
of the observations fits the normal (bell-shaped) curve. If this is true, the distribution can
be accurately described by two parameters, the arithmetic mean and the variance. Because
they assume that the distribution of the variables can be described by these two
parameters, tests for measurement variables are called “parametric tests.” If the
distribution of a variable doesn’t fit the normal curve, it can’t be accurately described by
just these two parameters, and the results of a parametric test may be inaccurate. In that
case, the data can be converted to ranks and analyzed using a non-parametric test, which
is less sensitive to deviations from normality.

The normal distribution

Many measurement variables in biology fit the normal distribution fairly well.
According to the central limit theorem, if you have several different variables that each
have some distribution of values and add them together, the sum follows the normal
distribution fairly well. It doesn’t matter what the shape of the distribution of the
individual variables is, the sum will still be normal. The distribution of the sum fits the
normal distribution more closely as the number of variables increases. The graphs below
are frequency histograms of 5,000 numbers. The first graph shows the distribution of a
single number with a uniform distribution between 0 and 1. The other graphs show the
distributions of the sums of two, three, or four random numbers with this same
distribution.
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Histograms of sums of random numbers.

As you can see, as more random numbers are added together, the frequency
distribution of the sum quickly approaches a bell-shaped curve. This is analogous to a
biological variable that is the result of several different factors. For example, let’s say that
you've captured 100 lizards and measured their maximum running speed. The running
speed of an individual lizard would be a function of its genotype at many genes; its
nutrition as it was growing up; the diseases it’s had; how full its stomach is now; how
much water it’s drunk; and how motivated it is to run fast on a lizard racetrack. Each of
these variables might not be normally distributed; the effect of disease might be to either
subtract 10 cm/sec if it has had lizard-slowing disease, or add 20 cm/sec if it has not; the
effect of gene A might be to add 25 cm/sec for genotype AA, 20 cm/sec for genotype Aa,
or 15 cm/sec for genotype aa. Even though the individual variables might not have
normally distributed effects, the running speed that is the sum of all the effects would be
normally distributed.

If the different factors interact in a multiplicative, not additive, way, the distribution
will be log-normal. An example would be if the effect of lizard-slowing disease is not to
subtract 10 cm/sec from the average speed, but instead to reduce the speed by 10% (in
other words, multiply the speed by 0.9). The distribution of a log-normal variable will look
like a bell curve that has been pushed to the left, with a long tail going to the right. Taking
the log of such a variable will produce a normal distribution. This is why the log
transformation is used so often.
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Histograms of the product of four random numbers, without or with log transformation.

The figure above shows the frequency distribution for the product of four numbers,
with each number having a uniform random distribution between 0.5 and 1. The graph on
the left shows the untransformed product; the graph on the right is the distribution of the
log-transformed products.

Different measures of central tendency

While the arithmetic mean is by far the most commonly used statistic of central
tendency, you should be aware of a few others.
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Arithmetic mean: The arithmetic mean is the sum of the observations divided by the
number of observations. It is the most common statistic of central tendency, and when
someone says simply “the mean” or “the average,” this is what they mean. It is often

symbolized by putting a bar over a letter; the mean of Y, Y,, Y,,... is Y. The arithmetic
mean works well for values that fit the normal distribution. It is sensitive to extreme
values, which makes it not work well for data that are highly skewed. For example,
imagine that you are measuring the heights of fir trees in an area where 99% of trees are
young trees, about 1 meter tall, that grew after a fire, and 1% of the trees are 50-meter-tall
trees that survived the fire. If a sample of 20 trees happened to include one of the giants,
the arithmetic mean height would be 3.45 meters; a sample that didn’t include a big tree
would have a mean height of about 1 meter. The mean of a sample would vary a lot,
depending on whether or not it happened to include a big tree.

In a spreadsheet, the arithmetic mean is given by the function AVERAGE(Ys), where
Ys represents a listing of cells (A2, B7, B9) or a range of cells (A2:A20) or both (A2, B7,
B9:B21). Note that spreadsheets only count those cells that have numbers in them; you
could enter AVERAGE(A1:A100), put numbers in cells Al to A9, and the spreadsheet
would correctly compute the arithmetic mean of those 9 numbers. This is true for other
functions that operate on a range of cells.

Geometric mean: The geometric mean is the Nth root of the product of N values of Y; for

example, the geometric mean of 5 values of Y would be the 5th root of Y xY.xY.xY.xY.. It is
given by the spreadsheet function GEOMEAN(Ys). The geometric mean is used for
variables whose effect is multiplicative. For example, if a tree increases its height by 60%
one year, 8% the next year, and 4% the third year, its final height would be the initial

height multiplied by 1.60x1.08x1.04=1.80. Taking the geometric mean of these numbers
(1.216) and multiplying that by itself three times also gives the correct final height (1.80),
while taking the arithmetic mean (1.24) times itself three times does not give the correct
final height. The geometric mean is slightly smaller than the arithmetic mean; unless the
data are highly skewed, the difference between the arithmetic and geometric means is
small. If any of your values are zero or negative, the geometric mean will be undefined.

The geometric mean has some useful applications in economics involving interest
rates, etc., but it is rarely used in biology. You should be aware that it exists, but I see no
point in memorizing the definition.

Harmonic mean: The harmonic mean is the reciprocal of the arithmetic mean of
reciprocals of the values; for example, the harmonic mean of 5 values of Y would be
5/(1/YA+1/YA+1/YA+1/Y+1/Y.). It is given by the spreadsheet function HARMEAN(YSs).
The harmonic mean is less sensitive to a few large values than are the arithmetic or
geometric mean, so it is sometimes used for highly skewed variables such as dispersal
distance. For example, if six birds set up their first nest 1.0, 1.4, 1.7, 2.1, 2.8, and 47 km
from the nest they were born in, the arithmetic mean dispersal distance would be 9.33 km,
the geometric mean would be 2.95 km, and the harmonic mean would be 1.90 km. If any
of your values are zero, the harmonic mean will be undefined.

I think the harmonic mean has some useful applications in engineering, but it is rarely
used in biology. You should be aware that it exists, but I see no point in memorizing the
definition.

Median: When the Ys are sorted from lowest to highest, this is the value of Y that is in the
middle. For an odd number of Ys, the median is the single value of Y in the middle of the
sorted list; for an even number, it is the arithmetic mean of the two values of Y in the
middle. Thus for a sorted list of 5 Ys, the median would be Y,; for a sorted list of 6 Ys, the
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median would be the arithmetic mean of Y, and Y.. The median is given by the spreadsheet
function MEDIAN(YSs).

The median is useful when you are dealing with highly skewed distributions. For
example, if you were studying acorn dispersal, you might find that the vast majority of
acorns fall within 5 meters of the tree, while a small number are carried 500 meters away
by birds. The arithmetic mean of the dispersal distances would be greatly inflated by the
small number of long-distance acorns. It would depend on the biological question you
were interested in, but for some purposes a median dispersal distance of 3.5 meters might
be a more useful statistic than a mean dispersal distance of 50 meters.

The second situation where the median is useful is when it is impractical to measure
all of the values, such as when you are measuring the time until something happens.
Survival time is a good example of this; in order to determine the mean survival time, you
have to wait until every individual is dead, while determining the median survival time
only requires waiting until half the individuals are dead.

There are statistical tests for medians, such as Mood’s median test, but not many
people use them because of their lack of power, and I don’t discuss them in this handbook.
If you are working with survival times of long-lived organisms (such as people), you'll
need to learn about the specialized statistics for that; Bewick et al. (2004) is one place to
start.

Mode: This is the most common value in a data set. It requires that a continuous variable
be grouped into a relatively small number of classes, either by making imprecise
measurements or by grouping the data into classes. For example, if the heights of 25
people were measured to the nearest millimeter, there would likely be 25 different values
and thus no mode. If the heights were measured to the nearest 5 centimeters, or if the
original precise measurements were grouped into 5-centimeter classes, there would
probably be one height that several people shared, and that would be the mode.

It is rarely useful to determine the mode of a set of observations, but it is useful to
distinguish between unimodal, bimodal, etc. distributions, where it appears that the
parametric frequency distribution underlying a set of observations has one peak, two
peaks, etc. The mode is given by the spreadsheet function MODE(Ys).

Example

The Maryland Biological Stream Survey used electrofishing to count the number of
individuals of each fish species in randomly selected 75-m long segments of streams in
Maryland. Here are the numbers of blacknose dace, Rhinichthys atratulus, in streams of the
Rock Creek watershed:

Stream fish/75m
Mill_Creek_1 76
Mill_Creek_2 102
North_Branch_Rock_Creek_1 12
North_Branch_Rock_Creek_2 39
Rock_Creek_1 55
Rock_Creek 2 93
Rock_Creek_3 98
Rock_Creek_4 53
Turkey_Branch 102

Here are the statistics of central tendency. In reality, you would rarely have any reason to
report more than one of these:
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Arithmetic mean 70.0

Geometric mean 59.8
Harmonic mean 45.1
Median 76

Mode 102

How to calculate the statistics

Spreadsheet

I have made a descriptive statistics spreadsheet that calculates the arithmetic,
geometric and harmonic means, the median, and the mode, for up to 1000 observations
(www.biostathandbook.com / descriptive.xls).

Web pages

This web page (graphpad.com/quickcalcs/Clmeanl.cfm ) calculates arithmetic mean
and median for up to 10,000 observations. It also calculates standard deviation, standard
error of the mean, and confidence intervals.

SAS

There are three SAS procedures that do descriptive statistics, PROC MEANS, PROC
SUMMARY, and PROC UNIVARIATE. I don’t know why there are three. PROC
UNIVARIATE will calculate a longer list of statistics, so you might as well use it. Here is
an example, using the fish data from above.

DATA fish;
INPUT location $ dacenumber;
DATALINES;
Mill Creek_1 76
Mill Creek_2 102

North_Branch_Rock_Creek_1 12
North_Branch_Rock_Creek_2 39

Rock Creek 1 55
Rock Creek 2 93
Rock Creek_ 3 98
Rock Creek 4 53

Turkey_ Branch 102

14
PROC UNIVARIATE DATA=fish;
RUN;

There’s a lot of output from PROC UNIVARIATE, including the arithmetic mean, median,
and mode:

Basic Statistical Measures

Location Variability
Mean 70.0000 Std Deviation 32.08582
Median 76.0000 Variance 1030
Mode 102.0000 Range 90.00000
Interquartile Range 45.00000
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You can specify which variables you want the mean, median and mode of, using a
VAR statement. You can also get the statistics for just those values of the measurement
variable that have a particular value of a nominal variable, using a CLASS statement. This
example calculates the statistics for the length of mussels, separately for each of two
species, Mytilus edulis and M. trossulus.

DATA mussels;
INPUT species $ length width;
DATALINES;

edulis 49.0 11.0
tross 51.2 9.1
tross 45.9 9.4
edulis 56.2 13.2
edulis 52.7 10.7
edulis 48.4 10.4
tross 47.6 9.5
tross 46.2 8.9

2 7.1

tross 37.

I

PROC UNIVARIATE DATA=mussels;
VAR length;
CLASS species;

RUN;

Surprisingly, none of the SAS procedures calculate harmonic or geometric mean. There
are functions called HARMEAN and GEOMEAN, but they only calculate the means for a
list of variables, not all the values of a single variable.

References

Bewick, V., L. Cheek, and J. Ball. 2004. Statistics review 12: Survival analysis. Critical Care
8: 389-394.
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Statistics of dispersion

A statistic of dispersion tells you how spread out a set of measurements is. Standard
deviation is the most common, but there are others.

Introduction

Summarizing data from a measurement variable requires a number that represents the
“middle” of a set of numbers (known as a “statistic of central tendency” or “statistic of
location”), along with a measure of the “spread” of the numbers (known as a “statistic of
dispersion”). You use a statistic of dispersion to give a single number that describes how
compact or spread out a set of observations is.

Although statistics of dispersion are usually not very interesting by themselves, they
form the basis of most statistical tests used on measurement variables.

Range: This is simply the difference between the largest and smallest observations. This is
the statistic of dispersion that people use in everyday conversation; if you were telling
your Uncle Cletus about your research on the giant deep-sea isopod Bathynomus giganteus,
you wouldn’t blather about means and standard deviations, you’d say they ranged from
4.4 to 36.5 cm long (Biornes-Fourzdn and Lozano-Alvarez 1991). Then you’d explain that
isopods are roly-polies, and 36.5 cm is about 14 American inches, and Uncle Cletus would
finally be impressed, because a roly-poly that’s over a foot long is pretty impressive.

Range is not very informative for statistical purposes. The range depends only on the
largest and smallest values, so that two sets of data with very different distributions could
have the same range, or two samples from the same population could have very different
ranges, purely by chance. In addition, the range increases as the sample size increases; the
more observations you make, the greater the chance that you'll sample a very large or
very small value. There is no range function in spreadsheets; you can calculate the range
by using =MAX (Ys)—MIN(Ys), where Ys represents a set of cells.

Sum of squares: This is not really a statistic of dispersion by itself, but I mention it here
because it forms the basis of the variance and standard deviation. Subtract the mean from
an observation and square this “deviate”. Squaring the deviates makes all of the squared
deviates positive and has other statistical advantages. Do this for each observation, then
sum these squared deviates. This sum of the squared deviates from the mean is known as
the sum of squares. It is given by the spreadsheet function DEVSQ(Ys) (not by the function
SUMSQ). You'll probably never have a reason to calculate the sum of squares, but it’s an
important concept.

Parametric variance: If you take the sum of squares and divide it by the number of
observations (1), you are computing the average squared deviation from the mean. As
observations get more and more spread out, they get farther from the mean, and the
average squared deviate gets larger. This average squared deviate, or sum of squares
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divided by n, is the parametric variance. You can only calculate the parametric variance of
a population if you have observations for every member of a population, which is almost
never the case. I can’t think of a good biological example where using the parametric
variance would be appropriate; I only mention it because there’s a spreadsheet function
for it that you should never use, VARP(Ys).

Sample variance: You almost always have a sample of observations that you are using to
estimate a population parameter. To get an unbiased estimate of the population variance,
divide the sum of squares by n-1, not by n. This sample variance, which is the one you
will always use, is given by the spreadsheet function VAR(Ys). From here on, when you
see “variance,” it means the sample variance.

You might think that if you set up an experiment where you gave 10 guinea pigs little
argyle sweaters, and you measured the body temperature of all 10 of them, that you
should use the parametric variance and not the sample variance. You would, after all,
have the body temperature of the entire population of guinea pigs wearing argyle
sweaters in the world. However, for statistical purposes you should consider your
sweater-wearing guinea pigs to be a sample of all the guinea pigs in the world who could
have worn an argyle sweater, so it would be best to use the sample variance. Even if you
go to Espafiola Island and measure the length of every single tortoise (Geochelone nigra
hoodensis) in the population of tortoises living there, for most purposes it would be best to
consider them a sample of all the tortoises that could have been living there.

Standard deviation: Variance, while it has useful statistical properties that make it the
basis of many statistical tests, is in squared units. A set of lengths measured in centimeters
would have a variance expressed in square centimeters, which is just weird; a set of
volumes measured in cm: would have a variance expressed in cme, which is even weirder.
Taking the square root of the variance gives a measure of dispersion that is in the original
units. The square root of the parametric variance is the parametric standard deviation,
which you will never use; is given by the spreadsheet function STDEVP(Ys). The square
root of the sample variance is given by the spreadsheet function STDEV(Ys). You should
always use the sample standard deviation; from here on, when you see “standard
deviation,” it means the sample standard deviation.

The square root of the sample variance actually underestimates the sample standard
deviation by a little bit. Gurland and Tripathi (1971) came up with a correction factor that
gives a more accurate estimate of the standard deviation, but very few people use it. Their
correction factor makes the standard deviation about 3% bigger with a sample size of 9,
and about 1% bigger with a sample size of 25, for example, and most people just don’t
need to estimate standard deviation that accurately. Neither SAS nor Excel uses the
Gurland and Tripathi correction; I've included it as an option in my descriptive statistics
spreadsheet. If you use the standard deviation with the Gurland and Tripathi correction,
be sure to say this when you write up your results.

In addition to being more understandable than the variance as a measure of the
amount of variation in the data, the standard deviation summarizes how close
observations are to the mean in an understandable way. Many variables in biology fit the
normal probability distribution fairly well. If a variable fits the normal distribution, 68.3%
(or roughly two-thirds) of the values are within one standard deviation of the mean, 95.4%
are within two standard deviations of the mean, and 99.7% (or almost all) are within 3
standard deviations of the mean. Thus if someone says the mean length of men’s feet is
270 mm with a standard deviation of 13 mm, you know that about two-thirds of men’s
feet are between 257 and 283 mm long, and about 95% of men’s feet are between 244 and
296 mm long. Here’s a histogram that illustrates this:
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theoretical normal distribution data that fit the normal distribution
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Left: The theoretical normal distribution. Right: Frequencies of 5,000 numbers randomly generated
to fit the normal distribution. The proportions of this data within 1, 2, or 3 standard deviations of
the mean fit quite nicely to that expected from the theoretical normal distribution.

The proportions of the data that are within 1, 2, or 3 standard deviations of the mean are
different if the data do not fit the normal distribution, as shown for these two very non-
normal data sets:
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Left: Frequencies of 5,000 numbers randomly generated to fit a distribution skewed to the right.
Right: Frequencies of 5,000 numbers randomly generated to fit a bimodal distribution.

Coefficient of variation. Coefficient of variation is the standard deviation divided by the
mean; it summarizes the amount of variation as a percentage or proportion of the total. It
is useful when comparing the amount of variation for one variable among groups with
different means, or among different measurement variables. For example, the United
States military measured foot length and foot width in 1774 American men. The standard
deviation of foot length was 13.1 mm and the standard deviation for foot width was 5.26
mm, which makes it seem as if foot length is more variable than foot width. However, feet
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are longer than they are wide. Dividing by the means (269.7 mm for length, 100.6 mm for
width), the coefficients of variation is actually slightly smaller for length (4.9%) than for
width (5.2%), which for most purposes would be a more useful measure of variation.

Example

Here are the statistics of dispersion for the blacknose dace data from the central
tendency web page. In reality, you would rarely have any reason to report all of these:

Range 90
Variance 1029.5
Standard deviation 32.09

Coefficient of variation 45.8%

How to calculate the statistics

Spreadsheet

I have made a spreadsheet (www .biostathandbook.com/descriptive.xls) that
calculates the range, sample variance, sample standard deviation (with or without the
Gurland and Tripathi correction), and coefficient of variation, for up to 1000 observations.

Web pages

This web page (graphpad.com/quickcalcs/CImeanl.cfm ) calculates standard
deviation and other descriptive statistics for up to 10000 observations.

This web page (www.ruf.rice.edu/~lane/stat_analysis/descriptive.html) calculates
range, variance, and standard deviation, along with other descriptive statistics. I don’t
know the maximum number of observations it can handle.

SAS

PROC UNIVARIATE will calculate the range, variance, standard deviation (without
the Gurland and Tripathi correction), and coefficient of variation. It calculates the sample
variance and sample standard deviation. For examples, see the central tendency web page.

Reference

Briones-Fourzdn, P., and E. Lozano-Alvarez. 1991. Aspects of the biology of the giant
isopod Bathynomus giganteus A. Milne Edwards, 1879 (Flabellifera: Cirolanidae), off
the Yucatan Peninsula. Journal of Crustacean Biology 11: 375-385.

Gurland, J., and R.C. Tripathi. 1971. A simple approximation for unbiased estimation of
the standard deviation. American Statistician 25: 30-32.
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Standard error of the mean

Standard error of the mean tells you how accurate your estimate of the mean is likely
to be.

Introduction

When you take a sample of observations from a population and calculate the sample
mean, you are estimating of the parametric mean, or mean of all of the individuals in the
population. Your sample mean won't be exactly equal to the parametric mean that you're
trying to estimate, and you’d like to have an idea of how close your sample mean is likely
to be. If your sample size is small, your estimate of the mean won’t be as good as an
estimate based on a larger sample size. Here are 10 random samples from a simulated data
set with a true (parametric) mean of 5. The X’s represent the individual observations, the
circles are the sample means, and the line is the parametric mean.

observations (x) and mean (@), N=3 observations (x) and mean (@), N=20
g g
8 " 8
74 % 7
b
64 g X g ® 6
T ) ® X X 4
4 x . «
3 X 3
24 Z
14 1
0 0

Individual observations (X’s) and means (dots) for random samples from a population with a
parametric mean of 5 (horizontal line).

As you can see, with a sample size of only 3, some of the sample means aren’t very
close to the parametric mean. The first sample happened to be three observations that
were all greater than 5, so the sample mean is too high. The second sample has three
observations that were less than 5, so the sample mean is too low. With 20 observations
per sample, the sample means are generally closer to the parametric mean.

Once you've calculated the mean of a sample, you should let people know how close
your sample mean is likely to be to the parametric mean. One way to do this is with the
standard error of the mean. If you take many random samples from a population, the
standard error of the mean is the standard deviation of the different sample means. About
two-thirds (68.3%) of the sample means would be within one standard error of the
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parametric mean, 95.4% would be within two standard errors, and almost all (99.7%)
would be within three standard errors.

means of 100 samples, N=3

Means of 100 random samples (N=3) from a population with a parametric mean of 5 (horizontal
line).

Here’s a figure illustrating this. I took 100 samples of 3 from a population with a
parametric mean of 5 (shown by the line). The standard deviation of the 100 means was
0.63. Of the 100 sample means, 70 are between 4.37 and 5.63 (the parametric mean +one
standard error).

Usually you won’t have multiple samples to use in making multiple estimates of the
mean. Fortunately, you can estimate the standard error of the mean using the sample size
and standard deviation of a single sample of observations. The standard error of the mean
is estimated by the standard deviation of the observations divided by the square root of
the sample size. For some reason, there’s no spreadsheet function for standard error, so
you can use =STDEV (¥s ) /SQRT (COUNT (Ys) ), where Ys is the range of cells containing
your data.

This figure is the same as the one above, only this time I've added error bars indicating
+1 standard error. Because the estimate of the standard error is based on only three
observations, it varies a lot from sample to sample.

mean +/-1 standard error of 100 samples, N=3

Means +1 standard error of 100 random samples (n=3) from a population with a parametric mean
of 5 (horizontal line).
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With a sample size of 20, each estimate of the standard error is more accurate. Of the
100 samples in the graph below, 68 include the parametric mean within +1 standard error
of the sample mean.

mean +/-1 standard error of 100 samples, N=20

Means +1 standard error of 100 random samples (N=20) from a population with a parametric mean
of 5 (horizontal line).

As you increase your sample size, the standard error of the mean will become smaller.
With bigger sample sizes, the sample mean becomes a more accurate estimate of the
parametric mean, so the standard error of the mean becomes smaller. Note that it’s a
function of the square root of the sample size; for example, to make the standard error half
as big, you’ll need four times as many observations.

“Standard error of the mean” and “standard deviation of the mean” are equivalent
terms. People almost always say “standard error of the mean” to avoid confusion with the
standard deviation of observations. Sometimes “standard error” is used by itself; this
almost certainly indicates the standard error of the mean, but because there are also
statistics for standard error of the variance, standard error of the median, standard error of
a regression coefficient, etc., you should specify standard error of the mean.

There is a myth that when two means have standard error bars that don’t overlap, the
means are significantly different (at the P<0.05 level). This is not true (Browne 1979,
Payton et al. 2003); it is easy for two sets of numbers to have standard error bars that don’t
overlap, yet not be significantly different by a two-sample t-test. Don’t try to do statistical
tests by visually comparing standard error bars, just use the correct statistical test.

Similar statistics

Confidence intervals and standard error of the mean serve the same purpose, to
express the reliability of an estimate of the mean. When you look at scientific papers,
sometimes the “error bars” on graphs or the + number after means in tables represent the
standard error of the mean, while in other papers they represent 95% confidence intervals.
I prefer 95% confidence intervals. When I see a graph with a bunch of points and error
bars representing means and confidence intervals, I know that most (95%) of the error bars
include the parametric means. When the error bars are standard errors of the mean, only
about two-thirds of the error bars are expected to include the parametric means; I have to
mentally double the bars to get the approximate size of the 95% confidence interval. In
addition, for very small sample sizes, the 95% confidence interval is larger than twice the
standard error, and the correction factor is even more difficult to do in your head.
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Whichever statistic you decide to use, be sure to make it clear what the error bars on your
graphs represent. I have seen lots of graphs in scientific journals that gave no clue about
what the error bars represent, which makes them pretty useless.

You use standard deviation and coefficient of variation to show how much variation
there is among individual observations, while you use standard error or confidence
intervals to show how good your estimate of the mean is. The only time you would report
standard deviation or coefficient of variation would be if you're actually interested in the
amount of variation. For example, if you grew a bunch of soybean plants with two
different kinds of fertilizer, your main interest would probably be whether the yield of
soybeans was different, so you’d report the mean yield + either standard error or
confidence intervals. If you were going to do artificial selection on the soybeans to breed
for better yield, you might be interested in which treatment had the greatest variation
(making it easier to pick the fastest-growing soybeans), so then you’d report the standard
deviation or coefficient of variation.

There’s no point in reporting both standard error of the mean and standard deviation.
As long as you report one of them, plus the sample size (N), anyone who needs to can
calculate the other one.

Example

The standard error of the mean for the blacknose dace data from the central tendency
web page is 10.70.

How to calculate the standard error

Spreadsheet

The descriptive statistics spreadsheet (www.biostathandbook.com /descriptive.xls)
calculates the standard error of the mean for up to 1000 observations, using the function
=STDEV(Ys)/SQRT (COUNT (Ys) ).

Web pages

This web page (graphpad.com/quickcalcs/CImeanl.cfm) calculates standard error of
the mean and other descriptive statistics for up to 10000 observations.

This web page (www.ruf.rice.edu/~lane/stat_analysis/descriptive.html) calculates
standard error of the mean, along with other descriptive statistics. I don’t know the
maximum number of observations it can handle.

SAS

PROC UNIVARIATE will calculate the standard error of the mean. For examples, see
the central tendency web page.

References
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Payton, M. E., M. H. Greenstone, and N. Schenker. 2003. Overlapping confidence intervals
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Confidence limits

Confidence limits tell you how accurate your estimate of the mean is likely to be.

Introduction

After you've calculated the mean of a set of observations, you should give some
indication of how close your estimate is likely to be to the parametric (“true”) mean. One
way to do this is with confidence limits. Confidence limits are the numbers at the upper
and lower end of a confidence interval; for example, if your mean is 7.4 with confidence
limits of 5.4 and 9.4, your confidence interval is 5.4 to 9.4.

Most people use 95% confidence limits, although you could use other values. Setting
95% confidence limits means that if you took repeated random samples from a population
and calculated the mean and confidence limits for each sample, the confidence interval for
95% of your samples would include the parametric mean.

To illustrate this, here are the means and confidence intervals for 100 samples of 3
observations from a population with a parametric mean of 5. Of the 100 samples, 94
(shown with X for the mean and a thin line for the confidence interval) have the
parametric mean within their 95% confidence interval, and 6 (shown with circles and thick
lines) have the parametric mean outside the confidence interval.

mean and 95% confidence intervals for 100 samples, N=3

O = N R A D0 O
P T
T
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With larger sample sizes, the 95% confidence intervals get smaller:

mean and 95% confidence intervals for 100 samples, N=20

O = N sy 0w O
PR TN SR SR TN S S T

When you calculate the confidence interval for a single sample, it is tempting to say
that “there is a 95% probability that the confidence interval includes the parametric
mean.” This is technically incorrect, because it implies that if you collected samples with
the same confidence interval, sometimes they would include the parametric mean and
sometimes they wouldn’t. For example, the first sample in the figure above has confidence
limits of 4.59 and 5.51. It would be incorrect to say that 95% of the time, the parametric
mean for this population would lie between 4.59 and 5.51. If you took repeated samples
from this same population and repeatedly got confidence limits of 4.59 and 5.51, the
parametric mean (which is 5, remember) would be in this interval 100% of the time. Some
statisticians don’t care about this confusing, pedantic distinction, but others are very picky
about it, so it’s good to know.

Confidence limits for measurement variables

To calculate the confidence limits for a measurement variable, multiply the standard
error of the mean times the appropriate t-value. The t-value is determined by the
probability (0.05 for a 95% confidence interval) and the degrees of freedom (n-1). In a
spreadsheet, you could use

=(STDEV(Ys)/SQRT (COUNT(Ys)))*TINV(0.05, COUNT(Ys)-1)

where Ys is the range of cells containing your data. You add this value to and subtract it
from the mean to get the confidence limits. Thus if the mean is 87 and the t-value times the
standard error is 10.3, the confidence limits would be 76.7 and 97.3. You could also report
this as “87 £10.3 (95% confidence limits).” People report both confidence limits and
standard errors as the “mean + something,” so always be sure to specify which you're
talking about.

All of the above applies only to normally distributed measurement variables. For
measurement data from a highly non-normal distribution, bootstrap techniques, which I
won't talk about here, might yield better estimates of the confidence limits.
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Confidence limits for nominal variables

There is a different, more complicated formula, based on the binomial distribution, for
calculating confidence limits of proportions (nominal data). Importantly, it yields
confidence limits that are not symmetrical around the proportion, especially for
proportions near zero or one. John Pezzullo has an easy-to-use web page for confidence
intervals of a proportion (statpages.org/confint.html). To see how it works, let’s say that
you’ve taken a sample of 20 men and found 2 colorblind and 18 non-colorblind. Go to the
web page and enter 2 in the “Numerator” box and 20 in the “Denominator” box,” then hit
“Compute.” The results for this example would be a lower confidence limit of 0.0124 and
an upper confidence limit of 0.3170. You can’t report the proportion of colorblind men as
“0.10 £ something,” instead you’d have to say “0.10 with 95% confidence limits of 0.0124
and 0.3170.”

An alternative technique for estimating the confidence limits of a proportion assumes
that the sample proportions are normally distributed. This approximate technique yields
symmetrical confidence limits, which for proportions near zero or one are obviously
incorrect. For example, if you calculate the confidence limits using the normal
approximation on 0.10 with a sample size of 20, you get -0.03 and 0.23, which is ridiculous
(you couldn’t have less than 0% of men being color-blind). It would also be incorrect to
say that the confidence limits were 0 and 0.23, because you know the proportion of
colorblind men in your population is greater than 0 (your sample had two colorblind men,
so you know the population has at least two colorblind men). I consider confidence limits
for proportions that are based on the normal approximation to be obsolete for most
purposes; you should use the confidence interval based on the binomial distribution,
unless the sample size is so large that it is computationally impractical. Unfortunately,
more people use the confidence limits based on the normal approximation than use the
correct, binomial confidence limits.

The formula for the 95% confidence interval using the normal approximation is p
+1.96V[p(1-p)/n], where p is the proportion and # is the sample size. Thus, for P=0.20 and
n=100, the confidence interval would be +1.96v [0.20(1-0.20)/100], or 0.20 +£0.078. A
common rule of thumb says that it is okay to use this approximation as long as npq is
greater than 5; my rule of thumb is to only use the normal approximation when the
sample size is so large that calculating the exact binomial confidence interval makes
smoke come out of your computer.

Statistical testing with confidence intervals

This handbook mostly presents “classical” or “frequentist” statistics, in which
hypotheses are tested by estimating the probability of getting the observed results by
chance, if the null is true (the P value). An alternative way of doing statistics is to put a
confidence interval on a measure of the deviation from the null hypothesis. For example,
rather than comparing two means with a two-sample t—test, some statisticians would
calculate the confidence interval of the difference in the means.

This approach is valuable if a small deviation from the null hypothesis would be
uninteresting, when you’re more interested in the size of the effect rather than whether it
exists. For example, if you're doing final testing of a new drug that you're confident will
have some effect, you’d be mainly interested in estimating how well it worked, and how
confident you were in the size of that effect. You’d want your result to be “This drug
reduced systolic blood pressure by 10.7 mm Hg, with a confidence interval of 7.8 to 13.6,”
not “This drug significantly reduced systolic blood pressure (P=0.0007).”
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Using confidence limits this way, as an alternative to frequentist statistics, has many
advocates, and it can be a useful approach. However, I often see people saying things like
“The difference in mean blood pressure was 10.7 mm Hg, with a confidence interval of 7.8
to 13.6; because the confidence interval on the difference does not include 0, the means are
significantly different.” This is just a clumsy, roundabout way of doing hypothesis testing,
and they should just admit it and do a frequentist statistical test.

There is a myth that when two means have confidence intervals that overlap, the
means are not significantly different (at the P<0.05 level). Another version of this myth is
that if each mean is outside the confidence interval of the other mean, the means are
significantly different. Neither of these is true (Schenker and Gentleman 2001, Payton et al.
2003); it is easy for two sets of numbers to have overlapping confidence intervals, yet still
be significantly different by a two-sample t—test; conversely, each mean can be outside the
confidence interval of the other, yet they're still not significantly different. Don’t try
compare two means by visually comparing their confidence intervals, just use the correct
statistical test.

Similar statistics

Confidence limits and standard error of the mean serve the same purpose, to express
the reliability of an estimate of the mean. When you look at scientific papers, sometimes
the “error bars” on graphs or the + number after means in tables represent the standard
error of the mean, while in other papers they represent 95% confidence intervals. I prefer
95% confidence intervals. When I see a graph with a bunch of points and error bars
representing means and confidence intervals, I know that most (95%) of the error bars
include the parametric means. When the error bars are standard errors of the mean, only
about two-thirds of the bars are expected to include the parametric means; I have to
mentally double the bars to get the approximate size of the 95% confidence interval
(because tx0.05) is approximately 2 for all but very small values of n). Whichever statistic
you decide to use, be sure to make it clear what the error bars on your graphs represent. A
surprising number of papers don’t say what their error bars represent, which means that
the only information the error bars convey to the reader is that the authors are careless
and sloppy.

Examples

Measurement data: The blacknose dace data from the central tendency web page has
an arithmetic mean of 70.0. The lower confidence limit is 45.3 (70.0-24.7), and the upper
confidence limit is 94.7 (70+24.7).

Nominal data: If you work with a lot of proportions, it's good to have a rough idea of
confidence limits for different sample sizes, so you have an idea of how much data you'll
need for a particular comparison. For proportions near 50%, the confidence intervals are
roughly £30%, 10%, 3%, and 1% for n=10, 100, 1000, and 10,000, respectively. This is why
the “margin of error” in political polls, which typically have a sample size of around 1,000,
is usually about 3%. Of course, this rough idea is no substitute for an actual power
analysis.

119



HANDBOOK OF BIOLOGICAL STATISTICS

How to calculate confidence limits

Spreadsheets

The descriptive statistics spreadsheet (www .biostathandbook.com/descriptive.xls)
calculates 95% confidence limits of the mean for up to 1000 measurements. The confidence
intervals for a binomial proportion spreadsheet
(www .biostathandbook.com / confidence.xls) calculates 95% confidence limits for nominal
variables, using both the exact binomial and the normal approximation.

Web pages

This web page (graphpad.com/quickcalcs/CImeanl.cfm) calculates confidence
intervals of the mean for up to 10,000 measurement observations. The web page for
confidence intervals of a proportion (statpages.org/confint.html) handles nominal
variables.

SAS

To get confidence limits for a measurement variable, add CIBASIC to the PROC
UNIVARIATE statement, like this:

data fish;
input location $ dacenumber;
datalines;
Mill Creek_1 76
Mill Creek_2 102
North_Branch_Rock_Creek_1 12
North_Branch_Rock_Creek_2 39

Rock_Creek_1 55
Rock_Creek_2 93
Rock_Creek_3 98
Rock_Creek_ 4 53
Turkey_ Branch 102

7
proc univariate data=fish cibasic;
run;

The output will include the 95% confidence limits for the mean (and for the standard
deviation and variance, which you would hardly ever need):

Basic Confidence Limits Assuming Normality

Parameter Estimate 95% Confidence Limits
Mean 70.00000 45.33665 94.66335
Std Deviation 32.08582 21.67259 61.46908
Variance 1030 469.70135 3778

This shows that the blacknose dace data have a mean of 70, with confidence limits of 45.3
and 94.7.

You can get the confidence limits for a binomial proportion using PROC FREQ. Here’s
the sample program from the exact test of goodness-of-fit page:
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data gus;
input paw $;
datalines;

right

left

right

right

right

right

left

right

right

right

proc freq data=gus;
tables paw / binomial(P=0.5);

exact binomial;

run;

And here is part of the output:

Binomial Proportion
for paw = left

Proportion 0.2000
ASE 0.1265
95% Lower Conf Limit 0.0000
95% Upper Conf Limit 0.4479
Exact Conf Limits

95% Lower Conf Limit 0.0252
95% Upper Conf Limit 0.5561

The first pair of confidence limits shown is based on the normal approximation; the
second pair is the better one, based on the exact binomial calculation. Note that if you
have more than two values of the nominal variable, the confidence limits will only be
calculated for the value whose name is first alphabetically. For example, if the Gus data set
included “left,” “right,” and “both” as values, SAS would only calculate the confidence
limits on the proportion of “both.” One clumsy way to solve this would be to run the
program three times, changing the name of “left” to “aleft,” then changing the name of
“right” to “aright,” to make each one first in one run.

References

Payton, M. E., M. H. Greenstone, and N. Schenker. 2003. Overlapping confidence intervals
or standard error intervals: what do they mean in terms of statistical significance?
Journal of Insect Science 3: 34.

Schenker, N., and J. F. Gentleman. 2001. On judging the significance of differences by
examining overlap between confidence intervals. American Statistician 55: 182-186.
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Student’s t—test for one
sample

Use Student’s t-test for one sample when you have one measurement variable and a
theoretical expectation of what the mean should be under the null hypothesis. It tests
whether the mean of the measurement variable is different from the null expectation.

Introduction

There are several statistical tests that use the t-distribution and can be called a t—test.
One is Student’s t-test for one sample, named after “Student,” the pseudonym that
William Gosset used to hide his employment by the Guinness brewery in the early 1900s
(they had a rule that their employees weren’t allowed to publish, and Guinness didn’t
want other employees to know that they were making an exception for Gosset). Student’s
t—test for one sample compares a sample to a theoretical mean. It has so few uses in
biology that I didn’t cover it in previous editions of this Handbook, but then I recently
found myself using it (McDonald and Dunn 2013), so here it is.

When to use it

Use Student’s t-test when you have one measurement variable, and you want to
compare the mean value of the measurement variable to some theoretical expectation. It is
commonly used in fields such as physics (you’ve made several observations of the mass of
a new subatomic particle—does the mean fit the mass predicted by the Standard Model of
particle physics?) and product testing (you've measured the amount of drug in several
aliquots from a new batch—is the mean of the new batch significantly less than the
standard you’ve established for that drug?). It's rare to have this kind of theoretical
expectation in biology, so you'll probably never use the one-sample t—test.

I've had a hard time finding a real biological example of a one-sample t—test, so
imagine that you're studying joint position sense, our ability to know what position our
joints are in without looking or touching. You want to know whether people over- or
underestimate their knee angle. You blindfold 10 volunteers, bend their knee to a 120°
angle for a few seconds, then return the knee to a 90° angle. Then you ask each person to
bend their knee to the 120° angle. The measurement variable is the angle of the knee, and
the theoretical expectation from the null hypothesis is 120°. You get the following
imaginary data:
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Individual Angle
120.6
116.4
117.2
118.1
114.1
116.9
113.3
121.1
116.9
117.0

——TOTmINwm >

If the null hypothesis were true that people don’t over- or underestimate their knee angle,
the mean of these 10 numbers would be 120. The mean of these ten numbers is 117.2; the
one-sample t—test will tell you whether that is significantly different from 120.

Null hypothesis

The statistical null hypothesis is that the mean of the measurement variable is equal to
a number that you decided on before doing the experiment. For the knee example, the
biological null hypothesis is that people don’t under- or overestimate their knee angle.
You decided to move people’s knees to 120°, so the statistical null hypothesis is that the
mean angle of the subjects’ knees will be 120°.

How the test works
Calculate the test statistic, ¢, using this formula:

X =l
siAn
where xis the sample mean, u is the mean expected under the null hypothesis, s is the
sample standard deviation and 7 is the sample size. The test statistic, ¢, gets bigger as the
difference between the observed and expected means gets bigger, as the standard
deviation gets smaller, or as the sample size gets bigger.
Applying this formula to the imaginary knee position data gives a t-value of -3.69.
You calculate the probability of getting the observed t. value under the null hypothesis
using the t-distribution. The shape of the t-distribution, and thus the probability of getting
a particular ¢, value, depends on the number of degrees of freedom. The degrees of
freedom for a one-sample t-test is the total number of observations in the group minus 1.
For our example data, the P value for a t value of -3.69 with 9 degrees of freedom is 0.005,

so you would reject the null hypothesis and conclude that people return their knee to a
significantly smaller angle than the original position.

t, =

Assumptions

The t—test assumes that the observations within each group are normally distributed. If
the distribution is symmetrical, such as a flat or bimodal distribution, the one-sample -
test is not at all sensitive to the non-normality; you will get accurate estimates of the P
value, even with small sample sizes. A severely skewed distribution can give you too
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many false positives unless the sample size is large (above 50 or so). If your data are
severely skewed and you have a small sample size, you should try a data transformation
to make them less skewed. With large sample sizes (simulations I've done suggest 50 is
large enough), the one-sample t-test will give accurate results even with severely skewed
data.

Example

McDonald and Dunn (2013) measured the correlation of transferrin (labeled red) and
Rab-10 (labeled green) in five cells. The biological null hypothesis is that transferrin and
Rab-10 are not colocalized (found in the same subcellular structures), so the statistical null
hypothesis is that the correlation coefficient between red and green signals in each cell
image has a mean of zero. The correlation coefficients were 0.52, 0.20, 0.59, 0.62 and 0.60 in
the five cells. The mean is 0.51, which is highly significantly different from 0 (t=6.46, 4 d.f.,
P=0.003), indicating that transferrin and Rab-10 are colocalized in these cells.

Graphing the results

Because you're just comparing one observed mean to one expected value, you
probably won’t put the results of a one-sample t—test in a graph. If you've done a bunch of
them, I guess you could draw a bar graph with one bar for each mean, and a dotted
horizontal line for the null expectation.

Similar tests

The paired t—test is a special case of the one-sample t—test; it tests the null hypothesis
that the mean difference between two measurements (such as the strength of the right arm
minus the strength of the left arm) is equal to zero. Experiments that use a paired t-test are
much more common in biology than experiments using the one-sample t—test, so I treat
the paired t—test as a completely different test.

The two-sample t—test compares the means of two different samples. If one of your
samples is very large, you may be tempted to treat the mean of the large sample as a
theoretical expectation, but this is incorrect. For example, let’s say you want to know
whether college softball pitchers have greater shoulder flexion angles than normal people.
You might be tempted to look up the “normal” shoulder flexion angle (150°) and compare
your data on pitchers to the normal angle using a one-sample t-test. However, the
“normal” value doesn’t come from some theory, it is based on data that has a mean, a
standard deviation, and a sample size, and at the very least you should dig out the
original study and compare your sample to the sample the 150° “normal” was based on,
using a two-sample t—test that takes the variation and sample size of both samples into
account.

How to do the test
Spreadsheets

I have set up a spreadsheet to perform the one-sample t—test
(www.biostathandbook.com / onesamplettest.xls) . It will handle up to 1000 observations.

Web pages

There are web pages to do the one-sample t—test (http:/ / vassarstats.net/t_single.html
and www.graphpad.com/quickcalcs/oneSampleT1/?Format=C).
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SAS

You can use PROC TTEST for Student’s t—test; the CLASS parameter is the nominal
variable, and the VAR parameter is the measurement variable. Here is an example
program for the joint position sense data above. Note that “H0” parameter for the
theoretical value is “H” followed by the numeral zero, not a capital letter O.

DATA jps;
INPUT angle;
DATALINES;

120.6

116.

117.

118.

114.

116.

113.

121.

116.

117.

PROC TTEST DATA=jps HO0=50;
VAR angle;

RUN;

CVWKRFRFWOVERFEREFEDND

The output includes some descriptive statistics, plus the t-value and P value. For these
data, the P value is 0.005.

DF t Value Pr > |t]
9 -3.69 0.0050

Power analysis

To estimate the sample size you to detect a significant difference between a mean and
a theoretical value, you need the following:

ethe effect size, or the difference between the observed mean and the theoretical value
that you hope to detect;

ethe standard deviation;
ealpha, or the significance level (usually 0.05);

ebeta, the probability of accepting the null hypothesis when it is false (0.50, 0.80 and
0.90 are common values);

The G*Power program will calculate the sample size needed for a one-sample t-test.
Choose “t tests” from the “Test family” menu and “Means: Difference from constant (one
sample case)” from the “Statistical test” menu. Click on the “Determine” button and enter
the theoretical value (“Mean H0”) and a mean with the smallest difference from the
theoretical that you hope to detect (“Mean H1”). Enter an estimate of the standard
deviation. Click on “Calculate and transfer to main window”. Change “tails” to two, set
your alpha (this will almost always be 0.05) and your power (0.5, 0.8, or 0.9 are commonly
used).

As an example, let’s say you want to follow up the knee joint position sense study that
I made up above with a study of hip joint position sense. You're going to set the hip angle
to 70° (Mean H0=70) and you want to detect an over- or underestimation of this angle of
1°, so you set Mean H1=71. You don’t have any hip angle data, so you use the standard
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deviation from your knee study and enter 2.4 for SD. You want to do a two-tailed test at
the P<0.05 level, with a probability of detecting a difference this large, if it exists, of 90%
(1-beta=0.90). Entering all these numbers in G*Power gives a sample size of 63 people.

Reference

McDonald, ].H., and K.W. Dunn. 2013. Statistical tests for measures of colocalization in
biological microscopy. Journal of Microscopy 252: 295-302.
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Student’s t—test for two
samples

Use Student’s t—test for two samples when you have one measurement variable and
one nominal variable, and the nominal variable has only two values. It tests whether the
means of the measurement variable are different in the two groups.

Introduction

There are several statistical tests that use the t-distribution and can be called a t—test.
One of the most common is Student’s t—test for two samples. Other t—tests include the
one-sample t—test, which compares a sample mean to a theoretical mean, and the paired -
test.

Student’s t-test for two samples is mathematically identical to a one-way anova with
two categories; because comparing the means of two samples is such a common
experimental design, and because the t-test is familiar to many more people than anova, I
treat the two-sample t—test separately.

When to use it

Use the two-sample t—test when you have one nominal variable and one measurement
variable, and you want to compare the mean values of the measurement variable. The
nominal variable must have only two values, such as “male” and “female” or “treated”
and “untreated.”

Null hypothesis

The statistical null hypothesis is that the means of the measurement variable are equal
for the two categories.

How the test works

The test statistic, t, is calculated using a formula that has the difference between the
means in the numerator; this makes t, get larger as the means get further apart. The
denominator is the standard error of the difference in the means, which gets smaller as the
sample variances decrease or the sample sizes increase. Thus ¢, gets larger as the means get
farther apart, the variances get smaller, or the sample sizes increase.

You calculate the probability of getting the observed t. value under the null hypothesis
using the t-distribution. The shape of the t-distribution, and thus the probability of getting
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a particular ¢, value, depends on the number of degrees of freedom. The degrees of
freedom for a t-test is the total number of observations in the groups minus 2, or n,+n.-2.

Assumptions

The t—test assumes that the observations within each group are normally distributed.
Fortunately, it is not at all sensitive to deviations from this assumption, if the distributions
of the two groups are the same (if both distributions are skewed to the right, for example).
I've done simulations with a variety of non-normal distributions, including flat, bimodal,
and highly skewed, and the two-sample t-test always gives about 5% false positives, even
with very small sample sizes. If your data are severely non-normal, you should still try to
find a data transformation that makes them more normal, but don’t worry if you can’t find
a good transformation or don’t have enough data to check the normality.

If your data are severely non-normal, and you have different distributions in the two
groups (one data set is skewed to the right and the other is skewed to the left, for
example), and you have small samples (less than 50 or so), then the two-sample t-test can
give inaccurate results, with considerably more than 5% false positives. A data
transformation won’t help you here, and neither will a Mann-Whitney U-test. It would be
pretty unusual in biology to have two groups with different distributions but equal
means, but if you think that’s a possibility, you should require a P value much less than
0.05 to reject the null hypothesis.

The two-sample t—test also assumes homoscedasticity (equal variances in the two
groups). If you have a balanced design (equal sample sizes in the two groups), the test is
not very sensitive to heteroscedasticity unless the sample size is very small (less than 10 or
s0); the standard deviations in one group can be several times as big as in the other group,
and you’ll get P<0.05 about 5% of the time if the null hypothesis is true. With an
unbalanced design, heteroscedasticity is a bigger problem; if the group with the smaller
sample size has a bigger standard deviation, the two-sample t-test can give you false
positives much too often. If your two groups have standard deviations that are
substantially different (such as one standard deviation is twice as big as the other), and
your sample sizes are small (less than 10) or unequal, you should use Welch's t—test
instead.

Example

In fall 2004, students in the 2 p.m. section of my Biological Data Analysis class had an
average height of 66.6 inches, while the average height in the 5 p.m. section was 64.6
inches. Are the average heights of the two sections significantly different? Here are the
data:
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2pm. 5Spm.

69 68
70 62
66 67
63 68
68 69
70 67
69 61
67 59
62 62
63 61
76 69
59 66
62 62
62 62
75 61
62 70
72

63

There is one measurement variable, height, and one nominal variable, class section.
The null hypothesis is that the mean heights in the two sections are the same. The results
of the t-test (t=1.29, 32 d.f., P=0.21) do not reject the null hypothesis.

Graphing the results

Because it’s just comparing two numbers, you'll rarely put the results of a t—test in a
graph for publication. For a presentation, you could draw a bar graph like the one for a
one-way anova.

Similar tests

Student’s t-test is mathematically identical to a one-way anova done on data with two
categories; you will get the exact same P value from a two-sample f—test and from a one-
way anova, even though you calculate the test statistics differently. The t-test is easier to
do and is familiar to more people, but it is limited to just two categories of data. You can
do a one-way anova on two or more categories. I recommend that if your research always
involves comparing just two means, you should call your test a two-sample t-test, because
it is more familiar to more people. If you write a paper that includes some comparisons of
two means and some comparisons of more than two means, you may want to call all the
tests one-way anovas, rather than switching back and forth between two different names
(t—test and one-way anova) for the same thing.

The Mann-Whitney U-test is a non-parametric alternative to the two-sample f—test that
some people recommend for non-normal data. However, if the two samples have the same
distribution, the two-sample t—test is not sensitive to deviations from normality, so you
can use the more powerful and more familiar t-test instead of the Mann-Whitney U-test. If
the two samples have different distributions, the Mann-Whitney U-test is no better than
the t—test. So there’s really no reason to use the Mann-Whitney U-test unless you have a
true ranked variable instead of a measurement variable.
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If the variances are far from equal (one standard deviation is two or more times as big
as the other) and your sample sizes are either small (less than 10) or unequal, you should
use Welch'’s t-test (also know as Aspin-Welch, Welch-Satterthwaite, Aspin-Welch-
Satterthwaite, or Satterthwaite t—test). It is similar to Student’s t—test except that it does not
assume that the standard deviations are equal. It is slightly less powerful than Student’s t-—
test when the standard deviations are equal, but it can be much more accurate when the
standard deviations are very unequal. My two-sample t—test spreadsheet
(www.biostathandbook.com / twosamplettest.xls) will calculate Welch’s t-test. You can
also do Welch’s t-test using this web page (graphpad.com/quickcalcs/ ttestl.cfm), by
clicking the button labeled “Welch’s unpaired t-test”.

Use the paired f—test when the measurement observations come in pairs, such as
comparing the strengths of the right arm with the strength of the left arm on a set of
people.

Use the one-sample t—test when you have just one group, not two, and you are
comparing the mean of the measurement variable for that group to a theoretical
expectation.

How to do the test
Spreadsheets

I've set up a spreadsheet for two-sample t—tests
(www.biostathandbook.com / twosamplettest.xls). It will perform either Student’s t—test or
Welch'’s t-test for up to 2000 observations in each group.

Web pages
There are web pages to do the t—test (graphpad.com/ quickcalcs/ ttestl.cfm and
vassarstats.net/tu.html). Both will do both the Student’s t—test and Welch’s t—test.

SAS

You can use PROC TTEST for Student'’s t—test; the CLASS parameter is the nominal
variable, and the VAR parameter is the measurement variable. Here is an example
program for the height data above.

DATA sectionheights;

INPUT section $ height @@;

DATALINES;
2pm 69 2pm 70 2pm 66 2pm 63 2pm 68 2pm 70 2pm 69
2pm 67 2pm 62 2pm 63 2pm 76 2pm 59 2pm 62 2pm 62
2pm 75 2pm 62 2pm 72 2pm 63
5pm 68 5pm 62 5pm 67 5pm 68 5pm 69 5pm 67 5pm 61
5pm 59 5pm 62 5pm 61 5pm 69 5pm 66 5pm 62 5pm 62
5pm 61 5pm 70

14

PROC TTEST;
CLASS section;
VAR height;
RUN;

The output includes a lot of information; the P value for the Student’s t—test is under “Pr >
[t| on the line labeled “Pooled”, and the P value for Welch’s t-test is on the line labeled
“Satterthwaite.” For these data, the P value is 0.2067 for Student’s t—test and 0.1995 for
Welch’s.
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Variable Method Variances DF t Value Pr > |t]
height Pooled Equal 32 1.29 0.2067
height Satterthwaite Unequal 31.2 1.31 0.1995

Power analysis

To estimate the sample sizes needed to detect a significant difference between two
means, you need the following:

e the effect size, or the difference in means you hope to detect;

ethe standard deviation. Usually you'll use the same value for each group, but if you
know ahead of time that one group will have a larger standard deviation than the
other, you can use different numbers;

ealpha, or the significance level (usually 0.05);

ebeta, the probability of accepting the null hypothesis when it is false (0.50, 0.80 and
0.90 are common values);

e the ratio of one sample size to the other. The most powerful design is to have equal
numbers in each group (N./N.=1.0), but sometimes it’s easier to get large numbers
of one of the groups. For example, if you're comparing the bone strength in mice
that have been reared in zero gravity aboard the International Space Station vs.
control mice reared on earth, you might decide ahead of time to use three control
mice for every one expensive space mouse (N,/N.,=3.0)

The G*Power program will calculate the sample size needed for a two-sample t—test.
Choose “t tests” from the “Test family” menu and “Means: Difference between two
independent means (two groups” from the “Statistical test” menu. Click on the
“Determine” button and enter the means and standard deviations you expect for each
group. Only the difference between the group means is important; it is your effect size.
Click on “Calculate and transfer to main window”. Change “tails” to two, set your alpha
(this will almost always be 0.05) and your power (0.5, 0.8, or 0.9 are commonly used). If
you plan to have more observations in one group than in the other, you can make the
“Allocation ratio” different from 1.

As an example, let’s say you want to know whether people who run regularly have
wider feet than people who don’t run. You look for previously published data on foot
width and find the ANSUR data set, which shows a mean foot width for American men of
100.6 mm and a standard deviation of 5.26 mm. You decide that you’d like to be able to
detect a difference of 3 mm in mean foot width between runners and non-runners. Using
G*Power, you enter 100 mm for the mean of group 1, 103 for the mean of group 2, and 5.26
for the standard deviation of each group. You decide you want to detect a difference of 3
mm, at the P<0.05 level, with a probability of detecting a difference this large, if it exists, of
90% (1-beta=0.90). Entering all these numbers in G*Power gives a sample size for each
group of 66 people.
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Independence

Most statistical tests assume that you have a sample of independent observations,
meaning that the value of one observation does not affect the value of other observations.
Non-independent observations can make your statistical test give too many false positives.

Measurement variables

One of the assumptions of most tests is that the observations are independent of each
other. This assumption is violated when the value of one observation tends to be too
similar to the values of other observations. For example, let’s say you wanted to know
whether calico cats had a different mean weight than black cats. You get five calico cats,
five black cats, weigh them, and compare the mean weights with a two-sample t-test. If
the five calico cats are all from one litter, and the five black cats are all from a second litter,
then the measurements are not independent. Some cat parents have small offspring, while
some have large; so if Josie the calico cat is small, her sisters Valerie and Melody are not
independent samples of all calico cats, they are instead also likely to be small. Even if the
null hypothesis (that calico and black cats have the same mean weight) is true, your
chance of getting a P value less than 0.05 could be much greater than 5%.

A common source of non-independence is that observations are close together in space
or time. For example, let’s say you wanted to know whether tigers in a zoo were more
active in the morning or the evening. As a measure of activity, you put a pedometer on
Sally the tiger and count the number of steps she takes in a one-minute period. If you treat
the number of steps Sally takes between 10:00 and 10:01 a.m. as one observation, and the
number of steps between 10:01 and 10:02 a.m. as a separate observation, these
observations are not independent. If Sally is sleeping from 10:00 to 10:01, she’s probably
still sleeping from 10:01 to 10:02; if she’s pacing back and forth between 10:00 and 10:01,
she’s probably still pacing between 10:01 and 10:02. If you take five observations between
10:00 and 10:05 and compare them with five observations you take between 3:00 and 3:05
with a two-sample t-test, there a good chance you'll get five low-activity measurements in
the morning and five high-activity measurements in the afternoon, or vice-versa. This
increases your chance of a false positive; if the null hypothesis is true, lack of
independence can give you a significant P value much more than 5% of the time.

There are other ways you could get lack of independence in your tiger study. For
example, you might put pedometers on four other tigers—Bob, Janet, Ralph, and
Loretta—in the same enclosure as Sally, measure the activity of all five of them between
10:00 and 10:01, and treat that as five separate observations. However, it may be that when
one tiger gets up and starts walking around, the other tigers are likely to follow it around
and see what it's doing, while at other times all five tigers are likely to be resting. That
would mean that Bob’s amount of activity is not independent of Sally’s; when Sally is
more active, Bob is likely to be more active.

Regression and correlation assume that observations are independent. If one of the
measurement variables is time, or if the two variables are measured at different times, the
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data are often non-independent. For example, if I wanted to know whether I was losing
weight, I could weigh my self every day and then do a regression of weight vs. day.
However, my weight on one day is very similar to my weight on the next day. Even if the
null hypothesis is true that I'm not gaining or losing weight, the non-independence will
make the probability of getting a P value less than 0.05 much greater than 5%.

I've put a more extensive discussion of independence on the regression/ correlation

page.

Nominal variables

Tests of nominal variables (independence or goodness-of-fit) also assume that
individual observations are independent of each other. To illustrate this, let’s say I want to
know whether my statistics class is more boring than my evolution class. I set up a video
camera observing the students in one lecture of each class, then count the number of
students who yawn at least once. In statistics, 28 students yawn and 15 don’t yawn; in

evolution, 6 yawn and 50 don’t yawn. It seems like there’s a significantly (P=2.4x10-)
higher proportion of yawners in the statistics class, but that could be due to chance,
because the observations within each class are not independent of each other. Yawning is
contagious (so contagious that you're probably yawning right now, aren’t you?), which
means that if one person near the front of the room in statistics happens to yawn, other
people who can see the yawner are likely to yawn as well. So the probability that Ashley
in statistics yawns is not independent of whether Sid yawns; once Sid yawns, Ashley will
probably yawn as well, and then Megan will yawn, and then Dave will yawn.

Solutions for lack of independence

Unlike non-normality and heteroscedasticity, it is not easy to look at your data and see
whether the data are non-independent. You need to understand the biology of your
organisms and carefully design your experiment so that the observations will be
independent. For your comparison of the weights of calico cats vs. black cats, you should
know that cats from the same litter are likely to be similar in weight; you could therefore
make sure to sample only one cat from each of many litters. You could also sample
multiple cats from each litter, but treat “litter” as a second nominal variable and analyze
the data using nested anova. For Sally the tiger, you might know from previous research
that bouts of activity or inactivity in tigers last for 5 to 10 minutes, so that you could treat
one-minute observations made an hour apart as independent. Or you might know from
previous research that the activity of one tiger has no effect on other tigers, so measuring
activity of five tigers at the same time would actually be okay. To really see whether
students yawn more in my statistics class, I should set up partitions so that students can’t
see or hear each other yawning while I lecture.

For regression and correlation analyses of data collected over a length of time, there
are statistical tests developed for time series. I don’t cover them in this handbook; if you
need to analyze time series data, find out how other people in your field analyze similar
data.
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Normality

Most tests for measurement variables assume that data are normally distributed (fit a
bell-shaped curve). Here I explain how to check this and what to do if the data aren’t
normal.

Introduction

Frequency
i N
o
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Dry weight of amphipod hatchlings, micrograms

Histogram of dry weights of the amphipod crustacean Platorchestia platensis.

A probability distribution specifies the probability of getting an observation in a
particular range of values; the normal distribution is the familiar bell-shaped curve, with a
high probability of getting an observation near the middle and lower probabilities as you
get further from the middle. A normal distribution can be completely described by just
two numbers, or parameters, the mean and the standard deviation; all normal
distributions with the same mean and same standard deviation will be exactly the same
shape. One of the assumptions of an anova and other tests for measurement variables is
that the data fit the normal probability distribution. Because these tests assume that the
data can be described by two parameters, the mean and standard deviation, they are
called parametric tests.

When you plot a frequency histogram of measurement data, the frequencies should
approximate the bell-shaped normal distribution. For example, the figure shown at the
right is a histogram of dry weights of newly hatched amphipods (Platorchestia platensis),
data I tediously collected for my Ph.D. research. It fits the normal distribution pretty well.

Many biological variables fit the normal distribution quite well. This is a result of the
central limit theorem, which says that when you take a large number of random numbers,
the means of those numbers are approximately normally distributed. If you think of a
variable like weight as resulting from the effects of a bunch of other variables averaged
together—age, nutrition, disease exposure, the genotype of several genes, etc.—it’s not
surprising that it would be normally distributed.
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Sulphate in Maryland streams Egg masses per female treehopper
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Two non-normal histograms.

Other data sets don’t fit the normal distribution very well. The histogram on the left is
the level of sulphate in Maryland streams (data from the Maryland Biological Stream
Survey, www.dnr.state.md.us/streams/MBSS.asp). It doesn’t fit the normal curve very
well, because there are a small number of streams with very high levels of sulphate. The
histogram on the right is the number of egg masses laid by indivuduals of the lentago host
race of the treehopper Enchenopa (unpublished data courtesy of Michael Cast). The curve
is bimodal, with one peak at around 14 egg masses and the other at zero.

Parametric tests assume that your data fit the normal distribution. If your
measurement variable is not normally distributed, you may be increasing your chance of a
false positive result if you analyze the data with a test that assumes normality.

What to do about non-normality

Once you have collected a set of measurement data, you should look at the frequency
histogram to see if it looks non-normal. There are statistical tests of the goodness-of-fit of a
data set to the normal distribution, but I don’t recommend them, because many data sets
that are significantly non-normal would be perfectly appropriate for an anova or other
parametric test. Fortunately, an anova is not very sensitive to moderate deviations from
normality; simulation studies, using a variety of non-normal distributions, have shown
that the false positive rate is not affected very much by this violation of the assumption
(Glass et al. 1972, Harwell et al. 1992, Lix et al. 1996). This is another result of the central
limit theorem, which says that when you take a large number of random samples from a
population, the means of those samples are approximately normally distributed even
when the population is not normal.

Because parametric tests are not very sensitive to deviations from normality, I
recommend that you don’t worry about it unless your data appear very, very non-normal
to you. This is a subjective judgement on your part, but there don’t seem to be any
objective rules on how much non-normality is too much for a parametric test. You should
look at what other people in your field do; if everyone transforms the kind of data you're
collecting, pr uses a non-parametric test, you should consider doing what everyone else
does even if the non-normality doesn’t seem that bad to you.

If your histogram looks like a normal distribution that has been pushed to one side,
like the sulphate data above, you should try different data transformations to see if any of
them make the histogram look more normal. It's best if you collect some data, check the
normality, and decide on a transformation before you run your actual experiment; you
don’t want cynical people to think that you tried different transformations until you found
one that gave you a signficant result for your experiment.
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If your data still look severely non-normal no matter what transformation you apply,
it's probably still okay to analyze the data using a parametric test; they’re just not that
sensitive to non-normality. However, you may want to analyze your data using a non-
parametric test. Just about every parametric statistical test has a non-parametric substitute,
such as the Kruskal-Wallis test instead of a one-way anova, Wilcoxon signed-rank test
instead of a paired t-test, and Spearman rank correlation instead of linear
regression/ correlation. These non-parametric tests do not assume that the data fit the
normal distribution. They do assume that the data in different groups have the same
distribution as each other, however; if different groups have different shaped distributions
(for example, one is skewed to the left, another is skewed to the right), a non-parametric
test will not be any better than a parametric one.

Skewness and kurtosis

normal

skewed left skewed right

platykurtic leptokurtic
Graphs illustrating skewness and kurtosis.

A histogram with a long tail on the right side, such as the sulphate data above, is said
to be skewed to the right; a histogram with a long tail on the left side is said to be skewed
to the left. There is a statistic to describe skewness, g, but I don’t know of any reason to
calculate it; there is no rule of thumb that you shouldn’t do a parametric test if g is greater
than some cutoff value.

Another way in which data can deviate from the normal distribution is kurtosis. A
histogram that has a high peak in the middle and long tails on either side is leptokurtic; a
histogram with a broad, flat middle and short tails is platykurtic. The statistic to describe
kurtosis is g, but I can’t think of any reason why you’d want to calculate it, either.

How to look at normality

Spreadsheet

I've written a spreadsheet that will plot a frequency histogram for untransformed, log-
transformed and square-root transformed data
(www.biostathandbook.com /histogram.xls). It will handle up to 1000 observations.
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If there are not enough observations in each group to check normality, you may want
to examine the residuals (each observation minus the mean of its group). To do this, open
a separate spreadsheet and put the numbers from each group in a separate column. Then
create columns with the mean of each group subtracted from each observation in its
group, as shown below. Copy these numbers into the histogram spreadsheet.

= | =B2-B$13

®@00

< A - - C D E F

1 original data Tillamook Newport Petersburg Magadan Tvarminne
2 0.0571 0.0873 0.0974 0.1033 0.0703
3 0.0813 0.0662 0.1352 0.0915 0.1026
4 0.0831 0.0672 0.0817 0.0781 0.0956
5 0.0976 0.0819 0.1016 0.0685 0.0973
6 0.0817 0.0749 0.0968 0.0677 0.1039
7 0.0859 0.0649 0.1064 0.0697 0.1045
8 0.0735 0.0835 0.1050 0.0764

9 0.0659%9 0.0725 0.0689

10 0.0923

11 0.0836

12

13  group means 0.0802 0.0748 0.1034 0.0780 0.0957
14
[ 15 | residuals -0.0231 0.0125 -0.0060 0.0253 -0.0254
16 0.0011 -0.0086 0.0318 0.0135 0.0069
17 0.0029 -0.0076 -0.0217 0.0001 -0.0001
18 0.0174 0.0071 -0.0018 -0.00%5 0.0016
19 0.0015 0.0001 -0.0066 -0.0103 0.0082
20 0.0057 -0.00%9 0.0030 -0.0083 0.0088
21 -0.0067 0.0087 0.0016 -0.0016

22 -0.0143 -0.0023 -0.00%1

23 0.0121

24 0.0034

2

A spreadsheet showing the calculation of residuals.
Web pages

There are several web pages that will produce histograms, but most of them aren’t
very good; the histogram calculator at
www.shodor.com/interactivate / activities /Histogram/ is the best I've found.

SAS

You can use the PLOTS option in PROC UNIVARIATE to get a stem-and-leaf display,
which is a kind of very crude histogram. You can also use the HISTOGRAM option to get
an actual histogram, but only if you know how to send the output to a graphics device
driver.

References

Glass, G.V., P.D. Peckham, and J.R. Sanders. 1972. Consequences of failure to meet
assumptions underlying fixed effects analyses of variance and covariance. Review of
Educational Research 42: 237-288.

Harwell, M.R., E.N. Rubinstein, W.S. Hayes, and C.C. Olds. 1992. Summarizing Monte
Carlo results in methodological research: the one- and two-factor fixed effects
ANOVA cases. Journal of Educational Statistics 17: 315-339.

Lix, L.M.,, ].C. Keselman, and H.J. Keselman. 1996. Consequences of assumption violations
revisited: A quantitative review of alternatives to the one-way analysis of variance F
test. Review of Educational Research 66: 579-619.

137



HANDBOOK OF BIOLOGICAL STATISTICS

Homoscedasticity and
heteroscedasticity

Parametric tests assume that data are homoscedastic (have the same standard
deviation in different groups). Here I explain how to check this and what to do if the data
are heteroscedastic (have different standard deviations in different groups).

Introduction

One of the assumptions of an anova and other parametric tests is that the within-
group standard deviations of the groups are all the same (exhibit homoscedasticity). If the
standard deviations are different from each other (exhibit heteroscedasticity), the
probability of obtaining a false positive result even though the null hypothesis is true may
be greater than the desired alpha level.

To illustrate this problem, I did simulations of samples from three populations, all
with the same population mean. I simulated taking samples of 10 observations from
population A, 7 from population B, and 3 from population C, and repeated this process
thousands of times. When the three populations were homoscedastic (had the same
standard deviation), the one-way anova on the simulated data sets were significant
(P<0.05) about 5% of the time, as they should be. However, when I made the standard
deviations different (1.0 for population A, 2.0 for population B, and 3.0 for population C), I
got a P value less than 0.05 in about 18% of the simulations. In other words, even though
the population means were really all the same, my chance of getting a false positive result
was 18%, not the desired 5%.

There have been a number of simulation studies that have tried to determine when
heteroscedasticity is a big enough problem that other tests should be used.
Heteroscedasticity is much less of a problem when you have a balanced design (equal
sample sizes in each group). Early results suggested that heteroscedasticity was not a
problem at all with a balanced design (Glass et al. 1972), but later results found that large
amounts of heteroscedasticity can inflate the false positive rate, even when the sample
sizes are equal (Harwell et al. 1992). The problem of heteroscedasticity is much worse
when the sample sizes are unequal (an unbalanced design) and the smaller samples are
from populations with larger standard deviations; but when the smaller samples are from
populations with smaller standard deviations, the false positive rate can actually be much
less than 0.05, meaning the power of the test is reduced (Glass et al. 1972).

What to do about heteroscedasticity

You should always compare the standard deviations of different groups of
measurements, to see if they are very different from each other. However, despite all of
the simulation studies that have been done, there does not seem to be a consensus about
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when heteroscedasticity is a big enough problem that you should not use a test that
assumes homoscedasticity.

If you see a big difference in standard deviations between groups, the first things you
should try are data transformations. A common pattern is that groups with larger means
also have larger standard deviations, and a log or square-root transformation will often fix
this problem. It’s best if you can choose a transformation based on a pilot study, before
you do your main experiment; you don’t want cynical people to think that you chose a
transformation because it gave you a significant result.

If the standard deviations of your groups are very heterogeneous no matter what
transformation you apply, there are a large number of alternative tests to choose from (Lix
et al. 1996). The most commonly used alternative to one-way anova is Welch’s anova,
sometimes called Welch's t—test when there are two groups.

Non-parametric tests, such as the Kruskal-Wallis test instead of a one-way anova, do
not assume normality, but they do assume that the shapes of the distributions in different
groups are the same. This means that non-parametric tests are not a good solution to the
problem of heteroscedasticity.

All of the discussion above has been about one-way anovas. Homoscedasticity is also
an assumption of other anovas, such as nested and two-way anovas, and regression and
correlation. Much less work has been done on the effects of heteroscedasticity on these
tests; all I can recommend is that you inspect the data for heteroscedasticity and hope that
you don't find it, or that a transformation will fix it.

Bartlett’s test

There are several statistical tests for homoscedasticity, and the most popular is
Bartlett’s test. Use this test when you have one measurement variable, one nominal
variable, and you want to test the null hypothesis that the standard deviations of the
measurement variable are the same for the different groups.

Bartlett’s test is not a particularly good one, because it is sensitive to departures from
normality as well as heteroscedasticity; you shouldn’t panic just because you have a
significant Bartlett’s test. It may be more helpful to use Bartlett’s test to see what effect
different transformations have on the heteroscedasticity; you can choose the
transformation with the highest (least significant) P value for Bartlett’s test.

An alternative to Bartlett’s test that I won’t cover here is Levene’s test. It is less sensitive to
departures from normality, but if the data are approximately normal, it is less powerful
than Bartlett’s test.

While Bartlett’s test is usually used when examining data to see if it's appropriate for a
parametric test, there are times when testing the equality of standard deviations is the
primary goal of an experiment. For example, let’s say you want to know whether variation
in stride length among runners is related to their level of experience—maybe as people
run more, those who started with unusually long or short strides gradually converge on
some ideal stride length. You could measure the stride length of non-runners, beginning
runners, experienced amateur runners, and professional runners, with several individuals
in each group, then use Bartlett’s test to see whether there was significant heterogeneity in
the standard deviations.

How to do Bartlett’s test

Spreadsheet

I have put together a spreadsheet that performs Bartlett’s test for homogeneity of
standard deviations for up to 1000 observations in each of up to 50 groups
(www .biostathandbook.com /bartletts.xls). It allows you to see what the log or square-root
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transformation will do. It also shows a graph of the standard deviations plotted vs. the
means. This gives you a visual display of the difference in amount of variation among the
groups, and it also shows whether the mean and standard deviation are correlated.
Entering the mussel shell data from the one-way anova web page into the spreadsheet,
the P values are 0.655 for untransformed data, 0.856 for square-root transformed, and
0.929 for log-transformed data. None of these is close to significance, so there’s no real
need to worry. The graph of the untransformed data hints at a correlation between the
mean and the standard deviation, so it might be a good idea to log-transform the data:
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Standard deviation vs. mean AAM for untransformed and log-transformed data.

Web page
There is web page for Bartlett’s test that will handle up to 14 groups

(home.ubalt.edu/ntsbarsh /Business-stat/ otherapplets /BartletTest.htm). You have to
enter the variances (not standard deviations) and sample sizes, not the raw data.

SAS

You can use the HOVTEST=BARTLETT option in the MEANS statement of PROC
GLM to perform Bartlett’s test. This modification of the program from the one-way anova
page does Bartlett’s test.

PROC GLM DATA=musselshells;

CLASS location;

MODEL aam = location;

MEANS location / HOVTEST=BARTLETT;
run;
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Data transformations

If a measurement variable does not fit a normal distribution or has greatly different
standard deviations in different groups, you should try a data transformation.

Introduction

Many biological variables do not meet the assumptions of parametric statistical tests:
they are not normally distributed, the standard deviations are not homogeneous, or both.
Using a parametric statistical test (such as an anova or linear regression) on such data may
give a misleading result. In some cases, transforming the data will make it fit the
assumptions better.
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Histograms of number of Eastern mudminnows per 75 m section of stream (samples with 0
mudminnows excluded). Untransformed data on left, log-transformed data on right.
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To transform data, you perform a mathematical operation on each observation, then
use these transformed numbers in your statistical test. For example, as shown in the first
graph above, the abundance of the fish species Umbra pygmaea (Eastern mudminnow) in
Maryland streams is non-normally distributed; there are a lot of streams with a small
density of mudminnows, and a few streams with lots of them. Applying the log
transformation makes the data more normal, as shown in the second graph.

Here are 12 numbers from the from the mudminnow data set; the first column is the
untransformed data, the second column is the square root of the number in the first
column, and the third column is the base-10 logarithm of the number in the first column.
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Square-root Log
Untransformed transformed transformed
38 6.164 1.580
1 1.000 0.000
13 3.606 1.114
2 1.414 0.301
13 3.606 1.114
20 4.472 1.301
50 7.071 1.699
9 3.000 0.954
28 5.292 1.447
6 2.449 0.778
4 2.000 0.602
43 6.557 1.633

You do the statistics on the transformed numbers. For example, the mean of the
untransformed data is 18.9; the mean of the square-root transformed data is 3.89; the mean
of the log transformed data is 1.044. If you were comparing the fish abundance in different
watersheds, and you decided that log transformation was the best, you would do a one-
way anova on the logs of fish abundance, and you would test the null hypothesis that the
means of the log-transformed abundances were equal.

Back transformation

Even though you’ve done a statistical test on a transformed variable, such as the log of
fish abundance, it is not a good idea to report your means, standard errors, etc. in
transformed units. A graph that showed that the mean of the log of fish per 75 meters of
stream was 1.044 would not be very informative for someone who can’t do fractional
exponents in their head. Instead, you should back-transform your results. This involves
doing the opposite of the mathematical function you used in the data transformation. For
the log transformation, you would back-transform by raising 10 to the power of your
number. For example, the log transformed data above has a mean of 1.044 and a 95%
confidence interval of £0.344 log-transformed fish. The back-transformed mean would be
10:+=11.1 fish. The upper confidence limit would be 10:«+=24 .4 fish, and the lower
confidence limit would be 10:++=5.0 fish. Note that the confidence interval is not
symmetrical; the upper limit is 13.3 fish above the mean, while the lower limit is 6.1 fish
below the mean. Also note that you can’t just back-transform the confidence interval and
add or subtract that from the back-transformed mean; you can’t take 10+ and add or
subtract that.

Choosing the right transformation

Data transformations are an important tool for the proper statistical analysis of
biological data. To those with a limited knowledge of statistics, however, they may seem a
bit fishy, a form of playing around with your data in order to get the answer you want. It
is therefore essential that you be able to defend your use of data transformations.

There are an infinite number of transformations you could use, but it is better to use a
transformation that other researchers commonly use in your field, such as the square-root
transformation for count data or the log transformation for size data. Even if an obscure
transformation that not many people have heard of gives you slightly more normal or

142



DATA TRANSFORMATIONS

more homoscedastic data, it will probably be better to use a more common transformation
so people don’t get suspicious. Remember that your data don’t have to be perfectly
normal and homoscedastic; parametric tests aren’t extremely sensitive to deviations from
their assumptions.

It is also important that you decide which transformation to use before you do the
statistical test. Trying different transformations until you find one that gives you a
significant result is cheating. If you have a large number of observations, compare the
effects of different transformations on the normality and the homoscedasticity of the
variable. If you have a small number of observations, you may not be able to see much
effect of the transformations on the normality and homoscedasticity; in that case, you
should use whatever transformation people in your field routinely use for your variable.
For example, if you're studying pollen dispersal distance and other people routinely log-
transform it, you should log-transform pollen distance too, even if you only have 10
observations and therefore can’t really look at normality with a histogram.

Common transformations

There are many transformations that are used occasionally in biology; here are three of
the most common:

Log transformation. This consists of taking the log of each observation. You can use
either base-10 logs (LOG in a spreadsheet, LOG10 in SAS) or base-e logs, also known as
natural logs (LN in a spreadsheet, LOG in SAS). It makes no difference for a statistical test
whether you use base-10 logs or natural logs, because they differ by a constant factor; the

base-10 log of a number is just 2.303... x the natural log of the number. You should specify
which log you're using when you write up the results, as it will affect things like the slope
and intercept in a regression. I prefer base-10 logs, because it’s possible to look at them
and see the magnitude of the original number: log(1)=0, log(10)=1, 1og(100)=2, etc.

The back transformation is to raise 10 or e to the power of the number; if the mean of
your base-10 log-transformed data is 1.43, the back transformed mean is 10:+=26.9 (in a
spreadsheet, “=1071.43"). If the mean of your base-e log-transformed data is 3.65, the back
transformed mean is e:+=38.5 (in a spreadsheet, “=EXP(3.65)”. If you have zeros or
negative numbers, you can’t take the log; you should add a constant to each number to
make them positive and non-zero. If you have count data, and some of the counts are zero,
the convention is to add 0.5 to each number.

Many variables in biology have log-normal distributions, meaning that after log-
transformation, the values are normally distributed. This is because if you take a bunch of
independent factors and multiply them together, the resulting product is log-normal. For
example, let’s say you've planted a bunch of maple seeds, then 10 years later you see how
tall the trees are. The height of an individual tree would be affected by the nitrogen in the
soil, the amount of water, amount of sunlight, amount of insect damage, etc. Having more
nitrogen might make a tree 10% larger than one with less nitrogen; the right amount of
water might make it 30% larger than one with too much or too little water; more sunlight
might make it 20% larger; less insect damage might make it 15% larger, etc. Thus the final

size of a tree would be a function of nitrogenxwaterxsunlightxinsects, and
mathematically, this kind of function turns out to be log-normal.

Square-root transformation. This consists of taking the square root of each
observation. The back transformation is to square the number. If you have negative
numbers, you can’t take the square root; you should add a constant to each number to
make them all positive.

People often use the square-root transformation when the variable is a count of
something, such as bacterial colonies per petri dish, blood cells going through a capillary
per minute, mutations per generation, etc.
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Arcsine transformation. This consists of taking the arcsine of the square root of a
number. (The result is given in radians, not degrees, and can range from —7t/2 to m/2.)
The numbers to be arcsine transformed must be in the range 0 to 1. This is commonly used
for proportions, which range from 0 to 1, such as the proportion of female Eastern
mudminnows that are infested by a parasite. Note that this kind of proportion is really a
nominal variable, so it is incorrect to treat it as a measurement variable, whether or not
you arcsine transform it. For example, it would be incorrect to count the number of
mudminnows that are or are not parasitized each of several streams in Maryland, treat
the arcsine-transformed proportion of parasitized females in each stream as a
measurement variable, then perform a linear regression on these data vs. stream depth.
This is because the proportions from streams with a smaller sample size of fish will have a
higher standard deviation than proportions from streams with larger samples of fish,
information that is disregarded when treating the arcsine-transformed proportions as
measurement variables. Instead, you should use a test designed for nominal variables; in
this example, you should do logistic regression instead of linear regression. If you insist on
using the arcsine transformation, despite what I've just told you, the back-transformation
is to square the sine of the number.

How to transform data

Spreadsheet

In a blank column, enter the appropriate function for the transformation you've
chosen. For example, if you want to transform numbers that start in cell A2, you'd go to
cell B2 and enter =LOG(A2) or =LN(A2) to log transform, =SQRT(A2) to square-root
transform, or =ASIN(SQRT(A2)) to arcsine transform. Then copy cell B2 and paste into all
the cells in column B that are next to cells in column A that contain data. To copy and
paste the transformed values into another spreadsheet, remember to use the “Paste
Special...” command, then choose to paste “Values.” Using the “Paste Special...Values”
command makes Excel copy the numerical result of an equation, rather than the equation
itself. (If your spreadsheet is Calc, choose “Paste Special” from the Edit menu, uncheck the
boxes labeled “Paste All” and “Formulas,” and check the box labeled “Numbers.”)

To back-transform data, just enter the inverse of the function you used to transform
the data. To back-transform log transformed data in cell B2, enter =10"B2 for base-10 logs
or =EXP/B2 for natural logs; for square-root transformed data, enter =B2/2; for arcsine
transformed data, enter =(SIN(B2))"2

Web pages

I'm not aware of any web pages that will do data transformations.

SAS

To transform data in SAS, read in the original data, then create a new variable with the
appropriate function. This example shows how to create two new variables, square-root
transformed and log transformed, of the mudminnow data.
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DATA mudminnow;

INPUT location $ banktype $ count;
countlog=logl0(count);
countsgrt=sgqrt(count);

DATALINES;
Gwynn_1
Gwynn_2
Gwynn_3
Jones_1
Jones_2
LGunpowder_1
LGunpowder_2
LGunpowder_3
BGunpowder_1
BGunpowder_2
BGunpowder_ 3
BGunpowder_4

I

forest
urban
urban
urban
forest
forest
field
forest
forest
forest
forest
field

38
1
13
2
13
20
50
9
28
6
4
43

The dataset “mudminnow” contains all the original variables (“location”, “banktype” and

“count”) plus the new variables (“countlog” and “countsqrt”). You then run whatever
PROC you want and analyze these variables just like you would any others. Of course,
this example does two different transformations only as an illustration; in reality, you
should decide on one transformation before you analyze your data.

The SAS function for arcsine-transforming X is ARSIN(SQRT(X)).

You'll probably find it easiest to backtransform using a spreadsheet or calculator, but

if you really want to do everything in SAS, the function for taking 10 to the X power is

10**X; the function for taking e to a power is EXP(X); the function for squaring X is X**2;

and the function for backtransforming an arcsine transformed number is SIN(X)**2.
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One-way anova

Use one-way anova when you have one nominal variable and one measurement
variable; the nominal variable divides the measurements into two or more groups. It tests
whether the means of the measurement variable are the same for the different groups.

When to use it

Analysis of variance (anova) is the most commonly used technique for comparing the
means of groups of measurement data. There are lots of different experimental designs
that can be analyzed with different kinds of anova; in this handbook, I describe only one-
way anova, nested anova and two-way anova.

In a one-way anova (also known as a one-factor, single-factor, or single-classification
anova), there is one measurement variable and one nominal variable. You make multiple
observations of the measurement variable for each value of the nominal variable. For
example, here are some data on a shell measurement (the length of the anterior adductor
muscle scar, standardized by dividing by length; I'll call this “AAM length”) in the mussel
Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon; Petersburg,
Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a much larger data set
used in McDonald et al. (1991).

Tillamook  Newport Petersburg Magadan Tvarminne

0.0571 0.0873 0.0974 0.1033 0.0703
0.0813 0.0662 0.1352 0.0915 0.1026
0.0831 0.0672 0.0817 0.0781 0.0956
0.0976 0.0819 0.1016 0.0685 0.0973
0.0817 0.0749 0.0968 0.0677 0.1039
0.0859 0.0649 0.1064 0.0697 0.1045
0.0735 0.0835 0.1050 0.0764

0.0659 0.0725 0.0689

0.0923

0.0836

The nominal variable is location, with the five values Tillamook, Newport, Petersburg,
Magadan, and Tvarminne. There are six to ten observations of the measurement variable,
AAM length, from each location.

Null hypothesis

The statistical null hypothesis is that the means of the measurement variable are the
same for the different categories of data; the alternative hypothesis is that they are not all
the same. For the example data set, the null hypothesis is that the mean AAM length is the
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same at each location, and the alternative hypothesis is that the mean AAM lengths are
not all the same.

How the test works

The basic idea is to calculate the mean of the observations within each group, then
compare the variance among these means to the average variance within each group.
Under the null hypothesis that the observations in the different groups all have the same
mean, the weighted among-group variance will be the same as the within-group variance.
As the means get further apart, the variance among the means increases. The test statistic
is thus the ratio of the variance among means divided by the average variance within
groups, or F. This statistic has a known distribution under the null hypothesis, so the
probability of obtaining the observed F. under the null hypothesis can be calculated.

The shape of the F-distribution depends on two degrees of freedom, the degrees of
freedom of the numerator (among-group variance) and degrees of freedom of the
denominator (within-group variance). The among-group degrees of freedom is the
number of groups minus one. The within-groups degrees of freedom is the total number
of observations, minus the number of groups. Thus if there are n observations in a groups,
numerator degrees of freedom is 4-1 and denominator degrees of freedom is n-a. For the
example data set, there are 5 groups and 39 observations, so the numerator degrees of
freedom is 4 and the denominator degrees of freedom is 34. Whatever program you use
for the anova will almost certainly calculate the degrees of freedom for you.

The conventional way of reporting the complete results of an anova is with a table (the
“sum of squares” column is often omitted). Here are the results of a one-way anova on the
mussel data:

sum of squares d.f. meansquare F P
among groups 0.00452 4 0.001113 712 2.8x10-
within groups 0.00539 34 0.000159

total 0.00991 38

If you're not going to use the mean squares for anything, you could just report this as
“The means were significantly heterogeneous (one-way anova, F,.=7.12, P=2.8x10-).” The
degrees of freedom are given as a subscript to F, with the numerator first.

Note that statisticians often call the within-group mean square the “error” mean
square. I think this can be confusing to non-statisticians, as it implies that the variation is
due to experimental error or measurement error. In biology, the within-group variation is
often largely the result of real, biological variation among individuals, not the kind of
mistakes implied by the word “error.” That's why I prefer the term “within-group mean
square.”

Assumptions

One-way anova assumes that the observations within each group are normally
distributed. It is not particularly sensitive to deviations from this assumption; if you apply
one-way anova to data that are non-normal, your chance of getting a P value less than
0.05, if the null hypothesis is true, is still pretty close to 0.05. It’s better if your data are
close to normal, so after you collect your data, you should calculate the residuals (the
difference between each observation and the mean of its group) and plot them on a
histogram. If the residuals look severely non-normal, try data transformations and see if
one makes the data look more normal.
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If none of the transformations you try make the data look normal enough, you can use
the Kruskal-Wallis test. Be aware that it makes the assumption that the different groups
have the same shape of distribution, and that it doesn’t test the same null hypothesis as
one-way anova. Personally, I don’t like the Kruskal-Wallis test; I recommend that if you
have non-normal data that can’t be fixed by transformation, you go ahead and use one-
way anova, but be cautious about rejecting the null hypothesis if the P value is not very far
below 0.05 and your data are extremely non-normal.

One-way anova also assumes that your data are homoscedastic, meaning the standard
deviations are equal in the groups. You should examine the standard deviations in the
different groups and see if there are big differences among them.

If you have a balanced design, meaning that the number of observations is the same in
each group, then one-way anova is not very sensitive to heteroscedasticity (different
standard deviations in the different groups). I haven’t found a thorough study of the
effects of heteroscedasticity that considered all combinations of the number of groups,
sample size per group, and amount of heteroscedasticity. I've done simulations with two
groups, and they indicated that heteroscedasticity will give an excess proportion of false
positives for a balanced design only if one standard deviation is at least three times the
size of the other, and the sample size in each group is fewer than 10. I would guess that a
similar rule would apply to one-way anovas with more than two groups and balanced
designs.

Heteroscedasticity is a much bigger problem when you have an unbalanced design
(unequal sample sizes in the groups). If the groups with smaller sample sizes also have
larger standard deviations, you will get too many false positives. The difference in
standard deviations does not have to be large; a smaller group could have a standard
deviation that’s 50% larger, and your rate of false positives could be above 10% instead of
at 5% where it belongs. If the groups with larger sample sizes have larger standard
deviations, the error is in the opposite direction; you get too few false positives, which
might seem like a good thing except it also means you lose power (get too many false
negatives, if there is a difference in means).

You should try really hard to have equal sample sizes in all of your groups. With a
balanced design, you can safely use a one-way anova unless the sample sizes per group
are less than 10 and the standard deviations vary by threefold or more. If you have a
balanced design with small sample sizes and very large variation in the standard
deviations, you should use Welch’s anova instead.

If you have an unbalanced design, you should carefully examine the standard
deviations. Unless the standard deviations are very similar, you should probably use
Welch’s anova. It is less powerful than one-way anova for homoscedastic data, but it can
be much more accurate for heteroscedastic data from an unbalanced design.

Additional analyses

Tukey-Kramer test

If you reject the null hypothesis that all the means are equal, you'll probably want to
look at the data in more detail. One common way to do this is to compare different pairs
of means and see which are significantly different from each other. For the mussel shell
example, the overall P value is highly significant; you would probably want to follow up
by asking whether the mean in Tillamook is different from the mean in Newport, whether
Newport is different from Petersburg, etc.

It might be tempting to use a simple two-sample t—test on each pairwise comparison
that looks interesting to you. However, this can result in a lot of false positives. When
there are a groups, there are (2—a)/2 possible pairwise comparisons, a number that quickly
goes up as the number of groups increases. With 5 groups, there are 10 pairwise
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comparisons; with 10 groups, there are 45, and with 20 groups, there are 190 pairs. When
you do multiple comparisons, you increase the probability that at least one will have a P
value less than 0.05 purely by chance, even if the null hypothesis of each comparison is
true.

There are a number of different tests for pairwise comparisons after a one-way anova,
and each has advantages and disadvantages. The differences among their results are fairly
subtle, so I will describe only one, the Tukey-Kramer test. It is probably the most
commonly used post-hoc test after a one-way anova, and it is fairly easy to understand.

In the Tukey-Kramer method, the minimum significant difference (MSD) is calculated
for each pair of means. It depends on the sample size in each group, the average variation
within the groups, and the total number of groups. For a balanced design, all of the MSDs
will be the same; for an unbalanced design, pairs of groups with smaller sample sizes will
have bigger MSDs. If the observed difference between a pair of means is greater than the
MSD, the pair of means is significantly different. For example, the Tukey MSD for the
difference between Newport and Tillamook is 0.0172. The observed difference between
these means is 0.0054, so the difference is not significant. Newport and Petersburg have a
Tukey MSD of 0.0188; the observed difference is 0.0286, so it is significant.

There are a couple of common ways to display the results of the Tukey—Kramer test.
One technique is to find all the sets of groups whose means do not differ significantly from
each other, then indicate each set with a different symbol.

mean
location AAM

Newport 0.0748 a
Magadan 0.0780 a,b
Tillamook 0.0802 a,b
Tvarminne 0.0957 b, c

Petersburg 0.1030 ¢

Then you explain that “Means with the same letter are not significantly different from
each other (Tukey-Kramer test, P>0.05).” This table shows that Newport and Magadan
both have an “a”, so they are not significantly different; Newport and Tvarminne don’t
have the same letter, so they are significantly different.

Another way you can illustrate the results of the Tukey—Kramer test is with lines
connecting means that are not significantly different from each other. This is easiest when
the means are sorted from smallest to largest:

012

0.10

0.08

0.06

AAM

0.04
0.02

0.00

Mewport Magadan Tillamook  Tvarminne Petershurg

Mean AAM (anterior adductor muscle scar standardized by total shell length) for Mytilus trossulus
from five locations. Pairs of means grouped by a horizontal line are not significantly different from
each other (Tukey-Kramer method, P>0.05).
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There are also tests to compare different sets of groups; for example, you could
compare the two Oregon samples (Newport and Tillamook) to the two samples from
further north in the Pacific (Magadan and Petersburg). The Scheffé test is probably the
most common. The problem with these tests is that with a moderate number of groups,
the number of possible comparisons becomes so large that the P values required for
significance become ridiculously small.

Partitioning variance

The most familiar one-way anovas are “fixed effect” or “model I” anovas. The
different groups are interesting, and you want to know which are different from each
other. As an example, you might compare the AAM length of the mussel species Mytilus
edulis, Mytilus galloprovincialis, Mytilus trossulus and Mytilus californianus; you’d want to
know which had the longest AAM, which was shortest, whether M. edulis was
significantly different from M. trossulus, etc.

The other kind of one-way anova is a “random effect” or “model II” anova. The
different groups are random samples from a larger set of groups, and you're not
interested in which groups are different from each other. An example would be taking
offspring from five random families of M. trossulus and comparing the AAM lengths
among the families. You wouldn’t care which family had the longest AAM, and whether
family A was significantly different from family B; they’re just random families sampled
from a much larger possible number of families. Instead, you’d be interested in how the
variation among families compared to the variation within families; in other words, you'd
want to partition the variance.

Under the null hypothesis of homogeneity of means, the among-group mean square
and within-group mean square are both estimates of the within-group parametric
variance. If the means are heterogeneous, the within-group mean square is still an
estimate of the within-group variance, but the among-group mean square estimates the
sum of the within-group variance plus the group sample size times the added variance
among groups. Therefore subtracting the within-group mean square from the among-
group mean square, and dividing this difference by the average group sample size, gives
an estimate of the added variance component among groups. The equation is:

MS MS

among within

among-group variance =
n

o

where n, is a number that is close to, but usually slightly less than, the arithmetic mean of
the sample size (n) of each of the a groups:

Each component of the variance is often expressed as a percentage of the total variance
components. Thus an anova table for a one-way anova would indicate the among-group
variance component and the within-group variance component, and these numbers would
add to 100%.

Although statisticians say that each level of an anova “explains” a proportion of the
variation, this statistical jargon does not mean that you’ve found a biological cause-and-
effect explanation. If you measure the number of ears of corn per stalk in 10 random
locations in a field, analyze the data with a one-way anova, and say that the location
“explains” 74.3% of the variation, you haven’t really explained anything; you don’t know
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whether some areas have higher yield because of different water content in the soil,
different amounts of insect damage, different amounts of nutrients in the soil, or random
attacks by a band of marauding corn bandits.

Partitioning the variance components is particularly useful in quantitative genetics,
where the within-family component might reflect environmental variation while the
among-family component reflects genetic variation. Of course, estimating heritability
involves more than just doing a simple anova, but the basic concept is similar.

Another area where partitioning variance components is useful is in designing
experiments. For example, let’s say you're planning a big experiment to test the effect of
different drugs on calcium uptake in rat kidney cells. You want to know how many rats to
use, and how many measurements to make on each rat, so you do a pilot experiment in
which you measure calcium uptake on 6 rats, with 4 measurements per rat. You analyze
the data with a one-way anova and look at the variance components. If a high percentage
of the variation is among rats, that would tell you that there’s a lot of variation from one
rat to the next, but the measurements within one rat are pretty uniform. You could then
design your big experiment to include a lot of rats for each drug treatment, but not very
many measurements on each rat. Or you could do some more pilot experiments to try to
figure out why there’s so much rat-to-rat variation (maybe the rats are different ages, or
some have eaten more recently than others, or some have exercised more) and try to
control it. On the other hand, if the among-rat portion of the variance was low, that would
tell you that the mean values for different rats were all about the same, while there was a
lot of variation among the measurements on each rat. You could design your big
experiment with fewer rats and more observations per rat, or you could try to figure out
why there’s so much variation among measurements and control it better.

There’s an equation you can use for optimal allocation of resources in experiments. It's
usually used for nested anova, but you can use it for a one-way anova if the groups are
random effect (model II).

Partitioning the variance applies only to a model II (random effects) one-way anova. It
doesn’t really tell you anything useful about the more common model I (fixed effects) one-
way anova, although sometimes people like to report it (because they’re proud of how
much of the variance their groups “explain,” I guess).

Example

Here are data on the genome size (measured in picograms of DNA per haploid cell) in
several large groups of crustaceans, taken from Gregory (2014). The cause of variation in
genome size has been a puzzle for a long time; I'll use these data to answer the biological
question of whether some groups of crustaceans have different genome sizes than others.
Because the data from closely related species would not be independent (closely related
species are likely to have similar genome sizes, because they recently descended from a
common ancestor), I used a random number generator to randomly choose one species
from each family.
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Amphipods  Barnacles Branchiopods Copepods  Decapods Isopods Ostracods

0.74 0.67 0.19 0.25 1.60 1.71 0.46
0.95 0.90 0.21 0.25 1.65 2.35 0.70
1.71 1.23 0.22 0.58 1.80 2.40 0.87
1.89 1.40 0.22 0.97 1.90 3.00 1.47
3.80 1.46 0.28 1.63 1.94 5.65 3.13
3.97 2.60 0.30 1.77 2.28 5.70
7.16 0.40 2.67 2.44 6.79
8.48 0.47 5.45 2.66 8.60
13.49 0.63 6.81 2.78 8.82
16.09 0.87 2.80
27.00 2.77 2.83
50.91 291 3.01
64.62 4.34
4.50
4.55
4.66
4.70
4.75
4.84
5.23
6.20
8.29
8.53
10.58
15.56
22.16
38.00
38.47
40.89

After collecting the data, the next step is to see if they are normal and homoscedastic.
It's pretty obviously non-normal; most of the values are less than 10, but there are a small
number that are much higher. A histogram of the largest group, the decapods (crabs,
shrimp and lobsters), makes this clear:
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Histogram of the genome size in decapod crustaceans.
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The data are also highly heteroscedastic; the standard deviations range from 0.67 in
barnacles to 20.4 in amphipods. Fortunately, log-transforming the data make them closer
to homoscedastic (standard deviations ranging from 0.20 to 0.63) and look more normal:
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Histogram of the genome size in decapod crustaceans after base-10 log transformation.

Analyzing the log-transformed data with one-way anova, the result is F,,=11.72,
P=2.9x10-. So there is very significant variation in mean genome size among these seven
taxonomic groups of crustaceans.

The next step is to use the Tukey-Kramer test to see which pairs of taxa are
significantly different in mean genome size. The usual way to display this information is

by identifying groups that are not significantly different; here I do this with horizontal
bars:
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Means and 95% confidence limits of genome size in seven groups of crustaceans. Horizontal bars
link groups that are not significantly different (Tukey-Kramer test, P>0.05). Analysis was done on
log-transformed data, then back-transformed for this graph.

This graph suggests that there are two sets of genome sizes, groups with small genomes

(branchiopods, ostracods, barnacles, and copepods) and groups with large genomes
(decapods and amphipods); the members of each set are not significantly different from
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each other. Isopods are in the middle; the only group they’re significantly different from is
branchiopods. So the answer to the original biological question, “do some groups of
crustaceans have different genome sizes than others,” is yes. Why different groups have
different genome sizes remains a mystery.

Graphing the results

0.12

0.10 1 | |

0.08 {1 — , !

0.06 1

aam/height

0.04 1

0.02 1

0.00

Tillamook Newport Petersburg Magadan Tvarminne

Length of the anterior adductor muscle scar divided by total length in Mytilus trossulus. Means
tone standard error are shown for five locations.

The usual way to graph the results of a one-way anova is with a bar graph. The
heights of the bars indicate the means, and there’s usually some kind of error bar, either
95% confidence intervals or standard errors. Be sure to say in the figure caption what the
error bars represent.

Similar tests

If you have only two groups, you can do a two-sample f—test. This is mathematically
equivalent to an anova and will yield the exact same P value, so if all you'll ever do is
comparisons of two groups, you might as well call them f—tests. If you're going to do some
comparisons of two groups, and some with more than two groups, it will probably be less
confusing if you call all of your tests one-way anovas.

If there are two or more nominal variables, you should use a two-way anova, a nested
anova, or something more complicated that I won’t cover here. If you're tempted to do a
very complicated anova, you may want to break your experiment down into a set of
simpler experiments for the sake of comprehensibility.

If the data severely violate the assumptions of the anova, you can use Welch’s anova if
the standard deviations are heterogeneous or use the Kruskal-Wallis test if the
distributions are non-normal.
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How to do the test

Spreadsheet

I have put together a spreadsheet to do one-way anova on up to 50 groups and 1000
observations per group (www.biostathandbook.com /anova.xls). It calculates the P value,
does the Tukey—Kramer test, and partitions the variance.

Some versions of Excel include an “Analysis Toolpak,” which includes an “Anova:
Single Factor” function that will do a one-way anova. You can use it if you want, but I
can’t help you with it. It does not include any techniques for unplanned comparisons of
means, and it does not partition the variance.

Web pages

Several people have put together web pages that will perform a one-way anova; one
good one is at www.physics.csbsju.edu/stats/anova.html. It is easy to use, and will
handle three to 26 groups and 3 to 1024 observations per group. It does not do the Tukey-
Kramer test and does not partition the variance.

SAS

There are several SAS procedures that will perform a one-way anova. The two most
commonly used are PROC ANOVA and PROC GLM. Either would be fine for a one-way
anova, but PROC GLM (which stands for “General Linear Models”) can be used for a
much greater variety of more complicated analyses, so you might as well use it for
everything.

Here is a SAS program to do a one-way anova on the mussel data from above.

DATA musselshells;
INPUT location $ aam @@;
DATALINES;

Tillamook 0.0571 Tillamook 0.0813 Tillamook 0.0831 Tillamook 0.0976
Tillamook 0.0817 Tillamook 0.0859 Tillamook 0.0735 Tillamook 0.0659
Tillamook 0.0923 Tillamook 0.0836

Newport 0.0873 Newport 0.0662 Newport 0.0672 Newport 0.0819
Newport 0.0749 Newport 0.0649 Newport 0.0835 Newport 0.0725
Petersburg 0.0974 Petersburg 0.1352 Petersburg 0.0817 Petersburg 0.1016
Petersburg 0.0968 Petersburg 0.1064 Petersburg 0.1050

Magadan 0.1033 Magadan 0.0915 Magadan 0.0781 Magadan 0.0685
Magadan 0.0677 Magadan 0.0697 Magadan 0.0764 Magadan 0.0689
Tvarminne 0.0703 Tvarminne 0.1026 Tvarminne 0.0956 Tvarminne 0.0973
Tvarminne 0.1039 Tvarminne 0.1045

14
PROC glm DATA=musselshells;
CLASS location;
MODEL aam = location;
RUN;

The output includes the traditional anova table; the P value is given under “Pr > F”.

Sum of
Source DF Squares Mean Sdquare F Value Pr > F
Model 4 0.00451967 0.00112992 7.12 0.0003
Error 34 0.005394091 0.00015867
Corrected Total 38 0.00991458

155



HANDBOOK OF BIOLOGICAL STATISTICS

PROC GLM doesn’t calculate the variance components for an anova. Instead, you use
PROC VARCOMP. You set it up just like PROC GLM, with the addition of
METHOD=TYPE1 (where “TYPE1” includes the numeral 1, not the letter el. The
procedure has four different methods for estimating the variance components, and TYPE1
seems to be the same technique as the one I've described above. Here’s how to do the one-
way anova, including estimating the variance components, for the mussel shell example.

PROC GLM DATA=musselshells;
CLASS location;
MODEL aam = location;
PROC VARCOMP DATA=musselshells METHOD=TYPELl;
CLASS location;
MODEL aam = location;
RUN;

The results include the following:

Type 1 Estimates

Variance Component Estimate
Var (location) 0.0001254
Var (Error) 0.0001587

The output is not given as a percentage of the total, so you’ll have to calculate that. For
these results, the among-group component is 0.0001254/(0.0001254+0.0001586)=0.4415, or
44.15%; the within-group component is 0.0001587/(0.0001254+0.0001586)=0.5585, or
55.85%.

Welch’s anova

If the data show a lot of heteroscedasticity (different groups have different standard
deviations), the one-way anova can yield an inaccurate P value; the probability of a false
positive may be much higher than 5%. In that case, you should use Welch’s anova. I have
a spreadsheet to do Welch's anova (http:/ / www.biostathandbook.com / welchanova.xls).
It includes the Games-Howell test, which is similar to the Tukey-Kramer test for a regular
anova. You can do Welch's anova in SAS by adding a MEANS statement, the name of the
nominal variable, and the word WELCH following a slash. Here is the example SAS
program from above, modified to do Welch’s anova:

PROC GLM DATA=musselshells;
CLASS location;
MODEL aam = location;
MEANS location / WELCH;
RUN;

Here is part of the output:

Welch’s ANOVA for aam

Source DF F Value Pr > F
location 4.0000 5.66 0.0051
Error 15.6955
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Power analysis

To do a power analysis for a one-way anova is kind of tricky, because you need to
decide what kind of effect size you're looking for. If you're mainly interested in the overall
significance test, the sample size needed is a function of the standard deviation of the
group means. Your estimate of the standard deviation of means that you're looking for
may be based on a pilot experiment or published literature on similar experiments.

If you're mainly interested in the comparisons of means, there are other ways of
expressing the effect size. Your effect could be a difference between the smallest and
largest means, for example, that you would want to be significant by a Tukey-Kramer test.
There are ways of doing a power analysis with this kind of effect size, but I don’t know
much about them and won’t go over them here.

To do a power analysis for a one-way anova using the free program G*Power, choose
“F tests” from the “Test family” menu and “ANOVA: Fixed effects, omnibus, one-way”
from the “Statistical test” menu. To determine the effect size, click on the Determine
button and enter the number of groups, the standard deviation within the groups (the
program assumes they’re all equal), and the mean you want to see in each group. Usually
you’ll leave the sample sizes the same for all groups (a balanced design), but if you're
planning an unbalanced anova with bigger samples in some groups than in others, you
can enter different relative sample sizes. Then click on the “Calculate and transfer to main
window” button; it calculates the effect size and enters it into the main window. Enter
your alpha (usually 0.05) and power (typically 0.80 or 0.90) and hit the Calculate button.
The result is the total sample size in the whole experiment; you’ll have to do a little math
to figure out the sample size for each group.

As an example, let’s say you're studying transcript amount of some gene in arm
muscle, heart muscle, brain, liver, and lung. Based on previous research, you decide that
you’d like the anova to be significant if the means were 10 units in arm muscle, 10 units in
heart muscle, 15 units in brain, 15 units in liver, and 15 units in lung. The standard
deviation of transcript amount within a tissue type that you’ve seen in previous research
is 12 units. Entering these numbers in G*Power, along with an alpha of 0.05 and a power
of 0.80, the result is a total sample size of 295. Since there are five groups, you’d need 59
observations per group to have an 80% chance of having a significant (P<0.05) one-way
anova.
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Kruskal-Wallis test

Use the Kruskal-Wallis test when you have one nominal variable and one ranked
variable. It tests whether the mean ranks are the same in all the groups.

When to use it

The most common use of the Kruskal-Wallis test is when you have one nominal
variable and one measurement variable, an experiment that you would usually analyze
using one-way anova, but the measurement variable does not meet the normality
assumption of a one-way anova. Some people have the attitude that unless you have a
large sample size and can clearly demonstrate that your data are normal, you should
routinely use Kruskal-Wallis; they think it is dangerous to use one-way anova, which
assumes normality, when you don’t know for sure that your data are normal. However,
one-way anova is not very sensitive to deviations from normality. I've done simulations
with a variety of non-normal distributions, including flat, highly peaked, highly skewed,
and bimodal, and the proportion of false positives is always around 5% or a little lower,
just as it should be. For this reason, I don’t recommend the Kruskal-Wallis test as an
alternative to one-way anova. Because many people use it, you should be familiar with it
even if I convince you that it's overused.

The Kruskal-Wallis test is a non-parametric test, which means that it does not assume
that the data come from a distribution that can be completely described by two
parameters, mean and standard deviation (the way a normal distribution can). Like most
non-parametric tests, you perform it on ranked data, so you convert the measurement
observations to their ranks in the overall data set: the smallest value gets a rank of 1, the
next smallest gets a rank of 2, and so on. You lose information when you substitute ranks
for the original values, which can make this a somewhat less powerful test than a one-way
anova; this is another reason to prefer one-way anova.

The other assumption of one-way anova is that the variation within the groups is
equal (homoscedasticity). While Kruskal-Wallis does not assume that the data are normal,
it does assume that the different groups have the same distribution, and groups with
different standard deviations have different distributions. If your data are heteroscedastic,
Kruskal-Wallis is no better than one-way anova, and may be worse. Instead, you should
use Welch’s anova for heteroscedastic data.

The only time I recommend using Kruskal-Wallis is when your original data set
actually consists of one nominal variable and one ranked variable; in this case, you cannot
do a one-way anova and must use the Kruskal-Wallis test. Dominance hierarchies (in
behavioral biology) and developmental stages are the only ranked variables I can think of
that are common in biology.

The Mann-Whitney U-test (also known as the Mann-Whitney-Wilcoxon test, the
Wilcoxon rank-sum test, or the Wilcoxon two-sample test) is limited to nominal variables
with only two values; it is the non-parametric analogue to two-sample t—test. It uses a
different test statistic (U instead of the H of the Kruskal-Wallis test), but the P value is
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mathematically identical to that of a Kruskal-Wallis test. For simplicity, I will only refer to
Kruskal-Wallis on the rest of this web page, but everything also applies to the Mann-
Whitney U-test.

The Kruskal-Wallis test is sometimes called Kruskal-Wallis one-way anova or non-
parametric one-way anova. I think calling the Kruskal-Wallis test an anova is confusing,
and I recommend that you just call it the Kruskal-Wallis test.

Null hypothesis

The null hypothesis of the Kruskal-Wallis test is that the mean ranks of the groups are
the same. The expected mean rank depends only on the total number of observations (for
n observations, the expected mean rank in each group is (1+1)/2), so it is not a very useful
description of the data; it’s not something you would plot on a graph.

You will sometimes see the null hypothesis of the Kruskal-Wallis test given as “The
samples come from populations with the same distribution.” This is correct, in that if the
samples come from populations with the same distribution, the Kruskal-Wallis test will
show no difference among them. I think it’s a little misleading, however, because only
some kinds of differences in distribution will be detected by the test. For example, if two
populations have symmetrical distributions with the same center, but one is much wider
than the other, their distributions are different but the Kruskal-Wallis test will not detect
any difference between them.

The null hypothesis of the Kruskal-Wallis test is not that the means are the same. It is
therefore incorrect to say something like “The mean concentration of fructose is higher in
pears than in apples (Kruskal-Wallis test, P=0.02),” although you will see data
summarized with means and then compared with Kruskal-Wallis tests in many
publications. The common misunderstanding of the null hypothesis of Kruskal-Wallis is
yet another reason I don’t like it.

The null hypothesis of the Kruskal-Wallis test is often said to be that the medians of
the groups are equal, but this is only true if you assume that the shape of the distribution
in each group is the same. If the distributions are different, the Kruskal-Wallis test can
reject the null hypothesis even though the medians are the same. To illustrate this point, I
made up these three sets of numbers. They have identical means (43.5), and identical
medians (27.5), but the mean ranks are different (34.6, 27.5, and 20.4, respectively),
resulting in a significant (P=0.025) Kruskal-Wallis test:

Group 1 Group 2 Group 3

1 10 19
2 11 20
3 12 21
4 13 22
5 14 23
6 15 24
7 16 25
8 17 26
9 18 27
46 37 28
47 58 65
48 59 66
49 60 67
50 61 68
51 62 69
52 63 70
53 64 71
342 193 72
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How the test works

Here are some data on Wright's F., (a measure of the amount of geographic variation
in a genetic polymorphism) in two populations of the American oyster, Crassostrea
virginica. McDonald et al. (1996) collected data on F., for six anonymous DNA
polymorphisms (variation in random bits of DNA of no known function) and compared
the F,, values of the six DNA polymorphisms to F., values on 13 proteins from Buroker
(1983). The biological question was whether protein polymorphisms would have generally
lower or higher F.. values than anonymous DNA polymorphisms. McDonald et al. (1996)
knew that the theoretical distribution of F., for two populations is highly skewed, so they
analyzed the data with a Kruskal-Wallis test.

When working with a measurement variable, the Kruskal-Wallis test starts by
substituting the rank in the overall data set for each measurement value. The smallest
value gets a rank of 1, the second-smallest gets a rank of 2, etc. Tied observations get
average ranks; in this data set, the two F, values of -0.005 are tied for second and third, so
they get a rank of 2.5.

gene class F. rank rank
CVJ5 DNA -0.006 1

CVB1 DNA -0.005 2.5

6Pgd protein -0.005 2.5
Pgi protein -0.002 4
CVL3 DNA 0.003 5

Est-3 protein 0.004 6
Lap-2 protein 0.006 7
Pgm-1 protein 0.015 8
Aat-2 protein 0.016 9.5
Adk-1 protein 0.016 9.5
Sdh protein 0.024 11
Acp-3 protein 0.041 12
Pgm-2 protein 0.044 13
Lap-1 protein 0.049 14
CVL1 DNA 0.053 15

Mpi-2 protein 0.058 16
Ap-1 protein 0.066 17
CV]Je DNA 0.095 18

CVB2m DNA 0.116 19

Est-1 protein 0.163 20

You calculate the sum of the ranks for each group, then the test statistic, H. H is given
by a rather formidable formula that basically represents the variance of the ranks among
groups, with an adjustment for the number of ties. H is approximately chi-square
distributed, meaning that the probability of getting a particular value of H by chance, if
the null hypothesis is true, is the P value corresponding to a chi-square equal to H; the
degrees of freedom is the number of groups minus 1. For the example data, the mean rank
for DNA is 10.08 and the mean rank for protein is 10.68, H=0.043, there is 1 degree of
freedom, and the P value is 0.84. The null hypothesis that the F.. of DNA and protein
polymorphisms have the same mean ranks is not rejected.

For the reasons given above, I think it would actually be better to analyze the oyster
data with one-way anova. It gives a P value of 0.75, which fortunately would not change
the conclusions of McDonald et al. (1996).
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If the sample sizes are too small, H does not follow a chi-squared distribution very
well, and the results of the test should be used with caution. n less than 5 in each group
seems to be the accepted definition of “too small.”

Assumptions

The Kruskal-Wallis test does not assume that the data are normally distributed; that is
its big advantage. If you're using it to test whether the medians are different, it does
assume that the observations in each group come from populations with the same shape
of distribution, so if different groups have different shapes (one is skewed to the right and
another is skewed to the left, for example, or they have different variances), the Kruskal-
Wallis test may give inaccurate results (Fagerland and Sandvik 2009). If you're interested
in any difference among the groups that would make the mean ranks be different, then the
Kruskal-Wallis test doesn’t make any assumptions.

Heteroscedasticity is one way in which different groups can have different shaped
distributions. If the distributions are heteroscedastic, the Kruskal-Wallis test won't help
you; you should use Welch's t-test for two groups, or Welch’s anova for more than two
groups.

Examples
Dog Sex Rank
Merlino Male
Gastone Male
Pippo Male

1
2
3
Leon Male 4
Golia Male 5
Lancillotto Male 6
Mamy Female 7
Nana Female 8
Isotta Female 9
Diana Female 10
Simba Male 11
Pongo Male 12
Semola Male 13
Kimba Male 14
Morgana Female 15
Stella Female 16
Hansel Male 17
Cucciola Male 18
Mammolo Male 19
Dotto Male 20
Gongolo Male 21
Gretel Female 22
Brontolo Female 23
Eolo Female 24

Mag Female 25

Emy Female 26
Pisola Female 27

Cafazzo et al. (2010) observed a group of free-ranging domestic dogs in the outskirts of
Rome. Based on the direction of 1815 observations of submissive behavior, they were able
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to place the dogs in a dominance hierarchy, from most dominant (Merlino) to most
submissive (Pisola). Because this is a true ranked variable, it is necessary to use the

Kruskal-Wallis test. The mean rank for males (11.1) is lower than the mean rank for
females (17.7), and the difference is significant (H=4.61, 1 d.f., P=0.032).

Bolek and Coggins (2003) collected multiple individuals of the toad Bufo americanus,,
the frog Rana pipiens, and the salamander Ambystoma laterale from a small area of
Wisconsin. They dissected the amphibians and counted the number of parasitic helminth
worms in each individual. There is one measurement variable (worms per individual
amphibian) and one nominal variable (species of amphibian), and the authors did not
think the data fit the assumptions of an anova. The results of a Kruskal-Wallis test were
significant (H=63.48, 2 d.f., P=1.6 X 10+); the mean ranks of worms per individual are
significantly different among the three species.

Graphing the results

It is tricky to know how to visually display the results of a Kruskal-Wallis test. It
would be misleading to plot the means or medians on a bar graph, as the Kruskal-Wallis
test is not a test of the difference in means or medians. If there are relatively small number
of observations, you could put the individual observations on a bar graph, with the value
of the measurement variable on the Y axis and its rank on the X axis, and use a different
pattern for each value of the nominal variable. Here’s an example using the oyster F, data:
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F. values for DNA and protein polymorphisms in the American oyster. DNA polymorphisms are
shown in solid black.

If there are larger numbers of observations, you could plot a histogram for each
category, all with the same scale, and align them vertically. I don’t have suitable data for
this handy, so here’s an illustration with imaginary data:
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Similar tests

One-way anova is more powerful and a lot easier to understand than the Kruskal-
Wallis test, so unless you have a true ranked variable, you should use it.

How to do the test

Spreadsheet

I have put together a spreadsheet to do the Kruskal-Wallis test on up to 20 groups,
with up to 1000 observations per group (www.biostathandbook.com /kruskalwallis.xls).

Web pages
Richard Lowry has web pages for performing the Kruskal-Wallis test for two groups

(http:/ / vassarstats.net/utest.html), three groups (http:/ /vassarstats.net/kw3.html), or
four groups (http:/ / vassarstats.net/ kw4.html).

SAS

To do a Kruskal-Wallis test in SAS, use the NPARIWAY procedure (that’s the
numeral “one,” not the letter “el,” in NPARIWAY). WILCOXON tells the procedure to
only do the Kruskal-Wallis test; if you leave that out, you’ll get several other statistical
tests as well, tempting you to pick the one whose results you like the best. The nominal
variable that gives the group names is given with the CLASS parameter, while the
measurement or ranked variable is given with the VAR parameter. Here’s an example,
using the oyster data from above:
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DATA oysters;
INPUT markername $ markertype $ fst;

DATALINES;
CVB1 DNA -0.005
CVB2m DNA 0.116
CvJ5 DNA -0.006
CVJ6 DNA 0.095
CVL1 DNA 0.053
CVL3 DNA 0.003
6Pgd protein -0.005
Aat-2 protein 0.016
Acp-3 protein 0.041
Adk-1 protein 0.016
Ap-1 protein 0.066
Est-1 protein 0.163
Est-3 protein 0.004
Lap-1 protein 0.049
Lap-2 protein 0.006
Mpi-2 protein 0.058
Pgi protein -0.002
Pgm-1 protein 0.015
Pgm-2 protein 0.044

0.024

Sdh protein

I

PROC NPAR1IWAY DATA=oysters WILCOXON;
CLASS markertype;

VAR fst;

RUN;

The output contains a table of “Wilcoxon scores”; the “mean score” is the mean rank in
each group, which is what you're testing the homogeneity of. “Chi-square” is the H-
statistic of the Kruskal-Wallis test, which is approximately chi-square distributed. The “Pr
> Chi-Square” is your P value. You would report these results as “H=0.04, 1 d.f., P=0.84.”

Wilcoxon Scores (Rank Sums) for Variable fst
Classified by Variable markertype

Sum of Expected Std Dev Mean
markertype N Scores Under HO Under HO Score
DNA 6 60.50 63.0 12.115236 10.083333
protein 14 149.50 147.0 12.115236 10.678571

Kruskal—Wallis Test

Chi-Square 0.0426
DF 1
Pr > Chi-Square 0.8365

Power analysis

I am not aware of a technique for estimating the sample size needed for a Kruskal-
Wallis test.

164



KRUSKAL-WALLIS TEST

References

Bolek, M.G., and J.R. Coggins. 2003. Helminth community structure of sympatric eastern
American toad, Bufo americanus americanus, northern leopard frog, Rana pipiens, and
blue-spotted salamander, Ambystoma laterale, from southeastern Wisconsin. Journal
of Parasitology 89: 673-680.

Buroker, N. E. 1983. Population genetics of the American oyster Crassostrea virginica along
the Atlantic coast and the Gulf of Mexico. Marine Biology 75:99-112.

Cafazzo, S., P. Valsecchi, R. Bonanni, and E. Natoli. 2010. Dominance in relation to age,
sex, and competitive contexts in a group of free-ranging domestic dogs. Behavioral
Ecology 21: 443-455.

Fagerland, M.W., and L. Sandvik. 2009. The Wilcoxon-Mann-Whitney test under scrutiny.
Statistics in Medicine 28: 1487-1497.

McDonald, J.H., B.C. Verrelli and L.B. Geyer. 1996. Lack of geographic variation in
anonymous nuclear polymorphisms in the American oyster, Crassostrea virginica.
Molecular Biology and Evolution 13: 1114-1118.

165



HANDBOOK OF BIOLOGICAL STATISTICS

Nested anova

Use nested anova when you have one measurement variable and more than one
nominal variable, and the nominal variables are nested (form subgroups within groups). It
tests whether there is significant variation in means among groups, among subgroups
within groups, etc.

When to use it

Use a nested anova (also known as a hierarchical anova) when you have one
measurement variable and two or more nominal variables. The nominal variables are
nested, meaning that each value of one nominal variable (the subgroups) is found in
combination with only one value of the higher-level nominal variable (the groups). All of
the lower level subgroupings must be random effects (model II) variables, meaning they
are random samples of a larger set of possible subgroups.

Nested analysis of variance is an extension of one-way anova in which each group is
divided into subgroups. In theory, you choose these subgroups randomly from a larger set
of possible subgroups. For example, a friend of mine was studying uptake of fluorescently
labeled protein in rat kidneys. He wanted to know whether his two technicians, who I'll
call Brad and Janet, were performing the procedure consistently. So Brad randomly chose
three rats, and Janet randomly chose three rats of her own, and each technician measured
protein uptake in each rat.

If Brad and Janet had measured protein uptake only once on each rat, you would have
one measurement variable (protein uptake) and one nominal variable (technician) and you
would analyze it with one-way anova. However, rats are expensive and measurements are
cheap, so Brad and Janet measured protein uptake at several random locations in the
kidney of each rat:

Technician: Brad Janet
Rat:  Arnold Ben Charlie Dave Eddy Frank
1.1190 1.0450 0.9873 1.3883 1.3952 1.2574
1.2996 1.1418 0.9873 1.1040 0.9714 1.0295
1.5407 1.2569 0.8714 1.1581 1.3972 1.1941
1.5084 0.6191 0.9452 1.3190 1.5369 1.0759
1.6181 1.4823 1.1186 1.1803 1.3727 1.3249
1.5962 0.8991 1.2909 0.8738  1.2909 0.9494
1.2617  0.8365 1.1502 1.3870 1.1874 1.1041
1.2288 1.2898 1.1635 1.3010 1.1374 1.1575
1.3471 1.1821 1.1510 1.3925 1.0647 1.2940
1.0206 0.9177 0.9367 1.0832 0.9486 1.4543
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Because there are several observations per rat, the identity of each rat is now a nominal
variable. The values of this variable (the identities of the rats) are nested under the
technicians; rat A is only found with Brad, and rat D is only found with Janet. You would
analyze these data with a nested anova. In this case, it's a two-level nested anova; the
technicians are groups, and the rats are subgroups within the groups. If the technicians
had looked at several random locations in each kidney and measured protein uptake
several times at each location, you’d have a three-level nested anova, with kidney location
as subsubgroups within the rats. You can have more than three levels of nesting, and it
doesn’t really make the analysis that much more complicated.

Note that if the subgroups, subsubgroups, etc. are distinctions with some interest
(fixed effects, or model I, variables), rather than random, you should not use a nested
anova. For example, Brad and Janet could have looked at protein uptake in two male rats
and two female rats apiece. In this case you would use a two-way anova to analyze the
data, rather than a nested anova.

When you do a nested anova, you are often only interested in testing the null
hypothesis about the group means; you may not care whether the subgroups are
significantly different. For this reason, you may be tempted to ignore the subgrouping and
just use all of the observations in a one-way anova, ignoring the subgrouping. This would
be a mistake. For the rats, this would be treating the 30 observations for each technician
(10 observations from each of three rats) as if they were 30 independent observations. By
using all of the observations in a one-way anova, you compare the difference in group
means to the amount of variation within each group, pretending that you have 30
independent measurements of protein uptake. This large number of measurements would
make it seem like you had a very accurate estimate of mean protein uptake for each
technician, so the difference between Brad and Janet wouldn’t have to be very big to seem
“significant.” You would have violated the assumption of independence that one-way
anova makes, and instead you have what’s known as pseudoreplication.

What you could do with a nested design, if you're only interested in the difference
among group means, is take the average for each subgroup and analyze them using a one-
way anova. For the example data, you would take the average protein uptake for each of
the three rats that Brad used, and each of the three rats that Janet used, and you would
analyze these six values using one-way anova. If you have a balanced design (equal
sample sizes in each subgroup), comparing group means with a one-way anova of
subgroup means is mathematically identical to comparing group means using a nested
anova (and this is true for a nested anova with more levels, such as subsubgroups). If you
don’t have a balanced design, the results won’t be identical, but they’ll be pretty similar
unless your design is very unbalanced. The advantage of using one-way anova is that it
will be more familiar to more people than nested anova; the disadvantage is that you
won'’t be able to compare the variation among subgroups to the variation within
subgroups. Testing the variation among subgroups often isn’t biologically interesting, but
it can be useful in the optimal allocation of resources, deciding whether future
experiments should use more rats with fewer observations per rat.

Null hypotheses

A nested anova has one null hypothesis for each level. In a two-level nested anova,
one null hypothesis is that the groups have the same mean. For our rats, this null would
be that Brad’s rats had the same mean protein uptake as the Janet’s rats. The second null
hypothesis is that the subgroups within each group have the same means. For the
example, this null would be that all of Brad’s rats have the same mean, and all of Janet’s
rats have the same mean (which could be different from the mean for Brad’s rats). A three-
level nested anova would have a third null hypothesis, that all of the locations within each
kidney have the same mean (which could be a different mean for each kidney), and so on.
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How the test works

Remember that in a one-way anova, the test statistic, F, is the ratio of two mean
squares: the mean square among groups divided by the mean square within groups. If the
variation among groups (the group mean square) is high relative to the variation within
groups, the test statistic is large and therefore unlikely to occur by chance. In a two-level
nested anova, there are two F statistics, one for subgroups (F...,) and one for groups (F..,).
You find the subgroup F statistic by dividing the among-subgroup mean square, MS.,..,
(the average variance of subgroup means within each group) by the within-subgroup
mean square, MS.,, (the average variation among individual measurements within each
subgroup). You find the group F statistic by dividing the among-group mean square, MS..,
(the variation among group means) by MS.,..,. You then calculate the P value for the F
statistic at each level.

For the rat example, the within-subgroup mean square is 0.0360 and the subgroup
mean square is 0.1435, making the F..., 0.1435/0.0360=3.9818. There are 4 degrees of
freedom in the numerator (the total number of subgroups minus the number of groups)
and 54 degrees of freedom in the denominator (the number of observations minus the
number of subgroups), so the P value is 0.0067. This means that there is significant
variation in protein uptake among rats within each technician. The F,,, is the mean square
for groups, 0.0384, divided by the mean square for subgroups, 0.1435, which equals 0.2677.
There is one degree of freedom in the numerator (the number of groups minus 1) and 4
degrees of freedom in the denominator (the total number of subgroups minus the number
of groups), yielding a P value of 0.632. So there is no significant difference in protein
abundance between the rats Brad measured and the rats Janet measured.

For a nested anova with three or more levels, you calculate the F statistic at each level
by dividing the MS at that level by the MS at the level immediately below it.

If the subgroup F statistic is not significant, it is possible to calculate the group F
statistic by dividing MS.,., by MS,.., a combination of MS.,.., and MS.,.. The conditions
under which this is acceptable are complicated, and some statisticians think you should
never do it; for simplicity, I suggest always using MS,., / MS..., to calculate F,.,.

Partitioning variance and optimal allocation of
resources

In addition to testing the equality of the means at each level, a nested anova also
partitions the variance into different levels. This can be a great help in designing future
experiments. For our rat example, if most of the variation is among rats, with relatively
little variation among measurements within each rat, you would want to do fewer
measurements per rat and use a lot more rats in your next experiment. This would give
you greater statistical power than taking repeated measurements on a smaller number of
rats. But if the nested anova tells you there is a lot of variation among measurements but
relatively little variation among rats, you would either want to use more observations per
rat or try to control whatever variable is causing the measurements to differ so much.

If you have an estimate of the relative cost of different parts of the experiment (in time
Or money), you can use this formula to estimate the best number of observations per
subgroup, a process known as optimal allocation of resources:

N = \/(Csubgmup - Vwithin ) / (Cwithin - Vsubgroup

where N is the number of observations per subgroup, C.... is the cost per observation, C...,
is the cost per subgroup (not including the cost of the individual observations), V..., is the
percentage of the variation partitioned to the subgroup, and V... is the percentage of the
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variation partitioned to within groups. For the rat example, V..., is 23.0% and V... is 77%
(there’s usually some variation partitioned to the groups, but for these data, groups had
0% of the variation). If we estimate that each rat costs $200 to raise, and each measurement
of protein uptake costs $10, then the optimal number of observations per rat is

(22 x23) /(10 x 77), which equals 6 rats per subgroup. The total cost per subgroup will
then be $200 to raise the rat and 6 x $10 = $60 for the observations, for
a total of $260; based on your total budget for your next experiment, you can use this to
decide how many rats to use for each group.

For a three-level nested anova, you would use the same equation to allocate resources;
for example, if you had multiple rats, with multiple tissue samples per rat kidney, and
multiple protein uptake measurements per tissue sample. You would start by determining
the number of observations per subsubgroup; once you knew that, you could calculate the
total cost per subsubgroup (the cost of taking the tissue sample plus the cost of making the
optimal number of observations). You would then use the same equation, with the
variance partitions for subgroups and subsubgroups, and the cost for subgroups and the
total cost for subsubgroups, and determine the optimal number of subsubgroups to use
for each subgroup. You could use the same procedure for as higher levels of nested anova.

It's possible for a variance component to be zero; the groups (Brad vs. Janet) in our rat
example had 0% of the variance, for example. This just means that the variation among
group means is smaller than you would expect, based on the amount of variation among
subgroups. Because there’s variation among rats in mean protein uptake, you would
expect that two random samples of three rats each would have different means, and you
could predict the average size of that difference. As it happens, the means of the three rats
Brad studied and the three rats Janet studied happened to be closer than expected by
chance, so they contribute 0% to the overall variance. Using zero, or a very small number,
in the equation for allocation of resources may give you ridiculous numbers. If that
happens, just use your common sense. So if V.., in our rat example (the variation among
rats within technicians) had turned out to be close to 9%, the equation could told you that
you would need hundreds or thousands of observations per rat; in that case, you would
design your experiment to include one rat per group, and as many measurements per rat
as you could afford.

Often, the reason you use a nested anova is because the higher level groups are
expensive and lower levels are cheaper. Raising a rat is expensive, but looking at a tissue
sample with a microscope is relatively cheap, so you want to reach an optimal balance of
expensive rats and cheap observations. If the higher level groups are very inexpensive
relative to the lower levels, you don’t need a nested design; the most powerful design will
be to take just one observation per higher level group. For example, let’s say you're
studying protein uptake in fruit flies (Drosophila melanogaster). You could take multiple
tissue samples per fly and make multiple observations per tissue sample, but because
raising 100 flies doesn’t cost any more than raising 10 flies, it will be better to take one
tissue sample per fly and one observation per tissue sample, and use as many flies as you
can afford; you’ll then be able to analyze the data with one-way anova. The variation
amonyg flies in this design will include the variation among tissue samples and among
observations, so this will be the most statistically powerful design. The only reason for
doing a nested anova in this case would be to see whether you're getting a lot of variation
among tissue samples or among observations within tissue samples, which could tell you
that you need to make your laboratory technique more consistent.
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Unequal sample sizes

When the sample sizes in a nested anova are unequal, the P values corresponding to
the F statistics may not be very good estimates of the actual probability. For this reason,
you should try to design your experiments with a “balanced” design, meaning equal
sample sizes in each subgroup. (This just means equal numbers at each level; the rat
example, with three subgroups per group and 10 observations per subgroup, is balanced).
Often this is impractical; if you do have unequal sample sizes, you may be able to get a
better estimate of the correct P value by using modified mean squares at each level, found
using a correction formula called the Satterthwaite approximation. Under some situations,
however, the Satterthwaite approximation will make the P values less accurate. If you
cannot use the Satterthwaite approximation, the P values will be conservative (less likely
to be significant than they ought to be), so if you never use the Satterthwaite
approximation, you're not fooling yourself with too many false positives. Note that the
Satterthwaite approximation results in fractional degrees of freedom, such as 2.87; don't
be alarmed by that (and be prepared to explain it to people if you use it). If you do a
nested anova with an unbalanced design, be sure to specify whether you use the
Satterthwaite approximation when you report your results.

Assumptions

Nested anova, like all anovas, assumes that the observations within each subgroup are
normally distributed and have equal standard deviations.

Example

Keon and Muir (2002) wanted to know whether habitat type affected the growth rate
of the lichen Usnea longissima. They weighed and transplanted 30 individuals into each of
12 sites in Oregon. The 12 sites were grouped into 4 habitat types, with 3 sites in each
habitat. One year later, they collected the lichens, weighed them again, and calculated the
change in weight. There are two nominal variables (site and habitat type), with sites
nested within habitat type. You could analyze the data using two measurement variables,
beginning weight and ending weight, but because the lichen individuals were chosen to
have similar beginning weights, it makes more sense to use the change in weight as a
single measurement variable. The results of a nested anova are that there is significant
variation among sites within habitats (F,..=8.11, P=1.8 x 10-) and significant variation
among habitats (F,,=8.29, P=0.008). When the Satterthwaite approximation is used, the test
of the effect of habitat is only slightly different (F,..=8.76, P=0.006)

Graphing the results

The way you graph the results of a nested anova depends on the outcome and your
biological question. If the variation among subgroups is not significant and the variation
among groups is significant—you’'re really just interested in the groups, and you used a
nested anova to see if it was okay to combine subgroups—you might just plot the group
means on a bar graph, as shown for one-way anova. If the variation among subgroups is
interesting, you can plot the means for each subgroup, with different patterns or colors
indicating the different groups.
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Similar tests

Both nested anova and two-way anova (and higher level anovas) have one
measurement variable and more than one nominal variable. The difference is that in a
two-way anova, the values of each nominal variable are found in all combinations with
the other nominal variable; in a nested anova, each value of one nominal variable (the
subgroups) is found in combination with only one value of the other nominal variable (the
groups).

If you have a balanced design (equal number of subgroups in each group, equal
number of observations in each subgroup), you can perform a one-way anova on the
subgroup means. For the rat example, you would take the average protein uptake for each
rat. The result is mathematically identical to the test of variation among groups in a nested
anova. It may be easier to explain a one-way anova to people, but you'll lose the
information about how variation among subgroups compares to variation among
individual observations.

How to do the test
Spreadsheet

I have made a spreadsheet to do a two-level nested anova, with equal or unequal
sample sizes, on up to 50 subgroups with up to 1000 observations per subgroup
(www.biostathandbook.com /nested2.xls). It does significance tests and partitions the
variance. The spreadsheet tells you whether the Satterthwaite approximation is
appropriate, using the rules on p. 298 of Sokal and Rohlf (1983), and gives you the option
to use it. F,, is calculated as MS.,.,/MS...... The spreadsheet gives the variance components
as percentages of the total. If the estimate of the group component would be negative
(which can happen), it is set to zero.

I also have spreadsheets to do three-level (www.biostathandbook.com /nested3.xls)
and four-level nested anova (www .biostathandbook.com /nested4.xls)

Web page

I don’t know of a web page that will let you do nested anova.

SAS

You can do a nested anova with either PROC GLM or PROC NESTED. PROC GLM
will handle both balanced and unbalanced designs, but does not partition the variance;
PROC NESTED partitions the variance but does not calculate P values if you have an
unbalanced design, so you may need to use both procedures.

You may need to sort your dataset with PROC SORT, and it doesn’t hurt to include it.

In PROC GLM, list all the nominal variables in the CLASS statement. In the MODEL
statement, give the name of the measurement variable, then after the equals sign give the
name of the group variable, then the name of the subgroup variable followed by the group
variable in parentheses. SS1 (with the numeral one, not the letter el) tells it to use type I
sums of squares. The TEST statement tells it to calculate the F statistic for groups by
dividing the group mean square by the subgroup mean square, instead of the within-
group mean square (H stands for “hypothesis” and E stands for “error”). “HTYPE=1
ETYPE=1" also tells SAS to use “type I sums of squares”; I couldn’t tell you the difference
between them and types II, IIl and IV, but I'm pretty sure that type I is appropriate for a
nested anova.
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Here is an example of a two-level nested anova using the rat data.

DATA bradvsjanet;
INPUT tech $ rat $ protein @Q@;
DATALINES;

Janet 1 1.119 Janet 1 1.2996 Janet 1 1.5407 Janet 1 1.5084
Janet 1 1.6181 Janet 1 1.5962 Janet 1 1.2617 Janet 1 1.2288
Janet 1 1.3471 Janet 1 1.0206 Janet 2 1.045 Janet 2 1.1418
Janet 2 1.2569 Janet 2 0.6191 Janet 2 1.4823 Janet 2 0.8991
Janet 2 0.8365 Janet 2 1.2898 Janet 2 1.1821 Janet 2 0.9177
Janet 3 0.9873 Janet 3 0.9873 Janet 3 0.8714 Janet 3 0.9452
Janet 3 1.1186 Janet 3 1.2909 Janet 3 1.1502 Janet 3 1.1635
Janet 3 1.151 Janet 3 0.9367
Brad 5 1.3883 Brad 5 1.104 Brad 5 1.1581 Brad 5 1.319
Brad 5 1.1803 Brad 5 0.8738 Brad 5 1.387 Brad 5 1.301
Brad 5 1.3925 Brad 5 1.0832 Brad 6 1.3952 Brad 6 0.9714
Brad 6 1.3972 Brad 6 1.5369 Brad 6 1.3727 Brad 6 1.2909
Brad 6 1.1874 Brad 6 1.1374 Brad 6 1.0647 Brad 6 0.9486
Brad 7 1.2574 Brad 7 1.0295 Brad 7 1.1941 Brad 7 1.0759
Brad 7 1.3249 Brad 7 0.9494 Brad 7 1.1041 Brad 7 1.1575
Brad 7 1.294 Brad 7 1.4543
PROC SORT DATA=bradvsjanet;
BY tech rat;

PROC GLM DATA=bradvsjanet;

CLASS tech rat;

MODEL protein=tech rat(tech) / SS1;

TEST H=tech E=rat(tech) / HTYPE=1 ETYPE=1;
RUN;

The output includes F,., calculated two ways, as MS,.,/MS.,.. and as MS,.,/MS.,....

Source DF Type I SS Mean Sq. F Value Pr > F
tech 1 0.03841046 0.03841046 1.07 0.3065 <-don’t use this

rat(tech) 4 0.57397543 0.14349386 3.98 0.0067 <-use for subgroups
Tests of Hypotheses Using the Type I MS for rat(tech) as an Error Term
Source DF Type I SS Mean Sq. F Value Pr > F

tech 1 0.03841046 0.03841046 0.27 0.6322 <-use for groups

You can do the Tukey-Kramer test to compare pairs of group means, if you have more
than two groups. You do this with a MEANS statement. This shows how (even though
you wouldn’t do Tukey-Kramer with just two groups):

PROC GLM DATA=bradvsjanet;
CLASS tech rat;
MODEL protein=tech rat(tech) / SS1;
TEST H=tech E=rat(tech) / HTYPE=1 ETYPE=1;
MEANS tech /LINES TUKEY;
RUN;

PROC GLM does not partition the variance. PROC NESTED will partition the
variance, but it only does the hypothesis testing for a balanced nested anova, so if you
have an unbalanced design you’'ll want to run both PROC GLM and PROC NESTED. In
PROC NESTED, the group is given first in the CLASS statement, then the subgroup.
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PROC SORT DATA=bradvsjanet;
BY tech rat;

PROC NESTED DATA=bradvsjanet;
CLASS tech rat;
VAR protein;

RUN;

Here’s the output; if the data set was unbalanced, the “F Value” and “Pr>F” columns
would be blank.

Variance Sum of F Error Mean Variance Percent
Source DF Squares Value Pr>F Term Square Component of Total
Total 59 2.558414 0.043363 0.046783 100.0000
tech 1 0.038410 0.27 0.6322 rat 0.038410 -0.003503 0.0000
rat 4 0.573975 3.98 0.0067 Error 0.143494 0.010746 22.9690
Error 54 1.946028 0.036038 0.036038 77.0310

You set up a nested anova with three or more levels the same way, except the MODEL
statement has more terms, and you specify a TEST statement for each level. Here’s how
you would set it up if there were multiple rats per technician, with multiple tissue samples
per rat, and multiple protein measurements per sample:

PROC GLM DATA=bradvsjanet;
CLASS tech rat sample;
MODEL protein=tech rat(tech) sample(rat tech)/ SS1;
TEST H=tech E=rat(tech) / HTYPE=1 ETYPE=1;
TEST H=rat E=sample(rat tech) / HTYPE=1 ETYPE=1;
RUN;
PROC NESTED DATA=bradvsjanet;
CLASS sample tech rat;
VAR protein;
RUN;

Reference

Keon, D.B., and P.S. Muir. 2002. Growth of Usnea longissima across a variety of habitats in
the Oregon coast range. Bryologist 105: 233-242.
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Two-way anova

Use two-way anova when you have one measurement variable and two nominal
variables, and each value of one nominal variable is found in combination with each value
of the other nominal variable. It tests three null hypotheses: that the means of the
measurement variable are equal for different values of the first nominal variable; that the
means are equal for different values of the second nominal variable; and that there is no
interaction (the effects of one nominal variable don’t depend on the value of the other
nominal variable).

When to use it

You use a two-way anova (also known as a factorial anova, with two factors) when
you have one measurement variable and two nominal variables. The nominal variables
(often called “factors” or “main effects”) are found in all possible combinations.

For example, here’s some data I collected on the enzyme activity of mannose-6-
phosphate isomerase (MPI) and MPI genotypes in the amphipod crustacean Platorchestia
platensis. Because I didn’t know whether sex also affected MPI activity, I separated the
amphipods by sex.

Genotype Female Male

FF 2.838 1.884
4.216 2.283
2.889 4.939
4.198 3.486
ES 3.550 2.396
4.556 2.956
3.087 3.105
1.943 2.649
SS 3.620 2.801
3.079 3.421
3.586 4.275
2.669 3.110

Unlike a nested anova, each grouping extends across the other grouping: each
genotype contains some males and some females, and each sex contains all three
genotypes.

A two-way anova is usually done with replication (more than one observation for each
combination of the nominal variables). For our amphipods, a two-way anova with
replication means there are more than one male and more than one female of each
genotype. You can also do two-way anova without replication (only one observation for
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each combination of the nominal variables), but this is less informative (you can’t test the
interaction term) and requires you to assume that there is no interaction.

Repeated measures: One experimental design that people analyze with a two-way
anova is repeated measures, where an observation has been made on the same individual
more than once. This usually involves measurements taken at different time points. For
example, you might measure running speed before, one week into, and three weeks into a
program of exercise. Because individuals would start with different running speeds, it is
better to analyze using a two-way anova, with “individual” as one of the factors, rather
than lumping everyone together and analyzing with a one-way anova. Sometimes the
repeated measures are repeated at different places rather than different times, such as the
hip abduction angle measured on the right and left hip of individuals. Repeated measures
experiments are often done without replication, although they could be done with
replication.

In a repeated measures design, one of main effects is usually uninteresting and the test
of its null hypothesis may not be reported. If the goal is to determine whether a particular
exercise program affects running speed, there would be little point in testing whether
individuals differed from each other in their average running speed; only the change in
running speed over time would be of interest.

Randomized blocks: Another experimental design that is analyzed by a two-way
anova is randomized blocks. This often occurs in agriculture, where you may want to test
different treatments on small plots within larger blocks of land. Because the larger blocks
may differ in some way that may affect the measurement variable, the data are analyzed
with a two-way anova, with the block as one of the nominal variables. Each treatment is
applied to one or more plot within the larger block, and the positions of the treatments are
assigned at random. This is most commonly done without replication (one plot per block),
but it can be done with replication as well.

Null hypotheses

A two-way anova with replication tests three null hypotheses: that the means of
observations grouped by one factor are the same; that the means of observations grouped
by the other factor are the same; and that there is no interaction between the two factors.
The interaction test tells you whether the effects of one factor depend on the other factor.
In the amphipod example, imagine that female amphipods of each genotype have about
the same MPI activity, while male amphipods with the SS genotype had much lower MPI
activity than male FF or FS amphipods (they don’t, but imagine they do for a moment).
The different effects of genotype on activity in female and male amphipods would result
in a significant interaction term in the anova, meaning that the effect of genotype on
activity would depend on whether you were looking at males or females. If there were no
interaction, the differences among genotypes in enzyme activity would be the same for
males and females, and the difference in activity between males and females would be the
same for each of the three genotypes.

When the interaction term is significant, the usual advice is that you should not test the
effects of the individual factors. In this example, it would be misleading to examine the
individual factors and conclude “SS amphipods have lower activity than FF or FS,” when
that is only true for males, or “Male amphipods have lower MPI activity than females,”
when that is only true for the SS genotype.

What you can do, if the interaction term is significant, is look at each factor separately,
using a one-way anova. In the amphipod example, you might be able to say that for
female amphipods, there is no significant effect of genotype on MPI activity, while for
male amphipods, there is a significant effect of genotype on MPI activity. Or, if you're
more interested in the sex difference, you might say that male amphipods have a
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significantly lower mean enzyme activity than females when they have the SS genotype,
but not when they have the other two genotypes.

When you do a two-way anova without replication, you can still test the two main
effects, but you can’t test the interaction. This means that your tests of the main effects
have to assume that there’s no interaction. If you find a significant difference in the means
for one of the main effects, you wouldn’t know whether that difference was consistent for
different values of the other main effect.

How the test works

With replication

When the sample sizes in each subgroup are equal (a “balanced design”), you calculate
the mean square for each of the two factors (the “main effects”), for the interaction, and for
the variation within each combination of factors. You then calculate each F statistic by
dividing a mean square by the within-subgroup mean square.

When the sample sizes for the subgroups are not equal (an “unbalanced design”), the
analysis is much more complicated, and there are several different techniques for testing
the main and interaction effects that I'm not going to cover here. If you're doing a two-
way anova, your statistical life will be a lot easier if you make it a balanced design.

Without replication

When there is only a single observation for each combination of the nominal variables,
there are only two null hypotheses: that the means of observations grouped by one factor
are the same, and that the means of observations grouped by the other factor are the same.
It is impossible to test the null hypothesis of no interaction; instead, you have to assume
that there is no interaction in order to test the two main effects.

When there is no replication, you calculate the mean square for each of the two main
effects, and you also calculate a total mean square by considering all of the observations as
a single group. The remainder mean square (also called the discrepance or error mean
square) is found by subtracting the two main effect mean squares from the total mean
square. The F statistic for a main effect is the main effect mean square divided by the
remainder mean square.

Assumptions

Two-way anova, like all anovas, assumes that the observations within each cell are
normally distributed and have equal standard deviations. I don’t know how sensitive it is
to violations of these assumptions.

Examples

Shimoji and Miyatake (2002) raised the West Indian sweetpotato weevil for 14
generations on an artificial diet. They compared these artificial diet weevils (AD strain)
with weevils raised on sweet potato roots (SP strain), the weevil’s natural food. They
placed multiple females of each strain on either the artificial diet or sweet potato root, and
they counted the number of eggs each female laid over a 28-day period. There are two
nominal variables, the strain of weevil (AD or SP) and the oviposition test food (artificial
diet or sweet potato), and one measurement variable (the number of eggs laid).
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Mean total numbers of eggs of females from the SP strain (gray bars) and AD strain (white bars).
Values are mean +SEM. (Adapted from Fig. 4 of Shimoji and Miyatake [2002]).

The results of the two-way anova with replication include a significant interaction
term (F,,,=17.02, P=7 x 10:). Looking at the graph, the interaction can be interpreted this
way: on the sweet potato diet, the SP strain laid more eggs than the AD strain; on the
artificial diet, the AD strain laid more eggs than the SP strain. Each main effect is also
significant: weevil strain (F,..=8.82, P=0.0036) and oviposition test food (F=,.,=345.92, P=9 x
10~). However, the significant effect of strain is a bit misleading, as the direction of the
difference between strains depends on which food they ate. This is why it is important to
look at the interaction term first.

Place and Abramson (2008) put diamondback rattlesnakes (Crotalus atrox) in a
“rattlebox,” a box with a lid that would slide open and shut every 5 minutes. At first, the
snake would rattle its tail each time the box opened. After a while, the snake would
become habituated to the box opening and stop rattling its tail. They counted the number
of box openings until a snake stopped rattling; fewer box openings means the snake was
more quickly habituated. They repeated this experiment on each snake on four successive
days, which I'll treat as a nominal variable for this example. Place and Abramson (2008)
used 10 snakes, but some of them never became habituated; to simplify this example, I'll
use data from the 6 snakes that did become habituated on each day:

Snake ID Day 1 Day 2 Day 3 Day 4

D1 85 58 15 57
D3 107 51 30 12
D5 61 60 68 36
D8 22 41 63 21
D11 40 45 28 10
D12 65 27 3 16

The measurement variable is trials to habituation, and the two nominal variables are
day (1 to 4) and snake ID. This is a repeated measures design, as the measurement variable
is measured repeatedly on each snake. It is analyzed using a two-way anova without
replication. The effect of snake is not significant (F,.=1.24, P=0.34), while the effect of day
is significant (F,.=3.32, P=0.049).
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1 2 3 4
Day

Mean number of trials before rattlesnakes stopped rattling, on four successive days. Values are
mean +95% confidence intervals. Data from Place and Abramson (2008).

Graphing the results

MPI activity
P N N
o o @ o
|
I

female

fs
SS

genotype
Don'’t use this kind of graph. Which bar is higher: fs in females or ss in males?

Some people plot the results of a two-way anova on a 3-D graph, with the
measurement variable on the Y axis, one nominal variable on the X-axis, and the other
nominal variable on the Z axis (going into the paper). This makes it difficult to visually
compare the heights of the bars in the front and back rows, so I don’t recommend this.
Instead, I suggest you plot a bar graph with the bars clustered by one nominal variable,
with the other nominal variable identified using the color or pattern of the bars.

4.0
3.5 1
3.0 1
2.5 1
2.0 1
1.5 4
1.0 4
0.5 1
0.0 4

MPI activity

female male

Mannose-6-phosphate isomerase activity in three MPI genotypes in the amphipod crustacean
Platorchestia platensis. Solid bars: ff, gray bars: fs, empty bars: ss. Isn’t this graph much better?

If one of the nominal variables is the interesting one, and the other is just a possible

confounder, I'd group the bars by the possible confounder and use different patterns for
the interesting variable. For the amphipod data described above, I was interested in seeing
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whether MPI phenotype affected enzyme activity, with any difference between males and
females as an annoying confounder, so I grouped the bars by sex.

Similar tests

A two-way anova without replication and only two values for the interesting nominal
variable may be analyzed using a paired t-test. The results of a paired t-test are
mathematically identical to those of a two-way anova, but the paired t—test is easier to do
and is familiar to more people. Data sets with one measurement variable and two nominal
variables, with one nominal variable nested under the other, are analyzed with a nested
anova.

Three-way and higher order anovas are possible, as are anovas combining aspects of a
nested and a two-way or higher order anova. The number of interaction terms increases
rapidly as designs get more complicated, and the interpretation of any significant
interactions can be quite difficult. It is better, when possible, to design your experiments
so that as many factors as possible are controlled, rather than collecting a hodgepodge of
data and hoping that a sophisticated statistical analysis can make some sense of it.

How to do the test
Spreadsheet

I haven't put together a spreadsheet to do two-way anovas.

Web page
There’s a web page to perform a two-way anova with replication, with up to 4 groups
for each main effect (http:/ / vassarstats.net/anova2u.html).

SAS

Use PROC GLM for a two-way anova. The CLASS statement lists the two nominal
variables. The MODEL statement has the measurement variable, then the two nominal
variables and their interaction after the equals sign. Here is an example using the MPI
activity data described above:

DATA amphipods;
INPUT id $ sex $ genotype $ activity @@;
DATALINES;

1 male ff 1.884 2 male ff 2.283 3 male fs 2.396
4 female ff 2.838 5 male fs 2.956 6 female ff 4.216
7 female ss 3.620 8 female ff 2.889 9 female fs 3.550
10 male fs 3.105 11 female fs 4.556 12 female fs 3.087
13 male ff 4.939 14 male ff 3.486 15 female ss 3.079
16 male fs 2.649 17 female fs 1.943 19 female ff 4.198
20 female ff 2.473 22 female ff 2.033 24 female fs 2.200
25 female fs 2.157 26 male ss 2.801 28 male ss 3.421
29 female ff 1.811 30 female fs 4.281 32 female fs 4.772
34 female ss 3.586 36 female ff 3.944 38 female ss 2.669
39 female ss 3.050 41 male ss 4.275 43 female ss 2.963
3.236 48 female ss 3.673 49 male ss 3.110

46 female ss

I
PROC GLM DATA=amphipods;

CLASS sex genotype;

MODEL activity=sex genotype sex*genotype;
RUN;
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The results indicate that the interaction term is not significant (P=0.60), the effect of
genotype is not significant (P=0.84), and the effect of sex concentration not significant

(P=0.77).
Source DF Type I SS
sex 1 0.06808050
genotype 2 0.27724017
sex*genotype 2 0.81464133

Mean Square F Value Pr > F
0.06808050 0.09 0.7712
0.13862008 0.18 0.8400
0.40732067 0.52 0.6025

If you are using SAS to do a two-way anova without replication, do not put an
interaction term in the model statement (“sex*genotype” is the interaction term in the

example above).
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Paired t—test

Use the paired t—test when you have one measurement variable and two nominal
variables, one of the nominal variables has only two values, and you only have one
observation for each combination of the nominal variables; in other words, you have

multiple pairs of observations. It tests whether the mean difference in the pairs is different

from 0.

When to use it

Use the paired t-test when there is one measurement variable and two nominal
variables. One of the nominal variables has only two values, so that you have multiple

pairs of observations. The most common design is that one nominal variable represents
individual organisms, while the other is “before” and “after” some treatment. Sometimes
the pairs are spatial rather than temporal, such as left vs. right, injured limb vs. uninjured
limb, etc. You can use the paired t—test for other pairs of observations; for example, you
might sample an ecological measurement variable above and below a source of pollution

in several streams.

Beach 2011 2012 2012-2011
Bennetts Pier 35282 21814 -13468
Big Stone 359350 83500 —275850
Broadkill 45705 13290 -32415
Cape Henlopen 49005 30150 -18855
Fortescue 68978 125190 56212
Fowler 8700 4620 -4080
Gandys 18780 88926 70146
Higbees 13622 1205 -12417
Highs 24936 29800 4864
Kimbles 17620 53640 36020
Kitts Hummock 117360 68400 -48960
Norburys Landing 102425 74552 —-27873
North Bowers 59566 36790 -22776
North Cape May 32610 4350 28260
Pickering 137250 110550 —-26700
Pierces Point 38003 43435 5432
Primehook 101300 20580 -80720
Reeds 62179 81503 19324
Slaughter 203070 53940 -149130
South Bowers 135309 87055 -48254
South CSL 150656 112266 -38390
Ted Harvey 115090 90670 -24420
Townbank 44022 21942 -22080
Villas 56260 32140 -24120
Woodland 125 1260 1135
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As an example, volunteers count the number of breeding horseshoe crabs on beaches
on Delaware Bay every year; above are data from 2011 and 2012. The measurement
variable is number of horseshoe crabs, one nominal variable is 2011 vs. 2012, and the other
nominal variable is the name of the beach. Each beach has one pair of observations of the
measurement variable, one from 2011 and one from 2012. The biological question is
whether the number of horseshoe crabs has gone up or down between 2011 and 2012.

As you might expect, there’s a lot of variation from one beach to the next. If the
difference between years is small relative to the variation within years, it would take a
very large sample size to get a significant two-sample f—test comparing the means of the
two years. A paired t—test just looks at the differences, so if the two sets of measurements
are correlated with each other, the paired t-test will be more powerful than a two-sample
t—test. For the horseshoe crabs, the P value for a two-sample t—test is 0.110, while the
paired f-test gives a P value of 0.045.

You can only use the paired t—test when there is just one observation for each
combination of the nominal values. If you have more than one observation for each
combination, you have to use two-way anova with replication. For example, if you had
multiple counts of horseshoe crabs at each beach in each year, you’d have to do the two-
way anova.

You can only use the paired t—test when the data are in pairs. If you wanted to
compare horseshoe crab abundance in 2010, 2011, and 2012, you’d have to do a two-way
anova without replication.

“Paired t—test” is just a different name for “two-way anova without replication, where
one nominal variable has just two values”; the results are mathematically identical. The
paired design is a common one, and if all you're doing is paired designs, you should call
your test the paired t—test; it will sound familiar to more people. But if some of your data
sets are in pairs, and some are in sets of three or more, you should call all of your tests
two-way anovas; otherwise people will think you're using two different tests.

Null hypothesis

The null hypothesis is that the mean difference between paired observations is zero.
When the mean difference is zero, the means of the two groups must also be equal.
Because of the paired design of the data, the null hypothesis of a paired t-test is usually
expressed in terms of the mean difference.

Assumption

The paired t—test assumes that the differences between pairs are normally distributed.
If the differences between pairs are severely non-normal, it would be better to use the
Wilcoxon signed-rank test. I don’t think the test is very sensitive to deviations from
normality, so unless the deviation from normality is really obvious, you shouldn’t worry
about it.

The paired t-test does not assume that observations within each group are normal,
only that the differences are normal. And it does not assume that the groups are
homoscedastic.

How the test works

The first step in a paired t—test is to calculate the difference for each pair, as shown in
the last column above. Then you use a one-sample t—test to compare the mean difference
to 0. So the paired t—test is really just one application of the one-sample t—test, but because
the paired experimental design is so common, it gets a separate name.
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Examples

Wiebe and Bortolotti (2002) examined color in the tail feathers of northern flickers.
Some of the birds had one “odd” feather that was different in color or length from the rest
of the tail feathers, presumably because it was regrown after being lost. They measured
the yellowness of one odd feather on each of 16 birds and compared it with the yellowness
of one typical feather from the same bird. There are two nominal variables, type of feather
(typical or odd) and the individual bird, and one measurement variable, yellowness.
Because these birds were from a hybrid zone between red-shafted flickers and yellow-
shafted flickers, there was a lot of variation among birds in color, making a paired analysis
more appropriate. The difference was significant (P=0.001), with the odd feathers
significantly less yellow than the typical feathers (higher numbers are more yellow).

Yellowness index
Typical Odd

Bird feather feather
A -0.255 -0.324
B -0.213 -0.185
C -0.190 -0.299
D -0.185 -0.144
E -0.045 -0.027
F -0.025 -0.039
G -0.015 -0.264
H 0.003 -0.077
I 0.015 -0.017
] 0.020 -0.169
K 0.023 -0.096
L 0.040 -0.330
M 0.040 -0.346
N 0.050 -0.191
@) 0.055 -0.128
P 0.058 -0.182

Wilder and Rypstra (2004) tested the effect of praying mantis excrement on the behavior of
wolf spiders. They put 12 wolf spiders in individual containers; each container had two
semicircles of filter paper, one semicircle that had been smeared with praying mantis
excrement and one without excrement. They observed each spider for one hour, and
measured its walking speed while it was on each half of the container. There are two
nominal variables, filter paper type (with or without excrement) and the individual spider,
and one measurement variable (walking speed). Different spiders may have different
overall walking speed, so a paired analysis is appropriate to test whether the presence of
praying mantis excrement changes the walking speed of a spider. The mean difference in
walking speed is almost, but not quite, significantly different from 0 (¢=2.11, 11 d.f,,
P=0.053).

Graphing the results

If there are a moderate number of pairs, you could either plot each individual value on
a bar graph, or plot the differences. Here is one graph in each format for the flicker data:
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Colors of tail feathers in the northern flicker. The graph on the top shows the yellowness index for a
“typical” feather with a black bar and an “odd” feather with a gray bar. The graph on the bottom
shows the difference (typical — odd).

Related tests

The paired t—test is mathematically equivalent to one of the hypothesis tests of a two-
way anova without replication. The paired t-test is simpler to perform and may sound
familiar to more people. You should use two-way anova if you're interested in testing
both null hypotheses (equality of means of the two treatments and equality of means of
the individuals); for the horseshoe crab example, if you wanted to see whether there was
variation among beaches in horseshoe crab density, you'd use two-way anova and look at
both hypothesis tests. In a paired t-test, the means of individuals are so likely to be
different that there’s no point in testing them.

If you have multiple observations for each combination of the nominal variables (such
as multiple observations of horseshoe crabs on each beach in each year), you have to use
two-way anova with replication.

If you ignored the pairing of the data, you would use a one-way anova or a two-
sample t—test. When the difference of each pair is small compared to the variation among
pairs, a paired f—test can give you a lot more statistical power than a two-sample t-test, so
you should use the paired test whenever your data are in pairs.

One non-parametric analogue of the paired t—test is Wilcoxon signed-rank test; you
should use if the differences are severely non-normal. A simpler and even less powerful
test is the sign test, which considers only the direction of difference between pairs of
observations, not the size of the difference.

How to do the test
Spreadsheet

Spreadsheets have a built-in function to perform paired t—tests. Put the “before”
numbers in one column, and the “after” numbers in the adjacent column, with the before
and after observations from each individual on the same row. Then enter =TTEST (array1,
array2, tails, type), where array1 is the first column of data, array2 is the second column of
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data, tails is normally set to 2 for a two-tailed test, and type is set to 1 for a paired t-test.
The result of this function is the P value of the paired t—test.

Even though it's easy to do yourself, I've written a spreadsheet to do a paired t-test
(http:/ / www.biostathandbook.com / pairedttest.xls).

Web pages

There are several web pages to do paired t—tests:
www.fon.hum.uva.nl/Service/Statistics/Student_t Test.html,
faculty.vassar.edu/lowry /t_corr_stats.html, graphpad.com/quickcalcs/ ttestl.cfm, and
www.physics.csbsju.edu/stats / Paired_t-test. NROW_form.html.

SAS

To do a paired t—test in SAS, you use PROC TTEST with the PAIRED option. Here is
an example using the feather data from above:

DATA feathers;
INPUT bird $ typical odd;

DATALINES;
A -0.255 -0.324
B -0.213 -0.185
C -0.190 -0.299
D -0.185 -0.144
E -0.045 -0.027
F -0.025 -0.039
G -0.015 -0.264
H 0.003 -0.077
I 0.015 -0.017
J 0.020 -0.169
K 0.023 -0.096
L 0.040 -0.330
M 0.040 -0.346
N 0.050 -0.191
(0] 0.055 -0.128
P 0.058 -0.182

I

PROC TTEST DATA=feathers;
PAIRED typical*odd;

RUN;

The results include the following, which shows that the P value is 0.0010:

t—tests
Difference DF t Value Pr > |t]
typical - odd 15 4.06 0.0010

Power analysis

To estimate the sample sizes needed to detect a mean difference that is significantly
different from zero, you need the following:

ethe effect size, or the mean difference. In the feather data used above, the mean
difference between typical and odd feathers is 0.137 yellowness units.

ethe standard deviation of differences. Note that this is not the standard deviation
within each group. For example, in the feather data, the standard deviation of the
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differences is 0.135; this is not the standard deviation among typical feathers, or the
standard deviation among odd feathers, but the standard deviation of the
differences;

ealpha, or the significance level (usually 0.05);

epower, the probability of rejecting the null hypothesis when it is false and the true
difference is equal to the effect size (0.80 and 0.90 are common values).

As an example, let’s say you want to do a study comparing the redness of typical and
odd tail feathers in cardinals. The closest you can find to preliminary data is the Weibe
and Bortolotti (2002) paper on yellowness in flickers. They found a mean difference of
0.137 yellowness units, with a standard deviation of 0.135; you arbitrarily decide you want
to be able to detect a mean difference of 0.10 redness units in your cardinals. In G*Power,
choose “t tests” under Test Family and “Means: Difference between two dependent means
(matched pairs)” under Statistical Test. Choose “A priori: Compute required sample size”
under Type of Power Analysis. Under Input Parameters, choose the number of tails
(almost always two), the alpha (usually 0.05), and the power (usually something like 0.8 or
0.9). Click on the “Determine” button and enter the effect size you want (0.10 for our
example) and the standard deviation of differences, then hit the “Calculate and transfer to
main window” button. The result for our example is a total sample size of 22, meaning
that if the true mean difference is 0.10 redness units and the standard deviation of
differences is 0.135, you’d have a 90% chance of getting a result that’s significant at the
P<0.05 level if you sampled typical and odd feathers from 22 cardinals.
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Wilcoxon signed-rank test

Use the Wilcoxon signed-rank test when you’d like to use the paired t-test, but the
differences are severely non-normally distributed.

When to use it

Use the Wilcoxon signed-rank test when there are two nominal variables and one
measurement variable. One of the nominal variables has only two values, such as “before”
and “after,” and the other nominal variable often represents individuals. This is the non-
parametric analogue to the paired f—test, and you should use it if the distribution of
differences between pairs is severely non-normally distributed.

For example, Laureysens et al. (2004) measured metal content in the wood of 13 poplar
clones growing in a polluted area, once in August and once in November. Concentrations
of aluminum (in micrograms of Al per gram of wood) are shown below.

Clone August November  difference
Columbia River 18.3 12.7 -5.6
Fritzi Pauley 13.3 11.1 2.2
Hazendans 16.5 15.3 -1.2
Primo 12.6 12.7 0.1
Raspalje 9.5 10.5 1.0
Hoogvorst 13.6 15.6 2.0
Balsam Spire 8.1 11.2 3.1
Gibecq 8.9 14.2 5.3
Beaupre 10.0 16.3 6.3
Unal 8.3 15.5 7.2
Trichobel 7.9 19.9 12.0
Gaver 8.1 20.4 12.3
Wolterson 13.4 36.8 23.4

There are two nominal variables: time of year (August or November) and poplar clone
(Columbia River, Fritzi Pauley, etc.), and one measurement variable (micrograms of
aluminum per gram of wood). The differences are somewhat skewed; the Wolterson
clone, in particular, has a much larger difference than any other clone. To be safe, the
authors analyzed the data using a Wilcoxon signed-rank test, and I'll use it as the example.

Null hypothesis

The null hypothesis is that the median difference between pairs of observations is zero.
Note that this is different from the null hypothesis of the paired t-test, which is that the
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mean difference between pairs is zero, or the null hypothesis of the sign test, which is that
the numbers of differences in each direction are equal.

How it works

Rank the absolute value of the differences between observations from smallest to
largest, with the smallest difference getting a rank of 1, then next larger difference getting
a rank of 2, etc. Give average ranks to ties. Add the ranks of all differences in one
direction, then add the ranks of all differences in the other direction. The smaller of these
two sums is the test statistic, W (sometimes symbolized T.). Unlike most test statistics,
smaller values of W are less likely under the null hypothesis. For the aluminum in wood
example, the median change from August to November (3.1 micrograms Al/g wood) is
significantly different from zero (W=16, P=0.040).

Examples

Buchwalder and Huber-Eicher (2004) wanted to know whether turkeys would be less
aggressive towards unfamiliar individuals if they were housed in larger pens. They tested
10 groups of three turkeys that had been reared together, introducing an unfamiliar turkey
and then counting the number of times it was pecked during the test period. Each group
of turkeys was tested in a small pen and in a large pen. There are two nominal variables,
size of pen (small or large) and the group of turkeys, and one measurement variable
(number of pecks per test). The median difference between the number of pecks per test in
the small pen vs. the large pen was significantly greater than zero (W=10, P=0.04).

Ho et al. (2004) inserted a plastic implant into the soft palate of 12 chronic snorers to
see if it would reduce the volume of snoring. Snoring loudness was judged by the sleeping
partner of the snorer on a subjective 10-point scale. There are two nominal variables, time
(before the operations or after the operation) and individual snorer, and one measurement
variable (loudness of snoring). One person left the study, and the implant fell out of the
palate in two people; in the remaining nine people, the median change in snoring volume
was significantly different from zero (W=0, P=0.008).

Graphing the results

You should graph the data for a Wilcoxon signed rank test the same way you would
graph the data for a paired t—test, a bar graph with either the values side-by-side for each
pair, or the differences at each pair.

Similar tests

You can analyze paired observations of a measurement variable using a paired t-test,
if the null hypothesis is that the mean difference between pairs of observations is zero and
the differences are normally distributed. If you have a large number of paired
observations, you can plot a histogram of the differences to see if they look normally
distributed. The paired t—test isn’t very sensitive to non-normal data, so the deviation
from normality has to be pretty dramatic to make the paired f—test inappropriate.

Use the sign test when the null hypothesis is that there are equal number of differences
in each direction, and you don’t care about the size of the differences.
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How to do the test
Spreadsheet

I have prepared a spreadsheet to do the Wilcoxon signed-rank test
(www.biostathandbook.com /signedrank.xls). It will handle up to 1000 pairs of
observations.

Web page

There is a web page that will perform the Wilcoxon signed-rank test
(www.fon.hum.uva.nl/Service/Statistics / Signed_Rank_Test.html). You may enter your
paired numbers directly onto the web page; it will be easier if you enter them into a
spreadsheet first, then copy them and paste them into the web page.

SAS

To do Wilcoxon signed-rank test in SAS, you first create a new variable that is the
difference between the two observations. You then run PROC UNIVARIATE on the
difference, which automatically does the Wilcoxon signed-rank test along with several
others. Here’s an example using the poplar data from above:

DATA POPLARS;
INPUT clone $ augal noval;
diff=augal - noval;

DATALINES;

Balsam Spire 8.1 11.2
Beaupre 10.0 16.3
Hazendans 16.5 15.3
Hoogvorst 13.6 15.6
Raspalje 9.5 10.5
Unal 8.3 15.5
Columbia River 18.3 12.7
Fritzi_Pauley 13.3 11.1
Trichobel 7.9 19.9
Gaver 8.1 20.4
Gibecq 8.9 14.2
Primo 12.6 12.7

4 36.8

Wolterson 13.

7

PROC UNIVARIATE DATA=poplars;
VAR diff;

RUN;

PROC UNIVARIATE returns a bunch of descriptive statistics that you don’t need; the
result of the Wilcoxon signed-rank test is shown in the row labeled “Signed rank”:

Tests for Location: Mu0=0

Test -Statistic-  --—-—- p Value------
Student’s t t -2.3089 Pr > |t 0.0396
Sign M -3.5 Pr >= |M| 0.0923
Signed Rank S -29.5 Pr >= |S| 0.0398
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Correlation and linear
regression

Use linear regression or correlation when you want to know whether one
measurement variable is associated with another measurement variable; you want to
measure the strength of the association (7:); or you want an equation that describes the
relationship and can be used to predict unknown values.

Introduction

One of the most common graphs in science plots one measurement variable on the x
(horizontal) axis vs. another on the y (vertical) axis. For example, here are two graphs. For
the first, I dusted off the elliptical machine in our basement and measured my pulse after
one minute of ellipticizing at various speeds:

Speed, kph ~ Pulse, bpm 140

0.0 57
1.6 69 120 1
3.1 78
4.0 80 1007
5.0 85 5 ol
6.0 87 =
6.9 90 g 60§
7.7 92 »
8.7 97 40

12.4 108

15.3 119 20

0 . .
0 5 10 15 20
Pulse (bpm)

My pulse rate vs. speed on an elliptical exercise machine.

For the second graph, I dusted off some data from McDonald (1989): I collected the
amphipod crustacean Platorchestia platensis on a beach near Stony Brook, Long Island, in
April, 1987, removed and counted the number of eggs each female was carrying, then
freeze-dried and weighed the mothers:
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Weight, mg Eggs
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Number of eggs vs. dry weight in the amphipod Platorchestia platensis.

There are three things you can do with this kind of data. One is a hypothesis test, to
see if there is an association between the two variables; in other words, as the X variable
goes up, does the Y variable tend to change (up or down). For the exercise data, you'd
want to know whether pulse rate was significantly higher with higher speeds. The P value

is 1.3x 10+, but the relationship is so obvious from the graph, and so biologically
unsurprising (of course my pulse rate goes up when I exercise harder!), that the
hypothesis test wouldn’t be a very interesting part of the analysis. For the amphipod data,
you’d want to know whether bigger females had more eggs or fewer eggs than smaller
amphipods, which is neither biologically obvious nor obvious from the graph. It may look
like a random scatter of points, but there is a significant relationship (P=0.005).

The second goal is to describe how tightly the two variables are associated. This is
usually expressed with r, which ranges from -1 to 1, or r;, which ranges from 0 to 1. For
the exercise data, there’s a very tight relationship, as shown by the r: of 0.98; this means
that if you knew my speed on the elliptical machine, you’d be able to predict my pulse
quite accurately. The r: for the amphipod data is a lot lower, at 0.25; this means that even
though there’s a significant relationship between female weight and number of eggs,
knowing the weight of a female wouldn’t let you predict the number of eggs she had with
very much accuracy.

The final goal is to determine the equation of a line that goes through the cloud of
points. The equation of a line is given in the form Y=a+bX, where Y is the value of Y
predicted for a given value of X, ais the Y intercept (the value of Y when X is zero), and b
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is the slope of the line (the change in Y for a change in X of one unit). For the exercise data,
the equation is Y=63.5+3.75X; this predicts that my pulse would be 63.5 when the speed of
the elliptical machine is 0 kph, and my pulse would go up by 3.75 beats per minute for
every 1 kph increase in speed. This is probably the most useful part of the analysis for the
exercise data; if I wanted to exercise with a particular level of effort, as measured by pulse
rate, I could use the equation to predict the speed I should use. For the amphipod data, the
equation is Y=12.7+1.60X. For most purposes, just knowing that bigger amphipods have
significantly more eggs (the hypothesis test) would be more interesting than knowing the
equation of the line, but it depends on the goals of your experiment.

When to use them

Use correlation/linear regression when you have two measurement variables, such as
food intake and weight, drug dosage and blood pressure, air temperature and metabolic
rate, etc.

There’s also one nominal variable that keeps the two measurements together in pairs,
such as the name of an individual organism, experimental trial, or location. I'm not aware
that anyone else considers this nominal variable to be part of correlation and regression,
and it’s not something you need to know the value of—you could indicate that a food
intake measurement and weight measurement came from the same rat by putting both
numbers on the same line, without ever giving the rat a name. For that reason, I'll call it a
“hidden” nominal variable.

The main value of the hidden nominal variable is that it lets me make the blanket
statement that any time you have two or more measurements from a single individual
(organism, experimental trial, location, etc.), the identity of that individual is a nominal
variable; if you only have one measurement from an individual, the individual is not a
nominal variable. I think this rule helps clarify the difference between one-way, two-way,
and nested anova. If the idea of hidden nominal variables in regression confuses you, you
can ignore it.

There are three main goals for correlation and regression in biology. One is to see
whether two measurement variables are associated with each other; whether as one
variable increases, the other tends to increase (or decrease). You summarize this test of
association with the P value. In some cases, this addresses a biological question about
cause-and-effect relationships; a significant association means that different values of the
independent variable cause different values of the dependent. An example would be
giving people different amounts of a drug and measuring their blood pressure. The null
hypothesis would be that there was no relationship between the amount of drug and the
blood pressure. If you reject the null hypothesis, you would conclude that the amount of
drug causes the changes in blood pressure. In this kind of experiment, you determine the
values of the independent variable; for example, you decide what dose of the drug each
person gets. The exercise and pulse data are an example of this, as I determined the speed
on the elliptical machine, then measured the effect on pulse rate.

In other cases, you want to know whether two variables are associated, without
necessarily inferring a cause-and-effect relationship. In this case, you don’t determine
either variable ahead of time; both are naturally variable and you measure both of them. If
you find an association, you infer that variation in X may cause variation in Y, or variation
in Y may cause variation in X, or variation in some other factor may affect both Y and X.
An example would be measuring the amount of a particular protein on the surface of
some cells and the pH of the cytoplasm of those cells. If the protein amount and pH are
correlated, it may be that the amount of protein affects the internal pH; or the internal pH
affects the amount of protein; or some other factor, such as oxygen concentration, affects
both protein concentration and pH. Often, a significant correlation suggests further
experiments to test for a cause and effect relationship; if protein concentration and pH
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were correlated, you might want to manipulate protein concentration and see what
happens to pH, or manipulate pH and measure protein, or manipulate oxygen and see
what happens to both. The amphipod data are another example of this; it could be that
being bigger causes amphipods to have more eggs, or that having more eggs makes the
mothers bigger (maybe they eat more when they’re carrying more eggs?), or some third
factor (age? food intake?) makes amphipods both larger and have more eggs.

The second goal of correlation and regression is estimating the strength of the
relationship between two variables; in other words, how close the points on the graph are
to the regression line. You summarize this with the : value. For example, let’s say you've
measured air temperature (ranging from 15 to 30°C) and running speed in the lizard
Agama savignyi, and you find a significant relationship: warmer lizards run faster. You
would also want to know whether there’s a tight relationship (high r:), which would tell
you that air temperature is the main factor affecting running speed; if the r: is low, it
would tell you that other factors besides air temperature are also important, and you
might want to do more experiments to look for them. You might also want to know how
the 7 for Agama savignyi compared to that for other lizard species, or for Agama savignyi
under different conditions.

The third goal of correlation and regression is finding the equation of a line that fits
the cloud of points. You can then use this equation for prediction. For example, if you
have given volunteers diets with 500 to 2500 mg of salt per day, and then measured their
blood pressure, you could use the regression line to estimate how much a person’s blood
pressure would go down if they ate 500 mg less salt per day.

Correlation versus linear regression

The statistical tools used for hypothesis testing, describing the closeness of the
association, and drawing a line through the points, are correlation and linear regression.
Unfortunately, I find the descriptions of correlation and regression in most textbooks to be
unnecessarily confusing. Some statistics textbooks have correlation and linear regression
in separate chapters, and make it seem as if it is always important to pick one technique or
the other. I think this overemphasizes the differences between them. Other books muddle
correlation and regression together without really explaining what the difference is.

There are real differences between correlation and linear regression, but fortunately,
they usually don’t matter. Correlation and linear regression give the exact same P value
for the hypothesis test, and for most biological experiments, that’s the only really
important result. So if you're mainly interested in the P value, you don’t need to worry
about the difference between correlation and regression.

For the most part, I'll treat correlation and linear regression as different aspects of a
single analysis, and you can consider correlation/linear regression to be a single statistical
test. Be aware that my approach is probably different from what you’ll see elsewhere.

The main difference between correlation and regression is that in correlation, you
sample both measurement variables randomly from a population, while in regression you
choose the values of the independent (X) variable. For example, let’s say you're a forensic
anthropologist, interested in the relationship between foot length and body height in
humans. If you find a severed foot at a crime scene, you’d like to be able to estimate the
height of the person it was severed from. You measure the foot length and body height of
a random sample of humans, get a significant P value, and calculate : to be 0.72. This is a
correlation, because you took measurements of both variables on a random sample of
people. The r: is therefore a meaningful estimate of the strength of the association between
foot length and body height in humans, and you can compare it to other r: values. You
might want to see if the r: for feet and height is larger or smaller than the : for hands and
height, for example.
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As an example of regression, let’s say you've decided forensic anthropology is too
disgusting, so now you’'re interested in the effect of air temperature on running speed in
lizards. You put some lizards in a temperature chamber set to 10°C, chase them, and
record how fast they run. You do the same for 10 different temperatures, ranging up to
30°C. This is a regression, because you decided which temperatures to use. You'll
probably still want to calculate r, just because high values are more impressive. But it’s
not a very meaningful estimate of anything about lizards. This is because the - depends
on the values of the independent variable that you chose. For the exact same relationship
between temperature and running speed, a narrower range of temperatures would give a
smaller .. Here are three graphs showing some simulated data, with the same scatter
(standard deviation) of Y values at each value of X. As you can see, with a narrower range
of X values, the r: gets smaller. If you did another experiment on humidity and running
speed in your lizards and got a lower r;, you couldn’t say that running speed is more
strongly associated with temperature than with humidity; if you had chosen a narrower
range of temperatures and a broader range of humidities, humidity might have had a
larger r: than temperature.
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Simulated data showing the effect of the range of X values on the r-. For the exact same data,
measuring Y over a smaller range of X values yields a smaller .

If you try to classify every experiment as either regression or correlation, you'll quickly
find that there are many experiments that